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1. Summary
The Personalized Privacy Assistant (PPA) Project was launched to develop, 
demonstrate and evaluate novel technologies that empower end-users to effectively 
evaluate privacy policies and configure privacy settings in mobile and Internet of Things 
(IoT) contexts. This includes addressing privacy challenges associated with Big Data 
and developing a privacy infrastructure that enables the automated discovery of IoT 
resources and their privacy practices, including any available privacy choices. Work in 
the project was organized around the following themes: 

● Personalized Privacy Infrastructure for the Internet of Things, including
Personalized Privacy Assistants

● Taxonomy of Privacy Dialog Primitives
● Modeling of User Privacy Preferences and Expectations
● Transparency and Explanation
● Privacy Risk in Machine Learning Pipelines

Work in this project produced a number of new technologies, tools, models, and findings 
that have already influenced and are expected to continue influencing privacy practices. 
This includes the deployment of a publicly accessible privacy infrastructure for the 
Internet of Things to help publicize the presence of IoT systems and their data collection 
and use practices, including any available privacy choices. This includes the availability 
of an “IoT Assistant” app for people to discover these IoT systems and their data 
practices, including accessing any privacy choices they make available - the IoT 
Assistant app is available in both the iOS and Android app stores. This also includes the 
release of a personalized privacy assistant app for rooted Android phones to help 
people manage their mobile app permissions, the development of a mobile app privacy 
compliance tool (“MAPS”) that has been used to automatically analyze over 1 million 
Android apps for potential privacy compliance issues, the launch of the “Opt-Out Easy” 
browser extension to help people discover opt-out choices buried deep in the text of 
privacy policies (tool available in the Chrome and Firefox stores). In addition to these 
tools, research conducted in the project helped develop rich models of people’s privacy 
preferences and expectations across a variety of mobile app and IoT contexts, including 
the development of predictive models using machine learning techniques. These 
techniques have been shown to have the potential of drastically reducing user burden 
when it comes to helping users manage the myriad of privacy choices they need to 
make in mobile and IoT environments. This research has included exploring tradeoffs 
between user burden and control when it comes to configuring these technologies, 
including identifying differences in the way different people feel about relying on 
automated recommendations and even delegating some of their privacy decisions to 
predictive models. Research on privacy nudges has demonstrated that nudging can be 
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configured to be particularly effective at helping people make privacy decisions they are 
less likely to regret. Privacy nutrition labels have been developed to help simplify the 
presentation of key data practices to users when it comes to evaluating different IoT 
devices. Work on transparency has also yielded techniques to identify and analyze data 
flows and to help evaluate privacy risk in machine learning pipelines. In addition to the 
above, research conducted in this project has influenced ongoing privacy discussions, 
with findings presented at high profile events such as the Federal Trade Commission 
(FTC) Privacy Conference, the International Conference of Data Protection and Privacy 
Commissioners, events organized by the International Association of Privacy 
Professionals and many other venues, while also receiving significant exposure in the 
press. Most recently, the project also designed and evaluated a number of possible 
icons and textual descriptions and its recommended design was eventually adopted as 
the official recommendation for the new California Consumer Protection Act (CCPA). 
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2. Introduction 
The Internet of Things and Big Data are making it impractical for people to keep up with 
the many different ways in which their data can potentially be collected and processed. 
What is needed is a new, more scalable paradigm that empowers users to regain 
appropriate control over the collection and handling of their data. This project introduced 
and researched personalized privacy assistants capable of helping users when it 
comes to selectively informing them about data practices, nudging them to carefully 
reflect on their privacy decisions and generally assisting them in managing their privacy 
by learning models of their preferences and expectations. Through targeted interactions, 
privacy assistants are intended to help their users better appreciate the ramifications 
associated with the processing of their data, and empower them to control such 
processing in an intuitive and effective manner. This includes selectively alerting users 
about practices they may not expect and/or feel comfortable with, recommending the 
selection of privacy settings and/or confirming with users other privacy choices, refining 
models of their preferences, and occasionally nudging them to carefully (re)consider their 
privacy decisions. Ultimately, by learning our preferences and expectations, privacy 
assistants will help their users more effectively manage their privacy across a wide range 
of devices and contexts without placing unrealistic burden on them. 
Work in this project was organized around several closely related themes or tasks:  

● Personalized Privacy Infrastructure for the Internet of Things, including 
Personalized Privacy Assistants 

● Taxonomy of Privacy Dialog Primitives 
● Modeling of User Privacy Preferences and Expectations 
● Nudging and Explanation 
● Transparency and Compliance Analysis 
● Privacy Risk in Machine Learning Pipelines 

 
The following summarizes the methods, assumptions and procedures used in this 
project. This is followed by a discussion of major results and their implications. 
Concluding remarks and recommendations are provided at the end of this report. 
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3.  Methods, Assumptions, and Procedures  
Work in this project combined user-centered design methodologies, human subject 
studies, software engineering, machine learning, code analysis and other relevant 
methodologies as further discussed below. User-centered design methodologies were 
used to understand users and their tasks in different contexts, to inform the design of 
technologies that include our IoT Privacy Infrastructure, our IoT privacy Assistant, our 
mobile app privacy assistant, our Opt-Out Easy browser extension and our privacy 
nutrition labels. Human subject studies were conducted to develop models of people’s 
privacy preferences and expectations, to evaluate and refine different technologies 
(e.g., mobile app privacy assistant, Opt-Out Easy browser extension, privacy 
recommendations, design of privacy logos and textual descriptions for the California 
Consumer Privacy Act), interventions (e.g., privacy nudges). Software engineering 
methodologies guided the design and development of software artifacts such as our IoT 
Privacy Infrastructure, our MAPS Mobile App Privacy Compliance tool, or our Opt-Out 
Easy browser extension. Machine learning models were developed for people’s privacy 
preferences and expectations as well as to help automatically extract disclosures from 
the text of privacy policies. Static and dynamic code analysis techniques were 
developed in support of our work on transparency, including our development of 
techniques and tools to automatically analyze mobile apps for potential privacy 
compliance issues.  These methods and our work are further described below. 
 
Research conducted as part of this project was motivated by the assumption that 
people generally care about their privacy, though often subject to diverse and complex 
privacy preferences and expectations. Another key assumption was that, while people 
care about their privacy, they struggle to effectively manage it as the amount of 
information they would need to familiarize themselves with and the number of decisions 
they would have to make is simply impractical. To make things worse, privacy is 
typically a secondary task with users often focused on other primary tasks as they are 
faced with privacy decisions. These assumptions - which had been documented already 
in prior research, including research by the PIs - were confirmed by several studies 
conducted in this project. Through work conducted as part of this project, including the 
development of a privacy infrastructure for mobile and IoT contexts and the 
development of privacy assistants to help users manage their privacy across these 
contexts, the PIs were able to demonstrate that it is possible to overcome some of the 
usability challenges associated with managing one’s privacy. 
 
Work in the project was organized around several tasks, as discussed below. 
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3.1 Personalized Privacy Infrastructure for the Internet of Things 
and Personalized Privacy Assistants 
As we interact with an increasingly diverse set of sensing technologies, it becomes 
difficult to keep up with the many different ways in which data about us is collected and 
used. Research has shown that while people generally care about their privacy, they 
feel they have little awareness of, let alone control over, the collection and use of their 
data. This situation is the motivation for this project’s work on personalized privacy 
assistants and on a privacy infrastructure for the Internet of Things. The objective is to 
empower people to regain control over their privacy in a world where the emergence of 
mobile technologies, the Internet of Things and Big Data is making it increasingly 
difficult for people to understand and control how data about them is being collected and 
used. 

Within our IoT Privacy Infrastructure (or IoTPI) [DDS+18], which is now available to the 
public at large (iotprivacy.io), IoT sensors, devices, systems, services, and applications 
are modeled as “IoT resources” that collect data in a given area. The infrastructure 
enables people, whether owners or contributors from the general public, to describe IoT 
resources and their data practices (e.g., what data they collect, how they handle that 
data, for what purpose, and what types of privacy choices are made available to people 
whose data can possibly be captured). All users are required to be authenticated and 
are required to take responsibility for the resource listings they publish. Registries 
enable organizations and groups of people to curate collections of related resource 
descriptions such as resources in a mall, in an office building, on a campus, in a given 
neighborhood, etc. Registries can have owners (e.g., a mall operators, universities, 
neighborhood organizations) as well as administrators (e.g. personnel working for a mall 
operator or a university, or administrator in charge of a registry for a given neighborhood 
or office building). Resource listings include descriptions of the data being collected, the 
purpose for which collection is taking place, information about retention, analytics, 
anonymization/de-identification and more. It also includes information about the area 
where data collection takes place and a radius within which presence of the resource 
will be publicized (discoverability of the resource).  

The IoT privacy infrastructure provides support for each resource to publicize the 
privacy choices made available to the public, such as opt-in/opt-out choices for the 
collection and use of their information, request for their data to be deleted and more. 
This includes support for data subject rights such as those mandated by regulations that 
include CCPA, CPRA, the European Union (EU) General Data Privacy Regulations 
(GDPR), Children’s On-line Privacy Protection Act (COPPA), and more. At the same 
time, the IoTPI is regulation agnostic. This means that while it has the fields and 
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functionality necessary to accommodate the requirements associated with a rich set of 
regulations, it doesn’t impose these requirements on any particular resource 
description. Instead, it is up to resource owners to make sure their descriptions comply 
with applicable regulatory requirements. Resource descriptions also include links to 
privacy policies and are not intended to act as substitutes for these policies (or “privacy 
policies”). Instead, they provide the basis for more succinct privacy notices in the form 
of privacy nutrition labels that focus on those types of data practices that people are 
most likely interested in learning about and would most likely want to be notified about.  
 
As discussed above, resource descriptions can be entered by resource owners and 
administrators but they can also be entered by contributors from the general public. All 
users are required to be authenticated before they can create and publish resource 
descriptions. Many resource description fields include values such as “unspecified” to 
accommodate situations where a resource owner or a contributor does not have the 
answer to some questions (e.g., Information about retention practices or who data might 
be shared with, when the resource description is provided by a contributor who doesn’t 
have access to this information). On the other hand, people are not allowed to publish a 
resource description until they explicitly indicate that they take responsibility for their 
description and that the description is accurate to the best of their knowledge.  
 
The Privacy Infrastructure has been designed to make it as easy as possible for 
resource owners and contributors to enter and publish resource descriptions. In 
particular, it includes functionality to create and use resource templates that provide 
pre-filled descriptions of typical resources (e.g., typical video surveillance system in a 
mall or typical IoT device such as a Ring doorbell), saving people the trouble to 
research and/or enter details that can be pre-filled for them. This includes functionality 
that enables vendors to provide their own templates, where they take responsibility for 
details provided in their templates. 
 
A first fully-fledged version of the infrastructure was deployed at Carnegie Mellon 
University (CMU) and UCI in 2016. This infrastructure was detailed in our 2018 Institute 
of Electrical and Electronics Engineers (IEEE) Pervasive Computing journal article, 
“Personalized Privacy Assistants for the Internet of Things: Providing Users with Notice 
and Choice” [DDS+18]. This included the development of first versions of our IoT 
Assistant app, which uses the infrastructure to enable users to discover IoT resources 
around them, including their data practices and any available privacy choices offered by 
these IoT resources. 
 
With new personnel joining the team in summer 2018, we updated the codebase and 
re-implemented the infrastructure to improve scalability, reliability, and usability.  This 
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included migrating to the cloud, using Amazon Web Services, which significantly 
improved scalability and reliability. Second, we completely re-implemented the IoT 
Assistant app using Flutter, a relatively new cross-platform app development framework 
that supports native apps in both iOS and Android, allowing our app to offer a 
significantly enhanced user experience. This work included multiple design iterations, 
from evaluating early prototypes to collecting feedback from users downloading the app 
from the iOS and Android Google Play app stores. Significant effort was also put into 
the development of functionality to support IoT resource templates, richer administration 
functionality, and support for a rich collection of APIs enabling IoT Assistant users to 
access privacy choices made available by IoT resources they discover. This also 
included multiple redesign and refinement of the IoT portal through which resource 
owners and contributors define and manage their resource descriptions as well as 
resource registries and resource templates.  

A high-level depiction of the Infrastructure’s architecture is shown in Figure 1. The 
infrastructure includes several key components: 

● The IoT Web Portal (IoT Portal): This website enables owners and system
administrators to describe IoT resources (including specifying the area where
they can be discovered), their data collection and use practices and privacy
options

● IoT Resource Registries (Registries), as already discussed earlier
● The IoT Assistant app (IoTA): This is a cross-platform mobile app that enables

users to discover nearby IoT resources and their data practices, receive
personalized notifications about nearby IoT resources based on a rich collection
of criteria they can personalize (e.g., type of data being collected, whether they
data is personally identifiable, but also frequency of notifications).

● Privacy Option Management (POM): This is a system that helps users take
advantage of privacy options made available by IoT resources they discover.
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Figure 1: IoT Privacy Infrastructure - High Level Architecture 

 

3.2 Taxonomy of Privacy Dialog Primitives  
An important part of effectively communicating with users and motivating them to 
carefully consider privacy decisions at hand involves developing and evaluating the 
effectiveness of different dialog primitives. As part of this work, which complements our 
work on privacy nudging (summarized in another section below), research in this project 
focused on the evaluation of different types of recommendations, evaluating the impact 
of privacy recommendations attributed to privacy experts versus privacy 
recommendations attributed to friends [EDB+18]. Another important dimension of this 
work has revolved around the development of privacy nutrition labels. The idea here is 
to identify a small number of standardized privacy disclosures that can help inform 
users about key privacy issues they would most likely want to know about [EDA+19, 
EAC+20, EDA+21]. This research is further detailed below. 
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3.2.1 Exploring How Privacy and Security Factor into IoT Device Purchase 
Behavior 
We conducted in-depth semi-structured interviews with 24 participants who had 
purchased at least one IoT device (smart home device or wearable) [EDA+21]. We 
explored interviewees’ understanding of privacy and security issues associated with IoT 
devices and factors they considered when purchasing their device. At the end of each 
interview, we displayed prototype IoT security and privacy labels that we developed, 
and discussed them with interviewees. Finally, we conducted a 200-participant 
Mechanical Turk (MTurk) survey to probe the influence of privacy and security 
information when making IoT purchase decisions. 
 

3.2.2 An Expert Study to Determine IoT Privacy and Security Label Content 
Given consumers’ scarce attention, presenting them with the most relevant security and 
privacy information in the most digestible form is crucial. To determine the most 
important information to include on IoT privacy and security labels, we solicited the 
opinions of privacy and security experts [EAC+20].  
 
We conducted interviews and surveys with 22 privacy and security experts. To get 
different perspectives, we recruited experts from industry, academia, government, and 
non-governmental organizations (NGOs). We also ensured that these experts come 
from different backgrounds related to IoT (software, hardware, and policy). We used the 
iterative Delphi methodology to develop a consensus among the experts around 
important factors and an understanding of their reasons for or against including each 
factor.  
 

3.3 Modeling of User Privacy Preferences and Expectations  
People’s privacy preferences and expectations have been shown to be complex and 
diverse. An important part of helping people manage their privacy requires developing a 
deeper understanding of these preferences and expectations, including those 
contextual attributes that influence them and how preferences and expectations vary 
across different individuals. This information can in turn be used to identify effective 
ways of notifying people about those data practices they care to be informed about 
without overwhelming them with large numbers of details they do not care about. This 
information can also be used to identify those privacy settings and options that should 
be made available to users, the granularity and expressiveness of these settings, 
looking at the level of control users wish to have as well as the burden placed on users 
by different possible settings/choices. Another important dimension of work in this area 
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has involved the development of predictive models and different possible ways of using 
these models to mitigate user burden while empowering users to retain the level of 
control they desire. 
 
Our work in this area has included looking at the management of mobile app 
permissions on smartphones (e.g.[LAS+16,SZF+20]) as well as looking at a diverse 
range of IoT environments and technologies 
(e.g.,[EBH+17,PDY+17,ZFB+21,ZFD+20a,ZFD+20b]) , as summarized below. 

3.3.1 Mobile App Privacy Assistant Studies 
Over the years the number of mobile app permissions smartphone users have to 
manage has become unrealistically high. A typical smartphone user with 50 apps on 
their phone and an average of 3 permissions per app would have to configure 150 
permission settings to ensure that the apps on their phone align with their privacy 
concerns. As part of this research, we have shown that using machine learning 
techniques it is possible to develop predictive models of people’s privacy preferences 
that can help reduce the number of mobile app permission settings people need to 
manually configure. This research involved collecting detailed information about 
people’s mobile app permission preferences (Figure 2) and using the resulting data to 
develop predictive models (Figure 3) [LAS+16]. In the example depicted in Figure 3, a 
small number of “profiles” based on seven different clusters is used to provide mobile 
app permission recommendations to users. This is done by first assigning users to a 
particular cluster based on their answers to a small number of questions, then relying on 
those mobile app permissions for which people in the cluster have been found to have 
highly similar preferences [LAS+16].This work however did not stop with just the 
collection and analysis of people’s privacy preferences, but also involved the 
development and launch of an actual personalized privacy assistant for mobile app 
permissions, which was evaluated with Android users as they went about their regular 
daily activities (Figure 4). Encouraged by the successful pilot of this technology and 
positive reactions from people who piloted it, the project went on and released a version 
of the personalized assistant in the Android Google Play store for use by people with 
rooted Android phones. 
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Figure 2: Motivating users to reflect on their current permission settings and possibly 

modify them, as part of study that involved collecting and analyzing people’s mobile app 
permission preferences as part of their regular daily interactions with their regular daily 

interactions with their regular smartphones [LAS+16]. 
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Figure 3: Example of analysis, where people’s mobile app permission preferences are 

analyzed using clustering techniques. 
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Figure 4: A mobile app permission assistant asks users a small number of questions to 
assign them to a cluster/profile. Permissions for which people in the given profile exhibit 

highly homogeneous preferences are used as a basis for recommending possible 
changes to the user’s current mobile app permission settings. The user can also access 

an explanation for each recommendation [LAS+16]. 

While the number of mobile app permission settings a typical smartphone user has to 
configure is already unmanageable, research has also shown that available settings are 
overly simplistic and fail to capture key attributes influencing people’s comfort when it 
comes to granting different apps access to different permissions. As part of research 
aimed at empowering people to control permission settings that are better aligned with 
their privacy preferences while avoiding a further increase in user burden, our project 
explored the possibility of giving users more expressive mobile app permissions while 
using machine learning to help mitigate user burden.  
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To what extent might these stronger predictive models help mitigate the greater user 
burden that would otherwise be associated with the configuration of more expressive 
privacy and security settings? Specifically, we focused on answering this question in the 
context of mobile app permissions, comparing models with permission settings that take 
the purpose of permissions into account versus models that do not. We compiled 
quantitative results aimed at evaluating this trade-off between accuracy and user 
burden across a number of parameter configurations. 
 
Our first goal was to create a large corpus of user preferences about a variety of app 
permissions, for a variety of Android apps. The purpose of this corpus was to perform 
data mining which could potentially reveal insights into common factors along which 
user preferences would align. These patterns are indicative of the potential for 
improving predictive power.  
 
Having analyzed this corpus to find statistically significant factors, our second goal was 
to determine how to use this predictive power to improve recommendation models for 
preferences, leveraging profiles that incorporate a combination of supervised and 
unsupervised machine learning (agglomerative hierarchical clusters and conditional 
inference trees). We also sought to create empirically derived guidance for the design of 
systems which employ these machine learning techniques to improve permissions 
management systems. We empirically determined the number of questions required to 
successfully profile users and count the instances where additional user input is 
required to make strong predictions. We measured the differences in efficiency and 
accuracy between the models which consider purpose and those which do not. Using 
machine learning, our approach demonstrated that it is possible to improve the 
expressiveness of mobile app permissions model without trading off accuracy for user 
burden and vice versa [SFZ+20]. 

3.3.2 Modeling People’s Privacy Expectations Across a Wide Array of IoT 
Scenarios 
As more complex IoT scenarios become possible, many other factors may play a role in 
determining individuals’ privacy preferences. While some may feel comfortable with 
their location being tracked for the purpose of traffic prediction, others may want to limit 
tracking to their work commute or to certain days or hours in the day. Some may 
consent only if they are assured that their location data is retained and used in an 
anonymized form, etc. 
 
We conducted a large-scale online vignette study to identify the contribution of different 
factors (such as the type of data, retention time, purpose of data collection, and location 
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of data collection) in promoting or inhibiting individuals’ self-professed comfort levels 
[EBH+17]. We also studied the factors that trigger a desire for notifications about data 
collection. Our research identified which aspects of data collection or use by various IoT 
devices are most likely to cause discomfort, how realistic participants think these 
scenarios are, and which aspects they would like to be made aware of. 

3.3.3 Informing the Design of Personalized Privacy Assistants 
The increasing deployment of various IoT technologies in the daily environment creates 
new ways through which personal data is collected and used. People often have little 
awareness of, and even less control over, the data collection and use practices 
associated with IoT technologies. Personalized Privacy Assistants could address this 
issue by helping people discover and, when available, control the data collection 
practices of nearby IoT resources. This however requires understanding users’ 
perceptions and acceptance of different possible configurations of PPAs, particularly in 
the IoT context. Without solid research evidence, it is challenging to design usable 
PPAs that match potential users’ privacy needs and comfort levels. 

To shed light on this issue, we conducted a qualitative interview study with 17 
participants to explore user perceptions towards PPAs for IoT technologies [CFP+20]. 
Specifically, we focused on understanding how users would respond to different 
possible PPA implementations that may leverage machine learning-based predictions to 
assist users with privacy decisions. In the interviews, we asked participants about their 
opinions for three increasingly more autonomous PPA implementations: notification 
PPA provides end users with awareness and control over data requests; 
recommendation PPA gives users recommendations on how to respond to individual 
data requests; and auto PPA makes autonomous data sharing decisions for the user.  

We recruited participants in the greater Pittsburgh area through both digital and non-
digital channels. We invited potential participants to complete a short screening survey 
including questions about demographics and experiences with technology. From the 
pool of potential participants who responded to the screening survey, we selected a 
relatively diverse sample of participants for in-person interviews. Out of our 17 
participants, eight self-identified as male, eight as female, and one as non-binary. Our 
participants had a mean age of 39 years (min = 22, max = 68) and were fairly well 
educated (13 had some form of higher education). Most of them were employed (eight 
full-time, four part-time). Only three participants self-identified as students, and four 
reported working with or studying in areas related to technology or security. Overall, the 
participants had a good, but incomplete, understanding of IoT technologies. 
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All interviews were audio recorded and transcribed into text for in-depth qualitative data 
analysis. Specifically, two researchers reviewed the passages related to participants’ 
opinions about the different implementations of the PPA and their interaction 
preferences. Each researcher summarized these passages into higher-level concepts, 
and they discussed those concepts together. After noticing a high level of consistency in 
the concepts identified, we opted to forego formalizing a codebook and iterative coding 
process, instead resolving the few conflicts that occurred. After a comprehensive 
qualitative analysis on the coded data, we identified benefits and issues associated with 
each implementation. The findings from this qualitative interview study are described in 
Subsection 4.3.3. 
 

3.3.4 Understanding and Modeling People’s Privacy Attitudes Towards 
Video Analytics Technologies Across a Representative Cross-Section of 
Deployment Contexts 
Over the past few years, facial recognition, a type of artificial intelligence (AI)-enabled 
video analytics technology, has become increasingly accurate with recent advances in 
deep learning and computer vision. The growing ubiquity of video analytics is 
contributing to the collection and inference of vast amounts of personal information, 
including people's whereabouts, their activities, whom they are with, and information 
about their mood, health, and behavior. Unfortunately, such data collection and usage 
often take place without people's awareness or consent. While video analytics 
technologies arguably have many potentially beneficial uses (e.g., law enforcement, 
authentication, mental health, advanced user interfaces), their broad deployment raises 
important privacy questions and has prompted increased scrutiny from both privacy 
advocates and regulators. New regulations such as the European Union's GDPR and 
the California Consumer Privacy Act mandate specific disclosure and choice 
requirements that apply to the deployment of video analytics technologies. While these 
regulations are important steps towards providing data subjects with more transparency 
and control over their data, they do not specify how people should be notified about the 
presence of video analytics, or how to effectively empower them to exercise their opt-in 
or opt-out rights. This includes addressing questions such as when to notify users, what 
to notify them about, how often to notify them, how to effectively capture their choices, 
and more. 
 
Our research here aimed to address these issues by developing a more comprehensive 
understanding of how people feel about video analytics deployments in different 
contexts, looking both at the extent to which they expect to encounter them at venues 
they visit as part of their everyday activities and at how comfortable they are with the 
presence of such technologies across a range of realistic scenarios [ZFD+20a, ZFB+21, 
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ZFS21]. Our study focused on understanding people's privacy expectations and 
preferences. This included looking for possible social norms that might extend to a 
larger population, or alternatively identifying differences in how people respond to 
various deployment scenarios.  The second set of questions was motivated by recent 
technical advances, namely (1) the development of real-time face denaturing 
functionality that enables video analytics software to only be applied to people who 
provide consent, and (2) the development of a privacy infrastructure for the Internet of 
Things that enables entities deploying video analytics software to publicize their data 
practices and allow data subjects to opt in or out of having their footage analyzed and/or 
shared. Using this functionality, it becomes possible to notify people in real-time as they 
approach areas where video analytics technologies are deployed and allow them to 
selectively opt in or out - as required by regulations such as GDPR or CCPA. Because 
expecting people to manually opt in or out of video analytics each time they come near 
this type of functionality would entail an unrealistically high number of privacy decisions, 
we use our data to explore the feasibility of developing predictive models that could 
assist users with their privacy decisions - with users able to review recommendations 
from the predictive models. 
 
To answer these research questions, we designed an experience sampling study to 
collect people's responses to a variety of video analytics deployments (or ``scenarios'') 
in the context of their regular everyday activities. Context has been shown to play an 
important role in influencing people's privacy attitudes and decisions. Studying people's 
privacy attitudes through online surveys is often limited because participants answer 
questions about hypothetical scenarios and often lack context to provide meaningful 
answers. Accordingly, the experience sampling method has been repeatedly used in 
clinical trials, psychological experiments, and human-computer interaction (HCI) 
studies, yielding more ecologically valid behavior. This enables us to engage and 
survey participants in a timely and ecologically valid manner as they go about their 
normal daily lives. Participants are prompted to answer questions about plausible video 
analytics scenarios that could occur at the location in which they are actually situated 
(Figure 5). By systematically exploring more concrete scenarios in actual settings 
associated with people's day-to-day activities, we are able to elicit significantly richer 
reactions from participants and develop more nuanced models of their awareness, 
comfort level, and notification preferences pertaining to different deployment scenarios.  
 
The scenarios considered in our in-situ study were informed by an extensive survey of 
news articles about real-world deployments of video analytics in a variety of different 
contexts (e.g., surveillance), marketing, authentication, employee performance 
evaluation, and church attendance tracking. These scenarios provided the basis for the 
identification of a set of relevant contextual attributes which were randomly manipulated 
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and matched against the different types of venues our subjects visited. We employed a 
factorial study design and developed a taxonomy that captured a representative set of 
attributes one might expect to influence individuals' privacy attitudes, including the 
purpose for which the data is collected, what type of facial recognition analyses are 
involved, retention of raw footage and analysis results, whether sharing with other 
entities are involved, and the types of places participants visited. 
 

 
Figure 5: In-situ study of people’s privacy attitudes towards Video Analytics 

technologies across a number of deployment scenarios. Screenshots of the study app 
and the web survey used for the evening review [ZFD+20a]. 
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The 10-day study comprised the following five stages. First, eligible participants 
completed the consent forms for this study and downloaded the study app from the 
Google Play Store. Upon installing the app, participants completed a pre-study survey 
about their perceived knowledge level, comfort level, and notification preference with 
regard to facial recognition. 
 
Second, participants were instructed to go about their regular daily activities. The study 
app collected participants' Global Positioning System locations via their smartphones. 
As they visited places for which we had one or more plausible deployment scenarios, 
the app would send them a push notification, prompting them to complete a short 
survey on a facial recognition scenario pertaining to their location (Figure 5). Third, on 
the days participants received push notifications via the app, they also received an 
email in the evening to answer a daily summary web survey. This web survey showed 
participants the places they visited when they received notifications, probed reasons for 
their in-situ answers, and asked a few additional questions. Fourth, after completing 10 
days of evening reviews, participants concluded the study by filling out a post-study 
survey administered via Qualtrics. This survey contained free-response questions about 
their attitudes on facial recognition, the 10-item Internet Users’ Information Privacy 
Concerns (IUIPC) scale on privacy concerns, as well as additional demographic 
questions like income, education level, and marital status. The last stage is optional: 
participants who indicated they were willing to be interviewed in their post-study survey 
may be invited to an online semi-structured interview. The interview contained questions 
about study validity, perceptions of scenarios, and clarifications with regard to their 
earlier responses. The findings from this study are described in Subsection 4.3.4. 
 

3.4 Nudging and Explanation  
Nudges have emerged within the privacy and security literature as an effective means 
of affecting, and possibly assisting, user behavior. Nudges work by modifying the 
structure of choices to encourage certain behaviors without altering economic 
incentives. Recent research has applied nudges to diverse privacy and security 
scenarios where users face hurdles in the decision making process, and where those 
hurdles can result in negative outcomes. 
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3.4.1 Mobile App Privacy Nudging - Studying the Impact of Framing on the 
Effectiveness of Privacy Nudges 
As part of our prior research, we had already demonstrated how using privacy nudges, 
namely interventions designed to get people to reflect more carefully on their privacy 
decisions, it is possible to motivate users to visit privacy settings such as mobile app 
permissions and adjust them to that they are better aligned with one’s privacy 
preferences (e.g., [ASS+15]). Encouraged by these results, we undertook to design a 
study aimed at exploring the impact of framing on the effectiveness of privacy nudges, 
using mobile app privacy nudges as our domain of investigation [Alm+17].  
 
 
 

 
Figure 6: Studying the impact of framing on the effectiveness of privacy nudges in the 

context of mobile app location privacy nudges. 
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Figure 7: Nine different ways of framing mobile app location privacy nudges, from 
mundane nudges to nudges that place more emphasis on how location information 

might be used and associated privacy risks. 

Specifically, we focused on a number of different ways of framing a nudge designed to 
motivate users to revisit location permission access to their mobile apps. This involved 
manipulating the text shown to users in privacy nudges dealing with access by mobile 
apps to their location information (Figure 6). Figure 7 shows the different types of 
framing considered in our study.  

3.4.2 Psychometrically Tailored Privacy Nudges 
While effective, many of the applications of nudges within the privacy literature have 
focused on `one-size-fits-all' approaches, where a certain behavioral intervention is 
applied to a diverse set of individuals, with no tailoring of the nudge based on 
characteristics unique to each individual. 

To address this gap in the literature, we investigated psychometrically tailored nudges in 
the context of privacy behavior [WAS+19]. We conducted three online experiments that 
attempted to identify effects for tailored nudges on data disclosure choices. Across the 
three studies, participants completed surveys in which they were presented with a 
hypothetical (Study 1) or real (Studies 2 and 3) disclosure choice. Each disclosure 
choice was paired with a nudge designed to encourage participants to either allow or 
prohibit the disclosure of potentially sensitive information. After recording participants' 
disclosure choices, we measured participants along a variety of psychometric scales 



Approved for Public Release; Distribution Unlimited.  
22 

designed to capture individual differences in decision making and personality. We 
examined whether changes in the differences in disclosure rates could be predicted by 
the measured psychometric variables. We modeled this relationship using logistic 
regression where the disclosure choice made by participants was our dependent 
variable. 
 
Our examination of tailored privacy nudges took place within the context of data 
disclosure decisions. To facilitate this, each of our studies began by presenting 
participants with a hypothetical or real disclosure choice and asked them to make a 
`Yes' or `No' decision on whether or not they wished to disclose their data. We inserted 
nudges into these scenarios by modifying the choice text to elicit differences in 
disclosure rates between groups of participants. We employed two types of nudges 
across our three studies: `framing' nudges and `social norms' nudges. The first of these 
modified the choice text to leverage framing effects, while the second introduced 
additional information to the choice to establish social norms which might affect 
participants' disclosure behavior. In Study 1, we tested only the framing nudge. In Study 
2 and Study 3, we tested both the framing and social norms nudges. 
 
For each nudge, we created two different wordings or `variants' of the nudge text. 
Relative to each other, these variants created the desired psychological effects we wish 
to leverage within our nudges. For example, we create the framing nudge for Study 1 by 
asking one group of participants whether they wished to `Opt-In' to a service while 
asking the other group whether they wished to `Opt-Out'. The framing effect exists only 
in the contrast between the two wordings. We applied a similar method to create the 
social norms nudge used in Study 2 and Study 3. We treated each nudge `variant' as an 
experimental condition within our study. Participants were randomly assigned to a single 
nudge variant in a between-subjects design. For Study 1, this translated into two 
experimental conditions across one nudge. For Study 2 and Study 3, this translated into 
four experimental conditions across two nudges. Across the three studies, participants 
were only assigned to one disclosure decision that contains a single nudge variant. 
 
Following the decision task, we asked all participants questions from psychometric 
inventories designed to measure their decision making and personality traits. We 
selected inventories for our studies that either relate to the cognitive effect being 
leveraged in the nudge or have been examined in other studies exploring 
psychometrically targeted nudges. 
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3.4.3 Transparency via Attribution in Vision Models and Internal 
Explanation for NLP models 
Machine learnt models, especially deep models, are largely black-boxes resistant to 
human inspection. This, together with their increasing application to impactful scenarios, 
leads to problems such as lack of trust, potential violation of ethical norms, privacy 
violations, and others. While we cannot address the full breadth of these problems with 
all of their forms, we investigate two common types of machine learning models 
alongside common forms of explanations for their operation. We investigate attributions 
in vision models and internal explanations for natural language processing models 
(NLP). 

Input Attribution in Vision Models. 

Deep vision models such as convolutional neural networks are among the most difficult 
to explain. Instead of analyzing the internals of such models, popular forms of 
explanations are input attributions which quantify how much impact each input pixel has 
on a model output. Two such input attributions can be seen in Figure 8 (Two types of 
input attributions for an image classification model).  

Figure 8: Two types of input attributions for an image classification model. 

A variety of such attribution methods have already been proposed, each with differing 
design goals. As part of our work, we investigated these methods in terms of the mode 
of interpretation that is meant to occur [WMD+20]; that is, an input attribution may be 
interpreted differently by different people or in different contexts. In a related work, 
[WWD+20], we generalized a class of attribution methods while relating instances to the 
interpretation criteria. Additionally, we initiated a study of the relationship between 
robustness of models (against adversarial perturbations) and input attributions 
[WWR+20]. 
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Internal Explanations in Natural Language Processing Models.  

Unlike vision models, NLP models often have recurring intentional structures as for 
example in long short term memory (LSTM) models that contain elements meant to 
keep track of global input information and other elements meant to track local inputs. 
Explaining such models’ operation can thus benefit from highlighting model components 
involved in various predictions tasks. Exercising NLP models on restricted tasks is not 
trivial however, as many models must incorporate a large amount of grammatical and 
syntactic information from the entire language being processed. In [LML+20] we 
investigate these problems with a novel analysis tool which is capable of pointing out 
paths throughout neural networks that are most responsible for conveying a concept of 
interest. For example, Figure 9 shows a (slice of data pathways in an LSTM language 
model) most responsible for that model’s ability to correctly incorporate subject-verb 
number agreement in the English language. 
 
 

 
Figure 9: Slice of data pathways in an LSTM language model 

 

3.4.4 Explanations for Mobile App Privacy Permission Recommendations  
As automated recommendation and decision systems have grown in complexity, 
interest in explaining the resulting decisions has also grown. While multiple goals exist 
for explaining recommendations generated by AI systems, explaining how these 
systems function may increase trust in the system leading to higher adoption rates for 
the recommendations among users. Several studies in the privacy and security 
literature have focused on explanations with this goal in mind. This same focus may be 
applied to mobile privacy recommendations produced by privacy assistants. These 
recommendation systems suggest changes to users’ privacy settings for individual apps 
such that apps’ behavior regarding data access better conform with users’ privacy 
preferences. This study seeks to examine whether explanations for mobile privacy 
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recommendations can increase adoption rates and what types of explanations may be 
most effective. 
 
To answer these questions, we designed a study to examine the effectiveness of 
explanations for recommendations produced by a mobile privacy assistant for Android 
devices. The privacy assistant works by assigning each user to a privacy ‘profile’ based 
on their answers to several privacy preference questions. Based on the assigned profile 
and the specific apps the user has installed on their device, the privacy assistant 
generates a list of changes the user might make to their privacy settings for particular 
apps. These recommendations are based on user data collected as part of a previous 
study. For our study, we select a single ‘deny’ recommendation - where the privacy 
assistant recommends that the user change their permission settings to deny an app 
access to a particular type of data. Due to changes in the Android permission model 
introduced in Android version 10, we limit participation in our study to Android version 9 
and lower. 
 
Using the platform of the Android mobile privacy assistant, we test two different types of 
explanations. In both cases, the explanations were designed to explain how the privacy 
assistant works with the goal of increasing recommendation adoption rates. In the first 
explanation type, we used information about the ‘group’ of users used to train the 
recommendation model within the privacy assistant. These explanations make users 
aware of this ‘group’ data and similarity of their privacy preferences to those users from 
the training data which share the same privacy profile assignment. With the second type 
of explanation, our goal was to add additional information to the first explanation to 
make the functionality of the privacy assistant more salient to users. Our hypothesis is 
that a greater understanding of how the privacy assistant operates may increase the 
rate at which users adopt its recommendations. For the second type of explanation, we 
combine the ‘group data’ from the first explanation type with inferences about the 
recommender derived using ‘quantitative input influence’ methods. In the context of the 
privacy assistant, quantitative input influence can be applied to determine which of the 
privacy questions users answered was most influential in their final privacy profile 
assignment. This therefore relates a decision made by users (their answers to the 
privacy questions) to the final recommendation. 
 
Our study design tests the recommendations of the privacy assistant and the two 
explanation types using four experimental conditions. In the first condition, participants 
do not receive a recommendation or explanation. Participants in this condition are 
presented with a recommendation screen in the privacy assistant app that contains only 
the instructions on how they can access and change their permission settings if they 
wish. Participants assigned to the second experimental condition are shown a 
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recommendation when one is available but are not provided with any explanation. The 
third and fourth experimental conditions contain recommendations and explanations. 
The third condition presents participants with a recommendation and ‘group’ explanation 
while the fourth condition presents participants with a recommendation along with a 
‘group + QII’ recommendation. By comparing the number of attempts by participants to 
change their permission settings between conditions 1 and 2, we can assess the 
effectiveness of the recommendations. By comparing the number of attempts between 
condition 2 and conditions 3 and 4, we can determine the impact of the explanations. 
Finally, by comparing conditions 3 and 4, we can examine the effectiveness of the two 
different types of explanations. 
 
While the recommendation and explanation a participant might receive depends in part 
on their randomly assigned experimental condition, the study procedure is the same for 
all participants. After consenting to the study, participants are instructed on how to 
download and install the Android privacy assistant from the Google Play Store. Once 
installed, participants open the app, upon which the privacy assistant categorizes each 
app on the participants device. Following the categorization step, the participant is 
presented with up to five privacy questions. Their answers to these questions, along 
with the currently installed apps and their permission settings are used to generate a 
single deny recommendation. Depending on the participant’s assigned privacy profile 
and installed apps, a deny recommendation may not always be available. Based on 
whether a recommendation is available and the participant’s randomly assigned 
condition, the participant may be shown a recommendation and explanation. The 
participant is then given the opportunity to view the recommendation/explanation and 
make any changes to their privacy settings. Once they have completed this step, 
participants are instructed on how to uninstall the privacy assistant and are redirected to 
an exit survey on Qualtrics. Within this survey, participants are asked questions 
designed to measure the quality of the recommendation and explanation along with 
their trust in the privacy assistant as a whole. 

3.4.5 Transparency of Privacy Choices on the Web and Opt-Out Easy 
Browser Add-On Tool 
Another key problem around web data privacy is the lack of transparency for privacy 
choices. Even though many websites provide privacy choices to users, such as opting 
in or out of certain web data collection and use practices, it is very difficult for average 
web users to find these choices and configure the settings according to their privacy 
preferences. Website privacy policies sometimes provide users the option to opt-out of 
certain collections and uses of their personal data. Unfortunately, many privacy policies 
bury these instructions deep in their text, and few web users have the time or skill 
necessary to discover them.  
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To address this issue, our work focused on using natural language processing 
techniques to automatically detect opt-out choices in privacy policy text. Our overall 
approach for extracting and classifying opt-out choices combines heuristics to identify 
commonly found opt-out hyperlinks with supervised machine learning to automatically 
identify less conspicuous instances. Built upon this work, we also developed and 
successfully evaluated Opt-Out Easy, a web browser extension designed to present 
available opt-out choices to users as they browse the web [KIN+20]. 

3.5 Transparency and Compliance Analysis 

3.5.1 Data Flow Modeling and Analysis 

The use of sensitive data whether directly or indirectly in systems including machine 
learnt models is common cause of privacy violations. Defining use, however, is not 
always easy especially when the apparent privacy violations occur sufficiently 
downstream from the sensitive information use that causes them, or when sensitive 
information is derived from non-sensitive data. We investigate two aspects of the 
complexity of use: 1) information theoretic analyses of secrets (i.e., sensitive 
information) derived by potentially non-sensitive or vulnerable data (i.e., demographics), 
and 2) indirect uses by association (i.e., proxies) in machine learnt models. 

Both of these cases point out difficulties in reasoning about flow of sensitive information 
that lead to privacy violations but require different approaches. We take an information 
theoretic approach in [AMH17] to analyze the simple flow of data from secret picking 
strategy to the secret itself and what it implies about its vulnerability to being guessed. 
When dealing with machine learnt models, on the other hand, we focus on the syntax 
and semantics of common models (see for example proxy uses in simple decision trees 
in Figure 10 (Uses and non-uses of sensitive information in decision trees) from 
[DFK+17]).  

Figure 10: Uses (a,b,d) and non-uses (c) of sensitive information in decision trees. 
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3.5.2 IFTTT: Identification and Analysis of Vulnerabilities in IoT End-User 
Programming Environments 
The use of end-user programming, such as if-this-then-that (IFTTT), is becoming 
increasingly common. Services like IFTTT allow users to easily create new functionality 
by connecting arbitrary Internet-of-Things devices and online services using simple if-
then rules, commonly known as applets or recipes. However, such convenience at 
times comes at the cost of security and privacy risks for end users. Security and privacy 
risks could arise from rules that inadvertently leak private information, rules that can be 
triggered from an untrusted source but execute a potentially dangerous action, or rules 
that chain together unexpectedly (where the action executed by one rule serves as a 
trigger for another). For example, a user could write a rule to open the window if the 
temperature rises above a certain threshold. This rule enables an attacker who can 
affect the temperature of the user’s house to cause the window to open and hence give 
him access to the house. The attacker could affect the temperature of the house in 
different ways: for example, if there is an outside fuse box, the attacker could flip the 
breaker and turn off the air conditioning; if the air conditioning has an exhaust to the 
outside, the attacker could cover it. To give another example, to conveniently manage 
email attachments, a user could write a rule that uploads all attachments from newly 
received emails to her OneDrive folder. Later, if the user receives an email with a 
malicious attachment and uses OneDrive to sync multiple devices, then the malicious 
attachment would automatically be copied to multiple devices, increasing the likelihood 
that the user will mistakenly execute the malicious program. 
 
To gain an in-depth understanding of the extent to which users may be creating rules 
that expose them to potential security and privacy risks, we carried out two 
investigations: one that examines potential risks through an information-flow analysis of 
all published IFTTT rules [SAB+17]; and one that examines users' actual IFTTT rules in 
the context in which they are used [CSK+20]. 
 
In the first investigation, we examined a set of 19,323 unique published IFTTT rules—
most rules are published so that they can be reused—collected by Ur et al. [UPB+16]. 
Based on our manual inspection of the rules, we defined an information-flow lattice 
consisting of labels that specify the secrecy and integrity levels of rules' triggers and 
actions. We analyzed individual rules based on this information-flow model to identify 
rules that were violations of integrity or secrecy. We also manually examined a random 
sample of these violating rules, we categorized the potential harms to users resulting 
from these rules. 
 
In the second investigation, we study the risks of real-world use of IFTTT by collecting 
and analyzing 732 applets (each of which implements one or more rules) installed by 28 



Approved for Public Release; Distribution Unlimited.  
29 

participants and participants’ responses to several survey questions. Survey questions 
addressed the context in which the applets are used (e.g., who cloud storage 
documents are shared with), participants’ understanding and perception of secrecy and 
integrity risks (e.g., if they had considered certain risks when setting up rules, if they had 
experienced any harms, and if they believed certain risks were possible for a particular 
rule), and how they would react to specific violations identified in prior work. We used 
the automated information-flow-based analysis developed as part of our first 
investigation to identify applets that have secrecy or integrity violations. We then 
examined the applets manually, in more detail, considering context such as their titles. 
Through this examination we determine to what extent the violations identified by 
automated analyses correspond to real risks and harms, and we also identify new 
harms that can be caused by IFTTT rules but that are beyond the scope of current 
automated analyses. 
 

3.6 Privacy Risk in Machine Learning Pipelines  

3.6.1 Proxy use 

We studied notions of proxy use that consider why a model uses a correlated feature.  
Our study assumed a classifier produced by an ML algorithm running on a training data 
set, both of which are known to the investigator.  It assumes that a putative proxy 
targets some protected attribute, such as medical status and that the proxy may be 
used by the classifier to reach some decision.  For this setting, we developed a 
systematic range of proxy notions. Here we show three such notions of proxy, each 
being more restrictive (Figure 11). 
 

 
Figure 11: The relationships between variables required for three different notions of 

proxy. The arrows represent causation; dashed lines, correlation. 

 
They vary in terms of which causal and correlational conditions imply them.  For 
example, the third, strongest notion of proxy, requires that a correlation between the 
targeted variable and the proxy causes the classier to use the proxy in a way that 
introduces a correlation between target and the classifier’s decision. 
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Unlike preexisting notions that use first-order forms of causation and correlation, many 
of the newly proposed notions depend upon second-order forms of causation and 
correlation.  Whereas first-order forms look at individuals, second-order ones look at 
sets of individuals, such as training data sets. These second-order forms can describe 
how machine learning systems use data sets to select models and how relations 
between individual-level (first-order) variables in such data sets can affect the learning 
process. A goal of this work was to put such second-order forms of causation onto a 
firm footing, including comparing it to the distinction between triggering and structuring 
causes found in prior work. 
 
Another goal was to relate these forms of proxies to those found in prior legal analyses 
of proxy discrimination, including a definition of “unintentional proxy discrimination” that 
looks for statistical independence between the proxy and the correct decision given the 
target. The final goal was providing practical auditing approaches for different notions of 
proxy. 

3.6.2 Overfitting and Whitebox Membership inference 
A machine learning model is said to overfit its training data when its predictive accuracy 
on unseen test sets diverges from the accuracy observed during training. Recent work 
by Fredrikson demonstrates an explicit connection between overfitting and privacy risk 
by characterizing the vulnerability of models to certain privacy attacks as a function of 
the model’s generalization error. Intuitively, this connection can be thought of in terms of 
the model “remembering too much” about the training data. This view implicitly assumes 
that the model’s greater accuracy on training data stems from it learning properties 
specific to training instances, but that are not representative of the general distribution. 
Privacy risk then follows when an attacker is able to make inferences about the training 
data by decoding this behavior through black-box queries. 
 
The blackbox view of overfitting and privacy is a promising step forward in our 
understanding of causes of privacy risk in machine learning pipelines, but it does not 
explain all of the risk associated with releasing trained models. Notably, some models 
exhibit provably good generalization despite encoding considerable information specific 
to the training data in their structure and parameters. For example, both k-Nearest 
Neighbor and Support Vector Machine models consist of some or all training instances 
encoded in explicit form though their black-box behavior is known to generalize both in 
theory and in practice. Both of these examples are blatantly non-private for white-box 
attackers. Further, less blatantly problematic models have been shown to be vulnerable 
to leaking training data in cases of adversarial control over the training process. It 
remains unknown, however, whether benignly-trained models encode specific 
information about their training data in a way that is susceptible to adversarial inference. 
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We explore the privacy risk of widely-used learning algorithms to white-box adversaries 
who gain access to the already trained models. In particular, we will extend the game-
based formulation of membership and attribute inference attacks developed in our prior 
work to account for white-box adversaries, and attempt to derive bounds that 
characterize these adversaries’ advantage in terms of structural properties of the model 
and training data. Our approach for deriving lower bounds is constructive, and is based 
on identifying statistical assumptions about the training data and the resulting model 
properties that lead to privacy risk (i.e., adversarial advantage) under novel white-box 
attacks. We will then validate the practical significance of these bounds by measuring 
privacy risk empirically, mounting the corresponding attacks on models trained using 
real data. 
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4. Results and Discussion  
The following summarizes key results of our research and discusses their implications. 

4.1 Personalized Privacy Infrastructure for the Internet of Things 
and Personalized Privacy Assistants 

 
Figure 12: Homepage of the IoT Privacy Infrastructure portal available at iotpirvacy.io 
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As part of our research, we deployed, evaluated and refined successive versions of our 
IoT Privacy Infrastructure and associated IoT Assistant app. The IoT Privacy 
Infrastructure has been made available to the public (Figure 12) and supports the 
creation and publication of resource descriptions and resource templates as well as the 
management of registries in the United States of America, Canada, the European 
Union, Australia, New Zealand, Iceland, Liechtenstein, Norway, Switzerland, and the 
United Kingdom.  
 

 
Figure 13: The IoT Assistant mobile app, as available in the Apple iOS app store. 

 
The IoT Assistant app is available in both the Apple iOS App Store [IoTAiOS] (see 
Figure 13) and the Android Google Play Store [IoTAGoogle]. 
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Figure 14: Screenshots of the IoT Assistant app showing resources deployed and 

publicized on the UC Irvine campus. 

 
Early deployments of the infrastructure focused initially on the campus of the University 
of California at Irvine (Figure 14) and the campus at Carnegie Mellon University (Figure 
15).  
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Figure 15: Screenshots of the IoT Assistant app showing resources deployed and 
publicized on the Carnegie Mellon University campus.  

4.1.1 The Implementation and Deployment of IoT Portal 
The most recent version of the IoT Portal is designed to support a wide range of 
stakeholders, including resource owners (e.g.,mall operators, stores, restaurants, office 
building operators, universities, neighborhood organizations, municipalities as well as 
individuals such as home owners), contributors from the public at large, resource 
template contributors, including device manufacturers and system integrators, and 
registry owners.  

The new IoT Portal features a completely redesigned user interface that provides a 
streamlined process for different stakeholders to create IoT resource listings and 
templates and to publish their IoT resources. As shown in Figure 16, a dashboard 
provides users with an overview of their resources, registries, and templates and easy 
access to functionality to manage each of these. 
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Figure 16: IoT PI Dashboard from which users can check the status of their resources, 

registries, and templates. 

 
At the time of writing the IoT Privacy Infrastructure already hosts well over 100,000 IoT 
resource descriptions. Figure 17 provides screenshots of resource descriptions 
published in Miami, Washington DC, the Manhattan Financial District and Boston. The 
IoT Assistant app was downloaded by over 15,000 users within the first week of its 
release. 
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Figure 17: Screenshots of the IoT Assistant app showing resource descriptions 
published in Miami, Washington DC, Boston and the Manhattan Financial District in 

New York. The app is currently configured to only display up to 50 IoT resources around 
a given location. Over 100,000 IoT resource descriptions have been published and can 

be discovered using the IoT Assistant app. 

 

4.1.2 The Implementation of the IoT Assistant App 
The most recent release (1.2.8) of the IoT Assistant App (IoTA) is available for 
download in more than 30 countries on Apple’s App Store and Google Play Store. The 
IoTA app enables people to discover nearby IoT resources through a map-based 
interface (Figure 18, left screenshot). Each pin on the map is a published IoT resource 
description. Clicking a pin will take users to a screen with more information about the 
IoT resource and its data practices (Figure 18, middle screenshot). The IoTA app 
supports customizable notification functionality (Figure 18, the right screenshot) that 
enables users to specify the types of data collections they want to be notified about and 
the frequency of notifications. In addition, the most recent version of the IoT Assistant 
app also supports the scanning of quick response (QR) codes that can be used to 
publicize nearby IoT resources. The QR codes can be automatically generated from the 
IoT portal, when defining resources. A user who does not have the IoT Assistant app 
and scans a QR code will be redirected to the app store, where he or she can download 
the IoT Assistant app before being redirected to the description of the IoT resource in 
the app, once the app has been downloaded. 
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Figure 18: Using the IoT Assistant app to discover nearby IoT resources, including their 
data collection and use practices and any privacy settings they make available. 

Notification settings allow users to configure their app to only be notified about IoT data 
collection practices they care about and at the frequency they find most useful. 

As shown in Figure 19, resource templates and resource descriptions can specify a rich 
set of privacy choices, which allow individual users to select from choices such as 
opting in or out of some data practices, request that their data be deleted, or request 
copy of their data, as required under regulations such as GDPR or CCPA. 
Figure 20 shows how these privacy choices can then be accessed by IoT Assistant 
users as they discover these resources. Accessing privacy options typically requires 
users to authenticate (Figure 20) - with authentication typically being with systems 
controlled by owners of the resources (i.e., we do not expect resource owners to rely on 
our own authentication system), though some privacy options can also be taken 
advantage of via email. Further details on the design principles that have driven the 
design of the IoT assistant privacy controls are discussed in our 2021 CHI paper  “A 
Design Space for Privacy Choices: Towards Meaningful Privacy Control in the Internet 
of Things” [FYN21]. 



Approved for Public Release; Distribution Unlimited. 
39

Figure 19: Defining privacy controls (or privacy choices) when describing an IoT 
resource and its data practice via the IoT Portal. 
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Figure 20: Screenshots of Privacy Options made accessible to IoT Assistant users as 
they discover a particular IoT resource - in this case a Bluetooth location tracking 

device. Users typically need to authenticate with the organization controlling the IoT 
resource to manage the privacy options made available by that resource. 

 

4.2 Taxonomy of Privacy Dialog Primitives  
The results of our research on taxonomies of privacy dialog primitives are detailed 
below with relevant discussion. 

4.2.1 Exploring How Privacy and Security Factor into IoT Device Purchase 
Behavior 
In the interview study exploring users’ IoT device purchase behavior, we found that 
about half of our interviewees had limited and often incorrect knowledge about privacy 
and security and that this impacted their ability to make informed privacy and security 
decisions. In addition, most of our interviewees had not considered privacy and security 
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before purchasing IoT devices, but reported being concerned after the purchase. Those 
who were concerned about privacy and security at the pre-purchase evaluation stage 
reported difficulty finding useful information about device privacy and security. 
 
We found that security and privacy are among the factors that people would consider in 
their future IoT device purchase decisions. Survey participants reported that security 
and privacy would have significantly more influence on their decisions to purchase a 
smart security camera than a smart thermostat or toothbrush, likely due to their 
perceptions of the sensitivity of the data those devices collect. Almost all interviewees 
acknowledged the importance of knowing privacy and security information related to IoT 
devices before making purchase decisions and said they would pay a small premium for 
such information to be provided, especially when purchasing a device that they perceive 
to collect more sensitive information (e.g., a smart camera capturing images). 
 
Almost all interviewees found our prototype labels easy to understand and able to 
provide information they would consider in a purchase decision. We found that 
interviewees often focused on privacy and security choices, expert ratings, purpose of 
data collection, and the convenience of security mechanisms. From our findings, we 
distilled recommendations for the design of privacy and security labels that enable 
consumers to make informed IoT device purchase decisions. Our findings on 
consumers’ interest in IoT nutrition labels, and ways to make them more useful, are 
important and timely contributions as policy makers debate new IoT privacy and security 
regulations. 
 

4.2.2 An Expert Study to Determine IoT Privacy and Security Label Content 
In the expert study to determine the content for IoT privacy and security nutrition label, 
we found that differences in opinions were driven less by fundamental differences in 
beliefs, but rather by differences in work experience and priorities. For example, some 
experts were more knowledgeable about specific security mechanisms, standards, or 
regulations, and prioritized factors related to their area of expertise or their 
organization’s mission. 
 
Most factors identified as important by experts are factors that they believe will inform 
consumers. Experts also identified some factors for inclusion that could inform experts 
only, mostly to be able to hold companies accountable. 
 
A layered label includes a primary layer that presents the most important and 
glanceable content, followed by a secondary layer for additional information. In our 
study, we asked experts to specify the layer on which the information should be 
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included on the label. They mostly recommend putting only information that would be 
understandable and important to most consumers on the primary layer. 
 
We designed a prototype layered label based on our expert elicitation study. We then 
conducted semi-structured interviews with 15 consumers of IoT devices (smart home 
devices or wearables) and presented our prototype to them. We show that all of our 
participants had a clear understanding of the information presented on the primary layer 
of the label. Although some of the factors on the secondary layer of the label were less 
understandable to participants who lacked privacy and security expertise, all of our 
participants reported that they still want such information to be included on the label 
mainly to be as informed as possible. In addition, consumer participants reported that 
having all the important privacy and security factors, even unfamiliar ones, on the label 
would help them easily search online to find more information. 
 

4.3 Modeling of User Privacy Preferences and Expectations  

4.3.1 Mobile App Privacy Assistant Studies 
As part of our research on privacy assistants and the development of predictive models 
to help people manage their mobile app privacy assistants, we collected privacy 
preferences people have for granting/denying different types of permissions to different 
categories of mobile apps (see Subsection 3.3.1 for details). This data, which was 
collected from Android users as they used their regular phones as part of their regular 
activities while receiving a daily nudge motivating them to review their permission 
settings, was analyzed using clustering techniques. This research showed that even a 
small number of clusters can go a long way in predicting many of a user’s privacy 
preferences. Figure 21 displays an example of a set of seven clusters obtained by 
combining users with similar preferences when it comes to granting/denying 
permissions to different categories of mobile apps [LAS16+]. Blue shades indicate a 
tendency to grant a given permission to a certain category of apps, whereas red shades 
indicate a tendency to deny. The intensity of the color indicates how pronounced the 
tendency is among people in a given cluster. 
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Figure 21: Clustering like-minded users based on their decisions to grant/deny 

permissions to mobile apps in different categories. 

 
These clusters can in turn be used to predict people’s privacy preferences for 
denying/granting permissions to their apps by assigning them to clusters that best 
match their expressed preferences [LAS16+]. The end result is a model that can be 
used to recommend permission settings to users (Figure 22). Predictive power was also 
shown to increase if these models distinguish between the different purposes for which 
an app request access to a given permission (Figure 23). As can be seen, the profiles 
that distinguish between purposes (e.g., core functionality versus marketing versus 
advertising) are shown to have stronger predictive power. 
 
Clusters and privacy preference profiles for granting/denying permissions to different 
mobile apps were used as the basis for the development and evaluation of a first mobile 
app privacy assistant designed to recommend mobile app permission settings to its 
users [LAS+16].  
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Figure 22: In each cluster, the number of deny/allow decisions can be used as a basis 

for making recommendations to either grant/deny a given permission to a given 
category of apps. When the difference between the grant and deny decisions is not 
sufficiently strong or when there is not sufficient data, no recommendation is made.  

 

 
Figure 23: Comparing F-1 scores for predictions with profiles that differentiate between 
the purpose for which apps in a given category request a permission and profiles that 

do not differentiate between the two. 
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Figure 24: Screenshots of the personalized privacy assistant piloted in our initial study. 

 
Figure 24 as well as Figures in Subsection 3.3.1 show screenshots of the first mobile 
app privacy assistant developed and piloted by our project [LAS+16, Liu19]. After users 
answer between 3 and 5 questions, they are placed in a cluster and receive permission 
recommendations based on the cluster to which they have been assigned. They can 
review the recommendations and decide whether or not to accept them, whether 
individually or in bulk. See Subsection 3.3.1 for additional screenshots of the privacy 
assistant app evaluated as part of the study reported in [LAS+16]. 

This privacy assistant started by collecting data about the app installed by a user on 
his/her smartphone and the permissions requested by these apps. It would then rely on 
decision trees to dynamically ask questions to users about their mobile app permission 
preferences (see screenshot in Subsection 3.3.1). Using these decision trees, users 
would be assigned to a cluster and its associated mobile app permission 
recommendation (“privacy profile”). These models would in turn be used to review the 
user’s current mobile app permissions and recommend possible changes in the form of 
recommendations to possibly deny permissions that were currently allowed (see 
screenshot in Subsection 3.3.1). The user could then review recommendations and 
decide to accept or reject them individually or in bulk. 
 
The resulting privacy assistant was evaluated with 49 Android users on their rooted 
Android phones as part of their regular daily activities. Of the 49 participants, 27 
received recommendations and 22 did not, as our model indicated that these 
participants were satisfied with their existing permission settings. Among the 249 
recommendations received by these 27 participants, 196 recommendations were 
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accepted (Figure 25). Overall participants accepted 78.7% of all recommendations. 
Each row represents a different participant. [LAS+16]. 

 
To make sure that these recommendations truly reflected the participants’ preferences, 
they were subjected to daily nudges for another 6 days prompting them to review their 
permissions, including those they had modified based on the assistant’s 
recommendations. Participants only modified 10 of the 196 recommendations they had 
previously accepted. Detailed interviews and additional data collected as part of this 
study strongly suggested that participants truly benefited from the functionality and liked 
the recommendations, including the ability to review them and decide whether or not to 
accept them. Additional details on this work have been reported in [LAS+16, Liu19].  
 

 
Figure 25: Number of recommendations made by the privacy assistant app that were 

accepted/rejected by each individual participant in the study (total of 27 participants who 
received recommendations). 

 
Encouraged by these results, our project developed an improved version of the privacy 
assistant, which was released on the Android Google Play Store for use on rooted 
Android phones, as further discussed in Section 4.7.2 and detailed in [Liu19]. 
 
Further work on mobile app permissions and the effectiveness of machine learning 
when it comes to mitigating tradeoffs between expressiveness and user burden of 
privacy controls made available to users was also reported in [SFZ+20]. In this work, we 
administered a survey which collected participants' Android permissions preferences for 
a variety of apps under two conditions: one with purpose-specific permissions and 
another with permissions that extend across all possible purposes. We analyzed 
responses using logistic regression and machine learning. Our study sampled 5964 
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observations of preferences toward three sensitive Android app permissions (calendar, 
location, contacts), with user preferences across 108 apps, from a large sample of 
Android users (n=994) in the United States. Our aim was to discover whether machine 
learning could help mitigate the trade-off between accuracy and user burden when it 
comes to configuring Android app permissions. We applied machine learning 
techniques to evaluate if profile-based models could improve app permission 
management in terms of accuracy and user burden.  
 
Our results (Figure 26 and 27) show that it is possible to select parameters that can 
improve accuracy, reduce user burden, or achieve both objectives simultaneously. This 
is due to the predictive power gained from models that incorporate additional factors 
such as the purpose for granting the permission. Specifically, Figure 26 plots the 
number of user interactions to cluster users (i.e., assigning them to particular clusters), 
as represented by the “profile” line, and the number of manual user interactions required 
to configure one’s permission settings when taking advantage of permission 
recommendations made using the cluster to which a user is assigned. The number of 
these latter interactions is represented by the “ask” line, which corresponds to the 
number of permissions where the user needs to be asked because the model does not 
have a recommendation. K is a parameter corresponding to the number of clusters used 
in a given model. Models that include purpose require significantly fewer user 
interactions overall (lower user burden). Results for larger values of K should not be 
considered, as they most likely involve some level of overfitting. 
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Figure 26: Plotting the total number of user interactions: comparing predictive models 

that include permission purpose and models that do not. 
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Figure 27: Scatterplot showing recommendation accuracy versus the average number 
of user interactions. Each k represents the number of profiles the population is divided 

into. 

 
By default, adding additional factors to mobile app permissions would be expected to 
increase accuracy as well as user burden. For example, mobile app permissions could 
be designed to offer users the ability to select different permissions subject to the 
purpose for which a permission is being requested by an, but this would multiply the 
configuration burden by the number of specified purposes. Our results suggest that 
machine learning can help mitigate trade-offs between accuracy and user burden. In the 
context of models that take the purpose of permissions into account, our study suggests 
that it is possible to get the “best of both worlds”, namely doing a better job at accurately 
capturing people's preferences while simultaneously reducing the number of decisions 
they have to make. This is accomplished using machine learning to assign users to 
privacy profiles and using these profiles to infer many permissions for each user.  
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These results argue for the introduction of purpose-specific permissions in mobile 
operating systems such as Android and iOS. They not only show that people's 
permission preferences are influenced by the purpose for which permissions are 
requested, but also suggest that, using machine learning, interfaces could be built to 
mitigate the increase in user burden that would otherwise result from the introduction of 
finer, purpose-specific permissions. 

4.3.2 Modeling People’s Privacy Expectations Across a Wide Array of IoT 
Scenarios  
The results of our study outlined in Subsection 3.3.2 inform the design of more 
transparent IoT connected systems—we envision our results can be used to improve 
privacy notices for IoT devices, and develop more advanced personal privacy 
assistants. We show that individuals’ comfort levels in a variety of IoT data collection 
scenarios are related to specific aspects of that data collection. Many of our findings are 
consistent with observations made in prior work, but our quantitative methodology and 
the scale of our experiment allows us to understand the effect of individual factors and 
their relative importance more precisely. Leveraging our qualitative and quantitative 
results, we advance explanations for many of the differences among these factors. We 
show that whether or not participants think the use of their data is beneficial to them has 
a profound influence on their comfort level. We also find that participants’ desire for 
notification is closely related to whether or not they feel comfortable with data collection 
in a particular scenario. 

4.3.3 Informing the Design of Personalized Privacy Assistants 
From the qualitative interview study exploring people’s perception towards Personalized 
Privacy Assistants, we developed a deep understanding of people’s diverse preferences 
towards PPAs at different automation levels. As described in 3.3.3, we asked 
participants about their opinions for three increasingly more autonomous PPA 
implementations: Notification PPA, Recommendation PPA, and Auto PPA. Participants’ 
opinions of PPA generally became less positive as automation increased, from 
Notification to Auto, but a few, showed a non-linear relationship between their opinions 
and the level of automation, as detailed below. 

Automation Level 1: Notification PPA  

Most participants (n=11) had a positive reaction to an implementation of PPA that could 
provide users with awareness of data collection around them. However, this reaction 
was almost always accompanied by a desire, and at times expectation, that the system 
would also provide them with control over these data collections. To prevent users from 
being overwhelmed by notifications, participants suggested only being notified about 
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new and unexpected devices, or specific device types, being able to define “known 
locations” to not be notified by things in trusted spaces, receiving batched notifications, 
and being able to set the frequency of notifications. These findings are reflected in the 
design of our IoT Assistant app. 
 

Automation level 2: Recommendation PPA  

Participants’ opinions were mostly positive—but there was a clear preference toward 
external recommendations (e.g., experts, manufacturers, friends) over 
recommendations based on past behavior. Overall, participants found this level of 
automation helpful and educational, and they appreciated that the tool could reduce 
their cognitive burden while augmenting their knowledge about what would be a good 
choice to make. We originally conceived and framed recommendations as based on 
users’ preferences. However, participants presented a range of opinions on possible 
sources. Six participants suggested offering recommendations from authoritative 
sources with no vested interests in the data, but one of them also saw the benefits of 
recommendations from device manufacturers, since they know the technology the best. 
Two of them suggested recommendations based on crowd-sourcing or user reviews. 
Regardless of the source, participants wanted transparent disclosure of that source. 
Four participants were aware that some sources of recommendations might have 
biases or even try to manipulate users. As such it seems preferable for Privacy 
Assistants to be offered by independent third parties. 
 

Automation Level 3: Auto PPA 

About a third of participants did not want a PPA to make decisions for them. Five 
participants did not want to yield control over their decisions. One said, “I don't like to be 
fully controlled by a device, you know?” Furthermore, three participants were unsure 
whether the technology could accurately predict their decisions and were thus hesitant 
to allow it to do so. One reason for this, as one of the three participants stated, is that 
we are not always consistent in our decisions: “I could change my mind. Nine times out 
of ten I'm going to go this way, but I've got a very good reason for that tenth time not to 
do that.” Among the other two-thirds of our participants, we observed positive opinions 
towards an Auto PPA. These positive opinions reflected an appreciation of the 
convenience of outsourcing this type of decision-making to a computerized system. One 
participant rejected the Notification PPA due to a fear of becoming overwhelmed, but 
said that the Auto PPA presented a valid tradeoff: “There I feel we're obtaining a utility 
value to a human individual and I would consider owning such an appliance, as part of 
the digital world.” 
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From the study results, we generated several design implications for PPAs from a user-
centered perspective. First, PPAs should probably only offer automation of decisions or 
recommendations when they can achieve a high level of accuracy in their predictions. 
We noticed that participants in our interviews were not always excited about automating 
the information analysis process. Participants were concerned about potential biases 
from the sources of recommendations or incorrect suggestions for inferred 
recommendations. Based on our findings, a good design for this functionality would 
allow users to pick the types of recommendation sources that they would prefer, ranging 
from expert opinions (authoritative) to real users’ opinions (crowd-sourced). It is worth 
noting that our mobile app privacy assistant ([LAS+16] is consistent with this finding, as 
it offers recommendations, which users can review and reject, whether individually or in 
bulk. This is also consistent with participants in the evaluation of this mobile app 
permission assistant generally receiving very positive reviews from participants 
[LAS+16]. 
 
Second, PPAs should also ensure that users are not overwhelmed by notifications, not 
only because notifications can reduce individuals’ ability to properly process the 
information being presented, but because notifications can make them anxious and 
resigned. One way to avoid this is to remove unnecessary notifications by incorporating 
a “trusted location” feature, such that users would not be notified about devices in those 
locations. For non-trusted locations, in lieu of potentially overwhelming individual 
notifications, the PPA could list devices once and request a decision, revisiting that 
decision periodically if new devices were added or the user's preferences changed. 
Another way to avoid unnecessary notifications is to specify data collection situations 
where users are always opposed to or always in favor of sharing. As already discussed 
these findings are now in part reflected already in the design of our IoT Assistant, which 
allows users to personalize their notifications settings. 
 
Third, PPAs will benefit from a user-centered decision selection function. For 
Notification PPA, we observed a clear desire to have a tool that not only provides 
information about data collection, but that also collects and enforces users’ preferences 
related to data collection. A next level of automation, Recommendation PPA, could 
implement users’ predefined preferences in an automated way. For example, when 
prompted to make a decision, the user can choose to have the PPA “remember this 
decision,” informing the system that they no longer want to be asked about that specific 
data collection. This could be based on data types, devices, companies, etc. or a 
combination of these variables. For Auto PPA, it is vital to provide an auditing 
mechanism where users are able to verify and adjust decisions made on their behalf. 
This mechanism was considered essential when discussing an autonomous PPA, 
serving as a tool to avoid perpetuating incorrect decisions. This mechanism would also 
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prove beneficial to users who choose a lower level of automation, as it would allow them 
to review and revise past decisions as their preferences evolve. 

4.3.4 The Experience Sampling Study 

We now turn our attention to summarizing key results of our study of people’s privacy 
attitudes towards video analytics through the experience study summarized in 
Subsection 3.3.4. 
 
When surveying participants' responses to facial recognition scenarios, we focused on 
four related questions: how surprised they were by the scenario presented to them 
(surprise level), how comfortable they were with the collection and use of their data as 
assumed in that scenario (comfort level), to what extent they would want to be notified 
about the deployment scenario at the location they visited (notification preference), and 
whether, if given a choice they would have allowed or denied the data practices 
described in that scenario at that particular location at the time they visited that location 
(allow/deny preference). Figure 28 provides a summary of collected responses 
organized around the 16 categories of scenarios (or “purposes”). As can be seen, 
people's responses vary for each scenario. In other words, “one size fits all” would fail to 
capture individuals' diverse preferences when presented with these scenarios. At the 
same time, some scenarios elicit more consistent responses from participants than 
others. For instance, generic surveillance scenarios appear to surprise participants the 
least and to elicit acceptance by the most. Yet, even in the presence of such scenarios, 
60% of participants reported they would want to be notified at least the first time they 
encounter these scenarios at a given venue and over 35% indicated they would want to 
be notified each time. At the other end of the spectrum, scenarios involving facial 
recognition for the purpose of evaluating employee productivity or tracking attendance 
at venues elicited the greatest level of surprise and lowest level of comfort among our 
participants, with barely 20% reporting that, if given a chance, they would consent to the 
use of these technologies for the purpose of evaluating employee productivity. Similarly, 
participants expressed significant levels of surprise and discomfort with scenarios 
involving the use of facial recognition to make health and medical predictions or to track 
the attendance of individuals. 
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Figure 28: Summary of collected responses organized around 16 different purposes. 
The bottom row shows the aggregated preferences across different purposes. 

 
We investigated whether people's decisions to allow or deny data collection have a 
relationship with the contextual attributes. We constructed our model using generalized 
linear mixed model (GLMM) regression, which is particularly useful for data analysis 
with repeated measures from each participant. Among all the attributes, we found that 
“purpose” exhibits the strongest correlation with the decision to allow or deny data 
practices associated with our scenarios. Some of the place type attributes were also 
found to have an influence on participants' allow or deny decisions. The number of days 
participants had been in the study also seemed to influence their allow/deny decisions. 
Our findings showed that people's privacy preferences are both diverse and complex. 
They depend on a number of contextual attributes such as the purpose for using video 
analytics. As such, our findings are another illustration of contextual integrity principles. 
The importance of purpose information identified in our study (i.e., for what purpose 
video analytics is being applied) is largely consistent with results reported in earlier 
publications. 
 
A majority of the study participants reported increased awareness resulting from 
participation in the study. They did not realize facial recognition could be used for so 
many different purposes, at such a diverse set of venues, and with this level of 
sophistication. As participants grew more aware of possible video analytics 
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deployments, they gained a more grounded estimate of their knowledge level. Such 
increased awareness leads some participants to deliberate on facial recognition usages.  
Three interviewees described their deliberation on facial recognition usages as the 
study progressed. Our results clearly indicate that many people were taken by surprise 
when encountering a variety of video analytics scenarios considered in our study. While 
many expect surveillance cameras to be widely deployed, few are aware of other types 
of deployments such as deployments for targeted advertising, attendance, productivity, 
and more. These less expected scenarios are also those that generally seem to 
generate the greatest discomfort among participants and those for which, if given a 
chance, they would often opt out (or not opt in). 
 
These results make a strong case for the adoption of more effective notification 
mechanisms than today's typical “this area under camera surveillance'' signs. Not only 
are people likely to miss these signs, but even if they do not, these signs fail to disclose 
whether video analytics is being used, for what purpose, who has access to the footage 
and results, and more. Our study shows that many of these attributes have a significant 
impact on people's desire to be notified about deployments of video analytics. And 
obviously, these signs do not provide people with the ability to opt in or out of these 
practices. Our findings support new disclosure requirements under regulations like 
GDPR, which mandates the disclosure of this information at or before the point of 
collection. Our findings also demonstrate the urgent need to provide people with 
choices to decide whether or not to allow the collection and processing of their data, as 
our participants expressed diverse levels of comfort with these scenarios with many not 
feeling comfortable with at least some of them. Regulatory disclosure requirements help 
improve transparency of video analytics deployments. While some study participants 
grew more concerned about facial recognition, we observed others becoming more 
accepting of it as they learned about potential benefits of some deployments. These 
findings suggest that increased transparency and awareness would help data subjects 
make informed decisions. 
 
These findings have contributed to informing the design of our privacy assistants and 
our IoT Privacy Infrastructure. Using our IoT Assistant, users can access opt-in or opt-
out functionality made available by IoT resources to indicate whether they agree or not 
to the collection and processing of their data by these resources. Given the growing 
deployment of cameras, taking advantage of such functionality could still be hampered 
by the number of notifications and decisions a typical person would be confronted with 
each day when passing within range of cameras. As such the ability to customize one’s 
notification preferences, as supported in our IoT Assistant app, can help alleviate this 
problem. Similarly, being able to configure default opt-in/opt-out decisions for different 
types of video analytics deployments could help significantly reduce user burden. Our 
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findings showing the diversity of people’s privacy and expectation preferences across 
different deployment scenarios further confirm the need for personalized privacy 
assistant functionality with different users relying on different configurations of 
notification and default opt-in/opt-out settings for different video analytics deployments 
(and more generally different IoT resource deployments). To keep user burden 
manageable, one needs configurations that allow users to automatically opt in or out of 
scenarios for which they have pretty definite preferences (e.g., “I want to opt out of any 
video analytics deployment that shares my data with insurance companies''). For other 
scenarios, users could be notified and prompted to make manual opt-in or -out 
decisions. Given how rich and diverse people's privacy preferences are, enabling users 
to manually specify each and every of their notification and opt-in/opt-out preferences 
would result in unacceptable burden on users. Instead (just as we had done for mobile 
app permissions), using machine learning to develop privacy preference profiles based 
on the data collected from this study, we have been able to show that it is possible to 
use simple clustering techniques to reduce the number of decisions users would likely 
have to make [ZFD+20b], as shown in Figure 29. In this figure, each cluster profile 
contains 3 columns: the left one displays the average mean value (deny=−1, allow=1), 
and the right column represents the cluster profile, where the blue color represents an 
allow decision, red means a deny, and white means no decision, either because not 
enough data points are available or for lack of a two-thirds majority. The middle column 
shows the variances, ranging from 0 to 1. The 3 numbers (D/A/T) in each entry in the 
right column represent the distribution of deny (”D”) and allow (”A”) collected for 
members of the cluster for the corresponding purpose, with T=D+A representing the 
total number of decisions collected for the given purpose from members of the cluster. 
 
 

 
Figure 29: Profiles associated with a 6-cluster model. 

 
Here again the idea is that these models could be used to recommend settings to users, 
who could review allow/deny recommendations and decide whether or not to accept 
them.  



Approved for Public Release; Distribution Unlimited.  
57 

4.4 Nudging and Explanation 
We now move on to discussing the main findings of our research on privacy nudges 
conducted as part of this project, focusing on findings of the studies introduced in 
Section 3.4. 

4.4.1 Evaluating the Impact of Framing on the Effectiveness of Privacy 
Nudges 

As reported in [Alm17], our work evaluating different types of framing in privacy nudges 
shown to mobile app users has demonstrated that framing nudges in a way that more 
clearly reveals the privacy risks associated with one’s privacy decisions tends to be 
more effective (see Figure 30). 

 
Figure 30: Evaluating the effectiveness of framing in mobile app privacy nudges. Cells 

highlighted in purple are statistically significant. 

 

4.4.2 Psychometrically Tailored Privacy Nudges  
The results and discussion of the three studies on tailored privacy nudges outlined in 
3.4.2 are detailed below. 
 
With Study 1, our goal was to identify whether psychometric variables could be used to 
infer differences in disclosure rates for a single nudge. We recruited a sample of 200 
participants from Mechanical Turk to complete Study 1, out of which we conducted our 
analysis on a final sample of 143 participants. 
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Across the two experimental conditions in Study 1, 55% (78) of participants chose to 
allow the data disclosure within the hypothetical IoT scenario. We measured the size of 
the framing effect by comparing the likelihood of participants to allow the data disclosure 
between nudge conditions. Of the 143 participants considered in our analysis, 64% (46) 
of those assigned to the `Opt-In' condition chose to allow the disclosure while only 44% 
(32) assigned to the `Opt-Out' condition chose to do the same. The difference in 
disclosure rates between these conditions was significant with a p-value of p=0.02291 
when tested using Chi-squared, suggesting a significant main effect of the nudge. 
 
We used logistic regression models to conduct a difference-in-differences analysis of 
the response data. In each regression, the coefficient of interest to our research 
question was the interaction between the psychometric variable scores and the nudge 
condition assigned to the participant. This allowed us to see whether the effect of the 
assigned nudge on disclosure likelihood varied significantly with the psychometric 
variables. 
 
While none of the interaction coefficients we examined were significant, the direction of 
the coefficients made intuitive sense. For both the Resistance to Framing and Log-ADR 
variable scores, the sign of the interaction coefficient was negative, indicating that a 
higher decision competence for these variables may translate into a decrease in the 
effectiveness of the framing nudge on disclosure behavior. 
 
In Study 2, we sought to determine whether the null result observed in Study 1 was 
robust by focusing on the potential limitations of Study 1 that may have contributed to 
our null results. We addressed these issues in part by switching from hypothetical to 
real disclosure choices and including an additional nudge within our study design. We 
additionally expanded upon the selection of psychometric variables to capture a broader 
range of psychometric traits. 
 
For Study 2, we recruited 1,200 participants from Mechanical Turk. Of those recruited, 
1,198 completed the initial survey and 966 completed the followup survey and passed 
the minimum threshold for attention check questions. We tested multiple logistic 
regression models in Study 2 as part of our exploratory analysis to examine the 
relationship between disclosure choice, our nudges, and the measured psychometric 
variables. For each model, our dependent variable was participants' disclosure choice. 
Our explanatory variables were the assigned nudge condition and the relevant 
psychometric variable score. Across the two nudges and 15 psychometric variables, we 
constructed 30 sets of regression models. We used the IUIPC score and demographic 
variables as controls within our regressions. The interaction term between the assigned 
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nudge condition and psychometric variable score was the primary coefficient of interest 
to our research question. 
 
Out of the regression models that we created, we identified 3 pairs of psychometric 
variables and nudge conditions with potentially significant interaction terms. These 
included the Recognizing Social Norms score and social norms nudge, the Big Five 
Extraversion score and framing nudge, and the Big Five Conscientiousness score and 
framing nudge. 
 
Of the potentially significant effects, the interaction between the Recognizing Social 
Norms score and the social norms nudge was both the most intuitive and had the 
strongest effect. The direction of the coefficient implied that as a participant is more 
likely to recognize social norms, they may be more likely to be influenced by a social 
norms nudge. While less intuitive, the effects between the two Big Five traits and the 
framing nudge could also be interpreted. The direction of the regression coefficient for 
Big Five Extraversion score and the framing nudge condition suggested that those who 
are more extroverted may be more likely to be influenced by a framing nudge. Likewise, 
the direction of the coefficient for the Big Five Conscientiousness score and framing 
nudge condition suggest that participants who are less conscientious may be more 
likely to be influenced by a framing nudge. 
 
Study 3 built upon the results of Study 2 by attempting to replicate the three potentially 
significant effects we identified using a separate sample. We recruited 2,000 
participants to complete our replication study using Mechanical Turk. During 
recruitment, we excluded participants that had previously participated in Study 1 or 
Study 2. Out of this total, 1,996 participants provided complete responses and passed 
the minimum threshold for attention check questions. 
 
We observed similar effect sizes on both the framing and social norms nudges 
compared to Study 2. We tested the same logistic regression models that we used in 
Study 2 for the three potentially significant pairs of psychometric variables and nudge 
conditions (Recognizing Social Norms score and social norms nudge, the Big Five 
Extraversion score and framing nudge, and the Big Five Conscientiousness score and 
framing nudge). Overall, we failed to replicate the effects from Study 2. For the three 
logistic models, the interaction terms were either not significant, weakly significant (at 
the p<0.1 level), or lost significance when controls were added. 
 
Whereas the interaction term for the Recognizing Social Norms score and social norms 
nudge pair was the strongest of the three effects in Study 2, the same effect was only 
significant at the p<0.1 level when control variables were excluded from the regression 
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in Study 3. When the control variables were added, the coefficient for the interaction 
term was no longer significant. For the Big Five Conscientiousness score and framing 
nudge pair, the direction of the interaction coefficient changed from negative to positive. 
Again, the interaction term for this variable and condition pair was only weakly 
significant for the regression model without control variables. When control variables 
were added, this term lost significance. 
 
Overall, the results of our three studies indicated that effects for tailored privacy nudges 
are difficult to identify with consistency. Although Study 2 identified three potentially 
significant effects, our replication of these effects in Study 3 found them to be either 
fragile or non-existent. This result suggests that tailored privacy nudges at the scale of 
our studies may not be practical in application. 

4.4.3 Transparency via Attribution in Vision Models and Internal 
Explanation for NLP models 

Input Attribution in Vision Models 

We have analyzed input attribution methods in terms of interpretability along one of 
several criteria [WMD+20]. The criteria: sufficiency, necessity, and proportionality, 
organize the various motivations presented in literature, and correspond to a 
measurable test with which an attribution can be evaluated. Sufficiency, for example, 
indicates that an attribution should highlight image elements which, were they to be 
presented alone, would be “sufficient” for the explained classification. Evaluating many 
popular attribution methods, we grouped and ranked them for their most appropriate 
interpretation. Some criteria are mutually exclusive, however, and our results indicate 
that there is no best method for each interpretation; additional work is necessary. In a 
parallel work [WWD+20], we generalized a class of attribution methods parameterized 
by the interpretation criterion. 
 
In [WWR+20] we also investigated the relationship between adversarial perturbations 
and input attributions. Most input attributions methods incorporate gradients of 
classification scores in terms of inputs in some way. Methods for finding adversarial 
perturbations typically operate on the very same gradient by iteratively adjusting an 
image until a model makes a wrong prediction. For example, consider Figure 31 where 
the output contour of a simple model is visualized over the input space with several 
inputs (dots) highlighting their attributions which in this case are vectors (in the same 
way gradients are). These same vectors also point towards adversarial examples in 
some cases. Given the relationship, making models robust to adversarial perturbations 
must also impact attributions which are to be used as explanations. In this work we also 
demonstrate new techniques for making explanations robust. 
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Figure 31: Input space, output contour and classification (color), and attributions 

(vectors). 

 

Internal Explanations in Natural Language Processing Models  

As part of [LML+20], we described a novel internal explanation methodology for 
analyzing neural models. Named influence paths, they highlight pathways in models 
that are most responsible for its handling of a specified concept. We applied influence 
paths to understanding standard LSTM language models on a variety of features of the 
English language such as subject-verb number agreement. The technology lets us 
discover how such concepts are implemented in LSTMs and how errors can arise when 
confusing nouns interact in the pathways. For example, Figure 32 (Subject-verb number 
agreement pathways in a 2-layer LSTM.) demonstrates the pathways involved in 
conveying the grammatical number of a subject in a sentence intersecting the pathway 
from a noun that causes an error in the predicting the grammatical number of a 
subsequent verb. 
 
Additional research in this area, looking at feature-wide bias implications can also be 
found in [LBF+2018]. 
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Figure 32: Subject-verb number agreement pathways in a 2-layer LSTM. 

 

4.4.4 Explanations for Mobile App Privacy Permission Recommendations 
While use of our explanation functionality made available in the mobile app privacy 
assistant we piloted proved somewhat limited, anecdotal evidence collected as part of 
interviews with participants suggest that such functionality can help people become 
more comfortable with automated recommendations by the assistants [LAS+16]. 
 

4.4.5 Transparency of Privacy Choices on the Web and Opt-Out Easy 
Browser Add-On Tool 
The results of our work to increase the transparency of privacy choices on the web were 
published in our full paper at the 2020 Web Conference, “Finding a Choice in a 
Haystack: Automatic Extraction of Opt-Out Statements from Privacy Policy Tex.” 
[KIN+20]. 
 
In this paper, we describe the technology behind Opt-Out Easy. First, we created two 
corpora of opt-out choices, which enabled the training of classifiers to identify opt-outs 
in privacy policies. Our overall approach for extracting and classifying opt-out choices 
combines heuristics to identify commonly found opt-out hyperlinks with supervised 
machine learning to automatically identify less conspicuous instances. Our approach 
achieves a precision of 0.93 and a recall of 0.9. Our paper also includes a usability 
evaluation of Opt-Out Easy. Finally, we present results of a large-scale analysis of opt-
outs found in the text of thousands of the most popular websites. Our results suggest 
that many privacy policies do not have opt-out links, but that popular websites are more 
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likely to include them. Advertising opt-outs are by far the most common type of opt-out 
link, accounting for 60% of the opt-outs we detected. 
 
An evaluation of our Opt-Out Easy browser extension also suggest that it is quite 
effective at helping users identify and take advantage of available opt-out choices 
[KIN+20]. 
 

4.5 Transparency and Compliance Analysis 

4.5.1 Data Flow Modeling and Analysis 
In [AMH17] we explored information theoretic definitions of privacy or information 
security in contexts where sensitive secrets are picked in a manner potentially 
influenced by non-sensitive features. For example, one’s passwords are impacted by 
one’s gender or age due to a variety of factors such as familiarity with certain topics or 
using one’s birthday as part of a password (see for example Figure 33). In this work we 
decomposed an information theoretic notion of vulnerability of such secrets in terms of 
their inherent guessability and the guessability of the method with which the secrets are 
picked. The decomposition offers a more complete account vulnerability in realistic 
scenarios were secrets cannot be assumed to be picked perfectly and without undue 
influence from such things as demographics. 

 
Figure 33: Password guessability under gender and age demographics. 

 
In [DFK+17] we described a definition of proxy uses of private information in machine 
learnt models as model components having both sufficient association with a sensitive 
attribute and sufficient influence on the outcome of the model. This quantitative 
definition allowed us to define algorithms for detecting proxy uses in a large class of 
models as well as to perturb or repair these models so as to reduce the significance of 
association or influence thereby clearing models of proxy use. In the example shown in 
Figure 34, a decision tree model’s nodes are placed on an association vs. influence 
graph with a forbidden region shown in the dark area in the top right. A repair algorithm 
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then produces a new model indicated by + marks that has no subcomponents in the 
forbidden region, i.e., has no proxy use of the strength indicated by that region. 
 

 
Figure 34: Decision Tree Model with Proxy Use and Repaired Model. 

 

4.5.2 Mobile App Privacy Compliance Analysis 
The app economy is largely reliant on data collection as its primary revenue model. 
To comply with legal requirements, app developers are often obligated to notify 
users of their privacy practices in privacy policies. However, prior research has 
suggested that many developers are not accurately disclosing their apps’ privacy 
practices. Evaluating discrepancies between apps’ code and privacy policies 
enables the identification of potential compliance issues. However, identifying these 
discrepancies manually is too time consuming to be scalable, showing the need for 
automated solutions. 
Our approach is an automated analysis pipeline for identifying such discrepancies. 
We start by automatically retrieving mobile apps from the Google Play Store and 
automatically identifying and downloading the apps’ privacy policies. Next, we use 
static code analysis to determine apps’ privacy-relevant practices. Then, we use 
machine learning techniques to analyze apps’ privacy policies, determining which 
practices are described and which are absent. Finally, we compare app behavior to 
the practices described in privacy policies, flagging discrepancies as potential 
compliance issues. 
We published early work in this area at NDSS 2017, “Automated Analysis of Privacy 
Requirements for Mobile Apps” [ZWZ+16]. Our analysis of 17,991 free Android apps 
showed the viability of combining machine learning-based privacy policy analysis 
with static code analysis of apps. Results suggest that 71% of apps that lack a 
privacy policy should have one. Also, for 9,050 apps that have a policy, we find 
many instances of potential inconsistencies between what the app policy seems to 
state and what the code of the app appears to do. In particular, as many as 41% of 
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these apps could be collecting location information and 17% could be sharing such 
with third parties without disclosing so in their policies. Overall, each app exhibited a 
mean of 1.83 potential privacy requirement inconsistencies. 
We refined our techniques, as detailed in a PoPETS 2019 paper titled “MAPS: 
Scaling Privacy Compliance Analysis to a Million Apps” [ZSS+19]. In particular, we 
increased the granularity of our analysis techniques, allowing us to distinguish 
between different types of information collection (e.g., fine- and coarse-grained 
location access). We also introduced technical improvements to make our analyses 
more robust and scalable. The result is our Mobile App Privacy System (MAPS) for 
automatically comparing apps’ code and privacy policies. We also published a 
related paper, “Natural Language Processing for Mobile App Privacy Compliance” 
[SZR+19], in which we give more details about our machine learning techniques.  
 
Our automated pipeline enables the analysis of large populations of apps. In its first 
application, we conducted a privacy evaluation for a set of over one million Android 
apps from the Google Play Store. We found broad evidence of potential non-
compliance. Many apps did not have privacy policies to begin with, and policies that 
did exist were often silent on the practices performed by apps. For example, 12.1% 
of apps had at least one location-related potential compliance issue. We hope that 
our extensive analysis will motivate app stores, government regulators, and app 
developers to more effectively review apps for potential compliance issues. 
 
A related contribution was our creation of the APP-350 corpus. In order to train our 
machine learning classifiers, we needed a dataset of privacy policies annotated with 
different types of privacy-relevant behavior. For example, “first-party access of 
location data” or “third-party access of phone numbers.” We annotated the privacy 
policies of 350 mobile apps, and have made this dataset available to the community 
(https://usableprivacy.org/data).  
 
MAPS provides a user interface (see Figure 35, 36, 37, 38, 39, and 40) that enables 
users at regulatory agencies to filter analysis results according to a number of 
criteria (e.g., Play Store category). This functionality has been piloted with several 
regulatory agencies. For example, we interacted with personnel at the FTC to focus 
on potential compliance issues under COPPA [SZR+19] and also used our app to 
help a large European manufacturer of electronic health devices analyze several of 
their mobile apps for potential compliance issues just before the EU GDPR came 
into effect. 

 

https://usableprivacy.org/data
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Figure 35: MAPS: Screenshot of MAPS mobile compliance analysis system showing 

bulk analysis functionality. 
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Figure 36: MAPS: Screenshot of MAPS system showing different tabs that enable users 

to find details about individual apps, including detailed analysis results (“potential 
compliance issues”, “policy analysis”, and “static app analysis”). 
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Figure 37: MAPS: Looking at an app’s privacy policy. 
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Figure 38: MAPS: Summary of potential privacy compliance issues for a given app. 
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Figure 39: MAPS: Automated analysis of a privacy policy. 
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Figure 40: MAPS: Static analysis of a mobile app’s code. 

 

4.5.3 IFTTT 
Our information-flow-based analysis of 19,323 unique IFTTT recipes found that around 
50% of the 19,323 unique recipes we examined are potentially unsafe, as they contain a 
secrecy violation, an integrity violation, or both [SAB+17]. More specifically: 4,432 
recipes (23%) contained only integrity violations, 3,220 recipes (17%) only secrecy 
violations, and 1,985 recipes (10%) both secrecy and integrity violations. These 
numbers include the recipes with both definite and possible ("maybe") violations. If we 
consider only definitely violating recipes, there are 7,150 (37%) unsafe recipes: 3,605 
(19%) with only integrity violations, 1,927 (10%) with only secrecy, and 1,618 (8%) with 
both. Figure 41 illustrates these results.  
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Figure 41: Violating recipes, broken down by violation type. 

 
We next categorized the types of harm that these potentially unsafe recipes can cause 
to users. After manually examining a random selection of potentially unsafe recipes, we 
find that recipes cannot only lead to harms such as personal embarrassment but can 
also be exploited by an attacker, e.g., to distribute malware or carry out denial-of-
service attacks. 
 
We followed up this largely automated analysis with a more in-depth examination of the 
risks and harms of IFTTT recipes based on recipes collected from a user study of 28 
active IFTTT users, through which we collected 732 applets that they installed as well 
as additional information that described their use [CSK+20]. Using the automated 
information-flow-based analysis we previously developed, updated for new devices that 
appeared in the rules we collected from users, we found that about 57% of participants’ 
IFTTT rules had potential secrecy or integrity violations, which is roughly consistent with 
our prior findings. However, our more detailed manual analysis, which took advantage 
of the additional context collected from participants, revealed that although many 
applets might technically have secrecy or integrity violations, they are rarely harmful 
because of these violations. Only about 10% of the secrecy-violating rules (just over 3% 
of all rules) could lead to secrecy harms, and just under 20% of integrity-violating rules 
(8.6% of all rules) present serious integrity-related risks. Consistent with our manual 
evaluation, participants did not believe that their rules were likely to lead to secrecy- or 
integrity-related harms, though they did care about the security and privacy of their 
rules. 
 
Our contextualized analysis of trigger-action rules and their security and privacy risks 
also led to unexpected findings, some which involved identifying risks to people that 
previously weren't being considered in automated analyses. For example, IFTTT rules 
can create surveillance risks to incidental users, i.e., people besides the IFTTT user 
who created the rule. More specifically, many rules cause data to be collected about 
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people other than the IFTTT user, possibly without their awareness. 22% of the rules we 
collected fell into this category, and about a third of them were not detected through 
automated analyses. 
 
In summary, building on previous work on information flow, we developed one of the 
first automated analyses of IFTTT rules (and, more generally, trigger-action rules for 
home automation platforms). This analysis identified that almost half of publicly shared 
recipes were potentially unsafe. A detailed, systematic examination of individual users' 
specific recipes revealed that a smaller portion, roughly 10%, of recipes was unsafe and 
lead to substantial harms, while other unsafe recipes would likely cause minor harms at 
worst. This examination also revealed potential harms not accounted for by our and 
others' automated analyses and suggested features that future analyses should have to 
more accurately and more comprehensively capture the risks that users face in practice. 

4.6 Privacy Risk in Machine Learning Pipelines  

4.6.1 Proxy Use 

We made precise the notions of second-order causation and correlation used by his 
notions of proxy. He has identified modal logics with multiple sorts of points as a 
possible framework for building second-order causal reasoning upon. One sort of point 
can represent different individuals in a world, to allow frequentist first-order causal 
reasoning. A second sort of point can represent different assignments of values to 
individuals. This second sort corresponds to data sets about the individuals, making it 
suitable for second-order causation. He also compared them to notions found in the 
scientific and legal prior work. 
 
We also provided auditing methods. They rerun the ML algorithm on altered data sets to 
see how the classifier changes. To check whether the algorithm used the proxy, it 
removes or randomizes the proxy from the data set, retrains the classifier, and checks 
whether it has changed in a significant way (using multiple runs to find changes that are 
not merely due to randomization). In particular, it checks whether the correlation 
between the target and the decision remains. If so, it suggests that the use of the proxy 
causes this correlation. Similarly, it can check whether the correlation between the 
target and proxy causes the proxy’s use by randomizing the target’s value in the data 
set. 
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4.6.2 Whitebox Membership Inference in Non-parametric Models and 
Ensembles. 
We proposed a class of white-box shadow model attacks on tree-based, non-
parametric, models based on feature importance (see Figure 42). We evaluated these 
attacks on random forests (RF) and Gradient Boosting machines (GBMs) trained on 
four real world datasets and showed these as vulnerable to white-box attacks as 
comparable previously studied neural networks. 
 

 
Figure 42: White-box Shadow Model Attack for Membership Inference. 

 
We also evaluate the effects of the number of estimators on attack success and showed 
that with decreasing generalization error, attack accuracy increases, demonstrating a 
fundamental tradeoff between generalization typically induced by larger ensembles and 
membership privacy risk (see Figure 43). 
 

 
Figure 43: Membership inference attack success vs. number of estimators in 

ensembles. 
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4.7 Integration, Deployment, and Evaluation of Technologies and 
Tools  

4.7.1 Integration of IoT Privacy Infrastructure in TA3 Systems 
Under the IoT Collaboration Research Team (CRT) of the Brandeis program, our team 
worked closely with the team at University of California Irvine to integrate our IoT 
Privacy Infrastructure with their Testbed for IoT-based Privacy-Preserving PERvasive 
Spaces. The UCI team has published TIPPERS-based applications in IoT Privacy 
Infrastructure to provide UCI community privacy notice and choice (see Figure 14). 
Integration with TIPPERS and deployment at UCI including supporting opt out 
functionality required for UCI’s Office of Information Technology. In December 2019, we 
presented IoT Privacy Infrastructure to a group of UCI students, who have developed 
and deployed “Zotbins”, sensor-based smart trash cans around the UCI campus. The 
students used our IoT privacy infrastructure to publicize the locations of Zotbins on the 
UCI campus along with disclosure of their data practices. 
 

4.7.2 Mobile app privacy assistant  
An improved version of the mobile app privacy assistant piloted as part of the study 
discussed in [LAS+16] was released in the Google Play store for users of rooted 
Android phones. Details of improvements made to the privacy assistant prior to its 
release, including the development of enhanced privacy profiles are discussed in 
[Liu19]. Figure 44 shows a few screenshots of this app. 
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Figure 44: Screenshots of Mobile App Privacy Assistant deployed in Google Play Store 
for rooted Android phones. 

 

4.7.3 IoT Privacy Infrastructure 
We successfully released the IoT Privacy Infrastructure to the public.  One project goal 
for the IoT Privacy Infrastructure is to evaluate its scalability and usability through a real-
world deployment. By the end of 2020, the IoT Assistant app has been downloaded by 
over 17,000 users and the IoT privacy infrastructure hosts descriptions of over 150,000 
IoT resources (e.g., see Figure 15 and Figure 17). 
 . 

4.7.4 The IoT Assistant App and Video Obfuscation Application 
In collaboration with CMU’s Eberly Center for Teaching Excellence and Education 
Innovation, we demonstrated a working prototype of our IoT Assistant infrastructure in 
support of smart classroom functionality, where participants in the classroom can use 
their IoT Assistant app to individually opt in or out of being recorded in footage being 
captured during a lesson. IoT Assistant users can discover and access descriptions of 
individual classroom sessions along with privacy settings, which enable them to opt in 
or out of video capture. If they elect to not be capture, their face is obfuscated as part of 
the footage being captured during the classroom session. To opt into being captured, 
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users access an opt-in setting associated with the classroom session from their IoT 
Assistant app. Once they have selected this setting, they are required to train the 
system to recognize their face as part of a short training session also mediated by the 
IoT Assistant app. Obfuscation is enforced in real-time using the OpenFace system, as 
detailed in [WAD+17,WAD+18,DDW+17]. This prototype could be extended to a variety 
of other contexts to support compliance with regulations such as CCPA and GDPR 
(e.g.,video analytics in malls, amusement parks, classrooms, gyms, places of worship 
and much more). 
 

4.7.5 MAPS  
As already discussed, the MAPS system was used to assist a large European electronic 
device manufacturer analyze several legacy mobile apps for potential compliance 
violations just prior to the EU GDPR regulation taking effect in Europe. The system was 
also used to analyze a number of automotive apps for potential compliance issues as 
part of a collaboration with the Center for Democracy and Technology. Early versions of 
the system were also used as part of a collaboration with the California Office of the 
Attorney General. And finally, the system was used to systematically scan and analyze 
over 1 million Android apps on the Google Play store with results of this analysis used 
to compile reports shared with personnel at the Federal Trade Commission [ZPS+19] 

4.7.6 Opt-Out Easy 
We released our Opt-Out Easy browser plugin on the Google Chrome and Mozilla 
Firefox extension stores [OptOutChrome, OptOutFirefox]. Opt-Out Easy uses machine 
learning to identify privacy choices in the text of websites’ privacy policies, and presents 
these choices to users as they browse the web. Before launching, we analyzed many 
popular websites for opt-outs, and Opt-Out Easy allows users to request analyses of 
additional websites. We regularly re-analyze websites to ensure our results are up-to-
date. Currently, Opt-Out Easy contains opt-out choices for more than 4000 websites. 
Figure 45 shows the main screen of the Opt-Out Easy user interface. 

https://chrome.google.com/webstore/detail/opt-out-easy/hikefgklfabiiecechanbafeficfojik?hl=en-US
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Figure 45: The User Interface of Opt-Out Easy. 

 

4.7.7 IoT Security and Privacy Nutrition Labels  
We have documented our label design in a complete label specification on our website 
[IoTlabel]. Figure 46 and Figure 47 below show the primary layer and the secondary 
layer of the IoT security and privacy nutrition label, respectively. In addition, we have 
implemented an interactive wizard for generating labels according to our specification. 
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Figure 46: Primary layer of IoT Security and Privacy Nutrition Label. 
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Figure 47: Secondary layer of IoT Security and Privacy Nutrition Label. 
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5. Conclusions  
Managing one’s privacy is becoming increasingly complex in today’s data centric 
economy. The expectations placed on users when it comes to learning about data 
practices and making privacy decisions associated with mobile technologies, the 
Internet of Things and Big Data are simply unrealistic. We need new technologies 
that can help users regain control over the collection and use of their data, as well as 
technologies to assist technology providers and regulators ensure that deployed 
technologies comply with relevant privacy regulations. 
 
Work in this project produced a number of new technologies, tools, models, and 
findings designed to address this challenge. These results have already influenced 
and are expected to continue influencing privacy practices. This includes the 
deployment of a publicly accessible privacy infrastructure for the Internet of Things 
to help publicize the presence of IoT systems and their data collection and use 
practices, including any available privacy choices. This includes the availability of an 
“IoT Assistant” app for people to discover these IoT systems and their data 
practices, including accessing any privacy choices they make available - the IoT 
Assistant app is available in both the iOS and Android app stores. This also includes 
the release of a personalized privacy assistant app for rooted Android phones to 
help people manage their mobile app permissions, the development of a mobile app 
privacy compliance tool (“MAPS”) that has been used to automatically analyze over 
1 million Android apps for potential privacy compliance issues, and the launch of the 
“Opt-Out Easy” browser extension to help people discover opt-out choices buried 
deep in the text of privacy policies (tool available in the Chrome and Firefox stores). 
In addition to these tools, research conducted in the project helped develop rich 
models of people’s privacy preferences and expectations across a variety of mobile 
app and IoT contexts, including the development of predictive models using machine 
learning techniques. These techniques have been shown to have the potential of 
drastically reducing user burden when it comes to helping users manage the myriad 
of privacy choices they need to make in mobile and IoT environments. This research 
has included exploring tradeoffs between user burden and control when it comes to 
configuring these technologies, including identifying differences in the way different 
people feel about relying on automated recommendations and even delegating 
some of their privacy decisions to predictive models. Research on privacy nudges 
has demonstrated that nudging can be configured to be particularly effective at 
helping people make privacy decisions they are less likely to regret. Privacy nutrition 
labels have been developed to help simplify the presentation of key data practices to 
help users when it comes to evaluating different IoT devices. Work on transparency 
has also yielded techniques to identify and analyze data flows and to help evaluate 
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privacy risk in machine learning pipelines. In addition to the above, research 
conducted in this project has influenced ongoing privacy discussions with findings 
being presented at high profile events such as the FTC Privacy Conference, the 
International Conference of Data Protection and Privacy Commissioners, events 
organized by the International Association of Privacy Professionals and many other 
venues, while also receiving significant exposure in the press. Tools such as our 
Mobile App Privacy Compliance system have been used to automatically analyze 
large numbers of mobile apps for potential privacy compliance issues and generate 
reports shared with regulatory agencies.  
 
Most recently, the project also designed and evaluated a number of possible icons 
and textual descriptions, and its recommended design was eventually adopted as 
the official recommendation for the new California Consumer Protection Act 
[HZY+21]. 
 
Finally, work conducted in this project is influencing public policy discussions, with 
investigators invited to attend a number of high-profile public policy events (see 
Subsection 7.2 below) and this project’s research also receiving a fair bit of 
coverage in the press (see news section at [PPAsite]). 
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6. Recommendations  
With the widespread adoption of Artificial Intelligence and the accelerating deployment 
of IoT technologies, it is simply impossible for people to keep up with the number of 
ways in which their data is collected and used. While the past few years have seen the 
emergence of new privacy regulations around the world, the impact of these regulations 
on people’s ability to manage their privacy will remain limited unless people can be 
provided with technologies that empower them to take advantage of the more detailed 
privacy disclosures and richer sets of privacy settings required by these regulations. 
Without such technologies the main limitation is usability: people are simply unable to 
deal with the complexity of the dataflows, the amount of information they are expected 
to read and the number of privacy decisions they are expected to make.  
 
Industry by default has no incentive to go beyond “best practices” when it comes to 
showing that it complies with applicable regulations. What is urgently needed is a 
significant increase in government funding for the development of new user-oriented 
technologies that help people manage their privacy, technologies such as those 
developed as part of this project. Results from our project have shown that these 
technologies can have a major impact on restoring people’s control over their data. Yet 
significantly more research is required to further develop, test and fine-tune these 
technologies. Only government can provide the necessary funding. Given DARPA’s role 
in supporting the development of cutting-edge AI technologies, the agency also has a 
responsibility to continue funding privacy research and to contribute to the development 
of privacy enhancing technologies that counter balance the privacy challenges arising 
from the broad deployment of AI. Incidentally a good part of the research conducted in 
this project also involved the use of AI to help people regain control over their data. 
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7.2 Short Selection of Conference Presentations, Tutorials, 
Panels and other Dissemination Events 

● Acquisti gave a Keynote Talk at the IAPP Europe Data Protection Congress, 
November 2019, including references to our work. 

https://www.petsymposium.org/2021/files/papers/issue2/popets-2021-0028.pdf
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● Acquisti gave the Annual Distinguished Lecture on Big Data Law and Policy at 
the Ohio State Moritz College of Law, November 2019, including references to 
our work. 

● Acquisti gave a Keynote Talk at the Purdue 2050: Conference of the Future, 
Purdue University, 2019, including references to our work. 

● Acquisti gave a Keynote Talk at the University of Bologna Business School, 
Marketing Effectiveness through Customer Journeys and Multichannel 
Management Conference, June 2019, including references to our work. 

● Bauer presented our work on IFTTT at the CERT Data Science in Cybersecurity 
Symposium, Arlington, VA, Aug. 29, 2018 (talk title: “IoT, Privacy, and Machine 
Learning: (Avoiding) Some Challenges and Pitfalls”). 

● Bauer presented our work on IFTTT at University College London, London, UK, 
Jul. 9, 2018 (talk title: “Back to the Future: From IFTTT to XSS, it's all about the 
information-flow lattice”). 

● Cranor presented our work on PPA’s at Davos conference in late January 2016. 
● Sadeh presented our work on PPA’s at FTC’s 1st Privacy Conference (Priv Con) 

in January 2016. 
● Cranor and Sadeh were panelists at the 2018 IAPP Global Summit’s Inaugural 

Privacy Engineering Section Forum, which featured representatives from both 
government (e.g.,FTC, NIST, EU EDPS, NSF), industry (Google, Microsoft, 
Facebook, and many more) and academia. 

● Cranor gave a keynote talk at NSF CyberCorps in January 2020 on “Security and 
Privacy for Humans.” 

● Cranor gave a closing keynote at the RSA Conference in February 2020 that 
focused on the human element in security, including a discussion of research on 
IoT security and privacy nutrition labels. 

● Datta presented our work on transparency and explanations in machine learning 
at the March 2018 Stanford Fairness Workshop and the June 2018 NYU 
workshop on Economics and Data Science in Conversations about Algorithms. 

● Datta presented our work on explanations and privacy for machine learning 
systems at the Machine Learning and Formal Methods Summit, Oxford 
University, July 2018, at A personal journey: Symposium in applications of 
contextual integrity, Princeton University, September 2018, and at Aspen 
Institute/EPIC round table on Disrupting the Consumer Debt Market: The Role of 
Technology and Innovation, September 2018. 

● Sadeh participated in a Panel at Privacy + Security Forum in early May 2020 
along with Achim Klabunde (advisor to the European Data Protection Supervisor) 
and Gabriela Zanfir-Fortuna (Future of Privacy Forum). 
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● Sadeh participated in a plenary panel on the first day of the 40th International 
Conference of Data Protection and Privacy Commissioners in Brussels on 
October 24, 2018. 

● Sadeh gave a keynote at the 2018 Security Assured Cyberinfrastructure 
workshop (SAC-PA2), focusing on our IoT Privacy Infrastructure, etc. 

● Sadeh and Cranor organized a high profile privacy day event at CMU, featuring 
Ed Felten, US Deputy CTO at the White House (http://cups.cs.cmu.edu/privacy-
day/2016/). The event also included a panel and poster session, which featured 
our new DARPA Brandeis project and included a demo of a first Personalized 
Privacy Assistant to help users manage Android app permissions. 

● Sadeh presented the project at the IAPP Global Summit conference in 
Washington DC on May 2, 2019. 

● Sadeh and Cranor each presented results of DARPA Brandeis project at the 
International Association of Privacy Professionals (IAPP) Global Privacy Summit 
in Washington DC in early May 2019. 

● Sadeh presented a SOUPS 2019 tutorial on “Contextual Integrity: From Theory 
to Practice” covering techniques and results of this DARPA Brandeis project  

● Sadeh participated in a panel at Online Privacy+Security Forum on “IoT Privacy 
in the Age of CCPA and GDPR” in May 2020. 

● Sadeh gave a presentation on our IoT Privacy Infrastructure to members of the 
Future of Privacy Forum in May 2020. 

● Sadeh presented “Design of a Privacy Infrastructure for the Internet of Things” at 
2020 USENIX Conference on Privacy Engineering Practice and Respect on 
October 16, 2020. 

● Sadeh and post-docs Anupam Das, Martin Degeling and Sebastian Zimmeck 
gave a tutorial on results coming out of our privacy assistant research at the 
2017 Symposium on Usable Privacy and Security on July 12, 2017. 

7.3 URLs 
 
[IoTAGoogle] https://play.google.com/store/apps/details?id=io.iotprivacy.iotassistant - 
IoT Assistant Mobile App in the Google Play Store (live) 
 
[IoTAiOS] https://apps.apple.com/us/app/iot-assistant/id1491361441#?platform=iphone 
- IoT Assistant Mobile App in the Apple iOS App Store (live) 
 
[IoTAvideo] https://youtu.be/ar4HIY0FePc Video about the IoT Privacy Assistant app 
 
[IoTlabel]https://iotsecurityprivacy.org - Website for IoT security and privacy label 
 

http://cups.cs.cmu.edu/privacy-day/2016/
http://cups.cs.cmu.edu/privacy-day/2016/
https://www.privacysecurityacademy.com/iot-privacy-in-the-age-of-ccpa-and-gdpr/
https://www.privacysecurityacademy.com/iot-privacy-in-the-age-of-ccpa-and-gdpr/
https://play.google.com/store/apps/details?id=io.iotprivacy.iotassistant
https://apps.apple.com/us/app/iot-assistant/id1491361441#?platform=iphone
https://youtu.be/ar4HIY0FePc
https://iotsecurityprivacy.org/
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[IoTPIPEPR] https://www.usenix.org/conference/pepr20/presentation/sadeh - video of 
Norman Sadeh’s presentation on the  Design of a Privacy Infrastructure for the Internet 
of Things at 2020 USENIX Privacy Engineering Practice and Respect Conference 
(PEPR’20). 
 
[IoTPIvideo] https://youtu.be/haiuzC4kfC4 - Video about the IoT Privacy Infrastructure 
 
[IoTPortal] https://www.iotprivacy.io/login - IoT Privacy Infrastructure portal (live) 
 
[OptOutChrome] https://chrome.google.com/webstore/detail/opt-out-
easy/hikefgklfabiiecechanbafeficfojik - Opt-Out Easy Google Chrome Extension (live) 
 
[OptOutFireFox] https://addons.mozilla.org/en-US/firefox/addon/opt-out-easy/ - Opt-Out 
Easy Firefox browser add-on (live)  
 
[OptOutvideo] https://www.youtube.com/watch?v=_2eWrPHyGJM - Opt-Out Easy 
youtube video 
 
[PPAsite] https://www.privacyassistant.org/  - Overall Privacy Assistant project website 
 
[PPAvideos] https://www.privacyassistant.org/iot/ - Early project videos 
 
[ProjectNews] https://www.privacyassistant.org/news/  
 

7.4 Technical Reports 
[Alm17] Almuhimedi, H., “Helping Smartphone Users Manage their Privacy through 
Nudges,” PhD Dissertation, School of Computer Science, Institute for Software 
Research, CMU Technical Report CMU-ISR-17-111, December 2017. http://reports-
archive.adm.cs.cmu.edu/anon/anon/usr/ftp/usr0/ftp/isr2017/CMU-ISR-17-111.pdf  

[Liu19] Liu, B. “Can Machine Learning Help People Configue Their Mobile App 
Privacy Settings?”  PhD Dissertation, School of Computer Science, Institute for 
Software Research, CMU Technical Report CMU-ISR-19-105, December 2019. 
http://reports-archive.adm.cs.cmu.edu/anon/isr2019/CMU-ISR-19-105.pdf  

[ZFD+20b] Zhang, S., Feng, Y., Das, A, Bauer, L., Cranor, L., Das, A., Sadeh, N., 
Understanding people’s privacy attitudes towards video analytics technologies. 
Technical Report CMU-ISR20-114, Carnegie Mellon University, School of Computer 
Science, December 2020. http://reports-archive.adm.cs.cmu.edu/anon/isr2020/CMU-
ISR-20-114.pdf  
 

https://www.usenix.org/conference/pepr20/presentation/sadeh
https://www.usenix.org/conference/pepr20/presentation/sadeh
https://www.usenix.org/conference/pepr20/presentation/sadeh
https://youtu.be/haiuzC4kfC4
https://www.iotprivacy.io/login
https://chrome.google.com/webstore/detail/opt-out-easy/hikefgklfabiiecechanbafeficfojik
https://chrome.google.com/webstore/detail/opt-out-easy/hikefgklfabiiecechanbafeficfojik
https://addons.mozilla.org/en-US/firefox/addon/opt-out-easy/
https://www.youtube.com/watch?v=_2eWrPHyGJM
https://www.privacyassistant.org/
https://www.privacyassistant.org/iot/
https://www.privacyassistant.org/news/
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/usr0/ftp/isr2017/CMU-ISR-17-111.pdf
http://reports-archive.adm.cs.cmu.edu/anon/anon/usr/ftp/usr0/ftp/isr2017/CMU-ISR-17-111.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2019/CMU-ISR-19-105.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2020/CMU-ISR-20-114.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2020/CMU-ISR-20-114.pdf
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7.5 Issued Patents 
[SLD+21] N. Sadeh, B. Liu, A. Das, M. Degeling, F. Schaub, “Personalized Privacy 
Assistant,” US Patent 10956586 issued March 23, 2021. Assigned to Carnegie Mellon 
University.http://patentsgazette.uspto.gov/week12/OG/html/1484-4/US10956586-
20210323.html 

http://patentsgazette.uspto.gov/week12/OG/html/1484-4/US10956586-20210323.html
http://patentsgazette.uspto.gov/week12/OG/html/1484-4/US10956586-20210323.html
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8. List of Symbols, Abbreviations, and Acronyms  
ACM  Association for Computing Machinery 
AFRL  Air Force Research Laboratory 
AI  Artificial Intelligence 
API  Application Programming Interface 
Brandeis Name of the DARPA privacy research program under which this project was 

conducted 
CCPA  California Consumer Privacy Act 
CMU  Carnegie Mellon University 
CPRA  California Privacy Rights Act 
COPPA Children's Online Privacy Protection Act 
CRT Collaborative Research Theme bringing together multiple Brandeis projects. 
DARPA Defense Advanced Research Projects Agency 
EU  European Union 
FTC  Federal Trade Commission 
GBM  Gradient Boosting Machines 
GDPR  General Data Privacy Regulations 
GLMM Generalized Linear Mixed Model 
HCI  Human-Computer Interaction 
IEEE  Institute of Electrical and Electronics Engineers 
IFTTT  If-this-then-that 
IoT  The Internet of Things 
IoTA   (or IoT Assistant): The Internet of Things Assistant 
IoT PI  (or IoT Privacy Infrastructure): The Internet of Things Privacy Infrastructure 
IoT Portal  (or IoT Web Portal): The Internet of Things Web Portal 
IUIPC  Internet Users’ Information Privacy Concerns 
LSTM  Long Short Term Memory 
MAPS  Mobile App Privacy System 
MTurk  Mechanical Turk 
NGO  non-governmental organization 
NLP  Natural Language Processing 
POM  Privacy Option Management 
PPA  Personalized Privacy Assistant 
QII  Quantitative Input Influence 
QR  Quick Response 
RF  Random Forests 
TIPPERS Testbed for IoT-based Privacy-Preserving PERvasive Spaces 
UCI  University of California Irvine 
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