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1. INTRODUCTION:
Clinical documentation during both the point-of injury and en route phases of 

care in theater and operational environments continues to be incomplete, inaccurate, 
and detrimental to the goal of ensuring that receiving facilities can rapidly gain 
situational awareness of the patients moving through the system.  Current 
communication methods between the point of injury and receiving facilities rely on 
verbal and written communication.  These methods are vulnerable to rapid changes in 
clinical status and human cognitive biases in data collection, processing, and sharing.  
And, multiple handoffs further complicate the process and increase risk of errors and 
miscommunication.  

This project developed a novel hands-free clinical documentation system for use 
in the operational environment that leverages a combination of off-the-shelf sensors, 
accelerometers, and cameras to build a software system that automatically detects the 
motion signatures associated with key clinical tasks and generates an abbreviated care 
record, which can be transmitted upstream in real-time.  The project’s intent is to ensure 
better, more consistent, and clear communication among care teams to overcome 
human misperceptions and error, provide high fidelity and reliable data, and allow 
communication across multiple patients and providers at the same time. 

2. KEYWORDS:
Biomedical informatics; medical clinical documentation; accelerometers; video;

hands free; Tactical Combat Casualty Care TCCC; Trauma; activity detection 
recognition; injury heatmap 

3. ACCOMPLISHMENTS:
Project Objectives and Major Aims.  The project’s hypothesis is that the automatic

identification, documentation, and communication of key clinical concepts (i.e. injury 
patterns or clinical interventions) that occur during the initial phase of care (i.e. point-of 
injury and en-route care) will satisfy the information needs of upstream care providers 
and facilitate better care coordination and resource utilization.  The project’s overall 
objective is to create a novel hands-free system using wearable technology and 
cameras that can improve care by automatically sensing, documenting, and transmitting 
clinical events with little or no end-user input.   

This objective is supported by the specific aim to design and implement a clinical 
activity detection prototype system using accelerometers, electromyography (EMG) and 
video.  The project includes two milestones: 1) the development of prototype software 
and 2) drafting of publications on the problem and methods.  The project’s aim, and the 
milestones, are underpinned by the following five major tasks.  (See Table 1 for the 
Aims, Major Tasks, and Milestones, and Appendix A for the full Project Scope of Work 
and Breakdown Schedule). 

1. The first major task that the project is pursuing is the development of clinical
activity detection algorithms utilizing accelerometer data.  To accomplish this, the 
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project 1) designed and evaluated methods to extract accelerometer data from devices 
in real-time or near real-time; 2) designed and implemented basic activity detection 
algorithms using captured accelerometer data; and 3) aggregated the accelerometer 
data into a centralized physician dashboard. 

2. Another major task is developing clinical activity detection algorithms that utilizes
image (video) data.  The accomplish this, the project: 1) developed systems to capture 
video data using cameras; 2) designed and implemented a basic clinical activity 
detection system using image (video) data; and aggregated the data (image) data into a 
centralized physician dashboard.  

3. The next major task combined the accelerometer and image (video) data to
develop clinical activity detection algorithms, which included: 1) developing models to 
correlate accelerometer and image data for activity detection; and 2) evaluating 
combined activity detection algorithms on simulation lab data. 

4. The fourth major task was designing and implementing high-level clinical activity
features that include: 1) designing and implementing an injury heatmap visualization; 2) 
designing and implementing a risk score derived from accelerometer data; and 3) 
designing and developing ‘quick’ data entry systems that prints results on top of a 
TCCC card. 

5. The last major task was conducting focus groups and field data collection.  This
has been broken down broadly into task: 1) focus group of medics, surgeons, 
emergency department physicians, and military staff; and 2) field data collection 
deploying the prototype systems with Nashville Fire Department paramedics. 

AIM(s) & MILESTONE(s) DATES WORK % STATUS 
Description Start End Target Complete 
Specific Aim 1: Design & implement a clinical 
activity detection prototype system 01OCT17 31DEC19 100% 100% On-Track 

Milestone #1: Prepare publication on problem 
overview, and detection algorithms 01DEC18 30SEP19 100% 100% On-Track 

Milestone #2: Package prototype software for 
sharing and distribution 01MAY19 29DEC20 100% 100% On-Track 

Milestone #3: Complete and submit final report 01OCT19 29DEC20 100% 100% On-Track 

MAJOR TASKS DATES WORK % STATUS 
# Description Start End Target Complete 
1 Develop clinical activity detection algorithms 

utilizing accelerometer data 01OCT17 30NOV18 100% 100% On-Track 

2 Develop clinical activity detection algorithms 
that utilizes image (video) data 01OCT17 30NOV18 100% 100% On-Track 

3 Develop clinical activity detection algorithms 
that combines accelerometer & image data 01JUN18 29DEC20 100% 100% On-Track 

4 Design and implement high-level clinical activity 
features 01MAY19 30SEP19 100% 100% On-Track 

5 Focus group and field data collection of 
developed prototype systems 01NOV17 30SEP19 100% 95% On-Track 

* On-Track = +/-5; Ahead >+5%; Behind >-%5
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Accomplishment towards achieving the Aims. 

The team achieved several notable accomplishments towards completing the 
project’s aim.  This includes:  

1. Identified key domains and design insights from focus groups.
2. Affirmation of the premise that there is a need for improved documentation

between medics and hospital personnel.
3. Developed an accelerometer and EMG data capture system using Myo

devices.
4. Developed an accelerometer and motion data capture system using Apple

Watches.
5. Developed a Documentation Dashboard served from a webserver.
6. Developed a procedure prediction system using Myo and Apple Watch data.
7. Developed a procedure prediction system using video data.
8. Developed a procedure prediction system using motion and video data.
9. Designed and implemented an injury heatmap visualization.
10. Deployed the prototype system to capture data in the field with Nashville Fire.
11. Developed an auto-generated Tactical Combat Casualty Care card.
12. Published associated results in conference and journal proceedings.

These accomplishments, and the preparation and process that led to them, are 
discussed in more detail below. 

Domain Identification and Development of Design Insights. 
 The project conducted three focus groups comprising 13 participants, which was 
approved by the Vanderbilt University Institutional Review Board.  Two of the focus 
groups included pre-hospital personnel and one was conducted with hospital personnel. 
The focus groups were audio recorded and transcribed for analysis.  The transcriptions 
were analyzed using a qualitative data analysis tool (Dedoose™).  Data, which was 
coded using a taxonomy, resulted in a key takeaways document that summarized the 
design insights from the data across six key domains.  

The goals were to gather information from healthcare providers with trauma 
experience to identify gaps in current handoff procedures and understand current 
documentation practices.  The sessions focused on the process of communicating 
during transitions of care from EMT to hospital, including elicitation of actual 
experiences in the combat environment when possible.  Based on the information 
shared in the session, probing questions were added to better understand the physical 
actions involved in transporting patients from the field/scene to the hospital including the 
implications of incorporating wearable technologies, cameras, and other devices into 
the process.  The focus group guide is included in Appendix B. 

The study created a list of key findings within the key domains that were generated 
from the focus groups (see Appendix C for the complete list).  From those, the project 

Table 1:  Aims, Major Tasks, and Milestones 
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identified several major findings that continue to provide significant insight into the 
system’s design.   

For instance, in the domain of Vital Signs and Demographics, the key design insight 
from the focus groups was the need to: 1) corroborate the vital signs, and 2) capture as 
many of the important, routinely given vitals and demographics. Interestingly, hospital 
personnel asked for two measurements: the current value and the most extreme. 

For the domains of Medication Administration and Documentation, the major findings 
were to: explore how to automatically capture the administration of medicine, and 
corroborate the medicines administered.  In addition, it was identified that EMTs use ad 
hoc methods to informally document their procedures (e.g., writing on tape on their leg), 
which the administrations are not formally documented until after transport.  This 
showed the need to: 1) review the procedures EMTs document to better understand 
which procedures merit automatic identification, and 2) explore the possibility of 
transmitting the captured information to the EMT or hospital in real or near-real time. 

For the Transport domain, the groups major finding was the necessity for: 1) the 
corroboration of the procedures done in transport and their sequence (sequence of 
procedures matters so procedures need to include times), and 2) that real time 
information provided to the receiving hospital will allow the efficient allocation of 
resources and triage.   

The Communication domain illustrated that the capturing, processing, and sharing 
the real time information from EMTs to the receiving hospital will reduce 
miscommunication and allow focus on care to the patient(s).   

For the last domain, Incorporating (New) Technology, the study found that most 
people are amenable to wearable, body tracking, machine learning technologies, but 
additional thought is needed on how to best overcome the cultural “trust” gap with new 
technology.  The study also found for the need to explore the ergonomics of wearing the 
devices with required uniforms and within the physical space limitations of transport 
vehicles. 

 Identification of accurate medical information. 
The project identified critical elements of information that must be captured and 
communicated by observing previously recorded handoffs between pre-hospital and 
hospital personnel for trauma patients.  To accomplish this, the team reviewed 50 
Level I trauma resuscitation videos that are regularly taped for quality 
improvement purposes.  These videos capture the pre-brief (in which trauma team 
members from the emergency department and trauma team review known facts about 
the case and discuss a plan of action), hand-off, and management while the patient is in 
the trauma bay. 

To develop data capture form and coding scheme for the reviews, three reviewers 
reviewed five videos.  After all the videos had been reviewed, the reviewers met to 
discuss the results and any discrepancies between reviewers.  The reviewers then 
came to a consensus about the types of information transferred from pre-hospital to 
hospital personnel and developed a codebook to be applied by a single observer. 
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 A total of 50 trauma videos were reviewed, and information from the associated 
handoffs were recorded.  These videos were reviewed by a single observer, who was 
trained as a nurse and has extensive experience with trauma and the videos reviewed.  
Data was collected on an observation form that was created specifically for that 
purpose.  The observational form was edited after the initial five video assessment 
activity to reflect the information that was most pertinent in the video interactions.  After 
completion of the 50 reviews, the results from the observation forms were entered into a 
REDCap database for further analysis and tabulation. 

A major finding from reviewing the videos illustrated that important information, 
needed to provide optimal care, is not always effectively conveyed during the handoff.  
For example, many clarifying questions were asked during handoffs.  Clarifying 
questions were found in 40 of the 50 videos from the hospital staff during the handoff 
from pre-hospital personnel.  The presence of clarifying questions during handoff(s) 
reflects a need for the information to be relayed more accurately to meet the needs of 
trauma team personnel. Moreover, the video review confirmed the set of procedures the 
team should attempt to automatically detect such as intubation, IV, and bagging, among 
others. See Appendix D for all findings from the video observations. 

The pre-hospital and hospital teams have different priorities and/or capabilities in the 
performance of their roles in their respective environments.  Pre-hospital teams need to 
get the patient in the vehicle, perform needed procedures during transport to stabilize 
the patient, and deliver the patient to more capable facility, which usually provides 
surgical intervention.  Meanwhile, the receiving trauma team wants to be able to 
appropriately allocate resources in advance, based on case complexity.  These 
differences seem to result in an inadvertent conflict about the priority of recording 
specific times of medication administration and/or performance and sequence of 
procedures during transport, and the uninterrupted care of the patient. 

Data from the observations supports the findings from the three focus groups that 
more accurate information is needed at the time of handoff, specifically regarding time 
and sequences of procedures and/or medications.  The hospital focus group detailed 
that the most important information needed by the trauma team involved time, 
specifically regarding the sequence of procedures performed during transport.  
Specifically, doctors care about how often and what a medic is doing during transport.  
In summary, the results of the focus groups and video observations have illustrated the 
need for more accurate recordkeeping, specifically temporal aspects, to enhance the 
handoff from pre-hospital to hospital teams.   

Development of a Myo reporting device. 
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The Myo Gesture Control Armband is a wearable sensor device consisting of 
electromyography (EMG) and inertial measurement unit (IMU), as shown in Figure 1.  It 
has been used in medical environments 
and in research projects for activity 
detection.  

While Myo devices have configurable, 
integrated hardware for gesture prediction 
of five to six pre-defined gestures, it does 
not support activity prediction.  Myo does 
not support simple storage and egress of 
raw sensor data, but it has released a 
feature-rich software developer’s kit (SDK).  
We have leveraged this SDK, in conjunction 
with the Myo Connect application, to create 
a basic desktop multi-Myo recording 
application called Myo Egress.  With Myo 
Egress acting as a real-time EMG and IMU 
sensor storage system, we can use state-of-
the-art machine learning to predict medic activity from their movements and generate 
documentation. 

Myo Egress is a python 3 application which runs on MacOS and Windows.  It's 
capable of recording and transmitting data in JSON or CSV formats.  The IMU data 
consists of gyroscope: x-rotation, y-rotation, z-rotation; acceleration: x-acceleration, y-
acceleration, z-acceleration; and orientation: w-quaternion, x-quaternion, y-quaternion, 
z-quaternion all at 60 Hz. Eight EMG sensors also record electrical impulses translated
into an 8-bit signed integer representing electrical intensity at 200 Hz.  Additionally,
higher-level data such as pose prediction, state data, such as lock, and metadata such
as bluetooth signal strength are stored at 200 Hz as well. In addition to Myo Egress
recording data locally to a desktop computer, it can simultaneously record data in bursts
of 1 Hz to multiple web services, such as the Handsfree Documentation web service
designed to analyzing sensor fusion data of IMU, EMG, and video.

The Myo Armband has some basic feedback mechanisms primarily consisting of 
short and long vibrations.  Currently, we have chosen not to use these features as a 
passive recording environment is preferred.  However, the Myo Connect application 
vibrates Myo devices when they desynchronize, or when a state is entered in which 
data quality is degraded until the device is recalibrated.  We are in the process of 
bypassing the Myo Connect application so all vibrations from the Myo Armband can be 
halted.  In the lab simulations using medical mannequins, data have been collected that 
are complete and consistently high quality. Neither vibrations nor wearing the devices 
have interfered with medics' work.  In the future, we may also write Myo Egress to run 
on a smartphone so a laptop does not need to be present to record medic data. 

Figure 1: Myo Gesture Control Armband
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Development of an Apple Watch reporting device. 
 The Apple Watch is a wearable iPhone-synced, sensor capable of recording inertial 

measurement unit (IMU), as shown in Figure 2.  
It also has been used in medical environments 
and in research projects for activity detection.  

MacOS enables any user to design and build 
their own application for the Apple Watch and 
iPhone.  We have created such an application to 
record accelerometer data on the Apple Watch 
over any length of time, with the simple touch of 
a start and end button.  The data are streamed to 
a storage system in batches.  With this 
accelerometer data we can use state-of-the-art 
machine learning to predict medic activity from 
their movements and generate documentation.  

Another advantage of the Apple Watch and 
synced iPhone is that the team can track the 
geolocation of medics wearing the device. This 
allows the team to receive a notification when the 
wearer is within a certain mileage range of a 
hospital. 

The Apple Watch application allows the user to denote whether the watch is worn on 
the right or left wrist.  When started, it records continuous accelerometer data at 60 Hz.  
Currently each Apple Watch must be synced to its own iPhone for the application to run. 
In addition, the iPhones must be connected to WIFI or have cellular data access for the 
accelerometer data to be sent to our data storage system.   

The IMU accelerometer data consists of gyroscope: x-rotation, y-rotation, z-rotation; 
acceleration: x-acceleration, y-acceleration, z-acceleration; and orientation: yaw, pitch, 
roll all at 60 Hz.  The Apple Watch application sends the accelerometer data 
automatically in real-time to our data storage system web application.  This web 
application, the Handsfree Documentation web service, was designed to analyze sensor 
fusion data of IMU and EMG between the Myo and Apple Watch, and video recordings.   

The current system being tested consists of two Apple Watch 3s synced to two 
iPhone 6s.  Newer versions of both the Apple Watch and iPhone can also be used, but 
the Apple Watch 3 and iPhone 6 are the necessary minimum versions to run the current 
application.  The smallest available iPhone memory option is also sufficient to host the 
Apple Watch and application. 

Development of a Handsfree Documentation Dashboard 

In order to fuse the ten streams of data coming from each medic, the 
Handsfree Documentation Dashboard was created as a real-time web service.  
Graphs of Apple Watch acceleration, Myo Armband acceleration, and EMGs are synced 

Figure 2: Apple Watch and iPhone 6 
Synced 
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with 4 video feeds (see Figure 3). This dashboard helps to visually analyze the data 
collected and iteratively improves the system’s design. 

The Handsfree Dashboard is a secure, HIPAA-complaint central storage repository 
for sensor and video data and metadata.  Metadata syncs our data streams which 
allows for human analysis, validation, and pattern recognition of our data. Comparing 
participants side-by-side is possible by selecting each participant in an experiment in 
separate windows and selecting the events to compare, such as administering 
medication through IV or chest-tube decompression.  Additionally, IMU sensor data can 
be validated against movements seen in video and also against the two IMU sensors 
per arm on each participant. 

Comparing IMU sensors is more difficult than we initially anticipated because Apple 
Watch sensors subtract gravity from their output, but Myo Armband sensors do not.  
Once gravity has been added back to the Apple Watch, and gravity removed from the 
Myo Armband, those two streams will be used in the dashboard in conjunction with the 
video to determine if the Myo Armband IMUs, Apple Watch IMUs, or both IMUs are best 
for activity prediction.  (See Appendix F for EMG and Accelerometer Graphs) 

Figure 3: Synced four camera angles of Handsfree Dashboard 



10 

 Accelerometer data analysis and procedure prediction. 
The collected accelerometer and electromyography (EMG) data were first analyzed 

qualitatively to determine patterns that persist across participants and to drive the 
feature extraction process. The IMU and EMG data for each medical procedure were 
plotted to determine patterns or state-changes that appear in each instance of the 
medical procedure. A plot of the acceleration data for CPR captured by the Myo device 
is provided in Figure 4.  

A sinusoidal signal occurred when the participant was performing chest 
compressions is seen in the left hand of the figure.  An abrupt change occurred in the 
acceleration data when the participant gave the patient two breaths, which indicates a 
state-change.  Not all medical procedures elicited such clear patterns in the IMU data, 
such as using a bag-valve mask to ventilate a patient, but sometimes a pattern occurs 
in the EMG data.  A plot of the EMG data captured by the Myo device on the 
participant’s right hand, which was used to squeeze the bag, is provided in Figure 6.  
The IMU data for bagging remained stationary, while high amplitude periods occurred in 
the EMG data. Each high amplitude period represents the participant squeezing the 
bag, where the EMG data in Figure 5 shows a total of seven squeezes.  The number of 
squeezes was verified by examining the video data. 

Figure 4: Myo Acceleration Data for CPR 

Figure 5: Myo EMG Data for Bagging Patient 
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Figure 5 Myo EMG Data 

Certain medical procedures did not have clear patterns, such as inserting an oral 
airway, which may be attributed to the quick movements needed to do the procedure.  
Additional training data was determined to be needed for these medical procedures 
(and was collected) for a machine-learning algorithm to achieve high classification 
accuracy.   

Descriptive statistics were calculated for each procedure and participant 
observed in the simulation lab to examine statistical differences within a participant, and 
between procedures and participants. The descriptive statistics for CPR by participant 
for the Myo’s Right Hand IMU data is provided in Table 2.  Although, CPR produces a 
sinusoidal pattern in the IMU data, the descriptive statistics show that there are 
differences between participants for the Myo’s IMU data.  The differences are attributed 
to sensor drift, as the Myo device does not subtract gravity from the IMU data.  The 
Myo’s EMG data does produce similar descriptive statistics for CPR for each participant, 
which is attributed to the EMG signal being a zero-mean signal.  This analysis illustrates 
that other features need to be extracted from the IMU and EMG data for a classifier to 
achieve high performance.  

Frequency-based features, such as entropy, were shown to produce significant 
differences between procedures most of the time, while not producing significant 
differences between instances of the same procedure.  The results of this statistical 
analysis are not provided to keep the report concise, due to the breadth of the 
procedures covered. The analysis provided the foundation for the feature extraction 
process and selection of features for machine-learning. 

Participant Acc_X Acc_Y Acc_Z Roll Pitch Yaw 
P1 -0.07 (0.31) 0.78 (0.54) -0.51 (0.41) -1.67 (0.3) -0.95 (0.35) -1.94 (1.31)
P2 0.24 (0.26) -0.73 (0.3) 0.6 (0.43) -1.25 (0.13) -0.65 (0.29) -0.27 (0.48)
P3 0.43 (0.23) -0.44 (0.39) 0.72 (0.38) -0.73 (0.37) -0.82 (0.22) 1.65 (0.38) 
P4 -0.51 (0.48) 0.79 (0.60) 0.04 (0.29) -1.43 (0.23) -0.94 (0.26) -2.37 (0.91)

 

Time-based and frequency-based features were extracted from the Myo device’s 
IMU and EMG data and have been used in prior wearable-sensor activity recognition 

Table 2: Participant Table 
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algorithms.1 The average, max, and standard deviation of each IMU and EMG signal 
was extracted over the entirety of each medical procedure.  Then, each signal was 
transformed into the frequency domain to calculate the DC power, total power, and 
entropy of the signal.  

Design and implementation of injury heatmap visualization. 

 Video data collected during over 15 hours in the simulation lab were processed 
through OpenPose.  The resulting files represent the position of each person and their 
body parts in every single frame of the video with sets of X and Y coordinates and their 
confidence intervals (CI).  The confidence interval describes how sure Open Pose is for 
that specific body party location.  Open Pose processes the following body parts for 
each person present in every frame of the video, as shown in Figure 1: Nose (0), Neck 
(1), Right Shoulder (2), Right Elbow (3), Right Wrist (4), Left Shoulder (5), Left Elbow 
(6), Left Wrist (7), Right Hip (8), Right Knee (9), Right Ankle (10), Left Hip (11), Left 
Knee (12), Left Ankle (13), Right Eye (14), Left Eye (15), Right Ear (16), Left Ear (17), 
as shown in Figure 6. 

1 Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., & Amirat, Y. (2015). Physical 
human activity recognition using wearable sensors. Sensors, 15(12), 31314-31338. 

Figure 7: Open Pose Single Frame Output 
Example 

Figure 6 Key points tracked over the body 
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From the Open Pose output, the next step is identifying the medic and the 
patient in the frame.  The patient is identified as the person closest to the center of the 
image frame. The medic is then identified as the second closest person to the center of 
the image frame, and all other persons are ignored.  Once the medic and patient are 
identified based on the positional assumptions, the medic’s left and right-hand locations, 
and all of the patient’s body part locations are extracted.  Figure 7 shows how the Open 
Pose human figure is automatically applied to each person present in every frame of the 
video. 

Next heatmaps are created based on where the medic and their hands are 
located throughout the procedure.  To generate a heatmap, the system generates a 
Gaussian field around each medic hand position per frame and summed over all 
frames.  By summing, the heatmap captures the most frequently occurring positions of 
the hands over the patient’s body per procedure.  

Figure 8 shows a heatmaps that was generated using the IV procedures.  The 
background image represents the patient’s body, and the colors represent the position 
of the EMT’s hands over the patient’s body in patient space.  The yellow color 
represents the areas above and around the patient where the EMT hands are located 
most often.  Visually these heatmaps indicate that we can identify the body part, which 
is being worked on, which will help in determining which procedure is being performed. 

Specifically, the heatmaps were registered to align the patient to the TCCC standard 
card.  This alignment allows for comparison of different cases.  Registering patients to 
the standard TCCC card requires managing the slight translation of the patient’s limbs 
to the limbs on the TCCC card.  
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This work presents a method to visualize 
heatmaps that allows the inspection of a 
given set of procedures.  Of note, the work 
was recently accepted for publication at the 
conference SPIE.2  

Since the project intends to use this in 
conjunction with activity data gathered from 
other devices, this work shows a first step in 
how computer vision and machine learning 
can be used to help further identify the 
procedure being performed. 

      Emergency Severity Index (ESI) 
Classification.   
Civilian and military hospitals are faced with 
the challenge of providing efficient care with 
limited, sometimes scarce, resources. 
Having accurate, timely information 
regarding patients being transported greatly 
assists in efficiently and safely allocating 
scarce resources including blood products, 
clinical expertise and time, and facilities 
such as operating theaters. The Automated 
Sensing Clinical Documentation System 
(ASCD), which monitors medics using 
inertial measurement units (IMU) and 
electromyography (EMG) sensors, can be 
modified to predict patient emergency 
severity index (ESI, which is a rapid triaging 
system based on illness severity and 
anticipated resource utilization) and allow for 
more efficient matching of predicted resource utilization with available resources. 
Gathering enough real-world medic measurements and ESI scores to assess predictive 
relationships with sufficient statistical power to requires dozens of ambulance ride-
along, but our preliminary feasibility testing has indicates that the mean of energy 
expenditure is strongly inversely correlated with ESI triage score on ED arrival (rho -0.8, 
95% -0.88 to –0.22). 

Partnering with the Nashville Fire Department, a research observer rode in 
ambulances with NFD paramedics equipped with our data sensors with 64 patients on 
35 shifts. For 22 pre-hospital transportation events, we were able to pair ESI scores with 
medic IMU, medic EMG, vehicle IMU, and manual event logs. Event logs were 

2 Paris, R. A., Sullivan, P., Heard, J., Scully, D., McNaughton, C., Ehrenfeld, J.M., Adams, J.A, Coco, J., 
Fabbri, D., and Bodenheimer, B. (2018). Heatmap Generation for Emergency Medical Procedure 
Identification. 

Figure 8 Heatmap of medic hand position
over body for IV
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produced via the same software used to capture medical events in the Center for 
Experiential Learning and Assessment lab; a trained researcher with a background in 
pre-hospital medical care observed procedures and documented start and stop times as 
defined based on work conducted in the controlled environment of the CELA lab. 

The main focus for the NFD data has been on using EMG and IMU metrics to 
classify ESI scores for patients so we might predict ESI scores in the future based on 
monitoring medics. The ESI triage system is commonly used in civilian emergency 
department (ED’s) and range from most (1) to least (5) severe; patients are assigned an 
ESI triage score at the time of ED arrival based on the initial assessment of a trained 
nurse. We were able to capture patients with ESI scores 2-5, but any measure of patient 
status could have been used. 

Using the 22 patient transports for which we have ESI scores, we analyzed features 
to determine their predictive value to their ESI score. All values are measured from the 
point in which medical treatment begins within the ambulance (any treatment performed 
before the patient is brought into the ambulance is ignored) to when medical treatment 
ends. One feature, the amount of time patient was in the transport, was used to control 
the other 9 features in the statistical analysis. The features used in this analysis are: 

1. Amount of time
2. EMG absolute value mean
3. EMG standard deviation
4. EMG total power
5. EMG DC component (base level of activity)
6. EMG entropy (how erratic muscle movements are)
7. IMU integral modulus acceleration mean (energy expenditure)
8. IMU integral modulus acceleration standard deviation (variance across sections

of activity)
9. IMU signal vector magnitude mean (energy expenditure)
10. IMU signal vector magnitude mean (variance across sections of activity)
Results. Using spearman correlation and controlling for the length of the total time

medical procedures were being performed during transport, the IMU integral modulus 
acceleration mean was found to be statistically significant (p-value = 0.000342) and a 
strong negative correlation (r-score = -0.8, 95% -0.88 to –0.22). Other features showed 
strong statistical correlation but were not statistically significant in this sample size.  

These results indicate the total energy expenditure of a medic correlates with 
patient acuity measured by ESI triage score at ED arrival, but additional study is 
required. 

Table 3 Sensor data correlation with ESI 

Variable n r CI95% r2 adj_r2 p-value power 
emg_mean 15 -0.28 [-0.69, 0.27] 0.08 -0.074 0.308284 0.178 
emg_std 15 -0.2 [-0.64, 0.35] 0.039 -0.122 0.482899 0.109 
emg_total_power 15 0.132 [-0.41, 0.6] 0.017 -0.146 0.638744 0.075 
emg_dc_power 15 0.132 [-0.41, 0.6] 0.017 -0.146 0.638744 0.075 
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emg_entropy 15 -0.25 [-0.68, 0.3] 0.064 -0.092 0.361816 0.151 
imu_vec_mag_mean 15 -0.8 [-0.93, -0.49] 0.64 0.58 0.000342 0.974 
imu_vec_mag_std 15 -0.71 [-0.9, -0.32] 0.51 0.429 0.002774 0.889 
imu_int_mod_mean 15 -0.66 [-0.88, -0.22] 0.437 0.343 0.007331 0.806 
imu_int_mod_std 15 -0.72 [-0.9, -0.33] 0.52 0.441 0.002399 0.899 

Task Decomposition for Clinical Procedure Recognition 
The purpose of this effort was to determine if decomposing the clinical procedures into 
their respective sub-tasks can be used to improve overall clinical procedure recognition 
via wearable sensors only. The wearable sensors’ signal variability within a procedure 
resulted in confusion across procedures, particularly those of short duration. The 
decomposition into subtasks focused on using machine learning to identify sub-task 
elements in order to improve the overall procedure recognition to mitigate the sensor 
noise. The performed analysis of sub-tasks for recognizing the overall procedure 
focused on two procedures from each procedure duration: short-, mid- and long-
duration. Within these groups the procedure with the best detection rate and the worst 
detection rates from the prior method were analyzed.   
   Short-Duration Procedures: CPR – Best, Intravenous medicine administration – Worst 
   Mid-Duration Procedures: Intubation - Best, King Airway – Worst 
   Long-duration Procedures: Bagging – Best, IV line – Worst 

The Baseline algorithm employed a Procedure RF classifier, which trained an RF 
classifier to directly predict the procedure from the Myo features. The Baseline algorithm 
is similar to the context-less classifier that was utilized in prior research. 
The new detection methods us a subtask decomposition-based approach, where a 
subtask RF classifier was trained to predict the class probabilities for 24 subtasks.  The 
twenty-four subtask class probabilities can be interpreted as the confidence with which 
the Subtask RF classifier classifies each subtask for a given feature window. There is 
no difference between the three algorithms during the training phase; the difference 
between the three algorithms exists only during the testing (or inference) phase, based 
on how the subtasks’ class probabilities were utilized to infer the actual procedure. 
The Naive Subtask decomposition method assigns equal weights to the subtask 
probabilities based on the number of subtasks require for a procedure. The Weighted 
Subtask Decomposition procedure assigns weights to the subtask that are proportional 
to the time each subtask takes within the procedure. The sequential subtask 
decomposition procedure looks at the sequence of subtasks within a procedure, thus 
the temporal relationship between subtasks is leveraged. 
Generally, the decompositions did not improve overall prediction accuracy. However, 
the weighted decomposition method performed significantly better than the naïve 
subtask decomposition model, by improving overall accuracy and reducing the number 
of confused sub-tasks. The sub-tasks approach adds new potential confounds to the 
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learning and detection processes, such as subtasks that overlap, subtask that are 
unique to a particular procedure, and the time required to perform each subtask. 
The sequential subtask decomposition method was expected to perform the best, but 
was actually the worst. One reason for this result was that the method relies on the 
subtask prediction sequence to classify the procedures. The second reason was that 
the subtask prediction sequence was processed at a fixed window size at each timestep 
and did not consider the order of the subtasks.  
A limitation of this overall analysis was a limited data set. 

Patient Space. 
We evaluated the accuracy of the system to correctly 
classify 24 clinical procedures automatically from video 
data (Figure 9).  Our video data input consisted of a 
patient and an emergency medical technician (EMT). In 
this phase of the work, OpenPose was applied to the 
video data, including 18 different key point positions 
comprising hands, feet, and head. An example of 
OpenPose processing of data is shown in Figure 9, in 
which the EMT places an intrafosseous infusion (IO) 
line, which is a key pre-hospital procedure. We process 
the output of the OpenPose data to produce a format 
we call PatientSpace, which consists of distances 
between the EMT’s two hands and 18 different key 
locations on the patient.  

We have recorded data for seven subjects who performed 20+ procedures, each 
multiple times. Using this processed data from seven subjects as feature data, we 
applied eight machine learning algorithms to the data to classify this data. Data for six 
subjects was used as training, and the remaining subject was used as testing data. The 
highest accuracy for any algorithm approached 20%. The neural network algorithm 
performed best (~18%), followed by gradient boosting. The confusion matrix for the 
gradient boosting algorithm is shown below. It demonstrates that gradient boosting can 
reliably identify only about eight of the categories. Future work to increase accuracy of 
this machine learning classification algorithm approach will include additional subjects 
performing repetitions of procedures  

Figure 9. OpenPose output of a 
frame of data during an 
instance of the IO line 
procedure. 
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Machine Learning Event Identification.  
The automatic event identification system uses wearable sensors, video, and 

machine-learning to recognize clinical procedures within a controlled 
environment is presented. The system demonstrated how contextual information and 
a majority vote method can substantially improve procedure recognition accuracy for 
each of the procedures listed in Table 4. The wearable sensor data captures arm 
movements that are representative of a procedure; however, there is a vast array of 
clinical procedures that need to be detected, which increases the problem’s complexity. 
This complexity is reduced by determining the “active body region” using image 
processing. 

The Myo device is worn on each of the participant’s forearm and captures arm 
movements and muscle contractions via an inertial measurement unit (IMU) and an 8-
channel electromyography (EMG) sensor, respectively. Acceleration and orientation 
data are captured at 50 Hz, while the EMG data is captured at 200 Hz. The Myo 
automatically calculates the IMU’s roll, pitch, and yaw. A five second window, with a one 
second stride, is applied to each sensor signal. Various window sizes were analyzed, 
but the five second window produced the best results.  

The signal’s mean, standard deviation, and max value are calculated for each 
window and are typical features extracted for activity recognition [3]. Each sensor signal 
is transformed into the frequency domain using the fast Fourier transform in order to 
calculate the signal’s spectral entropy. Thus, four features are extracted from each 
sensor signal resulting in fifty-six features per medic hand. 

An orthogonal approach to classification using wearable sensor data is to use image 
processing to track the medic’s hands during the clinical procedures. Many procedures 
are localized to certain areas on a patient’s body, making relative hand location an 
enticing factor. The image-based hand localization system determines the patient’s 

Figure 10. Confusion Matrix for the Gradient Boosting technique using Patient Space data. 
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closest limb to the medic’s hands for a particular procedure and uses that information 
for classifier refinement.  

During a procedure, assuming the medics hands are proximal to the patient 
eliminates the need for 2D to 3D image conversion. Thus, the calculated distance 
between the medic’s hand keypoints and each skeleton keypoint on the patient is in 
pixel space. This measurement’s variability and noise is reduced by averaging the limb 
position over 1 second (24 frames) in order to determine the patient’s closest limb to the 
medic’s hands per second. The closest limb is mapped to one of four body regions: 
head, chest, arm, or leg. 

The extracted features from the Myos’ IMU and EMG sensors are fed into a random 
forest classifier, which is a supervisory-based machine-learning algorithm that is an 
ensemble of individually trained decision tree classifiers. The random forest classifies a 
signal by taking the class mode of the decision tree ensemble. 100 decision trees with a 
max-depth of 500 are used for this work, where the parameters were chosen based on 
classifier performance. 

The targeted domain requires knowing if a procedure was performed, not that every 
single window is correctly classified. Assuming a procedure’s start and stop time is 
known, the procedure can be classified as the majority vote of each classified window 
within the procedure time frame. For example, if CPR (chest compressions) consists of 
fifteen windows where ten windows are classified correctly and the other five windows 
are not, then the procedure can be correctly classified as CPR. Algorithm 1 provides the 
pseudo code for this classification. The algorithm cycles through each window between 
the procedure start and stop time, extracting features from the wearable sensor data for 
each window. DetermineBodyRegion (runs OpenPose on the window’s image data and 
determines the window’s active body region, which is used to determine which trained 
random forest classifier to apply. The extracted features are fed into the classifier to 
predict a clinical procedure for the window. After each window is processed, the 
algorithm returns the Majority Vote of the predicted procedures using 
Max(ProcedureCount()). 
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The system was 
validated using leave-
one-subject-out cross-
validation, where the 
random forest classifier is 
trained on two 
participants’ randomly 
shuffled data and tested 
on the third participant’s 
data. Five random forest 
classifiers were trained 
per cross-validation fold. 
One classifier was trained 
using data from every 
clinical procedure, which 
represents not knowing 
the active body region. 
The other four classifiers 
correspond to a body 
region (e.g., head, chest, arm, or leg) and were trained using the respective procedure 
data. The collected dataset created a class imbalance between procedures, which 
decreases performance. Thus, the overrepresented procedures are randomly down-
sampled during training in order to better balance the class set. 

The cross-validation analysis was applied to three conditions: Unknown Body 
Region, Perfect Body Region, and Estimated Body Region. The unknown body region 
condition allows for analyzing how the clinical procedure detection system performs 
without image data (i.e., with only wearable sensor data), while the perfect body region 
condition assumes that the active body region is always known accurately (i.e., if a 
procedure corresponds to the head, then the system correctly identifies the head as the 
active region). The random forest and majority vote methods are analyzed within each 
body region condition. 
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The classification accuracy by procedure and known body region type are presented 
in Table 4. Overall, CPR (chest compressions) tended to be classified accurately the 
most, followed by bagging. These accurate classifications were due to the procedures’ 
repetitiveness (i.e., chest compressions or squeezing the bag-valve mask). Vital 
monitoring was classified accurately as well, due to the procedure requiring minimal arm 
movements. Short-duration procedures, (i.e., oral airway or swabbing an area with 
alcohol), were difficult to classify and were often misclassified as a longer-duration 

Table 4. Classification accuracy (%) by Procedure, Known Body Region Condition, and 
Classification method: Random Forest (RF) and Majority Vote (MV) 
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procedure. Additional training data will potentially increase classification accuracy for 
short-duration procedures. 

The classification accuracies corresponding to the unknown body region condition 
serve as a baseline condition, as no contextual data was used. The random forest 
method and majority vote method achieved an average classification accuracy of 18% 
and 19%, respectively. The majority vote method increased classification accuracy by at 
least 10% over the random forest method for five procedures, while two procedure’s 
classification accuracies decreased. 

Knowing the active body region with perfect precision increased classification 
accuracy dramatically for the random forest and majority vote methods, as the 
methods achieved an average classification accuracy of 40% and 50%, respectively. 
There was at least a 10% accuracy increase from the unknown body region condition 
for seventeen procedures using the random forest method and for nineteen procedures 
with the majority vote method. Both methods experienced a substantial decrease in 
accuracy for the combat gauze procedure. The majority vote method increased 
classification accuracy by at least 10% from the random forest method for nine 
procedures, while no procedure accuracy decreased by more than 10%. These results 
demonstrate that the majority vote method performs better than the random forest 
method, when the active body region is correctly identified. 

Estimating the active body regions did not change the average classification 
accuracies dramatically from not knowing the active body region. Six procedures’ 
random forest classification accuracies increased by at least 10%, while five 
procedures’ accuracies decreased by at least 10%. The majority vote method using the 
estimated body region increased classification accuracy for ten procedures without 
knowing the body region, while seven procedures’ accuracies decreased. Additionally, 
the majority vote method increased nine procedures’ accuracies by at least 10% from 
the random forest method, while three procedures’ accuracies decreased. 

Overall, correctly identifying the active body region achieved the highest 
performance with both classification methods, illustrating the utility of using 
contextual information in activity recognition. The majority vote method achieved 
higher average classification accuracies than the random forest method, demonstrating 
the majority vote method’s utility in a real-world complex environment. 

Convolutional Neural Networks with Inception Models for Event Identification.  

We also attempted to predict the clinical procedure being performed using 
convolutional neural networks (CNNs) over the video data. Our basis for this task was 
the work by Karpathy et al. who used CNNs to classify YouTube videos. In this work, 
the same basic data as for the PatientSpace data was used, except the raw video data 
was kept, cropped, and resized to 256 x 256. The basic type of data used for this 
algorithm is shown in Figure 3. This frame data was then sorted according to the 
paramedic and procedure categories in the 24 categories used for training and analysis. 
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The data for each category is not equal in terms of raw frames, which is how the 
CNN models will be trained. Categories ranged from 60,000 frames down to 3,000 
frames of data. To ensure fairness and balance in training, large categories were 
subsampled to 10,000 frames and small categories had frames randomly duplicated to 
increase their frame count to 10,000 frames. Image augmentation was randomly applied 
to duplicated frames to ameliorate the effects of this cloning. For testing accuracy, the 
same balancing is applied to insure equal representation across the categories. It 
should be noted that the training data used in Karpathy et al. was significantly larger by 
orders of magnitude, and this reinforces the take home message from the section on 
Patient Space data, that modern deep learning algorithms typically expect or need 
larger training data. 

As in the case of Patient Space data, we have data from seven subjects. For the 
CNN models, we will use five subjects for training, one for training, and one for 
validation. Results are currently reported for one-fold validation. 

Following the method of Karpathy et al., two CNN architectures are tested, based on 
the Inception V3 network, as shown in Figure 4. The pre-trained Inception V3 network is 
used in four forms:  

1. Main model. Inception V3 with ImageNet weights for 24 categories of clinical
procedures using the single frame CNN approach.

Figure 11. Image cropping area for frame data. 
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2. Variant 1. Half size Inception
V3 with 24 categories using the
single frame approach.

3. Variant 2. Main model with 23
categories, combining CPR
Breath and CPR compression,
as initial results from the main
model suggested that it could
not distinguish these
categories.

4. Late fusion. Inception V3 with
ImageNet weights for 24
categories of clinical
procedures using the late
fusion CNN approach. This
approach takes three frames,
each 15 frames apart,
spanning 1 s of video data in
total. Thus, this model
summarizes data across a
temporal span.

The results of this procedure are that all CNN models achieve at least 90% training 
accuracy. The results for a one-fold validation are that the main model achieves 48% 
accuracy, variant 1 46% accuracy, variant 2 58% accuracy, and the late fusion model 
55% accuracy. Results for five-fold validation are ongoing. 

Findings: 
1. CNN models with pre-trained weights achieve significantly higher training and

validation accuracies on raw data than we have achieved through other means.
2. Data size, particularly sample size across procedure categories, remains a

concern.
3. Significant improvement is needed in this area to achieve acceptable and

deployable results.

Item Set Pattern Mining for Event Identification. 
In contrast to standard machine learning approaches for activity detection, the 

team also worked to detect activity by looking at temporal motion patterns. 
Each participant wore two Myo devices in the left and right hand. The channel 

number is from 1 to 8 in the left hand, and 9 to 17 in the right hand. We define an item 
as the EMG activity signal in a specific EMG channel at a specific time point. We define 
an itemset as the EMG activity signal from all EMG channels at the same time point. We 
represent a clinical procedure with sixteen sequences of itemsets from all myo EMG 
channels. As shown in Figure 6, all EMG signals in time stamp 0 form an itemset: 
{EMG1_1=1, EMG1_2=-1 … EMG2_8=1}.  

Figure 12. The two explored approaches for fusing 
temporal frame information into a CNN. Red, green, 
and blue boxes indicate convolutional, 
normalization, and pooling layers, respectively. This 
image taken from Karpathy et al. 
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We define a frequent itemset as an EMG signal subset that occurs in all the 
participants (i.e., we set the minimum support ratio to 100%) of the same procedure. As 
shown in Figure 2, the frequent length-1 itemsets are (EMG1=1), (EMG2=1), and the 
frequent length-2 itemsets (EMG1=1, EMG2=1), which occur in all participants. We 
define a frequent itemset with length-K as a frequent K-itemset. 

We define a critical K-itemset Ck as the one that embeds information such as: 
1. A procedure that contains Ck must be a specific procedure or a list of specific

procedures. 
2. A procedure that contains Ck must not be a specific procedure or a list of specific

procedures. Table 5 shows the critical itemsets and the procedures they exclude when 
existing.  The critical itemset “5_1” reveals that if we monitor positive signal values in 
left-hand EMG channel 6, then the procedure must not be “Administer IO Medication.” 
Similarly, the critical itemset “5_1->14_1” reveals that if we monitor negative signal 
values in the left-hand EMG channel 6 and the right-hand EMG channel 15, then the 
procedure must not be “Administer IO Medication” and “Administer IV Medication.”  

Critical Itemset Excluded Procedures When the itemset Exist 
5_1 Administer IO Medication 

2_-1->8_1 Bagging 
0_-1->7_-1 Administer IM Medication, 

Figure 13. An example sequence of EMG signal itemsets. (EMG1_* represent the signals 
from the left hand, and EMG2_* represent the signals from the right hand.) 

Figure 14. Example sequences of EMG signals and associated itemsets. 



26 

Administer IO Medication, Administer 
Medication, Bagging, CPR (Breath), Chest-
Tube Preparation, Intubation, Suturing, Vital 

Checking 
5_1->14_1 Administer IO Medication, 

Administer IV Medication 

Evaluation of Frequent Itemsets.  We evaluate the predictive power of the frequent 
itemsets in classifying all clinical procedures. We evaluate different subsets of frequent 
K-itemsets, which K is from 1 to 9. Table 6 shows the average accuracy with different K
values. The result shows that the combined frequent 4 & 5-itemsets provide the highest
average accuracy. Figure 14 shows the result’s confusion matrix when using the
combined frequent 4 & 5-itemsets.

Frequent Itemset Average Accuracy 
1-itemsets 0.13 
2-itemsets 0.22 
3-itemsets 0.26 
4-itemsets 0.35 
5-itemsets 0.35 
4-itemsets & 5-itemsets 0.40 
6-itemset 0.21 
7-itemset 0.13 
8-itemset 0.04 
9-itemset 0.04 

Table 5. Example Critical Frequent 1-Itemsets and 2-itemsets. 

Table 6. Average Prediction Accuracy using different Frequent Itemsets. 
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Conclusion: Activity patterns demonstrate their ability to predict clinical 
procedures without leveraging the body area information or binning the 
procedures. More analysis and development are needed to identify more powerful 
activity patterns. 

Emergency Clinical Procedure Detection via Wearable Sensors 

Communicating a patient's state accurately during transfer from emergency medical 
technicians to hospital personnel is crucial for optimal care. Prior work demonstrated 
automated algorithms that combined wearable sensors with video data from cameras to 
detect clinical procedures and improve this information transfer. However, incorporating 
video requires task- or environment-specific installation mechanisms, raises privacy 
concerns, and is susceptible to occlusion and image noise. The presented approach 
detects clinical procedures using wearable sensors (i.e., inertial and 
electrophysiological) only and the procedures' subtasks to mitigate the sensors' signal 
variability to provide clinical procedure detection. 

Figure 14. Confusion Matrix when using the 4-itemsets & 5-itemsets (40% accuracy). 
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  A paper was submitted for review in March 2021 to the Human Factors and 
Ergonomics Society Annual. 

Field Testing Among Nashville Fire Department Paramedics. 
Data collection was paused due to COVID-19 and we were not able to acquire 

sufficient samples.  
Study participant NFD paramedics continue to show a high level of engagement and 

excitement about the project. They have verbalized that they enjoy participating in 
VUMC research and would like to continue to be a part of the study.  

Leadership at NFD has been accommodating before COVID-19 by allowing us to 
self-schedule observations with dates/times that are most convenient for the observer 
and were supportive of press releases related to this collaboration (Appendix N). 

4. IMPACT:
Development of the principal discipline(s) of the project.  The goal of the project

is to leverage off-the-shelf sensors to automatically generate electronic health record 
documentation that can enable trauma team preparedness.  In the broader field of 
clinical documentation, individual sensors have been previously used in isolation to 
measure vital signs and detect simple activities in a variety of healthcare settings.  The 
project, through its aim of using sensors to create a unified data feed of clinical care 
during patient transport, identify interventions and produce a triage score, will extend 
current approaches to clinical documentation to generate, automatically, new 
information.  The techniques that the project is employing, which are well suited to 
environments where hands-free data entry is essential, has the potential to drastically 
improve the performance of medical teams by creating more robust communication 
pathways.  Additionally, because the approach is not voice dependent, it has the 
potential to create new opportunities for hands free data collection in environments 
where ambient noise prevents the use of voice technologies. 

Other disciplines.  The project’s approach is likely to impact approaches to 
automatic task data collection in fields outside of healthcare. While our focus is to use 
multi-sensor technologies to detect clinical tasks in the operational environment, once 
refined the same approaches could be used to detect other tasks in a variety of settings. 
For example, this approach could be modified to create the ability to detect whether an 
individual has performed an equipment check out procedure, completed a set of 
activities in a particular order, or any other set of tasks where the surveillance of a 
particular activity can provide useful information. 

Technology transfer.  While project’s technology will enable deployed medical 
personnel to coordinate care more effectively among combat casualties, it also will have 
the ability to transfer within the civilian sector during emergency medical trauma 
treatment.  The intent of the project is to widely distribute its methodology as we foresee 
these techniques being used in both the military deployed environment and the civilian 
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pre-hospital sector.  Development of a handsfree system to automatically generate and 
transmit a clinical care record will bridge the gap between current communication and 
documentation practices so that information can flow seamlessly and in real-time across 
settings of care in almost any environment – military or civilian.  

In 2021, a patent application was submitted to the US Patent Office. 

Society beyond science and technology.  The project’s approach is likely to 
impact society beyond the bounds of science through the ability of these techniques to 
help improve social conditions.  We expect the methodologies developed will enable 
rapid and measurable contributions to public health and economic output through the 
ability of a variety of processes to be enhanced, improved, and adjusted to run more 
efficiently.  In healthcare, we expect patients will benefit.  In manufacturing, we expect 
supply chains could be improved.  In the military, we expect a variety of operational 
platforms could be enhanced. 

5. CHANGES/PROBLEMS:

On December 24, 2019, the Department of Defense provided written approval the 
request for a no-cost extension (NCE) to December 29, 2020.  It states that "the 
purpose of this modification is “to execute a no cost extension and update the SOW to 
reflect the extended period of performance. The total contract value is unchanged. The 
period of performance is changed.”   

Our main focus for 2020 was finishing data analytics tasks, and also collecting data with 
the Nashville Fire Department. Unfortunately, due to COVID-19, data collection was 
halted and has not resumed, thus limiting data available for analysis. 

6. PRODUCTS:
A. Papers:

1. Novak, L. L., Simpson, C. L., Coco, J. R., McNaughton, C. D., Ehrenfeld, J.
M., & Fabbri, D. (2020). Understanding the Information Needs and Context of
Trauma Handoffs to Design Automated Sensing Clinical Documentation
Technologies: Qualitative Mixed-Method Study of Military and Civilian Cases.
Journal of Medical Internet Research.

B. Conference Papers:
1. Li, L., Paris, R., Pinson, C., Wang, Y., Coco, J.., Heard, J., Adams, J., Fabbri,

D., Bodenheimer, B. (2020). Emergency Clinical Procedure Detection with
Deep Learning. IEEE Engineering in Medicine & Biology Society.
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2. Heard, J., Paris R., Scully, D., McNaughton, C., Ehrenfeld, J., Coco, J., …
Adams, J. (2019). Automatic Clinical Procedure Detection for Emergency
Services. IEEE Engineering in Medicine and Biology Society.

3. Paris, R., Sullivan, P, Heard, J, …, Ehrenfeld, J., Bodenheimer, B. (2019)
Heatmap Generation for Emergency Medical Procedure Identification. SPIE
Medical Imaging.

4. Bloos, S. M. (2019). Feasibility Assessment of a Pre-Hospital Automated
Sensing Clinical Documentation System.  American Medical Informatics
Association (AMIA).

* The oral presentation received positive press, to include:

A. “Vanderbilt Researchers Test mHealth Platform to Improve ED Hand-Offs”
By Erick Wicklund, MHealthInteligence, 27 NOV 19 
https://mhealthintelligence.com/news/vanderbilt-researchers-test-mhealth-
platform-to-improve-ed-hand-offs 

B. “Documentation system seeks to improve paramedic-ED patient handoffs”
By Greg Slabodkin, HealthData Management, 2 DEC 19 
https://www.healthdatamanagement.com/news/documentation-system-
seeks-to-improve-paramedic-ed-patient-handoffs 

C. “Nashville FD, medical center testing automated documentation system
for ER handoffs” 
By News Staff, EMS1.com, 2 DEC 19 
https://www.ems1.com/technology/articles/nashville-fd-medical-center-
testing-automated-documentation-system-for-er-handoffs-
5tUXEnrafJAqGv1k/ 

C. Patents:
1. Automatic Sensing for Clinical Decision Support. Application Number:
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APPENDIX A 

Project Statement of Work (Updated)  
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APPENDIX B 

Focus Group Interview Guide: 

When thinking about handoffs between pre-hospital and hospital providers who care 
for trauma patients:  
1. What is your impression of handoffs for trauma patients?
2. What information is normally shared during hand-offs? (i.e., essential care
information)

a. What information is most useful to determine next steps in care management? i.
Vitals ii. Injury severity iii. Injury location iv. Patient overall state v. Medical history
vi. Changes in vitals over time vii. Procedures performed during transport

b. Why/how is this information shared?
c. What information is not useful to determine care management?
d. How might receiving this information before patient arrival assist care

management?
3. What issues, if any, have you observed about handoffs for trauma patients? (i.e.,
what gaps in hand-off reports commonly occur?)

a. Example of handoff(s) that went well?
b. Example of handoff that did not go well?
c. Examples of miscommunications/misunderstandings?
d. Examples where pre-hospital transport communication was murky, or not well

communicated?
e. Examples of important information communicated too late?
f. Examples of information that could have been communicated clearer/earlier that

would have improved the care/patient outcome?
4. Why/how was this information not shared? (e.g. Due to time constraints, noise)

a. Type of transfer and mode of arrival (e.g., from scene by ground, air; transfer
from other facility by air or ground; if ground, NFD vs. non-NFD)

b. Time of day?
c. ESI score?
d. En Route Report?
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APPENDIX C 

Key Domain Findings from Focus Groups: 

• Vital Signs and Demographics.
- Vital signs drive a lot of ER’s levels, and they are important predictors.
- The two vital sign values most important for the EMTs and receiving hospital are:

1) the lowest worst number they got, and 2) what it is right now.
- Vital signs that EMTs capture and/or provide include:  Hypertensive, Hypoxic,

Heart rate, blood pressure, oxygen saturation, pain, age, meds history, allergies,
entitle CO2, O2 saturations.

- Demographics are important, and include: time of injury, transportation
length/time since “uncertainty grows as the time shortens”, and age is one of the
most important variables.

• Medication Administration
- The administration (timing and amount) of medicine by EMTs is important

because it will change the care provided.
- It is estimated that a large percentage of field personnel might be guessing after

the fact on the actual administration time.  On timing, the EMTs are approximate,
i.e. within 5 minutes.

- Medicine provided is in colored boxes.  It would be convenient for EMTs for it to
be automatically captured upon administration; maybe with a QR code that
passes through a camera.

- Some medicine administered during transport include: Sedative, analgesics,
paralytics, Ketamine, Tolinase, Succinylcholine, Rocuronium, Zofran, Epi-drips.

• Documentation
- EMTs often do not formally document procedures (ie vitals, things they do).

They use alternative methods instead using shorthand for their own reference.
This includes writing on: Sheets, gloves, paper, tape.

- EMT documentation include: patient contact time, patient weight, medications
given and timing, initial vitals, any procedures that were done, record the number
of attempts, the time of those events.

- EMTs do have a more formal record in the “monitor” where they can document
and pull later.  This monitor is cumbersome especially when having to scroll
through it.  It does not transmit in real time to the receiving hospital.

- Most often, EMTs conduct their formal documentation post-trip arrival.  They do
like this charting, which can take 30 minutes.

- There are multiple people in transport, i.e. two people in ground ambulance, and
3-4 four in air transport.  This can create challenges in documenting all the
procedures.

- An iPad, or something automated, would provide real value.  It will not be that
EMTs would go over and show it to the physician, but it would be a quick
reference where they could go.

• Transport
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- Doctors care about how much and what the medic is doing during transport.
EMTs perform routine procedures to include:  transfusions, airway, chest tubes,
breathing, circulation, full assessment, including vital signs, breathing sounds.

- The receiving hospital may allocate resources in advance based on procedures
conducted during transport.

- Sequence matters since it is like cause and effect.  They want to know what they
did and when it happened as opposed to just a set of collapsed procedures that
you do not provide why it happened.

- EMTs want to get the patients in the vehicle and do whatever you can en route.
They need a reason to delay transport to give something in the field.  They want
to get them in the aircraft as quickly as possible and do what they can in flight
while in motion towards what they really need, which is a surgeon.

• Communication
- There are multiple periods of verbal communication between the EMTs and

receiving hospital before the patients’ arrival, this includes communicating to
hospital 10 minutes out.

- EMTs believe that the doctors do not want too many details when you are at
bedside.  EMTs just normally tell them what happened.  They care less about the
individual times and more about if you followed the ACLS algorithm.

- EMTs need to optimize information to minimize your communication for the
doctor so they can take what is important faster.  It would be helpful if there was
an ability to gather all this information, and let the doctor decide what information
he might need most since they want certain things differently.

- EMTs level their trauma patients en-route which doctors can make inferences
and coordinate resources against (i.e. trauma bay, etc.).

- Communication is difficult whenever there are multiple arrivals back-to-back.
Communication must go through Wi-Fi, they have to take the report, it needs to
go to the nursing staff, and resources need to be allocated.

- Due to environmental distractions, doctors might miss a lot of the details of the
mechanism, the time of injury, that type kind of thing.  Then I would have to go
back and try to piece together those details.

- A few doctors assess that 20% or 30% of the time it might be the wrong
information due to perception from what the EMTs are seeing and the dynamic
situation. Conversely, what seems like a miscommunication is actually just a
change in the patient’s condition too.

- Sometimes the doctors find out they missed or did not get the worst vital so after
the patient arrives, they need to upgrade the trauma and re-allocate resources.

- The biggest lack of communication might be for those patients who are
transferred from another facility when the crew just does not have a good report
from the outside facility.

- There is some disagreement that patients arrive frequently with procedures done
(i.e. intubation) that is not communicated before they arrive.

- EMTs admit that they due forget some things such as the number of times
something has been done or the severity, or it might not be as clear from
memory.  It also could be due to the division of labor during transport.
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- Having some sort of electronic tracking would be beneficial.  Reducing error and
reducing communication will improve patient care.  Sometimes what the doctor
hears and writes down might be different than what the EMT had indicated.

- Doctors encouraged us to build a system where it would pick up on particularly
bad situations and create an automatic alert for the hospital.

• Incorporating (new) Technology
- Doctors trust sensors after they have been analyzed by a person. Regarding

equipment, EMTs said that they would “trust but verify”.
- EMTs wear watches and carry and use cell phones during operations.
- EMTs are hesitant and nervous to be videoed or recorded.
- Some EMTs think that it would be nice to have an Apple Watch with a button that

you could scroll and hit, especially on busy flights, to know what and when
procedures were completed.  Other EMTs think that scrolling might get
frustrating.

- Having something take notes without a pen either verbally or with hand gestures
would be useful especially due to time compression (ie a lot happening during
short flights).

- It would be great to show the information graphically, and sync with the monitor
to automatically put those times in there, and then used when conducting formal
documentation.

- EMTs do not want to have to readjust something under flight suit, which are long
sleeves.  Pressure of the device might be an issue.



40 

APPENDIX D 

Findings from Video Observations 

Figure 9.  MOI occurrences from videos observed.  4 of the videos contained injuries 
that could best be described as “other”, including an explosion, and assault, one that 
was unclear.  One of the four videos that were described as “other” injuries were 
recategorized as a GSW.  It was described as a ballistic injury in the video comments. 
Counts/frequency: Burn (1, 2.1%), Fall (8, 17.0%), Gunshot Wound (GSW) (17, 
36.2%), Hit by Car (1, 2.1%), Moving Vehicle Accident (MVA) (17, 36.2%), Stabbing (3, 
6.4%) 
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Figure 10.  This Figure illustrates the information transferred to the hospital trauma team 
regarding medications administered during transport.  There were 18 out of the 50 
videos which did not provide this information.  
Counts/frequency: Blood (4, 12.5%), Crystalloid (20, 62.5%), Epinephrine (2, 
6.3%), Etomidate (3, 9.4%), Fentanyl(18, 56.3%), Fluids (0, 0.0%), Ketamine (3, 
9.4%), Succ (4, 12.5%), Versed (4, 12.5%), Zofran (7, 21.9%) 
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Figure 11.  This Figure illustrates the information transferred to the hospital trauma team 
regarding information about procedures performed during transport.  47 of the 50 cases 
provided this information.  
Counts/frequency: BVM (Basic Valve Mask) (4, 12.1%), Boarded (2, 6.1%), C-
Collar (3, 9.1%), Compressions (1, 3.0%), Intubation (9, 27.3%), Nasal Airway (2, 
6.1%), Peripheral Intravenous (PIV) (22, 66.7%), Splint (2, 6.1%), Tourniquet (2, 6.1%) 
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Figure 12.  This Figure illustrates that out of the 50 videos, 40 of them contained 
clarifying questions from the receiving hospital trauma team.   
Counts/frequency: Yes (40, 80.0%), No (10, 20.0%) 

Figure 13.  This Figure illustrates the fact that out of the 50 videos observed, information 
about heart rate was only relayed to the hospital trauma team in 10 of the videos.   
Counts/frequency: Bradycardia (6, 60.0%), Loss of Pulse (1, 10.0%), Tachycardia (3, 
30.0%) 
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Figure 14.  This Figure illustrates “other” information provided to the hospital trauma 
team upon arrival at the hospital. 
Counts/frequency: Age (39, 79.6%), Allergies (22, 44.9%), Assessment (24, 
49.0%), Blood Gluclose (BG) (10, 20.4%), Cancer (0, 0.0%), Complaints (4, 
8.2%), Diagnosis from OSH (4, 8.2%), eCO2 (2, 4.1%), Glascow Coma Scale (GCS) (7, 
14.3%), Loss of Consciousness (18, 36.7%), Medications (18, 36.7%), Mental 
Status (12, 24.5%), Past Medical History (PMHx) (25, 51.0%), Pupil Dilation (4, 8.2%) 
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APPENDIX E 

 Clinical Emergency Procedure List 
To be able to simulate real-world trauma transport, the team compiled a list of 

procedures that typically occur in an emergency setting as seen in Table 1.  The set of 
procedures were determined by analyzing military tactical combat care guidelines and 
interviewing paramedics and trauma staff.  

The following procedures were chosen for inclusion in simulations from a 
comprehensive list of pre-hospital trauma procedures for their 1) clinical importance and 
potential impact on clinical decisions by providers at the receiving facility, and 2) 
anticipated ability to discriminate and identify the procedure based on motion and/or 
heat map activity. 
- Tourniquet application: When major bleeding is identified, bleeding is controlled

using firm, steady pressure to the site using a tourniquet placed proximal to the
injury.  The tourniquet is placed around the injured extremity over a bony
prominence if possible, and the tourniquet is tightened until bleeding stops.

- Application of combat gauze: In cases of significant bleeding, combat gauze can be
applied by holding pressure to the site.

- Bag-valve-mask ventilation: Bag-valve-mask (BVM) ventilation includes application
of a facemask with adequate seal to use an attached bag to provide ventilation. With
one provider, the mask is held in place by one hand, usually the non-dominant hand,
and the other hand squeezes the bag to generate airflow into the patient’s lungs.
Providers may switch hands to avoid fatigue, and in some situations two providers
are used – one holds the mask in place while the other squeezes the bag.

- Oral airway: In patients who are obtunded and have no gag reflex, placement of an
oral airway displaces the tongue anteriorly so that does not obstruct the airway and
facilitates bag-valve-mask ventilation.  Oral airway placement involves opening the
mouth, displacing the tongue anteriorly, and inserting the oral airway into the mouth
so that the distal tip is behind the base of the tongue.

- Endotracheal intubation: Among patients who are unable to breathe on their own, an
endotracheal tube or supraglottic airway may be placed in the trachea or posterior
pharynx, respectively, to provide oxygenation and ventilation.  This procedure is
generally performed from the head of the bed, although it can be performed from
other approaches.  Typically, the right hand is used to open the mouth, the left hand
is used to insert laryngoscope and sweep the tongue to the left, and the right hand is
used to introduce either the endotracheal tube or the supraglottic airway. The
laryngoscope is then removed from the mouth and the endotracheal tube or
supraglottic airway bulb secured in place by inflated a bulb using a syringe with the
appropriate volume of air.  Attaching the tube to a BVM then ventilates the patient
and listening to breath sounds with a stethoscope and/or looking for color change on
a colorimetric indicator that detected carbon dioxide confirm appropriate positioning.

- Cricothyrotomy: This procedure is performed when oxygenation and ventilation
above the vocal chords is not possible.  This procedure is generally performed
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facing the patient’s the side so that the non-dominant hand palpates and stabilizes 
the cricothyroid membrane, and the dominant hand is used to puncture the 
membrane and introduce the tube, which is then attached to a BVM for ventilation. A 
scalpel or hollow bore needle can be used to gain access to the trachea inferior to 
the vocal chords. 

- Needle decompression and chest tube placement: These procedures are performed
when a tension pneumothorax is suspected.  For needle decompression, a large
bore needle with a catheter is inserted into the pleural space, generally at the 2nd or
3rd intercostal space at the mid-clavicular line.  A one-way valve is then applied so
that air accumulating in the pleural space exits the thoracic cavity. For chest tube
placement, the patient is positioned so that the arm on the affected side is above
their head; a scalpel is used to make an incision in the mid-axillary line at the 3rd or
4th intercostal space, and blunt dissection is used to gain access to the pleural cavity
above the rib.  A clamped chest tube is then inserted into the thoracic cavity and
directed posteriorly and superiorly, aiming for the apex of the thoracic cavity.  This
tube is then attached to suction.

- Chest compressions: Chest compressions performed as part of cardiopulmonary
resuscitation (CPR) when patients become unresponsive, are not breathing, and do
not have a pulse.  Chest compressions are performed by using both hands, one on
top of the other, to push the patient’s chest a depth of at least 2 inches over the
sternum between the nipples at a rate of ~100-120 compressions per minute.  Chest
compressions will be alternated with ventilation if there is only one provider
available.

- Immobilization: Patients are immobilized to prevent additional injuries or exacerbate
existing injuries such as spinal fractures. This is done by placing the patient on a
spine board and placing a cervical collar around the cervical spine.

- Splinting: Obvious fractures or bony deformities are stabilized by securing the
extremity to a splint using gauze or kerlex.

- Peripheral intravenous catheter placement: Placement of a peripheral intravenous
(PIV) catheter is generally done in the patient’s arm or leg to administer intravenous
medications or fluid.  Obtaining PIV access involves placement of a tourniquet
proximal to the vein, palpation of the vein, cleaning the site, insertion of the catheter,
holding pressure proximally, releasing the tourniquet, attaching the catheter to tubing
or a leuer lock, generally with a twisting motion, and applying a dressing to hold the
PIV in place.

- Intraosseus placement: Obtaining intraosseus (IO) access allows administration of
medication into the bone marrow.  IO placement may be performed on the sternum,
proximal humerus, or proximal tibia, distal femur, or distal tibia.  IO placement can
be accomplished using a spinal needle that is screwed into the bone by hand or by
IO kits that drill or inject IO needles into the bone.  Once access to bone marrow has
been obtained, the needle is secured in place with a dressing.

- Medication administration: Medications may be administered by PIV, intraosseus
(IO) access in order to facilitate intubation, during a code, or to treat massive
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bleeding.  Medications may be removed from a vial using a needle attached to a 
syringe, insertion of air, and then removal of the medication; this medication is 
administered after cleaning the hub of the PIV/IO, and in general 10ml of saline are 
used to flush the line.  Medications such as succinylcholine, etomidate, and atropine 
may be stored in prefilled syringes, which can be attached directly to a PIV or IO. 
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APPENDIX F 

EMG and Accelerometer Graphs Examples 

Figure 15: Myo activity during a simulation lab experiment. 
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Figure 16: Myo Armband and Apple Watch accelerometer data. Myo does not remove 
gravity component so the two graphs are not directly comparable. 
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Figure 17: Myo Armband and Apple Watch accelerometer data summary statistics for entire 
session compared to event specific CPR data, from one participant in a simulation lab 
experiment. 
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APPENDIX G 

CELA Lab Setup, Process, and Data Collection: 
The CELA lab served as the data collection environment and contained all the 

necessary equipment for the procedures in Appendix E.  The repeated measures 
evaluation required each participant to complete each medical procedure multiple times 
within a three-hour timeframe.  The target number of instances per medical procedure 
are provide in Table 4, where the desired number was determined based on pilot data.  
Bagging and CPR are time-based procedures; thus, the time per procedure was chosen 
such that fatigue effects may manifest.  The procedures were grouped by category (i.e., 
airway management, wound related) and were completed in five rounds, where each 
round varied the presentation of the procedures to account for ordering effects.  

Medical Procedure Number of Instances Medical Procedure 
# of 
Instances 

Administer IM Medication 5 Place an Oral Airway 10 
Administer IO Medication 5 Place Blood-Pressure Cuff 5 
Administer IV Medication 6 Place ECG Leads 5 
Bagging 5, 7.5, and 10 minutes Place an IO Line 5 
Combat Gauze 6 Place a Pulse-Ox Monitor 5 
Chest Decompression 5 Splinting 3 
CPR 5 minutes Intubation 2 
King Airway 2 Combat Tourniquet 3 

 

The evaluation’s objective was to collect video, acceleration, and electromyography 
(EMG) data, which will serve as training and testing data for the medical activity 
detection system.  Cameras were used to collect video data, while the Myo device and 
Apple watch collected acceleration and EMG data.  Another evaluation goal was to 
have multiple participants with varying amounts of medical experience, as experience 
will impact the time to perform and the proficiency of each medical procedure.  

One pilot and four participants completed the evaluation.  The pilot was a study 
team member and served to motivate the experimental design and to validate the 
acceleration and EMG data collection systems.  The four participants had varying 
amounts of experience (i.e., ranging from a medical student to emergency room 
surgeon) and consisted of one female and three males.  Additionally, the amount of 
medical experience did not mean that the participant had more experience doing a 
procedure than another participant.  For example, P3 had more years of experience 
than P2, but P2 had substantially more experience placing an IV.  Future data collection 
will collect medical experience data by procedure, in addition to overall experience. 

The task environment set-up can be seen in Figure 18, which depicts the 
placement of four cameras.  Each participant was free to move around the bed to 
perform each medical procedure but were instructed to remain seated in a rolling chair.  
The necessary medical equipment was placed on the mannequin or on the bed, prior to 
completing the corresponding procedure.  

Table 4: Target Number of Instances per Medical Procedure 



52 

Each medical procedure was 
tagged with start and stop times 
using the collected video.  The 
average times (st. dev.) in seconds 
each participant took to complete 
each procedure are given in Table 5.  
Participant P2 tended to take less 
time administering medication 
through an IO line than the other 
participants; although, the 
participants took roughly the same 
time to administer medication through 
an IV line. Participants took roughly 
the same time to perform a round of 
CPR (breathing and compressions); 
however, participant P2’s first CPR 
round contained 200 chest 
compressions.  The reason for the larger number of chest compressions was that 
research has shown greater resuscitation success with the 200 initial chest 
compressions.  

There was a large variance in chest-tube timings, which may be attributed to the 
procedure’s infrequency in the real-world.  A large variance between participants was 
seen in the combat gauze timings, which was attributed to not having the necessary 
medical training equipment.  Participant P4 took longer to draw medication than the 
other participants, due to the participant’s relative inexperience.  Participant P2 took 
less time than the other participants to put on the ECG leads, administer IM medication, 
place an IO line, place an IV line, tie an IV tourniquet, wrap a head wound, and place a 
pulse-ox monitor.  Participant P2 had more experience doing these procedures than the 
other participants.  The participants took roughly the same time to intubate a patient, but 
had some variance in inserting a king airway, which may be attribute to how much 
lubricant was in the dummies mouth and how much force was needed to insert the king 
airway. Participant P3 took a little longer to place an oral airway compared to the other 
participants, due to the use of a tongue compressor. Participants P3 and P4 took a 
longer amount of time to splint a leg than participants P1 and P2, due to wrapping 
additional gauze around the leg.  Only participants P3 and P4 sutured the chest-tube 
incision close, and participant P4 took longer suturing, as this was the participant’s first 
time placing a chest-tube.  Additionally, participants P3 and P4 were the only 
participants to swab the chest-tube incision site with alcohol, which created longer event 
timings than participants P1 and P2.  There was a large timing range in monitoring the 
patient’s vital signs across participants, which may be due to the lack of vital signs, as 
the participants had to act like they were hearing breaths and heart-beats. 

Overall, the medical event timings show the effect experience and individual 
differences have on completing a medical procedure.  The medical activity detection 
system will have to account for various amounts of medical experience and times to 
achieve high accuracy.  The system may be trained on certain movements, e.g., 
inserting a laryngoscope blade, rather than the entire medical procedure to improve 

Figure 18: CELA Lab Environment Set-Up
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classification performance.  Additionally, the system may need to incorporate various 
window sizes (the length of time features are extracted from) in order to accommodate 
the range of timings across the medical procedures. 

Procedure P1 P2 P3 P4 
Administer IO Med. 26.0 (13.89) 10.75 (3.4) 29.0 (6.56) 29.0 (0.00) 
Administer IV Med. 28.5 (11.15) 24.5 (11.26) 20.6 (6.15) 24.0 (16.97) 
Bagging 342.0 (217.79) 358.5 (263.13) 126.5 (144.23) 608.0 (0.00) 
Blood-Pressure Cuff 39.5 (3.54) 11.33 (1.53) 20.0 (8.49) 15.0 (0.00) 
CPR (Breath) 4.73 (1.16) 7.73 (1.35) 7.0 (1.26) 5.31 (0.63) 
CPR (Compressions) 15.4 (0.74) 17.75 (1.96) 20.91 (22.59) 17.21 (3.45) 
Chest-Tube 130.33 (22.23) 49.4 (26.37) 66.67 (23.71) 100.0 (0.00) 
Combat Gauze 42.0 (31.11) 12.0 (3.61) 3.0 (0.00) 77.0 (0.00) 
Combat Tourniquet 51.0 (0.00) 34.0 (9.64) 58.5 (0.71) 62.0 (0.00) 
Draw Medication 12.5 (2.12) 9.5 (2.38) 9.15 (3.11) 22.8 (3.27) 
ECG Leads 133.0 (4.24) 61.0 (10.44) 110.5 (2.12) 101.0 (0.00) 
IM Administration 18.0 (14.14) 6.0 (2.16) 13.33 (6.02) 12.0 (2.83) 
IO Line 60.0 (16.46) 33.25 (10.4) 78.67 (38.42) 36.0 (0.00) 
IV Line 92.25 (33.03) 42.5 (11.81) 91.0 (40.8) 70.0 (1.41) 
Intubation 39.0 (19.8) 42.0 (0.0) 43.0 (5.66) 39.5 (6.36) 
King Airway 18.0 (8.49) 30.5 (12.02) 26.0 (1.41) 15.0 (0.00) 
Oral Airway 4.29 (2.29) 3.88 (1.36) 7.0 (1.41) 5.5 (0.71) 
Pulse-Ox Monitor 11.5 (3.54) 7.0 (1.73) 13.0 (2.83) 16.0 (0.00) 
Splinting 46.0 (9.9) 46.0 (11.36) 61.0 (26.87) 65.0 (0.00) 
Suturing nan (nan) nan (nan) 100.67 (25.01) 471.0 (0.00) 
Swab Area w/ Alcohol 4.71 (1.25) 3.9 (1.91) 7.23 (3.65) 6.67 (3.14) 
Tie Tourniquet (IV) 15.75 (3.2) 8.83 (3.49) 15.0 (5.77) 16.5 (4.95) 
Vital Monitoring 16.5 (3.54) 22.33 (5.51) 17.67 (7.09) 27.0 (0.00) 
Wrap Head Wound 51.0 (5.66) 33.33 (11.85) 60.5 (6.36) 68.0 (0.00) 

Table 5: Medical Procedure Event Timing's Mean (Std.Dev) by Participant in Seconds 
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APPENDIX H 

Hierarchal Task Analysis: 

Each medical procedure was broken down into their anatomical movements 
using hierarchal task analysis [2] to identify distinct movements that may differentiate 
the procedure from other procedures, which will be useful for classification.3 Published 
medical procedure guides were used to decompose each procedure into sub-tasks, 
which were broken into anatomical movements.  The task analysis for CPR is given in 
Figures 18 and 19. The medical procedure (CPR) is decomposed into four sub-tasks, 
where subtask 1.3 Give 2 breaths can be completed two different ways: without a bag-
valve mask (Subtask 1.3A) or with bag-valve mask (Subtask 1.3B).  Subtask 1.3 is 
further decomposed into sub-sub tasks, which are decomposed into anatomical 
movements. This analysis allows for determining overlap between procedures and 
potential state changes. For example, there is overlap between CPR and Bagging, if 
CPR uses the bag-valve mask to give two breaths.  However, the chest compressions 
in CPR are unique; thus, training a system to only use data pertaining to chest 
compressions to classify CPR may increase accuracy.  A state change can also be 
identified between two subtasks, such as between Give 2 Breaths and Chest 
Compressions.  Detecting state changes may be useful for state-based classification 
algorithms, such as Hidden Markov Models. 

3 Stanton, N. A. (2006). Hierarchical task analysis: Developments, applications, and extensions.  Applied 
ergonomics, 37(1), 55-79. 

Figure 18: Hierarchical Task Analysis for CPR 
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Figure 19: Hierarchical Task Analysis for CPR 
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APPENDIX J 

Paper: Feasibility Assessment of a Pre-Hospital Automated Sensing Clinical 
Documentation System 
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APPENDIX K 

Paper: Understanding the Information Needs and Context of Trauma Handoffs to 
Design Automated Sensing Clinical Documentation Technologies: Qualitative 
Mixed-Method
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APPENDIX L 

Paper: Automatic Clinical Procedure Detection for Emergency Services 
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Appendix M 
Paper: Emergency Clinical Procedure Detection with Deep Learning
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APPENDIX N 

Nashville Fire Press Release 
Earlier this year, for 12-hour shifts over multiple months, two paramedics with the 

Nashville Fire Department worked with sensors placed on both wrists and both 
forearms, transmitting body motion and muscle activity to a server at Vanderbilt 
University Medical Center (VUMC). Meanwhile, a research-observer, seated inside the 
ambulance, logged the procedures performed on each patient. The VUMC, Vanderbilt 
University and Oregon State University research team is evaluating how well these data 
can be used to automatically produce clinical documentation. 

 Daniel Fabbri, PhD, Assistant Professor of Biomedical Informatics and Computer 
Science, is leading a project to improve the handoff of incoming emergency patients at 
military field hospitals and civil hospitals. The idea is to automatically generate patient 
acuity scores and abbreviated care records of in-transit patient procedures (e.g. CPR, 
intubation, etc.) based on computer interpretations of signals from sensors and video 
cameras. 

On Nov. 18, at the American Medical Informatics Association Annual Symposium 
in Washington, D.C., Fabbri’s team presented results of the feasibility work with 
Nashville Fire Department EMS. 

“We wanted to start out with a small study to assess the technology and see 
what practical issues might arise, and this work with Nashville Fire proved quite fruitful. 
Due to privacy considerations we did not use video, but our initial findings bode well for 
the feasibility of our project,” Fabbri said. 

They call their system Automated Sensing Clinical Documentation because the 
system operates without medic input, using sensor data to produce documentation. As 
a result, medics can focus entirely on patient care without being distracted by writing 
down what they did. Simultaneously, the resulting documentation is extremely valuable 
for emergency room physicians and trauma surgeons who want to know what care has 
been provided. 

“While our paramedics were outfitted with special armbands and watches, they 
didn’t have to alter their daily routine or patient care protocols at all,” noted Joaquin 
Toon, the EMS Quality Improvement Officer at Nashville Fire Department. 

Fabbri’s co-investigators for the feasibility study included colleagues from 
Biomedical Informatics (Dr. Laurie Novak), Emergency Medicine (Dr. Candace 
McNaughton), Anesthesiology (Dr. Jesse Ehrenfeld) and Electrical Engineering and 
Computer Science (Dr. Rorbert Bodenheimer), with partners at Oregon State University 
(Dr. Julie A. Adams). The project is supported by a $1.7 million research grant from the 
U.S. Department of Defense. 

“Technology continues to advance.  To think that a civilian paramedic or a 
military medic’s hand and body movements can generate a patient medical record or 
alert the hospital of an incoming patient’s condition is phenomenal.  Nashville Fire 
Department was excited to partner with Vanderbilt Emergency Medicine in this 
research,” said Commander Toon. 
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APPENDIX O 

Quarterly Quad Charts 
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END OF REPORT 


