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Abstract 

In the pursuit of producing a vacuum lighter-than-air vehicle of the form skin-

over-substructure of the celestial icosahedron shape, a finite element approach was used 

to investigate a novel reduced order model to determine the minimum structure 

dimensionality to support the load of vacuum. This modeling technique represented the 

individual segments of the substructure as curved beams with clamped radially-resisted 

boundary conditions. The load profiles for the model were developed using a finite 

element model of a simply supported characteristic triangle surface with a sea level 

pressure applied. A vector projection was done on the boundary reaction forces of the 

triangle to determine the forces transferred to the structure in the radial direction only. 

The full structure was then modeled as a bare structure and structure with skin to validate 

the results of the reduced order model. The beam geometry for the material Ultem 9085 

was determined through this process. The structure was 3-D printed with a Fortus 450mc. 

The 3-D printed structure was then experimentally tested under uniaxial compression 

complimented with a FEA model to serve as a basis for validating the model’s ability to 

predict the structure's behavior.  
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A REDUCED ORDER MODEL OF THE CELESTIAL ICOSAHEDRON AS THE 

SUBSTRUCTURE FOR A LIGHTER THAN AIR VEHICLE 

 
1. Introduction 

1.1. Overview 

 The use of buoyancy as a means of generating lift was the first method of 

achieving manned flight and dates back to 1783 when the Montgolfière brothers 

successfully achieved human flight using a hot air inflated balloon [1]. Shortly afterward 

a hydrogen filled balloon achieved flight which was constructed by the Roberts brothers. 

These lighter-than-air vehicles (LTAV) were the first of in an era of manned flight that 

would lead to various types of balloons and airships. The most ideal lifting gases for 

these types of vehicles are: hot air, diatomic hydrogen, and helium. Hydrogen and helium 

have the largest density ratio compared to the atmosphere of Earth, which is mainly 

composed of diatomic nitrogen. Hot air is simply less dense than surrounding colder air 

due to the molecules being at a higher energy state. Monatomic hydrogen would be the 

best choice, but it is not stable in this form. The buoyancy is then determined by 

Archimedes principle which states that the upward force is the difference between the 

density of the displacing volume and the density of the displaced volume. This 

relationship can be expressed as a ratio of weight to buoyancy shown in Equation (1. 

 𝑊𝑊
𝐵𝐵

=
𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑊𝑊𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑣𝑣𝑠𝑠ℎ𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝜌𝜌𝑔𝑔𝑖𝑖𝑠𝑠
 

(1) 
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Where W is the total weight of the vehicle, 𝑊𝑊𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the weight of the vehicle 

without the gas, B is the buoyancy, 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 is the volume of the lifting gas, 𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔 is the 

density of the lifting gas, 𝑉𝑉𝑣𝑣𝑠𝑠ℎ𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠 is the volume of air that the vehicle displaces, 𝜌𝜌𝑔𝑔𝑖𝑖𝑠𝑠 is 

the density of the surrounding air. Thus, the greater the difference in density between the 

lifting gas and the atmospheric gas, the greater the potential lifting force. The primary 

choice in lifting gases in modern times is helium. This is largely due to its non-flammable 

nature which make it a safer choice than hydrogen despite being more expensive and 

harder to acquire. A fourth option of a ‘lifting gas’ exists in the form of a vacuum; the 

potential to evacuate a volume and have no gas at all so that the density of the ‘gas’ is 

zero or close to zero. Ideally, this would yield the entire density of the displaced gas as 

the lifting potential instead of the difference in densities. The difficulty in this is 

compared to using an actual lifting gas is that is generates a negative pressure that is 

inherent about a vacuum. This negative pressure needs to be resisted in some manner in 

order to maintain a shape. A helium balloon only needs a thin, air-tight layer to contain 

the helium since there can be an equal or positive pressure in the balloon to maintain the 

shape. A vacuum filled vessel of the same construction would collapse upon evacuation. 

Various designs have been theorized to be able to support the load of a vacuum and still 

achieve buoyancy. Several of these designs involve a membrane supported by a 

substructure.  

 The work described in this thesis builds on the work of prior research in vacuum 

lighter-than-air vehicles (VLTAV). This work further investigates the viability of the 

celestial icosahedron as a possible supporting substructure through finite element analysis 
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(FEA) modeling and experimentation. The celestial icosahedron, shown in Figure 1, 

consists of nine identical rings that are rotated at 45 degree angles about three different 

axes with the same center point. This geodesic shape was one of the designs suggested by 

Cranston as a viable option that could support the vacuum while still being lightweight 

enough to have a positive buoyancy during his investigation of geodesic shaped 

structures [2].  

 

Figure 1: Celestial Icosahedron 

1.2. Objectives 

The objectives of this thesis are to characterize the behavior of the celestial 

icosahedron in such a way as to understand its limitations and develop a modeling 

technique that can be used to expedite future pursuits. The design objectives of the 

project are as follows:  
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• Determine the necessary beam cross-sectional diameter to support the load of 

a vacuum based on a reduced order model (ROM) representing individual 

members as curved beam members with FEA 

• Determine a loading scheme that best represents the loads that a vacuum 

pressure would exert on the support structure 

• Additively manufacture the celestial icosahedron structure with using an FDM 

method with the material ULTEM 9085 

• Experimentally test the printed structure under uniaxial compression and 

observe deformations and failure  

• Model the full celestial icosahedron using FEA to compare to the results of 

the experiments 

1.3. Motivation 

The motivations for producing a VLTAV are focused on the rising cost and 

availability of the helium and the higher lifting potential of a vacuum versus a lifting gas. 

A report put out by the US Bureau of Land Management show that the price of Helium 

has risen from $84.40 per thousand cubic feet in 2016 to $210 per thousand cubic feet in 

2019 [3][4]. Helium is the still the preferred lifting gas between hydrogen and helium as 

it is nonflammable. In terms lifting gases, the most ideal lifting gas would by atomic 

hydrogen with a molecular weight of one compared to diatomic hydrogen or helium with 

atomic weights of 2. This would provide the best mass difference between the lifting gas 

and the nitrogen atmosphere; however, hydrogen does not occur nor stay in its atomic 



5 

 

state naturally. The appeal of vacuum is the entire mass of the displaced gas contributes 

toward the buoyancy of the vehicle. In this way vacuum as a lifting ‘gas’ has a greater 

lifting potential than anything with mass; albeit a small advantage. Utilizing a vacuum is 

not without difficulty as the evacuated volume requires support to withstand the 

atmospheric pressure. This necessitates the vehicle be designed with a rigid structure 

rather than a flexible containment such as balloons. Rigid bodies themselves are not out 

of the realm of possibilities as airships such as the Hindenburg were designed with a rigid 

bodies even though they were filled with a lifting gas. Several applications and 

advantages of using a vacuum as the lifting ‘gas’ are described by David Noel in a 1983 

paper [5]. In this article, Noel suggested application ranging from high altitude rain water 

collection, solar energy collection, and communications networks. Noel also states that 

the advantage to using a vacuum, other than the lifting potential, is the ability to combat 

leaks. Leaks are an inevitable reality that accompany the separation of gases. Leaks in a 

vacuum structure can be combated by pumping out the excess air to the desired vacuum 

state [5]. This is a much simpler remedy to leak compared to the requirement of gas filled 

volumes since the escaped gas needs to be replenished from a source. This also grants the 

ability to adjust the level of vacuum to suit any level of altitude that could be attained and 

maintained. The operation of the VLTAV would not be significantly different than any 

other LTAV so any current application that uses a lifting gas could be replaced with a 

vacuum alternative.  



6 

 

1.4. Prior Research  

The concept of using a vacuum to produce a lifting force has remained just that; a 

concept. A theory of using vacuum filled spheres for buoyancy dates back to 1663 with 

Francesco Lana de Terzi [6]. De Terzi’s design was that of evacuated thin shelled copper 

spheres. This idea of using a vacuum filled, single material shell sphere has been proven 

to be an ineffective way to create a lighter than air vehicle. De Terzi’s design itself was 

disproved in 1981 by Bushnell [7]. These copper spheres experience buckling as shown 

in Figure 2 and eventually collapse as the vacuum level increases.  

 

Figure 2: Buckled Copper Sphere Under Vacuum [7] 

A single material concept has also been shown to collapse due to buckling by Andrey M 

Akhemeteli and Andrey V Gavrilin in 2005 [8]. Their calculations are based on sea level 

air density and the requirements to achieve neutral buoyancy are shown in Equations (2) 

and (3). 
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𝑃𝑃𝑠𝑠𝑠𝑠 =

2𝐸𝐸ℎ2

�(3(1 − 𝜇𝜇2)
1
𝑅𝑅2

 
(2) 

 𝐸𝐸
𝜌𝜌𝑠𝑠2

=
9𝑃𝑃𝑠𝑠𝑠𝑠�3(1 − 𝜇𝜇2)

2𝜌𝜌𝑔𝑔2
 

(3) 

This places a requirement for a very stiff and light weight material in order to construct a 

shelled sphere able to contain a vacuum, one that does not currently exist.  

Alternatively, several other concepts have been proposed to generate the needed 

structural strength while achieving neutral buoyancy. Akhemeteli and Gavrilin proposed 

a multiple layer sandwich core shell design [8]. Two other concepts were explored by 

Trent Metlen in 2012; one invloved stiffening a shelled sphere with an isogrid and the 

other a geodesic sphere structure covered in a membrane [9]. Both methods produced 

results that could theoretically be manufactured and use materials that are available.  

Concerns were expressed by Metlen over the scalability of the grid-stiffened method 

since it relies on continuously wound carbon fibers [9]. The geodesic sphere method 

seemed to show the most promise for both scalability and ease of manufacture.  

 The geodesic structure that Metlen explored was a regular icosahedron, shown in 

Figure 3, which consists of 20 identical equilateral triangles. Several others proceeded to 

explore the possibility of the icosahedron as a geodesic support structure.  
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Figure 3: Simple Icosahedron Geodesic Shape [9] 

In 2014, Ruben Adorno-Rodriguez modeled the structure with the goal of determining 

the necessary material properties to enable a 304.8mm in diameter structure to support a 

vacuum and float [10]. The structures that were capable of floating were analyzed with 

the mechanical properties of carbon nanotubes which are not at this time readily available 

in the form required. In 2016 Brian Cranston explored additional geodesic shapes that 

could be used to support a vacuum and be made of real materials even if the 

manufacturing method was not mature. Cranston proposed two designs, the hexakis 

icosahedron and the celestial icosahedron [11]. The hexakis icosahedron is similar to the 

simple icosahedron in that it is composed of straight members with flat faces; this design 

however, is much more refined and consists of 120 faces. The celestial icosahedron 

consists of 9 identical rings at 45 degree angles to each other. The members of this 

structure remain curved which allows the structure take on a more spherical shape. 

Cranston’s focus was primarily on the hexakis icosahedron, but a brief feasibility analysis 

was done on the celestial icosahedron. The hexakis icosahedron showed great promise in 
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being able to support the vacuum loads. The material properties used by Cranston were 

that of the Spectra® fiber; its properties are shown in Table 1 [11]. 

Table 1: Spectra Material Properties [11] 

 Spectra 
Density 970 kg/m3 
Poisson’s ratio 0.33 
Modulus of Elasticity 172 GPa 
Material Strength 3 GPa 
Specific Modulus 1.77E+08 E/𝜌𝜌 
Specific Strength 3.09E+08 E/𝜌𝜌 

Cranston acknowledged that the Spectra® fiber was an up-and-coming technology 

and hadn’t yet been manufactured in the method needed to serve as both the 

structure and the skin. In 2018 Kyle Moore investigated the celestial icosahedron 

and determined the minimum structure diameter for neutral buoyancy to be 0.8001 

meters. This design was based off of the structural members constructed from 

carbon nanotubes (CNT) and the skin constructed from graphene [12]. These 

material properties are shown in Table 2. 

Table 2: Material Properties for Moore's Analysis [12] 

Material Density (kg/m3) Poisson’s Ratio Young’s Modulus 
(GPa) 

Yield Stress 
(GPa) 

CNT 1250 0.33 293 3.8 
Graphene 2000 0.10 500 50 

 

A second design with and overall diameter of 1.2192 meters had a weight to buoyancy 

ratio of 0.7257. These designs also were restricted by the availability of the materials 
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selected in the form of which they were to be applied to the vehicle. The celestial 

icosahedron design would later be investigated by Dustin Graves for dynamic forces that 

the vehicle might encounter in an operational setting [13].  

 All of the designs have proved feasible on paper through FEA and only limited 

experimentation has been done. Cranston did conduct experiments on the icosahedron 

and successfully matched the experimental data to the model during an axial compression 

of the structure [11]. Other experiments have been to investigate the dynamic response of 

aerodynamic forces on the vehicle. Kevin Greenoe began working towards model 

validation experiments using 3-D modeling as the method of manufacturing [14]. The 

material selected for this endeavor was Ultem 9085, a proprietary thermoplastic 

manufactured by Stratasys. The material properties for this material are shown in Table 3. 

Although the material chosen for this research did not possess the required strength and 

stiffness as the past research had determined, Ultem 9085 was one of the strongest 

thermoplastics available for 3-D printing. The ultimate purpose of the experiments by 

Greenoe was to validate the models’ ability to predict the behavior of the structure under 

load. 

Table 3: Ultem 9085 Material Properties [15] 

 XZ Orientation 
(MPa) 

ZX Orientation 
(MPa) 

Tensile Strength (Yield) 47 33 
Tensile Strength (Ultimate) 69 42 
Tensile Modulus 2150 2270 
Flexural Modulus 2300 2050 
Compressive Strength (Yield) 100 87 
Compressive Strength (Ultimate) 181 90 
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At this stage of experimentation, the purpose was not to produce a structure that could 

float but could support a vacuum. Greenoe used a differential equation approach to 

determine the minimum beam diameter for the circular cross-section beams of a 203.2 

mm diameter structure. The analysis assumed straight members between the vertices 

subjected to an axial compressive force and a transverse triangular load distribution. 

Ultimately, Greenoe determined that a minimum beam diameter of 5.08mm would 

support a vacuum [14]. A new element of uncertainty was now introduced along with the 

method of fabrication; 3-D printing. This manufacturing method is known to produce 

anisotropy within the printed part. This was acknowledged by Cranston and also 

investigated by S. Bhandari for thermoplastic extrusion for 3-D printing [16]. This 

anisotropic behavior would need to be quantified in order for the model to accurately 

represent the experimental results. Greenoe’s experiments explored the effect of print 

orientation on the material properties as it they pertained to isolated single rings. These 

rings were printed at three print orientations, 0o, 45o, and 90o relative to the build 

direction. The results of the experiments are shown in Figure 4 with the modulus 

determined through FEA comparison to the experimental results. In both cases the  
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Figure 4: Experimental Results vs Published Properties for Ultem 9085 [14] 

The experiments showed a definite difference between the material modulus of elasticity 

from 0o orientation and the 90o orientation. It was observed that the modulus for the 90o 

orientation matched most closely to the flexural modulus of the material. It should also be 

noted that the 90o
 orientation makes up four of the 9 rings and the 0o orientation is only 

found in one ring referencing the orientation of the structure in Figure 1. A continuation 

of Greenoe’s work would be to fabricate the full structure and conduct experiments to 

determine its similarities to the FEA models.   

1.5. Current Research Implications 

The current research builds on the additive manufacturing experiments conducted by 

Greenoe. It revisits the analysis for determining the beam geometry for the structure 

through an FEA model representing the beams as curved members with unique boundary 

conditions in a ROM. The material properties as determined by Greenoe, specific to the 
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print orientations, have been taken into consideration for the ROM. The most 

conservative approach to the material properties was taken between the three tested print 

orientations. The experiments conducted with a full celestial icosahedron through 3-D 

printing provide insight into the fidelity of the models. Several studies have been done 

identifying vehicle designs capable of floating with a vacuum, but these have not been 

validated with experiments. This is mostly due to the materials selection of the designs 

and the availability of those materials. A validation of the modeling process, even with a 

material that is not capable of producing a beneficial weight to buoyancy ratio, will 

increase the potential of creating a successful vehicle as more capable materials become 

available. Future designers should have more confidence that their designs are capable of 

floating under vacuum.  
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2. Research Methodology 

2.1. Chapter Overview 

This chapter provides details on how each step of the research was conducted, but 

does not necessarily provide the results that were obtained by each step. The first step in 

this project was to evaluate the members of the celestial icosahedron using an FEA 

approach. This was not only to provide a confirmation of the results obtained from prior 

researchers for the beam geometry, but would hopefully demonstrate a more ideal 

geometry since this method would take the members’ curvature into consideration. A 

secondary purpose of this FEA approach was to lay the groundwork for evaluating more 

complex beam geometries.  The second step was to model the full celestial structure 

using FEA and evaluate its performance under vacuum and under a uniaxial load that will 

later be complimented with experimentation. The third step was to manufacture the full 

celestial icosahedron structure with the determined beam geometry. The manufacturing 

process chosen was fused deposition modeling (FDM) additive manufacturing (AM) with 

the material Ultem 9085. The fourth step was to mechanically load the printed structure 

uniaxially. This loading method does not represent a vacuum loading but provides insight 

into the failure modes of the material. The expectation was that the structure would 

collapse before any fractures occur as was observed in the single ring experiments. The 

fifth step was to compare the results of the mechanical testing to the FEA results to 

determine how well the model matched the behavior of the mechanical test and make 

adjustments accordingly. The end results of the research should provide valuable insight 
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into how well the structure performs compared to modeling efforts so that adjustments 

may be made by subsequent researchers who may endeavor to construct such structures 

of sizes capable of carrying a payload.  

2.2. Reduced Order Modeling Theory 

In an effort to further refine the approach taken by Greenoe to represent the 

members of the celestial icosahedron, a finite element approach was proposed that would 

evaluate the members as curved beams. This model attempted to represent the 

interactions of the different members of the structure without modeling the entire 

structure; in this way the model was considered a reduced order model (ROM). The 

concept behind the ROM is not a novel approach in itself for doing analysis of these 

types of structures. Greenoe and Just both used partial models of the full structure to help 

predict its behavior [14][17]. Greenoe predicted the behavior of a single vertex-to-vertex 

member simplified as a straight beam with a differential equation solution. Just isolated 

the characteristic triangle of an icosahedron to perform an analysis and conduct an 

experiment with. The approach used here more closely matches the approach of Greenoe 

as the geometry is two-dimensional in nature.  The individual members of the celestial 

icosahedron were isolated with specific boundary conditions and loading schemes. The 

celestial icosahedron is made up of 48 identical triangles; therefore, there are only three 

unique vertex-to-vertex members. An example of this is shown in Figure 5. Greenoe’s 

method was solving a differential equation for a beam column while the approach in this 

research was an FEA approach with curved beams and unique boundary conditions.  
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Figure 5: Celestial Icosahedron Characteristic Triangle 

The premise of this ROM is that the boundary conditions are something other than fixed 

or simply supported. It is also based on the understanding that the overall structure is not 

rigid; when a vacuum is applied to the membrane-covered vehicle, the structure will 

experience deformation along the length of the members but also at the vertices. This will 

cause the overall structure to be something other than perfectly spherical. From this basic 

understanding, some assumptions were made about how the members would be 

supported. These assumptions were:  

• The members’ displacement in the tangential direction will be restricted due to 

symmetrical axial forces 

• Each vertex will have a unique stiffness that will resist displacement in the radial 

direction 
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• The rotations of the members at the vertices are small and were assumed to be 

zero; rotations at the boundaries were restricted 

The resulting model would represent a single member with clamped rotational degrees of 

freedom and movement allowed only in the radial direction that is resisted by a spring. 

This condition could be described as clamped-radially resisted which is slightly modified 

from the clamped-radially guided condition used by Pilkey to describe a similar set of 

boundary conditions [23, Table 16-6] shown in Figure 6.  

 

Figure 6: Clamped-Radially Guided BC from Pilkey [23 

The resistance comes from a spring oriented in the radial direction. A representation of 

this model is shown in Figure 7. Three unique models were generated for each of the 

three segments. The models possessed unique values for the spring constants, Ki, and 

load profiles.  
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Figure 7: Reduced Order Model Configuration 

This model theoretically considers the stiffnesses of the intersections, or vertices, within 

the celestial icosahedron which should give a more accurate prediction of the members’ 

behavior compared to having rigid supports. The addition of the springs to resist radial 

displacements at the boundaries adds an amount of pre-work needed to determine the 

values of the spring constants before the models can be run.  

2.2.1. Finite Element Analysis for the Reduced Order Model 

The main tool used for evaluating the structural members for this research was 

finite element analysis. The software used was Abaqus/CAE 2016 [18]. The celestial 

members were modeled using Abaqus’s B32 type beam elements. Beam elements were 

selected since the members are expected to be long and slender. This reduces the 

dimensionality of the modeled members as the number of degrees of freedom (DOF) 

required for the analysis are reduced based on the assumptions of beam theory. The B32 

element is a quadratic element with three nodes based on Timeshenko’s beam theory. 
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These elements are capable of handling both axial and transverse loads which is 

necessary for the ROM due to the loading scheme used to model the structural members 

[10, pg 55][18]. The analysis of the models used what Abaqus calls a static, general step. 

This modeling method uses the Newton-Raphson method for solving non-linear 

equations [19]. Non-linear geometries were also present due to the curvature of the 

members. In addition, the deflection of the beams may reach an instability point under 

loading where the curvature inverts to stabilize. This behavior is referred to as snapping 

which is undesirable for this application as it could result in a structural collapse or at the 

very least a reduction in the displaced volume and any payload capability. From the 

experiments conducted by Greenoe [14] it is likely that a structure made from Ultem 

9085 will deform rather than fracture so this is an important phenomenon to investigate.  

The FEA technique for the modeling process to determine the load profiles 

required the use of membrane and shell elements. This technique will be discussed in 

later sections specifically relating to the load profile determination.  

2.2.2. Boundary Condition Spring Constants 

The spring constants used in the ROM represent the interactions of the total 

structure on the individual members. Determining these spring constants used in the 

boundary conditions required a separate study in itself. The purpose of the ROM was to 

reduce the amount of effort and computing time needed to determine the stresses with the 

members of the celestial under vacuum. Simplicity was a focus of this method as its 

purpose was to reduce computational workload and still reflect the behavior of the 

intersection. If determining these variables proved to be too resource consuming, the 
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method would lose its usefulness of rapidly establishing the celestial frame 

dimensionality.  

 The first step was to determine exactly what the springs represented. The 

intention was to have the spring represent the interactions of the members at a given 

intersection with the understanding that the structure will flex and displace in a certain 

manner.  The spring constants were assumed to be the resistance of the intersection as a 

whole to displace radially. This resistance was interpreted as a loading constant with the 

units N/m. As an example of the method used to determine this stiffness, a member of 

interest was chosen from the full structure such as the member highlighted in Figure 8. 

This member was supported by a 4-ring intersection on one side and a 3-ring intersection 

on the other. Isolating the members constituting the 4-ring intersection allows for the 

stiffness of this intersection structure to be determined; this was done by separating the 

members at their next vertex as shown in Figure 9 by the circles.  
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Figure 8: Individual Member Example 

 

Figure 9: 4-Ring Intersection Isolation Process 

For this model, each of the free ends was initially supported with clamped supports. It 

would be ideal if each of the free ends could be supported in the same way as the ROM, 

clamped radially resisted. This however, would have created a cyclic type of situation 
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where the stiffness of any intersection could not be determined without knowing the 

stiffnesses of all the other intersections. As a result an iterative approach was ued that 

would converge on the result of the ROM boundary conditions had they been used 

initially. After the first iteration with clamped supports, the ROM boundary conditions 

were applied with the stiffnesses determined by the previous step. An arbitrary load was 

applied as a concentrated force at the intersection as shown in Figure 10. By tracking the 

displacement of the loading point, the stiffness 𝐾𝐾𝑖𝑖 was determined as it related to the 

current modeling scheme as shown in Equation 4 

 𝐾𝐾𝑖𝑖 =
𝐹𝐹
𝛿𝛿𝑖𝑖

 (4) 

 

 

Figure 10: Single Member Models for Stiffness Determination 

This was done for the three intersection types. The models were then modified to contain 

the clamped-radially resisted boundary condition type with the spring constants from the 

previous step. The load was applied in equal fashion as the prior step and new 

intersection stiffnesses were determined. After the third iteration, the results appeared to 

be reaching a level of convergence; the resulting stiffnesses are shown in Table 4. 
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Table 4: Intersection Stiffness Iterations 

 
Intersection 

Iteration 1 Iteration 2 Iteration 3 
Disp. 
(mm) 

Spring Const. 
(N/mm) 

Disp. 
(mm) 

Spring Const. 
(N/mm) 

Disp. 
(mm) 

Spring Const. 
(N/mm) 

2-Ring 0.0539 127.9 0.0677 101.9 0.0681 101.3 
3-Ring 0.0422 163.5 0.0561 122.9 0.0588 117.2 
4-Ring 0.0424 162.5 0.0546 126.2 0.0582 118.5 

This method proved to be quite time consuming and the models became quite large and 

required several iterations. Had the structure’s geometry been more complex, this process 

would not likely be saving any computational resources.  

 In an attempt to reduce the amount of work that went into determining these final 

spring constants the members that made up the intersections were treated as 2-segment 

arches. By examining the celestial, it was observed that the entire structure was made up 

of only four unique 2-segment arches. These arches made up the intersections in various 

combinations. Referring to the labels in Figure 7, the 2-segment arches were made of the 

following segment combinations: B-B, C-C, A-C, and A-A.  These arches are depicted in 

Figure 11 as arches 1, 2, 3, and 4 respectively. The left and right sweeping angles of each 

arch from the intersection point are shown in Table 5.  
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Figure 11: Four 2-Segment Arches Identified 

Table 5: 2-Segment Arch Geometries 

Arch Left Angle Right Angle Total Sweeping Angle 
1 45 45 90 
2 35.26 35.26 70.52 
3 54.74 35.26 90 
4 54.74 54.74 109.48 

 

 It was theorized that the intersection stiffnesses could be determined by knowing the 

stiffnesses of the individual arches that made up the intersection. For instance, in the 

intersection example used previously, the intersection was made up of two A-A arches 

and two B-B arches. Four models were built consisting of the 2-segment arches. An 

arbitrary load was applied as a concentrated force at the location along the arch where the 

intersection would be. Two sets of models were initially run with the boundary conditions 

being either clamped-clamped or simple-simple. Subsequent iterations replaced these 

boundary conditions with the clamped-radially resisted conditions to investigate if 
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boundary conditions of this type would lead to a more accurate representation of the full 

intersection. Example schematics of the A-A and A-C 2-segment arches and the load 

placements is shown in Figure 12. The results from these 2-segment arch models are 

shown in Table 6. 

 

 

 

Figure 12: Example Schematics of 2-Segment Arches, A-A (top), A-C (bottom) 

Table 6: 2-Segment Arch Stiffnesses at Each Iteration 

Arch 
(N/mm) 

Iteration 1 Iteration 2 Iteration 3 
Clamped BC Pinned BC 

1 50.0 37.4 40.8 39.9 
2 77.8 66.2 64.2 61.4 
3 37.2 23.5 31.0 29.5 
4 31.2 21.7 25.6 24.3 

 

The intersections are made up of the following combinations of arches: the 2-ring 

intersection is made from a B-B arch and a C-C arch, the 3-ring intersection is made of 

three A-C arches, and the 4-ring intersection is made of two A-A arches and two B-B 

arches. Evaluating these combinations of arches and comparing them to the full 
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intersection models that had been iterated on, it can be seen that a close approximation 

can be made for the 2 and 4-ring intersections by summing the results of the simply 

supported arch models from iteration 1. The 3-ring intersection can be closely 

approximated by summing the result of its components with the fixed supported model. 

These results are shown in Table 7. This case was ideal since it would not require several 

iterations to come to a result. The trend of the iterations was toward a result similar to 

that of the pinned, or simply supported, boundary condition. The method of determining 

the spring constants in all subsequent analyses would not include iterations on the arch 

models but would use the simply supported or clamped boundary conditions.  

Table 7: Intersection Comparison to Arch Sums 

Intersection Final Stiffness (N/mm) Sum of Single Arches (N/mm) % Difference 
2-Ring 101.3 103.6 2.27 
3-Ring 117.2 111.7 4.69 
4-Ring 118.5 118.3 0.17 

 
All the results are within 5% which was deemed good approximation. This method of 

modeling the four, 2-segment arches would replace the full intersection modeling in order 

to achieve the spring constants needed for the ROM of the individual segments. In terms 

of order of operations, this set of 3 models would be the first step in evaluating an 

alteration to the beam geometry.  

2.2.3. Load Profile Determination 

The load profile that was to be applied to each of the members during the analysis 

was a critical component of the overall model. Without modeling the entire structure with 

the membrane, it is difficult to know exactly what loads the members are experiencing 
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and how the load is transferred across the structure. The majority of previous research did 

not focus on the loads applied to single members of the structure, but rather applied the 

load to the entire structure as a whole. Greenoe’s method for determining the load profile 

was based on geometry. Greenoe used a planar triangle representation of the curved 

triangular faces. This geometry was divided into three smaller triangles based on the 

centroid shown in Figure 13 and would represent triangular load distributions. The 

shortest distance between the triangle segment and the centroid was used to determine the 

peak load of the triangular load distribution per Equation (5).  

 𝑤𝑤𝑜𝑜 = 2𝑃𝑃𝑃𝑃 (5) 

Where 𝑤𝑤𝑜𝑜 is the peak load rate, P is the pressure applied to the surface, and d is the 

minimum distance between the centroid and each side. The peak of the triangular 

distribution is shown in Figure 13 as 𝑤𝑤𝑜𝑜.  

 



28 

 

 

Figure 13: Geometric Load Distribution (top) and Greenoe’s Model’s Loads and 

BCs (bottom)[14] 

This method assumed that a flat triangle was a good approximation for the curved 

triangle that it represented.  

The load profile methods for this research utilized an FEA model of the curved 

characteristic triangle. It was assumed that the members that make up the perimeter each 

characteristic triangle would support the hydrostatic forces experienced by that surface 

area when the volume is evacuated. This means that each member is carrying the load of 

a portion of two characteristic triangles.  The characteristic triangle was modeled as a 

stand-alone surface, simply supported along the entire perimeter with a sea level pressure, 

101.325 kPa, applied uniformly to the surface. The nodal reaction forces were recorded to 

determine the load profiles. The load profiles would change based on the total celestial 

diameter. The total structure diameter for this research was 203.2 mm (8 inches). A 
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model was built of the characteristic spherical triangle the same diameter of the structure. 

The type of element to be used was determined partly from the analysis done by Adorno-

Rodriguez during his analysis of the simple icosahedron. Adorno-Rodriguez determined 

that modeling the skin of the structure with either membrane or shell elements did not 

significantly affect the displacements of the skin for the given analysis as long as the skin 

was very thin [10]; however, two separate methodologies were used for the load profile 

determination which will be discussed in detail later. Method 1 utilized shell elements 

while method 2 utilized membrane elements. The distinction between the two is that 

membrane elements cannot take transverse loads without non-linear stabilization. Shell 

elements were better suited for the first instance to determine the load profile based on 

the starting shape of the triangle. A rigid structure was needed to transfer the load to the 

substructure. For this case, the shell elements were more appropriate because they carry 

bending stiffness, unlike membrane elements, which was required for the shape to be 

maintained [18]; additionally, the rigidity was achieved by increasing the skin thickness. 

This thick shell would no longer be expected to behave as a thin membrane rendering 

membrane elements ineffective. The shell elements used were Abaqus’s S4R element, a 

reduced integration linear quadrilateral element. Similar to Adorno-Rodriguez, the other 

method of load profile determination utilized membrane elements to represent the skin. 

These elements were linear quadrilateral elements (M3D3R) with reduced integration and 

linear triangular elements (M3D3). These elements were chosen for method 2 because 

this model represented the skin as flexible without the ability to carry a bending load. 

These elements were analyzed with an explicit analysis method that will be discussed 
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later. For both of these methods, the forces imposed on the supporting structure were 

determined by the finite element analysis through Abaqus.  

2.2.3.1. Load Profile Method 1 

Load profile method 1 represented the spherical triangle as rigid such that its 

deformations were small. This meant that the concavity of the shape would remain 

unchanged under load representing a perfect sphere. It was necessary to model the 

surface with elements that could carry a bending load; hence, the shell elements. The 

surface was modeled as a stand-alone model without any support structure built in to the 

model. Since the simple supports were placed directly onto the surface, any supporting 

structure would have been rigid anyway. The nodal reaction forces were taken from all of 

the nodes along the perimeter of the triangle, these forces are shown in Figure 15 related 

to their position along each arc. The full surface model contained 741 elements.  Segment 

A had a total of 50 nodes, segment B had a total of 41 nodes, and segment C had a total 

of 32 nodes. The orientation of these load profiles for all cases in this report will be 

oriented in the manner shown in Figure 14; the arc endpoint that is closer to the centroid 

will be oriented to the right. These forces divided by the element width, approximately 2 

mm, provided a discretized plot of the load distribution in terms of Newtons per meter. A 

polynomial was then fit to the curve which would be used to reapply the forces to a set of 

elements in the ROM. This polynomial would apply the same load profile regardless of 

the number of elements in the applied model was different from that of the model the 

profile was taken from. These profiles are shown in Figure 16. 
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Figure 14: Load Distribution Orientations for Each Segment 

 

Figure 15: Nodal Reaction Forces of Method 1 Load Profile 
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Figure 16: Discrete Load Profiles and Polynomial Fits for Method 1 

The curves that were fit to the nodal data were done using Microsoft Excel’s trend 

line tool using a polynomial fit. The equations of the polynomials fit to the load profiles 

for the rigid approach are shown in Equations (6), (7), and (8) for segments A, B, and C 

respectively.  

 𝐹𝐹𝐴𝐴 = −3.90𝐸𝐸6𝑥𝑥3 − 1.86𝐸𝐸5𝑥𝑥2 + 5.50𝐸𝐸4𝑥𝑥 − 66.4 (6) 

 𝐹𝐹𝐵𝐵 = −2.37𝐸𝐸8𝑥𝑥4 + 2.49𝐸𝐸7𝑥𝑥3 − 1.31𝐸𝐸6𝑥𝑥2 + 6.96𝐸𝐸4𝑥𝑥 − 114 (7) 

 𝐹𝐹𝐶𝐶 = −5.11𝐸𝐸8𝑥𝑥4 + 4.82𝐸𝐸7𝑥𝑥3 − 2.67𝐸𝐸6𝑥𝑥2 + 1.06𝐸𝐸5𝑥𝑥 − 123 (8) 

These load profiles were then adjusted to be based on a spherical coordinates of radius 

and angle, 𝜃𝜃, instead of a true distance along the curve so that they could more easily be 

applied with a spherical coordinate system as a line load to the FEA model. Abaqus does 

not allow a line load to be applied as a function of arc length which is how the positions 

of the nodal reaction forces were retrieved. This necessitates that the loading function be 
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transformed into either Cartesian or spherical coordinates to be reapplied to a model. 

Transforming the functions into Cartesian coordinates would have presented a significant 

challenge since the model that the function would be applied to may not necessarily be in 

the same orientation as the coordinate system of the model that generated the function. A 

function based on a distance x from an origin would need to be recalculated for each 

section that is at a different orientation. The simpler approach was to transform the 

original equations into a spherical coordinate system based on 𝑟𝑟, 𝜃𝜃, and 𝜙𝜙; with 𝜙𝜙 = 0 

for all loading schemes. This allowed the load to be applied by angle instead of an X-Y-Z 

coordinate. Each node was assigned a load rate based on its angle along its respective arc, 

a schematic is shown in Figure 17. This load rate would later be interpreted as a local 

pressure distributed over the width of the element. 

 

Figure 17: Schematic of Radial Loading Method 

This transformation was done by replacing the true distance 𝑥𝑥 in equations (6) through 

(8) with the equation for the arc length for a circle, 𝜃𝜃𝑟𝑟. The radius in this case was the 
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structure’s radius of 101.6 mm. The resulting equations are shown in Equations (9) 

through (11) for segments A, B, and C respectively.   

𝐹𝐹𝐴𝐴 = −7.09𝐸𝐸3𝜃𝜃3 − 19.2𝐸𝐸3𝜃𝜃2 + 5.59𝐸𝐸3𝜃𝜃 − 66.4 (9) 

𝐹𝐹𝐵𝐵 = −25.3𝐸𝐸3𝜃𝜃4 + 26.1𝐸𝐸3𝜃𝜃3 − 13.5𝐸𝐸3𝜃𝜃2 + 7.07𝐸𝐸3𝜃𝜃 − 114 (10) 

𝐹𝐹𝐶𝐶 = −54.4𝐸𝐸3𝜃𝜃4 + 50.6𝐸𝐸3𝜃𝜃3 − 27.5𝐸𝐸3𝜃𝜃2 + 10.8𝐸𝐸3𝜃𝜃 − 123 (11) 

To check the accuracy of the profile, integrating each equation across the respective 

segment arc length should result in the same value as the sum of the individual nodal 

forces taken from the original model; the nodal forces should demonstrate a good 

approximation for the polynomial. An example of this integration calculation is shown in 

Equation (12). The total of the three segments’ integrals should also equal the total of all 

the nodal reaction forces. The results are shown in Table 8. 

 

�(−25.3𝐸𝐸3𝜃𝜃4 + 26.1𝐸𝐸3𝜃𝜃3 − 13.5𝐸𝐸3𝜃𝜃2 + 7.07𝐸𝐸3𝜃𝜃 − 114)𝑟𝑟𝑃𝑃𝜃𝜃

𝜋𝜋
4

0

= 89.36 (12) 

Table 8: Comparison of Polynomial Fit to Nodal Forces 

 Sum of Nodal Forces Polynomial Fit % Difference 
Segment A 109.50 109.48 0.01 
Segment B 90.00 89.36 0.71 
Segment C 69.95 69.68 0.39 

Sum 269.45 268.52 0.34 

This check provided validation that the total force applied to the member with the 

polynomial approximation was the same as the sum of the nodal reaction forces. Even 

though the polynomial fit was applying a slightly lower load than the model’s reaction 

forces total, the result is within half a percent and deemed a good approximation. 
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 Load profile method 2 was based on a vector approach. Refer to Figure 18 as a 

visual representation of the following.  Since the surfaces that the pressure is being 

applied to are not planar the pressure force acts in all different directions. The previous 

method simply superimposed the magnitudes of the pressure loads directly onto the 

structural members, A and B, as concentrated forces at the nodes in the desired direction. 

This would be an appropriate method if the surface was planar and rigid such that the 

pressure forces were all acting in the same direction, see Figure 18 (left). In reality the 

skin of the structure will be curved in a concave manner when the pressure is applied. 

Superimposing the pressure load onto the supporting structure as a concentrated force 

would likely result in a vector (shown in red) that is not necessarily in the radial direction 

(represented as dashed blue). This method also assumes that the superimposed force from 

the adjacent face will be equivalent and the resultant vector of the two vectors from 

adjacent faces will act in the radial direction, a representation of the adjacent face’s force 

vector is shown in Figure 19.  

 

Figure 18: Superposition of Pressure Loads, Planar Face (left), Curved Face (right) 
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Figure 19: Adjacent Face Vector Representation 

It was assumed that the components of the vectors acting against one another from 

adjacent faces would not significantly affect the structural members. This vector 

approach could have also been applied to the rigid triangle load profile method as the 

faces were also curved, this was not done as that method was created as a simple method. 

Likewise, the flexible membrane analysis could have been conducted with the 

magnitudes of the nodal reaction forces instead of taking the vector sums. To compare 

the difference between the vector sum and magnitude, plots of the load profiles taken 

both ways are included in Appendix A. If the original reaction forces had been in the 

radial direction, the two plots would be identical. Method 1 is based on the assumption 

that the analysis of the sphere is linear based on the original geometry. The actual 

behavior may be non-linear which requires a different approach to the problem. The 

results of the flexible triangle used in method 2 load profile versus the rigid triangle 

profile of method 1 will be discussed in Chapter 3. 
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2.2.3.2. Load Profile Method 2 

The FEA for method 2 represented the flexible spherical triangle with membrane 

elements. This membrane was given the material properties of Mylar as this was a 

potential material of choice for the skin of the vehicle. Mylar films have a modulus of 

5.001 GPa [20]. The thickness of the skin for the model was based on material 

availability. Three mil films (0.118 mm) were the thinnest film readily available. Unlike 

the previous model, the skin in this model was expected to deform such that the concavity 

of the triangular surface would snap to the inverse orientation. To accommodate this non-

linear behavior, the type of analysis selected was a dynamic, explicit type. Although past 

researchers have successfully analyzed the nonlinear behavior of the skin in full celestial 

models with the use of the non-linear geometry selection and stabilization [12], the 

computational requirement began to become quite cumbersome as the minimum time 

increment used was 10-36
 for a maximum of 108 increments [21]. Attempts to run the 

analysis with slightly larger increments often resulted in errors citing a lack of 

convergence or requirement for a smaller step size. Alternative methods, such as explicit 

methods, were explored that could better handle the large non-linear displacements of the 

skin. The explicit dynamic analysis is described as follows by the Abaqus manual: 

An explicit central-difference time integration rule is used; each increment is 

relatively inexpensive because there is no solution for a set of simultaneous 

equations. The explicit central-difference operator satisfies the dynamic 

equilibrium equations at the beginning of the increment, t; the accelerations 
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calculated at time 𝑡𝑡 are used to advance the velocity solution to time 𝑡𝑡 + ∆𝑠𝑠
2

 and 

the displacement solution to time 𝑡𝑡 + ∆𝑡𝑡. [18, 6.3.3-1] 

The explicit analysis can better handle the non-linear behavior that is exhibited by the 

snapping behavior of the skin since it does not seek convergence at every increment. The 

displacements are known quantities at the beginning of each increment and are not solved 

for during each increment. This method was expected to produce results in a much 

shorter time frame than using the implicit technique with stabilization. To account for the 

dynamic effects of the loading, the analysis was run for 3 seconds with the load being 

applied as a ramp input over 1 second. The snapping behavior describes the rapid switch 

in concavity of the curved members. This phenomenon is described in Figure 20 where if 

the force, F, becomes great enough the curvature of the shape will switch from position A 

to B. This can occur in beams as well as surfaces such as the skin applied to this 

structure.  

 

Figure 20: Snapping Schematic 

 The mesh for this analysis consisted of linear quadrilateral membrane elements 

(M3D4R) seeded with an element size of 1 mm. This produced a mesh of 2854 elements 
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with 2975 nodes shown in Figure 21. This model was also simply supported along the 

perimeter with a sea-level pressure of 101.325 kPa applied to the surface.  

 

 

Figure 21: Mesh for Load Profile Method 2 

The nodal reaction forces were taken as the three Cartesian directional components RF1, 

RF2, and RF3. These forces were used since the interface to visualize the deformed 

model was restricted to using a Cartesian coordinate system. If the forces could have 

been resolved directly into a spherical coordinate system the following vector discussion 

would not have been necessary as the radial forces could have been taken directly. The 

Cartesian forces make up the three vector components of the magnitude force vector, 𝐹𝐹. 

As discussed previously, the skin’s surface is curved and the pressure forces act as 

follower forces that move with the deformations to remain perpendicular to the surface; 

therefore, the reaction forces acting on the nodes are not necessarily going to be in the 

radial direction and could be in any direction necessary to reach equilibrium. This 
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reaction force F has a complimentary force from the adjacent triangular surface. The 

symmetry for this geometry assumes that the resultant vector from the sum of the reaction 

force vectors will be directed in the radial direction.  Instead of modeling both faces 

adjacent to any given member, the force vector from one face was projected onto the 

radial position vector to determine half of the resultant vector in the radial direction; this 

is the direction the loads would later be applied to the structural members. This force 

vector would have to be doubled later to account for the contributions of both faces. The 

vector projection can be found by taking the dot product of the force vector with the 

position unit vector or the dot product of the force vector with the position vector divided 

by the magnitude of the position vector. The vector projection is described in Equations 

(13) and (14) and represented in Figure 22. 

 𝑓𝑓𝑠𝑠 = 𝐹𝐹 ∙ 𝑢𝑢� =
𝐹𝐹 ∙ 𝑢𝑢
‖𝑢𝑢‖

 (13) 

 𝑓𝑓𝑠𝑠 =
𝑥𝑥 ∗ 𝑅𝑅𝐹𝐹1 + 𝑦𝑦 ∗ 𝑅𝑅𝐹𝐹2 + 𝑧𝑧 ∗ 𝑅𝑅𝐹𝐹3

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
 (14) 

 

Figure 22: Vector Projection Schematic 

Where 𝑓𝑓𝑠𝑠 is the nodal radial force, 𝐹𝐹 is the reaction force vector, 𝑢𝑢�  is the positional unit 

vector of 𝑢𝑢 with components x, y, and z from the origin as the center of the sphere. Once 

the radial forces were determined, the process for developing the load profile polynomial 

was the similar to the method previously discussed. The benefits of this method will be 
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discussed in Chapter 3. The radial nodal reaction forces are shown in Figure 23 and along 

with the load profiles and polynomial fits in Figure 24.  

 

Figure 23: Nodal Reaction Forces of Method 2 Load Profile 
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Figure 24: Discrete Load Profiles and Polynomial Fits for Method 2 

The polynomial fits to the curves were determined by first applying a smoothing 

algorithm to the data. This algorithm consisted of a 4-point average using 1 prior and 2 

ahead of the given data point. A key point of interest in the reaction forces is the sudden 

drops in the reaction forces on the slopes of the arcs as identified in Figure 23. These 

drops in load correspond to wrinkles in the surface of the membrane that can be seen in 

Figure 25.  
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Figure 25: Deformed State of Flexible Triangle with Wrinkles 

It is unclear if the wrinkles were an artefact of the modeling process or a real product of 

the geometry, but in either case these drops were smoothed over for the purposes of the 

load profile. The equations for the load profiles developed using this method in terms of 

true distance along the arc are shown in Equations (15) through (17). 

𝐹𝐹𝐴𝐴 = 1.44𝐸𝐸10𝑥𝑥5 − 2.98𝐸𝐸9𝑥𝑥4 + 1.83𝐸𝐸8𝑥𝑥3 − 3.44𝐸𝐸6𝑥𝑥2 + 5.72𝐸𝐸4𝑥𝑥 − 111 (15) 

𝐹𝐹𝐵𝐵 = 7.20𝐸𝐸10𝑥𝑥5 − 1.34𝐸𝐸10𝑥𝑥4 + 8.13𝐸𝐸8𝑥𝑥3 − 1.90𝐸𝐸7𝑥𝑥2 + 1.99𝐸𝐸5𝑥𝑥 − 258 (16) 

𝐹𝐹𝐶𝐶 = 1.61𝐸𝐸11𝑥𝑥5 − 2.25𝐸𝐸10𝑥𝑥4 + 9.94𝐸𝐸8𝑥𝑥3 − 1.57𝐸𝐸7𝑥𝑥2 + 1.43𝐸𝐸5𝑥𝑥 − 132 (17) 

In the same fashion that was discussed for the rigid triangle of load profile method 1, the 

original polynomial equations based on arc length were transformed to be based on the 

angle theta of a spherical coordinate system. This was done by replacing 𝑥𝑥 with 𝑟𝑟𝜃𝜃 with 𝑟𝑟 
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being the structure radius of 101.6 mm. The resulting equations are shown as Equations 

(18) through (20). 

𝐹𝐹𝐴𝐴 = 1.55𝐸𝐸5𝜃𝜃5 − 3.17𝐸𝐸5𝜃𝜃4 + 1.92𝐸𝐸5𝜃𝜃3 − 3.54𝐸𝐸4𝜃𝜃2 + 5.81𝐸𝐸3𝜃𝜃 − 111.4 (18) 

𝐹𝐹𝐵𝐵 = 7.80𝐸𝐸5𝜃𝜃5 − 1.42𝐸𝐸6𝜃𝜃4 + 8.53𝐸𝐸5𝜃𝜃3 − 1.96𝐸𝐸5𝜃𝜃2 + 2.025𝐸𝐸4𝜃𝜃 − 257.6 (19) 

𝐹𝐹𝐶𝐶 = 1.75𝐸𝐸6𝜃𝜃5 − 2.40𝐸𝐸6𝜃𝜃4 + 1.04𝐸𝐸6𝜃𝜃3 − 1.62𝐸𝐸5𝜃𝜃2 + 1.45𝐸𝐸4𝜃𝜃 − 131.9 (20) 

These equations can be similarly integrated as in Equation (12) to determine the total 

radial force to be applied through the load profile compared to the total radial nodal 

forces of the model. These results are shown in Table 9. 

Table 9: Comparison of Polynomial Fit to Nodal Forces 

 Sum of Nodal Forces Polynomial Fit % Difference 
Segment A 129.0 149.6 15.57 
Segment B 103.6 108.2 4.39 
Segment C 75.9 85.1 12.04 
Total 308.6 334.2 8.31 

The polynomial fits for this case add a significant amount of load compared to the nodal 

forces from the model, over 8%. Much of this difference can be attributed to the wrinkles 

causing load drops. Ideally there would not be wrinkles in the skin of the vehicle as this 

would have negative aerodynamic effects as well as the potential to damage the skin. A 

smoother polynomial fit is assumed to adequately represent the load distribution for this 

case. It will be shown in later sections that this stresses produced by this load profile 

applied to the full celestial structure more closely matches the stresses from the skin-and-

structure model.  
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 To compare differences in the three load profiles discussed they were overlaid on 

eachother in Figure 26 with segment A in the top plot, segment B in the middle plot, and 

segment C on the bottom plot. For segments A and B, the geometric method and the rigid 

triangle method show similar profile while the flexible triangle method produced a much 

greater peak load. For segment C, the geometric method and flexible triangle method 

show similar profiles while the rigid triangle method produced a much lower peak load. It 

is important to point out that these load profiles represent only half of the load to be 

applied to the members. Since these load profiles are the contribution of a single 

triangular face onto each triangle segment supporting that face and each segment divides 

two faces, the load profile must be doubled when applied to a member for analysis.  
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Figure 26: Combined Load Profiles, Segments A (top), B (middle), and C (bottom) 
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2.2.3.3. Reference Point Load Distribution Method 

A method that has been used by past researchers to distribute the pressure loads 

was the reference point (RP) method. This method uses an equivalent concentrated force 

positioned at the centroid of a given area along with a coupling constraint in place of a 

pressure load. This method has the potential of simplifying the load application process. 

Loading in this manner does not involve the use of a follower function for the load as the 

skin deforms meaning the load will always be directed toward the center of the structure. 

This method was first explored in this research when the bare frame celestial model was 

created. The process of applying a line load to all 72 beam sections individually was 

proving to be quite tedious. The model was run under different conditions which resulted 

in the structure collapsing under supposedly the same load as the line load method which 

did not demonstrate a collapse. This method was investigated to determine the exact 

loads that were being distributed to the celestial structure; this method was ultimately not 

used as the load profiles that were generated were fundamentally inconsistent with the 

other methods. The reason for this is a combination of the geometry and method of load 

distribution. Abaqus allows the user to choose between uniform, linear, cubic and 

quadratic distributions. The choice of load distribution method changes how the loads are 

applied, but are all essentially based on the distance from a reference point. A detailed 

description of the reference point method can be found in Adorno-Rodriguez’ work [10], 

but for the purposed of this research only the selected parameters will be described. This 

analysis utilized the same shape as the curved triangular surface, but only represented the 

perimeter of the triangle as beams and did not model the surface itself. These beams were 
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directly supported and only served as a structure to attach the constraints to. The 

reference point was chosen as the centroid of the curved surface and is shown in Figure 

27 along with the representation of the constraint. The constraint was a coupling 

constraint with continuum distributing and all six degrees of freedom constrained. The 

influence radius was designated to be out to the further point of the model such that the 

entire shape would be considered for load distribution.  

 

Figure 27: Reference Point Method Coupling 

Each of the four load distribution options were each chosen and evaluated with a 

concentrated force of 273.15 N placed at the reference point directed toward the sphere’s 

center. This force was the equivalent concentrated force resulting from the pressure 

applied to this surface area. The resulting load distributions are shown in Figure 28.  

While none of the load distribution methods reached the same peak as the flexible 

triangle method, this was not the reason for discounting the method as this peak was also 

much higher than the results from the rigid triangle method. In fact, the load distributions 
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obtained with the RP method do resemble the distributions obtained with the rigid 

triangle method with the exception of the loads near the end points. The RP distributing 

method in Abaqus appears to be based on distance from the reference point, without 

taking into account the geometry of the coupling. The closest nodes receive the higher 

loads and the points furthest from the loading point receive loads of zero, or near zero. 

The exception to this was the uniform distribution method. This means that both vertex 

points of segment C have non-zero loads for all cases that are as high as 1000 N/m for the 

quadratic distribution method. This was not observed for either of the cases where a 

pressure load was applied to the triangular surface. This is an artefact of the loading face 

being a scalene triangle. In the case of the simple icosahedron where the triangles are 

equilateral, all the vertices are the same distance from the centroid and would receive 

zero loads, or near zero loads. In the case of a scalene triangle, there is only one point that 

is furthest from the loading point. The zero load at the vertices was present for the 

geometric method and the nodal reaction forces through the FEA methods and is a crucial 

feature of the load profiles. This zero load is necessary not only because it is where the 

geometry comes to a point and thus presents a lack of loading surface, but also because it 

is where other members intersect. The compounding effect of multiple non-zero loads at 

an intersection can produce an excessively large load where there ought not be. For 

example, the right side end point loads for segments B and C shown in Figure 28, add up 

to a loading rate of approximately 3600 N/m at the 2-ring intersection when modeled 

together. This loading rate is almost double that of any other peak rate within the 

structure for this analysis. This makes a significant impact on the way the load is applied 
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to the structure. The polynomial fits from the other load profile schemes did not have 

exactly zero load rates at the end points, but they were considerably small compared to 

the peaks of the profiles. Selecting a point that was equidistant from each of the vertices 

may have produced a better result, however this was not explored.  
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Figure 28: RP Load Profiles, Segment A (top), Segment B (mid), Segment C (bot) 
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2.2.4. Beam Geometry and ROM Process  

The process for determining the celestial icosahedron beam diameter using the 

ROM method discussed previously is as follows:  

1. Select a total structure diameter, and starting beam geometry 

2. Model the characteristic triangle as a surface, simply supported along the 

perimeter and apply an applicable pressure  

3. Obtain the nodal reaction forces from the surface model and generate the load 

profiles 

4. Model the three 2-segment arches as discussed in section 2.2.2 to obtain the 

boundary condition spring constants 

5. Model each of the three triangle segments according to the ROM with the 

determined spring constants and load profiles  

6. Evaluate which of the three segments had the largest stress  

7. Modify beam geometry based on the maximum allowable stress and repeat 

steps 4-7 until convergence 

This process would hold for any beam geometry that could be designed; however, the 

design used throughout this research was a solid circular cross-section. The remainder of 

the ROM discussion are based on the circular cross-section members.  

2.2.4.1. Total Structure and Arches 

Theoretically, the ROM process could be applied to a celestial icosahedron of any 

size. The total structure diameter would be selected based on the desired application and 

payload. Analysis done by Moore showed that a celestial icosahedron shape could reach 
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neutral buoyancy at a diameter of 0.8001 meters and could have a weight to buoyancy 

ratio of 0.7257 at 1.2192 diameter [12]. These calculation were done with material 

properties of carbon nanotubes and graphene. Regardless, a lightweight structure capable 

of supporting a vacuum and close to neutral buoyancy would be a tremendous step 

forward for VLTAVs. The total structure diameter is defined as the diameter of the outer 

mold line of the vehicle if it were a perfect sphere. This dimension is shown in Figure 29; 

the diameter used for this research was 0.2032 m to meet 3-D printing requirements. The 

arches that make up the triangular shapes can be defined by their sweeping angle and 

radius. These arch angles are shown in Figure 29.  

 

Figure 29: Celestial Icosahedron Outer Diameter (left), Arch Angles (right) 

2.2.4.2. ROM Beam Loading Method 

The load profiles for the ROMs were based on the load profiles generated by the 

methods described in section 2.2.3. This produced three distinct load profiles that would 
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be used for each of the three triangle segments. This load represents the radial force 

imposed by the pressure load on the individual beams themselves. After the beams were 

modeled per section 2.2.1 with the required boundary conditions a load was applied as a 

function of 𝜃𝜃, the sweeping angle. This loading equation was entered into Abaqus as a 

line load with an analytical field. The analytical field describes the equation for the load 

profile. This load profile was then distributed to each of the nodes in the following 

fashion: The angular position of each node is determined with respect to the given 

coordinate system; the loading rate is calculated based on the angle; the loading rate is 

multiplied by the element width to determine the discrete nodal load. This is described in 

Equation (21) 

 𝐹𝐹𝑁𝑁𝑜𝑜𝑁𝑁𝑠𝑠 = 𝑃𝑃(𝜃𝜃) ∗ 𝑤𝑤𝑤𝑤𝑃𝑃𝑡𝑡ℎ𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 (21) 

Where P is the loading profile as a function of 𝜃𝜃. This method does require that the 

number of elements across the span of a member be sufficient to accurately map the load 

profile. An example of how the element width can affect the total load applied is shown 

in Table 10 for seeded element widths of 20, 10, 5, 2 and 1 mm and the integrated 

solution.  

Table 10: Effect of Element Width on the Total Force on Segment A 

Element Width 20 mm 10 mm 5 mm 2 mm 1 mm Integral 
Total Force  101.2 106.4 107.6 110.4 109.4 109.48 

The element widths referred to are described in Figure 30. This is the distance that 

Abaqus attempts to space out the nodes between elements when filling a given geometry 

with elements if the element width is not an exact multiple of the geometric distance, 
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adjustment will be made to a few elements to fill the remaining space. The smaller the 

element width, the more nodes that the profile function has to match the load profile to. It 

would not be significantly beneficial to have an element size less the 1 mm as this 

element size very nicely represents the loading profile. The 2 mm element width also 

provides a good representation of the loading scheme; this element width was used for 

the ROM and full celestial models.  

 

Figure 30: Element Width Representation for Beam Elements 

2.2.4.3. Beam Geometry Adjustments 

Complex beam geometries can complicate the process of adjusting the beam 

geometry as there may be more than one variable to adjust such as diameter and thickness 

for annulus shaped cross-sections. For this research only circular cross-sections were 

investigated. The ratio of the observed maximum stress to the maximum allowable stress 

compared to the ratio of the original cross-section to the unknown new cross-section can 



56 

 

be solved to determine the cross-section necessary to produce the maximum allowable 

stress. This method is shown in equations (22) through (24).  

 𝜎𝜎𝑠𝑠𝑖𝑖𝑠𝑠
𝜎𝜎𝑒𝑒𝑔𝑔𝑚𝑚

=
𝐴𝐴𝑜𝑜𝑠𝑠𝑖𝑖𝑔𝑔
𝐴𝐴𝑛𝑛𝑠𝑠𝑛𝑛

 
(22) 

 𝜎𝜎𝑠𝑠𝑖𝑖𝑠𝑠
𝜎𝜎𝑒𝑒𝑔𝑔𝑚𝑚

=
𝜋𝜋𝑅𝑅𝑜𝑜𝑠𝑠𝑖𝑖𝑔𝑔2

𝜋𝜋𝑅𝑅𝑛𝑛𝑠𝑠𝑛𝑛2  
(23) 

 
𝑅𝑅𝑛𝑛𝑠𝑠𝑛𝑛 = �𝑅𝑅𝑜𝑜𝑠𝑠𝑖𝑖𝑔𝑔2 ∗

𝜎𝜎𝑒𝑒𝑔𝑔𝑚𝑚
𝜎𝜎𝑠𝑠𝑖𝑖𝑠𝑠

 
(24) 

Where 𝜎𝜎𝑠𝑠𝑖𝑖𝑠𝑠 is the maximum allowable stress, 𝜎𝜎𝑒𝑒𝑔𝑔𝑚𝑚 is the maximum stress that 

occurred within the model, 𝑅𝑅𝑜𝑜𝑠𝑠𝑖𝑖𝑔𝑔 and 𝐴𝐴𝑜𝑜𝑠𝑠𝑖𝑖𝑔𝑔 are the original cross-sectional radius and 

area. The 𝐴𝐴𝑛𝑛𝑠𝑠𝑛𝑛 and 𝑅𝑅𝑛𝑛𝑠𝑠𝑛𝑛 are the new beam cross-sectional area and radius which are the 

variables to be solved for. This method assumes the relationship between the beam radius 

and stress is linear. In the case of a non-linear relationship, the process may need more 

than one iteration to converge on the required beam diameter.  

The type of stress being evaluated for this study is the Von Mises stress which takes 

into account both the bending stresses and the axial stress shown in Equation (25).  

 𝜎𝜎𝑒𝑒𝑖𝑖𝑔𝑔𝑠𝑠𝑔𝑔 =
𝑀𝑀𝑀𝑀
𝐼𝐼

+
𝑃𝑃
𝐴𝐴

 (25) 

Where 𝑀𝑀 is the bending moment, c is the distance from the neutral axis (beam radius), 𝐼𝐼 

is the area moment of inertia, 𝑃𝑃 is the axial force, and 𝐴𝐴 is the cross-sectional area. 

Depending on the manufacturing process and limitations, it is theoretically possible for 

each of the members to have a different beam diameter that maximizes the allowable 

stress to reduce the structure’s weight as much as possible. For this research, a single 
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beam diameter was chosen for the entire structure and a stress of 42 MPa [15] was used 

for the ultimate stress throughout the structure.  

2.2.5. Beam Buckling Analysis 

As an additional check on the beam geometry produced by the ROM a buckling 

analysis was done. The method was taken from the author Pilkey for uniformly loaded 

curved beams under various support conditions [23]. The support conditions that most 

closely represent that of the ROM were the clamped-radially guided boundary condition. 

Equations (26) and (27)(14) were used to determine the critical buckling load for the 

curved beam. 

 𝑃𝑃𝑠𝑠𝑠𝑠 =
𝐸𝐸𝐼𝐼
𝑅𝑅3

(𝐾𝐾2 − 1) (26) 

 𝐾𝐾 ∗ tan �
𝜓𝜓
2
� ∗ cot �

𝐾𝐾𝜓𝜓
2
� = 1 (27) 

Where E is the material modulus of elasticity, I is the cross-sectional area moment of 

inertia, R is the arc radius, 𝜓𝜓 is the total angle of the arc as illustrated in Figure 31, and K 

is a constant that must be solved for.  

 

Figure 31: Representative Loading Scheme for Curved Beam [23] 
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For this analysis, only the dimensions of segment A will be used as this is the longest 

member and therefore most likely to buckle. The value of K for segment A was 

determined to be 9.443. The modulus used for this calculation was the flexural modulus 

for Ultem 9085, 2050 MPa [15]. The results of this equation for various beam radii used 

throughout this research are shown in Table 11 along with the factors of safety (FS) for 

each of the load profiles. The load profile peaks are two times the peaks shown 

previously in Figure 26 on page 46 as this is how they would be applied due to symmetry. 

These load peaks were 3495 N/m and 6189 N/m for load profile 1 and 2 respectively.  

Table 11: Critical Buckling Loads for Curved Beams 

Radius (mm) 𝑃𝑃𝑠𝑠𝑠𝑠 (N/m) Load Profile 1 FS Load Profile 2 FS  
2.38 4343 1.24 0.70 
2.64 6575 1.88 1.06 
2.99 10819 3.10 1.75 

Table 11 shows that had load profile 2 been applied to the structure of beam radius 2.38, 

at least beam segment A would have buckled since the factor of safety (FS) is less than 1. 

For all other cases, there is a FS greater than 1 for beam buckling. 

2.3. Finite Element Analysis for Full Celestial Icosahedron Modeling 

Modeling the full celestial icosahedron served two purposes for this research. 

First, modeling the full structure provides a method of validating the results from the 

ROM. Second, the full structure model was compared to experimental results to 

determine the effectiveness of the model. Since the beam geometry chosen was a simple 

circular cross-section, the model for the full celestial could be made and analyzed without 

excessive difficulty. The intention was to make sure that ROM was accurately predicting 
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the stresses and behavior within the members so that a full-scale model with complex 

beam geometry would not be necessary. These models represent the material as a 

homogeneous isotropic material, even though this is not the case for 3-D printed Ultem 

9085. The full model largely follows the same procedure as Moore did during his 

analysis of the celestial icosahedron [12]. The full celestial model was evaluated in two 

parts; with and without the skin. The structure of the celestial was made of B32 beam 

elements while the skin in the model that included the skin was modeled with M3D3 and 

M3D4R elements. The M3D3 and M3D4R elements which are are triangular and 

quadrilateral membrane elements. These elements were used by Adorn-Rodriguez and 

Moore with great success in their models of the icosahedron and the celestial 

icosahedron. The modulus used for the model of the full celestial frame was 2.373 GPa, 

which was the average modulus taken from the experiments of Greenoe [14].  

2.3.1. FEA of Bare Frame Celestial Icosahedron 

The model without the skin was done similarly to how the analysis of the 

icosahedron was done by Adorno-Rodriguez; however, the loads were applied as line 

loads directly onto the structural members as opposed to using a reference point method. 

The explanation for not using the reference point method for this structure can be found 

in section 2.2.3.3. The boundary conditions chosen for this analysis was clamped at the 

bottom vertex preventing both displacements and rotations 

(U1=U2=U3=UR1=UR2=UR3=0). The boundary at the top vertex allows the structure to 

deform in the U2 direction but not translate in the U1 or U3 directions (U1=U3=0). The 

modelled icosahedron bare structure is shown in Figure 32. This model contained 1128 or 
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2808 B32 elements with a seeded element width of either 5mm or 2mm. The analysis was 

run as a static, general step with an initial step size of 1E+5, a minimum of 1E+8, for a 

time step of 1. Ultimately both the rigid and flexible triangle load profiles were used on 

this model; however, at the time the celestial frame needed to be 3-D printed, only the 

rigid triangle profile had been fully explored. As a result, the load profile of the rigid 

triangle method was the one that ultimately determined the beam radius for the 3-D 

printed model.  

 

 

Figure 32: Bare Celestial with Line Loads and Boundary Conditions 
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2.3.1. FEA of Celestial Icosahedron and Skin 

The model of the celestial icosahedron with the skin was generated in the same way as 

Moore and Graves produced their models [12]. The structure was the same structure used 

for the bare structure modeling as described in section 2.3.1. The skin was made using a 

revolve option in the Abaqus CAE part building interface. This option allowed a half-

circle to be revolved around an axis to produce a spherical surface. This surface was then 

partitioned by each of the planes of the nine individual rings. This partitioning allows the 

mesh to be aligned with the substructure. The element mesh of the skin was generated 

using a seed width of 4 mm and consisted of 8875 M3D3R and 296 M3D3 elements. The 

mesh over the partitioned sphere is shown in Figure 33. 

 

Figure 33: Partitioned Skin Mesh 

A tie constraint was used to connect the substructure and skin and only connecting the 

displacement degrees of freedom. This method of connecting the skin and structure has 
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been used by previous researchers. A potential drawback to using this method of 

attachment along with beam elements is the beam profile is not accounted for. For shapes 

such as the icosahedron this results in a sharp point occurring in the geometry which 

causes singularities at these points [10]. Similarly, the beams themselves are represented 

as lines and may cause singularity effects due to a sharp edge. The analysis of the models 

with the skin were run similar to the flexible triangle analysis for the load determination 

as there were now 48 of these skin sections undergoing large nonlinear displacements. 

The analysis was run as a dynamic, explicit step with non-linear geometry as described in 

section 2.2.3. The load applied to the model was a uniform pressure load of 101.325 kPa 

applied to the skin’s surface, representative of sea level pressure, as a ramp from 0 to 1 

seconds. This analysis was done over a 3 second time period to allow the dynamic 

response to dampen out to a steady state. The boundary conditions were changed for this 

model to better assess the structure for symmetry. Restricting the movement of the lower 

vertex prevented the natural displacement of that vertex in the U2 direction. This 

movement would be manifested by displacing the entire structure upward which distorts 

the movement caused by the pressure load. To overcome this, boundary conditions were 

placed at every 4-ring intersection preventing tangential movement. This essentially 

locked each of these vertices onto an axis and locked the entire sphere onto its center 

point. These boundary conditions are shown in Figure 34. The vertices along the Y-axis 

such as point A are constrained in the x and z-directions (U1=U3=0), the vertices along 

the X-axis such as point B are constrained in the y and z-directions (U2=U3=0), and the 

vertices along the Z-axis such as point C are constrained in the x and y-directions 
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(U1=U2=0), reference Figure 34 for the full view and a close-up of the boundary 

conditions at point A. This configuration allows for the assumed natural movements of 

the structure without favoring any one direction so that the displacement magnitude data 

would not be skewed in one direction or another. The load was applied as a uniformly 

distributed pressure to the surface of the skin. 

 

 

Figure 34: Boundary Conditions for Celestial with Skin (left), Close-up of A (right) 

2.3.2. FEA of the Celestial Icosahedron for Compression Testing 

The same model that was described in section 2.3.1 was also used with a different 

loading scheme to serve as a comparison to the experimental testing. This analysis would 

simply replace the line loads applied to each of the members with a single concentrated 

load at the top most vertex. The representation is shown in Figure 35 with boundary 

conditions. The boundary conditions selected for this analysis were clamped at the 

bottom (U1=U2=U3=UR1=UR2=UR3=0) and clamped rotations and fixed tangential 
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displacements (U1=U3=UR1=UR2=UR3=0) and the top; vertical displacements were 

allowed.  

 

Figure 35: Celestial Schematic for Compression Loading 

An additional element that was added to this model was the addition of a coupling to the 

boundary conditions to the surrounding members. This coupling was used in place of 

modeling the supporting pucks that were used during the actual experiment to account for 

the load distribution to the structure. These pucks are discussed in detail in section 2.5, 

but they allowed the structure to remain upright in the desired orientation during testing 

and created an offset from the loading platen such that the structure would not make 

contact with the platens in the case of large deformations. As shown in Figure 38, the 

model predicted the displacement of the loading vertex to drop causing it to drop below 
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the level of the other members during loading. Without an offset of the loading point, 

these members would contact the loading platen and change the loading and support 

scheme entirely. The coupling constraint was similar to the one described in section 

2.2.3.3 which used a reference point. For this case a reference point was placed at the top 

and bottom vertices of the celestial. A coupling constraint was created with the adjacent 

members acting as slaves to the reference point as shown in Figure 1. 

 

Figure 36: Coupling Constraint Used for the Compression Analysis 

The coupling type was kinematic with all three translational degrees of freedom and 

rotational degrees of freedom constrained. This meant that all of the elements within a 

certain influence radius were constrained to the movement of the reference point in the 

degrees of freedom selected. This type of constraint also distributes the load applied as a 

concentrated force to all the nodes within the influence radius which reduces the stress 

concentration caused by applying a concentrated force to the model. The influence radius 

for this constraint was restricted to the radius of the support puck that was in contact with 

the structure, a radius of 13 mm. The loads and boundary conditions were then assigned 
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to their respective reference points for the analysis. The result of this constraint is 

demonstrated in Figure 37 where a circle is evident where the stresses are lower until the 

influence radius limit is reached due to the additional support. 

 

Figure 37: Demonstration of the Coupling Constraint 

 

Figure 38: Potential Contact Points during Loading 

The overall purpose of the experiment was so see if representing the anisotropic material 

as a homogeneous isotropic material produces an accurate result. The experiment itself 
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does not represent the loading scheme that the structure would experience supporting a 

vacuum.  

2.4. Additive Manufacturing  

The use of additive manufacturing during this research was for the purpose of model 

validation experimentation. The manufacturing process of additive manufacturing does 

not require the use of fasteners, adhesives, or specially designed joinery. The models can 

be kept simple as such fabrication methods would need to be accurately modeled. This 

manufacturing method also does not place many constraints on the complexity of the 

structure built. The size of the structure; however, is constrained by the build volume of 

the selected machine. A potential drawback to the additive manufacturing process is the 

inclusion of anisotropy in the material properties. Kevin Greenoe explored this anisotropy 

in his thesis work involving the material Ultem 9085 [14]. In this work Kevin isolated 

individual rings from the whole structure at different print orientations. Kevin was able to 

determine the varying moduli based on print orientation. The same material, Ultem 9085, 

was used for the experiments conducted during this research from the same printing 

machine. This printer used was the Fortus 450mc fused deposition modeling (FDM) 

printer pictured in Figure 39. The full celestial structure was printed for the purposes of 

mechanical testing.  
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Figure 39: Fortus 450mc 3-D Printer 

 

2.4.1.1. Material Properties 

The material properties of the Ultem 9085 were taken directly from the 

manufacturer’s website and are shown in Table 3 in section 1.4.  A deviation from the use 

of these properties was based on the experiments conducted by Greenoe. In these 

experiments, an average modulus of elasticity of 2.373 GPa was determined for the three 

print orientations. This modulus was used for the modeling of the full celestial. The 

material properties for the XZ orientation were used for the ROMs as this was the most 

conservative approach. This involved a modulus of 2050 MPa and a maximum stress of 

42 MPa [15]. 
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2.4.1.2. Printing Parameters and Support Material 

There are several printing parameters that can be varied for an FDM printing 

process. The parameters of note for this research are print layer height, number of layers, 

and chamber temperature. As this research is not an exploration of additive 

manufacturing parameters, the recommended parameters from the manufacturer for this 

material were used. The characteristics of note were:  

Layer Height 0.254 mm 

Number of Layers 804 

Chamber Temperature 170o C 

Ultem 9085 Used 177.4 cm3 

Support Used 457.5 cm3 

The print pattern of the structure consisted of two contours around the perimeter of each 

of the cross-sectional geometries followed by a rastering pattern to fill the remaining 

space. The contours each had a width of 0.508mm. A representation of this fill pattern is 

shown in Figure 40.   

 

Figure 40: 3-D Printing Fill Pattern 
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The structure required the use of a lot of support material for the fabrication of the 

slender cantilevering members; almost three times as much support material was needed 

compared to the actual structure material. This support material had to be removed from 

the structure prior to experimentation. The primary method of removing the material was 

through mechanical means. The as-printed structure with various levels of support 

material removed are shown in Figure 41 and Figure 42 while to completely liberated 

structure is shown in Figure 43.  

 

 

Figure 41: Printed Celestial with Support Material 
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Figure 42: Printed Celestial with Only Center Support 

 

Figure 43: Liberated 3-D Printed Celestial Icosahedron 

The celestial structure was also printed in hemispheres to evaluate potential pitfalls 

during the printing process and determine the necessary support material. Printing 
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structures with large overhangs can prove difficult for FDM type of printing. To further 

complicate the process, the presence of tall slender members can be a source of 

malfunction as the printing head relies on a level of adhesion and resistance in the 

filament to properly distribute the material. In some printed members, as the members 

became more and more cantilevered, the printing process displaced the members leading 

to either printing flaws or complete failure through disconnections. Printing viability is an 

important consideration for these types of structures; furthermore, removal of the support 

material is usually done through mechanical means. This places a requirement for a 

certain level of care placed into separating the support material from the good structure. 

Fragile structures may be at a greater risk of damage during the support material removal 

process.  

2.5. Mechanical Testing of the 3-D Printed Frame 

The mechanical testing of the 3-D printed celestial frame was conducted using an 

MTS Acumen 3 electrodynamic load frame with a 3 kN load cell, shown in Figure 45. 

This test frame is a tabletop electrically powered machine that does not use hydraulic 

pressure. The machine uses pneumatic grips and has a maximum stroke of 70 mm. The 

testing was conducted under displacement control as a quasi-static uniaxial compression 

experiment. The celestial frames were held in place with 3-D printed pucks with reliefs 

cut into them to cradle the rings at the top and bottom vertices. These pucks were printed 

from the material polylactic acid (PLA). An example of these pucks is shown in Figure 

44. The purpose of the pucks was to keep the structure’s orientation with respect to the 

loading direction. Without something to stabilize the rotation of the structure, it was 
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likely that the geodesic shape would slip and displace to a more stable orientation, 

balancing on one of the triangular faces. This was not a desirable orientation for testing 

this structure. 

 

Figure 44: Loading Puck (Left), Nested with Celestial Structure (Right) 

The pucks were placed onto flat platens which were gripped by the machines pneumatic 

wedge grips. The pucks themselves were not secured to the platens in any way and only 

friction would prevent them from sliding or rotating about the loading axis. The loading 

was controlled using displacement control at a rate of 1.00 mm/min. This loading rate 

was slightly slower than the loading rate used by Greenoe during his research of 1.27 

mm/min [14]. During his experiments, it was determined that too large of a displacement 

rate imposed standing waves within the individual rings and caused catastrophic fracture 

of the rings immediately upon loading; this was to be avoided as the build time of these 

structures was 27 hours. The load and actuator displacement were recorded at a rate of 5 

Hz. A camera was setup to record images of the test at 10 second intervals to capture any 

structural deformations that occurred during the test.  
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Figure 45: Acumen Electrodynamic Test Frame with Specimen 

2.6. Summary 

The methodology chapter discussed the fundamental theory of the ROM and the 

execution of the modeling. Several methods were investigated to determine the best and 

most accurate load profile that would be applied to the structural members to represent 

the load transferred from the skin.  Ultimately a beam diameter for the celestial structure 

was determined from the load profile developed using finite element approach to a rigid 

characteristic triangle. This load profile was similar to the geometric load profile. Several 

FEA techniques were used including various element types and analysis types that built 
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off of the work of past researchers. These techniques were used to overcome the 

challenges of material behavior and nonlinear geometry. Ultimately the structure was 

able to be manufactured via 3-D printing for the purpose of mechanical testing. These 

mechanical tests would serve as a validation for the FEA models and serve as an 

exploration towards the structural behavior of the celestial icosahedron shape.  
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3. Results and Discussion 

3.1. Chapter Overview 

This chapter documents the pertinent results from the analysis techniques and 

experiments discussed in Chapter 2. A large focus is placed on the relationship between 

the ROM and the full celestial models, both with and without the skin. A comparison will 

be made about the different load profiles chosen and how they compare to the result of 

the full celestial model evaluated with and without the skin. Adjustments were made to 

the ROM methodology in an attempt to better represent the results observed from the full 

model analysis. The results of two celestial frame experiments showed how the 

manufacturer’s material properties may not be actually realized in the printed 

components and how the anisotropic material properties influence the failure.  

3.2. Results of the ROM Technique 

3.2.1. ROM Results for Load Profile 1 

The ROM technique was employed as described in section 2.2 for both loading 

schemes as described in section 2.2.3. The results in this section are from the fixed 

triangle load profile, method 1. The results of the arch stiffness analysis for the iterations 

of completed are shown in Table 12, for each case an arbitrary load of 10 N was applied.  

Table 12: 2-Segment Arch Stiffnesses for ROM Load 1 Iterations 

 
Arch 

Iteration 1 Iteration 2 
Displacement 

(mm) 
Spring Constant 

(N/mm) 
Displacement 

(mm) 
Spring Constant 

(N/mm) 
1 0.332 30.0 0.434 23.0 
2 0.188 53.1 0.241 41.6 
3 0.335 29.9 0.435 23.0 
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4 0.581 17.2 0.754 13.3 
The result of the ROM for each of the three segments is shown in Table 13. The beam 

diameters for each iteration are shown in parentheses next to the iteration callout. For this 

case, the starting beam radius of 2.54 mm resulted in a smaller stress than the ultimate 

stress of 42 MPa. 

Table 13:   ROM Stress Levels for Load Profile 1 

 Maximum Stress (MPa) 
Segment Iteration 1 (2.54 mm) Iteration 2 (2.37 mm) 
A 30.9 35.3 
B 36.4 42.2 
C 30.6 35.7 

After iteration 2, the new beam radius was calculated to be 2.38 mm which would result 

in a maximum stress of 42 MPa in Segment B. The resulting stress field of iteration 2 is 

shown for all three segments in Figure 46. These stresses are the von Mises stresses 

traced along the bottom of each beam. Each of the deformed plots has a deformation 

scale factor of +5 to exaggerate the displacements. The maximum stresses are located 

near the boundary conditions. This stress riser is caused by the fixed rotation boundary 

condition.  

The ends of the curved beams of the model did displace in the radial direction. 

This indicates that a radial reaction force was necessary in order for the model to reach 

equilibrium. This displacement of the free ends represents the displacement of the 

intersections and allows these segments of the celestial to behave more like they would if 

they were part of the full structure rather than locked into a clamped type boundary 

condition.  This displacement is allowed by the spring boundary conditions and is a 
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product of a forces at the boundaries displacing the springs to achieve equilibrium. This 

displacement is linearly proportional to the radial reaction force. These end displacements 

can go either radially inward or outward depending on the direction of the forces. If the 

ROM was representing the behavior of the intersections accurately, the displacements 

ought to be the same regardless of the segment being modeled. This was generally not the 

case. Theses displacements for iteration 2 are shown in Table 14. 

Table 14: ROM Boundary Displacement by Intersection Load Case 1 

Intersection Segment A Segment B Segment C Difference 
2-Ring  -0.237 mm -0.269 mm 0.032 mm 
3-Ring  +0.090 mm  -0.047 mm 0.137 mm 
4-Ring +0.294 mm +0.191 mm  0.103 mm 
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Figure 46: Deformed ROM Beams for Load Profile 1, Iteration 2 

3.2.2.  ROM Results for Load Profile 2 

The same ROM process was repeated with load profile 2 as determined from the 

flexible triangle method as described in section 2.2.3. This method used the same starting 

beam radius of 2.54 mm. The results for the arch stiffnesses used in the models are shown 

in Table 15, for each case a load of 10 N was applied.  

Table 15: 2-Segment Arch Stiffnesses for ROM Load 2 Iterations 

Arch 
Iteration 1 Iteration 2 Iteration 3 

Disp. 
(mm) 

Spring Const. 
(N/mm) 

Disp. 
(mm) 

Spring Const. 
(N/mm) 

Disp. 
(mm) 

Spring Const. 
(N/mm) 
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1 0.332 30.0 0.159 62.9 0.184 54.2 
2 0.188 53.1 0.960 104.2 0.110 91.2 
3 0.335 29.9 0.161 62.0 0.187 53.6 
4 0.581 17.2 0.266 37.6 0.310 32.2 

The result of the ROM for each of the three segments is shown in Table 16. The beam 

diameters for each iteration are shown in parentheses next to the iteration callout. For this 

case, the starting beam radius of 2.54 mm resulted in a larger stress than the ultimate 

stress limit of 42 MPa. 

Table 16: ROM Stress Results for Load 2 

 Maximum Stress (MPa) 
Segment Iteration 1 (2.54 mm) Iteration 2 (3.09 mm) Iteration 3 (2.97 mm) 

A 62.1 38.8 42.6 
B 49.0 32.5 35.3 
C 44.2 28.1 30.9 

After iteration 3, the new beam radius was calculated to be 2.99 mm which would result 

in a maximum stress of 42 MPa in Segment A. The resulting stress field of iteration 3 is 

shown for all three segments in Figure 47. The maximum stresses for this load profile are 

also near the boundaries of the arches. The key differences between the results of the two 

load profiles are the final beam radius determination and the segment which possessed 

the maximum stress. The boundary displacements did not show any better agreement 

between segments for this case as shown in Table 17. 

Table 17: ROM Boundary Displacement by Intersection, Load Profile 2 

Intersection Segment A Segment B Segment C Difference 
2-Ring  -0.046 mm -0.160 mm 0.114 mm 
3-Ring  -0.083 mm  -0.043 mm 0.040 mm 
4-Ring +0.882 mm +0.081 mm  0.801 mm 
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Figure 47: Deformed ROM Beams for Load Profile 2, Iteration 3 

3.3. Results of the Full Celestial Models 

Overall the full celestial models did not show good agreement with the ROM. 

Ultimately the ROM were much stiffer than the actual structure and presented a much 

lower state of stress than the full celestial models in both cases analyzed. The bare-frame 

celestials with the line loads of load profile 2 showed better correlation to the skin-on 

celestial results indicating that this load profile method is more representative of the loads 
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incurred by the pressure loads. Some adjustments were made to the ROM to reduce the 

stiffness of the boundary conditions while still relating them to the specific geometry.  

3.3.1. Full Celestial Models without Skin 

The full celestial model was created as described in section 2.3.1 with two 

different load profiles. Three points’ displacements were tracked during loading to 

compare to the free-end displacements of the ROM segments. The points tracked 

represent each of the three intersection types as shown in Figure 48. 

 

Figure 48:  Tracked Intersections During Loading 

3.3.1.1. Load Profile 1 

Load Profile 1 was applied to the bare structure full celestial model with a beam 

radius of 2.38 mm. The boundary conditions for this analysis were displacement fixed 

(U1=U2=U3=0) and rotationally fixed (UR1=UR2=UR3=0) at the bottom vertex and 

lateral displacement fixed (U1=U3=0) at the top vertex. The results of this analysis are 
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shown in Figure 49. These stress levels are traced along the sphere’s internal radius such 

that the stress indicated along the midsection of each member is in tension. This is the 

case unless otherwise described. The deformed celestial models have a deformation scale 

factor of 1 unless otherwise stated.  

 

 

Figure 49: Stress in Celestial Frame with Load Profile 1, 2.38 mm 

The maximum stress in this model was found to be 69.65 MPa. This was higher than the 

expected stress of 42 MPa, the ultimate tensile stress limit on the material, from the ROM 

analysis; however this stress level was in compression. Since the material was expected 

to fail in tension, the highest tensile stress level was found to be 42.12 MPa. The stress 

level was right at the expected maximum failure stress, but at a very different location. 

This stress occurred at the 4-ring intersection while it was predicted to occur near the 3-
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ring intersection. This structure would likely fail when loaded if this geometry was used 

to create the structure to support the vacuum as there would be no factor of safety (FS). 

To determine a geometry that would be appropriate for manufacture, the worst case yield 

stress of 33 MPa [15] was selected to be the maximum allowable stress in the tension 

mode. Iterations were conducted on the full celestial model to determine the minimum 

beam radius that would result in stresses below the ultimate material stress. This analysis 

resulted in a beam radius of 2.64 mm and a maximum tension stress of 30.06 MPa. The 

deformed celestial icosahedron frame with this beam radius is shown in Figure 50, the 

deformations of this model were not scaled. This beam radius was selected for the 

geometry to be 3-D printed. The geometry was expected to fail by fracture and not 

collapse.  

 

Figure 50: Stress in Celestial Frame with Load Profile 1, 2.64 mm 
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As stated previously, if the ROM was capable of representing the behavior of the 

celestial members, the displacements of the free ends of the ROM should be similar to the 

displacements of the full celestial intersections. This comparison was made by tracking 

the displacement of each intersection during the full celestial analysis. The displacements 

from the analysis with load profile 1 and the 2.64mm beam radius is shown in Table 18 

along with the result from the ROM.  

Table 18:  Load Profile 1 Displacement Comparison 

Intersection Full Model Segment A Segment B Segment C 
4-Ring  +1.528 mm +0.294 mm +0.191 mm  
3-Ring  +0.361 mm +0.090 mm  -0.047 mm 
2-Ring -1.371 mm  -0.237 mm -0.269 mm 

Many of the displacements from the ROM differ from the full model displacements by an 

order of magnitude. It is important to note that the ROM displacement shown in Table 18 

were taken from the 2.38 mm beam radius analysis. Although there is a difference in 

geometry, the full model was run with larger diameter beams which would be expected to 

deflect less. This comparison was meant to observe rough trends and not to act as a 

definitive validation. Another point of interest is that the displacement of the 3-ring 

intersection was predicted to move radially inward by the ROM of segment C, but was 

represented as displacing radially outward in the full structure model and the ROM of 

segment A. The difference in displacement magnitudes could indicate that the spring 

constants are too large on the ROM resulting in a model that boundary conditions that are 

too stiff. This aspect of the ROM will be addressed in section 3.3.3. 
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3.3.1.2. Load Profile 2 

Load profile 2 was applied to the bare structure celestial model with a beam 

radius of 2.99 mm. This geometry was determined based on the stress levels found in the 

2.64 mm beam radius analysis. The boundary conditions for this analysis were 

displacement fixed (U1=U2=U3=0) and rotationally fixed (UR1=UR2=UR3=0) at the 

bottom vertex and latera displacement fixed (U1=U3=0) at the top vertex. The results of 

this analysis are shown in Figure 51. 

 

 

Figure 51: Stress in Celestial Frame with Load Profile 2, 2.99 mm 

The maximum stress in this model was found to be 52.95 MPa. This was higher than the 

expected stress of 42 MPa, the ultimate stress limit on the material, from the ROM 
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analysis but it is in compression. The highest tensile stress was found to be 38.13 MPa at 

the 4-ring intersection. For both load profile cases, the full celestial frame identified a 

higher stress level than the associated reduced models did. The intersection tracking was 

done on the 2.99 mm beam radius ROM and bare structure analyses as well. The results 

are shown in Table 19. 

Table 19: Load Profile 2 Displacement Comparison 

Intersection Full Model Segment A Segment B Segment C 
4-Ring  +1.539 mm +0.882 mm +0.081 mm  
3-Ring  -0.299 mm -0.083 mm  -0.043 mm 
2-Ring -0.564 mm  -0.046 mm -0.160 mm 

 

Once again the displacements of the ROM are an order of magnitude smaller than the full 

structure model. Additionally, the ROM of this load profile predicted a radially inward 

displacement of intersection 3 while the full structure model predicts an outward 

displacement.  

3.3.2. Full Celestial Models with the Skin 

In continuation with model complexity, the skin was added to the model such that a 

pressure load could be applied to the combined structure and skin instead of using a load 

representation. This model was run with both the 2.64 mm and 2.99 mm structure beam 

radii as opposed to 2.38 mm as obtained from the ROM of load profile 1. The results for 

the 2.64mm structure are shown in Figure 52 and the results from the 2.99 mm structure 

are shown in Figure 53. The stress fields of the skin show close similarities as would be 

expected since the parameters of the skin remain unchanged between the two analyses. 

There are stress risers that appear in the skin along the mid sections of the B and C 
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segments with only a small increase in stress along the midsection of A segments. The 

stress fields in the skin near the vertices are generally lower than anywhere else on the 

structure. The stress in the skin was evaluated by any failure criteria as it was not the 

focus of this study. Looking at the substructure alone, both cases show stress risers near 

the vertices spanned by the A segments but is more significant in the model with 2.64mm 

radius members. The maximum stress level in the structure of the 2.64 mm radius beams 

was 105.8 MPa while the 2.99 mm beam radius structure had a maximum stress of 71.8 

MPa in the structure.  
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Figure 52: Deformed Celestial with Skin (top), without Skin (bottom), 2.64 mm 



90 

 

 

Figure 53: Deformed Celestial with Skin (top), without Skin (bottom),  2.99 mm 
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The results of the skin-and-frame analysis were more closely represented by the bare 

frame analysis with the load profile 2 than with load profile 1. Inspecting the 2.64 mm 

bare frame loaded with profile 1, the maximum von Mises stress in the midsection of 

segment A was 46.62 MPa in compression and 24.53 MPa in tension; referring to the two 

sides of the bending curve. Comparing this to the maximum stress along the midsection 

of segment A from the skin-on analysis, a stress of 83.57 MPa in compression and 69.39 

MPa in tension. Inspecting the 2.99 mm bare frame loaded with profile 2, the maximum 

stress in the midsection of segment A was 39.92 MPa in compression and 26.30 MPa in 

tension. The skin on analysis produced a stress of 68.47 MPa in compression and 57.89 

MPa in tension. This comparison shows that load profile 2 was closer to the results of the 

skin-on analysis, but was still off by a factor of about 2 indicating there is an interaction 

between the skin and frame that is not captured in the model of just the frame.  

The results of the full celestial and skin analysis were evaluated for symmetry 

across the entire structure. The case being investigated was if each of the same type of 

intersections displaced in the same way regardless of where it was located on the 

celestial. For example, the 4-ring intersection located at the top of the celestial should 

have displaced the same as the 4-ring intersections located along the equator of the 

celestial if the reaction was symmetrical. The same would be expected of the 3 and 2- 

ring intersections. If the structure demonstrates adequate symmetrical behavior 

throughout the structure, shortcuts in modeling could be done that would reduce the 

analysis time. For instance if the top and bottom halves behave the same, the top alone 

could be modeled with a symmetry boundary condition at the symmetry plane.  The 
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method of assessing the symmetry was taken from the boundary condition analysis done 

by Moore for the celestial icosahedron. The method employed by Moore was to trace 

each ring as a path and plot the displacement of each point along the path [12]. The data 

accumulated from this analysis could be overlain to compare overall displacement 

differences between rings of the same archetype. An example of the ring paths is shown 

in Figure 54. 

 

Figure 54: Traced Ring Path for Displacement Measurement 

The celestial contains rings of only two variation types. Type 1 only contains B segments 

with 2 and 4-ring intersections; there are three type 1 rings within the celestial. Type 2 

contains only A and C segments with all three intersections; there are six type 2 rings 

within the celestial. If the ring’s response to load is symmetrical, the displacement paths 

of each ring of the same type should overlap. There should also be patterns within the 

plots themselves mimicking the periodic geometric symmetry of the celestial. These plots 

for the 2.99 mm radius celestial are shown in Figure 55. 
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Figure 55: Symmetry Plots, Ring Type 1 (top), Type 2 (Bottom) 

The vertices are labeled by the number of rings constituting the intersection, 2, 3, or 4. 

The displacement plots demonstrate good agreement overall with the peaks and valleys 

occurring at the same locations along each ring and with relatively equal magnitude. The 
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displacement curves for rings of type 1 and type 2 demonstrate a periodic symmetry 

about both the 2 and 4-ring intersections. These intersections are located at 90 degree 

increments from each other. It is also important to note that even though the plots are of 

the displacement magnitudes and do not show direction, the 3 and 4-ring intersections 

displaced in a radially outward direction while the 2-ring intersection moved in a radially 

inward direction. The specific displacements at each of the vertices are shown in Table 

20. 

Table 20: Intersection Displacements (mm) for 2.99mm Celestial with Skin 

Int. 
Type  I II III IV V VI VII VIII IX X XI XII 

4 1.99 1.98 1.97 1.99 1.98 1.98       
3 0.63 0.63 0.63 0.63 0.64 0.63 0.62 0.65     
2 1.21 1.21 1.21 1.23 1.26 1.25 1.23 1.26 1.23 1.20 1.25 1.25 

The difference between the largest and smallest displacement of each intersection types 

were 0.7%, 4.9%, and 5.3% for the 4, 3, and 2-ring intersections respectively. The 

magnitudes of these differences were 0.02 mm, 0.03 mm and 0.06 mm respectively. The 

structure has demonstrated symmetry that could be described as quadrant symmetry. This 

is symmetry about all three Cartesian planes at the same time. If exploited completely, 

the only need to be 1/8th of the sphere would need to be actually modeled to assess the 

behavior of the full sphere.  

 Comparing the displacement magnitudes at the vertices of the skin-on model to 

the bare frame models, the magnitudes of these displacements were found to be larger in 

the skin-on models than the bare frame. It was expected that the skin would have a 

stiffening effect on the structure which is seen in section 3.5.2 when the skin is added to 
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the model. Since this was observed, it is logical to surmise that there is a load distribution 

variance between the two models. It is possible that the tie constraint used to join the skin 

to the substructure alters the load distribution compared to the bare frame load profiles.  

3.3.3. ROM Modifications 

The results from the analysis of the bare frame celestial with the line loads and the 

skin-on structure indicate that the original boundary conditions may be excessively stiff 

compared to the true structure. A modification was then made to the ROM boundary 

conditions to reduce the resistance of the springs in a logical manner. Previously, the 

stiffness of the whole intersection was used in supporting a single contributing member 

of the intersection. In reality, this total intersection stiffness is supporting 4, 6, or 8 

members at the same time. This means that its stiffness could be assumed to be divided 

by 4, 6, or 8 depending on how many rings were intersecting at the particular intersection. 

The ROM modification analysis was conducted for segment A with the beam radius of 

2.99 mm with reduced boundary condition spring constants. The new spring constants 

were 2.75E+4 N/m and 7.77E+4 N/m for the left and right boundaries respectively. The 

results from this analysis are shown in Figure 56; the deformations are scaled by a factor 

of 5 for this figure.  

 

Figure 56: ROM of Segment A with Adjusted BC 
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This condition still indicated a radial displacement of the left end to be inward instead of 

outward. In an attempt to reverse this displacement direction, the rotational degree of 

freedom was released for that end, the 3-ring intersection end, allowing it to freely rotate. 

This resulted in the direction of the displacement to outward as it did for the full celestial 

model. The displacement magnitudes from the ROM were overlaid onto the same 

segment from the full celestial analysis. This showed that the overall displacement 

pattern that the ROM was generating was similar to the full model. The boundary 

condition spring constants were altered to see how close the ROM could get to the full 

celestial model without significant rework. The best boundary conditions ended up being 

as described in Table 21. The spring constants correspond to the one third the full 

intersection stiffness of intersection 3 and one eighth the intersection stiffness of 

intersection 4. These fractions were chosen because they could be logically linked to the 

intersection as either the number of segments or the number of rings that the total 

stiffness was divided into.  

Table 21: Modified Boundary Conditions 

 Spring Constant Tangential Disp. Rotation 
Left 55.0 N/mm Fixed Free 
Right 77.7 N/mm Fixed Fixed 

 

The largest difference between the ROM prediction and the full celestial results were the 

magnitude of the peak in the midsection of the segment. It was decided to apply the force 

magnitude from load profile method 2 instead of using a vector projection approach. This 

would create a load profile peak increase of approximately 30% compared to the vector 
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projection approach. The best boundary conditions that were found for this load profile 

was the same as previously described except the right side spring constant was doubled; 

representing one fourth the total intersection stiffness. This provided a consistent 

approach to how the total intersection stiffness was divided. The results of the two 

adjusted boundary and load conditions compared to the full celestial displacements are 

shown in Figure 57. The force magnitude case resulted in a good comparison between 

peak displacement magnitudes along the midsection; however, their location of the peak 

differs which was also observed in the polynomial fits to the nodal reaction forces in 

Figure 24. The right side boundary conditions resulted in a similar end condition as the 

full celestial model produced where the slope of the displacement magnitude curve 

appears to go to zero. The opposite end which allowed for free rotation did not 

demonstrate this same behavior and has a steep slope.  
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Figure 57: Adjusted ROM Displacements Compared to Full Celestial Displacements 

Despite the similarities in the displacement profiles of the segment, the load profiles still 

remain very different. The load profiles for case 1 and case 2 are shown in Figure 58. The 

peak stresses still occur near the 4-ring intersection, right side, as they did in the original 

models. The peak stress for case 2 with the altered load profile is slightly higher than in 

case 1 at 46.3 MPa, but is still significantly lower than the stresses found in the full 

celestial structure as shown Figure 59 with segment A isolated. There essentially two 

stress fields that are present within all of the segments A throughout the celestial. This 

variation in the stress field coincides with the small variations in the displacements.  
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Figure 58: ROM for Segment A with Modified BC, Case 1 (top) Case 2 (bottom) 

 

Figure 59: Segment A Isolated from Celestial Model, 2.99 mm 

The stress field correlates fairly well to the ROM in terms of pattern. The maximum 

stresses located near the end points with lower peak stress in the midsection. The 

magnitude of the stress of segment A taken from the celestial is still much higher than the 

stresses in the ROM.  

 Modifying the ROM parameters did enable a closer representation of the 

deflection of segment A compared to the full celestial model. It may be possible to make 

further adjustments to the ROM to force the results closer together. These modifications 

might include torsion springs placed at the boundaries instead of simply allowing the 
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rotation to be free or fixed. This type of end condition could allow the slope of the 

displacement curve to be zero at the left free end instead of having a steep slope as 

discussed previously. These new boundary conditions are represented in Figure 60 where 

R1 and R2 are torsion spring constants. 

 

Figure 60: Modified ROM Boundary Conditions 

The difference in the stress fields compared to the original is shown FIGURE with the 

original stress field shown in the top image, the stress field with the modified boundary 

conditions in the middle image, and the stress field with the modified boundary 

conditions and the higher load profile shown in the bottom image. The modified 

boundary conditions actually lowers the maximum stress level found in the segment.  
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Figure 61: Modified ROM Stress Comparison, Original (top), Modified (mid), 

Modified with New Load (bot) 

It may be worth exploring using different values for the material elastic modulus. The 

results from the mechanical testing and the corresponding models will show that the 

material properties of the printed celestial are not so clear.  

3.4. Mechanical Testing Results 

The mechanical testing of the full celestial frame was done as a uniaxial quasi-static 

compression under displacement control at a rate of 1 mm/min. Two specimens were 

tested with overall diameter of 203.2 mm and a beam radius of 2.64 mm. The specimens 

were loaded in along the vertical axis in compression until fracture occurred. In both 
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cases the structure began to collapse prior to the actual fracture occurring. This collapse 

was indicated by a drop in the load required to continue pushing on the specimen. This 

was preceded by a significant nonlinear behavior demonstrated by the structure. Two 

specimen were tested under the same test conditions, but at different orientations to their 

print orientations. Specimen 1 was tested in the same orientation as it was printed while 

specimen 2 was rotated 90 degrees to its print orientation. These orientations are 

represented in Figure 62 with respect to the build direction. 

 

Figure 62: Loading vs Print Orientation, Specimen 1 (left) Specimen 2 (right) 

The load-displacement curves produced by the experiments are shown in Figure 63. 

Close-ups of the curves near the failure point shows that the loads began to drop slightly 

before the fracture occurred (Figure 64.)  
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Figure 63: Experimental Data for Two Specimens 

 

Figure 64: Experimental Data: Close-Up of Experiment Prior to Fracture 

The large deformations that occurred are evident in the members of the celestial structure 

shown in Figure 65. The majority of the displacement for this loading scheme occurred in 

the top and bottom portions before the 45 degree rings make contact with the primary 

upright rings. As expected from the modeling, the loading point of the celestial displaced 

below the level of the flexing members (reference Figure 38). Without the presence of the 
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loading pucks, these members would have made contact with the loading platen and 

altered the load application and the support mechanism of the experiment.  

 

Figure 65: Deformed Specimen 2 

The failure locations of the specimen are identified in Figure 66. The fracture of the 

segment in specimen 1 caused a portion to become removed after it fractured in two 

locations. Specimen 2 fractured in 2 locations and cracked in several other locations not 

shown.  
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Figure 66: Fracture Locations, Specimen 1 (left) Specimen 2 (right) 

In both specimen, the failures propagated between the printed layers; that is, the fracture 

planes were parallel to the printing planes. This is shown in Figure 67. 

  

Figure 67: Fracture Planes, Specimen 1 (left) Specimen 2 (right) 
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In specimen 2 the fractures occurred between two layers printed in the ZX orientation 

such that the fracture surface was 90 degrees to the beam tangent. The fracture in 

specimen 1 occurred between print layers that were approximately 45 degrees to the 

beam tangent. These fracture locations are indicative of the anisotropic material 

properties, specifically the weaker ZX orientation’s maximum stress limit. All fracture 

locations were dominated by this print orientation. 

3.5. Celestial Icosahedron Compression Modeling 

Prior to the mechanical testing of the 3-D printed celestial icosahedron, a model of 

the structure was produced and evaluated to determine the needed testing capabilities and 

test parameters. This model is discussed in detail in section 2.3.2, but the dimensions 

were the same and the experimental sample and the modulus used was 2.373 GPa. A load 

was applied to the model until collapse was observed indicated by the slope of the load 

displacement curve going to zero as shown in Figure 68. The displacement obtained for 

this figure was that of the loading point.  
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Figure 68: Load-Displacement Curve from Compression Model 

The structure was predicted to collapse at a load of approximately 823 N after a 

displacement of approximately 27.4 mm; however, this did not take any failure criteria 

such as stress into account. Using the ultimate tensile stress limit of 42 MPa, the first time 

this tensile stress level was observed exceeding 42 MPa in the member was at a load of 

330.5 N after a displacement of 4.67 mm. This location of this stress is near the boundary 

of the kinematic constraint used to represent the support puck, see Figure 69. If the stress 

concentration at that location is not as severe as predicted, the next location to inspect is 

along the midsections of the members where the stress is also rising.  
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Figure 69: Celestial Under Vertical Compressive Loading to Max Stress 

Continuing the analysis until the maximum stress in the members away from the stress 

concentration reaches 42 MPa produces a maximum load of 530.5 N with a displacement 

of 9.06 mm. This result is shown in Figure 70 with the stress location circled. This stress 

occurred in segment A. 
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Figure 70: Celestial Under Vertical Compressive Loading to Max Stress in Segment 

Midsection 

3.5.1. Analytical Results Compared to Experimental Results 

The results from the experiment were compared to the analytical results from the 

FEA model with the presumed material modulus of elasticity of 2,373 MPa. A 

comparison of the force versus displacement curves is shown in Figure 71. The model 

prediction does not represent the experimental observations. The model prediction has a 

much steeper slope indicating that the model was much stiffer than the experiments 

which would indicate that the printed material properties did not match the expected 

material properties that were used in the model. The model used a modulus of elasticity 

of 2,373 MPa which was taken from the experiments of Greenoe [14]. These experiments 
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were of a single ring which demonstrated a high degree of flexibility. Greenoe’s results 

closely correlated to the material’s flexural modulus for both material orientations. This 

was expected since there was a large degree of bending and this was the primary method 

of load transfer throughout the entire rings for those experiments.  

 

Figure 71: Experimental Results Compared to Original Model 

The stiffened spherical shape of the celestial could reasonably be expected to perform 

more like a tensile specimen placed under compression due to its collectively reinforcing 

rings which resulted in much more rigid structure with less bending. Additionally, the as 

printed material properties may not match the manufacturer’s specifications. To 

investigate this a study was found conducted by Travis Shelton et al. that explored the 

behavior of Ultem 9085 printed samples varying different print parameters [24]. In their 

baseline experiments, the material properties for samples printed at different orientations 

were found. These samples were printed under similar printing conditions as the 
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specimens tested for this research. These material properties are shown in Table 22 for 

the print orientations depicted in Figure 72. 

Table 22: Ultem 9085 Tensile Test Properties [24] 

Print Direction XY YX ZX 
Ultimate Tensile Strength (MPa) 58.9 ± 1.1 87.1 ± 0.4 44.2 ± 3.3 
Yield Stress (MPa) 29.8 ± 0.7 36.6 ± 3.1 28.3 ± 0.5 
Elastic Modulus (GPa) 1.03 ± 0.04 1.53 ± 0.29 1.03 ± 0.01 

 

Figure 72: Print Orientations for Shelton's Experiments [24] 

The moduli observed in Shelton’s experiments were significantly lower than the 

manufacturer’s specification which reports the tensile modulus to be over 2.1 GPa for 

both the XY and ZX orientations. Furthermore a graduate student from Missouri 

University of Science and Technology, Krishna Prasanth Motaparti, performed his thesis 

on the mechanical properties of Ultem 9085 printed through FDM [25]. This research 

examined printed parts under compression and 3-point bending. Some of the applicable 

results from those experiments are shown in Table 23.  
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Table 23: Compressive and Flexural Properties of Ultem 9085 [25] 

Orientation Compressive Properties Flexural Properties 
Yield Strength Modulus Yield Strength Modulus 

Horizontal 84.3 MPa 833 MPa 64.7 MPa 1875 MPa 
Vertical 63.5 MPa 828 MPa 87.1 MPa 2384 MPa 

 

These values found by experimentation were also lower than the manufacturer’s reported 

values. The appropriate material elastic modulus for this application may be a 

combination of the compressive, flexural, and tensile moduli since all three modes of 

loading are found within the same structure. A composite modulus was hypothesized to 

be a rule of mixtures combination based on the percentage of each ring’s circumference 

that was dominated by a specific type of loading. This would enable a single elastic 

modulus to describe the global material behavior. Examining the deformation pattern of 

the celestial under compression three regions were identified. These regions can be 

describe as regions that experience a lot of load-direction displacement that was 

dominated by a flexural behavior, that did not demonstrate significant displacement and 

was dominated by compressive behavior, and the equator ring that was dominated by 

tensile behavior due to the poison’s effect. These regions are displayed in Figure 73. 
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Figure 73: Deformation Regions of Celestial Under Compression 

By identifying how much of each ring was part of each region three-dimensionally, a rule 

of mixtures calculation was done based on these regional behavior assumptions to 

determine a good elastic modulus that could represent the global material behavior. The 

breakout for the rule of mixtures calculation is shown in Table 24. The values for the 

flexural and compressive moduli were taken from the work of Motaparti for the 

horizontal orientation as this orientation is most predominant within the printed structure. 

The tensile modulus came from Shelton’s work for the YX orientation as this best 

characterized the print orientation of the equator ring being placed in tension.  

Table 24: Rule of Mixtures Breakout for Modulus Determination 

# Rings Flexural %  
(1875 MPa) 

Compressive %  
(833 MPa) 

Tensile %  
(1530 MPa) Composite Modulus 

2 50 50 0 300.89 
2 60 40 0 324.04 
4 40 60 0 555.47 
1 0 0 100 170.00 
Totals 42.22 46.67 11.11 1350.4 

The final value for the modulus from the rule of mixtures calculation was 1350 MPa.  
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 The comparison of the analysis with the 1.35 GPa modulus to the experimental 

results is shown in Figure 74. This load-displacement curve of this model closely 

represents the experimental results.  

 

 

Figure 74: Model and Experimental Force vs Displacement, 1.35 GPa 

Previously, the failure criteria was simply assumed to be 42 MPa; however, when 

comparing the results of the 1.35 GPa model to the experimental results, the anisotropy of 

the experimental specimen must be considered. Based on the results from Shelton’s study 

the failure stress could be expected to be around either 44, 59, or 87 MPa depending on 

orientation. The rule of mixtures approach was not used for the maximum stress 

determination because the individual print orientations for each member could be 

discretely identified. The modulus property was global and needed to describe the 

celestial structure behavior as a whole whereas the failure criteria can be applied to 
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members individually. The first occurrence of a stress above 44 MPa was at a load of 

270.5 N. This stress occurred in the failure point A location for specimen 2. Upon 

examination it was determined that this von-mises stress was located on the compressive 

side of the bending curve. The tensile side of the bending curve only had a stress of 38.1 

MPa at this load. The maximum tensile and compressive stresses as determined by their 

location on either the outside or inside of the bending curvature was determined by a top 

or bottom trace of the model geometry. The top trace in this case refers to the outside 

surface of the sphere while the bottom trace refers to the inside surface of the sphere. 

This location on specimen 1 had a print orientation closer to the YX orientation which 

had an ultimate stress of 87.1 MPa while this location on specimen 2 had a print 

orientation closer to the ZX orientation with an ultimate stress of 44.2 MPa. The load 

where the tensile stress exceeded 44.2 MPa at this point was found at a load of 290.5 N 

and a displacement of 7.46 mm. This was relatively close to the failure conditions of 

specimen 2 during the experiment of 389.1 N at a displacement of 14.6 mm.  This stress 

point is identified in Figure 75 with a tensile stress of 46.0 MPa.  The compressive side of 

the bend at this point was 54.7 MPa. The top and bottom traces of this stress location are 

shown in Figure 75. 
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Figure 75: Failure Location for Specimen 2, Top Trace (top) Bottom Trace (bottom) 

A tensile stress of 46.7 MPa was found at a load of 450.5 N at the failure location 

of specimen 1 after a displacement of 16.7 mm. This location has a print orientation that 

was progressing toward the ZX orientation from the XY orientation. The compressive 

side of the bend at this point was 59.2 MPa. The top and bottom traces for this load are 

shown in Figure 76. This load value was also close to the experimental results from 

specimen 1, a failure load of 490.6 N at a displacement of 21.4 mm.  
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Figure 76: Failure Location for Specimen 1, Top Trace (top) Bottom Trace (bottom) 

For specimen 1, the model depicts areas that have a higher stress value than the failure 

point. This location is near the loading vertex where the failure of specimen 2 occurred. 

The tensile side of the curve has a stress of 97.8 MPa while the compressive side had a 

stress of 107.9 MPa. Failure did not occur at this location despite the stress levels above 

the expected 87 MPa. This could be attributed to two things. This location is near the 

loading point and could be exhibiting larger stresses than the specimen actually 

experienced due to the modeling technique. This would mean that the stress observed as 

the failure stress from the model of specimen 2 was larger than the actual stress level as 

well. This is beneficial since this would mean that the structure could handle a higher 

load than the model predicted. The original prediction was almost 100 N lower than the 

experimental maximum load. This higher load could also mean that the load carrying 
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capability for this local print orientation is much stronger than anticipated. This is the less 

likely case since the local print orientation, while close to the YX orientation, is still not 

as ideal as a perfect YX orientation printed sample. If the load of the model is matched to 

the load at failure for both specimen, the maximum tensile stress found at the failure 

location of specimen 1 is 59.5 MPa while the maximum tensile stress was 73.3 MPa at 

the failure location of specimen 2. The 59.5 MPa correlates closer with the flexural 

behavior of Motaparti where the flexural yield stress was found to be 64.7 MPa [25]. This 

analysis highlights how important the failure criteria is when designing such a structure, 

especially via 3-D printing.  

3.5.2. Compression Model with Skin 

As alluded to previously, the skin does have an effect on the behavior of the structure 

may under hydrostatic pressure as observed between the bare frame model and the model 

with skin which. To further explore the effect of the skin, the skin-on model was placed 

into compression just like the models representing the experiments. For this case no 

hydrostatic pressure was applied. The skin used the properties of Mylar with an elastic 

modulus of 5.001 GPa with a thickness of 0.118 mm. The analysis was run as a dynamic 

explicit model under displacement control. The displacement rate was chosen to be small 

such that the total kinetic energy of the model was less than 5% of the total internal, 

strain, energy. This was determined as a good criteria to consider a dynamic analysis as a 

quasi-static analysis by Kyongchan Song and John Brewer [26][27][28]. The 

displacement rate chosen was 5mm/sec to a maximum displacement of 15 mm. The load 

displacement curve compared to the experimental results is shown in Figure 77. The skin 
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had a significant effect on both the structure’s stiffness and maximum load. The skin 

allowed the structure to reach a load of 894 N before exhibiting collapse.  

 

 

Figure 77: Load Displacement Curve of Frame and Skin, Compressive Loading 

The kinetic energy and internal energy are plotted versus displacement in Figure 78. The 

kinetic energy is always very small compared to the internal energy indicating that the 

amount of movement compared to the total strain is small indicating a small dynamic 

response. The largest percentage of the internal energy the kinetic energy ever reaches is 

0.34%. This occurs near the end of the analysis when the structure is showing signs of 

collapse. The parameters selected demonstrate good quasi-static behavior.  
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Figure 78: Internal Energy and Kinetic Energy for Quasi-Static Analysis 

The stress field at the final step of this analysis is shown in Figure 79 . This result 

is at a load of 890 N after a displacement of 14.79 mm. The stress field of the frame, 

shown in the bottom image of Figure 79, represents a top trace of the von Mises stress to 

capture the tensile side of the bending stress in the midsection of the members where 

failure occurred in specimen 1. The maximum tensile stress was found to be 35.5 MPa in 

a B-type segment instead of an A-type segment as previously observed. This stress is 

well below the ultimate stress limit of 44 MPa [25] for this orientation. The maxium 

tensil stress near the loading point was found to be 112.4 MPa. This is similar to the 

107.9 MPa stress found in this location for bare-frame model under compression 

representing the load at failure for specimen 1. As discussed in the previous section this 

stress may be higher than the actual stress due to the loading condition. With that being 

said the stresses observed in the frame are likely to be supported by the material to this 

point. The addition of the skin increased the maximum load capability of the structure by 
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77%. This is likely due to the skin preventing the large bowing behavior of the members 

in the flexural region of the structure. This resistance is evident by the higher levels of 

stress in the skin along the midsections of the members in the top portion of the sphere, 

see Figure 79 top image. Preventing this bowing behavior reduced the bending stresses in 

the members by transferring the load into the skin.  
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Figure 79: Compression Analysis with Skin, Skin Stress (top) Frame Stress (bot, top 

trace) 

The skin and frame interaction observed for this loading case shows that it is a very 

important factor to consider. The skin had the effect of reducing the overall frame 

stresses for this case, but was shown to increase the overall frame stress in the 



123 

 

hydrostatically loaded case. There is no doubt that the presence of the skin affects the 

behavior of the structure.  

3.6. Summary 

Several models were analyzed to assess the behavior of the celestial icosahedron 

under both sea level hydrostatic pressure and vertical compression. The results of the 

ROM proved to be much lower than bare frame celestial which were also lower than the 

skin-on celestial model. The ROM was shown to be too stiff with the original boundary 

conditions. Modifications to the boundary conditions were explored with success in 

representing the displacement of the member. The lower stress level within the ROM and 

bare frame celestial could have to do with the missing interaction of the skin which may 

be playing a significant role in how the celestial behaves. The as-printed material 

properties were shown to differ significantly from the manufacturer’s specifications. The 

failure criteria used was taken from experiments from other researchers for the same 

material. Ultimately, the failure stresses in the members undergoing the same 

deformation mode as the members within the structure is crucial to determining the 

appropriate failure criteria.  

4. Conclusions and Recommendations 

4.1. Chapter Overview 

This chapter contains the overall findings of the research as they pertain to the 

goal of developing adequate models to predict the behavior of supporting structure for a 

VLTAV. The ROM technique that was developed will be discussed; its significance to 
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future models, and its validity. The conclusions drawn from the experimental testing will 

also be discussed as it pertains to the complimentary model of the experiment. The future 

of this project and recommendations for future experimentation will also be discussed.  

4.2. Conclusions of Research 

It has been shown that the ROM is capable of representing the displacement of the 

celestial icosahedron members. This process can be repeated for any size celestial with 

any beam geometry. There still remains a discrepancy between the stress values of the 

ROM, bare frame celestial model, and the skin-on celestial model, but the values are on 

the same order of magnitude. Adjustment to the ROM have been demonstrated that this 

can still be used as a viable option to reduce the analysis effort for designing the celestial 

members. The load profile used to analyze the individual members is crucial to producing 

accurate results. Between the methods explored in this research, the best load profile was 

found using a flexible membrane model of the characteristic triangle. This loading profile 

produced results that were closest to the skin-on model with a uniformly distributed 

pressure.  

The experimentation has shown that modeling the 3-D printed structure as a 

homogeneous material can reasonably predict the behavior of the celestial; however, it is 

crucial that accurate material properties are chosen to represent the behavior of the 

model. For the load case of vertical compression, a rule of mixtures approach to 

determine the material’s elastic modulus proved effective. The three deformation modes 

present in the structure were tension, compression, and flexural. Each of these modes was 

found to dominate the behavior in at least one location within the structure.  
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4.3. Recommendations for Future Research 

Future researchers looking to continue this line of research would find 

tremendous benefit in experimenting with evacuating the celestial structure. The 

compression experiments conducted in this experiment highlighted the importance of 

properly characterizing the material properties and behavior for the given loading 

scheme. While some information can be taken from the compression experiments and 

applied to the hydrostatic pressure models, the different loading scheme may cause the 

structure to behave entirely different. To begin this sort of experimentation a method of 

applying a membrane over the celestial structure will need to be matured. Next steps 

would involve searching for available materials and manufacturing methods to get closer 

to a neutral buoyancy prototype. As the advanced materials such as carbon nanotubes 

become more and more common, manufacturing methods using these materials may 

come available that could produce these geodesic shapes.  
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Appendix A: Vector Summed Nodal Reaction Forces vs Nodal Reaction 

Force Magnitudes 

These plots represent the difference in magnitude of the nodal reaction forces and 

the portion of that reaction force that is in the radial direction. The force magnitude 

values are higher than the vector projection values because the original reaction forces 

are not just in the radial direction and include forces in the tangential direction. The 

vector projection removes the tangential forces that are assumed to be canceled by 

symmetrical force from an adjacent face.  
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