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1. INTRODUCTION:

Clinical documentation during both the point-of injury and en route phases of
care in theater and operational environments continues to be incomplete, inaccurate,
and detrimental to the goal of ensuring that receiving facilities can rapidly gain
situational awareness of the patients moving through the system. Current
communication methods between the point of injury and receiving facilities rely on
verbal and written communication. These methods are vulnerable to rapid changes in
clinical status and human cognitive biases in data collection, processing, and sharing.
And, multiple handoffs further complicate the process and increase risk of errors and
miscommunication.

This project developed a novel hands-free clinical documentation system for use
in the operational environment that leverages a combination of off-the-shelf sensors,
accelerometers, and cameras to build a software system that automatically detects the
motion signatures associated with key clinical tasks and generates an abbreviated care
record, which can be transmitted upstream in real-time. The project’s intent is to ensure
better, more consistent, and clear communication among care teams to overcome
human misperceptions and error, provide high fidelity and reliable data, and allow
communication across multiple patients and providers at the same time.

2. KEYWORDS:

Biomedical informatics; medical clinical documentation; accelerometers; video;
hands free; Tactical Combat Casualty Care TCCC; Trauma; activity detection
recognition; injury heatmap

3. ACCOMPLISHMENTS:

Project Objectives and Major Aims. The project’s hypothesis is that the automatic
identification, documentation, and communication of key clinical concepts (i.e. injury
patterns or clinical interventions) that occur during the initial phase of care (i.e. point-of
injury and en-route care) will satisfy the information needs of upstream care providers
and facilitate better care coordination and resource utilization. The project’s overall
objective is to create a novel hands-free system using wearable technology and
cameras that can improve care by automatically sensing, documenting, and transmitting
clinical events with little or no end-user input.

This objective is supported by the specific aim to design and implement a clinical
activity detection prototype system using accelerometers, electromyography (EMG) and
video. The project includes two milestones: 1) the development of prototype software
and 2) drafting of publications on the problem and methods. The project’s aim, and the
milestones, are underpinned by the following five major tasks. (See Table 1 for the
Aims, Major Tasks, and Milestones, and Appendix A for the full Project Scope of Work
and Breakdown Schedule).

1. The first major task that the project is pursuing is the development of clinical
activity detection algorithms utilizing accelerometer data. To accomplish this, the



project 1) designed and evaluated methods to extract accelerometer data from devices
in real-time or near real-time; 2) designed and implemented basic activity detection
algorithms using captured accelerometer data; and 3) aggregated the accelerometer
data into a centralized physician dashboard.

2. Another major task is developing clinical activity detection algorithms that utilizes
image (video) data. The accomplish this, the project: 1) developed systems to capture
video data using cameras; 2) designed and implemented a basic clinical activity
detection system using image (video) data; and aggregated the data (image) data into a
centralized physician dashboard.

3. The next major task combined the accelerometer and image (video) data to
develop clinical activity detection algorithms, which included: 1) developing models to
correlate accelerometer and image data for activity detection; and 2) evaluating
combined activity detection algorithms on simulation lab data.

4. The fourth major task was designing and implementing high-level clinical activity
features that include: 1) designing and implementing an injury heatmap visualization; 2)
designing and implementing a risk score derived from accelerometer data; and 3)
designing and developing ‘quick’ data entry systems that prints results on top of a
TCCC card.

5. The last major task was conducting focus groups and field data collection. This
has been broken down broadly into task: 1) focus group of medics, surgeons,
emergency department physicians, and military staff; and 2) field data collection
deploying the prototype systems with Nashville Fire Department paramedics.

AIM(s) & MILESTONE(s) DATES WORK % STATUS
Description Start End Target Complete
Specific Aim 1: Design & implement a clinical 010CT17 |  31DEC19 100% 100% On-Track
activity detection prototype system
Mllest.one #1: Prepar.e publlca.tlon on problem 01DEC1S8 30SEP19 100% 100% On-Track
overview, and detection algorithms
Milestone #2: Package prototype software for 0IMAY19 |  29DEC20 100% 100% On-Track
sharing and distribution
Milestone #3: Complete and submit final report 010CT19 29DEC20 100% 100% On-Track
MAIJOR TASKS DATES WORK % STATUS
Description Start End Target Complete
1 Dexe]op clinical activity detection algorithms 010CT17 30NOV1S 100% 100% On-Track
utilizing accelerometer data
2 Develo.p.clln.lcal actlv.lty detection algorithms 010CT17 30NOV1S 100% 100% On-Track
that utilizes image (video) data
3 | Develop cI.|n|caI activity detectlo.n algorithms OLIUN1S 29DEC20 100% 100% On-Track
that combines accelerometer & image data
4 | Design and implement high-level clinical activity
features 01MAY19 30SEP19 100% 100% On-Track
5| Focus group and field data collection of 01NOV17 30SEP19 100% 95% On-Track
developed prototype systems

* On-Track = +/-5; Ahead >+5%, Behind >-%5



Table 1: Aims, Major Tasks, and Milestones

Accomplishment towards achieving the Aims.

The team achieved several notable accomplishments towards completing the

project’s aim. This includes:

1. Identified key domains and design insights from focus groups.

2. Affirmation of the premise that there is a need for improved documentation

between medics and hospital personnel.

3. Developed an accelerometer and EMG data capture system using Myo
devices.
Developed an accelerometer and motion data capture system using Apple
Watches.
Developed a Documentation Dashboard served from a webserver.
Developed a procedure prediction system using Myo and Apple Watch data.
Developed a procedure prediction system using video data.
Developed a procedure prediction system using motion and video data.
Designed and implemented an injury heatmap visualization.
10 Deployed the prototype system to capture data in the field with Nashville Fire.
11.Developed an auto-generated Tactical Combat Casualty Care card.
12.Published associated results in conference and journal proceedings.
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These accomplishments, and the preparation and process that led to them, are
discussed in more detail below.

Domain Identification and Development of Design Insights.

The project conducted three focus groups comprising 13 participants, which was
approved by the Vanderbilt University Institutional Review Board. Two of the focus
groups included pre-hospital personnel and one was conducted with hospital personnel.
The focus groups were audio recorded and transcribed for analysis. The transcriptions
were analyzed using a qualitative data analysis tool (Dedoose™). Data, which was
coded using a taxonomy, resulted in a key takeaways document that summarized the
design insights from the data across six key domains.

The goals were to gather information from healthcare providers with trauma
experience to identify gaps in current handoff procedures and understand current
documentation practices. The sessions focused on the process of communicating
during transitions of care from EMT to hospital, including elicitation of actual
experiences in the combat environment when possible. Based on the information
shared in the session, probing questions were added to better understand the physical
actions involved in transporting patients from the field/scene to the hospital including the
implications of incorporating wearable technologies, cameras, and other devices into
the process. The focus group guide is included in Appendix B.

The study created a list of key findings within the key domains that were generated
from the focus groups (see Appendix C for the complete list). From those, the project



identified several major findings that continue to provide significant insight into the
system’s design.

For instance, in the domain of Vital Signs and Demographics, the key design insight
from the focus groups was the need to: 1) corroborate the vital signs, and 2) capture as
many of the important, routinely given vitals and demographics. Interestingly, hospital
personnel asked for two measurements: the current value and the most extreme.

For the domains of Medication Administration and Documentation, the major findings
were to: explore how to automatically capture the administration of medicine, and
corroborate the medicines administered. In addition, it was identified that EMTs use ad
hoc methods to informally document their procedures (e.g., writing on tape on their leg),
which the administrations are not formally documented until after transport. This
showed the need to: 1) review the procedures EMTs document to better understand
which procedures merit automatic identification, and 2) explore the possibility of
transmitting the captured information to the EMT or hospital in real or near-real time.

For the Transport domain, the groups major finding was the necessity for: 1) the
corroboration of the procedures done in transport and their sequence (sequence of
procedures matters so procedures need to include times), and 2) that real time
information provided to the receiving hospital will allow the efficient allocation of
resources and triage.

The Communication domain illustrated that the capturing, processing, and sharing
the real time information from EMTs to the receiving hospital will reduce
miscommunication and allow focus on care to the patient(s).

For the last domain, Incorporating (New) Technology, the study found that most
people are amenable to wearable, body tracking, machine learning technologies, but
additional thought is needed on how to best overcome the cultural “trust” gap with new
technology. The study also found for the need to explore the ergonomics of wearing the
devices with required uniforms and within the physical space limitations of transport
vehicles.

Identification of accurate medical information.

The project identified critical elements of information that must be captured and
communicated by observing previously recorded handoffs between pre-hospital and
hospital personnel for trauma patients. To accomplish this, the team reviewed 50
Level | trauma resuscitation videos that are regularly taped for quality
improvement purposes. These videos capture the pre-brief (in which trauma team
members from the emergency department and trauma team review known facts about
the case and discuss a plan of action), hand-off, and management while the patient is in
the trauma bay.

To develop data capture form and coding scheme for the reviews, three reviewers
reviewed five videos. After all the videos had been reviewed, the reviewers met to
discuss the results and any discrepancies between reviewers. The reviewers then
came to a consensus about the types of information transferred from pre-hospital to
hospital personnel and developed a codebook to be applied by a single observer.



A total of 50 trauma videos were reviewed, and information from the associated
handoffs were recorded. These videos were reviewed by a single observer, who was
trained as a nurse and has extensive experience with trauma and the videos reviewed.
Data was collected on an observation form that was created specifically for that
purpose. The observational form was edited after the initial five video assessment
activity to reflect the information that was most pertinent in the video interactions. After
completion of the 50 reviews, the results from the observation forms were entered into a
REDCap database for further analysis and tabulation.

A major finding from reviewing the videos illustrated that important information,
needed to provide optimal care, is not always effectively conveyed during the handoff.
For example, many clarifying questions were asked during handoffs. Clarifying
questions were found in 40 of the 50 videos from the hospital staff during the handoff
from pre-hospital personnel. The presence of clarifying questions during handoff(s)
reflects a need for the information to be relayed more accurately to meet the needs of
trauma team personnel. Moreover, the video review confirmed the set of procedures the
team should attempt to automatically detect such as intubation, IV, and bagging, among
others. See Appendix D for all findings from the video observations.

The pre-hospital and hospital teams have different priorities and/or capabilities in the
performance of their roles in their respective environments. Pre-hospital teams need to
get the patient in the vehicle, perform needed procedures during transport to stabilize
the patient, and deliver the patient to more capable facility, which usually provides
surgical intervention. Meanwhile, the receiving trauma team wants to be able to
appropriately allocate resources in advance, based on case complexity. These
differences seem to result in an inadvertent conflict about the priority of recording
specific times of medication administration and/or performance and sequence of
procedures during transport, and the uninterrupted care of the patient.

Data from the observations supports the findings from the three focus groups that
more accurate information is needed at the time of handoff, specifically regarding time
and sequences of procedures and/or medications. The hospital focus group detailed
that the most important information needed by the trauma team involved time,
specifically regarding the sequence of procedures performed during transport.
Specifically, doctors care about how often and what a medic is doing during transport.
In summary, the results of the focus groups and video observations have illustrated the
need for more accurate recordkeeping, specifically temporal aspects, to enhance the
handoff from pre-hospital to hospital teams.

Development of a Myo reporting device.




The Myo Gesture Control Armband is a wearable sensor device consisting of
electromyography (EMG) and inertial measurement unit (IMU), as shown in Figure 1. It
has been used in medical environments

and in research projects for activity
detection.

While Myo devices have configurable,
integrated hardware for gesture prediction
of five to six pre-defined gestures, it does
not support activity prediction. Myo does
not support simple storage and egress of
raw sensor data, but it has released a
feature-rich software developer’s kit (SDK).
We have leveraged this SDK, in conjunction
with the Myo Connect application, to create

a basic desktop multi-Myo recording
application called Myo Egress. With Myo
Egress acting as a real-time EMG and IMU Figure 1: Myo Gesture Control Armband
sensor storage system, we can use state-of-

the-art machine learning to predict medic activity from their movements and generate
documentation.

Myo Egress is a python 3 application which runs on MacOS and Windows. It's
capable of recording and transmitting data in JSON or CSV formats. The IMU data
consists of gyroscope: x-rotation, y-rotation, z-rotation; acceleration: x-acceleration, y-
acceleration, z-acceleration; and orientation: w-quaternion, x-quaternion, y-quaternion,
z-quaternion all at 60 Hz. Eight EMG sensors also record electrical impulses translated
into an 8-bit signed integer representing electrical intensity at 200 Hz. Additionally,
higher-level data such as pose prediction, state data, such as lock, and metadata such
as bluetooth signal strength are stored at 200 Hz as well. In addition to Myo Egress
recording data locally to a desktop computer, it can simultaneously record data in bursts
of 1 Hz to multiple web services, such as the Handsfree Documentation web service
designed to analyzing sensor fusion data of IMU, EMG, and video.

The Myo Armband has some basic feedback mechanisms primarily consisting of
short and long vibrations. Currently, we have chosen not to use these features as a
passive recording environment is preferred. However, the Myo Connect application
vibrates Myo devices when they desynchronize, or when a state is entered in which
data quality is degraded until the device is recalibrated. We are in the process of
bypassing the Myo Connect application so all vibrations from the Myo Armband can be
halted. In the lab simulations using medical mannequins, data have been collected that
are complete and consistently high quality. Neither vibrations nor wearing the devices
have interfered with medics' work. In the future, we may also write Myo Egress to run
on a smartphone so a laptop does not need to be present to record medic data.



Development of an Apple Watch reporting device.

The Apple Watch is a wearable iPhone-synced, sensor capable of recording inertial
measurement unit (IMU), as shown in Figure 2.
It also has been used in medical environments
and in research projects for activity detection.

MacOS enables any user to design and build
their own application for the Apple Watch and
iPhone. We have created such an application to
record accelerometer data on the Apple Watch
over any length of time, with the simple touch of
a start and end button. The data are streamed to
a storage system in batches. With this
accelerometer data we can use state-of-the-art
machine learning to predict medic activity from
their movements and generate documentation.

Another advantage of the Apple Watch and
synced iPhone is that the team can track the
geolocation of medics wearing the device. This
allows the team to receive a notification when the
wearer is within a certain mileage range of a Figure 2: Apple Watch and iPhone 6
hospital. Synced

The Apple Watch application allows the user to denote whether the watch is worn on
the right or left wrist. When started, it records continuous accelerometer data at 60 Hz.
Currently each Apple Watch must be synced to its own iPhone for the application to run.
In addition, the iPhones must be connected to WIFI or have cellular data access for the
accelerometer data to be sent to our data storage system.

The IMU accelerometer data consists of gyroscope: x-rotation, y-rotation, z-rotation;
acceleration: x-acceleration, y-acceleration, z-acceleration; and orientation: yaw, pitch,
roll all at 60 Hz. The Apple Watch application sends the accelerometer data
automatically in real-time to our data storage system web application. This web
application, the Handsfree Documentation web service, was designed to analyze sensor
fusion data of IMU and EMG between the Myo and Apple Watch, and video recordings.

The current system being tested consists of two Apple Watch 3s synced to two
iPhone 6s. Newer versions of both the Apple Watch and iPhone can also be used, but
the Apple Watch 3 and iPhone 6 are the necessary minimum versions to run the current
application. The smallest available iPhone memory option is also sufficient to host the
Apple Watch and application.

Development of a Handsfree Documentation Dashboard

In order to fuse the ten streams of data coming from each medic, the
Handsfree Documentation Dashboard was created as a real-time web service.
Graphs of Apple Watch acceleration, Myo Armband acceleration, and EMGs are synced



with 4 video feeds (see Figure 3). This dashboard helps to visually analyze the data
collected and iteratively improves the system’s design.

The Handsfree Dashboard is a secure, HIPAA-complaint central storage repository
for sensor and video data and metadata. Metadata syncs our data streams which
allows for human analysis, validation, and pattern recognition of our data. Comparing
participants side-by-side is possible by selecting each participant in an experiment in
separate windows and selecting the events to compare, such as administering
medication through IV or chest-tube decompression. Additionally, IMU sensor data can
be validated against movements seen in video and also against the two IMU sensors
per arm on each participant.

Comparing IMU sensors is more difficult than we initially anticipated because Apple
Watch sensors subtract gravity from their output, but Myo Armband sensors do not.
Once gravity has been added back to the Apple Watch, and gravity removed from the
Myo Armband, those two streams will be used in the dashboard in conjunction with the
video to determine if the Myo Armband IMUs, Apple Watch IMUs, or both IMUs are best
for activity prediction. (See Appendix F for EMG and Accelerometer Graphs)

Figure 3: Synced four camera angles of Handsfree Dashboard



Accelerometer data analysis and procedure prediction.

The collected accelerometer and electromyography (EMG) data were first analyzed
qualitatively to determine patterns that persist across participants and to drive the
feature extraction process. The IMU and EMG data for each medical procedure were
plotted to determine patterns or state-changes that appear in each instance of the
medical procedure. A plot of the acceleration data for CPR captured by the Myo device
is provided in Figure 4.
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Figure 4: Myo Acceleration Data for CPR

A sinusoidal signal occurred when the participant was performing chest
compressions is seen in the left hand of the figure. An abrupt change occurred in the
acceleration data when the participant gave the patient two breaths, which indicates a
state-change. Not all medical procedures elicited such clear patterns in the IMU data,
such as using a bag-valve mask to ventilate a patient, but sometimes a pattern occurs
in the EMG data. A plot of the EMG data captured by the Myo device on the
participant’s right hand, which was used to squeeze the bag, is provided in Figure 6.
The IMU data for bagging remained stationary, while high amplitude periods occurred in
the EMG data. Each high amplitude period represents the participant squeezing the
bag, where the EMG data in Figure 5 shows a total of seven squeezes. The number of
squeezes was verified by examining the video data.
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Figure 5 Myo EMG Data

Certain medical procedures did not have clear patterns, such as inserting an oral
airway, which may be attributed to the quick movements needed to do the procedure.
Additional training data was determined to be needed for these medical procedures
(and was collected) for a machine-learning algorithm to achieve high classification
accuracy.

Descriptive statistics were calculated for each procedure and participant
observed in the simulation lab to examine statistical differences within a participant, and
between procedures and participants. The descriptive statistics for CPR by participant
for the Myo’s Right Hand IMU data is provided in Table 2. Although, CPR produces a
sinusoidal pattern in the IMU data, the descriptive statistics show that there are
differences between participants for the Myo’s IMU data. The differences are attributed
to sensor drift, as the Myo device does not subtract gravity from the IMU data. The
Myo’s EMG data does produce similar descriptive statistics for CPR for each participant,
which is attributed to the EMG signal being a zero-mean signal. This analysis illustrates
that other features need to be extracted from the IMU and EMG data for a classifier to
achieve high performance.

Frequency-based features, such as entropy, were shown to produce significant
differences between procedures most of the time, while not producing significant
differences between instances of the same procedure. The results of this statistical
analysis are not provided to keep the report concise, due to the breadth of the
procedures covered. The analysis provided the foundation for the feature extraction
process and selection of features for machine-learning.

Participant Acc X Acc Y Acc Z Roll Pitch Yaw

P1 -0.07 (0.31) | 0.78 (0.54) | -0.51 (0.41) | -1.67 (0.3) | -0.95(0.35) | -1.94 (1.31)
P2 0.24 (0.26) | -0.73 (0.3) | 0.6 (0.43) -1.25(0.13) | -0.65 (0.29) | -0.27 (0.48)
P3 0.43 (0.23) | -0.44 (0.39) | 0.72 (0.38) | -0.73 (0.37) | -0.82 (0.22) | 1.65 (0.38)
P4 -0.51 (0.48) | 0.79 (0.60) | 0.04 (0.29) | -1.43 (0.23) | -0.94 (0.26) | -2.37 (0.91)

Table 2: Participant Table

Time-based and frequency-based features were extracted from the Myo device’s
IMU and EMG data and have been used in prior wearable-sensor activity recognition
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algorithms." The average, max, and standard deviation of each IMU and EMG signall
was extracted over the entirety of each medical procedure. Then, each signal was
transformed into the frequency domain to calculate the DC power, total power, and
entropy of the signal.

Design and implementation of injury heatmap visualization.

Video data collected during over 15 hours in the simulation lab were processed
through OpenPose. The resulting files represent the position of each person and their
body parts in every single frame of the video with sets of X and Y coordinates and their
confidence intervals (Cl). The confidence interval describes how sure Open Pose is for
that specific body party location. Open Pose processes the following body parts for
each person present in every frame of the video, as shown in Figure 1: Nose (0), Neck
(1), Right Shoulder (2), Right Elbow (3), Right Wrist (4), Left Shoulder (5), Left Elbow
(6), Left Wrist (7), Right Hip (8), Right Knee (9), Right Ankle (10), Left Hip (11), Left
Knee (12), Left Ankle (13), Right Eye (14), Left Eye (15), Right Ear (16), Left Ear (17),
as shown in Figure 6.

Figure 6 Key points tracked over the body gigur € l7 Open Pose Single Frame Output
xample

' Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical
human activity recognition using wearable sensors. Sensors, 15(12), 31314-31338.
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From the Open Pose output, the next step is identifying the medic and the
patient in the frame. The patient is identified as the person closest to the center of the
image frame. The medic is then identified as the second closest person to the center of
the image frame, and all other persons are ignored. Once the medic and patient are
identified based on the positional assumptions, the medic’s left and right-hand locations,
and all of the patient’s body part locations are extracted. Figure 7 shows how the Open
Pose human figure is automatically applied to each person present in every frame of the
video.

Next heatmaps are created based on where the medic and their hands are
located throughout the procedure. To generate a heatmap, the system generates a
Gaussian field around each medic hand position per frame and summed over all
frames. By summing, the heatmap captures the most frequently occurring positions of
the hands over the patient’s body per procedure.

Figure 8 shows a heatmaps that was generated using the IV procedures. The
background image represents the patient’s body, and the colors represent the position
of the EMT’s hands over the patient’s body in patient space. The yellow color
represents the areas above and around the patient where the EMT hands are located
most often. Visually these heatmaps indicate that we can identify the body part, which
is being worked on, which will help in determining which procedure is being performed.

Specifically, the heatmaps were registered to align the patient to the TCCC standard
card. This alignment allows for comparison of different cases. Registering patients to
the standard TCCC card requires managing the slight translation of the patient’s limbs
to the limbs on the TCCC card.
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This work presents a method to visualize _—
heatmaps that allows the inspection of a ( 4.5
given set of procedures. Of note, the work Q -
was recently accepted for publication at the
conference SPIE.?

Since the project intends to use this in
conjunction with activity data gathered from
other devices, this work shows a first step in
how computer vision and machine learning
can be used to help further identify the
procedure being performed.
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Civilian and military hospitals are faced with | \\\)5
the challenge of providing efficient care with / 9 VU

limited, sometimes scarce, resources.
Having accurate, timely information
regarding patients being transported greatly
assists in efficiently and safely allocating
scarce resources including blood products,
clinical expertise and time, and facilities
such as operating theaters. The Automated
Sensing Clinical Documentation System
(ASCD), which monitors medics using
inertial measurement units (IMU) and :
electromyography (EMG) sensors, can be O !:;p
modified to predict patient emergency : : _
severity index (ESI, which is a rapid triaging ~ [F/9ure 8 Heatmap of medic hand position
system based on illness severity and over body for IV

anticipated resource utilization) and allow for
more efficient matching of predicted resource utilization with available resources.
Gathering enough real-world medic measurements and ESI scores to assess predictive
relationships with sufficient statistical power to requires dozens of ambulance ride-
along, but our preliminary feasibility testing has indicates that the mean of energy
expenditure is strongly inversely correlated with ESI triage score on ED arrival (rho -0.8,
95% -0.88 to —0.22).

Partnering with the Nashville Fire Department, a research observer rode in
ambulances with NFD paramedics equipped with our data sensors with 64 patients on
35 shifts. For 22 pre-hospital transportation events, we were able to pair ESI scores with
medic IMU, medic EMG, vehicle IMU, and manual event logs. Event logs were

2 Paris, R. A., Sullivan, P., Heard, J., Scully, D., McNaughton, C., Ehrenfeld, J.M., Adams, J.A, Coco, J.,
Fabbri, D., and Bodenheimer, B. (2018). Heatmap Generation for Emergency Medical Procedure
Identification.

14



produced via the same software used to capture medical events in the Center for
Experiential Learning and Assessment lab; a trained researcher with a background in
pre-hospital medical care observed procedures and documented start and stop times as
defined based on work conducted in the controlled environment of the CELA lab.

The main focus for the NFD data has been on using EMG and IMU metrics to
classify ESI scores for patients so we might predict ESI scores in the future based on
monitoring medics. The ESI triage system is commonly used in civilian emergency
department (ED’s) and range from most (1) to least (5) severe; patients are assigned an
ESI triage score at the time of ED arrival based on the initial assessment of a trained
nurse. We were able to capture patients with ESI scores 2-5, but any measure of patient
status could have been used.

Using the 22 patient transports for which we have ESI scores, we analyzed features
to determine their predictive value to their ESI score. All values are measured from the
point in which medical treatment begins within the ambulance (any treatment performed
before the patient is brought into the ambulance is ignored) to when medical treatment
ends. One feature, the amount of time patient was in the transport, was used to control
the other 9 features in the statistical analysis. The features used in this analysis are:

Amount of time

EMG absolute value mean

EMG standard deviation

EMG total power

EMG DC component (base level of activity)

EMG entropy (how erratic muscle movements are)

IMU integral modulus acceleration mean (energy expenditure)

IMU integral modulus acceleration standard deviation (variance across sections
of activity)

9. IMU signal vector magnitude mean (energy expenditure)

10.IMU signal vector magnitude mean (variance across sections of activity)

NG RLON =

Results. Using spearman correlation and controlling for the length of the total time
medical procedures were being performed during transport, the IMU integral modulus
acceleration mean was found to be statistically significant (p-value = 0.000342) and a
strong negative correlation (r-score = -0.8, 95% -0.88 to —0.22). Other features showed
strong statistical correlation but were not statistically significant in this sample size.

These results indicate the total energy expenditure of a medic correlates with
patient acuity measured by ESI triage score at ED arrival, but additional study is
required.

Table 3 Sensor data correlation with ESI

Variable n r Cl195% r2 adj_r2 p-value power

emg_mean 15| -0.28 | [-0.69, 0.27] 0.08 | -0.074 | 0.308284 0.178
emg_std 15 -0.2 | [-0.64, 0.35] 0.039 | -0.122 | 0.482899 0.109
emg_total_power 15| 0.132 | [-0.41, 0.6] 0.017 | -0.146 | 0.638744 0.075
emg_dc_power 15| 0.132 | [-0.41, 0.6] 0.017 | -0.146 | 0.638744 0.075
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emg_entropy 15| -0.25|[-0.68, 0.3] 0.064 | -0.092 | 0.361816 0.151

imu_vec_mag_mean 15 -0.8 | [-0.93, -0.49] 0.64 0.58 | 0.000342 0.974

imu_vec_mag_std 15| -0.71 | [-0.9, -0.32] 0.51| 0429 | 0.002774 0.889
imu_int_mod_mean 15| -0.66 | [-0.88,-0.22] | 0.437 | 0.343 | 0.007331 0.806
imu_int_mod_std 15| -0.72 | [-0.9, -0.33] 0.52 | 0.441| 0.002399 0.899

Task Decomposition for Clinical Procedure Recognition

The purpose of this effort was to determine if decomposing the clinical procedures into
their respective sub-tasks can be used to improve overall clinical procedure recognition
via wearable sensors only. The wearable sensors’ signal variability within a procedure
resulted in confusion across procedures, particularly those of short duration. The
decomposition into subtasks focused on using machine learning to identify sub-task
elements in order to improve the overall procedure recognition to mitigate the sensor
noise. The performed analysis of sub-tasks for recognizing the overall procedure
focused on two procedures from each procedure duration: short-, mid- and long-
duration. Within these groups the procedure with the best detection rate and the worst
detection rates from the prior method were analyzed.

Short-Duration Procedures: CPR — Best, Intravenous medicine administration — Worst
Mid-Duration Procedures: Intubation - Best, King Airway — Worst
Long-duration Procedures: Bagging — Best, IV line — Worst

The Baseline algorithm employed a Procedure RF classifier, which trained an RF
classifier to directly predict the procedure from the Myo features. The Baseline algorithm
is similar to the context-less classifier that was utilized in prior research.

The new detection methods us a subtask decomposition-based approach, where a
subtask RF classifier was trained to predict the class probabilities for 24 subtasks. The
twenty-four subtask class probabilities can be interpreted as the confidence with which
the Subtask RF classifier classifies each subtask for a given feature window. There is
no difference between the three algorithms during the training phase; the difference
between the three algorithms exists only during the testing (or inference) phase, based
on how the subtasks’ class probabilities were utilized to infer the actual procedure.

The Naive Subtask decomposition method assigns equal weights to the subtask
probabilities based on the number of subtasks require for a procedure. The Weighted
Subtask Decomposition procedure assigns weights to the subtask that are proportional
to the time each subtask takes within the procedure. The sequential subtask
decomposition procedure looks at the sequence of subtasks within a procedure, thus
the temporal relationship between subtasks is leveraged.

Generally, the decompositions did not improve overall prediction accuracy. However,
the weighted decomposition method performed significantly better than the naive
subtask decomposition model, by improving overall accuracy and reducing the number
of confused sub-tasks. The sub-tasks approach adds new potential confounds to the
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learning and detection processes, such as subtasks that overlap, subtask that are
unique to a particular procedure, and the time required to perform each subtask.

The sequential subtask decomposition method was expected to perform the best, but
was actually the worst. One reason for this result was that the method relies on the
subtask prediction sequence to classify the procedures. The second reason was that
the subtask prediction sequence was processed at a fixed window size at each timestep
and did not consider the order of the subtasks.

A limitation of this overall analysis was a limited data set.

Patient Space.

We evaluated the accuracy of the system to correctly
classify 24 clinical procedures automatically from video
data (Figure 9). Our video data input consisted of a
patient and an emergency medical technician (EMT). In
this phase of the work, OpenPose was applied to the
video data, including 18 different key point positions
comprising hands, feet, and head. An example of
OpenPose processing of data is shown in Figure 9, in
which the EMT places an intrafosseous infusion (10)
line, which is a key pre-hospital procedure. We process
the output of the OpenPose data to produce a format
we call PatientSpace, which consists of distances
between the EMT’s two hands and 18 different key
locations on the patient.

Figure 9. OpenPose output of a
frame of data during an
instance of the 10 line
procedure.

We have recorded data for seven subjects who performed 20+ procedures, each
multiple times. Using this processed data from seven subjects as feature data, we
applied eight machine learning algorithms to the data to classify this data. Data for six
subjects was used as training, and the remaining subject was used as testing data. The
highest accuracy for any algorithm approached 20%. The neural network algorithm
performed best (~18%), followed by gradient boosting. The confusion matrix for the
gradient boosting algorithm is shown below. It demonstrates that gradient boosting can
reliably identify only about eight of the categories. Future work to increase accuracy of
this machine learning classification algorithm approach will include additional subjects
performing repetitions of procedures
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JADMINISTER MEDICATION 0 1509 0 0 0 0 0 206 0 296 0 0 0 0 0 2585 0 0 8 0 703 4416 0 0
BAGGING 020267 0 0 0 0 0 309 0 1157 0 0 0 0 0 6524 0 0 31 0 216 913 0 0
BLOOD-PRESSURE CUFF 0 934 0 0 0 0 1 85 0 208 0 0 0 0 0 1932 0 0 0 0 501 923 0 0
ICHEST-TUBE 0 1132 0 0 0 0 11 145 0 608 0 0 0 0 0 3779 0 0 0 0 378 831 0 0
[CHEST-TUBE PREP 0 710 0 0 0 0 2 44 0 445 0 0 0 0 0 2193 0 0 1 0 180 232 0 0
CLAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
[COMBAT GAUZE 0 658 0 0 0 0 0o 21 0 1167 0 0 0 0 0 1937 0 0 0 0 19 160 0 0
[COMBAT TOURNIQUET 0 692 0 0 0 0 0 27 0 398 0 0 0 0 0 920 0 0 0 0 66 490 0 0
CPR (BREATH) 0 799 0 0 0 0 0 39 0 109 0 0 0 0 0 1400 0 0 0 0 14 247 0 0
ICPR (COMPRESSION) 0 2194 0 0 0 0 0 98 0 150 0 0 0 0 0 3043 0 0 1 0 34 844 0 0
[DRAW MEDICATION 0 935 0 0 0 0 0 101 0 391 0 0 0 0 0 1960 0 0 1 0 502 1140 0 0
ECG LEADS 0 1033 0 0 0 0 1 112 0 410 0 0 0 0 0 2753 0 0 3 0 153 660 0 0
IM ADMINISTRATION 0 895 0 0 0 0 5 40 0 797 0 0 0 0 1 1937 0 0 9 0 222 1055 0 0
INTUBATION 0 2264 0 0 0 0 0 M4 0 179 0 0 0 0 0 943 0 0 21 0 20 186 0 0
10 LINE 0 878 0 0 0 0 0 25 0 63 0 0 0 0 0 1345 0 0 7 0 225 4268 0 0
IV LINE 0 1306 0 0 0 0 2 221 0 398 0 0 0 0 0 5949 0 0 13 0 1111 1488 0 0
IV TOURNIQUET 0 501 0 0 0 0 0 63 0 151 0 0 0 0 0 2030 0 0 5 0 153 497 0 0
KING AIRWAY 0 1054 0 0 0 0 0 3 0 12 0 0 0 0 0 216 0 0 5 0 4 85 0 0
[ORAL AIRWAY 0 614 0 0 0 0 0 9 0 26 0 0 0 0 0 269 0 0 8 0 14 52 0 0
PULSE-OX 0 171 0 0 0 0 5 9 0 18 0 0 0 0 0 167 0 0 0 0 3 61 0 0
[SPLINTING 0 639 0 0 0 0 0 40 0 762 0 0 0 0 0 2732 0 0 1 0 72 377 0 0
ISUTURING 0 1759 0 0 0 0 121 170 0 1458 0 0 0 0 0 9748 0 0 1 0 2425 2089 0 0
[SWAB AREA WITH ALCOHO® 0 1767 0 0 0 0 9 221 0 612 0 0 0 0 0 4667 0 0 7 0 951 2379 0 0

ITAL CHECKING 0 900 0 0 0 0 1 66 0 410 0 0 0 0 0 3008 0 0 5 0 169 893 0 0

RAP HEAD WOUND 0 1247 0 0 0 0 0 19 0 230 0 0 0 0 0 698 0 0 16 0 38 312 0 0

O 0O 0000000000000 00000 00000

Figure 10. Confusion Matrix for the Gradient Boosting technique using Patient Space data.

Machine Learning Event Identification.

The automatic event identification system uses wearable sensors, video, and
machine-learning to recognize clinical procedures within a controlled
environment is presented. The system demonstrated how contextual information and
a majority vote method can substantially improve procedure recognition accuracy for
each of the procedures listed in Table 4. The wearable sensor data captures arm
movements that are representative of a procedure; however, there is a vast array of
clinical procedures that need to be detected, which increases the problem’s complexity.
This complexity is reduced by determining the “active body region” using image
processing.

The Myo device is worn on each of the participant’s forearm and captures arm
movements and muscle contractions via an inertial measurement unit (IMU) and an 8-
channel electromyography (EMG) sensor, respectively. Acceleration and orientation
data are captured at 50 Hz, while the EMG data is captured at 200 Hz. The Myo

automatically calculates the IMU’s roll, pitch, and yaw. A five second window, with a one

second stride, is applied to each sensor signal. Various window sizes were analyzed,
but the five second window produced the best results.

The signal’s mean, standard deviation, and max value are calculated for each
window and are typical features extracted for activity recognition [3]. Each sensor signal
is transformed into the frequency domain using the fast Fourier transform in order to
calculate the signal’s spectral entropy. Thus, four features are extracted from each
sensor signal resulting in fifty-six features per medic hand.

An orthogonal approach to classification using wearable sensor data is to use image
processing to track the medic’s hands during the clinical procedures. Many procedures
are localized to certain areas on a patient’s body, making relative hand location an
enticing factor. The image-based hand localization system determines the patient’s
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closest limb to the medic’s hands for a particular procedure and uses that information
for classifier refinement.

During a procedure, assuming the medics hands are proximal to the patient
eliminates the need for 2D to 3D image conversion. Thus, the calculated distance
between the medic’s hand keypoints and each skeleton keypoint on the patient is in
pixel space. This measurement’s variability and noise is reduced by averaging the limb
position over 1 second (24 frames) in order to determine the patient’s closest limb to the
medic’s hands per second. The closest limb is mapped to one of four body regions:
head, chest, arm, or leg.

The extracted features from the Myos’ IMU and EMG sensors are fed into a random
forest classifier, which is a supervisory-based machine-learning algorithm that is an
ensemble of individually trained decision tree classifiers. The random forest classifies a
signal by taking the class mode of the decision tree ensemble. 100 decision trees with a
max-depth of 500 are used for this work, where the parameters were chosen based on
classifier performance.

The targeted domain requires knowing if a procedure was performed, not that every
single window is correctly classified. Assuming a procedure’s start and stop time is
known, the procedure can be classified as the majority vote of each classified window
within the procedure time frame. For example, if CPR (chest compressions) consists of
fifteen windows where ten windows are classified correctly and the other five windows
are not, then the procedure can be correctly classified as CPR. Algorithm 1 provides the
pseudo code for this classification. The algorithm cycles through each window between
the procedure start and stop time, extracting features from the wearable sensor data for
each window. DetermineBodyRegion (runs OpenPose on the window’s image data and
determines the window’s active body region, which is used to determine which trained
random forest classifier to apply. The extracted features are fed into the classifier to
predict a clinical procedure for the window. After each window is processed, the
algorithm returns the Majority Vote of the predicted procedures using
Max(ProcedureCount()).
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valigg’f;(jyljséienrg }ggie- Algorithm 1 Clinical Procedure Classification Algorithm
one-subject-out cross- Input: Procedure Start/Stop Time, Wearable Sensor Data,
validation, where the Video Data

random forest classifier is | Output: ProcedureClassification

trained on two PredictedProcedureList = []

participants’ randomly for each window between Procedure Start and End time
shuffled data and tested do

on the third participant’s Features = ExtractFeatures(window,

data. Five random forest WearableSensorData)
classifiers were trained ActiveBodyRegion = DetermineBodyRegion(window,
per cross-validation fold. Video Data)
One classifier was trained Classifier = DetermineClassifier(ActiveBodyRegion)
using data from every Procedure = Classifier.Predict(Features)

clinical procedure, W_h'Ch PredictedProcedureList.append(Procedure)

represgnts not knoyvmg end for

?ﬁea(;trl]ve? ?oouc:'ycz‘ggls(i)f?e.rs return Max(ProcedureCount(PredictedProcedureList))

correspond to a body
region (e.g., head, chest, arm, or leg) and were trained using the respective procedure
data. The collected dataset created a class imbalance between procedures, which
decreases performance. Thus, the overrepresented procedures are randomly down-
sampled during training in order to better balance the class set.

The cross-validation analysis was applied to three conditions: Unknown Body
Region, Perfect Body Region, and Estimated Body Region. The unknown body region
condition allows for analyzing how the clinical procedure detection system performs
without image data (i.e., with only wearable sensor data), while the perfect body region
condition assumes that the active body region is always known accurately (i.e., if a
procedure corresponds to the head, then the system correctly identifies the head as the
active region). The random forest and majority vote methods are analyzed within each
body region condition.
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Body Region Condition

Procedure Unknown Perfect Estimated

RF MV | RF MV | RF MV
[O Medication 0.00 0.00 | 0.05 0.00 | 0.00 0.00
[V Medication 0.12 0.27 | 0.37 036 | 0.03 0.00
Bagging 043 0.71 | 0.86 0.86 | 048 0.33
Blood-Pressure Cuff 0.03 0.00 | 039 0.60 [ 0.12 0.50
CPR (Breath) 0.17 0.18 | 0.30 0.23 | 0.32 0.66
CPR (Compressions) 096 1.00 [ 099 1.00 | 0.21 0.33
Chest-Tube 0.02 0.00 | 042 057 | 032 0.66
Combat Gauze 0.37 0.25 | 0.01 0.00 | 0.00 0.00
Combat Tourniquet 0.12  0.00 | 052 0.75 | 0.03 0.00
Draw Medication 020 0.20 | 047 047 | 032 0.66
ECG Leads 0.12  0.20 | 0.38 040 | 0.27 0.33
IM Administration 0.03 0.10 | 0.05 0.10 | 0.05 0.00
IO Line 0.14 0.29 | 0.61 0.86 | 0.15 0.00
IV Line 0.02 0.00 | 0.22 030 | 0.04 0.00
Intubation 027 033 | 049 1.0 0.28  0.66
King Airway 0.02 0.00 | 0.08 0.20 | 0.02 0.00
Oral Airway 0.09 0.08 | 0.27 0.33 | 0.00 0.00
Pulse-Ox Monitor 0.02 0.00 | 048 0.80 | 0.00 0.00
Splinting 0.13  0.00 | 0.80 1.00 | 0.18 0.33
Swab Area with Alcohol | 0.00 0.00 | 0.12 0.13 | 0.06 0.00
Tie IV Tourniquet 0.03 0.00 | 0.17 0.11 | 0.01 0.00
Vital Monitoring 0.71 0.80 | 0.74 1.00 | 0.14 0.00
Wrap Head Wound 0.04 020 | 0.39 040 | 0.12 0.33
Average 0.18 0.19 | 040 050 | 0.14 0.21
ECG: Electrocardiogram and IM: Intramuscular

Table 4. Classification accuracy (%) by Procedure, Known Body Region Condition, and
Classification method: Random Forest (RF) and Majority Vote (MV)

The classification accuracy by procedure and known body region type are presented
in Table 4. Overall, CPR (chest compressions) tended to be classified accurately the
most, followed by bagging. These accurate classifications were due to the procedures’
repetitiveness (i.e., chest compressions or squeezing the bag-valve mask). Vital
monitoring was classified accurately as well, due to the procedure requiring minimal arm
movements. Short-duration procedures, (i.e., oral airway or swabbing an area with
alcohol), were difficult to classify and were often misclassified as a longer-duration
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procedure. Additional training data will potentially increase classification accuracy for
short-duration procedures.

The classification accuracies corresponding to the unknown body region condition
serve as a baseline condition, as no contextual data was used. The random forest
method and majority vote method achieved an average classification accuracy of 18%
and 19%, respectively. The majority vote method increased classification accuracy by at
least 10% over the random forest method for five procedures, while two procedure’s
classification accuracies decreased.

Knowing the active body region with perfect precision increased classification
accuracy dramatically for the random forest and majority vote methods, as the
methods achieved an average classification accuracy of 40% and 50%, respectively.
There was at least a 10% accuracy increase from the unknown body region condition
for seventeen procedures using the random forest method and for nineteen procedures
with the majority vote method. Both methods experienced a substantial decrease in
accuracy for the combat gauze procedure. The majority vote method increased
classification accuracy by at least 10% from the random forest method for nine
procedures, while no procedure accuracy decreased by more than 10%. These results
demonstrate that the majority vote method performs better than the random forest
method, when the active body region is correctly identified.

Estimating the active body regions did not change the average classification
accuracies dramatically from not knowing the active body region. Six procedures’
random forest classification accuracies increased by at least 10%, while five
procedures’ accuracies decreased by at least 10%. The majority vote method using the
estimated body region increased classification accuracy for ten procedures without
knowing the body region, while seven procedures’ accuracies decreased. Additionally,
the majority vote method increased nine procedures’ accuracies by at least 10% from
the random forest method, while three procedures’ accuracies decreased.

Overall, correctly identifying the active body region achieved the highest
performance with both classification methods, illustrating the utility of using
contextual information in activity recognition. The majority vote method achieved
higher average classification accuracies than the random forest method, demonstrating
the majority vote method’s utility in a real-world complex environment.

Convolutional Neural Networks with Inception Models for Event Identification.

We also attempted to predict the clinical procedure being performed using
convolutional neural networks (CNNs) over the video data. Our basis for this task was
the work by Karpathy et al. who used CNNs to classify YouTube videos. In this work,
the same basic data as for the PatientSpace data was used, except the raw video data
was kept, cropped, and resized to 256 x 256. The basic type of data used for this
algorithm is shown in Figure 3. This frame data was then sorted according to the
paramedic and procedure categories in the 24 categories used for training and analysis.
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Figure 11. Image cropping area for frame data.

The data for each category is not equal in terms of raw frames, which is how the
CNN models will be trained. Categories ranged from 60,000 frames down to 3,000
frames of data. To ensure fairness and balance in training, large categories were
subsampled to 10,000 frames and small categories had frames randomly duplicated to
increase their frame count to 10,000 frames. Image augmentation was randomly applied
to duplicated frames to ameliorate the effects of this cloning. For testing accuracy, the
same balancing is applied to insure equal representation across the categories. It
should be noted that the training data used in Karpathy et al. was significantly larger by
orders of magnitude, and this reinforces the take home message from the section on
Patient Space data, that modern deep learning algorithms typically expect or need
larger training data.

As in the case of Patient Space data, we have data from seven subjects. For the
CNN models, we will use five subjects for training, one for training, and one for
validation. Results are currently reported for one-fold validation.

Following the method of Karpathy et al., two CNN architectures are tested, based on
the Inception V3 network, as shown in Figure 4. The pre-trained Inception V3 network is
used in four forms:

1. Main model. Inception V3 with ImageNet weights for 24 categories of clinical
procedures using the single frame CNN approach.
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2. Variant 1. Half size Inception
V3 with 24 categories using the Single Frame Late Fusion
single frame approach. [ ]

3. Variant 2. Main model with 23 ' 1

[
[
categories, combining CPR % % %]
Breath and CPR compression, - - —
as initial results from the main — — —
model suggested that it could ——— —— ——
not distinguish these —— — —
categories. — —] —
4. Late fusion. Inception V3 with F
ImageNet weights for 24

categories of clinical

procedures using the late ] ]
fusion CNN approach. This Figure 12. The two explored approaches for fusing

approach takes three frames temporal frame information into a CNN. Red, green,
each 15 frames apart ’ and blue boxes indicate convolutional,
spanning 1 s of vti)ieo’ data in normalization, and pooling layers, respectively. This

image taken from Karpathy et al.
total. Thus, this model J patiy

summarizes data across a
temporal span.

The results of this procedure are that all CNN models achieve at least 90% training
accuracy. The results for a one-fold validation are that the main model achieves 48%
accuracy, variant 1 46% accuracy, variant 2 58% accuracy, and the late fusion model
55% accuracy. Results for five-fold validation are ongoing.

Findings:

1. CNN models with pre-trained weights achieve significantly higher training and
validation accuracies on raw data than we have achieved through other means.

2. Data size, particularly sample size across procedure categories, remains a
concern.

3. Significant improvement is needed in this area to achieve acceptable and
deployable results.

Item Set Pattern Mining for Event Identification.

In contrast to standard machine learning approaches for activity detection, the
team also worked to detect activity by looking at temporal motion patterns.

Each participant wore two Myo devices in the left and right hand. The channel
number is from 1 to 8 in the left hand, and 9 to 17 in the right hand. We define an item
as the EMG activity signal in a specific EMG channel at a specific time point. We define
an itemset as the EMG activity signal from all EMG channels at the same time point. We
represent a clinical procedure with sixteen sequences of itemsets from all myo EMG
channels. As shown in Figure 6, all EMG signals in time stamp 0 form an itemset:
{EMG1_1=1, EMG1_2=-1 ... EMG2_8=1}.
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EMG1_1=1 EMG1_1=0 EMG1_1=-1
EMG1_2=-1 EMG1_2=0 EMG1_2=-1

EMG2 8 = 1 EMG2 8=0 EMG2_8 = -1
(time stamp=0) (time stamp=1) (time stamp=2)

Figure 13. An example sequence of EMG signal itemsets. (EMG1_* represent the signals
from the left hand, and EMG2_* represent the signals from the right hand.)

We define a frequent itemset as an EMG signal subset that occurs in all the
participants (i.e., we set the minimum support ratio to 100%) of the same procedure. As
shown in Figure 2, the frequent length-1 itemsets are (EMG1=1), (EMG2=1), and the
frequent length-2 itemsets (EMG1=1, EMG2=1), which occur in all participants. We
define a frequent itemset with length-K as a frequent K-itemset.

participant 1 = {(EMG1=1, EMG2=1), (EMG1=1, EMG2=-1), (EMG1=1, EMG3=1)}
participant 2 = {(EMG1=1, EMG2= 0), (EMG1=1, EMG2=1), (EMG1=1, EMG3=0)}
participant 3 = {(EMG1=1, EMG2=1), (EMG1=1, EMG2=0), (EMG1=1, EMG3=-1)}

Figure 14. Example sequences of EMG signals and associated itemsets.

We define a critical K-itemset Ck as the one that embeds information such as:

1. A procedure that contains Ck must be a specific procedure or a list of specific
procedures.

2. A procedure that contains Ck must not be a specific procedure or a list of specific
procedures. Table 5 shows the critical itemsets and the procedures they exclude when
existing. The critical itemset “5_1" reveals that if we monitor positive signal values in
left-hand EMG channel 6, then the procedure must not be “Administer IO Medication.”
Similarly, the critical itemset “5_1->14_1" reveals that if we monitor negative signal
values in the left-hand EMG channel 6 and the right-hand EMG channel 15, then the
procedure must not be “Administer IO Medication” and “Administer IV Medication.”

Critical ltemset Excluded Procedures When the itemset Exist
51 Administer IO Medication
2 -1->8 1 Bagging
0 -1->7 1 Administer IM Medication,
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Administer IO Medication, Administer
Medication, Bagging, CPR (Breath), Chest-
Tube Preparation, Intubation, Suturing, Vital

Checking

5 1->14_1

Administer |0 Medication,
Administer IV Medication

Table 5. Example Critical Frequent 1-ltemsets and 2-itemsets.

Evaluation of Frequent Itemsets. We evaluate the predictive power of the frequent
itemsets in classifying all clinical procedures. We evaluate different subsets of frequent
K-itemsets, which K is from 1 to 9. Table 6 shows the average accuracy with different K
values. The result shows that the combined frequent 4 & 5-itemsets provide the highest
average accuracy. Figure 14 shows the result’s confusion matrix when using the

combined frequent 4 & 5-itemsets.

Frequent ltemset Average Accuracy
1-itemsets 0.13
2-itemsets 0.22
3-itemsets 0.26
4-itemsets 0.35
5-itemsets 0.35
4-itemsets & 5-itemsets 0.40
6-itemset 0.21
7-itemset 0.13
8-itemset 0.04
9-itemset 0.04

Table 6. Average Prediction Accuracy using different Frequent ltemsets.
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Figure 14. Confusion Matrix when using the 4-itemsets & 5-itemsets (40% accuracy).

Conclusion: Activity patterns demonstrate their ability to predict clinical
procedures without leveraging the body area information or binning the
procedures. More analysis and development are needed to identify more powerful
activity patterns.

Emergency Clinical Procedure Detection via Wearable Sensors

Communicating a patient's state accurately during transfer from emergency medical
technicians to hospital personnel is crucial for optimal care. Prior work demonstrated
automated algorithms that combined wearable sensors with video data from cameras to
detect clinical procedures and improve this information transfer. However, incorporating
video requires task- or environment-specific installation mechanisms, raises privacy
concerns, and is susceptible to occlusion and image noise. The presented approach
detects clinical procedures using wearable sensors (i.e., inertial and
electrophysiological) only and the procedures' subtasks to mitigate the sensors' signal
variability to provide clinical procedure detection.
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A paper was submitted for review in March 2021 to the Human Factors and
Ergonomics Society Annual.

Field Testing Among Nashville Fire Department Paramedics.

Data collection was paused due to COVID-19 and we were not able to acquire
sufficient samples.

Study participant NFD paramedics continue to show a high level of engagement and
excitement about the project. They have verbalized that they enjoy participating in
VUMC research and would like to continue to be a part of the study.

Leadership at NFD has been accommodating before COVID-19 by allowing us to
self-schedule observations with dates/times that are most convenient for the observer
and were supportive of press releases related to this collaboration (Appendix N).

4. IMPACT:

Development of the principal discipline(s) of the project. The goal of the project
is to leverage off-the-shelf sensors to automatically generate electronic health record
documentation that can enable trauma team preparedness. In the broader field of
clinical documentation, individual sensors have been previously used in isolation to
measure vital signs and detect simple activities in a variety of healthcare settings. The
project, through its aim of using sensors to create a unified data feed of clinical care
during patient transport, identify interventions and produce a triage score, will extend
current approaches to clinical documentation to generate, automatically, new
information. The techniques that the project is employing, which are well suited to
environments where hands-free data entry is essential, has the potential to drastically
improve the performance of medical teams by creating more robust communication
pathways. Additionally, because the approach is not voice dependent, it has the
potential to create new opportunities for hands free data collection in environments
where ambient noise prevents the use of voice technologies.

Other disciplines. The project’s approach is likely to impact approaches to
automatic task data collection in fields outside of healthcare. While our focus is to use
multi-sensor technologies to detect clinical tasks in the operational environment, once
refined the same approaches could be used to detect other tasks in a variety of settings.
For example, this approach could be modified to create the ability to detect whether an
individual has performed an equipment check out procedure, completed a set of
activities in a particular order, or any other set of tasks where the surveillance of a
particular activity can provide useful information.

Technology transfer. While project’s technology will enable deployed medical
personnel to coordinate care more effectively among combat casualties, it also will have
the ability to transfer within the civilian sector during emergency medical trauma
treatment. The intent of the project is to widely distribute its methodology as we foresee
these techniques being used in both the military deployed environment and the civilian
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pre-hospital sector. Development of a handsfree system to automatically generate and
transmit a clinical care record will bridge the gap between current communication and
documentation practices so that information can flow seamlessly and in real-time across
settings of care in almost any environment — military or civilian.

In 2021, a patent application was submitted to the US Patent Office.

Society beyond science and technology. The project’s approach is likely to
impact society beyond the bounds of science through the ability of these techniques to
help improve social conditions. We expect the methodologies developed will enable
rapid and measurable contributions to public health and economic output through the
ability of a variety of processes to be enhanced, improved, and adjusted to run more
efficiently. In healthcare, we expect patients will benefit. In manufacturing, we expect
supply chains could be improved. In the military, we expect a variety of operational
platforms could be enhanced.

5. CHANGES/PROBLEMS:

On December 24, 2019, the Department of Defense provided written approval the
request for a no-cost extension (NCE) to December 29, 2020. It states that "the
purpose of this modification is “to execute a no cost extension and update the SOW to
reflect the extended period of performance. The total contract value is unchanged. The
period of performance is changed.”

Our main focus for 2020 was finishing data analytics tasks, and also collecting data with
the Nashville Fire Department. Unfortunately, due to COVID-19, data collection was
halted and has not resumed, thus limiting data available for analysis.

6. PRODUCTS:

A. Papers:
1. Novak, L. L., Simpson, C. L., Coco, J. R., McNaughton, C. D., Ehrenfeld, J.

M., & Fabbri, D. (2020). Understanding the Information Needs and Context of
Trauma Handoffs to Design Automated Sensing Clinical Documentation
Technologies: Qualitative Mixed-Method Study of Military and Civilian Cases.
Journal of Medical Internet Research.

B. Conference Papers:
1. Li, L., Paris, R., Pinson, C., Wang, Y., Coco, J.., Heard, J., Adams, J., Fabbri,
D., Bodenheimer, B. (2020). Emergency Clinical Procedure Detection with
Deep Learning. IEEE Engineering in Medicine & Biology Society.
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2. Heard, J., Paris R., Scully, D., McNaughton, C., Ehrenfeld, J., Coco, J., ...
Adams, J. (2019). Automatic Clinical Procedure Detection for Emergency
Services. IEEE Engineering in Medicine and Biology Society.

3. Paris, R., Sullivan, P, Heard, J, ..., Ehrenfeld, J., Bodenheimer, B. (2019)
Heatmap Generation for Emergency Medical Procedure Identification. SPIE
Medical Imaging.

4. Bloos, S. M. (2019). Feasibility Assessment of a Pre-Hospital Automated
Sensing Clinical Documentation System. American Medical Informatics
Association (AMIA).

* The oral presentation received positive press, to include:

A.

“Vanderbilt Researchers Test mHealth Platform to Improve ED Hand-Offs”
By Erick Wicklund, MHealthInteligence, 27 NOV 19
https://mhealthintelligence.com/news/vanderbilt-researchers-test-mhealth-
platform-to-improve-ed-hand-offs

. “Documentation system seeks to improve paramedic-ED patient handoffs”

By Greg Slabodkin, HealthData Management, 2 DEC 19
https://www.healthdatamanagement.com/news/documentation-system-
seeks-to-improve-paramedic-ed-patient-handoffs

. “Nashville FD, medical center testing automated documentation system

for ER handoffs”

By News Staff, EMS1.com, 2 DEC 19
https://www.ems1.com/technology/articles/nashville-fd-medical-center-
testing-automated-documentation-system-for-er-handoffs-
5tUXEnrafJAqGv1k/

C. Patents:
1. Automatic Sensing for Clinical Decision Support. Application Number:
17203204. Filed: 16-March-2021. First Named Inventor: Daniel Fabbri.

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS:

Individuals who have worked on the project:

Name: Daniel Fabbri, PhD

Project Role: Principal Investigator

Researcher Identifier: NA

Nearest person month worked:  2.40 calendar months (20% effort/12 months)
Contribution to Project: Leads the overall research and the project’s

computation efforts. Chairs project planning
meetings consisting of all key and other participating
personnel.
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Name:
Project Role:
Researcher Identifier:

Nearest person month worked:

Contribution to Project:

Name:
Project Role:
Researcher Identifier:

Nearest person month worked:

Contribution to Project:

Name:
Project Role:
Researcher Identifier:

Nearest person month worked:

Name:
Project Role:
Researcher Identifier:

Nearest person month worked:

Contribution to Project:
taxonomy

Name:
Project Role:
Researcher Identifier:

Nearest person month worked:

Contribution to Project:

Name:
Project Role:
Researcher Identifier:

Nearest person month worked:

Contribution to Project:

Julie Adams, PhD

Site PI/Co-Investigator, Oregon State University
NA

1.63 academic months (14% effort/12 months)
Overseas project, mentored students, provided
direction and feedback for research tasks, and
prepared deliverables.

Robert Bodenheimer, PhD

Site PI/Co-Investigator, Vanderbilt University
NA

1.20 academic months (10% effort/12 months)
Develops, maintains, and upgrades tracking
algorithms and codebase, and incorporated
deployable and testable platforms.

Laurie Novak, PhD, MHSA

Co-Investigator

NA

1.20 calendar months (10% effort/12 months)
Contribution to Project:  Leads the development of
the information needs taxonomy.

Candace D McNaughton, MPH MD PhD
Co-Investigator, Emergency Medicine

NA

0.60 calendar months (20% effort/3 months)
Advises project on emergency medicine and

Joseph Coco

Health Systems Analyst/Programmer

NA

3.84 calendar months (32% effort/12 months)
Assists with prototype software development.

Christopher Simpson

Research Assistant

NA

1.56 calendar months (13% effort/12 months)
Conducts interviews, conducted qualitative data
management and analysis, and provided research
support.

Other organizations that were involved as partners:
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Organization Name: Oregon State University
Location of Organization: Corvallis, Oregon
Partner’s Contribution to Project: Collaboration with Electrical Engineering and

Computer Science Department

Organization Name: Vanderbilt University

Location of Organization: Nashville, Tennessee

Partner’s Contribution to Project: Human simulation utilizing state-of-the-art
mannequins.

Facilities: Center for Experiential Learning and Assessment
(CELA)

Organization Name: U.S. Army Rascon School of Combat Medicine,

Location of Organization: Fort Campbell, Kentucky

Partner’s Contribution to Project: Hosted visit to better understand Army’s Tactical

Facilities:

Combat Casualty Care (TCCC)
Medical Simulation Training Center (MSTC)

8. APPENDICES:

A.

I @ "MmMOUO @

Project Statement of Work (Updated)

Focus Group Interview Guide

Key Domain Findings from Focus Groups:
Findings from Video Observations

Clinical Emergency Procedure List

EMG and Accelerometer Graphs Examples
CELA Lab Setup, Process, and Data Collection
Hierarchal Task Analysis

Paper: Heatmap Generation for Emergency Medical Procedure
Identification

Paper: Feasibility Assessment of a Pre-Hospital Automated Sensing
Clinical Documentation System

Paper: Understanding the Information Needs and Context of Trauma
Handoffs to Design Automated Sensing Clinical Documentation
Technologies: Qualitative Mixed-Method

Paper: Automatic Clinical Procedure Detection for Emergency Services

M. Paper: Emergency Clinical Procedure Detection with Deep Learning

Nashville Fire Press Release
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APPENDIX A

Project Statement of Work (Updated)

STATEMENT OF WORK - 12/19/2019
PROPOSED START DATE Sep 30, 2017

Site 1: Vanderbilt University Medical Center
3319 West End Ave, Suite 970
Nashwville, TN 37203
Imitiating PI: Dr. Daniel Fabbni

Site 3: Oregon State University

308 Kerr Administration Building

Corvallis, OR 97331

Partnering PI: Dr. Julie Adams

Site 2: Vanderbilt University
110 21% Avenue, Suite 800
Nashville, TN 37203
Partnering PI: Dr. Robert Bodenheimer

Specific Aim 1: Design and implement a clinical
activity detection prototype system using accelerometers
and image data

Timeline

Site 1
(Tnitiating PI)

Site 2
(Partner PT)

Site 3
(Partner PT)

Major Task 1: Develop clinical activity detection
algorithms utilizing accelerometer data

Months

Subtask 1: Design and evaluate methods to extract
accelerometer data from devices m real-time or near
real-time.

* Dr Fabbri's team oversees the design

o Dy Adams’ team implements design and performs
data validation

14

Dr. Fabbn

Dr. Adams

Subtask 2: Design and implement basic activity
detection algorithms using captured accelerometer data

¢ Dr Fabbn's team develops a taxonomy of climical
tasks to 1dentify

¢ Dy Fabbri's team collects sample accelerometer data
in the simulation lab

o Dr Adams’ team implements and evaluates activity
detection algorithms on captured simulation data,
and test data sets.

49

Dr. Fabbni

Dr. Adams

Subtask 3: Aggregate accelerometer data into a
centralized physician dashboards

¢ Dr Fabbri's team develops the data architecture and
storage system for the data

¢ Dr Adams’ team mmplements a system to transmuit

9-14

Dr. Fabbri

Dr. Adams
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data from accelerometers to the dashboard

Major Task 2: Develop clinical activity detection
algorithms that utilizes image (video) data

Subtask 1: Image capture and body position
detection

* Dr Fabbri's team oversees the design

¢ Dr. Bodenheimer's team designs and
implements the image capiure system

1-4

Dr. Fabbn

Dr.

Bodenheimer

Subtask 2: Design and implement a basic clinical
activity detection system using image (video) data

¢ Dr Fabbni's team develops a taxonomy of clinical
tasks to identify

¢ Dr Fabbri's team collects sample image data in the
simulation lab

o Dr. Bodenheimer's team designs and evaluates
activity detection algorithms using the image
and video data.

49

Dr. Fabbni

Dr.

Bodenheimer

Subtask 3: Aggregate image data into a centralized
physician dashboards

¢ Dr Fabbri's team develops the data architecture and
storage system for the data

* Dr. Bodenheimer’s team mmplements a system to
transmit data from cameras to the dashboard

9-14

Dr. Fabbn

Dr.
Bodenheimer

Major Task 3: Develop chinical activity detection
algorithms that combines accelerometer and image

(video) data

Subtask 1: Develop models to correlate accelerometer
and 1mage data for activity detection.

9-12

Dr. Fabbni

Dr.

Bodenheimer

Dr. Adams

Subtask 2: Evaluate combined activity detection
algorithms on simulation lab data.

* Dr Fabbn’s team will lead the evaluation, but
provide feedback to the other teams

¢ Dr. Bodenheimer’s team will evaluate the impact
of image data for combined activity detection

* Dr Adams’ team will evaluate the impact of
accelerometer data for combined activity detection

12-36

Dr. Fabbri

Dr.
Bodenheimer

Dr. Adams

Subtask 3: Integrate the combined activity detection
system into physician dashboard

Dr. Fabbn
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Major Task 4: Design and implement high-level
clinical activity features

Subtask 1: Design and implement an injury heatmap
visualization

* D Bodenheimer s team will use image data to
determine hand position over the body

¢ Dr Adams’ team will team will use accelerometer
data to determine duration of hand positions and
movements.

* Dr Fabbri's team will aggregate the data into a
website visualization

3-14

Dr. Fabbr

Dr.

Bodenheimer

Dr. Adams

Subtask 2- Design and implement a risk score derived
from accelerometer and image data

e Dy Fabbri's team will utilize the heatmap data to
produce a risk score

14-18

Dr. Fabbmn

Subtask 3: Design and develop “quick” data entry
systems using accelerometer devices (e.g., watches)

¢ Dy Fabbn's team will oversee the design.

¢ Dr Adams will implement a “quick” data entry
prototype.

18-24

Dr. Fabbri

Dr. Adams

Major Task 5: Focus group and field data collection of
developed prototype systems

Subtask 1: Focus group of medics. surgeons. emergency
room physicians, and mulitary staff.

24 &
18-20

Dr. Fabbm
(N=30)

Subtask 2: Field data collection with Nashwville Fire
Department

13-22

Dr. Fabbr
(N=40)

Milestone #1: Prepare publication an problem
overview, and detection algorithms

Dr. Fabbri

Dr.
Bodenheimer

Dr. Adams

Milestone #2: Package prototype software for sharing
and distribution

Dr. Fabbn

Dr.
Bodenheimer

Dr. Adams
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APPENDIX B

Focus Group Interview Guide:

When thinking about handoffs between pre-hospital and hospital providers who care
for trauma patients:

1. What is your impression of handoffs for trauma patients?

2. What information is normally shared during hand-offs? (i.e., essential care
information)

a.

What information is most useful to determine next steps in care management? i.
Vitals ii. Injury severity iii. Injury location iv. Patient overall state v. Medical history
vi. Changes in vitals over time vii. Procedures performed during transport

Why/how is this information shared?

c. What information is not useful to determine care management?

d. How might receiving this information before patient arrival assist care

management?

3. What issues, if any, have you observed about handoffs for trauma patients? (i.e.,
what gaps in hand-off reports commonly occur?)

a.

b
c.
d

o

Example of handoff(s) that went well?

. Example of handoff that did not go well?

Examples of miscommunications/misunderstandings?

. Examples where pre-hospital transport communication was murky, or not well

communicated?
Examples of important information communicated too late?

Examples of information that could have been communicated clearer/earlier that
would have improved the care/patient outcome?

4. Why/how was this information not shared? (e.g. Due to time constraints, noise)

a.

Type of transfer and mode of arrival (e.g., from scene by ground, air; transfer
from other facility by air or ground; if ground, NFD vs. non-NFD)

Time of day?

c. ESI score?
d. En Route Report?
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APPENDIX C

Key Domain Findings from Focus Groups:

Vital Signs and Demographics.

Vital signs drive a lot of ER’s levels, and they are important predictors.

The two vital sign values most important for the EMTs and receiving hospital are:
1) the lowest worst number they got, and 2) what it is right now.

Vital signs that EMTs capture and/or provide include: Hypertensive, Hypoxic,
Heart rate, blood pressure, oxygen saturation, pain, age, meds history, allergies,
entitle CO2, O2 saturations.

Demographics are important, and include: time of injury, transportation
length/time since “uncertainty grows as the time shortens”, and age is one of the
most important variables.

Medication Administration

The administration (timing and amount) of medicine by EMTs is important
because it will change the care provided.

It is estimated that a large percentage of field personnel might be guessing after
the fact on the actual administration time. On timing, the EMTs are approximate,
i.e. within 5 minutes.

Medicine provided is in colored boxes. It would be convenient for EMTs for it to
be automatically captured upon administration; maybe with a QR code that
passes through a camera.

Some medicine administered during transport include: Sedative, analgesics,
paralytics, Ketamine, Tolinase, Succinylcholine, Rocuronium, Zofran, Epi-drips.

Documentation

EMTs often do not formally document procedures (ie vitals, things they do).
They use alternative methods instead using shorthand for their own reference.
This includes writing on: Sheets, gloves, paper, tape.

EMT documentation include: patient contact time, patient weight, medications
given and timing, initial vitals, any procedures that were done, record the number
of attempts, the time of those events.

EMTs do have a more formal record in the “monitor” where they can document
and pull later. This monitor is cumbersome especially when having to scroll
through it. It does not transmit in real time to the receiving hospital.

Most often, EMTs conduct their formal documentation post-trip arrival. They do
like this charting, which can take 30 minutes.

There are multiple people in transport, i.e. two people in ground ambulance, and
3-4 four in air transport. This can create challenges in documenting all the
procedures.

An iPad, or something automated, would provide real value. It will not be that
EMTs would go over and show it to the physician, but it would be a quick
reference where they could go.

Transport
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Doctors care about how much and what the medic is doing during transport.
EMTs perform routine procedures to include: transfusions, airway, chest tubes,
breathing, circulation, full assessment, including vital signs, breathing sounds.
The receiving hospital may allocate resources in advance based on procedures
conducted during transport.

Sequence matters since it is like cause and effect. They want to know what they
did and when it happened as opposed to just a set of collapsed procedures that
you do not provide why it happened.

EMTs want to get the patients in the vehicle and do whatever you can en route.
They need a reason to delay transport to give something in the field. They want
to get them in the aircraft as quickly as possible and do what they can in flight
while in motion towards what they really need, which is a surgeon.

Communication

There are multiple periods of verbal communication between the EMTs and
receiving hospital before the patients’ arrival, this includes communicating to
hospital 10 minutes out.

EMTs believe that the doctors do not want too many details when you are at
bedside. EMTs just normally tell them what happened. They care less about the
individual times and more about if you followed the ACLS algorithm.

EMTs need to optimize information to minimize your communication for the
doctor so they can take what is important faster. It would be helpful if there was
an ability to gather all this information, and let the doctor decide what information
he might need most since they want certain things differently.

EMTs level their trauma patients en-route which doctors can make inferences
and coordinate resources against (i.e. trauma bay, etc.).

Communication is difficult whenever there are multiple arrivals back-to-back.
Communication must go through Wi-Fi, they have to take the report, it needs to
go to the nursing staff, and resources need to be allocated.

Due to environmental distractions, doctors might miss a lot of the details of the
mechanism, the time of injury, that type kind of thing. Then | would have to go
back and try to piece together those details.

A few doctors assess that 20% or 30% of the time it might be the wrong
information due to perception from what the EMTs are seeing and the dynamic
situation. Conversely, what seems like a miscommunication is actually just a
change in the patient’s condition too.

Sometimes the doctors find out they missed or did not get the worst vital so after
the patient arrives, they need to upgrade the trauma and re-allocate resources.
The biggest lack of communication might be for those patients who are
transferred from another facility when the crew just does not have a good report
from the outside facility.

There is some disagreement that patients arrive frequently with procedures done
(i.e. intubation) that is not communicated before they arrive.

EMTs admit that they due forget some things such as the number of times
something has been done or the severity, or it might not be as clear from
memory. It also could be due to the division of labor during transport.
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Having some sort of electronic tracking would be beneficial. Reducing error and
reducing communication will improve patient care. Sometimes what the doctor
hears and writes down might be different than what the EMT had indicated.
Doctors encouraged us to build a system where it would pick up on particularly
bad situations and create an automatic alert for the hospital.

e Incorporating (new) Technology

Doctors trust sensors after they have been analyzed by a person. Regarding
equipment, EMTs said that they would “trust but verify”.

EMTs wear watches and carry and use cell phones during operations.

EMTs are hesitant and nervous to be videoed or recorded.

Some EMTs think that it would be nice to have an Apple Watch with a button that
you could scroll and hit, especially on busy flights, to know what and when
procedures were completed. Other EMTs think that scrolling might get
frustrating.

Having something take notes without a pen either verbally or with hand gestures
would be useful especially due to time compression (ie a lot happening during
short flights).

It would be great to show the information graphically, and sync with the monitor
to automatically put those times in there, and then used when conducting formal
documentation.

EMTs do not want to have to readjust something under flight suit, which are long
sleeves. Pressure of the device might be an issue.
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APPENDIX D

Findings from Video Observations

Burn.
Hit by CarI
Stabblng-
0 5 10 15 20

Figure 9. MOI occurrences from videos observed. 4 of the videos contained injuries
that could best be described as “other”, including an explosion, and assault, one that
was unclear. One of the four videos that were described as “other” injuries were
recategorized as a GSW. It was described as a ballistic injury in the video comments.

Counts/frequency: Burn (1, 2.1%), Fall (8, 17.0%), Gunshot Wound (GSW) (17,
36.2%), Hit by Car (1, 2.1%), Moving Vehicle Accident (MVA) (17, 36.2%), Stabbing (3,
6.4%)
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Figure 10. This Figure illustrates the information transferred to the hospital trauma team
regarding medications administered during transport. There were 18 out of the 50
videos which did not provide this information.

Counts/frequency: Blood (4, 12.5%), Crystalloid (20, 62.5%), Epinephrine (2,
6.3%), Etomidate (3, 9.4%), Fentanyl(18, 56.3%), Fluids (0, 0.0%), Ketamine (3,
9.4%), Succ (4, 12.5%), Versed (4, 12.5%), Zofran (7, 21.9%)
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Figure 11. This Figure illustrates the information transferred to the hospital trauma team
regarding information about procedures performed during transport. 47 of the 50 cases
provided this information.

Counts/frequency: BVM (Basic Valve Mask) (4, 12.1%), Boarded (2, 6.1%), C-
Collar (3, 9.1%), Compressions (1, 3.0%), Intubation (9, 27.3%), Nasal Airway (2,
6.1%), Peripheral Intravenous (PIV) (22, 66.7%), Splint (2, 6.1%), Tourniquet (2, 6.1%)
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No
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Figure 12. This Figure illustrates that out of the 50 videos, 40 of them contained
clarifying questions from the receiving hospital trauma team.

Counts/frequency: Yes (40, 80.0%), No (10, 20.0%)

0 2 - 6

Loss of Pulse

Tachycardia

(we]

Figure 13. This Figure illustrates the fact that out of the 50 videos observed, information
about heart rate was only relayed to the hospital trauma team in 10 of the videos.

Counts/frequency: Bradycardia (6, 60.0%), Loss of Pulse (1, 10.0%), Tachycardia (3,
30.0%)
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Pupil Dilation

30 40

Figure 14. This Figure illustrates “other” information provided to the hospital trauma

team upon arrival at the hospital.

Counts/frequency: Age (39, 79.6%), Allergies (22, 44.9%), Assessment (24,

49.0%), Blood Gluclose (BG) (10, 20.4%), Cancer (0, 0.0%), Complaints (4,

8.2%), Diagnosis from OSH (4, 8.2%), eCO2 (2, 4.1%), Glascow Coma Scale (GCS) (7,
14.3%), Loss of Consciousness (18, 36.7%), Medications (18, 36.7%), Mental

Status (12, 24.5%), Past Medical History (PMHXx) (25, 51.0%), Pupil Dilation (4, 8.2%)
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APPENDIX E

Clinical Emergency Procedure List

To be able to simulate real-world trauma transport, the team compiled a list of

procedures that typically occur in an emergency setting as seen in Table 1. The set of
procedures were determined by analyzing military tactical combat care guidelines and
interviewing paramedics and trauma staff.

The following procedures were chosen for inclusion in simulations from a

comprehensive list of pre-hospital trauma procedures for their 1) clinical importance and
potential impact on clinical decisions by providers at the receiving facility, and 2)
anticipated ability to discriminate and identify the procedure based on motion and/or
heat map activity.

Tourniquet application: When major bleeding is identified, bleeding is controlled
using firm, steady pressure to the site using a tourniquet placed proximal to the
injury. The tourniquet is placed around the injured extremity over a bony
prominence if possible, and the tourniquet is tightened until bleeding stops.

Application of combat gauze: In cases of significant bleeding, combat gauze can be
applied by holding pressure to the site.

Bag-valve-mask ventilation: Bag-valve-mask (BVM) ventilation includes application
of a facemask with adequate seal to use an attached bag to provide ventilation. With
one provider, the mask is held in place by one hand, usually the non-dominant hand,
and the other hand squeezes the bag to generate airflow into the patient’s lungs.
Providers may switch hands to avoid fatigue, and in some situations two providers
are used — one holds the mask in place while the other squeezes the bag.

Oral airway: In patients who are obtunded and have no gag reflex, placement of an
oral airway displaces the tongue anteriorly so that does not obstruct the airway and
facilitates bag-valve-mask ventilation. Oral airway placement involves opening the
mouth, displacing the tongue anteriorly, and inserting the oral airway into the mouth
so that the distal tip is behind the base of the tongue.

Endotracheal intubation: Among patients who are unable to breathe on their own, an
endotracheal tube or supraglottic airway may be placed in the trachea or posterior
pharynx, respectively, to provide oxygenation and ventilation. This procedure is
generally performed from the head of the bed, although it can be performed from
other approaches. Typically, the right hand is used to open the mouth, the left hand
is used to insert laryngoscope and sweep the tongue to the left, and the right hand is
used to introduce either the endotracheal tube or the supraglottic airway. The
laryngoscope is then removed from the mouth and the endotracheal tube or
supraglottic airway bulb secured in place by inflated a bulb using a syringe with the
appropriate volume of air. Attaching the tube to a BVM then ventilates the patient
and listening to breath sounds with a stethoscope and/or looking for color change on
a colorimetric indicator that detected carbon dioxide confirm appropriate positioning.

Cricothyrotomy: This procedure is performed when oxygenation and ventilation
above the vocal chords is not possible. This procedure is generally performed
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facing the patient’s the side so that the non-dominant hand palpates and stabilizes
the cricothyroid membrane, and the dominant hand is used to puncture the
membrane and introduce the tube, which is then attached to a BVM for ventilation. A
scalpel or hollow bore needle can be used to gain access to the trachea inferior to
the vocal chords.

Needle decompression and chest tube placement: These procedures are performed
when a tension pneumothorax is suspected. For needle decompression, a large
bore needle with a catheter is inserted into the pleural space, generally at the 2" or
3" intercostal space at the mid-clavicular line. A one-way valve is then applied so
that air accumulating in the pleural space exits the thoracic cavity. For chest tube
placement, the patient is positioned so that the arm on the affected side is above
their head; a scalpel is used to make an incision in the mid-axillary line at the 3" or
4t intercostal space, and blunt dissection is used to gain access to the pleural cavity
above the rib. A clamped chest tube is then inserted into the thoracic cavity and
directed posteriorly and superiorly, aiming for the apex of the thoracic cavity. This
tube is then attached to suction.

Chest compressions: Chest compressions performed as part of cardiopulmonary
resuscitation (CPR) when patients become unresponsive, are not breathing, and do
not have a pulse. Chest compressions are performed by using both hands, one on
top of the other, to push the patient’s chest a depth of at least 2 inches over the
sternum between the nipples at a rate of ~100-120 compressions per minute. Chest
compressions will be alternated with ventilation if there is only one provider
available.

Immobilization: Patients are immobilized to prevent additional injuries or exacerbate
existing injuries such as spinal fractures. This is done by placing the patient on a
spine board and placing a cervical collar around the cervical spine.

Splinting: Obvious fractures or bony deformities are stabilized by securing the
extremity to a splint using gauze or kerlex.

Peripheral intravenous catheter placement: Placement of a peripheral intravenous
(PIV) catheter is generally done in the patient’s arm or leg to administer intravenous
medications or fluid. Obtaining PIV access involves placement of a tourniquet
proximal to the vein, palpation of the vein, cleaning the site, insertion of the catheter,
holding pressure proximally, releasing the tourniquet, attaching the catheter to tubing
or a leuer lock, generally with a twisting motion, and applying a dressing to hold the
PIV in place.

Intraosseus placement: Obtaining intraosseus (I0) access allows administration of
medication into the bone marrow. 10 placement may be performed on the sternum,
proximal humerus, or proximal tibia, distal femur, or distal tibia. 10 placement can
be accomplished using a spinal needle that is screwed into the bone by hand or by
IO kits that drill or inject 10 needles into the bone. Once access to bone marrow has
been obtained, the needle is secured in place with a dressing.

Medication administration: Medications may be administered by PIV, intraosseus
(1O) access in order to facilitate intubation, during a code, or to treat massive
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bleeding. Medications may be removed from a vial using a needle attached to a
syringe, insertion of air, and then removal of the medication; this medication is
administered after cleaning the hub of the PIV/IO, and in general 10ml of saline are
used to flush the line. Medications such as succinylcholine, etomidate, and atropine
may be stored in prefilled syringes, which can be attached directly to a PIV or 10.
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APPENDIX F

EMG and Accelerometer Graphs Examples

Myo EMG Graphs
@EMG1 @®EMG2
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13:56:04:674 13:56:40:000 13:57:30:000 13:58:30:150 13:56:04:674 13:56:40:000 13:57:30:000 13:58:30:150
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40.00 60.00
40.00
20.00
20.00
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0.00
-20.00
-20.00 -40.00
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0.00 2000
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@EMG7 @®EMG8
61.00 127.00

40.00
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0.00
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-79.00
13:56:04:674
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4
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0.00
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Figure 15: Myo activity during a simulation lab experiment.
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Apple Watch Graph

@ X Acceleration Y Acceleration @ Z Acceleration
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Myo IMU Graph
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Figure 16: Myo Armband and Apple Watch accelerometer data. Myo does not remove
gravity component so the two graphs are not directly comparable.
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Event Displayed: CPR

Number of
Data Description ID Start Time End Time Data
Points

Apple Watch B1CA978-5CCE-444C-ABDF-

ppie Yatc Right CELA Testg | o5 CA978-5CC ¢ may 23, 2018, 10:19:36 AM | may 23, 2018, 11:50:12 AM | 20760
Entire Session A9623B62A42D
Apple Watch Right CELA Testg | o0 CA978-6CCE-444C-ABDF- may 23, 2018, 10:51:40 AM | may 23, 2018, 10:56:48 AM | 346
Plotted A9623B62A42D
Myo Entire .
Soasion Right CELA Test6 | 201805231019004510771867301952688 | may 23, 2018, 10:19:00 AM | may 23, 2018, 11:49:59 AM | 15480
Myo Plotted Right CELA Test6 | 201805231019004510771867301952688 | may 23, 2018, 10:51:40 AM | may 23, 2018, 10:56:48 AM | 258

Figure 17: Myo Armband and Apple Watch accelerometer data summary statistics for entire

session compared to event specific CPR data, from one participant in a simulation lab

experiment.
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APPENDIX G

CELA Lab Setup, Process, and Data Collection:

The CELA lab served as the data collection environment and contained all the
necessary equipment for the procedures in Appendix E. The repeated measures
evaluation required each participant to complete each medical procedure multiple times
within a three-hour timeframe. The target number of instances per medical procedure
are provide in Table 4, where the desired number was determined based on pilot data.
Bagging and CPR are time-based procedures; thus, the time per procedure was chosen
such that fatigue effects may manifest. The procedures were grouped by category (i.e.,
airway management, wound related) and were completed in five rounds, where each
round varied the presentation of the procedures to account for ordering effects.

# of

Medical Procedure Number of Instances | Medical Procedure Instances
Administer IM Medication | 5 Place an Oral Airway 10
Administer |0 Medication | 5 Place Blood-Pressure Cuff | 5
Administer IV Medication | 6 Place ECG Leads 5

Bagging 5, 7.5, and 10 minutes | Place an |O Line 5

Combat Gauze 6 Place a Pulse-Ox Monitor | 5

Chest Decompression 5 Splinting 3

CPR 5 minutes Intubation 2

King Airway 2 Combat Tourniquet 3

Table 4: Target Number of Instances per Medical Procedure

The evaluation’s objective was to collect video, acceleration, and electromyography
(EMG) data, which will serve as training and testing data for the medical activity
detection system. Cameras were used to collect video data, while the Myo device and
Apple watch collected acceleration and EMG data. Another evaluation goal was to
have multiple participants with varying amounts of medical experience, as experience
will impact the time to perform and the proficiency of each medical procedure.

One pilot and four participants completed the evaluation. The pilot was a study
team member and served to motivate the experimental design and to validate the
acceleration and EMG data collection systems. The four participants had varying
amounts of experience (i.e., ranging from a medical student to emergency room
surgeon) and consisted of one female and three males. Additionally, the amount of
medical experience did not mean that the participant had more experience doing a
procedure than another participant. For example, P3 had more years of experience
than P2, but P2 had substantially more experience placing an IV. Future data collection
will collect medical experience data by procedure, in addition to overall experience.

The task environment set-up can be seen in Figure 18, which depicts the
placement of four cameras. Each participant was free to move around the bed to
perform each medical procedure but were instructed to remain seated in a rolling chair.
The necessary medical equipment was placed on the mannequin or on the bed, prior to
completing the corresponding procedure.
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Each medical procedure was
tagged with start and stop times \c_1/
using the collected video. The | 4 bl
average times (st. dev.) in seconds AN
each participant took to complete
each procedure are given in Table 5.
Participant P2 tended to take less
time administering medication
through an 1O line than the other
participants; although, the
participants took roughly the same 4 =
time to administer medication through
an IV line. Participants took roughly
the same time to perform a round of
CPR (breathing and compressions); Figure 18: CELA Lab Environment Set-Up
however, participant P2’s first CPR
round contained 200 chest
compressions. The reason for the larger number of chest compressions was that
research has shown greater resuscitation success with the 200 initial chest
compressions.

c2

There was a large variance in chest-tube timings, which may be attributed to the
procedure’s infrequency in the real-world. A large variance between participants was
seen in the combat gauze timings, which was attributed to not having the necessary
medical training equipment. Participant P4 took longer to draw medication than the
other participants, due to the participant’s relative inexperience. Participant P2 took
less time than the other participants to put on the ECG leads, administer IM medication,
place an 10 line, place an |V line, tie an IV tourniquet, wrap a head wound, and place a
pulse-ox monitor. Participant P2 had more experience doing these procedures than the
other participants. The participants took roughly the same time to intubate a patient, but
had some variance in inserting a king airway, which may be attribute to how much
lubricant was in the dummies mouth and how much force was needed to insert the king
airway. Participant P3 took a little longer to place an oral airway compared to the other
participants, due to the use of a tongue compressor. Participants P3 and P4 took a
longer amount of time to splint a leg than participants P1 and P2, due to wrapping
additional gauze around the leg. Only participants P3 and P4 sutured the chest-tube
incision close, and participant P4 took longer suturing, as this was the participant’s first
time placing a chest-tube. Additionally, participants P3 and P4 were the only
participants to swab the chest-tube incision site with alcohol, which created longer event
timings than participants P1 and P2. There was a large timing range in monitoring the
patient’s vital signs across participants, which may be due to the lack of vital signs, as
the participants had to act like they were hearing breaths and heart-beats.

Overall, the medical event timings show the effect experience and individual
differences have on completing a medical procedure. The medical activity detection
system will have to account for various amounts of medical experience and times to
achieve high accuracy. The system may be trained on certain movements, e.g.,
inserting a laryngoscope blade, rather than the entire medical procedure to improve
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classification performance. Additionally, the system may need to incorporate various
window sizes (the length of time features are extracted from) in order to accommodate
the range of timings across the medical procedures.

Procedure P1 P2 P3 P4
Administer 10 Med. 26.0 (13.89) 10.75 (3.4) 29.0 (6.56) 29.0 (0.00)
Administer IV Med. 28.5(11.15) 24.5 (11.26) 20.6 (6.15) 24.0 (16.97)
Bagging 342.0 (217.79) | 358.5(263.13) | 126.5 (144.23) | 608.0 (0.00)
Blood-Pressure Cuff | 39.5 (3.54) 11.33 (1.53) 20.0 (8.49) 15.0 (0.00)
CPR (Breath) 4.73 (1.16) 7.73 (1.35) 7.0 (1.26) 5.31 (0.63)
CPR (Compressions) | 15.4 (0.74) 17.75 (1.96) 20.91 (22.59) 17.21 (3.45)
Chest-Tube 130.33 (22.23) | 49.4 (26.37) 66.67 (23.71) 100.0 (0.00)
Combat Gauze 42.0 (31.11) 12.0 (3.61) 3.0 (0.00) 77.0 (0.00)
Combat Tourniquet 51.0 (0.00) 34.0 (9.64) 58.5 (0.71) 62.0 (0.00)
Draw Medication 12.5(2.12) 9.5 (2.38) 9.15 (3.11) 22.8 (3.27)
ECG Leads 133.0 (4.24) 61.0 (10.44) 110.5 (2.12) 101.0 (0.00)
IM Administration 18.0 (14.14) 6.0 (2.16) 13.33 (6.02) 12.0 (2.83)
10 Line 60.0 (16.46) 33.25 (10.4) 78.67 (38.42) | 36.0(0.00)
IV Line 92.25 (33.03) |42.5(11.81) 91.0 (40.8) 70.0 (1.41)
Intubation 39.0 (19.8) 42.0 (0.0) 43.0 (5.66) 39.5 (6.36)
King Airway 18.0 (8.49) 30.5 (12.02) 26.0 (1.41) 15.0 (0.00)
Oral Airway 4.29 (2.29) 3.88 (1.36) 7.0 (1.41) 5.5(0.71)
Pulse-Ox Monitor 11.5 (3.54) 7.0 (1.73) 13.0 (2.83) 16.0 (0.00)
Splinting 46.0 (9.9) 46.0 (11.36) 61.0 (26.87) 65.0 (0.00)
Suturing nan (nan) nan (nan) 100.67 (25.01) | 471.0 (0.00)
Swab Area w/ Alcohol | 4.71 (1.25) 3.9 (1.91) 7.23 (3.65) 6.67 (3.14)
Tie Tourniquet (IV) 15.75 (3.2) 8.83 (3.49) 15.0 (5.77) 16.5 (4.95)
Vital Monitoring 16.5 (3.54) 22.33 (5.51) 17.67 (7.09) 27.0 (0.00)
Wrap Head Wound 51.0 (5.66) 33.33 (11.85) | 60.5 (6.36) 68.0 (0.00)

Table 5: Medical Procedure Event Timing's Mean (Std.Dev) by Participant in Seconds
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APPENDIX H

Hierarchal Task Analysis:

Each medical procedure was broken down into their anatomical movements
using hierarchal task analysis [2] to identify distinct movements that may differentiate
the procedure from other procedures, which will be useful for classification.® Published
medical procedure guides were used to decompose each procedure into sub-tasks,
which were broken into anatomical movements. The task analysis for CPR is given in
Figures 18 and 19. The medical procedure (CPR) is decomposed into four sub-tasks,
where subtask 1.3 Give 2 breaths can be completed two different ways: without a bag-
valve mask (Subtask 1.3A) or with bag-valve mask (Subtask 1.3B). Subtask 1.3 is
further decomposed into sub-sub tasks, which are decomposed into anatomical
movements. This analysis allows for determining overlap between procedures and
potential state changes. For example, there is overlap between CPR and Bagging, if
CPR uses the bag-valve mask to give two breaths. However, the chest compressions
in CPR are unique; thus, training a system to only use data pertaining to chest
compressions to classify CPR may increase accuracy. A state change can also be
identified between two subtasks, such as between Give 2 Breaths and Chest
Compressions. Detecting state changes may be useful for state-based classification
algorithms, such as Hidden Markov Models.

| I [ I See Next Figure
1.1. Lift Patient’s Chin ‘ ’ 1.2. Check for Breathing ‘ ’ 1.3A. Give 2 Breaths: Non-Mask ‘
1.1.1. Move Hand onto 1.2.1. Flex Torso and Turn l I
Patient’s Forehead Head, such that your ‘ 1.3A.1. Pinch Patient’s Nose ‘ ‘ 1.3A.2. Give Breaths ‘
1.1.2. Move other Hand Earis Next to the
under Patient’s Chin Patient’s Mouth I I
1.1.3. Use Two Fingers to 1.2.2. Listen For Breaths 1.3A.2.1. Flex Torso to Lean Over
Lift Patient’s Head 1.2.3. Unflex Torso and 1.3A.1.1. Move Hand to Patient
Past Neutral Position Turn Head Patient’s Nose 1.3A.2.2. Put Mouth over Patient’s
1.3A.1.2. Close Thumb and Mouth and Ensure to Make a
Fingers to Pinch Complete Seal
Patient’s Nose 1.3A.2.3. Give Rescue Breath for 1
Second
1.3A.2.4. Wait 1 Second
1.3A.2.5. Give Second Rescue Breath
for 1 Second
1.3A.2.6. Unflex Torso
1.3A.2.7. Open Thumb and Fingers to
Unpinch Patient’s Nose
Step 1.3. isdependent on if breaths
will be given manually (1.3A.) or
Note: Tasks are for adult patient. Tasks may differ for younger patients. using a bag-valve mask (1.3B.)

Figure 18: Hierarchical Task Analysis for CPR

3 Stanton, N. A. (2006). Hierarchical task analysis: Developments, applications, and extensions. Applied
ergonomics, 37(1), 55-79.

54



From Previous Figure

1. CPR

1.3B. Give 2 Breaths: Valve Mask ‘

1.4. Start Compressions

1.3B.1. Grab
Valve Mask

1.3B.2. Move
Valve Mask into
Position

1.3B.3. Squeeze
Bag Twice

1.3B.4. Place Valve
Mask in a Secure

Location

1.3B.1.1. Move Arm to
Valve Mask
Storage Area

1.3B.1.2. Close Hand

1.3B.1.3. Move Arm to
Patient’s Head

1.3B.2.1. Move Arm Down
to Place the
Mask Over the
Patient’s Mouth

1.3B.2.2. Place One Hand
on Mask

1.3B.2.3. Use the Other
Hand to Grab
the Bag

1.3B.3.1. Close the Hand
for 1 Second

1.3B.3.2. Open the
Hand

1.3B.3.3. Wait 4
Seconds

1.3B.3.4. Close the Hand
for 1 Second

1.3B.3.5. Open the
Hand

1.3B.4.1. Take Hand off
of the Mask

1.3B.4.2. Move Arm to
Secure
Location

1.3B.4.3. Open the Hand

1.4.1.

1.4.2.

1.4.3.

1.4.4.

1.4.5.
146

1.4.7.

Place One Hand on
the Patient’s Chest
Place the other Hand
on top of the Hand
Interlace Fingers
Position Shoulders so
that they are Directly
Over your Hands
Lock Elbows

. Use Upper Body

Weight to Push
Down on the Chest
at 100-120 BPM
After 30
compressions, give 2
breaths

Figure 19: Hierarchical Task Analysis for CPR
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ABSTRACT

Ideal treatment of trauma, especially that which is sustained during military combat, requires rapid manage-
ment to optimize patient outcomes. Medical transport teams ‘“scoop-and-run’ to trauma centers to deliver the
patient within the *golden hour’, which has been shown to reduce the likelihood of death. During transport,
emergency medical technicians (EMTs) perform mimerous procedures from tracheal intubation to CPR, some-
times documenting the procedure on a piece of tape on their leg, or not at all. Understandably, the EMT’s
focus on the patient precludes real-time documentation, however this focus limits the completeness and accuracy
of information that can be provided to waiting trauma teams. Our aim is to supplement communication that
oceurs en route between point of injury and receiving facilities, by passively tracking and identifying the actions
of EMTs as they care for patients during transport. The present work describes an initial effort to generate
a coordinate system relative to patient’s body and track an EMT’s hands over the patient as procedures are
performed. This ‘patient space’ coordinate svstem allows the system to identify which areas of the body were the
focus of treatment (e.g., time spent over the chest may indicate CPR while time spent over the face may indicate
intubation). Using this patient space and hand motion over time in the space, the system can produce heatmaps
depicting the parts of the patient’s body that are treated most. From these heatmaps and other inputs, the
system attempts to construct a sequences of clinical procedures performed over time during transport.

1. DESCRIPTION OF PURPOSE

The purpose of this work is to automatically identify the clinical procedures EMTs perform during transport
using off-the-shelf passive sensors such as video cameras and EMT-worn accelerometers (e.g., Apple Watch). A
passive system, in which no active input is required, is necessary to avoid distracting the EMT away from patient
care activities. Current documentation and communication to receiving medical teams includes hand-written
notes and brief verbal reports, respectively. In both forms, the information presented to the receiving team
can be incomplete and inaccurate. Supplementing these existing communication methods with an automatically
produced list of clinical procedures with time stamps has the potential to more adequately prepare for the triage
and downstream management of trauma cases.

2. METHODS

For this specific work, the system uses a single data source, video data feeds, to identify clinical procedures. The
video feeds are processed with the computer vision system OpenPose,' which analyzes each frame to identify
persons in the frame and identify their skeletons. The skeletons include 182 different key point positions including
hands, feet and the head. These key points designate where in each frame the person and their extremities are.
Given these key points, the system first identifies the patient using simple heunstics such as them being in the
center of the frame and having minimal movement. Next, the system identifies the EMT as the person closest
to the patient. Once the patient and the EMT are identified, the system constructs a ‘patient space’, which is
a geometric space relative to the patient’s body. The system then tracks the EMT's hands in the patient space
(i.e., hands over the head or over the leg).

To simulate real-world trauma transport, the team compiled a list of procedures that typically occur in an
emergency setting as seen in Table 1. The set of procedures were determined by analyzing military tactical
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Table 1. List of procedures and number of times each subject was supposed to complete each procedure. *Indicates that
this procedure took place on the left or nght arm randomly.

Medical Procedure Times Completed | Medical Procedure Times Completed
Adminster IM Medication™® 5 Place an Oral Airway 10
Adminster 10 Medication® 5 Place Blood-Pressure Cuff 5
Adminster IV Medication® 6 Place ECG Leads 5
Bagging 3 Place 10 Line 5
Combat Gauze on Arm* 3 Place Pulse-Ox Monitor b
Combat Gauze on Head 3 Splint Arm* 3
Combat Gauze on Leg® 3 Splint Leg*® 3
Perform Chest Decompression 5 Take out ETT Tube 2
Perform CPR 1 Take out King Airway 2
Perform Intubation 2 Take out Oral Airway 10
Perform King Airway 2 Tourniquet on Arm* 3
Place an IV Line (Left Arm) 3 Use Stethoscope to check vitals 5
Place an IV Line (Right Arm) 3

combat care guidelines and interviewing paramedics and trauma staff. The list of procedures includes a span
of procedure types including airway management, medication administration, and stabilization. Video of four
subjects with various medical and emergency response training was then recorded of each subject performing
the procedures in a simulation lab (Figure 1). Each of these subjects performed a number of iterations of each
procedure. Repetition allowed for the detection of individual differences as well as repetitive differences.

The video data collection system was configured as follows. Video was recorded with four Apeman A20 4K
action cameras, which record 3840 by 2160 pixels at 24 fps. Video data were collected from four angles for 3D
reconstruction. The positioning of the cameras relative to the patient 1s shown in Figure 2. Each of these cameras
are at a height of 2m to ensure that the patient and subject are visible in each camera. Camera 2 was selected so
that the patients body would be centered in the frame and so that screen space would roughly correspond to a
2D plane directly over the body. The Apeman cameras generate a series of 181 second videos with one second of
overlapping frames between clips in the series. The final one second was removed (24 frames) of overlapping video
so that no duplicate processing is completed by OpenPose. Each 3 minute video was analyzed with OpenPose,
which was running on an NVidia Docker virtual machine using two GeForce GTX Titan X GPUs.

Visual inspection by trained personnel in conjunction with specific a priori criteria (such as two fingers on
the wrist) are used to determine the beginning and end points of a procedure. To determine the exact frame

at which each procedure begins and ends, the trained personnel visually inspect the recording and tag frames.
These beginning and end points are used to split the data into smaller procedure-specific chunks to be analyzed.

Given these procedure-specific video chunks, hand key points of the EMT are extracted and used to generate
a Gaussian field around them. This extraction process is done for every frame and summed over all frames in the
chunk. By summing intensities of the fields over all chunks and frames, a heatmap 1s generated over the body
showing the most frequently ocourring positions of the hands for the chunk (Figure 3). These heatmaps will he
used as training data for a convolutional neural net classifier, which is intended to classify procedures.

3. RESULTS

Figure 3 shows the heatmaps generated from three procedures: intubation, insertion of an IV and splinting a leg.
The background image represents the patient’s body and the colors represent the position of the EMT’s hands
over the patient’s body in patient space. The yellow color represents the areas above and around the patient
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Figure 1. Still image taken from video data (left) and the same frame with OpenPose generated data overlaid to form a
skeletal representation of both the patient and EMT (nght).

c1

c3

-

Figure 2. Positioning of the four cameras used during data collection. Each camera shot 4K video at 24 fps.
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Figure 3. Heatmap showing the position of both the technician’s hands over the patient’s body durnng a single instance
of intubation, insertion of an IV, and splinting of a leg (from left to right).

where the EMT hands are located most often. Visually these heatmaps indicate that we can identify the hody
part which is being worked on, which will help in determining which procedure is being performed.

4. CONCLUSIONS

This work presents a method to video record training data of medical procedures and visualize heatmaps of those
procedures. This visualization allows inspection of a given set of procedures. These heatmaps can be used as
training data to begin to classify procedures and may aid in computer identification of the procedure as it is
being performed in emergency conditions. Since we intend to use this in conjunction with activity data gathered
from other devices, this work shows a first step in how computer vision and machine learning can be used to
help further identify the procedure being performed.

5. OTHER INFORMATION

This work is original and unpublished. It has not been submitted for publication or presentation in any form.
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Abstract

Documentation in the pre-hospital sefting is challenged by its limited resources and fasi-paced, high-acuity nafure.
Military and civilian medics are responsible for performing procedures and ireatmenis fo stabilize the patient, while
transporting the mjured fo a trauma facility. Upon arrival, medics fypically give a verbal report from memory or
informal source of documentation such as a glove or piece of tape. The development of an automated documentation
system would mcrease the accuracy and amount of information that is relayed fo the receiving physicians. In this
paper, we discuss the 12-week deplayment of an Automated Sensing Clinical Documentation {45CD) system among
Nashville Fire Department EMS paramedics. We examine the data collection methods, operational challenges, and
perceptions surrounding real-life deployment of the system. Our preliminary results suggest that the ASCD system is
Jfeasible for use in the pre-hospital setfting and revenled several barriers for which we found solutions.

Introduction

Military and civilian medics are responsible for retrieving, stabilizing, and transporting the wounded to a franma
facilityl. However, accurately documenting medical care during transport is complicated for several reasons such as
limited staff in the vehicle and care requirements for trauma patients®. Instead of documenting every activity during
transport, medics typically give a brief verbal report to the receiving facility staff including chief complaint,
mechanism of injury. vital signs and procedures performed®. This report may be supported by brief notes written on
the patient, a scrap piece of paper, the medic’s gloves, or in many cases relving only on the medic’s memory. While
the transmuission of this information to hospital providers is essential for maintaining patient care and providing
appropriate treatments, reporting is often incomplete®® and likely inaccurate due to medic susceptibility to cognitive
biases’®. As a result. patient care may suffer’.

Commumicating some types of patient information can be done successfully with a verbal report (e g., chief complaint,
mechanism of injury, age, gender). However, specifics regarding the sequence of procedures performed, medication
dosage and timing, and specific vital sign ranges are difficult to recall from memory given the high-intensity setting
of frauma care. This information is essential for optimal care management, resource allocation and triage planning®.

Onr research objective is fo develop an automated documentation system, which can detect pre-selected procedures
performed by pre-hospital providers (i.e., paramedics or military field personnel) and create an abbreviated care
record, without requiring the medic to actively produce the documentation Instead of requiring active documentation,
arange of sensors placed in the vehicle and worn on the medic that can passively aggregate data fo describe care, from
which algorithms can interpret and produce a care record. Candidate off-the-shelf sensors include electromyography
(EMG) sensors, cameras, and inertial measurement units (IMUs), such as accelerometers.

This paper reports on the deployment of an automated sensing clinical documentation system. Specifically, we outline
the equipment used, the configuration of the equipment in a civilian ambulance, perception of medics wearing devices,
data collection processes and interfaces with the trauma facility. The system was deploved with the Nashville Fire
Department (NFD') Emergency Medical Services (EMS) in conjunction with Vanderbilt University Medical Center, a
level I trauma center in Nashwville, Tennessee, which receives a high volume of acute frauma patients. Due to various
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concerns, we were not able to use cameras as a part of our system. While cameras are not a necessary component of
the system, their inclusion may improve system accuracy. The lessons learned from this work will allow for the
development of a more robust documentation system for medics and potentially improve patient outcomes.

Background

High quality healthcare requires effective and accurate comnminication among providers. The dynamic nature of care
by medics in the pre-hospital setting can make it difficult to document procedures in real time and communicate vital
clinical information to hospital providers. In their handoffs to emergency department (ED) staff. paramedics dedicate
75% of verbal reports to patient demographics and presenting signs/symptoms and only ~7% to pre-hospital
treatments®, even though pre-hospital treatments and clinical course largely drive resource allocation and treatments
upon arrivall®. To address the need for more efficient methods for accurate documentation and commmumnication of pre-
hospital care, we have developed a clinical documentation system, Automated Sensing for Clinical Documentation
(ASCD). The system leverages a combination of off-the-shelf sensors to collect data from which algorithms attempt
to detect the procedures that are preformed and create an abbreviated care record. This record 1s designed to be
generated in real time, or near real time, and transmitted upstream to providers in the ED as a supplement to the verbal
handoff The goal of this technology is to increase the accuracy and detail of clinical information transmitted to
upstream clinical providers and teams, particularly in high-acuity and trauma settings.

The current technology system was designed using feedback from pre-hospital personnel and hospital emergency
department providers, and then was refined and wvalidated in a controlled sefting by performing procedures on
simulated patients. In this study, we describe the implementation process, barriers encountered, and lessons learned
during real-world. pre-hospital deployment of the technology.

Methods

The study protocols were reviewed and approved by the Institutional Review Board of Vanderbilt University. The
Automatic Sensing for Clinical Documentation system was deploved among Nashville Fire Department (Nashville,
TN paramedics over a 12-week period. Nashville Fire Department provides fire protection and emergency medical
care for 533 square miles and transports patients to mumerous hospitals within the metropolitan Nashville area. In
2018, NFD responded to approximately 130,000 calls. Of note, NFD EMS protocols for airway management do not
include the use of medication for rapid sequence infubation (RSI). Prior to deployment of the system, written informed
consent was obfained from the parficipating paramedics.

Paramedic shifts were selected based on the availability of paramedics and research staff. At the beginning of each
shift, a trained researcher, who is also a paramedic, equipped one paramedic with the ASCD system In its original
design, the system records video of patient care to track the medic’s hand over the patient’s body (e.g., around the
patient’s leg or chest) to infer the types of procedures that can possibly done at a given time (... hands must be over
the chest to do CPR). However, due to privacy concerns, only the motion sensing and EMG pmﬁoﬂ of the system,
(ie., Apple Watches. iPhones, and Myo Armbands) was deplo}ed in the field setting for prelinunary testing. In order
to collect and transmit collected information. a laptop and other additional equipment was also carried by the research
observer (see Data Collection).

For a portion of the participating paramedic’s 12-hour shift, the trained research observer observed all clinical activity
and recorded “start” and “stop” times for targeted procedures performed inside the ambulance (Table 1). These
procedures were chosen based on focus groups with emergency medical service personnel and common procedures
performed in the ambulance!!. Procedures performed outside of the ambulance were not included in the recorded
observations due to the distance from the laptop and Bluetooth receivers fo the Myo Armbands and iPhones. The
observer did not participate in any patient care.

For the subset of patients transported to Vanderbilt University Medical Center (VUMC), observations also included
the handoff between the team of paramedics and the ED team; procedures and interventions performed during the ED
visits were also documented. At the conclusion of each shift. the paramedic who wore the technology completed a
debnief survey. These surveys featwed a user-centered design approach, considered the context of use, specific
requirements and areas of design optimization'’.

Between each observation, the ASCD equipment was cleaned using SaniWipes® and all components of the system
were charged. No substantial damage was received to the equipment during use.
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Table 1: Pre-hospital procedures assessed by the ASCD system and number of imes obsarved

Procedure Start Stop £ times procedure
obzerved during
deployment
Admimister Inframoscular Medication taken out of the box | Meedle withdrwn fom patient o
(M) Medication
Administer Infraosseons (I0) | MMedication tsken ous of the box | Finished flushing with zaline ]
Medication
Admimister Infravenows {TV) Medication taken out of the box | Fimshed flushing with saline 3
Medication
Apply Pressure to Stop First applying pressure 1o artery | Hand lesves wound 0
Eleeding
Bagging Touches bag Hand lesves bag 0
EBloeod Pressore Measurement | Touches blood pressure onf Hands leaves blood pressume onff 13
Chest-Tuobe Insertion Touches scalpel Apply tapehandage fo seoure 0
chest tubs
Chest-Tuobe Freparation Has hemostat in one hand and | Hamds leave hamostat 0
fube in the other
Chest-Tuobe Suforing Toaches needle-driver Apply mpehandaze o
Combat Gauze Tonches ganze Patient's wrapped extremity is put 0
down
Combat Tourniguet Touches tourniquet Wirites time on tourmiguet 0
CFE (Respiratory Soppart) Tonches patent's head Hands leaves patent’s head 0
CFE (Compressions) Sitarts fivst compression Hands lagves patient ]
Draw Medication Removes syrings from Syringe leaves medication visl 1
packaging
ECG Lead Applcation Touches ECG elecrodes Hands: legve patient after final 8
elecirode applied
Intubation with Endotracheal | Touches larymgoscope Femowes syringe afier inflating ]
(ET) Tube the cuff of ET mabe
Intraosseous (T0) Access Touches IO drill IO is secured to the patent 0
Imntravenons (TV) Access Touches TV from package Taped IV down 11
Sopraglottic Airway (5GA) Touches 5GA Femowes syminge affer inflating o
the onff
Oropharynzeal Airway (0FA) | Touches OPA Hand leawes OFA affer placement o
Fulse Omimetry Monitoring Touches pulse oodimestry Hands legve pulse oximery 1
MOmIboT moHitor
Splinfing Touches splint Wrapped extremity s put down o
after splint is applied
Swab Area with Alcohol Touches alcohol prep Alcohol prep is ot of user’s hand ]
Swap Vial with Alcohol Alrohol towelette is removed | Alcohol towelstte is removed 0
from packaging from vial
Tie Tourniquet (preparation Touches TV tourmiquet Hands leaves IV tonrnigquat 5
for IV access)
Vital Monitoring Touches stethoscope or Hands leave stethoscope or 3
thermomeser thermometer
Wonnd Dressing Touches ganze package Patient's wrapped exiremity is put 0
down
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Data Collection

Transport of Equipment: The following equipment was housed in a Pelican® case during transport: 2 Myo® Armbands,
2 Apple Watches (Series 3), 2 Apple iPhone 75, AT&T Unite Express 2 WiFi hotspot, 2013 Apple MacBook Air, and
their accompanying chargers (Figure 1). The equipment was delivered at the beginning of each shift and kept with a
member of the research team.

Figure 1: Pelican case setup

Electromvography: Thalmic Labs Myo® gesture control armbands were used as the source for EMG data collection.
Myo armbands were connected to the MacBook Air using a Bluetooth connection. After the armbands were pulled
onto the forearms, they were calibrated by having the paramedics position their hands as shown in Figure 2.

Figure 2: Myo neutral position (A) to Myo svnc position (B) to calibrate the armbands

Accelerometer: One Apple Watch Series 3% was worn on each wrist with the watch-face outward and was paired with
an Apple iPhone 7. Both iPhones were stored in a secure cabinet in the rear of the ambulance. The iPhones were
connected to a virfual private network (VPN), which was necessary to securely send data to a VUMC server. We
originally used the PulseSecure application fo access the VPN, but then the system migrated, causing us to switch to
F5 Access. To establish internet connection. a AT&T Unite Express 2% WiFi hotspot was used.

Data Flow (Figure 3): Both the left and right Myo Armbands were connected to the laptop using a Bluetooth
connection. The laptop was connected to the mobile hotspot over a VPN, The left and night Apple Watches were
paired with a corresponding 1Phone 7, which also used the hotspot WiFL
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Data Transfer; At the conclusion of each shift, the Myo data collection files were transferred from the laptop to a
shared cloud account (VUMC Box) for review by the data analysts. Due to the large file sizes. the transfer was
completed using the VUMC WiFi instead of the hotspot.

Figure 3: Flow of data inside the ambulance!?

Notification of VUMC research team: An application, Life360, was mstalled onto one of the iPhones. A geo-fence
was set up around VUMC, which notified the clinical researcher when the phone was detected within 800 feet of the
ambulance bay. In addition, the observer would send a message via Life360 to the clinical research when enroute to
VUMC. The clinical researcher would meet the paramedic team at the ambulance bay and observe the handoff

Documentation of Targeted Procedures:

The research team thoroughly debated the method for documenting the targeted procedures prior to deployment of the
ASCD system. We needed a method that was quick, accurate and allowed for the research observer to note any
discrepancies in how the paramedics actually started and stopped each procedure. Varniations in procedural equipment
or protocols could cause the start and stop times to differ. Original discussions included methods such as (1) keeping
field notes and manually keeping track of time, or (ii) creating an iPhone application that allowed the observer to press
a start/stop button with pre-selected procedures. The most significant challenge with the former was accuracy of
procedure times. For the latter, we felt that an application with pre-selected options did not allow the observer much
versatility to add other comments and raised concerns about accidental selection of a start or stop time. We ultimately
used a simple Python logging application that allowed for free-text entries and recorded time stamps upon entry.

Research documentation began at the point in which the patient was loaded into the ambulance. During each transport,
the observer typically sat in the captain’s or “airway” seat (rear facing), located behind the head of the patient, and
documented from that position. Once the patient was loaded into the ambulance, the observer would open the laptop,
ensure proper connectivity of the system. and begin recording the procedures as they happened in real time. For
example, if the paramedic was going to start an IV, the observer would type “TV start™ into the log application when
the paramedic touched the IV start kit. At the end of the procedure, indicated by the taping down of the IV, the observer
would type “TV end”. This denoted the gold standard for “start™ and “stop™ times for each procedure of interest (Table
).
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Table 2: Sample targeted procedure log.

Procedure Occurred

Procedure Description

2019-01-09 12:42:13.030240

12 lead start

2019-01-09 12:42:38.084363 12 lead end
2019-01-09 12:43:07.886611 comection 3 lead
2019-01-09 12:44:53.242214 albuterol tx start
2019-01-09 12:45:11.890404 mask applied
2019-01-09 12:45:50.204573 tournigquet
2019-01-09 12:46:02.672012 1v start
2019-01-09 12:46:27.348737 IVin
2019-01-09 12:49:31.370297 IV procedure END
2019-01-09 12:49:54.562230 IV attempt fail
2019-01-09 12:57:29.503253 12 lead
2019-01-09 12:57:48.126144 12 lead end
2019-01-09 12:58:58.214071 albuterol tx end
2019-01-09 12:59:40.566805 check lung sounds

Paramedic Debriefs: After each observation, the research observer provided feedback to the research team regarding
lessons leamned in the field, barriers encountered. and feedback obtained. Survey responses from the paramedic
participants were entered into REDCap. a secure web application designed for creating and managing online surveys

and databases.

Results

Orver seven observations, two paramedics wore the system for a total of 45 hours. We observed the transport of 16
patients to 6 different facilifies and information after handoff was obtained for 6 patient encounters (Table 3). Using
the first procedure logged as a start time and the end of the last procedure logged as an end time, we estimated the
median time of active treatment during transport to be 8§ minutes and 15 seconds with a standard deviation of 5 minutes

and 24 seconds.

Table 3: Breakdown of patients transported to VUMC. (Psychiatric Assessment Service = PAS)

Patient # ESI Score ED Disposition Chief Complaint /
Mechanism of Injury

1 2 Transfer to PAS Suspected ingestion
2 2 Transfer fo PAS Overdose
3 2 Discharge Auto vs. pedestrian
4 3 Unknown Generalized weakness
3 2 Transfer fo PAS Suicidal ideations
1] 3 Discharge Intoxication/Chest Pain
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Table 4: Challenges encountered during data collection and their solutions.

Barriers

Solutions

Intermittent interruption in Myo Armband connectivity

Laptop location moved to the head of the stretcher,

to laptop under the patient’s head (Figure 4)
Script programs stopped recording when the laptop lid Installed disable lid sleep widget
was shut

Intermittent intermuption in Apple Watch data collection

Implemented a live feedback system to visualize
interruptions in data collection

Insufficient hotspot data for data collection

Diata use was monitored proactively via web portal;
~1GB was needed per 6-hour observation

Confusing Apple Watch start/stop application

Start/stop feature changed from a tapping mechanism
to a slide bar

Concems of marrying pre-hospital observations fo
correct paramedic-to-ED handoff

Process developed to ensure consecutive subject data
entry. Relative fime (since start of paramedic shift)
used to identify patients

Myo armbands intermittently vibrate if they are
unsynced (caused by displacement of armband)

Paramedics were cautioned that this may occur, and
they attempted to not desync the armbands. This
vibrating functionality will be removed in future trials.

Systemwide VPN upgrade for VUMC users

We were forced to switch the VPN connection on the
laptop. It had no apparent effect on data collection

Original hotspot data plan was canceled by the carrier
for an unknown reason

Observations were delayed until we were able to
obtain a new hotspot and data plan

HACELY Wy P

-.".'.l. 1.' A P e lﬂ": e
Figure 4: Placement of laptop in ambulance (A) and the ASCD system in use (B)

Current Documentation Technigues by Paramedic Participants

During the field observations, the majority of documentation occurred in the ambulance. For “non-crifical™ patients
(ie, stable vital signs), the paramedics typically used the charting software installed on their Toughbook® laptops to
document items such as past medical history, current medications, drmg allergies and demographic information. In
addition, the cardiac monitors used by NFD had the ability to store vital signs such as blood pressure, heart rate,
oxygen safuration and respiration rate. This log could then be uploaded directly to the patient care report following
the call During the care of patients who required more attention or were more critical. documentation typically took
place in the form of the paramedic writing on their glove. In other situations. the paramedics did not document some
of the procedures at the time they were performed and simply documented them retrospectively from memeory, which
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15 considered standard care practice for EMS providers. Patient care documentation into the formal charting system
typically occurred post-trip arrival. The paramedics suggested that each patient chart took approximately 30 minutes.

Operational Challenges

This study was set up based on the assumption that a large number of patients would be transported to VUMC.
However, several factors indicated transport to other facilities. Those factors included whether or not VUMC was on
diversion (ie., not accepting patients), the hospital preference of the patient, proximity of the call to VUMC and the
condition of the patient Additionally, several scheduled observation periods were canceled due to mechanical
malfunction of the ambulance, personnel illness, and work schedule changes.

Commumication of Procedures to Receiving Facility Staff

We observed 6 handoffs between paramedics and ED clinical teams at VUMC. Two handoffs occurred at triage, where
there was no physician present for the verbal report. Verbal reports from the paramedic to the ED staff largely consisted
of the chief complaint and signs and symptoms. During the handoff of a level IT trauma patient, the paramedic relaved
all information regarding procedures (TV start, medication administration. vital signs, and cervical collar application)
fo the trauma staff.

Establishing Rapport with the Paramedic Participanis

The research observer was a paramedic, and this allowed him to build a productive rapport with the paramedic team.
The observer arrived at the beginning of each shift, which was at either 0530 or 1730 hours, depending if it was the
night or day shift. respectively.

General Feedback from Paramedics

The paramedic participants indicated that they could wear the armbands for the duration of a 12-hour shift with no
anficipated difficulties. Participants described the armbands as tight but reported that the bands did not restrict their
overall movement or interfere with patient care. We noted that there was an impression on the paramedic’s skin of the
armbands that typically lasted for 30 minutes following their removal Participants suggested considering other
devices that might be more comfortable or fit in clothing. Other comments included that this technology would be
useful in situations where there are critical or multiple patients.

Table 5: Results from paramedic questionnaires.

Factor Response
Allity to wear entire shift Yes—T/7
Perceived comfortableness Meutral — 1/7
Shightly Uncomfortable — 67
Likeliness to wear entire shift Unlikeely — 1/7
Likely - 27

Extremely Likely — 2/7

Note: 5 responses due to addition of this question

Izsmes with devices interfering with wniform “They do not interfere with clothing™

“No issues™

“There are no complications with uniform and armbands™
Feelings reparding devices tracking movements “T do not have any concerns™

“T do not see any real problems with the devices tracking ooy
movements

Orerall experience “They get more uncomfortable the longer they are on. Even
with all of the links taken out, they are a bit tight”™

“Tt has been a good experience”

Perceived feasibility of automated documentation “T think it’s completely feasible to have it automatically
document time on action to improve documentation
acowacy

“T feel like 1t would be very helpful m the pre-hospital setting
with exact times and interventions™

Perceived nsefulness of automated documentation “Tt would be helpfinl on calls that require more hands on the
patient where you don’t have time to document as vou go™
“Tt would be usefil when we are dealing with a critical
patient or have nmiltiple patients on the same scene. It would
also be helpful to have this information to help give a report
to the EDT
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Methods for Future Data Analysis

This paper specifically does not discuss the algorithms used to convert the collected sensor data to an abbreviated care
record. Briefly, the algorithms work as follows. First, the video data are used to track the position of the medic’s hands
over the patient’s body using software such as OpenPose!”. The medic’s hand position acts as a prior function to
determine the possible procedures that can be performed at a given point in time. Next, the other IMU and EMG data
are summarized with various metrics (e.g., entropy, power, etc.). These data feeds are then fed info classifiers to predict
what procedure 15 being performed, if any. Some data cleaning are also performed such as removing the gravity vector
and remowving vehicle vibration.

Discussion

To our knowledge, there have been no previous attempts to create and deploy such a sensor and documentation system
using this range of sensors. As a result, we were able to identify challenges surmounding logistics, connectivity,
evaluation, and perception by the paramedics.

The objective of the system is to support and supplement the documentation processes during transport (step B in
Figure 5). For example, the ASCD system would be parficularly useful in seftings where verbal commumnication may
be limited, such as the battlefield The creation of an abbreviated care record with timestamps identifving which
procedures were performed can enable upstream hospital providers to more effectively provide care.

Clinical raparting flowchart from paramadics to racsbring faclity staff

Farmedic aotifes redeiving
Fucility with details including chisf
complaint, vital sgns, procedures

performed and ETA

Cs perfodrmn a patient
sxessment and peform
proceden=s Indicated

Ugon ardival, paramedic ghei & Murse recerds Irforrn ation from
face io face report o radio report 1o determine patient
nurse/physican or trauma team aricrty and room asdgnment

Hurse documerts notes from face
to face report

Figure 5: Clinical reporting flowchart from paramedics to receiving facility staff

We anticipated that deployment of the system into the field would induce more variation and therefore, subsequent
error into our model. Detection of such error will allow us to refine the current algorithm used for the identification
of targeted procedures. Additionally, deployment of the ASCD system will allow us to evaluate the perceived

feasibility and usability of an automated system among paramedics in the pre-hospital setting

Future processing will include using a deep neural network using both convolutional and recurrent layers with memory
trained classifier in hopes for a greater efficacy'®. We plan to move towards a real-time analysis using discrete, rolling
windows for classification such that the start and stop of the event is not known by the classifier, which will be the
case in real-world deployments.

Limitations

Our study was primarily limited by the number of paramedic participants (2). As we are still attempting fo optimize
the system and identify system failures, it was practical for a small-scale deployment. The reason for having a single
observer and paramedic participant during the inifial deployment was to identify these challenges before expanding
the study. The second limitation can be attributed to the unknown nature of pre-hospital care. Paramedics are unsure
of which procedures and treatment will be performed until they arrive on scene and assess the patient. As a result,
there were some procedures for which we were not able to collect any data.
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Conclusion

This paper reported on the lessons leamned from deploying an automated sensing clinical documentation system in a
real-world environment. It discussed challenges of configuring equipment, collecting data and dealing with failures.
Many incremental steps were taken to reach the goal of a working system that could be safely deploved in the field
and collect data, without interfermg with care. Future work will analyze how well the algorithms are able to correctly
identify which procedures are done during transport.
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Abstract

Background: Current methods of communication between the point of injury and receiving medical facilities
rely on verbal communication, supported by brief notes and the memory of the field medic. This
communication can be made more complete and reliable with technologies that automatically document the
actions of field medics. However, designing state-of-the-art technology for military field personnel and
civilian first-responders is challenging due to the barriers researchers face in accessing the environment, and
understanding situated actions and cognitive models employed in the field.

Objective: To identify design insights for an automated sensing clinical documentation (ASCD) system, focus.
We sought to understand what information is transferred in frauma cases between pre-hospital and hospital
personnel, and what contextual factors influence the collection, management, and handover of information in
trauma cases, in both military and civilian cases.

Methods: Using a multi-method approach including wvideo review and focus groups, we developed an
understanding of the information needs of trauma handoffs and the context of field documentation to inform
the design of an automated sensing documentation system that uses wearables, cameras and environmental
sensors to passively infer clinical activity and automatically produce documentation.

Results: Comparing military and civilian trauma decumentation and handoff, we found similarities in the
types of data collected and the prioritization of information. We found that military environments involved
many more contextual factors having implications for design, such as the physical environment (heat, lack of
lighting, lack of power]) and the potential for active combat and triage creating additional complexity.

Conclusions: Ineffectiveness of communication is evident in both the civilian and military worlds. We used
multiple methods of inquiry to study the information needs of trauma care and handoff, and the context of
medical work in the field. Our findings informed the design and evaluation of an automated documentation
tool. The data illustrated the need for more accurate recordkeeping, specifically temporal aspects, during
transportation, and characterized the environment in which field testing of the developed tool will take place.
Employing a systems perspective in this project produced design insights that our team would not have
identified otherwise. These insights created exciting and interesting challenges for the technical team to
resolve.
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Introduction

When military personnel or civilians are injured, field medics are the first to respond. Their objectives include
stabilizing and transporting the patient to a trauma facility. Optimizing patient outcomes depends on accurate
information sharing between field personnel and receiving physicians, including the context of the injury and
clinical interventions. [1] These patient and information transfers in combat settings are highly variable and
can range from minimal communication, e.g., pointing to a limb with a tourniquet when a helicopter picks up
a patient from the scene in hostile territory, to verbal handoff when the patient is transported directly to the
next higher level of care. When written documentation is generated, the documentation process may distract
vital cognitive efforts away from patient care. Moreover, both written and verbal communication methods are
vulnerable to rapid changes in clinical status, human cognitive biases, and mistakes in data collection,
processing, and sharing. As a result, the information may be incomplete, inaccurate, or lost in communication
[1-3]. Multiple handoffs further complicate the process and likely increase the risk of errors and
miscommunication during transport.

Timely and accurate clinical documentation occurs when a sociotechnical system is designed and optimized
around the relevant people, tasks, technologies, and physical and social environments [4]. Challenges include
time pressure, the unique stress of providing care in combat situations, the use of personal protective
equipment, limited visibility, and constrained working spaces. Additionally, even when documentation is
generated, it is rarely transmitted in a way that is timely, clear, or effective [5]. Given the challenges of using
traditional technologies to document clinical care at the point-of-injury and during transport, new systems
are needed that can ensure better, more consistent, and clear communication among care teams.

Our main research effort is to develop novel technolegies to automatically generate a clinical care record
without requiring the active participation of personnel in the field. This automated sensing clinical
documentation [(ASCD) technology observes the tasks the medic performs using a combination of sensors.
During its observation, the system outputs the list of clinical procedures that are being performed, ideally
with high accuracy.

Designing ASCD involves understanding the other elements of the sociotechnical system inte which the ASCD
must fit. These elements include information the system must capture and the social and physical contexts in
which it will be deployed. Direct assessment of the current state of military trauma handoeffs is impractical
due to safety and logistical concerns[6]. Relying on civilian ambulance observations produces data from a
limited number of trauma cases, typically in an environment that is unlike a military field operation.
Therefore, through a multi-modal analysis including focus groups and trauma-bay video review, this paper
analyzes current trauma handoff practices to categorize information needs and contextual factors involved in
trauma handoffs.

Background

The overall objective of our project is to develop an ASCD system that can be used on the battlefield by
military personnel or by civilian medics in the field. The technology will invelve a combination of off-the-shelf
sensors, accelerometers, and cameras aligned with a software system that automatically detects the motion
signatures associated with key clinical tasks and generates an abbreviated care record, which can be
transmitted upstream in real-time. The system will passively collect data from a combination of
accelerometers and cameras. Machine learning, activity detection and summarization algorithms will analyze
the collected data to construct an abbreviated care record. This care record will provide patient clinical
status, interventions, and anticipated resources needed upon arrival, without requiring active input from
personnel in the field. Open research challenges to building such documentation systems include accuracy of
predicting clinical events, usability, and deployment robustness.

In the United States’ conflicts in Iraq and Afghanistan, the nation has suffered total deaths of 4,432 and 2,351,
respectively as of December 4, 2019, [7] Since many fatalities occur between the point of injury (POI) and the
medical treatment facility (MTF), the military has incorporated the use of Tactical Combat Casualty Care
(TCCC) cards to document mechanism of injury, injury locations, vital signs and symptoms, and treatments
.[8-10] This allows the first responders to triage the most critical patients in the pre-hospital (e.g. battlefield,
vehicle) environment. [9,10] The military's documentation of the treatment during this period “is critical to
ensuring continuity of care."[11] After completing the card, the first responder attaches the TCCC Card to the
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patient in a visible location as the record of treatment provided. Medical personnel in the receiving MTF are
instructed to include the TCCC Card with the paper medical record, and enter the TCCC data into the patient’s
electronic health record (EHR) and appropriate trauma registry. Despite some evidence of a lack of
compliance with the policy, the Defense Health Agency states, “The military will continue to use the TCCC
Card until it fields a pre-hospital documentation platform that supports an electronic version."[11]

The transfer of a patient from a field medic to a MTF is a handover, defined as “the transfer of professional
responsibility and accountability for some or all aspects of care for a patient, or group of patients, to another
person or professional group on a temporary or permanent basis”[12] Handovers in health care have
received significant attention in recent years as a period of high risk for the patient's safety. A review found
that, in handovers between medics and hospital-based emergency departments, the key issues were: lack of
common understanding, lack of active listening, variable quality and quantity of information exchanged, lack
of clear leadership, lack of teamwork skills, busy and complex environment, and repetition of handover.[13]
Organizations have tried to resolve issues with handovers through interventions to standardize
communications, with mixed results.[14,15] Our project uses a systems perspective to examine an under-
studied topic that is especially challenging in military medicine: the capture of clinical documentation in the
field, especially in battle conditions.

Findings in this paper are organized with a health care systems engineering model that has been extensively
used in the study of both handovers [16] and information technologies [17,18]. The Systems Engineering
Initiative for Patient Safety (SEIPS) is a systems approach for understanding human activity in its context
[19]. The fields of human factors and industrial engineering spurred the development of the framework to
help frame research and innovation as technology was introduced into all areas of health care. The model was
subsequently extended as SEIPS 2.0 to incorporate patient engagement, patient work, and work practice
adaptations [20].

Methods

The research questions guiding this work were:
1. What information is transferred in trauma cases between pre-hospital and hospital personnel?

2. What contextual factors influence the collection, management, and handover of information in
trauma cases?

Methods included 1) structured review of routinely captured videos of trauma handoffs in the Vanderbilt
University Medical Center (VUMC) Emergency Department (ED), and 2) focus groups with ED providers, pre-
hospital personnel such as emergency medical technicians (EMT) and paramedics, and military field medics.
The research was conducted at VUMC and the Army's Rascon School of Combat Medicine on Fort Campbell,
KY.

The study protocols were reviewed and approved by the Vanderbilt University Institutional Review Board.
Given the infeasibility of observational research of the activities of front-line military medical personnel, we
used triangulation of data [21] from two different methods to gather information about the work of field
medics, a.k.a. pre-hospital personnel, and the handoffs between pre-hospital and hospital personnel.

Research Site

Vanderbilt University Hospital provides trauma care for 65,000 square miles. The Division of Trauma at
Vanderhbilt University Hospital handles close to 5,800 acute traumas admitting 4,300 of those annually.
Essential for the guality of trauma care provided by Vanderbilt University Hospital are its facilities. These
include a 20-bed burn unit, a 31-bed integrated Acute and Sub Acute care unit, which contains a 14 bed ICU, a
7 bed Acute Admission Area and a 10 bed Sub-Acute unit, and LifeFlight, an active air medical transport
program. The Trauma Units' unique geography allows close integration and management of patient progress
from admission to discharge. LifeFlight provides rapid access to the tertiary care facilities of the Trauma
Center for all patients within a 140-mile radius of Nashville. In addition to LifeFlight, Vanderbilt receives
patient transport from local and rural Emergency Medical Services (EMS).

Trauma video reviews:
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VUMC Level I trauma cases are recorded for quality improvement purposes and reviewed weekly. These
videos capture the pre-brief (in which EMS personnel and trauma team members from the ED and trauma
team review facts about the arriving case and discuss a plan of action) and treatment while in the ED trauma
bay. We reviewed fifty randomly selected videos to identify information transmitted via conversations during
the handoff from EMS to hospital personnel. Videos are stored with no identifying linkages to patients and are
deleted after a specified period. The videos were a way for us to observe handoffs without any patient-
identifying information being collected.

A structured form facilitated the collection of relevant data from the videos. In order to refine a preliminary
data collection form for the reviews, five videos were reviewed and documented by three reviewers. After the
videos were reviewed, discussion of the results and any discrepancies in documentation were moderated by
an independent arbiter. The reviewers came to a consensus on the types of information transferred from pre-
hospital to hospital personnel and developed a data collection form to be used by a single, expert observer.
The observer, a registered nurse, has extensive experience in frauma nursing and experience with review of
the handoff videos. This observer viewed 50 trauma handoff videos, recording observations on the forms.
After completion of the reviews, the data from the observation forms were entered into a REDCap[22]
database for analysis and tabulation.

Focus Groups:

We conducted four focus groups. Two included civilian pre-hospital persennel (ambulance-based medics and
aircraft-based flight medics), one included hospital personnel (physicians) and one was conducted with
military personnel who provide medical care in the field.

The goals of the focus groups were to gather information from providers and medics with trauma experience
to: 1) identify information transmitted in handoffs; 2) identify gaps in current handoff precedures, and 2)
understand the social and physical context into which the technology will be deployed. The sessions explored
participant experience transporting patients to the hospital, including elicitation of actual experiences in a
combat environment when possible. Questions posed during the focus groups included:

*  What information is normally shared during handoffs?

*  What information is most useful to determine next steps in care management?
*  Why/how is this information shared?

*  What information is not useful to determine care management?

Based on the information shared in the session, we added probes to better understand the physical actions
involved in transporting patients from the field/scene to the hospital including the implications of
incorporating wearable technologies, cameras, and other devices into the process.

The sessions were audio recorded and transcribed for analysis. The transcripts were analyzed using a
qualitative data analysis tool, Dedoose™. Given the wvariety of information shared by participants on
information needs and context, we used an open coding procedure, identifying all themes that arose in the
data. Three researchers coded the data, supported by discussion in frequent team meetings about findings
and organization of the data. We then organized the data using the SEIPS 2.0 model for presentation and
consideration by the team's technology designers.

Findings

Trauma video reviews

The handoff videos revealed information that is routinely relayed to the hospital team from the pre-hospital
team. Figures below describe the content of each category of information in the 50 videos. Categories of
information included: clarifying questions asked by the receiving medical team, procedures performed,
mechanism of injury, medications and fluids given during transport, time of intervention/injury, blood
pressure, heart rate, respiratory rate, oxygen saturation, and episodes of hypotension changes in clinical
status.
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Upon analysis of the data, it became apparent that clarifying questions were an important part of the pre-
hospital to trauma team handoff. Clarifying questions are defined as questions from the hospital team
directed to the pre-hospital team during handoff that are intended to obtain additional information that was
not provided in the initial handoff. Of the 50 videos reviewed, 40 (80%) contained clarifying questions.

The clarifying questions that we observed in the videos consisted of questions about medication(s) (dosages,
timing, etc.), personal medical history (if known), Glasgow Coma Scale or other (mostly neurclogical) exam
results, time and mechanism of injury, allergies, whether or not restraints were used in accidents in vehicles,
length of time tourniquet(s) have been in place, and fluctuations in vitals or neurological signs (blood

pressure, heart rate, respiratory rate, oxygen saturation, etc.).

Content of Clarifying Questions

Figure 1. Frequency of clarifying question topics in the trauma videos.

The results for the other categories of information captured during observations are detailed in the following
figures:

Procedures Performed During Transport

TOURNIQUET

SPLINT

PERIPHERAL INTRAVENOUS LINE (PIV)
NASOPHARYNGEAL AIRWAY
INTUBATION

CHEST COMPRESSIONS

C-COLLAR

SPINE BOARDED

BAG-VALVE MASK (BVM)
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Figure 2. Frequency of procedures performed during transport in the trauma videos.
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Mechanism of Injury

STABBING

MOTOR VEHICLE ACCIDENT {MVA)
HIT BY CAR

GUNSHOT WOUND (GSW)

FALL | | | |

BURN

2 4 B 8 10 12 14 16 1B

Figure 3. Frequency of each mechanism of injury in the trauma videos.

Medications and Fluids Administered
During Transport
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Figure 4. Medications and fluids administered during transport in the trauma videos.
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Other Information

HEART RHYTHM DATA
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AGE

Figure 5. Other handoff information reported in the trauma videos.

Focus Groups

We conducted four focus groups comprising 19 participants. Participants included pre-hospital personnel
(ambulance-based medics and aircraft-based flight medics), hospital personnel (physicians) and military
medical personnel. Findings are summarized using the SEIPS framework on Table 1

Table 1. Work System Analysis for documentation in the field

Civilian Pre-hospital
System

Military Pre-Hospital System

Insights for the development of hardware and
software tools

Technology | -  Written or electronic - TCCC (universal - Ad hoc methods are used, determined by
and tools documentation of pre- documentation card) environmeant
hospital care o Sometimes partially - Information transmitted in advance can help
- Gloves, paper, tape completed by hospital allocate resources
(for recording servicemember prior to - Simple statistic representing level of medic
information) mission activity could give early indication of severity
- Monitor - Communication headsats of patient injury
- Medics carry medical gear and | - Mounting a camera in the vehicle is a
combat gear challenge due to privacy issues
- Object detection algorithms could potentially
detect specific medication packages
Tasks -Information captured -Information captured Priority information for handoff
o Vital signs o Vital signs - Timing and sequence of procedures can
o Demographics = Procedures suggest cause and effect
o Medications o Mechanism of injury - Worst and most recent vital signs are most
o Allergies -Procedures useful
o Time of events -Documentation
o Procedures ~Triage
o Pain level -Active battle tasks
o Mechanism of injury -Radio communication
-Procedures
-Documentation
Organization | Information systems in Large-scale, contracted military Transmitting information to hospital can reduce

EMS vehicle did not
communicate with hospital

technology implementations
sometimes lack coordination in

miscommunication, but also resultin
information overload
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Emergency Department technology updates, resulting in
lost communication between
system components.

Physical Extreme heat is comman - Often extreme heat, - Nead lightweight, small sensors. Armbands
environment exacerbated by excessive gear will be hot and uncomfortable
- Dusty - Voice technology not feasible because of
- Noise level high in all settings noise
- Taking notes is difficult - Sensors should conserve power when notin
- Rough terrain/ vehicle unstable use
- Low light in combat settings - Wearable devices must withstand substantial
amount of sweat from wearer
External Mass casualty situations result in
environment minimal documentation.
Discussion

Findings from the videos illustrated that the most medically important information is not always effectively
conveyed during the handoff from pre-hospital to hospital personnel. Of note were the clarifying questions
observed during the review of the videos of the handoffs. Clarifying questions were observed in 80% of
recorded handoffs, and most commonly involved temporal aspects of the case. Temporal questions included
queries about the time the injury occurred, when a procedure was performed, and when a medication was
given. Temporally-based questions were present in 27 of the 40 videos in which clarifying questions were
asked of the pre-hospital staff. The next most commonly asked clarifying question involved either
medications (drugs given, doses, timing, etc.) or the patient's past medical history. Both types of questions
were present in 13 out of the 40 videos in which clarifying questions were asked during the handoff.

Data from the observations supports the findings from the three focus groups that more accurate information
is needed at the time of handoff, specifically regarding time and sequences of procedures and /or medications.
The hospital focus group emphasized that the most important information needed by the trauma team
involved timing of events, especially regarding sequence of procedures performed during transport. The
trauma videos revealed mechanisms of injury that would be less commeon in military environments, e.g. falls
and being hit by a motor vehicle. However, we note that it is difficult to speculate on what types of trauma
injuries may be seen in future combat situations, and it is likely short-sighted to design only for wounds
produced by gunshots or explosions.

The pre-hospital and hospital teams have different priorities and/or capabilities in the performance of their
roles in their respective environments. Pre-hospital teams need to get the patient in the vehicle and perform
needed procedures during transport so that they can get the patient to superior resourced care teams, which
is usually surgical intervention. Meanwhile, the receiving trauma team wants to be able to appropriately
allocate resources based on procedures performed and patient trajectory during transport. These differences
result in an inadvertent conflict about the priority of recording specific times of medication administration
and/or performance and sequence of procedures during transport.

The findings from the video review and focus groups produced insights that informed device choices,
software development, and evaluation strategy. Some surveillance technologies such as microphones that
could potentially be useful to suppoert documentation are not practical for noisy and insecure military field
settings. While no tool will be able to capture every aspect of pre-hospital care, documentation through
automated sensing can potentially enable medics to offer a more complete handoff to the receiving hospital.

Implications for design

Various activities are detectable through sensors. We identified numerous opportunities to capture activity
(such as medical procedures or administration of medications) through motion detection and the relationship
of motion signatures to locations on the patient's body, and the use of physical artifacts such as medication
packaging. However there is heterogeneity in how procedures are performed and noise in the data. A robust
system of data collection and analysis will be needed to deal with the forces of real-world deployments.
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Challenges such as vehicle motion and sensor failure due to environment (e.g. a wearable sensor exposed to
extensive sweat) may be universal. Challenges specific to military environments include the lack of lighting,
high possibility of network failure, and possibility of active battle conditions while treatment is being carried
out.

Conclusion

Ineffectiveness of communication is evident in both the civilian and military werlds. We used multiple
methods of inquiry to study the information needs of trauma care and handoff, and the context of medical
work in the field. Our findings informed the design and evaluation of an automated decumentation tool. The
data illustrated the need for more accurate recordkeeping, specifically temporal aspects, during
transportation, and characterized the envirenment in which field testing of the developed tool will take place.
Employing a systems perspective in this project produced design insights that our team would not have
identified otherwise. These insights created exciting and interesting challenges for the technical team to
resolve,
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Paper: Automatic Clinical Procedure Detection for Emergency Services
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Abstract— Understanding a patient’s state is critical to pro-
viding optimal care. However, information loss occurs during
patient hand-offs (e.g., emergency services (EMS) transferring
patient care to a receiving hospital), which hinders care quality.
Augmenting the information fow from an EMS vehicle to a
receiving hospital may reduoce information loss and improve
patient outcomes. Such augmentation requires a noninvasive
system that can automatically recognize clinical procedures
being performed and send near real-time information to a
receiving hospital. An automatic clinical procedure detection
system that uses wearable sensors, video, and machine-learning
to recognize clinical procedures within a controlled environment
is presented. The system demonstrated how contextual infor-
mation and a majority vote method can substantially improve
procedure recognition accuracy. Future work concerning com-
puter vision technigues and deep learning are discussed.

I INTRODUCTION

Communicating patient information accurately is vital to
improving patient outcomes, but this information is typically
not fully communicated from emergency services (EMS)
to the receiving hospital [1]. This miscommunication is at-
tributed to over or under-triaging the patient’s state, resulting
in incorrect trauma bay activation and a reduction in patient
outcomes [2]. A noninvasive system that delects clinical
procedures automatically can augment the current EMS com-
munication flow in order to betier alert receiving hospitals of
the patient’s triage level and reduce mortality rates. Such a
system can draw from human activity recognition algorithms
in order to accurately recognize clinical procedures and send
procedural data, without medic input

Human activity recognition is used to identify human
activities in real-world scenarios [3] by relying on wear-
able or external sensors to collect activity specific patierns.
Wearable sensors are physically attached to a human in order
to collect movement and physiological data, while external
sensors (i.e., cameras) are noninvasive and rely on voluntary
human interaction. Features (or activity specific patierns) are
extracted from the sensor data and are used by machine-
learning algorithms to infer the current activity.

A human activity recognition algorithm has been shown to
detect Cardio-Pulmonary Resuscitation (CPR) accurately us-
ing video data [4], but other commonly performed procedures

This work was supported by the Department of Defense Contract Number
WERIXWH-17-C-0252 from the CDMRP Defense Medical Rescarch and
Development Program.

! Department of Electrical Engineering and Computer Science, Vanderbilt
University. Nashville, Tennessee

HWanderbilt University Medical Center. Nashville, Tennessee

*Collaborative Robotics and Intelligent Systems Institute, Oregon State
Unmversity, Corvallis, Oregon

indicative of trauma have not received any attention. This
work atiempts to recognize twenty-three clinical procedures
using wearable sensors and video data. Further, a generaliz-
able framework for documenting medical activity is defined.
The wearable sensors capture a medic’s arm movements and
muscle contractions, but the data is insufficient to classify
such a wide range of procedures. Video data is used to
localize the medic’s hand positions, relative to a patient, in
order to determine an active body region or on which body
part the medic is performing a procedure. Determining the
active body region culls the number of potential procedures
to recognize, as certain procedures are only performed in
specific body regions (i.e.. placing an oral airway only occurs
near the patient’s head). This class set reduction improves
clinical procedure recognition accuracy: however, additional
improvements are needed in order to realize a real-world
automatic clinical procedure sysiem.

II. EXPERIMENTAL DESIGN

The Center for Experiential Learning and Assessment
lab at Vanderbilt University served as the data collection
environment and contained the necessary clinical procedure
equipment. The repeated measures evaluation required each
participant to complete each procedure multiple times within
a three-hour timeframe. The procedure list is provided in
Table I and was chosen based on focus groups with emer-
gency services personnel, army combal care guidelines, and
commonly performed procedures in ambulances [5]. [6].
[7]. Four participants (ong female and three males) with
varying levels of medical training (ie., a medical student,
an emergency room surgeon) completed the evaluation.

Certain procedures were broken into sub-procedures in
order to reduce overlap between procedures and body re-
gions. CPR was decomposed into chest-compressions (Com-
pressions) and giving the patient breaths (Breath), as the
sub-procedures are performed on separate body parts. Swab
area with alcohol was separated from multiple procedures
{e.g., Intravenous Therapy (IV) and Intraosseous Infusion
(I} line), due to the overlap beiween procedures.

The task environment consisted of four cameras placed
around a gurney, in which was an adult medical mannequin.
Each participant was free to move around the gurney when
performing each procedure, but were instructed to remain
seated when possible in a rolling chair, as EMS personnel
typically perform procedures while seated. The necessary
medical equipment was placed on the mannequin or on the
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gurney, prior to completing the comesponding procedure.
Each procedure video was tagged with start and stop times.

ITII. CLINICAL PROCEDURE DETECTION SYSTEM

The clinical procedure detection system combines wear-
able sensors with vision-based localization in order to accu-
rately detect the medical procedures in Table I. The wearable
sensor data captures arm movements that are representative
of a procedure; however, there is a vast array of clinical
procedures that need to be deiected, which increases the
problem’s complexity. This complexity is reduced by deter-
mining the “active body region™ using image processing.

A, Wearable Sensor Data Processing

The Myo device [8] is worn on each of the partici-
pant’s forearm and captures arm movements and muscle
contractions via an inertial measurement unit (IMU) and
an 8-channel electromyography (EMG) sensor, respectively.
Acceleration and orientation data is captured at 50 Hz, while
the EMG data s captured at 200 Hz. The Myo automatically
calculates the IMU’s roll, pitch, and yaw. A 5 second
window, with a | second stride, is applied to each sensor
signal. Various window sizes were analyzed, but the 5 second
window produced the best results.

The signal’s mean, standard deviation, and max value are
calculated for each window and are typical features extracted
for activity recognition [3]. Each sensor signal is transformed
into the frequency domain using the fast fourier transform
in order to calculate the signal’s spectral entropy. Thus, four
features are extracted from each sensor signal resulting in
fifty-six features per medic hand.

B. Image-Based Hand Localization

An orthogonal approach to classification using wearable
sensor data is to use image processing to track the medic's
hands during the clinical procedures. Many procedures are
localized to certain areas on a patients body, making rela-
tive hand location a enticing factor. The image-based hand
localization system determines the patient’s closest limb to
the medic’s hands for a particular procedure and uses that
information for classifier refinement.

OpenPose [9] is an image-based human body pose detec-
tion framework that generates 18 skeletal keypoints using
the COCO system in screen space pixel coordinates for both
the medic and the patient. The OpenPose parameters werne
tuned to accommodate a prone individual. An example output
is provided in Figure 1. This image data is pre-processed
to ensure consistency across each frame by ignoring frames
when two bodies, (a medic and a patient), are not identified.
The patient body is assumed (o be the body whose centroid is
closest to the center of the screen, due to the camera angles.

During a procedure, assuming the medics hands ame
proximal to the patient eliminates the need for 2D to 3D
image conversion. Thus, the calculated distance between the
medic’s hand keypoints and each skeleton keypoint on the
patient is in pixel space. This measurement’s variability and
noise is reduced by averaging the limb position over 1 second

Fig. 1.

OpenPose Output during CPR.

(24 frames) in order to determine the patient’s closest limb
to the medic’s hands per second. The closest limb is mapped
to ong of four body regions: head, chest, arm, or leg.

C. Clinical Procedure Classification

The extracted features from the Myos™ IMU and EMG
sensors are fed into a random forest classifier, which is
a supervisory-based machine-learning algorithm that is an
ensemble of individually trained decision tree classifiers. The
random forest classifies a signal by taking the class mode of
the decision tree ensemble. 100 decision trees with a max-
depth of 500 are used for this work, where the parameters
were chosen based on classifier performance.

The tarpeted domain requires knowing if a procedure
was performed, not that every single window is correctly
classified. Assuming a procedure’s start and stop time is
known, the procedure can be classified as the majority vole of
each classified window within the procedure time frame. For
example, if CPR (Compressions) consists of fifteen windows
where ten windows are classified correctly and the other
five windows are not, then the procedure can be correctly
classified as CPR. Algorithm 1 provides the pseudo code
for this classification. The algorithm cycles through each
window between the procedure start and stop time, extracting

Algorithm 1 Clinical Procedure Classification Algorithm
Input: Procedure Start/Stop Time, Wearable Sensor Data,
Video Data
Output: ProcedureClassification
PredictedProcedureList = []
for each window between Procedure Start and End time
do
Features = ExtractFeatures(window,
WearableSensorData)
ActiveBodyRegion = Determine BodyRegion(window,
Video Data)
Classifier = DetermineClassifier{ ActiveBodyRegion)
Procedure = Classifier.Predict(Features)
PredictedProcedureList.append(Procedurz )
end for
return  Max(Procedure Count( PredictedProcedure List))
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features from the wearable sensor data for each window. De-
termineBodyRegion() runs OpenPose on the window's image
data and determines the window’s active body region, which
is used to determine which trained random forest classifier
to apply. The extracted features are fed into the classifier
to predict a clinical procedure for the window. After each
window is processed, the algorithm returns the Majority Vote
of the predicted procedures using Max(Procedure Counif) ).

D. System Validation

The clinical procedure detection system is validated us-
ing leave-one-subject-outl cross-validation, where the random
forest classifier is trained on two participants’ randomly
shuffled data and tested on the third participant’s data.
Participant Two's data was not analyzed, due to a camera
failure during data collection. Five random forest classifiers
were trained per cross-validation fold. One classifier was
trained using data from every clinical procedure, which
represents not knowing the active body region. The other
four classifiers correspond to a body region (i.e., head, chest,
arm, or leg) and were trained using the respective procedure
data. The collected dataset created a class imbalance between
procedures, which decreases performance. Thus, the over-
represented procedures are randomly down-sampled during
training in order to betier balance the class set.

The cross-validation analysis was applied to three con-
ditions: Unknown Body Region, Perfect Body Region, and
Estimated Body Region. The unknown body region condition
allows for analyzing how the clinical procedure detection
system performs without image data (iLe., with only wearable
sensor data), while the perfect body region condition assumes
that the active body region is always known accurately (i.e.,
if a procedure corresponds to the head, then the system
correctly identifies the head as the active region). The esti-
mated body region condition uses the approach described in
Section III-B. The random forest and majority vote methods
are analyzed within each body region condition.

Two hypotheses are evaluated using the clinical procedure
detection system’s results. Hypothesis Hy predicted that
knowing the active body region will result in at least a 10%
classification accuracy increase over not knowing the body
region, while Hypothesis Hs predicted that the majority
vole method will increase the random forest classification
accuracy by at least 10%.

Iv. RESULTS

The classification accuracy by procedure and known body
region type are presented in Table 1. Overall, CPR {Com-
pressions) tended to be classified accurately the most, fol-
lowed by bagging. These accurate classifications were due
to the procedures’ repetitiveness (i.e., chest compressions
or squeezing the bag-valve mask). Vital monitoring was
classified accurately as well, due to the procedure requiring
minimal arm movements. Short-duration procedures, (i.e.,
oral airway or swabbing an area with alcohol), were difficult
to classify and were often misclassified as a longer-duration

TABLE 1
CLASSIFICATION ACCURACY (%) BY PROCEDURE, KNowN BoDy
REcion CoNnmiTioN, AND CLASSIRCATION METHOD: RANDOM
ForesT (RF) ann MaoriTy Vore (MV)

Body Region Condition

FProcedure TUnknown Ferfect Fsiimaied

RF MV [ RF MV | RF MV
10 Medication D00 000 [ 005 000 | 000 000
IV Medication 012 027 [ 037 036 | 003 000
Bagging D43 071 | 0Bs  0B6 | 048 033
Blood-Pressure Cuff 003 000 | 039 e | 012 050
CPR (Breath) 017 08 | 030 023 ) 032 066
CPR (Compressions) 096 100 [ 099 100 | 021 033
Chest-Tube 002 000 [ 042 057 | 032 066
Combat Gauze 037 025 | 001 00 | 000 000
Combat Toumniguet 012 000 [ 052 075 | 003 000
Do Medication 020 020 | 047 047 | 032 066
ECG Lends 012 020 [ 038 040 | 027 033
IM Administration 003 010 [ 005 10 | 005 000
10 Line 014 029 [ el 0Es | 015 0.00
IV Line 002 000 | 022 30 004 000
Intubation 027 033 [ 049 L0 028 066
King Airway 002 000 | 008 20 | 002 000
Oral Airway 009 008 [ 027 033 ) 000 000
Pulse-Ox Monitor 002 000 [ 048 B0 | 0.00 000
Splinting 013 000 [ OB LO0 | O1F 033
Swab Area with Alcohol | 000 000 [ 012 Q13 | 006  0.00
Tie IV Tourniquet 003 000 [ 017 1 | 001 000
Vital Monitoring 071 080 [ 074 LO00 | 014 000
Wrap Head Wound D04 020 [ 039 040 | 012 033
Average D18 019 [ 040 050 | 014 021

ECG: Electrocardiogram and TM: Intramuscular

procedure. Additional training data will potentially increase
classification accuracy for shorl-duration procedures.

The classification accuracies corresponding to the un-
known body region condition serve as a baseling condition,
as no contextual data was used. The random forest method
and majority vote method achieved an average classification
accuracy of 18% and 19%, respectively. The majority vote
method increased classification accuracy by at least 10%
over the random forest method for five procedures, while
two procedure’s classification accuracies decreased.

Knowing the active body region with perfect precision
increased classification accuracy dramatically for the random
forest and majority vole methods, as the methods achieved
an average classification accuracy of 40% and 50%, respec-
tively. There was at least a 10% accuracy increase from the
unknown body region condition for seventeen procedures
using the random forest method and for nineteen procedures
with the majority vote method. Both methods experienced
a substantial decrease in accuracy for the combat gauze
procedure. The majority vote method increased classification
accuracy by at least 10% from the random forest method for
nine procedures, while no procedure accuracy decreased by
more than 10%. These results demonsirate that the majority
vote method performs better than the random forest method,
when the active body region is comrectly identified.

Estimating the active body regions did not change the av-
erage classification accuracies dramatically from not know-
ing the active body region. Six procedures’ random forest
classification accuracies increased by at least 10%, while

82



five procedures’ accuracies decreased by at least 10%. The
majority vole method using the estimated body region in-
creased classification accuracy for ten procedures without
knowing the body region, while seven procedures’ accuracies
decreased. Additionally, the majority vole method increased
nine procedures” accuracies by at least 10% from the random
forest method, while three procedures’ accuracies decreased.
Overall, correctly identifying the active body region
achieved the highest performance with both classification
methods. Thus, illustrating the utility of using contextual
information in activity recognition. The majority vote method
achieved higher average classification accuracies than the
random forest method, demonstrating the majority vole
method's utility in a real-world complex environment.

V. DISCUSSION

Accurately detecting clinical procedures is critical, as a
misclassification may result in incorrect patient care, and
even death. The developed automatic clinical procedure
recognition system did not produce accurate classifications.
This result was expected due to the limited amount of
training data and the unsophisticated approach to procedure
detection. This preliminary work was meant to demon-
strate how image data provides appropriate context that can
improve a wearable sensor-based classification algorithm.
Hypothesis Hy examined the impact of using image data to
provide context to improve clinical procedure classification
accuracy. The hypothesis is supported when the active body
region is correctly identified without OpenPose. However,
the hypothesis is not supported when the active body region
is determined using OpenPose. The active body region de-
tection method can be improved by incorporating multiple
camera angles, as 3D representation of the medic’s hands
is feasible. Multiple camera angles may be less sensitive to
object occlusion (ie., the medic is blocking a camera view ).

The developed body region detection method is also sen-
sitive to the OpenPose skeleton keypoints, as the keypoints
are a sparse representation of a human body. CPR (Com-
pressions) were estimated frequently to be performed on the
patient’s head, when the compressions actually occurred on
the chest. OpenPose has no chest keypoints, which generates
the body region confusion. A machine learning algorithm
may be trained using the two closest body parts for each
hand in order to better estimate the active body region.

Assuming that a procedure’s start and stop times are
known may improve clinical procedure recognilion, as a
majority vote method may classify the procedure as a
whole, instead of each individual window being classified.
Hypothesis Hy tested the majority vote method’s accuracy
against the random forest accuracy, where each individual
window is classified. The hypothesis is partially supported,
as the majority vole method’s unweighted average accuracy
is greater than the random forest accuracy. However, the
classification accuracy increased less than 10%. It is believed
that the majority vote method will perform better in real-
world scenarios, even without knowing a procedure’s start
and stop times. If seven out of twelve consecutive windows

are classified as CPR, then the majority vote method will
result in only CPR occurring in the twelve window time-
frame. The random forest method will result in CPR and at
least one other procedure occurring in the time-frame, which
is most likely incorrect.

The planned future data collection will allow for a more
sophisticated approach to clinical procedure detection. A
larger training set will allow for deep learning algorithms
to be applied, rather than the baseline signal processing
methodology employed in this paper, where features can be
learned from the wearable sensor data using convolutional
neural networks. A long short-term memory recurrent archi-
tecture can be applied to the convolutional neural network
to better capture the time-dependencies that occur within
a procedure. Combining deep-learning techniques with the
active body detection and majority vote methods is expected
to improve the automatic clinical procedure detection system
substantially. It is expected that future data collection will
entail real-world environments in order to provide a more
robust system validation.

VI. CONCLUSION

This paper used contextual information related to where
the medic’s hands are located relative to the patient, provided
by image data, in order to improve clinical procedure de-
tection accuracy. The developed clinical procedure detection
system did not perform at the necessary medical domain
standard, which was expecied. The system is a necessary step
towards achieving high performance, while demonstrating
how contextual information and a majority vote method can
be used in a complex real-world domain. Future work will
improve the system's performance by incorporaling deep
learning and sophisticated image processing techniques.
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Abstract— Information about a patient’s state s critical for
hospitals to provide timely care and treatment. Prior work
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indicate performance improvements compared to
but also indicate & need for more training data to

clinically deployable levels of success.

I. INTRODUCTION
tion is critical to achieving optimal medical outcomes. Un-
fortunately, too often emergency medical services (EMS) do
not communicate complete information to a treating hospital
[8). This lack of communication can lead to inferior patient
outcomes as the initial triage of a patient’s condition can

i
i

information on patient care to receiving hospitals, with the
goal of improving a patient’s initial triage level.

Heard et al. [7] made initial forays into this area by
presenting a system that employed information from multiple
types of sensors, including video, to categorize clinical
procedures. Building on work in human activity recognition
from multiple sensors [14), this work used contextual infor-
mation provided by video sources to locate a medic’s hands.
Based on this location and other sensor information, this
work represented a first step at clinical procedure identifica-
tion. Its highest accuracy was achieved when the algorithm
knew the active body region to which the procedure was
applied (18% accuracy without body region knowledge and
40% accuracy with perfect body region knowledge).
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This paper represents a new effort into this problem and
only uses video data. It is motivated by recent developments
in video classification and recognition in deep learning (5],
[4), [9). We use convolutional neural networks (CNNs)
on raw video data to detect different clinical procedures
performed during EMS transport. We attempted this because
we want to see how far video data alone can take us, and
to assess how much video data is necessary to achieve
adequate performance from these data sets alone. There is
an operational advantage from video data in that would
not require paramedics to wear sensors. On the other hand,
video data suffers from occlusion problems and noise due to
lighting changes, and thus may have other difficulties for
leaming algorithms. Nonetheless, understanding how well
video data by itself can work for classification is an important
step in the development of an automatic clinical procedure
system.

II. RELATED WORK

Human behavior recognition is the topic of a large amount
of literature [13), and deep learning methods have been
previously applied to the problem using video data [3] and
non-video sensor-data [14). When the problem is specialized
to medical procedures, however, there is significantly less
prior work (1], and this provides an opportunity for tuning
pre-trained networks, as medical procedures have several
significant identifying characteristics.

Karpathy et al. [10] demonstrated the effectiveness of
convolutional neural networks (CNN) on several video classi-
fication tasks. They explored four different models for fusing
information over temporal dimension through networks. All
models exhibited strong capabilities for classifying video
clips. Of their approaches, we primarily explore the single
frame approach and the late fusion approach, as illustrated
in Figure 1.

Ng et al. [9) and Donzhue et al. [4) demonstrated the use
of Long Short Term Memory (LSTM) for video classification
tasks. These two groups of researchers processed individual
frames with CNNs to aggregate information from frame
data, and then the aggregated data is passed to the LSTM
network for information summation. Results shown by Ng
et al. and Donzhue et al. suggest that LSTMs may achieve
better video classification results than CNN methods if wned
well. Compared to the prior work, the limiting factor in the
present work may be the relatively small amount of training
data available.
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I1I. DATA COLLECTION AND DATASET CREATION

All experimental data were collected in the Center for Ex-
periential Leamning and Assessment (CELA) at the Vanderbilt
University Medical Center [11]. Seven subjects with medical
training performed 24 different procedures (Table I) with

used for medical training. To collect video data four cameras
were placed at different locations (Figure 2). They were
positioned to capture as much of the procedure as possible
and to ensure that the important parts of the procedure were
always captured. Camera 2 (C2) was placed to emulate
a ceiling mounted camera in an ambulance. Each camera
collected video with a resolution of 3840 x 2160. This paper
analyzed only C2 data as it was sufficient to ensure the

(" (—)

)

Fig. 2. Positioning of the four cameras used during data collection, as
described in Paris et 2l [11).

THERAPY;, 10 ~ INTRAOSSEOUS; OX ~ OXYGEN.

The collected video data were split into individual frames
and each frame was assigned a category. Frames during
which no procedure occurred were discarded. Each frame
was cropped to reduce data size and eliminate extraneous
information. Figure 3 shows the lines along which cropping
occurred. The resulting frames were then resized to 256 x 256
pixels. In addition to the procedure name, each frame was
labeled with the subject number and procedure occurrence
as each procedure occurred multiple times.

Fig. 3. Image cropping plan for frame data — caly the central region is
kept.

Of the data set composed of seven subjects, data from five
subjects were used for training, one for validation, and one
for testing. We performed 5-fold cross validation by rotating
the subject used for validation and for testing. We chose to
fold on subjects as we want to ensure the model generalizes
to new and different medics performing the procedures.

Subjects in this experiment completed each procedure a
randomized number of times and the time to complete each
procedure varied leading to imbalanced classes. Class sizes
ranged from 3,000 frames to 60,000 frames. To ensure the
model does not overfit to one category and every class is
equally represented the data was either downsampled or
upsampled to approximately 8,000 frames. To downsample,
approximately 8,000 random frames were selected and others
discarded. To upsample, we duplicated each frame; then, if
the upsampled category contzined more than 8,000, it was
downsampled as in the other categories. For example, in the
fold 2 training set, the category Pulse-OX contained 3544
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frames, and all frames were duplicated to reach 7088 frames
(zpproximately 8000). Category Chest-tube Prep contained
6480 frames. We duplicated these frames and selected 8000
random frames, discarding the rest.

only the target number of frames changing. Our target was
chosen so that only 15% of the classes would require du-
plication. The other 85% would then require downsampling.
For each fold a different value was chosen based on the size
of the categories in that validation or testing fold.

The previous balancing plan applies to two of the CNN
models we test in this paper, the so-called “main model™
(Section IV-A) and “variant 1" (Section IV-B). A third
model, “variant 2" (Section IV-C), makes use of temporal
we reduce our data size by resampling each session at
6 fps. In other words we choose frames 0, 5, 10, etc.
To combat class balance issues we need to include more
incidences of categories with lower representation. To do
resample an additional two times, and small categories an
from 1 to 4 frames from the first frame which gives us slight
differences in our samples.

Quanalys:ssymnshihonl(m?ythonscheplnm—

ing library.' Keras™ built-in image augmentation framework
hdpedmuuseﬂnvmahilnymlhedan.'l‘lnbnghnm
rotation, zoom were all randomly modified Images were
randomly shifted vertically or horizontally, and could ran-
domly be flipped vertically or horizontally. For models using
to each related frame.

IV. METHODS

The models in this section are largely based on Incep-
tionV3 due to its success in image recognition tasks [12].
All training is done starting with the pretrained imageNet
weights for low-level feature detection. For each fold the
model was trained until 2 baseline validation accuracy was
reached and the testing accuracy measured. This occurred
three times per fold with the highest testing accuracy being
recorded.

A. Main Model: Full Inception Model with Single Frame

Karpathy et al. [10] demonstrated that a single frame
was sufficient to achieve a high accuracy (40%) in large
datasets such as the UCF-101 and the SportlM datasets.
Those datasets are more complex than the clinical procedure
dataset. The InveptionV3 architecture is a popular choice
for deep learning image recognition tasks and we choose
to use it as the basis of our network. Given the similarity
of domains (action recognition), we expect similarly strong
results. The clinical procedure dataset is smaller than similar
datasets so the pretrained ImageNet weights were used to

" hazps:keras sof

x3 x3 i
L T W
nni----C-:--C-U .3-
R R TR T
'mumoywz "

x2
f§ Comorton ] Dropont
J Max Pocing [ Fully Connected
A Pocing  [) Concatenation
Fig. 4. A Compressed View of InceptionV3 [12). The portion used by

the main model and variant 2 ase depicted with the orange and red lines,
respectvely.

UNMACONT JA00m

Fig. 5. Asa [lustration of main model, 2 direct adaptation of IaceptionV3.
A red box represents the pernt of model txken from InceptionV3 (portion
of the mode]l marked with ** in Figure 4) 2 yellow box repeesents dease
layers: a green box represeats unility layers.

reduce training time and increase performance. Figure S is
an illustration of this architecture, which we call our main
model. Our model is made of the InveptionV3 architecture
without the final output layer. Instead we place 2 fully
connected layer, normalization, activation, dropout, and a
second fully connected layer to adapt the model to our
problem.
B. Variant 1: Full Inception Model with Combined Cate-
gories

In the application domain for which we are training our
recognition models, many of the procedures, while different
actions, have temporal or physical associations with each
other. For example, Chesi-tube Prep must occur before
Chest-tube and CPR (Breath) alternates with CPR (Compres-
sion). In this variant we explore combining the CPR (Breath)
and CPR (Compression) categories, as it is possible that we
might get improved performance by grouping these associ-
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them automatically. In particular, the main model commonly
confused these two procedures and the goal is to remove that
confusion and look for features common to both procedures.

C. Variant 2: Partial Inception Model with Late Fusion

were created. These three were each fed into a separate

maxpooling and flatten layer before being concatenated and
fed through 2 series of layers as shown in Figure 6.

V. RESULTS

Fold Main Model  Variant 1 Vanam 2
__Folt—l S3593%  S7.798%  47402%

Foid 2 A2308%  458A2%  SOS06% |
Fold 3 W06813%  44005%  S1083% |
Fold 4 HIB%  48.190%  61.70% |
Fold 3 32673%  S3304%  3%014% |
Ave Acc | AB000%  S0063%  SLI60% |

TABLE I

THE TESTING ACCURACY OF THE THREE MODELS ACROSS VARIOUS
FOLDS AND THE RESULTING ACCURACY OVER ALL FOLDS.

Mam Model Vanant 1 Vanamt 2

B e T o
Thest Tobe WOI3%_ S06W%  TLIN
Chest-Tube m 0% 0.422% 0%
Combat Gauze 45 668% A5321% 35.576%
Combat Te - R 661% SAT4E  WMITT%
PR (Breath) BI03%E  L10% A% |

CPR 5%! DA% WA 3264%% |

T FCG Leads WidE  #aans ook |

TM Admunntration BN R031%  S303% |
Intubation 32.750% S$1.789% 13.106%

__l(r) Line 63.121% 67852% 68.993%

IV Line G 799% __ SSSI0% _ 80.794% |
TV Tourniquet WO0TE  15507%  DITE

31 208% A S05% 13 05% |

" Pulse-OX VI T6118%  10.000% |
Sphatiag .

[Suturing SiSETE  9iSeE 03w |
Swab Arca W/ Alcobol 6.189% 19.863% 2.920%
Vital 3 46 600% 24816% 37.19%%
Wrap Head Wound R00%  93817%  S1I0%

A% 11 31,731
TABLE 1l

THE TESTING ACCURACY BY CATEGORY FROM THE 5-FOLD CROSS
VALIDATION.

The results of the 5-fold cross validation can be found
in Table II and the categorical accuracy of models across
5-fold cross validation can be found in Table IIL. Table III
is computed by calculating the accuracy for each category
for each fold and then averaging the categorical data across
S folds, so that each experiment is given same weight
in the result. Entry CPR (Breath) for variant 1 gives the
accuracy for the combined CPR category. Table II is the
traditional way of calculating accuracy for a cross-validation;
however, Table III gives a better idea of the performance of
the classifiers across each category, and since it balances
each category equally, it gives a better overall indicator of
performance.
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The main model and variant |1 use single frame data for
classification, while variant 2 uses 3 frames evenly spaced
from |1 second of data for procedure detection. While they
are using different types of data for classification task, they
share the same goal of accurately detecting different clinical
procedures. As a result, even though they use different types
of testing datasets, their testing accuracies are generally
comparable.

When comparing the overall results of Table II and Ta-
ble 111, the averaged categorical accuracy data of main model
and variant | are within 1% difference with their testing
accuracy data. This is because number of testing data for
each category is approximately the same, and the 5-fold
cross validation accuracy is a good estimator of the over-
all performance at making accurate classification for each
model tested. However, there is a difference between variant
2's overall cross-validation performance and its averaged
categorical accuracy data. This difference is caused by the
low sample count of several categories. For example while
the accuracy of category Chest-tube Prep and Pulse-OX is
zero for Fold 4, category Chest-tube Prep only contains 9
samples and Pulse-OX only contains 19 samples, while other
categories normally contains around 120 samples. Thus, this
discrepancy supports the conclusion that our data set is
100 sparse to support high classification accuracy for some
categories, and indicates which categories have sparse data
sets.

VI. DISCUSSION

The averaged categorical accuracy data of all three models
are higher than the averaged accuracy achieved in the previ-
ous work where perfect knowledge of the body was assumed
[7]). It therefore suggests that it is viable to perform the
clinical procedure detection task without paramedics wearing
sensors on their arms, although a combined method may
yield higher performance that could reach standards high
enough for the medical domain. Our results strongly suggest
that richer video data would be helpful, and indicate where
such data could be productively collected. In particular, we
analyzed used data from only one video camera in this
work. This was primarily done because the task of labelling
and synchronizing the data among the cameras had only
been completed for one camera when we began this work.
However, it is likely that using the full video data record
would lead to significant improvements and that is a course
we are actively pursuing.

CPR-B CPRC  Onher  Accurxcy
[CPRCB Truth 7064 T8 %617 S6ARSH |
CPR-C Truth St 09 3416
TABLE IV
CONFUSION MATRIX BETWEEN CPR (BREATH) AND CPR
(COMPRESSION)

40.139%

Table IV is the confusion matrix between CPR (Breath)
and CPR (Compression) for the main model. A confusion

matrix summarizes the prediction of data according to their
predicted labels. It is an accurate classification when the
predicted label matches the true label (shown as bold figures
in Table 1V); otherwise, it is an inaccurate classification.

The table records all data from CPR (Breath) and CPR
(Compression) categories (the first column) in the 5-fold and
their predicted labels (the first row of the table). Predicted
labels other than CPR (Breath) and CPR (Compression)
are all recorded in Orher category, and the accuracy for
each category is calculated based on the given data. A
close examination reveals that while each category achieves
respectable categorical accuracy, a relatively large portion
of the error is due to the model’s inability to distinguish
between CPR (Breath) and CPR (Compression).

a. $1C2254560 b. $1C2254555
CPR (Breath) CPR (Compression)
Fig. 7. Similarity betweoen CPR (Breath) (left) and CPR (Compression)

(right).

One cause of such inability is the close temporal proximity
and the repetitiveness of the two categories. Compression and
breath regularly happen one after another multiple times, and
one major part of the CPR sequence is the transition time
from one to the other. During data labeling, it is logical to
randomly select a point in the transition and mark the divi-
sion between two categories; however, during training, such
an indistinct boundary between the two categories will cause
confusion for the model. Figure 7 is an example of such
problem. While both Figure 7a and Figure 7b come from the
same transition period and they share significant similarity,
Figure 7a is labeled as CPR (Breath), but Figure 7b is labeled
as CPR (Compression).

Such confusion is avoidable. The hospital may not benefit
from knowing how many times compression is applied
versus that of breath, so it makes sense to combine the
two categories and report CPR as one category, and the
similar logic also applies to Chest-tube and Chest-tube Prep,
discussed next.

Category Chest-tube Prep stands out among other cate-
gories, because it consistently has accuracy near zero for all
models. Table V shows the sorted categories to which models
wrongly classify data of Chest-tube Prep. The data suggests
that for the majority of the time, models classify data
from Chest-tube Prep as Chest-tube (59.678%). It suggests
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Cascgory  Percentage

TABLE V
SORTED MISCLASSIFICATION CATEGORIES FOR CHEST-TUBE PREP.

that Chest-tube and Chest-tube Prep also suffer from the
ambiguity problem during category transitions, as these two
categories’ occurrences are highly correlated. In addition,
other factors such as the imbalance of data across subjects
also potentially contribute to the low accuracy of Chest-tube
Prep. There are 10,262 frames of data available for Chest-
tube Prep, however, two out of seven subjects do not contain
any data, while two subjects contains more than 6,000 frames
of data.

As an aside, note that our classification procedure always
categorizes an activity as belonging to one of the categories
shown in Table 1. In particular, there is no category for “no
procedure™ or anything analogous. This feature is by design,
since it is unlikely that emergency medical personnel would
be engaged in idle activity during transport of a patient to
the hospital, and we felt it was unrealistic to include such a
behavior in our data set.

From the model size’s stand point, due to the fact that vari-
ant 2 (the late fusion model) only uses a partial InceptionV3
model up to “mixed6” layer, and the parameters are shared
across all branches, the number of the parameters used by the
this model (= 14M parameters) is significantly less than that
used by the main model (= 24M parameters). The reduced
number of parameters, however, does not suggest that variant
2 requires less computation power than main model.

Both variant | and variant 2 explore ideas to increase
the performance of CNN based video classification methods
for clinical procedures. The results and confusion matrices
generated by main model, variant 1, and variant 2 give us
suggestions for more practical ways of categorizing data and
directions to create more powerful models.

VII. FUTURE WORK

In this work, we show that video classification methods
from deep leaming provide a ol for clinical procedure
EMS and receiving hospitals. Future work includes training
with improved data sets suggested by this work, incorpo-
rating data from multiple sensors into this framework as in
Heard et al. 7], and trying improved deep leaming models.
The ultimate goal is to have models that work on video
gathered in the field that can automatically detect clinical
procedures to medically useful standards in real time, as
discussed in Bloos et al. [2).

New deep leaming models for video classification are
continually emerging. As part of this work, we tried a CNN-
LSTM model, similar to work by Ng et al. [9), but were not

able o get satisfactory results. Also of note, Feichtenhofer
et al. [6] have just made available their SlowFast network,
which recently had high performance on a video benchmark.
As deep learning models improve, we expect our own
identification results to improve.
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APPENDIX N

Nashville Fire Press Release

Earlier this year, for 12-hour shifts over multiple months, two paramedics with the
Nashville Fire Department worked with sensors placed on both wrists and both
forearms, transmitting body motion and muscle activity to a server at Vanderbilt
University Medical Center (VUMC). Meanwhile, a research-observer, seated inside the
ambulance, logged the procedures performed on each patient. The VUMC, Vanderbilt
University and Oregon State University research team is evaluating how well these data
can be used to automatically produce clinical documentation.

Daniel Fabbri, PhD, Assistant Professor of Biomedical Informatics and Computer
Science, is leading a project to improve the handoff of incoming emergency patients at
military field hospitals and civil hospitals. The idea is to automatically generate patient
acuity scores and abbreviated care records of in-transit patient procedures (e.g. CPR,
intubation, etc.) based on computer interpretations of signals from sensors and video
cameras.

On Nov. 18, at the American Medical Informatics Association Annual Symposium
in Washington, D.C., Fabbri’s team presented results of the feasibility work with
Nashville Fire Department EMS.

“We wanted to start out with a small study to assess the technology and see
what practical issues might arise, and this work with Nashville Fire proved quite fruitful.
Due to privacy considerations we did not use video, but our initial findings bode well for
the feasibility of our project,” Fabbri said.

They call their system Automated Sensing Clinical Documentation because the
system operates without medic input, using sensor data to produce documentation. As
a result, medics can focus entirely on patient care without being distracted by writing
down what they did. Simultaneously, the resulting documentation is extremely valuable
for emergency room physicians and trauma surgeons who want to know what care has
been provided.

“While our paramedics were outfitted with special armbands and watches, they
didn’t have to alter their daily routine or patient care protocols at all,” noted Joaquin
Toon, the EMS Quality Improvement Officer at Nashville Fire Department.

Fabbri’s co-investigators for the feasibility study included colleagues from
Biomedical Informatics (Dr. Laurie Novak), Emergency Medicine (Dr. Candace
McNaughton), Anesthesiology (Dr. Jesse Ehrenfeld) and Electrical Engineering and
Computer Science (Dr. Rorbert Bodenheimer), with partners at Oregon State University
(Dr. Julie A. Adams). The project is supported by a $1.7 million research grant from the
U.S. Department of Defense.

“Technology continues to advance. To think that a civilian paramedic or a
military medic’s hand and body movements can generate a patient medical record or
alert the hospital of an incoming patient’s condition is phenomenal. Nashville Fire
Department was excited to partner with Vanderbilt Emergency Medicine in this
research,” said Commander Toon.
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APPENDIX O

Automatic Sensing for Clinical Documentation (W81XWH-17-C-0252, DM160268)

PI: Daniel Fabbri

Study/Product Aim(s)
* |dentify information needs at point-of-injury and
trauma centers

+» Develop a sensor systemto generate EMR notes

* Pilot the systemwith civilian first responders
Approach
Develop a novel hands free clinical
documentation system that leverages a
combination of off-the shelf sensors,
accelerometers, and cameras.

Org: Vanderbilt University Medical Center Award Amount: $1,737,328.00
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Sensor Development ] .
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Updated: 2018-01-14
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CY18 Goals
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- Sensor development and testing in simulation lab

CY19 Goals
- Prototype development
- Clinical evaluation of data collection

Automatic Sensing for Clinical Documentation

DM160268
W81XWH-17-C-0252

Pl: Daniel Fabbri

Org: Vanderbilt University Medical Center Award Amount: $1,737,328

Study/Product Aim(s)
« Identify information needs at point-of-injury and trauma centers

« Develop a sensor system to generate EMR notes

* Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.

J
3

Data collected and analyzed using video
processing and accelerometer methods. e N

Timeline and Cost

Major Tasks CY| 2017 2018 2019
1. Develop clinical detection algorithms - ) —
usmgvaccelerlo:neler data ! L,,, '3"‘ o

2. Develop clinical detection
using image (video) data [ CO.

3. Develop detection algorithms that
combines accelerometer and image data

Goals/Milestones
+ CY18 Goals

O Information need observations and surveys

[0 Sensor development and testing in simulation lab
+ CY19 Goal

O Prototype development

O Clinical evaluation of data collection

C ts/Challenges/Issues/Concerns

4. Design and implement high-level
diinical activity features

Draft & Submit Final Report

5. Focus group & field data collection of — e
developed prototype systems | | 233

[

Estimated Budget ($K) s [ s [ e

Updated: 01 APR 18

« Actual expenditure is lower than projected due to processing time
of receipts from sub-contracts already underway, and initial spin-
up time of project.

Budget Expenditure to Date
« Projected Expenditure: ~ $386,073
« Actual Expenditure: $178,186
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Automatic Sensing for Clinical Documentation

DM160268
W81XWH-17-C-0252
Pl: Daniel Fabbri Org: Vanderbilt University Medical Center Award Amount: $1,737,328
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« Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.

T TemenT

Time isezus

Timeline and Cost Goals/Milestones

" + CY18 Goals
Major Tasks Cy| 2017 2018 2019 O Information need observations and surveys

1. Develop clinical detection L G ) O Sensor development and testing in simulation lab
using accelerometer data | I |

« CY19 Goal
2. Develop ciinical detection it = H O Prototype development
using image (video) data l | N § O Clinical evaluation of data collection
3. Develop detection algorithms that ) f
combines accelerometer and image data 2 i : Comments/Challenges/lssues/Concerns
4 Design and implement high-level E - Expended 88% ($193,036) of projected funds ($218,224) during
cinical activity features i 2 j E reporting period. Expenditures expected to continue to increase

5. Focus group & fiekd data collection of to programmed level as project expands data collection efforts.
developed prototype systems | .M* l

5 Budget Expenditure to Date
Estimated Budget ($K) K | oz | STk + Projected Expenditure:  $579,109

Updated: 01 JUL18 + Actual Expenditure: $396,410

Automatic Sensing for Clinical Documentation
DM160268
W81XWH-17-C-0252

Pl: Daniel Fabbri Org: Vanderbilt University Medical Center Award Amount: $1,737,328
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Study/Product Aim(s)
« |dentify information needs at point-of-injury and trauma centers

« Develop a sensor systemto generate EMR notes

« Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.
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Automatic Sensing for Clinical Documentation

DM160268
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Pl: Daniel Fabbri

Org: Vanderbilt University Medical Center
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Study/Product Aim(s)
« Identify information needs at point-of-injury and trauma centers

* Develop asensor systemto generate EMR notes

* Pilotthe system with civilian first responders

Approach
Develop anovel hands free clinical documentation system that leverages a
combination of off-the shelf sensors, accelerometers, and cameras. The
outputisa sequence of interventions performed.
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Study/Product Aim(s)
« Identify information needs at point-of-injury and trauma centers

« Develop a sensor system to generate EMR notes

« Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.
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+ Develop a sensor systemto generate EMR notes
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Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.
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American Medical Informatics
Association (AMIA) 2019 Annual
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Automated Sensing Clinical
Documentation System.” AMIA did
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Needs and Context of Trauma
Handoffs to Design Automated
Sensing Clinical Documentation \
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Study/Product Aim(s)
« Identify information needs at point-of-injury and trauma centers

« Develop a sensor systemto generate EMR notes

« Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.

Working on new feature incorporating sequence data mining using the
Myo to build a prediction model based on the set of patterns observed
allow possible detection of clinical procedures without video.

+ Hypothesis: Each procedure is characterized
by a set of activity patterns.
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Study/Product Aim(s)
+ |dentify information needs at point-of-injury and trauma centers

* Develop a sensor system to generate EMR notes

* Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.

Sean Bloos was selected fo orally present his paper “Feasibility Assessment of a Pre- Hospital
A Sensing Cinical
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positive public engagement for the project bath at the conference and in the press,
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Study/Product Aim(s)

« Identify information needs at point-of-injury and trauma centers

« Develop a sensor system to generate EMR notes

« Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that
leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.

Sean Bloos was selected to orally present his paper *Feasibility Assessment of a Pre- Hospital
Automated ing Clinical Doct System.” to the American Medical Informatics
Assoclation (AMIA) 2019 Annual Symposium in Washington DC on 18 NOV 19. This resulted in
positive public engagement for the preject both at the conference and In the press.
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Study/Product Aim(s)
« Identify information needs at point-of-injury and trauma centers

+ Develop a sensor system to generate EMR notes

+ Pilot the system with civilian first responders

Approach
Develop a novel hands free clinical documentation system that

leverages a combination of off-the shelf sensors, accelerometers,
and cameras. The output is a sequence of interventions performed.
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Sean Bloos was selected to orally present his paper “Feasibility Assessment of a Pre- Hospital
Automated Sensing Clinical Documentation System.” to the American Medical Informatics
Assoclation (AMIA) 2019 Annual Symposium in Washington DC on 18 NOV 19. This resulted in
positive public engagement for the project both at the conference and in the press.
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