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14. ABSTRACT, continued

To address this problem, we demonstrate iterative sharpness maximization (ISM) correction of 
anisoplantic turbulence effects in simulated range-compressed holography (RCH) fields and their 
corresponding range images. Our turbulence correction estimated four phase screens distributed along 
the path of optical propagation using nonlinear optimizations aided by the method of sieves technique. 
We conducted a study of range images created from single speckle realization 3D RCH fields subjected 
to twenty different turbulence profiles at five different strengths of turbulence, D/r0 = 7, 14, 21, 28, and 
36. Range images showed significant improvement for all strengths of turbulence. To assist in
correction, we introduced a novel constraint limiting the spread of energy in the corrected pupil.
Corrected range images were qualitatively indistinguishable from unaberrated range images in all but
the most severe turbulence case, D/r0 = 36. Additionally, our algorithm was tested for fields affected by
shot noise. Mean target photons per speckle ranged from 10−2 to 102 in these simulations. For an
effective D/r0 = 36, range images corrected from fields with 102 mean photons per speckle had very
similar RMSE when compared to corrected noiseless range images. On aver-age, corrected range images
created from fields with 1 mean target photons per speckle differed by less than 5% RMSE from
noiseless corrected range images.

We went on to construct a RCH system in a laboratory setting using a linear frequency modulated CW 
laser and a high frame rate camera which allowed us to create 3D images of laboratory targets. Data 
was collected both with and without the effects of turbulence. In the former, multiple Lexitek 
turbulence screens were used to aberrate the image fields of our lab target at two different effective 
strengths of anisoplanatic turbulence, D/r0 = 7 and D/r0 = 16, respectively. Both of these sets of real 
aberrated image fields showed profound improvement in quality after correction with our phase ISM 
turbulence mitigation algorithm. 

Novel interferometric systems are also being developed which enable modal analysis of an optical field. 
This generalized optical interferometry (GOI) treats coherent optical fields as a linear superposition of 
transverse modes and recovers the amplitudes of modal weighting coefficients. In order to maximize the 
utility of these systems, we used phase retrieval by nonlinear optimization to recover the phase of these 
modal weighting coefficients. 

Algorithms were developed both for array detector and for bucket detector systems. Information 
diversity increased the robustness of both algorithms by better constraining the solutions. In our array 
detection phase retrieval, the algorithm was able to recover nearly all coefficient phases for simulated 
fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved 
to be resilient to shot noise. 

Similarly, the algorithm we developed using data from a simulated bucket detector was able to 
consistently recover better than 95% of coefficient phases for simulated random fields consisting of up 
to 21 superpositioned Hermite Gaussian modes using between three and seven measurements per 
unknown phase coefficient. With shot noise, the algorithm achieved performance on par with noiseless 
simulations with 106 mean signal photons per measurement. The role played by number of 
measurements per unknown (mpu), photons per unknown per measurement (ppu), and order of 
superposition in the bucket detection algorithm’s performance was also explored.- 
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Abstract

Coherent optical interferometry has a long history of enabling extremely

precise measurements at length scales of less than the wavelength of light

used in the interferometer. It is the ability of these systems to measure

both the relative phase and amplitude information of the optical field by

interfering two beams of light which makes them so useful.

Interferometric techniques have also been adopted for use in both imag-

ing/sensing technologies. For imaging systems in ideal conditions, the ability

to measure both phase and amplitude information in one transverse plane

allows for the calculation of that field’s phase and amplitude distribution in

any other transverse plane. However, the presence of atmospheric turbu-

lence unpredictably alters the index of refraction in the propagation medium

thereby adversely affecting the fidelity with which the phase and amplitude

in a transverse plane can be calculated.

To address this problem, we demonstrate iterative sharpness maximization

(ISM) correction of anisoplantic turbulence effects in simulated range-compressed
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holography (RCH) fields and their corresponding range images. Our turbu-

lence correction estimated four phase screens distributed along the path of

optical propagation using nonlinear optimizations aided by the method of

sieves technique. We conducted a study of range images created from single

speckle realization 3D RCH fields subjected to twenty different turbulence

profiles at five different strengths of turbulence, D/r0 = 7, 14, 21, 28, and

36. Range images showed significant improvement for all strengths of turbu-

lence. To assist in correction, we introduced a novel constraint limiting the

spread of energy in the corrected pupil. Corrected range images were quali-

tatively indistinguishable from unaberrated range images in all but the most

severe turbulence case, D/r0 = 36. Additionally, our algorithm was tested

for fields affected by shot noise. Mean target photons per speckle ranged

from 10−2 to 102 in these simulations. For an effective D/r0 = 36, range

images corrected from fields with 102 mean photons per speckle had very

similar RMSE when compared to corrected noiseless range images. On aver-

age, corrected range images created from fields with 1 mean target photons

per speckle differed by less than 5% RMSE from noiseless corrected range

images.

We went on to construct a RCH system in a laboratory setting using a

linear frequency modulated CW laser and a high frame rate camera which

allowed us to create 3D images of laboratory targets. Data was collected both

with and without the effects of turbulence. In the former, multiple Lexitek

turbulence screens were used to aberrate the image fields of our lab target
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at two different effective strengths of anisoplanatic turbulence, D/r0 = 7

and D/r0 = 16, respectively. Both of these sets of real aberrated image fields

showed profound improvement in quality after correction with our phase ISM

turbulence mitigation algorithm.

Novel interferometric systems are also being developed which enable modal

analysis of an optical field. This generalized optical interferometry (GOI)

treats coherent optical fields as a linear superposition of transverse modes

and recovers the amplitudes of modal weighting coefficients. In order to

maximize the utility of these systems, we used phase retrieval by nonlinear

optimization to recover the phase of these modal weighting coefficients.

Algorithms were developed both for array detector and for bucket detector

systems. Information diversity increased the robustness of both algorithms

by better constraining the solutions. In our array detection phase retrieval,

the algorithm was able to recover nearly all coefficient phases for simulated

fields consisting of up to 21 superpositioned Hermite Gaussian modes from

simulated data and proved to be resilient to shot noise.

Similarly, the algorithm we developed using data from a simulated bucket de-

tector was able to consistently recover better than 95% of coefficient phases

for simulated random fields consisting of up to 21 superpositioned Hermite

Gaussian modes using between three and seven measurements per unknown

phase coefficient. With shot noise, the algorithm achieved performance on

par with noiseless simulations with 106 mean signal photons per measure-
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ment. The role played by number of measurements per unknown (mpu),

photons per unknown per measurement (ppu), and order of superposition in

the bucket detection algorithm’s performance was also explored.
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Chapter 1

Introduction

1.1 Interferometry

Interferometry is an important measurement technique which has been in

regular use for well over a century [1, 2]. It is integral to many sub-fields

of astronomy [3], physics [4], and engineering [5]. In the most general sense,

interferometry is used to analyze physical phenomena which can be described

by wave mechanics, e.g. sound waves, light waves, particles, etc. In classical

wave optics, it is conducted by measuring a superposition of light waves

(electromagnetic fields) incident on a photodetector.

These light waves are composed of coupled electric and magnetic fields

moving (propagating) through some medium or free space. Since the electric

and magnetic fields are inextricably linked by Maxwell’s equations, only the

state of either the electric field or the magnetic field needs to be known in
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CHAPTER 1. INTRODUCTION 2

order to mathematically describe how light travels [6]. The convention in

the field of optics is to describe the electric field, and to omit mention of the

magnetic field component of light. In this work we use the terms, light, light

waves, electric fields, and fields interchangeably.

Electric fields are generally complex-valued. As such, the field’s values

can be expressed in the form a exp (ib), where a is a non-negative real number,

b is a real number, and i is the imaginary number. This is known as phasor

notation of a complex number. A monochromatic scalar electric field (electric

fields where we disregard the orientation of the electric field, i.e. polarization)

can be expressed as [7],

U(r⊥, z, t) = A(r⊥, z) exp {i[φ(r⊥, z)− 2πνt]} , (1.1)

where A(r⊥, z) is the non-negative real-valued amplitude, φ(r⊥, z) is the

spatially varying phase, ν is the constant frequency, t is time, the vector

r⊥ = (x, y) describes a point in the transverse plane orthogonal to the op-

tical axis, and z is the location of the transverse plane along the optical

axis. All fields in this work are assumed to be expressed in phasor nota-

tion. Additionally, the spatial phase will more succinctly be referred to as

simply "phase" and the non-negative real-valued amplitude as "amplitude."

The energy of the field is directly proportional to the modulus-squared of the

field,

I(r⊥, z, t) = |U(r⊥, z, t)|2 . (1.2)
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CHAPTER 1. INTRODUCTION 3

We refer to this quantity as the field’s "intensity".

The mathematical operation which describes the process of interfering

fields is addition; fields add. The mathematical expression for the intensity

of two interfered monochromatic fields, u1(r⊥) and u2(r⊥), in a transverse

plane is

I12(r⊥) = |U1(r⊥) + U2(r⊥)|2

= A2
1(r⊥) + A2

2(r⊥)

+ 2A1(r⊥)A2(r⊥) cos [φ1(r⊥)− φ2(r⊥)].

(1.3)

The sum of the first two terms is known as the bias and the third term is the

interference or modulation term. If A1(r⊥) = A2(r⊥) = A(r⊥), this periodic

expression oscillates between zero and 4A2(r⊥). The intensity distributions

from interfered coherent electric fields typically form what are called fringe

patterns. Two examples of different types of interferometric fringe pattern

intensities are shown in Fig. 1.1. The light and dark regions in the fringe

patterns of Fig. 1.1 are indicative of whether the waves in that region add

constructively (the peak of one wave aligning with the peak of the other) or

the waves add destructively (the peak of one wave aligning with the trough

of the other), respectively. Fig. 1.1 (a) is an example of a case where the

number of fringes can be used to determine the surface height deviations in

either transmissive or reflective surfaces. This works best for surfaces which

are generally smooth on the order of a wavelength of the illumination. We
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Figure 1.1: (a) Simulated smooth surface homodyne interferogram. (b) Sim-
ulated rough surface heterodyne interferogram.

see in this fringe pattern that the minimum intensity value is effectively zero,

implying that the amplitudes of the two waves must be approximately equal.

Fig. 1.1 (b) shows a fringe pattern of light which has been scattered from

a target whose surface is rough on the order of a wavelength. The differing

amplitudes of the two fields are apparent, as the minimum normalized in-

tensity value is nonzero. When we say a field is coherent, it is sufficient for

our purposes to think of this as meaning the light is monochromatic. This

implies that the distance between the wave peaks in our electric fields re-

main constant in time regardless of the relative time delay between waves

and regardless of the point in space where interference is occurring, and also

that the shape of the waveform, remains constant over time and space [8].

Perfectly coherent beams generate the best possible fringe contrast, meaning

that fringe maxima and minima are determined exclusively by the amplitude
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CHAPTER 1. INTRODUCTION 5

of the interfered beams, as was assumed in Eq. (1.3). We continue to assume

perfect coherence throughout this chapter and the chapters that follow. Co-

herence is a very rich topic and is essential to the overall understanding of

wave and quantum optics [9, 10]. However, outside of what we have already

mentioned here, it is beyond the scope of our work here.

Fringe patterns can also be thought of as 2D projections of what is called

the wavefront. The wavefront is defined as a surface of constant phase in a

coherent electric field. When coherent light is reflected or scattered off of a

surface, the shape of its wavefront is deformed by that interaction. This de-

formation encodes information about the shape of the surface into the field’s

wavefront. The altered wavefront then propagates away from the surface.

The exact mechanics of this reflection or scattering from the surface depend

on the shape of the incident wavefront, the surface’s material properties and

3D structure, as well as the frequency of illumination [6]. We assume some

of the light leaving the surface will propagate through some medium and be

captured by an optical system’s pupil and then be measured by the system’s

photodetector, otherwise we would have nothing to study.

Photodetectors are used to measure the energy of a field distribution

and thus cannot directly measure phase, due to the elimination of the phase

term by the modulus-squared operation shown in Eq. (1.2). In fact, directly

measuring the intensity of a coherent field which was incident on a surface in

the far field only supplies information about the autocorrelation of the fields
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in the plane of that surface. However, if one manages to recover the phase

and amplitude of a coherent scalar field in one transverse spatial plane, e.g.

the pupil plane, then one has access to all information present in the field.

If, additionally, the index of refraction of the propagation medium can be

assumed constant, then the distribution of the field in any transverse plane

can be recovered [7]. In many applications, including coherent imaging, this

is a primary reason for the use of interferometry. It allows for the straight-

forward calculation of phase and amplitude of measured coherent fields by

interfering them with another field. When two fields are interfered and their

intensity is measured, their phase and amplitude information both survive

within the modulation term of Eq. (1.3).

Interferometric techniques fall broadly into two categories, homodyne

and heterodyne. The former measures a field which has been interfered with

one or more copies of itself, the copies having been in some way altered, e.g. a

temporal delay or spatial modulation. The latter interferes an unknown field

with one or more different known fields. Both types of techniques can be used

to determine the phase and amplitude information of a field, though hetero-

dyne detection is typically a more straightforward approach when imaging

real-world objects which are not generally smooth.

34 
Approved for public release; distribution is unlimited.



CHAPTER 1. INTRODUCTION 7

1.2 Turbulence Mitigation in Range-compressed
Digital Holography

In the real world, random temperature differentials in the atmosphere result

in a generally non-uniform index of refraction in the region between a target

and an optical system’s pupil. These random temperature differentials are

known as volumetric turbulence [9, 11, 12]. Numerically propagating electric

fields through turbulence, under the assumption that the index of refraction

is uniform, distributes energy incorrectly in the output plane. Accordingly,

fields measured in the pupil of long-range imaging systems often give rise

to images with degraded quality because no correction has compensated for

the effects of the volumetric turbulence. These effects are often so severe

that these atmospheric perturbations are the limiting factor of these imaging

systems [11, 12]. In this dissertation much of our work explores techniques

used to compensate for these effects in range-compressed holography systems

used at long standoff ranges (≥ 1 km).

Traditional holography dates back to Dennis Gabor, the Hungarian

physicist who pioneered X-ray holography as a byproduct of work in electron

microscopy. After the invention of the laser, Yuri Denisyuk in the Soviet

Union and Emmett Leith and Juris Upatnieks at the University of Michigan

pioneered early hologram recordings in the optical regime. The invention

in the mid 1970’s of the charge-coupled device (CCD) image sensor along

with its later commercialization gave rise to the creation of a new sub-field
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of holography, known as digital holography (DH) [13, 14]. The optical fre-

quencies used in DH offer greater potential resolution than other actively

illuminated remote imaging systems such as synthetic aperture radar (SAR),

which uses much lower frequencies in the radio bands. DH is a heterodyne

technique where a beam with known phase and amplitude (known as the

reference beam or local oscillator) is interfered with a field whose phase and

amplitude are unknown [14]. The method for extracting the phase and ampli-

tude of the hologram varies by holography technique. The type of holography

used in the following chapters extracts the desired information in a re-imaged

pupil plane. Extracted field data can then be numerically propagated back

to the plane of the target in order to form an image of the target. As an

additional advantage, the scaling of the desired field by the amplitude of the

reference beam is often used to boost the SNR of a weak signal with respect

to the read noise [15]. This boost is known as the heterodyne gain.

If a number of digital holograms are recorded at multiple, evenly spaced

frequencies of illumination and the same relative orientation to the target,

we can treat the collection of 2D hologram arrays as a three-dimensional

array with axes x, y, and ν, respectively. This array can be mathematically

transformed to generate a 3D intensity image. This is accomplished by con-

ducting a Fourier transform with respect to the frequency axis of the array.

The Fourier conjugate of the frequency in the array is proportional to time de-

lay of light propagating to the target surface and then returning to the pupil

[16, 17]. Since the time delay is also proportional to relative displacement
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along the optical axis, we can discern depth information about the target

surface. We call this Fourier transformation of the array with respect to

frequency axis range-compression. Chapter 2 details necessary background

information on the topics of field propagation, turbulence simulation, and

range-compressed holography.

Unfortunately, 3D intensity images are difficult to display. However, 3D

intensity arrays can readily be converted into a 2D range maps where the

two axes correspond to the transverse dimensions in the 3D array and the

color-coding of the pixels corresponds to the relative depth of the highest

intensity pixel along the z-axis [18]. Below, Fig. 1.2 shows two sample range

images. Fig. 1.2 (a) was generated from range-compressed hologram fields

which were propagated through a medium with constant index of refraction,

while Fig. 1.2 (b) was generated from fields which were propagated through

simulated turbulence after scattering from the target. We see that there is a

demonstrable loss in image quality in Fig. 1.2 (b) as compared to Fig. 1.2

(a). Mitigating these deleterious effects is the goal of the work in Chapters

3 and 4.
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Figure 1.2: (a) Range map generated from RCH fields propagated through
uniform index of refraction. (b) Range map generated from RCH fields prop-
agated through non-uniform index of refraction resulting from simulated vol-
ume turbulence.

1.3 Phase Retrieval in Generalized Optical In-
terferometry

The generalized optical interferometer (GOI) builds on more fundamental

types of interferometers (we chose to use the Mach-Zehnder [19]), by adding

one or more generalized phase operators (GPOs) to the instrument [20]. Each

GPO can just be thought of as a cylindrical lens whose radius of curvature we

can change between measurements. In the lab, this is typically accomplished

using spatial light modulators [21] which work by encoding phase on either a

transmissive element or on a reflective surface. Additionally, the spatially re-

solving photodetector of the Mach-Zehnder is replaced with a detector that
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Figure 1.3: 1st through 4th order HG mode field distributions.

only measures the total energy incident on its photosensitive region, also

known as a "bucket" detector. By collecting a number of interference mea-

surements, each measurement having a unique combination of GPO radii of

curvature cylindrical lenses, the interferometer is able to determine how much

of the input field’s energy content came from each member of a certain trans-

verse basis set modes. In our work, we concern ourselves with the Hermite

Gaussian (HG) modes [22]. In Fig. 1.3 a few sample HG mode intensities are

shown. This ability to extract spatially varying field amplitude coefficients

associated with each mode without any spatial measurement is quite novel

and has potential application in imaging and laser communications. Gen-

erally, interferometers are useful because they allow for the measurement of
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both phase and amplitude. Unfortunately, using a non-spatial detector in

the GOI makes it impossible to extract the phase information using tradi-

tional interferometric techniques. In this dissertation, we examine the use of

a technique known as phase retrieval to reliably estimate this phase. This

topic is the focus of Chapter 5.

Phase retrieval is a prototypical example of what is called an inverse

problem. It can be described as the process of using observations to determine

the causal factors that produced said observations. There are many paths

light could have traveled in order to make a particular energy distribution

on a photodetector. Phase retrieval seeks to use known problem constraints

about an optical system and signal to build a physically valid mathematical

model of the energy distribution on the detector as a function of phase.

Phase parameters are then iteratively estimated by minimizing the difference

between photodetector measurements and the output of the physical model.

During each iteration, the optimization algorithm determines new values of

phase which result in a smaller net difference between the output of the

physical model and the measured intensity. This process is repeated until no

further improvement can be made to the estimated phase parameters with the

available data. This technique has found use in many different applications

including including optical metrology [23] and referenceless coherent imaging

[24]. In Chapter 5, We explored two different algorithms to retrieve phase

in a GOI, one which uses array detector data to retrieve the phase and one

which uses bucket detector data.
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1.4 Chapter Outline

Chapter 2 discusses the background information needed to understand and

conduct numerical field propagations, simulate atmospheric turbulence, and

create range compressed holograms and range images.

In Chapter 3, we discuss our range-compressed holography turbulence

mitigation simulations. We begin by describing our physical model and al-

gorithm in detail. We then go on to discuss our detailed Monte Carlo study

of turbulence mitigation efforts in range-compressed hologram fields which

were aberrated by multiple planes of simulated turbulence. We show that we

did indeed achieve the desired outcome with these simulations, significant

mitigation of simulated multiplane turbulence in RCHs. As expected, the

turbulence mitigation greatly improved the output range images. We con-

clude the chapter by discussing how the ability to mitigate turbulence and

improve range images relates to the relative strength of turbulence and shot

noise.

Chapter 4 contains our RCH laboratory work. We begin by discussing

the construction of our laboratory apparatus. This includes descriptions of

the hardware, targets and turbulence screens. We then discuss the collection

of our range compressed holography data sets then show our results where we

reconstructed two RCH images with varying degrees of turbulence induced

aberration, showing increased quality over the aberrated images. Finally, we
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conclude our turbulence mitigation work by discussing significant improve-

ments made to our laboratory data sets and the corresponding improvement

of their output range images for significant phase screen turbulence profiles.

Chapter 5 covers our efforts to retrieve phase in the generalized opti-

cal interferometry systems. We first describe in detail the basic amplitude

recovery function of a GOI. Next we cover the mathematical and physical

relationships which allow the instrument to determine their constituent HG

mode amplitudes without spatial measurement. This is followed by the dis-

cussion of our two novel phase retrieval algorithms. The description of each

algorithm is followed by discussion of the results from each algorithm’s sim-

ulations. We show that with both spatial detector data and single-pixel

detector data, retrieval of modal phase information is possible.

Finally, Chapter 6 summarizes our results from all Chapters and dis-

cusses future work.
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Chapter 2

Scalar Optical Propagation, Turbulence
in Imaging, and Range-compressed Holog-
raphy

2.1 Numerical Propagation of Scalar Electric
Fields

2.1.1 Coherent Wave Propagation

The ability to simulate the propagation of scalar electric fields between ar-

bitrary transverse planes along the optical axis is essential to the turbulence

mitigation work in this dissertation. To that end we discuss the pertinent

propagation theory and generate an overall strategy for propagation, which

contributes to algorithm design in the chapters that follow. Throughout this

work, heavy use will be made of a number of mathematical expressions and
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Parameters/Operator Equivalence/Eq. No. Description

c - Speed of light

~r⊥i xix̂+ yiŷ Transverse position vector in the i-th plane

∆~r⊥ij ~r⊥j − ~r⊥i

Difference vector of transverse position
vectors in i-th and j-th transverse planes,

respectively

zij zj − zi Distance between planes i and j along the
optical axis

~α 2 ~α · ~α Dot product of ~α with itself

F
~α→~β{f(~α)} = f̃(β)

∫ ∞
−∞
exp
(
−i2π~α · ~β

)
f(~α)d~α Fourier transform

F−1
~β→~α
{f(~β)} = f(~α)

∫ ∞
−∞
exp
(
i2π~α · ~β

)
f̃(~β)d~β Inverse Fourier transform

f(~α) ∗ g(~α)

∫ ∞
−∞
f(~β) · g(~α− ~β)d~β Convolution

f(~α) ? g(~α)

∫ ∞
−∞
f(~β) · g∗(~β − ~α)d~β Cross-Correlation

f(~α) ? f(~α)

∫ ∞
−∞
f(~β) · f∗(~β − ~α)d~β Autocorrelation

Pi→j {fi(~r⊥i, zi; ν)} fj(~r⊥j, zj; ν); Eq. (2.3) Fresnel propagation from transverse plane
i→ j

P−1
j→i

{
fj(~r⊥j, zj; ν)

}
fi(~r⊥i, zi; ν); Eq. (2.3) Inverse Fresnel propagation from transverse

plane j→ i

Di - Transverse extent of propagation trapezoid in
i-th transverse plane

ν
c
λ

Frequency of illumination; equal to speed of
light divided by the wavelength of

illumination

Kij
νDiDj

czij

Fresnel region 1D space-bandwidth product
or the number of speckles across one
transverse output space dimension

mij
δj
δi

=
Dj/Nj

Di/Ni
Linear magnification; scaling of output
sampling with respect to input sampling

Ni - Number of samples in the i-th transverse
plane

Np - Number of samples across one fully
zero-padded transverse dimension of an array

Qi
Np
Ni

Ratio of zero-padded array length to
unpadded array length in i-th transverse

plane

∆ν - Illumination frequency sampling interval

Bν - Illumination frequency bandwidth

Table 2.1: Table of commonly used parameters and operations
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variables. Table 2.1 defines commonly used expressions and variables. Pro-

vided that we can discount the effects of polarization, classical light can be

expressed as scalar fields. Accordingly, waves which are scalar in nature must

then satisfy the scalar wave equation

∇2U(P, t) =
n2

c2

∂2U(P, t)

∂t2
, (2.1)

which is derived from Maxwell’s equations [1–5] where P is an arbitrary

point in 3D-space, t is the time, n is the index of refraction of the medium,

and c is the speed of light. Furthermore, if the light can be assumed to be

monochromatic, Eq. (2.1) can be replaced with the Helmholtz Equation [3]

[
∇2 +

(
2πnν

c

)2
]
U(P, t) = 0, (2.2)

where ν is the frequency of the monochromatic illumination. Huygens-Fresnel

propagation shows that under these conditions, the expression for a scalar

monochromatic electric field in any transverse plane along the optical axis

can be reliably calculated, provided one knows the electric field in another

transverse plane. In the non-paraxial regime, the full Rayleigh-Sommerfeld

(RS) diffraction formula can be used. However, these full propagation in-

tegrals are often very computationally demanding. In the paraxial regime,

significant simplifications can be made to the RS diffraction formula. These
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simplifications yield the Fresnel approximation [1, 3–5]

Uj(~r⊥j, zj; ν) = exp

(
i2πνzij

c

)∫ ∞
−∞

Ui(~r⊥i, zi; ν) exp

(
iπν

czij

∆r2
⊥ij

)
d~r⊥i, (2.3)

to within a constant multiple. We use the index i to represent coordinates in

the input plane and the index j to represent coordinates in the output plane.

Figure 2.1: Plane-to-plane propagation space, coordinates, physical parame-
ters

2.1.2 Scalable Angular Spectrum Propagation,
K-formalism, and Sampling Constraints

The Fresnel approximation can be manipulated into an equivalent form which

allows for the arbitrary input and output scaling (transverse linear magnifi-
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cation) as [1, Eq. (6.67)]

Uj(~r⊥j, zj; ν) =
1

mij

exp

(
i2πνzij

c

)
exp

[
iπν

czij

(
mij − 1

mij

)
~r 2
⊥j

]
×
∫ ∞
−∞

exp

(
−iπczij

νmij

~f 2
⊥i

)
exp

[
i2π

(
~f⊥i

mij

· ~r⊥j

)]

×
∫ ∞
−∞

exp

[
iπν

czij

(1−mij)~r
2
⊥i

]
exp

[
−i2π

(
~f⊥i · ~r⊥i

)]
× Ui(~r⊥i, zi; ν)d~r⊥id~f⊥i.

(2.4)

Note that we have added the leading piston phase term, omitted by [1]. A

full derivation of this propagator starting from the Fresnel transform Eq.

(2.3) can be found in [1, Eqs.(6.31)-(6.67)] . This propagator is known as the

scalable angular spectrum (SAS). This is identical to Sziklas and Siegman’s

propagation [6], which reduced the computational burden of their problem

by using different sample spacing in the input and output plane, instead of

using a traditional angular spectrum where sample spacing must be the same

in the input and output planes. It is of note to mention that there is also a

non-paraxial angular spectrum propagator. Work has been done to adapt the

non-paraxial angular spectrum for use in cases with transverse magnification

[7]. Though only marginally more computationally complex than the SAS,

non-paraxial sampling criteria are less intuitive and concise. Moreover, there

is no appreciable loss of accuracy using paraxial propagators for the long-

range propagations which we conduct here. We have thus chosen to use the

Fresnel-based paraxial SAS propagator in this work.
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When conducting numerical wave propagation, it is essential that am-

ple consideration is given to the discretization process. Schmidt [1] derives

sampling constraints which are needed to support the numerical computa-

tion of propagated fields using the SAS propagator [1]. Sampling and zero-

padding constraints are necessary in order to ensure physically realistic, una-

liased wave propagation calculations. The constraints presented in [1, 8] are

correct for most situations and served as a foundation for our propagation

work. Unfortunately, the parameterization of sampling constraints in [1] is

labyrinthine. Here, we ease this burden and make the constraints easier to

understand and implement through an alternative parameterization based

on unitless parameters. We call this reparameterization "K-formalism."

Our K-formalism uses the unitless quantities Kij, the Fresnel region

1D space-bandwidth product (SBWP) defined within the trapezoidal region

between the i and the j planes andmij, the ratio of the physical output sample

spacing to the input sample spacing, i.e., transverse linear magnification.

Note that this expression is not a valid SBWP for short range propagations.

However, all propagations in this work are such that the K parameter, as

defined in Table 2.1, is the SBWP.

When computing numerical Fresnel propagations, Kij and mij are the

only independent parameters needed to propagate fields in the i-th plane

to the j-th plane, to within a piston phase term. Assuming square arrays,

the only dependent parameters needed for computation are Ni and Nj, the
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sampled pixel extent of the input and output arrays, respectively, and Np, the

total pixel extent of both the input and output arrays after the addition of

zero padding. And save for that piston phase term, propagations which have

the same space-bandwidth product, magnification, and number of sampled

input and output array pixels are mathematically identical, regardless of

differences in actual physical parameters. In order to convert Eq. (2.4) to

K-formalism, we must convert each of the phase terms. For the innermost

quadratic phase term, we substitute sampled coordinates δ2
i (v2 +w2) for ~r 2

⊥i

and group terms to put in terms of SBWP and magnification

exp

[
iπν

czij

(1−mij)δ
2
i (v

2 + w2)

]
→ exp

[
iπν

czij

(1−mij)
NiNjδj

NiNjδj

δ2
i (v

2 + w2)

]
= exp

[
iπ(1−mij)

νDiDj

czij

δi

δj

1

NiNj

(v2 + w2)

]
= exp

[
iπ(1−mij)Kij

mijNiNj

(v2 + w2)

]
,

(2.5)

where δi, δj are the input and output plane sample spacing, respectively, v, w

are the input plane pixel indices, and Ni, Nj are the number of pixels in

the input and output domain, respectively. Similarly, the inverse Fourier

transform kernel in Eq. (2.4) is discretized by substituting δf (px̂ + qŷ) for
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~f⊥i and δj(tx̂+ uŷ) for ~r⊥j

exp

[
i2π

~f⊥i

mij

· ~r⊥j

]
→ exp

[
i2π

mij

δfδj(tp+ uq)

]
= exp

[
i2π

mij

δj

Npδi

(tp+ uq)

]
= exp

[
i
2π

Np

(tp+ uq)

]
,

(2.6)

where δf = 1/(δiNp) is the sampling in the frequency domain, p, q are the

pixel indices in the frequency domain, t, u are the output plane pixel indices,

and Np is the fully padded array extent. Other phase terms are converted

in a similar fashion using substitution and grouping of terms to achieve K-

formalism. In addition to the conversion of phase terms, the integral opera-

tors are replaced with summation over discretized coordinates.

The SAS with leading is expressed in K-formalism as

Uj(t, u) =
1

mij

exp

(
i2πνzij

c

)
exp

[
i
π(mij − 1)Kij

NiNj

(t2 + u2)

]
×

Np∑
p,q=1

exp

[
−iπNiNj

KijN2
p

(p2 + q2)

]
exp

[
i
2π

Np

(tp+ uq)

]

×
Np∑

v,w=1

exp

[
−i 2π
Np

(vp+ wq)

]
× exp

[
iπ(1−mij)Kij

mijNiNj

(v2 + w2)

]
Ui(v, w).

(2.7)

As illustrated in Fig. 2.1, if the input region, e.g., the pupil, of our propa-

gation is a Di ×Di area region propagated to a square Dj ×Dj output field
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area, the propagation medium is bounded by the faces of a truncated square

pyramid whose base and top are defined by these two areas Di × Di and

Dj ×Dj, respectively. Thus, a 2D cut-through where either xi and xj = 0 or

yi and yj = 0, has a trapezoidal shape. Note that Di = Niδi, where δi is the

sample spacing in the i-th plane.

2.1.3 Propagation Constraints

We begin discussion of propagation constraints by defining quantities which

are relevant to determining sampling requirements. These quantities are the

extent of the input plane in length units, Di, the extent of the output plane in

length units, Dj, the difference between the input and output z-coordinates,

zij, the frequency of illumination in inverse time units, ν, and the desired

sample spacing of the input and output planes in length units, δi and δj,

respectively. From these quantities, we can calculate the SBWP and the

magnification associated with our propagation. We must determine the sam-

pling constraints on Ni and Nj which ensure that the resulting output signal

is unaliased and has the required fidelity. Note that there is often little flex-

ibility in Ni and Nj due to hardware or system constraints. In these cases,

other parameters may need to flex, such as the physical extent of the pupil

or target plane field-of-view (FOV). In addition to the input and output

sampling parameters, we must also ensure that each array has the necessary

zero-padding to avoid aliasing.
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As stated earlier, we chose to identify the constraints on Ni and Nj first,

followed by the array padding constraints which yield the required overall

array size, Np. This is not a mandatory order of operations. For example, one

could choose to start with a known total array size and from there determine

the constraints on Ni, Nj, and then go on to determine the best problem

geometry to support the array sizes and sample spacings. The choice of how

to go about determining propagation sampling is ultimately dependent upon

the desired end-state and user preference.

We reparameterized each of the constraints in [1, 8] into unitlessK-formalism.

The first sampling constraint, based on problem geometry, is [1, Eq. (7.14) ]

|Kij| ≤
NiNj

Ni +Nj

, (2.8)

which describes the SBWP which can be supported give an array with Ni

input pixels and Nj output pixels. Note that this sampling constraint is

specific to intensities, not fields, and can be considered fairly conservative

under certain circumstances, such as very short distance propagations [8]. It

is, however, a sufficient condition for our work. The next sampling constraint

begins with [1, Eq. (7.53)]. We discard the ∆z/R term in this equation which

is designed to compensate for additional quadratic phase from a converging

or diverging wavefront. We also substitute c/ν instead of λ. So [1, Eq. (7.53)]

becomes

δi −
czij

νDi

≤ δj ≤ δi +
czij

νDi

. (2.9)
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We subtract δi from both sides and change to a single inequality with absolute

values

|δj − δi| ≤
∣∣∣∣ czij

νDi

∣∣∣∣ . (2.10)

Dividing both sides by δj yields

∣∣∣∣1− 1

mij

∣∣∣∣ ≤ ∣∣∣∣ czij

νδjDi

∣∣∣∣
≤
∣∣∣∣Nj

Kij

∣∣∣∣ . (2.11)

We then rearrange terms to find the constraint on Nj as a function of mag-

nification and SBWP

Nj ≥ |Kij|
∣∣∣∣1−mij

mij

∣∣∣∣ (1 + γ) , (2.12)

where the added γ parameter accounts for the presence of additional quadratic

phase in the beam or in turbulence screens (which we discuss shortly). This

constraint ensures the innermost quadratic phase of the SAS does not alias.

The constraint is derived by limiting the absolute value of pixel-to-pixel phase

jumps in the quadratic phase term to less than π radians, or equivalently,

that the local spatial frequency at the edges of our quadratic phase satisfies

the Nyquist criterion. The constraint gives the SBWP that can be supported

for a given magnification and unpadded output array extent, without aliasing

the input quadratic phase. The parameter γ is an empirically determined

nonnegative number which should be used to account for any additional
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quadratic phase present in the input (or output) plane of the propagation,

such as quadratic phase content in atmospheric turbulence in the input plane

(which we will discuss in an upcoming section).

Schmidt [1] does not explicitly derive a constraint for the external quadratic

phase. However, it is very similar to Eq. (2.12) with the i, j indices reversed

Ni ≥ |Kij| |mij − 1| (1 + γ)

≥ |Kji|
∣∣∣∣1−mji

mji

∣∣∣∣ (1 + γ) .
(2.13)

This describes the SBWP that the propagation can support, without aliasing

the outermost quadratic phase of Eq. (2.7), given a certain pixel extent in

the unpadded input array. The second line in Eq. (2.13) shows that our

quadratic phase sampling constraints are consistent. That is to say, if we

were propagating from plane j to plane i, instead of from plane i to plane j,

the quadratic phase constraint would be identical to Eq. (2.12) with swapped

indices. Again the chosen parameter γ is the same as in Eq. (2.12). When

propagating fields scattered from optically rough objects, setting γ = 0 is

generally appropriate provided there is negligible atmospheric turbulence.

This is because the field phases have been randomized by interaction with

the object’s rough surface and are very unlikely to have appreciable quadratic

phase content after this interaction.
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The first constraint on the total array size [1, Eq. (7.20)]

Np ≥
Ni +Nj

2
+
NiNj

2|Kij|
, (2.14)

ensures there is ample array padding to support the highest spatial frequen-

cies present in the output plane. It does however permit wrap-around energy

to encroach into the zero padding region of the array. This is because energy

that wraps around and encroaches into the region of zero padding array will

not adversely affect the area of the image Dj × Dj which one is concerned

with. The second, and final, constraint on total array size originates from [1,

Eq. (7.59)]. In order to realize the K-formalism format for this constraint,

the right side of the inequality is multiplied by NiNj/NiNj. Since Di = Niδi

and Dj = Njδj, Kij can then be substituted into the denominator of the right

side of [1, Eq. (7.59)] leaving only NiNj in the numerator:

Np ≥
NiNj

|Kij|
. (2.15)

This describes the zero-padding necessary to avoid aliasing the transfer func-

tion of the SAS propagator.

If one is only concerned with the 2D intensity of the output of the SAS,

then constraint Eq. (2.13) can be ignored. Additionally, once a field has been

limited in extent in both the input and output planes, Eq. (2.14) can also

be ignored. That is to say, if all energy is contained within the trapezoidal
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region between the input and output system.

For our work, it was acceptable to choose an equal number of input

and output pixels in our propagation arrays. Doing this further simplifies

constraints. We find Eq. (2.8) becomes

N ≥ 2|Kij|. (2.16)

In the event we illuminate an optically rough target with a coherent square

illumination pattern, this constraint mandates a minimum of 2 samples per

speckle diameter in the pupil plane [9]. Next, Eqs. (2.12) and (2.13), respec-

tively, become

N ≥ (1 + γ)|Kij||mij(ji) − 1|. (2.17)

The geometric zero-padding constraint, Eq. (2.14), becomes

Np ≥ N

(
1 +

N

2|Kij|

)
. (2.18)

Plugging Eq. (2.16) into Eq. (2.18) we find

Np ≥ 2N, (2.19)

which indicates an array padding ratio

Q ≥ 2. (2.20)
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Finally, the transfer function padding constraint of Eq. (2.15) becomes

Np ≥
N2

|Kij|
. (2.21)

Dividing both sides by N and plugging Eq. (2.16) into Eq. (2.21), we find

an equivalent array padding ratio to Eq. (2.20).

As an example, assume one desires to propagate a field whose sampled

input and output regions have have an equal number of pixels, where we

are only concerned with the output intensity, γ = 1, and mij = 2/3, and

one is only concerned with the intensity of the output field, they would need

N = 2|Kij| pixels in the input/output planes and Q = 2 zero-padding. This

results in a full array with Np = 4|Kij|.

2.1.4 Chain Propagation

Any SAS propagation between two transverse planes can be broken up into an

arbitrary number of successive SAS partial propagations, creating a chain of

propagations between a pupil and target. This "chain propagation" produces

output fields equivalent to those produced using a single SAS propagation

between pupil and target [1]. This propagation method using partial propa-

gation allows us to include the effects of phase screens, which we will discuss

in the next subsection, that are located in planes between the target and

pupil of a system.
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Note that the innermost quadratic phase in Eq. (2.7) is only neces-

sary during the first partial propagation in a chain. Similarly, the outer

most quadratic phase is only necessary after the last propagation in a chain

(if then). This is because each inner quadratic phase after the first in the

propagation chain has a complimentary outer phase which is its complex

conjugate, making the product of the two phases unity [1].

Chain propagations use slightly modified sampling constraints. Each

partial propagation needs to satisfy the transfer function sampling constraint,

Eq. (2.15), since this constraint prevents aliasing in each partial propaga-

tion’s transfer function. However, being able to spread the transfer function

requirements across multiple partial propagations can often reduce overall

array size requirements. The signal sampling constraint, Eq. (2.8), need

only be satisfied with respect to the overall space-bandwidth product of the

target-to-pupil system, not the SBWP of each partial propagation. This is

because Eq. (2.8) is a constraint resulting from the geometry and spatial

frequency content of the overall optical system, which will still be valid for

the chain propagation. Similarly, the geometric array-padding constraint,

Eq. (2.14), and both non-transfer function quadratic phase constraints, Eqs.

(2.12) and (2.13), need only be satisfied for the SBWP of the entire sys-

tem because of the canceling of quadratic phases detailed in the previous

paragraph.

We describe a chain propagation as a series of S partial propagations
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from a transverse pupil plane with index 0 to a transverse target plane with

index S, where S is an integer greater than or equal to 2. For simplicity, we

chose all of our chain propagations in the following work to have a uniform

number of samples in all planes, i.e., Ns = N, ∀ s ∈ [0, S]. For the duration

of Chapters 2, 3, and 4, we will continue to use this 0 to S indexing scheme.

In cases where one desires to have a uniform number of pixels in all

planes, but does not have a number of detector pixels equal to the number

of pixels one wishes across the output region, the detector array data can be

upsampled (note this will not increase resolution) or zero-padded until the

array has the same number of pixels as one desires across the output plane. In

the former case, the upsampling may introduce undesirable artifacts. In the

latter case, the SBWP must be adjusted to reflect the new input and output

plane extents, and multiple SBWPs and magnifications will be needed to

conduct chain propagation. There is a relation between the total SBWP

(from pupil plane to target plane) and the partial propagations which can be

used to conduct an equivalent propagation. If, for example, one conducts a

chain propagation from a pupil plane 0 to a middle plane with index s, then

a second propagation from s to a target plane S, as in Fig. 2.2, two SBWP

values will be needed, K0s and KsS, as well as two magnification terms, m0s

and msS.
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Figure 2.2: SBWP conservation geometry.

From the propagation geometry, we see that

Ds = D0 +

(
z0s

z0S

)
(DS −D0)

=

(
z0SD0 − z0sD0 + z0sDS

z0S

)
=

(
z0sD0 + zsSD0 − z0sD0 + z0sDS

z0S

)
=

(
zsSD0 + z0sDS

z0S

)
.

(2.22)

Now, consider the sum of the reciprocal of each partial propagation’s SBWP

1

K0s

+
1

KsS

=
cz0s

νDsD0

+
czsS

νDsDS

=
c

νDs

(
z0s

D0

+
zsS
DS

)
=
c

ν

(
z0S

zsSD0 + z0sDS

)(
z0s

D0

+
zsS
DS

)
=
c

ν

(
z0S

zsSD0 + z0sDS

)(
zsSD0 + z0sDS

D0DS

)
=
c

ν

(
z0S

D0DS

)
=

1

K0S

.

(2.23)
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This equation can be used as many times as necessary, splitting each of the

two smaller trapezoids into additional trapezoids, allowing us to determine

the SBWPs of all partial propagations. Thus, for a chain propagation con-

sisting of S total partial propagations from input plane 0 to output plane

S

1

K0S

=
S∑
s=1

1

Ks−1,s

. (2.24)

Magnifications are recovered in similar fashion, using Eq. (2.22), but instead

substituting the physical extent of a plane, Dx, with the sample spacing of

that arbitrary plane, δx. Recall that magnifications will be the ratio of each

partial propagation’s output sample spacing to that partial propagation’s

input sample spacing.

2.1.5 Simulating and Propagating through Atmospheric
Turbulence

The freespace propagations we have defined thus far assume a uniform index

of refraction equal to unity. This is a good estimate as the average index

of refraction of air is very close to unity. However, pressure and tempera-

ture fluctuations in the atmosphere cause random nonuniformities in the in-

dex of refraction. Over long distances these generally small nonuniformities

aggregate, causing substantial phase errors or aberrations. These pockets

which occur in the propagation medium due to pressure and temperature

fluctuations are called turbulent eddies. These aberrations frequently cause
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degradation in images generated from these fields.

Turbulent effects are separated into two types of aberrations in the Ry-

tov approximation of turbulence: phase aberrations and log-amplitude aber-

rations (scintillation) [10, 11]. We assume signal detection that are short

enough that the turbulence profile has negligible transverse movement. Phase

aberrations redirect photons in undesirable ways similar to surface aberra-

tions in a system of optical elements, causing blurring and warping of tar-

get images. The second type of aberration, log-amplitude aberrations, cause

changes in the illuminated target as a result of the illumination beam passing

through turbulence. Additionally, log-amplitude aberrations cause intensity

fluctuations in the pupil due to image beam passing through turbulence on

its way to the pupil [11]. In this work, though, we considered only phase

aberrations. This choice simplified our simulations, allowing us to effectively

isolate and address one type of the two types of Rytov model turbulence.

Phase aberrations alone are responsible for the majority of the overall image

degradation caused by turbulence and, as such, correcting only for phase

aberration has the potential to significantly improve image quality.

Modeling propagation through an entire volume of turbulence would

be very computationally intensive and, and so would be poorly suited to

real-time/near real-time imaging applications. For our purposes, volumetric

phase turbulence can be well approximated by a series of two dimensional

phase objects [1, 10–13]. These will be referred to as turbulence screens.
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We used two parameters to discuss the strength of our system’s turbu-

lence, Fried’s parameter, known as r0, and the isoplanatic angle, known as

θ0. Fried’s parameter r0, also known the atmospheric coherence diameter

[14] or "seeing cell" size, is commonly understood as the diameter of the

largest aperture in a plane which would yield near-diffraction-limited results

[10, 13]. An effective r0 for the system as measured in the pupil plane can

be calculated from the collection of all turbulent phase screen contributions

[1, Eq. (9.72)]

r0 =

[
S−1∑
s=0

r
−5/3
0,s

(
z0S − z0s

z0S

)(5/3)
](−3/5)

, (2.25)

where r0,s is the r0 of the (s+ 1)-st turbulence screen located in the plane s,

which is a distance of |z0s| away from the pupil plane. We will refer to this

aggregate quantity in the pupil as r0 and the seeing cell diameter for a single

turbulence screen s as r0,s, in what follows. Note, this assumes a phase screen

also exists in the pupil, at plane index 0. The unitless measure of turbulence

strength in the pupil experienced by a particular system will be referred to as

D/r0. This quantity is calculated by dividing the diameter of the pupil, D0,

by r0. It can be interpreted as the number of diffraction-limited apertures

that fit across the diameter of the system’s pupil.

Our second measurement of turbulence strength, also first described by

Fried [15], is the isoplanatic angle, θ0, is a turbulent effect that causes the

OTF/PSF to lose shift invariance. Roggemann states [10, pp 171] that, "(t)he
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isoplanatic angle is qualitatively the maximum angular separation between

the object and beacon, such that the turbulence induced wave front defor-

mation for the object and beacon wave fronts are still reasonably similar."

Roggemann speaks about this in the context of the angle between a beacon

and an astronomical object in an adaptive optics system. The analogue in

our work is the maximum angular separation between two different points

in the target plane that see reasonably similar turbulence. The isoplanatic

angle is formally defined [10, Eq. (5.1)]

θ0 = 58.1× 10−3
( c
ν

) 6
5

[∫ L

0

dzC2
n(z)z5/3

]−3/5

, (2.26)

where L is the pathlength through turbulence, and C2
n(z) is the empirically

determined turbulence structure constant. When using the phase screen

approximation, the continuous integral can be converted into a discrete sum-

mation using [10, Eq. (3.40)]

θ0 = 58.1× 10−3
( c
ν

)6/5
[
S−1∑
s=0

C2
n,sz

5/3
0s

]−3/5

. (2.27)

Also when approximating turbulence as discrete phase screens, the isopla-

natic angle can be described in terms of the r0 values of all screens and their

locations. To do so, we solve [10, Eq. (3.57)] for C2
n,s and plug it into Eq.

(2.27) yielding

θ0 = 0.314

[
S−1∑
s=0

(
z0s

r0,s

)(5/3)
](−3/5)

. (2.28)
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Observe from Eq. (2.28) that turbulence screens in the pupil offer no contri-

bution to anisoplanatism. Note also, that r0, and therefore θ0, is defined by

its relationship to C2
n, the refractive index structure function parameter.

Images of a target with points that have angular subtense larger than

θ0 are said to suffer from anisoplanatism. We desired a measure of aniso-

planatism which was relative to a given optical system, much like D/r0, is

relative to the diameter of a system’s pupil. We chose to use the parame-

ter κ as the unitless descriptor of the degree of anisoplanatism in an optical

system, where

κ =
AFOV
θ0

=
DS

θ0|z0S|
. (2.29)

A value of κ = 1 would mean the images captured with the system would

be very unlikely to experience the effects of anisoplanatism, whereas a value

of, say, 50 would represent a system where images would be very likely to

exhibit severe anisoplanatic effects.

In the following chapters, we used turbulence screens which were gener-

ated using the technique from Lane, Glindemann, and Dainty [16]. Though

there are a number of other methods which could be used to simulate at-

mospheric turbulence [1, 10, 17]. The method we used is based on the Kol-

mogorov power spectrum which describes the statistical abundance and size

of turbulent eddies as a function of spatial frequency. Turbulence screens

were created by first creating arrays with twice the pixel extent of the de-

sired turbulence screen. These oversized arrays were then populated with
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complex circular Gaussian random numbers. Random number arrays were

then multiplied by the square root of the discrete Kolmogorov power spec-

trum with the desired r0

Φ
1
2 (p, q) =

√
0.023

(
2D

r0

) 5
6 (
p2 + q2

)−11
6 , (2.30)

where p, q are array indices and D is the spatial extent of the desired turbu-

lence screen in length. Array products of complex-valued random numbers

and Kolmogorov spectra were then cosine transformed and cropped to the de-

sired pixel extent, removing wrap-around continuity resulting from the cosine

transform. At this stage, the spatial frequencies represented in the turbulence

screens were limited to harmonics of the discretely sampled power spectra,

i.e., spatial frequencies were greater than or equal to 1/(2D). Sub-harmonic

turbulence content was added to the overall phase to ensure physically real-

istic turbulence simulations. Addition of these sub-harmonics is an essential

part of the turbulence simulation, since much of total spectral-power of at-

mospheric turbulence is contained in these bands. Six sets of sub-harmonics

were added to each of the turbulence screens we used in the following Chap-

ters in accordance with best practices outlined in [16]. The final real-valued

turbulence screen in the s plane was denoted φs(t, u).

Statistically, simulated phase screens require ≥ 3 pixels per r0 to be

adequately sampled and thereby represent their highest spatial frequency

content with good fidelity [18]. All of the screens in our work contained ≥ 5
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samples per r0. This yielded a margin of safety, ensuring adequate sampling

of the array products of turbulence screens with propagating fields.

To apply simulated turbulence to our fields, each real-valued Kolmogorov

phase, φs(t, u), was then inserted as the phase of a complex exponential

function

Ψs(t, u) = exp [iφs(t, u)] , (2.31)

and placed in a plane s along the path of optical propagation. The term

Ψs(t, u) is known as the turbulence screen transmittance function.

Note that the transverse extents of our turbulence screens were chosen so

that they contained almost all unaberrated beam energy and had additional

extent added as a function of the turbulence strength in order to compensate

for energy redirected by the turbulence. When a field was propagated through

turbulence screens, the extent of the phase screens needed to be larger in

order to accommodate the spatially expanded energy distributions. In the

following section, we describe how to calculate increased input and output

plane extents which, when used in conjunction with Eq.(2.22), allowed for

the determination of larger turbulence screen extents.

2.1.6 Overall Propagation Strategy

SAS propagations in the following chapters were conducted back and forth

between a pupil plane and a target plane. Each propagation between these
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planes used a series of consecutive partial propagations to intermediate planes

which contained phase screens, as shown in Fig. 2.3. We used an indexing

scheme where, again, the 0 index denotes the pupil plane and the S index

denotes the target plane. Thus, our phase screens had indices in the range

[0, S − 1]. Note that a phase screen placed in the plane of the target has

no blurring effect on the image, as implied by Eq. (2.25). Accordingly, no

turbulence screens were included in the target plane. The full propagation

Figure 2.3: Target-to-pupil propagation through simulated turbulence
screens.

process we used to simulate turbulence-based aberrations in our fields started

with the ideal target fields US(~r⊥S; ν). Next, a total of S partial propagations

were conducted using the discrete SAS propagator. After each partial prop-

agation, the Hadamard product of the field with the co-located turbulence

screen transmittance function was propagated to the next plane. This pro-
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cess was repeated until reaching the pupil plane. Once in the pupil plane, the

final turbulence screen transmittance function was multiplied by the output

field of the final partial propagation, resulting in the fully aberrated pupil

field, U0,AB(~r⊥0; ν). Aberrated images of target fields were observed by prop-

agating aberrated pupil fields directly back to the target plane from the pupil

without any phase screens.

As previously stated, propagating through random turbulence redirects

energy in unpredictable ways. The region containing relevant energy for a

propagation is often not contained in the volume of the truncated square

pyramids formed between the desired D0 × D0 region and DS × DS. Some

higher spatial frequency information that would not have otherwise have

been captured by the pupil and, conversely, some lower spatial frequency

information we expect to see captured by the pupil being lost outside of the

pupil. In order to ensure fields aberrated by turbulence are simulated in a

physically realistic manor, we used the technique in [1, Eqs. (9.84), (9.85)]

to calculate expanded input and output extents. This model is based on a

simple model of single slit diffraction. It yields larger, adjusted values for D0

and DS based r0

D′0 = D0 + ξ
c|z0S|
νr0

D′S = DS + ξ
c|z0S|
νr0,REV

,

(2.32)

where r0,REV is the r0 of all system phase screens as if calculated in the
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reverse direction from Eq. (2.25), and ξ is an adjustable parameter indicating

the sensitivity of the model to turbulence. The value of ξ typically ranges

between 2, which captures ∼ 97% of the energy, and 4, which typically

captures ∼ 99% [19].

2.2 Digital Holography and Multiwavelength
Range-Compressed Holographic Lidar

2.2.1 Digital Holography

Figure 2.4: Diagram of focal plane recording geometry digital holography
mixing and field extraction.

As mentioned in Chapter 1 our work uses a coherent spatial heterodyne

technique known as digital holography (DH). Specifically, we use an off-axis

focal plane (image plane) DH recording geometry (image plane recording ge-

ometry) as shown in Fig. 2.4. We assume a reference beam or local oscillator

73 
Approved for public release; distribution is unlimited.



CHAPTER 2. SCALAR OPTICAL PROPAGATION, TURBULENCE IN
IMAGING, AND RANGE-COMPRESSED HOLOGRAPHY 46

(LO) field in the plane of the detector,

R
(
~f⊥

)
= Aexp (−ik`) exp (−i2πqf⊥) exp

[
iπc`

ν
(~f⊥ · ~f⊥)

]
= Aexp (−ik`) exp [−i2

√
2πq(fx + fy)] exp

[
iπc`

ν
(f 2
x + f 2

y )

]
,

(2.33)

as a tilted spherical wave, A is the real-valued amplitude, ` is the focal length

of the focusing lens immediately behind the pupil, q is the magnitude of the

tip and tilt components of the reference beam, f⊥ = f̂⊥· ~f⊥ =
√

2(x̂+ŷ)·(fxx̂+

fyŷ) =
√

2(fx + fy), ~f⊥ · ~f⊥ = f 2
x + f 2

y , fx = νx0/c`, and fy = νy0/c`, where

~r0 = x0x̂+y0ŷ, is the pupil-plane coordinate. Tip and tilt is purposely applied

to the reference beam in order to separate the desired complex-valued pupil

field terms from the on-axis autocorrelation terms for pupil field extraction.

The field exiting the pupil is

U ′0 (~r⊥0) = Wp(~r⊥0)U0(~r⊥0), (2.34)

where Wp(~r⊥0) is the binary window function associated with the pupil and

U0(~r⊥0) is the field scattered off of the target and propagated to the pupil-

plane. We see from Fig. 2.4 that the intensity on the detector is

Idet

(
~f⊥

)
=
∣∣∣[Ũ ′0 (~f⊥)+R

(
~f⊥

)]
WD

(
~f⊥

)∣∣∣2 (2.35)
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where Ũ ′0
(
~f⊥

)
is the Fourier transform of U ′0(~r⊥0), and

WD

(
~f⊥

)
= Π

[
c`

νD
fx

]
Π

[
c`

νD
fy

]
, (2.36)

is the square binary window function of the detector, where Π(·) is a rect-

angle function, D is the extent of the detector window, ν is the frequency

of illumination, and ` again is the focal length of the focusing lens. Note

we assume here that the LO has been pathlength-matched to the focused

pupil field, ensuring optimal coherence. Additionally, the quadratic phases

are matched in the reference and focused pupil fields. To extract the pupil

field, the inverse Fourier transform of the intensity on the detector is first

calculated

F−1
~f⊥→~r⊥0

{
Idet

(
~f⊥

)}
= F~f⊥→~r⊥0

{[∣∣∣Ũ ′0 (~f⊥)+R
(
~f⊥

)]
WD

(
~f⊥

)∣∣∣2}
∝
[
U ′0 (~r⊥0) ? U ′0 (~r⊥0) + A2|δ(~r⊥0)|

+ AU ′0(~r⊥0 − ~q) + AU ′
∗
0 (~r⊥0 + ~q)

]
∗
[
sinc

(
νD

c`
x0

)
sinc

(
νD

c`
y0

)]
,

(2.37)

where the ? operator denotes autocorrelation, ~r⊥0 = xx̂0 + yŷ0, again are

pupil-plane coordinates, ~q is the displacement vector in the hologram plane

cause by the tip and tilt of the reference beam, and A is the reference beam

amplitude. We extract and recenter the desired pupil field to the optical axis.
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Finally, we multiply by a binary pupil window function, Wp(~r⊥0), in order to

suppress energy from the autocorrelation and delta-function terms

U ′′0 (~r⊥0) = Wp(~r⊥0)

{
AU ′0(~r⊥0) ∗

[
sinc

(
νD

c`
x0

)
sinc

(
νD

c`
y0

)]}
. (2.38)

2.2.2 Wave Optics Depth of Field

Consider again the Fresnel transform. For a single monochromatic illumi-

nation frequency in the absence of aberrations, it maps a transverse pupil

plane, U0(~r⊥0, z0; ν), to a target field, US(~r⊥S, zS; ν)

US(~r⊥S, zS; ν) ∝ exp

(
i2πνz0S

c

)∫ ∞
−∞

U0(~r⊥0, z0; ν)

× exp

(
iπν

cz0S

∆~r 2
⊥,0S

)
d~r⊥S.

(2.39)

It is reasonable to ask how 2D intensity images of 3D objects can be created if

the Fresnel propagator is defined to map only from a single transverse plane

to another transverse plane. One way this can be understood is to realize

that there is an effective wave-optics corollary to the geometric optics concept

depth-of-field (DOF). DOF functionally extends the plane-to-plane mapping

to include other target planes up to a distance of ±δz, where 2δz = DOF,

length units from the z-axis location used in the Fresnel transform without

appreciable loss of accuracy (save for the leading piston phase term).
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We can see from Eq. (2.39) that the external piston phase term oscillates

at a much higher rate than the internal quadratic phase for remote sensing

scenarios where |∆r⊥|max � |z0S|. We desire to describe the DOF range

where the change in the internal quadratic phase term is negligible and the

change in the external piston phase term remains significant, and in doing

so, establish constraint expressions for |δz|.

Since the SAS propagator is an equivalent operation to the Fresnel trans-

form Eq. (2.39) in a continuous space, it is reasonable to derive constraints

for the quadratic phase terms in Eq. (2.4). Constraining the quadratic phase

terms in the SAS also allows us to avoid an indeterminate phase constraint

for discretely sampled systems with unity magnification, which occurs when

constraining the discretely sampled Fresnel’s quadratic phase.

We define |δz| as the maximum distance from a designated output lo-

cation along the z-axis which results in a phase difference magnitude of less

than π/2 radians (a quarter wave) in each of the three SAS quadratic phase

terms. Note that we use a quarter wave maximum phase difference as suffi-

cient for our work imaging distant targets. Certain applications may require

a stricter or allow for a less strict quadratic phase error tolerance.

The condition derived from the outermost quadratic phase on line 1 of
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Eq. (2.4) is

πν

c

∣∣∣∣(m0S − 1

m0S

)(
1

z0S

− 1

z0S ± δz

)(
r2
⊥0

)∣∣∣∣ < π

2

ν

c

∣∣∣∣(m0S − 1

m0S

)[
±δz

(z0S ± δz)z0S

] (
r2
⊥0

)∣∣∣∣ < 1

2
.

(2.40)

We assume (for all three constraints) δz � z0S, so we can say that the Eq.

(2.40) is approximately the same as

ν

c

∣∣∣∣m0S − 1

m0S

∣∣∣∣ ( δz
z2

0S

){
r2
⊥0

}
max <

1

2
. (2.41)

Solving Eq. (2.41) for δz gives

δz <
c

2ν

∣∣∣∣ m0S

m0S − 1

∣∣∣∣ ( z2
0S

{r2
⊥0}max

)
, (2.42)

where the expression {·}max signifies the maximum value of the argument.

In this case, the expression represents the largest squared magnitude of the

transverse coordinate vector in the pupil plane which is of interest. Translat-

ing into a discretized space and using K-formalism, the constraint becomes

δz <
2z0S

K0S

∣∣∣∣ 1

m0S − 1

∣∣∣∣ . (2.43)

Similarly, we find the condition resulting from the innermost quadratic
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phase on line 3 Eq. (2.4) to be

δz <
c

2ν

∣∣∣∣ 1

1−m0S

∣∣∣∣ ( z2
0S

{r2
⊥S}max

)
. (2.44)

In K-formalism the innermost quadratic phase condition is

δz <
2z0S

K0S

∣∣∣∣ m0S

1−m0S

∣∣∣∣ . (2.45)

And lastly, the constraint derived from the transfer function phase on line 2

of Eq. (2.4) is

δz <
νm0S

2c

(
1

{f 2
⊥S}max

)
. (2.46)

We know that the maximum spatial frequency of a paraxial system with

target extent DS, pupil extent D0, frequency ν, and input-to-output plane

distance z0S is [1, Eqs. (7.5),(7.6), (7.12)]

fmax =
ν(DSm0S +D0)

2cz0S

. (2.47)

Substituting Eq. (2.47) into Eq. (2.46) we find

δz <
2cm0S

ν

(
z0S

DSm0S +D0

)2

. (2.48)

As a brief aside, if we are, say, interested in observing the psf of a
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system with unity magnification, propagating from the pupil to the focus of

the system, and under the assumption that D0 � DS, we find

δz <
2cz2

0S

νD2
S

, (2.49)

yielding a DOF region

DOF =
4cz2

0S

νD2
S

. (2.50)

This is exactly the geometric optics DOF for a system with a square pupil.

In K-formalism, the transfer function condition is

δz <
2z0S

K0S

[
m0S

m0S + 1

]2

. (2.51)

We see from Eq. (2.4) that in systems with a unity magnification, only the

transfer function condition is relevant, since the innermost and outermost

quadratic phase terms become unity. Thus, when magnification is unity, the

only constraint is

δz <
z0S

2K0S

. (2.52)

So the DOF in this case is simply the ratio of the propagation distance to

the SBWP.

As an example, assume a system with pupil extent D0 = 0.25 m, trans-

verse target extent (TFOV) DS = 4 m, propagation distance z0S = 104 m, a

wavelength λ = c/ν = 10−6 m, and a unity magnification. We find δz ≤ 50
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m. This illustrates the poor range (axial) resolution that can be had by depth

of focus (or triangulation over the width of the aperture), as compared with

the fine range resolution that can be had using optical frequency diversity as

discussed later in this section. We can see from this DOF example how, in

spite of using a propagator defined exclusively for plane-to-plane mapping,

we are able to generate 2D intensity images where all parts of a 3D target

object appear in-focus.

2.2.3 Range-compressed holography

To begin our derivation of range-compressed holography (RCH), assume that

a target is illuminated by a coherent source co-located with the pupil. Our

development of the wave optics DOF concept allows us to approximate the

3D complex reflectance of this target as the product of a 2D transverse re-

flectance function and and an accompanying delta function containing the

depth location of the target surface for each location in the transverse S

plane

US(~r⊥S, z) ≈ US⊥(~r⊥S)δ[z − Z(~r⊥S)], (2.53)

where Z(~r⊥S) is the distance from the pupil to the target’s surface as a

function of the transverse coordinates in the target plane.

Next, we conduct a Fresnel propagation of Eq. (2.53) from the various

planes in our DOF region to the pupil plane. We use zS as the known z-axis
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value for the internal phase portion of the Fresnel integral shown in Eq.

(2.39). Since we have stated that the target is contained within the DOF

region as described above, the transverse Fresnel phase term is approximately

constant in this region with respect to changes in z and ν. We choose the

zS plane to indicate the approximate halfway point in the region of the z

axis which contains the target object. The Fresnel propagation of the all the

planes in our target DOF region

U0(~r⊥0, z0; ν) ∝
∫ zS+δz

zS−δz
exp

[
−i4πν(z − z0)

c

] ∫ ∞
−∞

US⊥(~r⊥S)δ[z − Z(~r⊥S)]

× exp

(
−iπν
cz0S

∆~r 2
⊥0S

)
d~r⊥Sdz

=

∫ ∞
−∞

US⊥(~r⊥S) exp

{
−i4πν[Z(~r⊥S)− z0]

c

}
× exp

[
−iπν
cz0S

∆~r 2
⊥0S

]
d~r⊥S,

(2.54)

where the additional factor of two in the linear phase term is the result of

illumination traveling from the pupil/transmitter plane to the target object

and back again (double pass). Fresnel transforming both sides of Eq. (2.54)

from the pupil plane to the nominal target plane zS

exp

(
i2πνz0S

c

)∫ ∞
−∞

U0(~r⊥0, z0; ν) exp

(
iπν

cz0S

∆~r 2
⊥,0S

)
d~r⊥0

∝ exp

(
i2πνz0S

c

)
US⊥(~r⊥S) exp

{
−i4πν[Z(~r⊥S)− z0]

c

}
.

(2.55)
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Conducting a change of coordinates, substituting z′ = z − zS and therefore

also Z ′(~r⊥S) = Z(~r⊥S)− zS gives

exp

(
i2πνz0S

c

)∫ ∞
−∞

U0(~r⊥0, z0; ν) exp

(
iπν0

cz0S

∆~r 2
⊥,0S

)
d~r⊥0

∝ exp

(
i2πνz0S

c

)
US⊥(~r⊥S) exp

{
−i4πν[Z ′(~r⊥S) + z0S]

c

}
= exp

(
−i2πνz0S

c

)
US⊥(~r⊥S) exp

{
−i4πνZ ′(~r⊥S)

c

}
,

(2.56)

which offers an intuitive result with the right hand side of the equation now

only having a single pass worth of piston phase between the pupil and target.

Propagating fields from the pupil back to the nominal target plane added an

opposite piston phase term over a distance z0S, leaving only the piston phase

accrued during the illumination beam’s initial propagation to the target.

Additionally, the complex reflectance information detailing surface features

of the target is still represented by the phase term which varies transversely

as a function of Z ′(~r⊥S). Next, multiplying both sides by exp (i2πνz0S/c)

exp

(
i2πνz0S

c

)∫ ∞
−∞

U0(~r⊥0, z0; ν) exp

(
iπν0

cz0S

∆~r 2
⊥,0S

)
d~r⊥0

= US⊥(~r⊥S) exp

{
−i4πνZ ′(~r⊥S)

c

}
,

(2.57)

the right hand side becomes the 2D complex reflectance function and a linear

phase term which is a function of both illumination frequency and depth as

a function of transverse coordinates.

Instead of creating a digital hologram using only a single frequency of
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monochromatic illumination, suppose we collected a continuum of illumina-

tion frequencies. Inverse Fourier transforming Eq. (2.57) with respect to

2ν/c gives

F−1
2ν
c
→z′

{
US⊥(~r⊥S) exp

[
−i4πνZ ′(~r⊥S)

c

]}
= US⊥(~r⊥S)δ[z′ − Z ′(~r⊥S)]

= US⊥(~r⊥S)δ[z − Z(~r⊥S)],

(2.58)

the original approximated 3D complex reflectance function from Eq. (2.53).

This final inverse Fourier transform step is known as a range-compression.

We see that RCH enables us to recover the target’s depth information in

addition to its 2D field and intensity image. Note that this equation assumes

infinite spatial-frequency bandwidth and transverse extent, as well as an in-

finite range of ν. We address this topic in the next subsection. Note that we

chose to use the continuous space Fresnel propagation integral in this deriva-

tion as its notation is more compact than the equivalent SAS, whose discrete

form we use in Chapters 3 and 4. We could just as easily used the SAS to

achieve the same result. Our use of an inverse Fourier transform to perform

the range-compression in Eq. (2.58), was the result of the propagation con-

vention we used which assumed that "forward" Fresnel propagations started

at the pupil plane and ended at the target plane, as shown in Eq. (2.39).

Had we chosen the opposite convention where "forward" propagation went

from the target plane to the pupil plane, range-compression would have used
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a Fourier transform to recover the depth information-containing delta func-

tion. Finally, in spite of our opaque target assumption, the range-compressed

holography technique that derived here will work to varying degrees for non-

opaque objects as well.

2.2.4 Illumination Bandwidth, Range Resolution, and
Spectrum Sampling

In order to produce the necessary laser bandwidth to conduct RCH, a number

of laser technologies can be used. We consider a linear frequency-modulated

(LFM), or chirp-pulse, laser as the physical model we will use to explain the

generation of this bandwidth [4]. The means by which a frequency-chirped

signal generates illumination bandwidth, how this limited bandwidth affects

RCH range resolution, and how discretely sampling the tunable spectrum

affects range measurements are discussed. Often, these topics are treated us-

ing more traditional techniques from the radar/SAR world involving matched

filters [20, 21]. However, we discuss them in more traditional wave optics par-

lance. The physics, however, is the same. We begin with a paraxial chirp

illumination beam [4]

Uchirp(~r⊥, z; t) ∝ exp

[
i2πν(t)z

c

]
exp

[
(~r⊥ · ~r⊥)

w(z)

]
exp

[
iπν(t)

cz
(~r⊥ · ~r⊥)

]
× exp [iϕ(z)]b(t) exp

(
−αt2

)
exp (i2πν0t+ iβt2),

(2.59)
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Figure 2.5: a) Gaussian pulse envelope and real-valued chirped signal com-
ponent, with the base frequency and chirp constant scaled to aid visibil-
ity of pulse compression. (b) Windowed signal showing the FWHM region
of Gaussian envelope from which illumination frequencies will be sampled,
TS = TP = 5 × 10−4 s. (c) Windowed LFM pulse energy spectral density
(ESD) indicating bandwidth Bν = 25 MHz. (d) Discretely sampled LFM
ESD showing sampled frequencies.

where ν0t + (β/π)t2 is known as a frequency chirp. The instantaneous fre-

quency function, ν(t), is proportional to the rate of change of the chirp

ν(t) =
d

dt

{
ν0t+

β

2π
t2
}

= ν0 +
β

π
t, (2.60)

exp {[iπν(t)/cz] (x2 + y2)} is the spatial quadratic phase component of a

Gaussian beam, exp [(~r⊥ · ~r⊥)/w(z)] is the transverse Gaussian amplitude,

w(z) is the radius at which beam amplitude falls off to 1/e its peak value,
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ϕ(z) is the Guoy phase, exp (−αt2) is the temporal Gaussian amplitude en-

velope, where α = 2 ln 2/T 2
P and TP is the FWHM of the Gaussian intensity

in time, and b(t) is a non-negative real-valued window function

b(t) = rect(t/TS), (2.61)

which selects the desired portion of the signal. The variable β is a known

chirp rate constant in Hz·radians/s units such that βt/π � ν0, ν0 is the base

illumination frequency, and TS represents the span of time during the chirp

we can detect (used to generate RCH frequencies) where, typically, TS ≤ TP .

The truncated temporal Gaussian envelope was chosen because of its ability

to suppress unwanted sidelobes resulting from the Fresnel integral.

The window, temporal amplitude envelope, and chirp phase of Eq. (2.59)

Uchirp(t) = b(t) exp
(
−αt2

)
exp (i2πν0t+ iβt2). (2.62)

are of primary concern when describing coherent range imaging. Observe

that Eqs. (2.60) and (2.61) imply an overall illumination bandwidth

Bν =
β

π
TS. (2.63)

To understand the energy distribution of the chirp signal and confirm the

bandwidth of the spectrum, we calculate the energy spectral density (ESD)
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[13, Eq. (3.3-5)] of the selected time period, TS, in the chirp signal Eq. (2.62)

ESD(ν) = |Ft→ν {Uchirp(t)}|2

∝

∣∣∣∣∣sinc (TSν) ∗ exp

[
π2 (ν − ν0)2

Γ

]∣∣∣∣∣
2

,
(2.64)

where Γ = α− iβ.

The process of calculating the ESD of our windowed beam is a 1D time

analogue of the intensity produced by a 2D Fresnel propagation in the Fraun-

hofer regime [22, Eq. (4.3-12)]. The quadratic phase term in Eq. (2.64),

caused by the signal chirp, has the capability to produce significant band-

width broadening in the ESD. Shown in Fig. 2.5 (c) is the ESD of a sample

function with TS = 5 × 10−4 s selected period and β = 50 MHz/s. The

bandwidth of the chirp signal is calculated to be 25 MHz, which is shown in

Fig. 2.5 (c). Alternatively, we can easily tell that the ESD of a non-chirped

signal would have a width equivalent to that of the main lobe of the Fourier

transform of b(t), or roughly 103 Hz.

In practice, illumination bandwidth is finite, not infinite as was assumed

in Eq. (2.58). To limit our bandwidth in this case, we multiply the argument

of the Fourier transform on the left hand side of Eq. (2.58) by

b(ν) = rect[(1/Bν)(ν−ν0−Bν/2)], which is our window function changed to

a function of frequency using Eq. (2.60). The introduction of this window
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b(ν) to Eq. (2.58) gives

F−1
2ν
c
→z′

{
b(ν) exp

[
−i4πνZ ′(~r⊥S)

c

]
US⊥(~r⊥S)

}
= F−1

2ν
c
→z′{b(ν)} ∗F−1

2ν
c
→z′

{
exp

[
−i4πνZ ′(~r⊥S)

c

]
US⊥(~r⊥S)}

}
,

(2.65)

which to within a linear phase shift in z′ is equivalent to

sinc

(
2Bν

c
z′
)
∗ {US⊥(~r⊥S)δ[z′ − Z ′(~r⊥S)]}

= US⊥(~r⊥S) sinc

{
2Bν

c
[z′ − Z ′(~r⊥S)]

}
.

(2.66)

We use the width from the center to the first null of the sinc’s main lobe to

define our range resolution using the Rayleigh two-point criterion

ρz =
c

2Bν

. (2.67)

Note that Eq. (2.65) assumes infinite spatial-frequency bandwidth and

a continuous spatial domain, for the sake of conciseness in our expressions.

Limitations due to finite spatial-frequency bandwidth and discrete spatial

sampling are well known and can be found in [1], or more generally, discretely

sampled Fourier transforms are studied in depth in [23].

Analogous to discrete spatial sampling conducted by detector pixels, the

range component of RCH also relies on discretization of illumination frequen-
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cies. With the chirp laser we have assumed, different frequencies are attained

by sampling the signal at different times by collecting a number of detector

frames during each chirp. Since we trigger the detector to isolate certain

frequencies, it effectively multiplies the spectrum by small rect functions,

1/M times the width of b(t), where M is the number of discrete frequencies

we sample. Again, we can think of calculating the ESD for each sampled

frequency as analogous to conducting a Fresnel propagation [22, pp 132]. It

will be a convolution of the the Fourier transform of the rect function that

samples the pulse in time (a sinc function) and the Fourier transform of the

quadratic chirp term. Whereas earlier when the convolution of the quadratic

chirp term and the sinc resulting from the Fourier transform of b(t) yielded

Fig. 2.5 (c), a very broad ESD as compared to the spectrum of the sinc, the

convolution of the wider sinc resulting from the more narrow frequency sam-

pling rect function will result in an ESD that is many times narrower than

Fig. 2.5 (c). This is because while the convolution of the chirp phase with

the narrower sinc function is analogous to a propagation in the Fraunhofer

regime, thus broadening the distribution, the convolution of the chirp with

the wider sinc resulting from an individual frequency sample is analogous to

a near-field Fresnel where the spectrum is much closer in width to that of

the convolved sinc. This indicates that the spectral purity of each sampled

frequency increases with the total number of sampled frequencies.

Similar to the discrete sampling of spatial coordinates by a detector,

the discrete sampling of the illumination by the comb function produces a
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wrap-around ambiguity in range determination. Multiplication by a comb-

function, X2∆ν/c(2ν/c) =
∑∞

k=−∞ δ(2ν/c − 2k∆ν/c), in the illumination

frequency space becomes a convolution with the Fourier transform of the

sampling comb function (another comb function) in the range-compressed

space

F 2ν
c
→z′

{
exp

[
−i4πνZ ′(~r⊥S)

c

]
X 2∆ν

c

(
2ν

c

)}
∝ δ[z′ − Z ′(~r⊥S)] ∗X c

2∆ν
(z′),

(2.68)

where ∆ν is the frequency sampling interval, i.e., the distance between peaks

in Fig. (2.5) (d). This convolution creates periodic copies of the original

sampled function’s Fourier transform. It is these copies which create the

aforementioned range ambiguity

Ramb =
c

2∆ν
, (2.69)

as it is impossible, generally, to distinguish between the true range to target

given by δ[z′ − Z ′(~r⊥S)], and δ[z′ − Z ′(~r⊥S)− nRamb], where n is an integer.

So in RCH, range can only be measured modulo Ramb.

Range Map Formation

After computing the 3D intensity array, US(~r⊥S, z
′) in Eq. (2.58), one needs

to determine the best way to visualize the 3D data as a 2D figure. We
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Figure 2.6: Sample range map created from RCH fields using Eq. (2.70)
.

estimate the correct location of a scatterer in the target in z′ for all of ~r⊥S

by choosing the location with the largest intensity [24]

R(~r⊥S) = argmax
z′

{
|US(~r⊥S, z

′)|2
}
. (2.70)

An example range map created from simulated RCH fields is shown in Fig.

2.6. The resulting 2D function has spatial information along the transverse

dimensions as with a typical intensity image, but instead of intensity data the

color-coded pixel value, range data is instead the color-coded pixel value. In

practice, discrete arrays often exhibit multiple intensity peaks along z′-axis

of a single cross-range pixel. This is typically due to pixels containing edge

information or objects being semi-transparent. As an example, if an object

in the foreground only takes up part of the target plane cross-sectional area
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of a pixel, some of the photon flux of the illuminator will travel past the part

of the object in the foreground and possibly reflect off an object further away

in range. This leads to two distinct intensity peaks along the z′-axis for a

single cross-range pixel. In this case, choosing the highest intensity discards

the information from either the first or second peak, depending on which

had the highest intensity. Note that there are peak-finding techniques from

traditional radar and SAR which are likely helpful in this situation, but we

have not explored application of these techniques to RCH.
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Chapter 3

Multiplane Turbulence Mitigation Simu-
lations Using Iterative Sharpness Maxi-
mization

In Section 2.1.5 we described how scalar field propagations are altered in the

presence of volumetric turbulence, the parameters used to describe that tur-

bulence, and the methods by which we approximate and simulate its effects.

In Section 2.2.3 we described imaging using range-compressed holography

(RCH) and the process by which 2D range maps are created from the result-

ing 3D intensity images. Here we consider the intersection of these two top-

ics. Since RCH is dependent upon scalar wave propagation, it is vulnerable

to volumetric turbulence and image quality can be heavily degraded by the

resulting aberrations. In this chapter, we describe our novel algorithm we de-

veloped and implemented to mitigate turbulent effects on range-compressed

holograms. We detail the simulations we conducted in order to study the

efficacy of our algorithm and analyze the results of these studies.
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The algorithm we used to mitigate simulated turbulence is known as

iterative sharpness maximization (ISM). It estimates phase planes along the

path of optical propagation so as to maximize image sharpness, i.e., energy

concentration intensity arrays. It has been used in the past to mitigate tur-

bulence in a number of different imaging applications including astronomical

imaging [1], synthetic aperture radar [2], and digital holography [3, 4]. In

past work, we have used ISM to correct aberrations caused by a single plane

of simulated atmospheric turbulence in the pupil [5]. We expand on this work

here by employing multiple phase plane estimates to mitigate the turbulent

effects on RCH fields.

3.1 Algorithm optimization model

The most convenient way to begin thinking about our optimization model

is to consider it as the inverse of the process described in Chapter 2.1.6 and

shown in Fig. 2.3. Since this plane-to-plane propagation through turbulence

screens caused the aberrations in the pupil plane fields (or to the extent that

it is a good approximation of the causal process), it stands to reason that the

inverse process would serve to remove these aberrations. Provided we know

the exact turbulence screens that aberrated the fields measured in the pupil

plane, the majority of turbulent effects on the image can be corrected.

We therefore designed our algorithm to estimate the turbulence screens.
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The algorithm assumed that turbulence-aberrated intensity images of a tar-

get are less sharp than intensity images of targets where the fields have not

propagated through turbulence. Sharpness was quantified using a measure

of energy concentration in the 3D RCH intensity image. Specifically, we used

an exponential sharpness metric [3]

s(Φ̂) = sgn (α− 1)
∑
~r⊥S ,z′

Iαavg(~r⊥S; z; Φ̂), (3.1)

where Iαavg(~r⊥S; z′; Φ̂) is the range-compressed, incoherently averaged, target

intensity which has been propagated through our estimated point-by-point

phase screens, Φ̂, α is the power to which the intensity is taken, and sgn (·) is

the sign function. We maximized this metric with respect to Φ̂ and in doing

so estimated the turbulence screens.

To maximize the sharpness as a function of the estimated phase screens,

we constructed a physical optimization model. The first part of the model

propagated fields in the pupil to a series of successive intermediate planes be-

tween the target and pupil that contained our estimated phase screen trans-

mittance functions. We keep consistent with notation used in Chapter 2,

where we defined propagation from the pupil to the target plane as forward

Fresnel propagation denoted Ps→s+1{·} and propagation from the pupil to

the target plane as "inverse" Fresnel propagation denoted P−1
s+1→s{·}. Each

plane, excluding the target plane but including the pupil, contained an esti-

mated phase screen transmittance function, Ψs(~r⊥s; Φ̂s). Prior to beginning
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each propagation, the field in that plane was multiplied by the co-located

transmittance function. This is expressed as

US(~r⊥S, ν, η;Φ̂) = PS−1→S

{
ΨS−1(~r⊥S−1; Φ̂S−1)

◦PS−2→S−1

{
ΨS−2(~r⊥S−2; Φ̂S−2) . . .

◦P1→2

{
Ψ1(~r⊥1; Φ̂1)

◦P0→1

{
Ψ0(~r⊥0; Φ̂0) ◦ U0(~r⊥0, ν, η)

}}
. . .

}}
(3.2)

where η represents one of H total unique speckle realization. The sym-

bol “ ◦ ” represents a Hadamard product, U0(~r⊥0, ν, η) is again the three-

dimensional array of frequency-diverse pupil-plane fields, and Ψs(~r⊥s; Φ̂s) is

one of S complex-valued phase screen transmittance functions which are

functions dependent on the phase estimate Φ̂s. Employing intuition devel-

oped in [4, 6], we used the method of sieves (MoS) technique [7] to improve

our optimizations. This technique convolved estimated phase screens with a

Gaussian kernel function, creating a phase screen transmittance function

Ψs(~r⊥s, Φ̂s) = exp
{
iΦ̂s(~r⊥s) ∗Gs(~r⊥s;σs)

}
, (3.3)

and can be constructed from elementary operations in Table 7.5 in Appendix

7.1.1. The function Gs(~r⊥s;σs) is the s-th Gaussian kernel with a standard
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deviation σs:

Gs(~r⊥s;σs) =
1

σ2
s2π

exp

(
~r⊥s · ~r⊥s

2σ2
s

)
, (3.4)

and the ∗ symbol denotes convolution. The MoS promoted accumulation

of smooth, lower spatial frequency phase early in the optimization before

allowing the algorithm to fit higher spatial frequency phase information which

is allowed to occur by decreasing the standard deviation of the Gaussian.

In the nominal target plane, the fields were range-compressed, and the

exponential sharpness of the incoherently-averaged, range-compressed inten-

sity is calculated

s(Φ̂) =
sgn (α− 1)

sinitH

∑
~r⊥S ,z′

(∑
η

∣∣∣ŨS(~r⊥S; z′, η; Φ̂)
∣∣∣2)α

(3.5)

where

ŨS(~r⊥S, z, η; Φ̂) = F−1
2ν
c
→z′{US(~r⊥S, ν, η; Φ̂)} (3.6)

is the range-compression operation from Eq. (2.58).

Previous work [4, 8] used multiple speckle realizations, averaging them

together incoherently before computing sharpness. Work in [3] showed that

having too few speckle realizations negatively impacted sharpness algorithm

performance. Though we include the function argument for speckle realiza-

tion in our optimization model for later use in Chapter 4, here we assume

the much more difficult case of image sharpening using a single speckle real-

ization. We expected that the additional information provided by frequency
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diversity and the comparative sparsity of range-compressed intensity images

would more than compensate for the robustness lost by using only a single

speckle realization. The optional sinit divisor

sinit =
∑
~r⊥S ,z′,

(∑
η

∣∣∣F−1
2ν
c
→z′ {US(~r⊥S, ν, η)}

∣∣∣2)α

, (3.7)

is the initial sharpness of the RCH without phase correction. Since there is

no phase correction included, this term is a constant independent of Φ̂ and

behaves as a constant in gradient of this optimization model. The sinit was

used to normalize the initial magnitude of the sharpness metric to unity. We

observed early on that optimizations where sharpness metric values were al-

lowed to become very large often resulted in sub-optimal results, likely due to

assumptions regarding values of parameters within the optimizer. This nor-

malization both eliminated these difficulties and allowed us to more easily

balance the weighting of the sharpness portion of our objective function with

the penalty terms in our objective function, which we will discuss shortly.

Note also that the change in image quality as a function of the sharpness met-

ric value, though generally positively correlated when properly constrained,

is unpredictable and nonlinear.

In our research, we have encountered failure modes which commonly

affect the usefulness of the power law sharpness metric used for turbulence

mitigation. One is an afocal telescoping effect often by opposing quadratic

phase screens which have the effect of shrinking the transverse extent of
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the target energy distribution and erroneously increasing the value of the

sharpness metric [4]. Similarly, we have observed other arrangements of

phase screen estimates which, in aggregate, cause accumulation of energy in

the target plane into smaller regions than is physically realistic, also causing

an undesirable increase in the sharpness metric which does not correlate with

increased image quality. To help address these concerns, two penalty terms

are assessed in addition to the sharpness metric.

The first penalty term in our model penalized an overabundance of defo-

cus phase in any of the phase screens, which often lead to the afocal telescop-

ing and can often also contribute to the second, more general, oversharpening-

based failure mode. Specifically, this metric was designed to penalize the

relative amount of defocus in the overall estimated phase of a given phase

screen, as opposed to the absolute amount of defocus phase, ideally creating

a penalty term whose weighting parameter, λD, would be more independent

of changes in the strength of the turbulence. This penalty term is expressed

pD(Φ̂) =
λD
S

∑
s

[∑
~r⊥s

Φ̂s(~r⊥s) ◦ Z4(~r⊥s)
]2

∑
~r⊥s

Φ̂2
s(~r⊥s) + β

, (3.8)

where Z4(~r⊥s) (using the Zernike numbering scheme in [9]) is the defocus

Zernike term and the sum in the numerator is a projection of the phase onto

Z4, which is normalized by the denominator, and the square is summed over

all the phase screens. This term penalizes an overabundance of defocus phase

in each of the phase screens, which otherwise often lead to the afocal tele-
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scoping and can often also contribute to the second, more general, failure

mode. Specifically, this metric was designed to penalize the relative amount

of defocus in the overall estimated phase, as opposed to the absolute amount

of defocus phase, ideally creating a penalty term whose weighting parameter,

λD , would be more independent of changes in the strength of the turbulence

The constant λD is the weighting coefficient of the penalty term. As shown

in Appendix 7.2, the maximum possible value of this penalty term is λD, en-

abling us to have more precise control on the scale of the pD(Φ̂) term, avoiding

scaling-related algorithm instability resulting from this penalty term. Also

of concern when designing this penalty term was that early in each optimiza-

tion when the total estimated phase in each screen is small, pD(Φ̂) becomes

unstable due the small denominator and causes an undesirable, out-sized ef-

fect on the gradient. A small nonnegative value of the regularization term

β helped to ensure a well-behaved gradient early in the optimization process

when the accrued phase in each screen is small. Note that pD(Φ̂) term is an

alternative to the penalty term described in [4].

We know from the similarity theorem in [10] that a decrease in energy

distribution extent in the spatial domain will cause an increase in the cor-

responding distribution width in the Fourier domain. Our second penalty

term and fifth and final optimization model component therefore penalizes

nonphysical energy distribution outside of the pupil after fields have been

corrected by phase screens, and is similar in effect to the penalty term in [4].

This offers a penalty for any type of phase screen arrangements which would
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demagnify some or all of the target energy distribution without having to

choose explicitly which aberrations to penalize and allowing our optimiza-

tion model to better represent physical reality:

pC(Φ̂) = − λC
εinit

∑
~r⊥0,ν,η

M (~r⊥0) ◦
∣∣∣P−1

S→0

{
US(~r⊥S, ν, η; Φ̂)

}∣∣∣2, (3.9)

where the propagation is without aberrations in intermediate planes and

where λC is another empirically determined weighting coefficient and

εinit =
∑
~r⊥0,ν,η

|U0(~r⊥0, ν, η)|2, (3.10)

is a normalizing parameter, i.e., the sum of all energy at all frequencies in the

aberrated pupil fields. The M (~r⊥0) term is pupil mask whose value was unity

in most of the region outside of the pupil and zero inside the pupil region.

The transition between these regions was a radially symmetric Gaussian roll-

off. This roll-off region served two purposes. First, it ensured that an abrupt

change from unity to zero resulting from a binary mask did not cause wild

swings in the gradient. Second, and most importantly, the roll-off region

allowed our model to account for energy which was captured by the pupil

that, if not for turbulence, would have in fact fallen outside of our pupil [11].

Thus, the best-case corrected system will have a small but non-trivial amount

of energy outside of the pupil region if one were to propagate the corrected

fields back to the pupil plane without passing through phase screens. The
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unity transmittance region allowed for the strong penalization of solutions

that resulted in non-physical amounts of energy outside of the pupil, while

the Gaussian roll-off region allowed solutions which caused some energy to

occupy the area immediately adjacent to the pupil boundary. The extent

of this roll-off region was determined by the change in energy distribution

extent in the pupil plane as discussed in [11, Section 9.4].

Finally, we combine Eqs. (3.5), (3.8), and (3.9) to form the complete

objective function which we maximized as a function of Φ̂

f(Φ̂) = s(Φ̂)− pC(Φ̂)− pD(Φ̂). (3.11)

In addition to this optimization model, we have also included the ana-

lytic gradient of our optimization model as Appendix 7.1.2 and the algorith-

mic differentiation methodology used to derive that gradient as Appendix

7.1.1, which we have referenced above.

3.2 Noiseless Simulations

3.2.1 Simulation setup

The encounter geometry for these simulations is shown in Fig 3.1. Once

our optimization model and its gradient were established, we conducted a
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study of noiseless, aberrated range-compressed fields in order to explore ISM

performance under ideal conditions. The study used ISM to correct various

uniquely aberrated versions of the same target scene at each of five different

D/r0, where D/r0 represents the strength of turbulence in the pupil plane

resulting from all turbulence along the path of propagation. A target was

simulated using a scene containing 3D rendered facet models of four geomet-

ric solids resting on a flat, off-angle plane. This target scene was converted

into two-dimensional range and reflectivity maps, each with 2320 × 2320

pixels. Gaussian illumination beams propagations at 32 frequencies were

simulated from a transmitter in the pupil plane to the target region 8900 m

away. Beams had a base frequency ν0 = 194 THz (1.545µm) and interfre-

quency spacing of ∆ν = 23.9 MHz. After reaching the target region, each

propagated Gaussian beam was then multiplied by the target’s reflectivity

map. These fields then were multiplied by complex circular Gaussian ran-

dom numbers with zero mean and variance σ2 = 0.5 to simulate reflection

from an optically rough surface which would in turn produce a speckled im-

Figure 3.1: Simulation encounter geometry.
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age [3]. Note that for all of the 32 illumination frequencies, only a single

speckle realization is simulated and therefore no speckle averaging occurred

in any of the subsequent optimizations. This is realistic due to the small

fractional bandwidth of ν/ν0 ≈ 0.125 × 10−6. Following the application of

surface roughness, the resulting fields were then multiplied by an array of tar-

get depth-dependent phases containing the relative range information about

the target scene. We then sinc-downsampled our fields to a size of 580× 580

pixels to ensure proper speckle statistics.

The effects of volumetric turbulence on our fields were simulated by

propagating to the pupil from the target plane through simulated turbu-

lence screens, in accordance with the plane-to-plane propagation protocol

described in Section 3.1. After each of the four partial propagations, our

fields were multiplied by a Kolmogorov turbulence screen [12]. Turbulence

screens were located at 2 km, 4 km, and 6 km from the pupil, as well as in

the pupil plane. Each of the four turbulence screens had the same D/r0,i

and yielded D/r0 values shown in Table 3.1. We characterized the relative

severity of anisoplanatism using the ratio

κ =
AFOV
θ0

, (3.12)

where AFOV is the angular field-of-view of the system and θ0 is the isopla-

natic angle [9]. The κ values for each of our turbulence cases are also shown in

Table 3.1. As mentioned in Section 3.1, turbulence causes some photons to

108 
Approved for public release; distribution is unlimited.



CHAPTER 3. MULTIPLANE TURBULENCE MITIGATION SIMULATIONS
USING ITERATIVE SHARPNESS MAXIMIZATION 81

Table 3.1: Simulated Turbulence Characteristics

Case 1 2 3 4 5
D/r0,i 5 10 15 20 25

D/r0 7 14 22 29 36
κ 18 35 54 73 91

be captured by the pupil which would otherwise be outside the spatial band-

width limit of the system and, conversely, also causes some photons which

would have been captured by the pupil to be lost. In order to make sure that

higher spatial frequency information was available to be redirected into the

pupil as the result of turbulence, simulated fields were propagated through

the turbulence screens with a larger physical pupil, 580 pixel diameter, and

target field of view, 580 pixel extent, than we used in our optimizations which

had 384 pixel pupil diameter and target FOV extents, respectively. Sample

sizes, however, were unchanged throughout this process. The pupil had a

pixel pitch of 2.6 mm and a final diameter of 1 m, providing a sampling rate

of 10 samples per speckle area or about 3.16 samples per speckle in each

transverse dimension. The 3D intensity image had a FOV extent of 1.7 m

after the aberration process and a cross-range resolution ρx = ρy = 1.7 cm.

The range ambiguity interval of the compressed image was 6.27 m. Fields

were zero padded in range at Q = 2. Range resolution was ρz = 19.6 cm.

Each of our optimizations was conducted in eight rounds. Unless other-

wise noted, optimization phase screens were placed in locations as shown in

Fig. 3.1. We used the SciPy implementation of the L-BFGS optimizer [13]
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to maximize our objective function Eq. (3.11). Each round of optimization

used the method of sieves [7] (MoS) technique which, during the computation

of the metric, convolved the point-by-point phase estimate with a Gaussian

kernel given by Eq. (3.4). The standard deviations {σs}, and therefore the

size of the Gaussian kernels, varied by phase plane and round of optimiza-

tion. Initial MoS σs values decreased as proximity to the target increased.

The initial MoS kernel σs values decreased with each round of optimization.

Kernel σs values varied each round, as shown in Table 3.2. Empirical metric

parameters were set at α = 0.5, λD = 0.1, and λC = 0.07. Optimizations

used the exact analytic gradients as derived in Appendix 7.1.2. The optimizer

was always was always run for 80 iterations. We did not expect local min-

ima to cause difficulty with this algorithm because the MoS has a smoothing

effect on the search space, likely eliminating some, if not all, local minima.

Best-case stopping points will be discussed in the results section.

Table 3.2: Method of Sieves σs values

Round 1 2 3 4 5 6 7 8
Screen Loc. σ (pixels)

z = 0 m (pupil) 16 14 12 10 8 6 4 2
z = 2000 m 12 11 9 8 6 6 3 2
z = 4000 m 8 7 6 5 5 4 3 2
z = 6000 m 4 4 3 3 3 3 2 2
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3.2.2 Noiseless Simulation Results

After simulations were conducted in accordance with the procedures outlined

in the previous section, we analyzed our results. To quantify our results, we

calculated the root-mean-square-error (RMSE) of the range maps created

from fields corrected by our algorithm with respect to the best-case range

maps. Best-case range maps were constructed by propagating aberrated pupil

fields back through the exact phase screens which were used to aberrate them,

range-compressing those fields, taking their intensity, and then applying Eq.

(2.70) to the 3D intensity array. We report RMSE values in centimeters (cm).

Note also that due to range ambiguity wrap-around, each pixel error included

in our RMSE values was restricted to a magnitude between 0 and K/2, where

K is the total number of range bins in our 3D array. Prior to calculation

of the RMSE, both aberrated and sharpened range maps were registered to

within one-hundredth of a pixel accuracy [14] with respect to the best-case

range maps, and shifted with sub-pixel accuracy into best alignment using

Fourier linear phase translation. Fig.3.2 shows example images of range map

results from our simulation study. Aberrated range maps are shown in the

left-most column, range maps generated from single plane corrected fields are

in the center-left column, range maps generated from fields corrected using

four phase planes are shown in the center-right column, and best-case range

maps are displayed in the right-most column. From Fig. 3.2 we first observe

that range imaging using RCH, as we have executed it in our study, appears
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to be generally somewhat robust to the effects of volumetric turbulence even

without sharpening. We attribute this robustness to both the information

diversity afforded through the use of many wavelengths of illumination and

the localization of perturbations to cross-range dimensions.

As mentioned in Section 3.2.1, our study consisted of optimizations

which estimated four phase screens in order to correct for turbulent effects.

The results in the center-left column of Fig 3.2, however, are taken from

simulations where a single phase plane in the pupil was estimated in order

to mitigate turbulent effects. These single plane results were included specif-

ically to display the added utility in optimizing over multiple phase planes,

which are able to compensate for the effects of anisoplanatism. Multiple

phase plane estimates were also used in [4] for 2D images. However, our

work here estimated phase planes as a means of sharpening sparse 3D inten-

sity data, which is new. Both the single plane and the multiple phase plane

results are assumed to be optimal after the completion of the seventh round of

optimization since they appeared to have the best quality. RMSE range error

values in centimeters are listed under each image. Although both single and

multiple phase screen estimations showed vast improvement over the original

aberrated cases, multiple phase screen cases almost always showed greater

improvement than single screen cases. In all but theD/r0 = 36 case, multiple

phase screen estimations are almost indistinguishable from best-case images,

although RMSE values still show some differences. Note that while RMSE is

useful for trending improvement, it is not a clear indicator of overall perceived
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Figure 3.2: Range maps for various strengths of turbulence using no correc-
tion (left-most column), single phase plane correction (center-left column),
four phase plane correction (center-right column), and best-case exact cor-
rection (right-most column).
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Figure 3.3: Comparison of median RMSE in centimeters. The "Ab." column
details the original aberrated RMSE with no correction.

image quality. Fig. 3.3 shows aggregate results of all twenty optimizations at

each of the five turbulence strengths. Shown are median RMSE value trends

using solid colored lines, while shaded color fills show the 80% confidence

interval for all twenty cases. For all turbulence strengths, the greatest single-

round improvement in RMSE was seen after completing the first round of

optimization. We see that in the weakest turbulence case, D/r0 = 7, best

results were achieved after 3 rounds of optimization. In the D/r0 = 14

case, RMSE values stayed relatively steady and at a minimum from round

3 through round 7. Stronger turbulence cases, D/r0 = 22, 29, and 36, were

clearly best in round 7. Uniformly poor performance was observed during

round 8 of optimization. We attribute this degradation of quality in round

8 to Gaussian kernel decreasing to a size where the presence of high spatial
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frequency phase allowed for over-fitting.

Overall we see that the RMSE range errors observed in the case studies

shown in Fig. 3.2 are consistent with the trends we see in Fig. 3.3. We note

that our case study at D/r0 = 14 in Fig. 3.2 did fall outside of the 80%

confidence interval in Fig. 3.3 at round 7, but is not enough of an outlier to

cause concern. From Fig. 3.3 we can conclude that it might have been better

to choose the our example result for Fig. 3.2 after round three of optimization

for our case study at D/r0 = 7. However, given the high quality result shown

for the multiple phase screen case at D/r0 = 7, it is unlikely that we would

have been able to visually discern a significant difference between the round

seven and the round three corrected range images.

We observe that for all strengths of turbulence, our algorithm is generally

effective in improving the quality of aberrated range images for the problem

geometry and turbulence profiles used. We do note from the D/r0 = 36 case

in Fig. 3.2 that there seemed to some a gradual decrease in the algorithms

ability to enhance images as D/r0 increased (given our current algorithm

configuration). We see that even after the multiple plane correction, signif-

icant visual differences between the multiple plane correction and best-case

correction remain for this large value of D/r0. Examining our log files for

this optimization showed that our objective function values behaved simi-

larly to those in lower turbulence cases, with the net change in objective

function value during the tenth iteration of each round having gradually de-
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creased to a small fraction of the change in objective function during first

iteration. These results only showed evidence of overfitting after the eighth

round of optimization. This indicates that the lack of correction was not

the result of an insufficient number of optimizer iterations. We postulate

that this failure to attain the image quality of the images aberrated by lower

turbulence strengths may have been the result MoS kernel size transitions

being to coarse from round to round. If this is correct, more total rounds of

optimization may be necessary to improve results in higher turbulence cases.

It is also possible that, in spite of our best efforts, our penalty terms may

need to be adjusted for different strengths of turbulence in order to achieve

optimal results. This would also fit our results where the magnitude of the

gradient has become very small prior to reaching the point of optimum image

correction. Moreover, there is no evidence to support the supposition that

sub-optimal algorithm performance in stronger turbulence is caused by only

one of these factors. It may very well be caused by a number of different

contributing factors.
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3.3 Shot-Noise-Limited Simulations

3.3.1 Noise Model

In order to better understand the limitations of the sharpness maximiza-

tion algorithm as a function of signal-to-noise ratio (SNR), we conducted

trials using fields which were aberrated and then were further modified by

the application of shot noise. We first derived a noise model where Poisson

(shot) noise is the dominant SNR concern in our simulations. A focal plane

recording geometry, where the field incident on the detector is the sum of

the local oscillator (i.e., the holographic reference beam) and an aberrated

image field (the Fourier transform of the fields incident on the system’s pupil

[15]), was simulated. In the development of our noise model, we drew heav-

ily from noise model development in [8, 16–18]. The local oscillator term

R(jD, kD), where (jD, kD) are discrete detector plane pixel coordinates, was

assumed to have much greater energy than the image fields, UD(jD, kD), i.e.,

|R(jD, kD)|2 � |UD(jD, kD)|2.

The initial detection noise model was

H(jD, kD) = Poisson
[
|R(jD, kD) + UD(jD, kD)|2

]
+ σrN0,1;r(jD, kD) + U0,σ2

q
(jD, kD),

(3.13)

where H(jD, kD) is the hologram intensity in the detector plane, the operator
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Poisson [·] represents the Poisson noise operator, σr was the RMS read noise,

N0,1;r(jD, kD) is the zero-mean, unity-variance random Gaussian variable as-

sociated with our read noise, and U0,σ2
q
(jD, kD) is a zero-mean, σ2

q -variance

uniformly-distributed random variable representing analog-to-digital quanti-

zation error [19]. A unity quantum efficiency was assumed so that expressions

in photon and photo-electron units were interchangeable. We thus could con-

sider intensity on the detector in units of photo-electrons (e−). The strong

local oscillator model allowed the Poisson portion of the detected intensity

to be split into two additive components, giving [16]

H(jD, kD) = |R(jD, kD) + UD(jD, kD)|2 + h(jD, kD)

+ σrN0,1;r(jD, kD) + U0,σ2
q
(jD, kD)

(3.14)

where 〈H(jD, kD)〉 is mean number of photo-electrons in the detector signal

and h(jD, kD) is an IID zero-mean Gaussian random variable [16, 18]

σ2
s = 〈h2(jD, kD)〉 = |R(jD, kD) + UD(jD, kD)|2, (3.15)

in units of photo-electron. We expand Eq. (3.14)

H(jD, kD) = |R(jD, kD)|2 + |UD(jD, kD)|2

+ 2|R(jD, kD)||UD(jD, kD)|

× cos [φU(jD, kD)− φR(jD, kD)]

+ h(jD, kD) + σrN0,1;r(jD, kD) + U0,σ2
q
(jD, kD),

(3.16)
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where φU(jD, kD), φR(jD, kD) are the phases of the focused pupil fields and

the tilted reference wave, respectively. Additionally, in Eq. (3.16) we as-

sumed the local oscillator R(jD, kD) supplied Σ photon-electrons per detector

pixel, where
√

Σ � 1 and also that the pupil field energy on the detector,

|UD(jD, kD)|2 �
√

Σ, allowing us to assume negligible the |UD(jD, kD)|2 im-

age intensity term and yielding

H(jD, kD) ≈ Σ + 2
√

Σ|UD(jD, kD)| cos [φU(jD, kD)− φR(jD, kD)]

+
√

ΣN0,1;p(jD, kD) + σrN0,1;r(jD, kD)

+ U0,σ2
q
(jD, kD),

(3.17)

where N0,1;p(jD, kD) is zero-mean, unity variance Gaussian random variable

associated with our approximated Poisson noise contribution. We consid-

ered a notional photodetector whose array consisted of 1536× 1536 detector

pixels, 16-bit digitization (65536 gray levels), RMS read-noise σr ≤ 5 e−,

and a well-depth 8 × 104 e−. We assumed our local-oscillator-supplied a

mean of photo-electrons Σ ≈ 6.8 × 104 e−, equivalent to 85% of our de-

tector’s well-depth. So σr �
√

Σ, allowing us to neglect read noise. The

variance of our additive quantization noise model is σ2
q ≈ (1/12)LSB2, where

LSB is the least significant bit of our detector’s binary readout number. In

photo-electron units then, LSB= (5× 104 e−)/(65536 gray levels) ≈ 1.22 e−.

Thus, U0,σ2
q
(jD, kD) was also negligible because because σq �

√
Σ. The final
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expression for our noisy detector plane measurement was

H(jD, kD) ≈ Σ + 2
√

Σ|UD(jD, kD)| cos [φU(jD, kD)− φR(jD, kD)]

+
√

ΣN0,1;p(jD, kD).

(3.18)

To extract the pupil fields, we Fourier transformed the simulated detector

readouts shown in Eq. (3.18) with no additional zero-padding of the array

(Q = 1). We then isolated the desired pupil term, which had a diameter of

384 pixels, by multiplying the transformed field by an offset binary circular

pupil mask. The offset in the pupil data was generated via the tip/tilt term

included in our local oscillator that allowed for the separation of the desired

pupil term from its twin image and from the DC term. Finally, we translated

the pupil field so that the extracted fields were centered at the origin. We

move forward ignoring the noise associated with
√

Σ|U |, using the justifica-

tion above. We can see then that all of the noise in our model originates from

the Poisson noise term on the right-hand side of Eq. (3.13) whose variance

is Σ. The expression for the extracted field was

U0,E(j0, k0) =
√

ΣP (j0, k0)U0(j0, k0) +
√

ΣP (j0, k0)N0,1;C(j0, k0), (3.19)

where (j0, k0) are discrete pupil plane coordinates, P (j0, k0) is a binary cir-

cular pupil mask representing the aperture and N0,1;C(j0, k0) is an IID zero-

mean, unity variance circular complex Gaussian random noise. Hence, the
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SNR in the pupil plane over the area of the pupil is then

SNR2[|U0(j0, k0)|] =
|U0(j0, k0)|2

E[|NC,0,1(j0, k0)|2]
= |U0(j0, k0)|2, (3.20)

the square root of the average number of target photons/photo-electrons

per pixel in the pupil. Note that this is the RMS SNR as opposed to the

power SNR, which is the square of Eq. (3.20) and is equal to |U0(j0, k0)|2,

the number of photons per pixel from the object field in the pupil plane.

Since noise on the detector was uniformly distributed IID Gaussian random

noise, it followed that noise in the Fourier transform plane was also uniformly

distributed and Gaussian. Due to Parseval’s theorem, we are only left with

20% of the initial noise on the detector since we window out the pupil in the

extraction plane which only accounts for roughly 20% of the total area in

the Q = 1 extraction plane. This results in compression gain of about 5× in

our image. Since there are ∼10 pixels per speckle area our simulations, we

report shot noise levels in the more fundamental measure of signal photons

per speckle.

3.3.2 Simulation with noise and Results

For our study of ISM with noise, we randomly selected five out of the twenty

aberrated fields at each of the five turbulence strengths that we simulated in

Section 3.2.1and applied noise to their hologram intensities in the detector
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plane. Simulated shot noise levels were 10−2, 10−1, 1, 10, and 102 target

photons per speckle.

Comparing the RMS error of corrected range images made from noisy

data with respect to the best case noiseless range images would not be the

whole story, since the reconstructed range images will be degraded on ac-

count of both the measurement noise and the residual turbulence due to the

algorithm’s inability to perfectly correct for the turbulence.

We wanted to assess how well the algorithm mitigated aberrations for

fields exposed to the exact same turbulence, but which contained different

levels of shot noise. However, we needed to remove the noise from the compar-

ison to make sure we did not bias our comparison in favor of range images

made from fields with lower shot noise. So we used the estimated phase

screen results from each level of shot noise and applied them to noiseless

fields propagated through identical turbulence.

After noiseless aberrated fields were propagated through our phase screen

estimates to the target plane, they were range-compressed and range maps

were generated. These range maps were registered to a within a hundredth of

a pixel accuracy with their respective best-case range maps. Again, best-case

range maps were created from the exact phase screens used to aberrate the

fields. The center 384×384 pixel square (the image region) of each range map

was cropped out. The RMSE between these cropped regions was calculated.

Our noisy simulation results are shown in Fig. 3.4. Best performance
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in noisy cases was uniformly seen in the same round of optimization as with

their noiseless counterparts shown in Fig. 3.3. We again plotted the median

RMSE versus SNR for each of the five turbulence-strength profiles as the

bold line. The shaded color fills again showed the 80% confidence interval

of the RMSE values. We see that our algorithm is generally unable to make

improvements with a signal strength of 10−2 target photons per speckle; the

results are near identical to the uncorrected case. This meant there were

∼150 target photons per detector integration over the entire array, so it is

not surprising given most pixels had no photons at all. But it does create

a worst-case scenario baseline for comparison purposes. Median RMSE and

confidence intervals at this level of shot noise are very similar to the aberrated

cases with no correction. These estimated phase screens accrued very little

phase at all. The 10−1 target photons per speckle level shows the algorithm

made significant corrections but that the algorithm’s effectiveness was limited

due to SNR. At an average of one target photon per speckle, we see RMSE

values are within ∼5% of noiseless (infinite SNR) RMSE cases shown on the

far right gridline of our plot except in the D/r0 = 36 case. At the 10 and

102 target photon per speckle levels, we have achieved similar RMSE to the

noiseless case for all turbulence strengths.

In summary, we can clearly see that performance improves as a function

of SNR. For the turbulence strengths and noise profiles studied here, between

1 and 10 target photons per speckle appear to be needed in order to achieve

optimal results, and higher numbers of target photons yield little additional
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Figure 3.4: Comparison of median RMSE for shot noise simulations. The
"Ab." label in the far left column represents the original aberrated RMSE
values with infinite SNR and no correction. The right-most horizontal axis
column denoted by "∞" represents the noiseless ISM corrected results from
Section 3.2.

124 
Approved for public release; distribution is unlimited.



CHAPTER 3. MULTIPLANE TURBULENCE MITIGATION SIMULATIONS
USING ITERATIVE SHARPNESS MAXIMIZATION 97

benefit.
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Chapter 4

Experimental Turbulence Mitigation in
Range-compressed Holography

4.1 RCH Lab Apparatus

4.1.1 System Layout

In order to test our ISM turbulence correction algorithm described in Chapter

3 on laboratory data, we constructed a RCH system in which 2 or 3 Lex-

itek psuedo-random turbulence phase plates were placed along the path of

optical propagation between the target and the pupil. A diagram and photo

of our system are shown in Figs. 4.1 and 4.2, respectively. The system’s

flood illumination transmitter (TX) was located 5 inches from the system

pupil in the same transverse plane. This transmitter offset allowed for target

illumination which did not pass through the phase screens on its way to the
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Figure 4.1: Laboratory RCH system diagram

Figure 4.2: Laboratory RCH system setup.
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target. Thus, our target data exhibited the effects of phase aberrations while

avoiding the effects of log-amplitude (scintillation) aberrations, as mentioned

in Section 2.1.5. The transmitter was placed as close as possible to the pupil

without the transmitter beam being clipped by the mounts holding our phase

plates. This, along with a convenient target orientation, helped minimize the

amount of shadowing resulting from our bi-static configuration.

Our target was located 2.64 m from the pupil on a precision rotation

stage. The rotation stage allowed us to capture multiple independent speckle

realizations of target without having to manually re-position the target be-

tween each captured frame of data. After the flood illumination was scattered

by the target, some of the illumination passed through the phase plates and

was collected by our receiver optics.

The Lexitek phase plates were constructed from N-BK7 glass with an

index of refraction equal to 1.5 at a frequency of 1.55 µm and a thickness

of approximately 2 cm. This meant with two phase screens, the effective

propagation distance from pupil to target increased to 2.66 m, and with three

phase screens the effective propagation distance became 2.67 m. Placement of

our phase screens was constrained to the region closer to the pupil in order to

ensure our transmit illumination was not clipped by the phase screen mounts.

The first element in the receiver imaging system was an iris diaphragm

that formed the entrance pupil of our receiver optical system. The iris was

followed by two biconvex relay lenses, 15.5 cm and 61 cm from the iris,
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respectively. Each lens had a focal length of 15 cm and they were positioned

to mimic the effect of a single focusing lens with an 18.2 cm focal length

placed directly behind the pupil iris.

The reference beam transmitter was positioned 75.8 cm behind the iris

and, like the flood illuminator. The reference beam transmitter also pos-

sessed the necessary transverse offset and tip/tilt orientation to separate the

pupil data from its complex conjugate during pupil field extraction, as de-

scribed in Chapter 2 Eqs. (2.33) and (2.37) and shown in Fig. 2.4. The

reference beam and focused pupil fields were interfered on the detector array,

which was placed 94 cm behind the pupil. The reference beam transmitter’s

exact location relative to the detector was calibrated to match the quadratic

wavefront curvature of the focused pupil fields and thereby avoid unwanted

defocusing of our extracted pupil data.

4.1.2 System Hardware

We used a custom Bridger Photonics fiber laser which provided a linearly

frequency modulated (LFM) chirped waveform with a center wavelength,

λ = 1.55µm. This laser supplied the spectral bandwidth necessary to conduct

RCH imaging. The rising sawtooth frequency chirp waveform had a slope,

β/π = 117.89 THz/s and a 500 Hz repetition rate, where β is the chirp

rate [1]. Due to modulation instability at the sawtooth resets, the frequency

modulation was only linear over approximately 80% of the period of the chirp.
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While the laser was continuous-wave (CW), it exhibited a marked decrease

in output power during each linear frequency chirp. By time averaging over

many chirps, the laser power was measured at approximately 150 mW.

The linearly polarized fiber laser output was delivered via single-mode,

polarization-maintaining (PM) fiber, to a fiber splitter. In total, 95% of the

input laser power was directed through PM fiber to our flood illumination

transmitter where a fiber collimator reduced the divergence angle of our

Gaussian beam to roughly 20 mrads.

The remaining 5% of the laser power from the beamsplitter acted as

the reference beam (local oscillator). The reference passed through both

a variable fiber attenuator (in order to set the optical power ratio of the

reference and target return beams) and variable fiber delay line (in order

to match OPL with the received signal). The cleaved end of the reference

beam fiber was placed in the plane of the exit pupil. The reference fiber was

displaced from the optic axis, in order to introduce a tip/tilt aberration which

allowed for the separation of the pupil field distributions in the extraction

plane.

The target object, shown in Fig. 4.3, was composed of 2 metal lapel pins

and a metal badge stacked on top of one another, epoxied to one another,

and then secured to a thick card stock backing. It was painted with matte

white paint to create surfaces which exhibited a close approximation to ideal

Lambertian reflectivity and which possessed surface roughness necessary to
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Figure 4.3: Photo of laboratory target.

generate speckled images. The target was then affixed to a post mounted on

our precision rotation stage. Notice first the most prominent feature in our

target, the letters "US" in the foreground, as they will be very important

target features to look for in our images. Additionally, the sword tip, handle,

and flower petals of the lapel pin behind the "US" insignia are also important

features to note in our target. Finally, on the last item in our target, pay

attention to the general support of the wreath and the gaps between the

wreath and the bayonet where illumination will pass through and scatter

off of the thick card stock backing. This target was constructed because of

the complex features of various scales and orientations and at various ranges

inside of our range ambiguity.

As stated in the last subsection, in order to simulate atmospheric tur-

bulence in our lab data, one or more Lexitek pseudo-random phase plates

were placed between the target and the pupil. These phase plates possessed

random optical-path-length (OPL) across the transverse plane with spatial

134 
Approved for public release; distribution is unlimited.



CHAPTER 4. EXPERIMENTAL TURBULENCE MITIGATION IN
RANGE-COMPRESSED HOLOGRAPHY 107

frequency content that approximated a modified von-Karman spectrum[2].

The strength of each phase plate was characterized by its coherence length

parameter, r0,i, discussed in Chapter 2.

Our detector was a 640×512 pixel InGaAs photodetector with 20 micron

pixel pitch and near unity fill factor. This camera was based on a Xenics

Cheetah camera. With the camera windowed to a 128×128 region of interest

(ROI), the frame read out time was about 42.8 µs. With the integration time

set at 18µs, the measured frame rate was approximately 1/(42.8 µs+18 µs) =

16.45 kHz. By further reducing the effective pixel count or integration time,

higher frame rates would be possible. The custom read-out acquired a burst

sequence of frames at 8 bit resolution and stored them in DRAM, limiting

the burst sequence to about 8000 frames at the 128 × 128 format. As we

will see, this camera was extremely noisy, which was a reasonable trade-off

to achieve our desired frame rate.

4.1.3 Calibration and Testing

The image plane at 2.64 m was located by placing a point object in the target

plane and dithering the axial location of the detector array to minimize the

point distribution’s diameter. The extent of the detector array as well as

the choice of imaging lens focal length determined the 37 mm target FOV

while the 7 mm pupil regulated spatial frequency content of the image and

therefore controlled the transverse resolution of system, ρx = ρy = 578 µm
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in object space, using the Rayleigh criterion.

The unsynchronized camera and laser were observed to operate at sta-

ble repetition rates. We recorded roughly 32.8 frames per chirp period

while the laser was free-running and the camera was recording at 16.45

kHz. The frequency step size between frames was ∆ν ≈ 7.17 GHz. Only

the frames from the linear portion of the chirp were retained for our holo-

grams. The number of recorded frequencies was 26. The range ambigu-

ity and range resolution, from Eqs. (2.69) and (2.67), respectively, were

Ramb = 20.9 mm and ρz = 0.8 mm.

Fig. 4.4 (a) shows an interference intensity recorded during calibra-

tion and testing. The target in this case was a highly reflective featureless

Spectralon panel. The reference field intensity on the detector plane had a

Gaussian spatial profile whose 1/e2 diameter was roughly 36 mm compared

to the 2.56 mm detector plane extent, making for a nearly uniform reference

intensity. Fig. 4.4 (a) displays the large, spatially varying noise profile of our

camera. In order to help mitigate this detector noise, the target signal was

blocked and reference-only data frames were recorded. A mean reference-

only frame was generated, averaging over multiple frames to reduce shot

noise. This mean reference-only frame was then subtracted from the noisy

interference intensity, which is shown in Fig. 4.4 (a), resulting in the inten-

sity pattern shown in 4.4 (b). This process removed much of the spatially

varying camera noise. In the 4.4 (d) the Fourier transform of the interference
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Figure 4.4: (a) The raw hologram intensity distribution on the detector.
(b) Hologram intensity after reference beam subtraction (detector intensity
shown). (c) Discrete Fourier transform of (b); green and red circled regions
used in the calculation of carrier-to-noise ratio. (d) Extracted pupil field
(intensity shown).
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pattern is shown. As expected, the autocorrelation term fell below the noise

floor due to the strong reference beam. The lack of autocorrelation term can

be observed in Fig. 4.4 (c).

The fidelity of this coherent field measurement depended on the signal-

to-noise ratio (SNR). The SNR was experimentally estimated by computing

the mean power within the pupil (shown by the green circle in Fig. 4.4 (c))

and outside the pupil (shown by the red circle 4.4 (c)). Assuming the shot

noise of the reference field intensity was uniformly distributed over Fourier

space, the experimentally determined SNR was

SNR =

1
Ng

∑
i Ig(xi, yi)

1
Nr

∑
j Ir(xj, yj)

− 1, (4.1)

where Ng and Nr are the total number of pixels in the green and red circles

of Fig. 4.4 (c), respectively, and Ig(xi, yi) and Ir(xj, yj) are the intensities of

the pixels in the same green and red circles, respectively. Much of the noise

present throughout pupil extraction plane is suppressed by the applying an

offeset pupil shaped mask to the data in the extraction plane, leaving the

desired pupil field with noise superimposed on it, as seen in Fig. 4.4 (d).

The quality of our images depended on adequate and consistent fringe

contrast in our holograms at each frequency. This required an accurate OPL

match between the reference and transmitter/object legs. This was accom-

plished through variable delay in the reference beam. The fiber delay line

consisted of an input and an output fiber coupling, each with a fiber collima-
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tor, and an optical trombone (a retroreflector on a 1D translation stage). A

change in the relative position of the retroreflector either added or subtracted

OPL to or from our reference beam.

In order to collect sufficient signal photons, the camera had to integrate

over an appreciable period of time. Whereas mismatches in path length in

interferometric systems typically results in lower contrast fringes which are

constant in time, significant path length mismatch in our system resulted in

temporally oscillating intensity measurements. These oscillations occurred as

a result of our laser and the camera not being synchronized, i.e. we collected

approximately 32.8 frames per chirp. This meant that the portion of the

chirp interference integrated by each camera frame changed in time, and thus

different time windows had different intensities. As path mismatch becomes

worse, we have consistently low contrast which oscillates between peaks and

nulls as a function of OPD. If our camera had been synchronized to our

detector, measuring the same portions of each chirp in time, intensities would

have varied frame to frame and been low generally due to poor contrast, but

they would have been temporally consistent from chirp to chirp. It is likely

that there were some temporal oscillations in our path matched data due to

synchronization issues. They were likely just not noticeable/significant.

On a related note, our camera’s finite integration period temporally av-

eraged the interference intensity resulting in a loss of mixing efficiency, i.e. a

loss in fringe contrast. The fiber delay line was adjusted prior to recording
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each set of measurements in order to maximize the experimentally measur-

able signal-to-noise ratio (SNR). The temporal mixing efficiency, ηtemp, is

expressed analytically as [3, 4]

ηtemp =
Tint
Tframe

sinc2

(
2βchirpTint

c
·OPD

)
, (4.2)

where Tint represents the time span of the time window when the detector

is collecting photons, and Tframe is the total time the frame lasts, such that

Tint < Tframe.

Ideally, SNR should be proportional to ηtemp. So as a check on the cal-

ibration of our system, we verified that our scaled SNR values showed good

agreement with the theoretical temporal mixing efficiency. We measured

SNR as a function of range offset for the case Tint = 28 µs, Tframe = 70.8 µs,

and the case Tint = 50 µs, Tframe = 92.8 µs, and plotted these data points

against theoretical values. The SNR values were scaled so that the peak SNR

matched the theoretical mixing efficiency. This comparison of scaled SNR

and ηtemp are shown in Fig. 4.5. Target data was typically captured with the

camera integration time set at 18 µsec, which allowed us to collect a sufficient

number of wavelengths per chirp for a range ambiguity that exceeds the depth

of our target, even at off-angles. The short integration time and high cam-

era read noise resulted in low SNR images. To improve SNR, we coherently

summed complex-valued fields from multiple chirps. This coherent frame

stacking required target return fields which did not change between chirps.
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Figure 4.5: Theoretical temporal mixing efficiency ηtemp plotted against
scaled experimental SNR as function of range offset for (a) Tint = 28 µs,
Tframe = 70.8 µs, and (b) Tint = 50 µs, Tframe = 92.8 µs.

This required a static target, transceiver, propagation medium, and wave-

form between chirps. Typically, these are not advantages that one would

have outside of the laboratory. In our lab system, the target, transceiver,

and propagation medium variations were not significant from chirp to chirp.

Recorded chirp waveforms, however, differed primarily because the camera

was not synchronized to the laser. This chirp-to-chirp difference manifested

itself primarily as a spatially uniform piston phase difference between the

recorded fields. The mean phase difference between chirps was measured

and removed prior to coherent field summation. The measured SNR im-

provement that resulted from coherent frame stacking is evident in Fig. 4.6.

The exact number of stacked frames we used to achieve good SNR was gen-

erally between 10 and 20. Our images were created from pupil plane data in

accordance with the SAS propagation, range-compression, and range image
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Figure 4.6: SNR as a function of number of coherently summed measurement
frames.

generation methods outlined in Chapter 2. The extracted pupil data had

a diameter of 64 pixels and required a total padded array size of 256×256

pixels in order to avoid aliasing the innermost quadratic phase in the first

partial propagation’s quadratic phase, shown in Eq. (2.7). The output fields

of the SAS of the pupil in the target plane were 256×256 pixel arrays. Our

image plane recording geometry dictated that our target FOV was 128 sam-

ples across, so the SAS output images were effectively upsampled by a factor

of two. Accordingly, output images shown in this chapter have been down-

sampled to 128×128 transverse pixels. To enhance range image precision,

range images are produced from fields which were zero padded at Q = 20

along the range dimension prior to range-compression.

All energy-based images that follow in this chapter are normalized to the

brightest pixel in the frame. The energy-based images shown in this chapter
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are RMS amplitudes, ARMS(x, y) =
√∑

i,j |Fij(x, y)|2/(IJ), where i denotes

a discrete frequency of illumination, j denotes a speckle realization, I is the

total number of discrete frequencies, and J is the total number of speckle

realizations.

Note, though, that if one only desires to view the unaberrated intensity

image(s) resulting from pupil data and did not want to propagate from plane-

to-plane, an FFT of the pupil plane data will provide a near ideal intensity

image of the target. From this intensity image a near optimal range image

can be generated. The SAS was used here exclusively as a means to conduct

plane-to-plane propagations between the target and pupil.

Experimental range precision was computed by averaging range profiles

over a relatively flat target area. Fig. 4.7 (b) is the mean range profile

spatially averaged over the red rectangle area in the amplitude and range

images, Figs. 4.7 (a) and (b), respectively. The mean range profile peak

exhibits the expected 0.8 mm full-width-half-maximum (FWHM).

Once the SNR of the coherent field measurements was sufficient, the

three-dimensional data quality was improved by capturing target data with

independent speckle realizations.

To image our target shown in Fig. 4.3, we collected 26 different mea-

surements (counting each coherent sum across numerous chirps as one mea-

surement), one for each frequency. This constituted one speckle realization

of our 3D data. After a speckle realization was collected, the precision stage
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Figure 4.7: (a) Single speckle realization ARMS(x, y) averaged over 26 fre-
quencies and one speckle realization. (b) Range map created from range-
compressed intensity containing 26 frequencies and a single speckle realiza-
tion. (c) Frequency plot of range values over the flat target area within the
red rectangle showing ∼ 0.8 mm FWHM.

rotated the target slightly such that the target reflected speckle field swept

through one full diameter of the entrance pupil, allowing the system to col-

lect an independent speckle realization data cube. This process was repeated,

obtaining ten total independent speckle realizations. For our system param-

eters, we could capture at least ten independent speckle realizations with

single-axis target rotations without significantly altering the range or trans-

verse measurement of the points on the rotating edge of our target FOV. The

improvement in the target intensity data fidelity, and the resulting range im-

age, from the incoherent summation of ten independent speckle realizations

is evident by comparing Fig. 4.7 (a) and (b) with Fig. 4.8 (a) and (b).
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Figure 4.8: (a) Unaberrated ARMS(x, y) averaged over 10 speckle realiza-
tion and 26 discrete frequencies. (b) Unaberrated range map created from
incoherent sum of 10 range-compressed speckle intensities.

4.2 ISM Turbulence Mitigation

In this section we discuss our employment of the ISM algorithm, described

in Section 3.1, to two RCH datasets aberrated using Lexitek phase plates.

The first aberrated dataset had the weaker of the two turbulence profiles. It

used two total phase plates, the first of which had an r0 = 1 mm placed as

close to the pupil plane as possible (∼ 4 cm from the pupil) and a second

with r0 = 2.6 mm placed 0.74 m from the pupil. This resulted in an over-

all turbulence profile with a D/r0 = 7 and a κ = 20, which we consider a

mild to moderate turbulence profile with regard to coherent imaging. For

each speckle realization we collected 12 pupil fields at each of 26 discrete fre-

quencies, coherently summing them together after removing the global piston

phase term from each coherent pupil field. In total, ten speckle realizations

were collected. The aberrated amplitude and range images for this case are
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shown in Figs. 4.9 (a) and 4.10 (a), respectively. We see that the general

outline of the target can still be observed in amplitude, but it is difficult

to discern any additional target details using only this image. Though one

can still recognize the target in the aberrated range image, it is significantly

blurred. Additionally, our κ value indicates that there are likely significant

anisoplanatic effects present in the aberrated images.

The optimization used the objective function defined by Eq. (3.11)

containing an exponential sharpness metric [5] with a coefficient α = 1.1

as discussed in Chapter 3, a defocus penalty term, with λD = 0.1 and a

pupil containment penalty term, also with λC = 0.1. The pupil containment

penalty term also used a mask with diameter of 70 pixels where the mask’s

value was zero, after this 70 pixel diameter, mask values increased gradually

through a soft Gaussian boundary region until reaching a value of unity at a

diameter of approximately 76 pixels.

We estimated phase screens at two locations, one coincident with the

pupil, the approximate location of our first phase screen, and one at 0.74 m,

the location of our second phase screen. We estimated point-by-point phase

screens, using the method of sieves [6] (MoS) (described in Chapter 3) on

the second phase screen located at 0.74 m. The first phase screen was an

unaltered point-by-point estimate during the entire optimization. The MoS

standard deviation for the second screen, whose size regulated the spatial

frequency content of the phase accrued during each round, started at 3 pixels
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Figure 4.9: Turbulence case 1: D/r0 = 7, κ = 20 speckle and frequency
averaged amplitudes where (a) is the aberrated amplitude, (b) is the sharp-
ened amplitude, and (c) is an unaberrated amplitude from a very similar
data collection. Amplitude colormap scaled to brightest pixel.

and decreased each round by 0.5 pixels, resulting in a final standard deviation

of 0.5 pixels during the 6th and final round of optimization.

The first three rounds of optimization consisted of six optimizer itera-

tions each and the latter three rounds each consisted of ten optimizer itera-

tions. The change in the number of iterations was based on our observation

that when MoS kernel sizes were larger, fewer optimizer iterations were nec-

essary to fit the majority of the useful phase to our screen, i.e. phase which

sharpens the image and improves image quality. Fitting this higher spatial

frequency content required more optimizer iterations than were needed when

kernels were comparatively large. Our results for the weak turbulence case

are shown in Figs. 4.9 and 4.10, where images in the former are amplitudes
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Figure 4.10: Turbulence case 1: D/r0 = 7, κ = 20 range images where (a)
is the aberrated amplitude, (b) is the sharpened amplitude, and (c) is an
unaberrated amplitude from a very similar data collection.

downsampled by a factor of 2 incoherently summed over all ten speckle re-

alizations and 26 frequencies in range-compressed space, and the latter are

range images created from incoherently summed intensities whose transverse

information has been downsampled by a factor of two and sinc upsampled

by a factor of 20 in range. Image (a) in both figures is the uncorrected

aberrated image of each respective type, amplitude and range. Image (b) in

both figures has been corrected by our ISM algorithm. Image (c), which was

obtained from unaberrated data, has been included for comparison purposes.

Note that unaberrated images are not the exact same image, so differences

unrelated to turbulence are present between (b) and (c) images. For exam-

ple, Figs. 4.9 (b) and 4.10 (b) have a small but noticeable counterclockwise

rotation relative to their corresponding (c) images. The result of our opti-
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mization in Figs. 4.9 (b) and 4.10 (b) are near ideal. We also observe a small,

yet perceivable demagnification in the sharpened images. In the Fig 4.9, we

observe a consistency between bright pixels in the aberrated, sharpened, and

ideal images. In Fig. 4.10 (b), one small recess near the top left of the U in

US has not been fully recovered.

Our second aberrated dataset, which had the stronger of the two turbu-

lence profiles, had a phase screen with r0 = 0.6 mm placed as close to the

pupil plane as possible, a phase screen with r0 = 1 mm placed 0.23 m from

the pupil, and a third phase screen with r0 = 1 mm placed 0.6 m from the

pupil. This resulted in an overall turbulence profile with a D/r0 = 16 in the

pupil and a κ = 42, which as we will see is a severe turbulence profile with

significant anisoplanatism. This dataset consisted of 18 coherently summed

pupil fields with piston offset removed. We coherently summed a larger num-

ber of pupil fields than the previous case in hopes that a higher SNR would

aid in our efforts to sharpen the aberrated image, given the increased sever-

ity of the turbulence applied. Again 26 discrete frequencies and 10 speckle

realizations were used. The aberrated amplitude and range images for this

case are shown in Figs. 4.11 (a) and 4.12 (a), respectively. We see that

in both amplitude and range the target is unrecognizable, the former being

indistinguishable from a roughly square illumination beam incident on a flat

(but still optically rough) background.

Again, an exponential sharpness metric with a coefficient of α = 1.1 was

149 
Approved for public release; distribution is unlimited.



CHAPTER 4. EXPERIMENTAL TURBULENCE MITIGATION IN
RANGE-COMPRESSED HOLOGRAPHY 122

used, along with a defocus penalty term with coefficient λD = 0.5, and pupil

containment penalty term, with coefficient λC = 0.5. The pupil containment

penalty term also used a mask with diameter of 70 pixels with a Gaussian

boundary thereafter extending to a diameter of approximately 76 pixels.

Estimated screens were located in the pupil plane, at a distance 0.23 m

from the pupil, and at a distance of 0.6 m from the pupil. We executed a total

of 10 rounds of optimization in this case. The number of optimizer iterations

during each round was 5, 6, 10, 10, 10, 10, 20, 50, 50, and 50 iterations,

in that order. All three screens used the MoS. Each screen started with a

MoS kernel standard deviation of 6 pixels, which decreased by just over 0.61

pixels per round of optimization, with all screens having a kernel standard

deviation of 0.5 pixels in the final round of optimization. The optimization

had a total of 6 rounds.

Our ISM results for the severe turbulence case are shown in Figs. 4.9 (b)

and 4.10 (b). Again, image (a) in both figures is the uncorrected aberrated

image of each respective type, amplitude and range and image (c) is an

ideal, unaberrated image included for comparison. Whereas our results in

this case are not pristine corrections of the target, they show very profound

improvement over the aberrated image. There is some minimal warping in the

sharpened images, though it is not severe enough to affect the identification of

the target. We see in the sharpened amplitude image that the support of the

target is largely intact and is very similar to the support of the unaberrated
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Figure 4.11: Turbulence case 2: D/r0 = 16, κ = 42 speckle and frequency
averaged amplitudes where (a) is the aberrated amplitude, (b) is the sharp-
ened amplitude, and (c) is an unaberrated amplitude from a very similar
data collection. Colormap scaled to brightest pixel.

Figure 4.12: Turbulence case 2: D/r0 = 16, κ = 42 range images where (a)
is the aberrated amplitude, (b) is the sharpened amplitude, and (c) is an
unaberrated amplitude from a very similar data set.
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amplitude. We can also make out the "U" in "US," at a level of detail similar

to the unaberrated amplitude.
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Chapter 5

GOI Phase Retrieval

5.1 Introduction

Methods which analyze modal coefficients of fields have been studied using

a variety of different techniques. Historically, much of the modal analysis

work has been associated with sorting fields propagated through multimodal

fibers for use in optical communication systems [1]. Recently however, there

has been a great deal of focus on analyzing propagated freespace fields into

a transverse basis set for use in both satellite and terrestrial-based commu-

nication systems [2–4]. Experimental recovery of messages encoded in the

relative phase between two superpositioned freespace modes has also been

conducted over long propagation distances through atmospheric turbulence

using machine learning techniques [5].

In this chapter, we describe a phase retrieval algorithm for a novel in-
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terferometry system known as a generalized optical interferometer (GOI).

Note that we will use the abbreviation GOI to refer to both the general tech-

nique of generalized optical interferometry as well as the generalized optical

interferometer instrument. It will be clear from context to which we are re-

ferring. A GOI enables one to analyze a monochromatic, scalar optical field

propagated through free-space. In a GOI, GPOs are added in one or more

arms of an interferometer (in our work it is specifically a Mach-Zehnder type

interferometer). Mathematically, GPOs take the form of a transform kernel

associated with the manipulation of a physical property of the optical field.

These properties include phase, polarization, temporal delay, parity (flipping

of the field as in a dove prism), etc. [6]. For cases of concern here, this in-

terferometer contains two generalized phase operators (GPOs), one in either

arm of the interferometer. Each GPO conducts a fractional Fourier trans-

form (fFT) with respect a different transverse dimensions of the input field.

The optical elements that conduct the fFTs balance the beam parameters

so that the transverse scaling of the system’s output field distributions are

unchanged from the input fields [7]. Moreover, this is accomplished without

physically repositioning any optical elements in the system. By considering

the field transiting through the interferometer as a weighted superposition of

Hermite Gaussian (HG) modes, the system is able to recover the amplitudes

of the generally complex-valued weighting coefficients [6, 8].
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HG modes are defined at the beam waist in two dimensions as

HGmn(x, y) = Hm

(√
2x

w0

)
Hn

(√
2y

w0

)
exp

[
− (x2 + y2)

w2
0

]
, (5.1)

where Hm and Hn are Hermite polynomials of order m and n, respecively,

and w0 is the radius of the beam waist. They are well known solutions to the

paraxial wave equation [9]. Throughout this paper HG mode superpositions

will be refererred to by order. The `th order of HG modes is inclusive of all

modes such that the indices m and n in a given mode, HGmn, satisfy the

condition m+ n ≤ `.

In Section 5.2 we describe in detail the theoretical underpinnings of

GOI, briefly describe the system configuration which we use in our work, and

briefly describe the recovery of these amplitudes. An additional approach to

amplitude recovery can also be found in [10]. After the amplitude of each

coefficient is recovered, we wish to recover the phase in order to complete

the characterization of the field. Here, we developed and implemented two

phase retrieval algorithms which accomplish this.

Phase retrieval techniques have been used in a variety of applications

including wave-front sensing [11], metrology [12], crystallography [13], mi-

croscopy [14], astronomical speckle imaging [15, 16], x-ray diffraction imaging

[17], and decomposition of TEM modes in multimodal fibers [18]. Sections

5.3 and 5.4 describe our novel nonlinear optimization-based phase retrieval

algorithms, the first using measurements from an array detector and the
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second using measurements from a bucket detector. We share results from

monte carlo studies of these algorithms and provide best practices for their

use.

5.2 Generalized Optical Interferometry Theory

Consider a GPO whose only effect on a field is to add a known phase to that

field. Each term in the linear combination that describes the original field is a

weighted member of the previously mentioned HG basis set. When HGmodes

are operated on by a GPO, the GPO produces phase-only eigenvalues. We

have included a detailed proof of the eigenfunction relationship HG modes

share with the fractional Fourier transform as Appendix 7.3. So, given a

transverse scalar field

U(x, y) =
∑
mn

cmnHGmn(x, y), (5.2)

a GPO operator, Λα, is defined

Λα {U(x, y)} =
∑
mn

cmne
imπα

2 HGmn(x, y), (5.3)

where α is the transform parameter of the GPO.

The fFT is a linear cannonical transform whose effect on the phase-space

distribution of a transverse field distribution is a rotation of the rectangular
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region whose area is the SBWP of a single dimension [19, 20]. A π/2 radian

rotation of this rectangular region in phase space corresponds to a Fourier

transform and a −π/2 radian rotation corresponds to an inverse Fourier

transform. Operations which cause phase space rotations that are not dis-

crete multiples of π/2 radians are "fractions" of a full Fourier transform and

are thus referred to as fractional Fourier transforms. The order of an fFT, α,

corresponds to the amount of rotation in phase space imparted by the trans-

form. An fFT can also be thought of as a propagator similar to a Fresnel

transform in that it can be used to conduct a propagation from the exit pupil

of the system to any other plane with the addition of an additional quadratic

phase term [21]. In this paper, if θ is the phase space rotation in radians,

the fFT will be represented as Fα{·}, where α = 2θ/π. So the first Fourier

transform plane is at α = 1, which corresponds to a π/2 rotation in phase

space. The fFT is a periodic operator in the sense that the operation per-

formed at α is the same as the operation performed at α+ 4p where p is any

integer. The symbols F{·} and F−1{·}, without an α value, will represent

a standard Fourier transform and inverse Fourier transform, respectively.

5.2.1 Generalized Mach-Zehnder Interferometry

In this work, we used a Mach-Zehnder interferometer (MZI) configuration

GOI, as shown in Fig. 5.1. Each arm of the interferometer is understood

to contain a GPO as described by Eq. (5.3), which performs an equivalent
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Figure 5.1: Mach-Zehnder GOI configuration used for phase retrieval simula-
tions. The array detector placed at the upper port of the figure also functions
as a bucket detector for GOI amplitude recovery by integrating over all pixels.

function to a cylindrical lens with an arbitrary radius of curvature in one

transverse dimension. Each GPO performs fFTs with respect to a different

transverse dimension. Our first phase retrieval algorithm relies on explic-

itly measured spatial information and therefore requires an array detector,

whereas our second algorithm has been designed for use with data collected

using a bucket detector.

Using Eq. (5.3), the field exiting the upper output port of the interfer-
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ometer is expressed

Uout(x, y;α, β) =
1√
2

[Λα + Λβ]Uin(x, y) =
1√
2

[Λα + Λβ]
∑
m,n

cmnHGmn(x, y)

=
1√
2

∑
m,n

cmn

[
e
imπα

2 HGmn(x, y) + e
inπβ

2 HGmn(x, y)
]

=
1√
2

∑
m,n

cmnHGmn(x, y)
(
e
imπα

2 + e
inπβ

2

)
,

(5.4)

where Λα and Λβ are the GPOs in the upper and lower arms of the interfer-

ometer, respectively.

The intensity at the output port of the MZI in Fig. 5.1 detector is

Iout(x, y;α, β) =

∣∣∣∣∣ 1√
2

∑
mn

cmnHGmn(x, y)
(
e
imπα

2 + e
inπβ

2

)∣∣∣∣∣
2

=
1

2

{∑
m,n

|cmn|2HG2
mn(x, y)

[
2 + 2 cos

(
mπα

2
− nπβ

2

)]

+

[ ∑
m,n;m′,n′

m,n6=m′,n′

cmnc
∗
m′n′HGmn(x, y)HGm′n′(x, y)

×
(
e
imπα

2 + e
inπβ

2

)(
e−

im′πα
2 + e−

in′πβ
2

)]}
.

(5.5)

During the amplitude recovery process, the entire transverse spatial extent

of the detector is integrated over. If we are using an array detector, we do

this integration in post-processing. If we are using a bucket detector, this
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integration is done implicitly.

Using the orthogonality relation of HG modes,

∫∫ ∞
∞

dxdyHGmn(x, y)HGm′n′(x, y) = S(m,n)δmm′δnn′ , (5.6)

where δ is the Kroenecker delta function, the signal measured after spatial

integration is

Pout(α, β) =

∫∫
dxdyIout(x, y;α, β)

=
∑
m,n

|cmn|2
[
1 + cos

(
mπα

2
− nπβ

2

)]
S(m,n).

(5.7)

For convenience, we assume HGmode energy is unit normalized, i.e. S(m,n) =

1. The bias term can be removed from the interferogram. Since Pout(0, 0) =

2
∑

mn |cmn|2, its measurement can be used in a well calibrated system to

remove the bias term as follows:

P ′out(α, β) = Pout(α, β)−
∑
mn

|cmn|2

=
∑
mn

|cmn|2 cos

(
mπα

2
− nπβ

2

)
.

(5.8)

For simplicity, assume that we are able to sample Pout(α, β) finely enough in

α and β to approximate a continuous function space. The continuous Fourier
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transform of P ′out(α, β) is

P̃ ′out
(
µ, η
)

= F{P ′out(α, β)}{α,β}→{µ,η}

=
∑
m,n

|cmn|2F
{

cos

(
mπα

2
− nπβ

2

)}
=
∑
m,n

|cmn|2
[
δ

(
µ− m

4
, η +

n

4

)
+ δ

(
µ+

m

4
, η − n

4

)]
.

(5.9)

So the recovery of the amplitude coefficients is conceptually just a matter of

measuring the intensities of the δ-function peaks in P̃ ′out(µ, η). The δ-function

offset as a factor of 1/4 is the result of the frequency modulation terms απ/2

and βπ/2 in the cosine function. If one so desires, a simple change of variables

will make this offset into an integer value. The δ-function would instead peak

at integer values if these terms were instead 2απ and 2βπ. The P ′out(α, β)

interferogram from a sample 2nd order HG superposition is shown in Fig. 5.2

and its Fourier transform, P̃ ′out
(
µ, η
)
, is shown in Fig. 5.3. The values of the

nonzero pixels in Fig. 5.3 are indicative of the relative contribution of each

HG mode to the overall energy of the sample field.
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Figure 5.2: P ′out(α, β) measurement for a sample field created from a 2nd

order HG superposition.

Figure 5.3: The upper right quadrant of P̃ ′out(µ, η), the Fourier transform of
the interferogram in Fig. 5.2. Non-zero pixel values represent the relative
strength of a particular HG mode’s amplitudes in a sample field, save for
bright pixel in the lower left corner representing twice the relative contribu-
tion of the HG00 mode’s amplitude.
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5.3 Phase Retrieval in a Generalized
Mach-Zehnder Interferometer Using an
Array Detector

5.3.1 Algorithm Design

To fully characterize a monochromatic scalar field described as a linear super-

position of HG modes, both the phase and amplitude of the complex-valued

weighting coefficients, cmn = |cmn|eiφmn , must be determined. We assume

the amplitude information of the field, |~c| = {cmn}, has been successfully

recovered using the method in Section 5.2. Now ~φ must be recovered. Here,

we implemented an algorithm which recovers ~φ using array detection.

Given the intensity distribution in Eq. (5.5) and previously recovered

amplitude coefficients, we seek to solve the inverse problem of retrieving the

phases, ~φ = {φmn}, associated with each amplitude coefficient. This can

be cast as a nonlinear optimization problem where the error metric to be

minimized is

E =
∑
x,y

∣∣∣∣∣Iest
(
x, y;α, β; ~̂φ

)
− Id

(
x, y;α, β

)∣∣∣∣∣
2

, (5.10)

where Id(x, y) is the measured detector intensity in the upper output of the
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interferometer and

Iest

(
x, y;α, β; ~̂φ

)
=

1

2

∣∣∣∣∣∑
mn

|cmn|HGmn(x, y)eiφ̂mn
(
e
imπα

2 + e
inπβ

2

)∣∣∣∣∣
2

, (5.11)

is an estimated intensity distribution computed from ~̂φ, an estimate of ~φ.

Note that, based on the intensity model in Eq. (5.11), there exist values

where certain modes will be suppressed from the output intensity of the

interferometer. Any time that exp (imπα/2) + exp (inπβ/2) = 0, the mode

HGmn will not contribute to the output intensity. For example, in the case

of an inverted image transform, α = β = 2, any modes where m+n is an odd

whole number will result in an intensity plane that contains no contribution

from those modes. Hence, fFT order pairs resulting in suppressed modes

do not aid in retrieving the phases of those suppressed modes because we

cannot modulate the output intensity of the instrument by altering those

phases. Fortunately, values of α and β can be chosen that do not suppress

modes. Moreover, multiple measured intensity planes, each with a different

α, β pair, can be used to add robustness to our phase retrieval and aid in

overcoming mode suppression.

To retrieve ~φ we employed the LBFGS [22] algorithm from scipy.optimize

package [23]. The LBFGS was supplied an initial phase estimate, ~̂φinit, drawn

from a uniform random distribution and was allowed to iterate until the

error metric value reached a minimum. The LBFGS is a gradient-based
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optimizer. So in order to help the optimizer converge to a minima much

faster, we supplied an analytic gradient of our physical model, as a funciton

of ~̂φ. It is worth noting that the ability to express propagation as a trivially

parallelizable series of scalar multiplications, instead of a traditional DFT

(discrete Fourier transform)-based transform (or FFT), means that it has a

very low computational cost when compared to most other phase retrieval

algorithms that rely on DFTs (or FFTs) [24].

The optimization process described above does not always yield the de-

sired phase values. There are two common failure modes for this process.

The first failure mode occurs when the gradient information guides the opti-

mizer into a local minimum of the error metric. The second common failure

mode occurs when using a single output intensity plane, due to what we call

a "twin image" problem [25, 26], although the term "twin image" is a mis-

nomer in this work. This failure case is the result of a degeneracy resulting

from the modulus operation in Eq. (5.10). One of these global minimums

will yield the correct relative phases. The other global minimum, generally,

will not.

Twin image convergence failures are eliminated by adding information

diversity to the optimization in the form of measurements of one or more ad-

ditional planes of intensities, each with a different α, β pair. This is akin to

information-diverse phase retrieval techniques such as defocus-diverse phase

retrieval [11] and transverse-translation-diverse phase retrieval [17]. The er-
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ror metric function for one or more output intensity planes is

E =
∑
{α,β}

Eαβ =
∑
{α,β}

∑
x,y

∣∣∣Iest(x, y;α, β; ~̂φ
)
− Id(x, y;α, β)

∣∣∣2 . (5.12)

So in multiple-plane cases, the "twin-image" is eliminated because the de-

generate global minimum of the error metric with respect to ~φ at one α, β

intensity plane will not be a global minimum for intensity planes with dif-

ferent α, β pairs. Furthermore, adding a greater diversity of information to

a nonlinear optimization-based phase retrieval algorithm has been shown to

increase the rate of successful retrieval in terms of convergence to the global

minimum and resistance to measurement noise. Simulation experiments were

conducted to test the performance of this approach. Simulations were always

conducted over many different fields (i.e. the fields were generated using dif-

ferent random |~c| and ~φ values) to ensure that success or failure was agnostic

of the particular field being retrieved. Intensitites were generated as super-

positions of unit-normalized HG modes, centered at the beam waist (HG

modes are real valued at the beam waist). Modes were well oversampled in

256 × 256 pixel arrays with pixel spacings δx, δy = w0/32, where w0 is the

radius of the beam at the waist. Coefficient amplitudes were assumed to be

known in advance of initiating the phase retrieval process, since they would

be available from the analysis of P̃ ′out(µ, η) data. Unless otherwise stated

explicitly, all simulations were conducted for superpositions of 2nd order (3

modes) through 6th order (21 modes) HG modes. The condition for success
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in our trials was an error of less than error< 0.07 waves RMS of retrieved

relative phase values with respect to the true phase values. As in wave-front

sensing phase retrieval, only the relative phases can be recovered. So, the

recovered phase values likely will differ from the actual phase values by a

global piston phase.

5.3.2 Single-Plane Phase Retrieval

The first test of the phase retrieval algorithm was to see if it was possible

to retrieve phase from only a single spatially distributed intensity in the

α = β = 0 plane. This plane is representative of the intensity of the field in

the interferometer without any operation being executed on the field. Twenty

random fields were generated for each order `. Fifty retrieval attempts were

made for each of those twenty fields (a total of one thousand retrieval at-

tempts at each order). All 50 retrieval attemps for a single field used a

different random starting guess, ~̂φinit. Note that the random starting points

were seeded and each one of the twenty fields used the same 50 random start-

ing points. As seen in Table 5.1, a greater number of modes corresponded

to a smaller fraction of successes, as one would expect. The algorithm con-

verged to “twin-image" solutions about as often as it converged to the true

solution. All non-“twin-image" failures resulted from optimizer stagnation at

a local minima.

Next, we studied phase retrievals were whose intensity distributions re-
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Table 5.1: Success of single α = β = 0 plane GI phase retrieval

HG order # Modes % Success % Twin Image HG order # Modes % Success % Twin Image

` = 2 3 46.7 44.6 ` = 7 28 18.1 19.1

` = 3 6 37.1 34.5 ` = 8 36 14.3 14.5

` = 4 10 31.4 27.4 ` = 9 45 10.9 10.4

` = 5 15 23.1 22.8 ` = 10 55 10.6 10.0

` = 6 21 22.6 24.4 ` = 11 66 9.8 10.0

sulted from a variety of α, β pairs assigned to the GPOs. Parameters α and

β were sampled in twenty-five equally spaced increments from 0 to 2. Ten

random fields were generated for each order ` and α, β pair. Retrieval of each

field was attempted with up to five random ~̂φinit starting guesses. With the

exception of planes where retrieval failed due to the aforementioned mode

suppression, no trend is seen that indicates a certain range of α, β values

will yield a significantly greater number of successes than any other. Success

rates for single-plane phase retrieval where α and β are varied do not change

demonstrably from success rates where α = β = 0. Single-plane success rates

are shown in the bottom curve of Fig. 5.4, which treats the results of each

~̂φinit separately. Given the twin image problem, around 50% is generally the

highest success rate possible for the single-plane phase retrieval with a single

~̂φinit. However, when we allowed up to five different ~̂φinit guesses for a single-

plane phase retrieval, the success rates increased to 94% for 2nd order, 83%

for 3rd order, 78% for 4th order, and 77% for 5th and 6th orders.
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Figure 5.4: Chart compares percent of successful retrievals for single-plane,
two-plane, two-plane targeted, three-plane, and three-plane targeted phase
retrieval techniques using only a single set of ~̂φinit starting values.

5.3.3 Two-Plane Phase Retrieval

In the next round of simulations, additional planes of intensity information

were added in order to further constrain the nonlinear optimization, which

includes the ability to overcome the twin image problem. These monte carlo

studies were conducted to determine if any specific combinations of α, β

intensity planes yielded significantly improved success rates for retrieval. For

simplicity, we held α = β, in order to keep the overall size of the monte carlo

study manageable.

Runs were conducted for HG superpositions consisting of modes for or-
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Figure 5.5: Heatmap of successful retrieval rates as a function of α, β values
for two-plane GI phase retrieval with 10 modes (4th order).

ders from ` = 2 through ` = 6. Forty evenly-spaced fFT order values (α, β)

with values between [0, 2] were used. Phase retrievals were conducted us-

ing twenty different GOI input fields for every pair of α, β values. Retrieval

of each of these twenty fields was allowed up to fifty different ~̂φinit starting

guesses. A heat map of the success rates for order ` = 4 (10 superposi-

tioned modes) is shown in Fig. 5.5. A preference is seen for α, β pairs

where one value is between 0.1 and 0.3 and the other value is between 1.4

and 1.6. Similar preferred plane combinations were seen for all HG orders

tested. We suspect this preference might be due to planes in these regions

having the greatest amount of unique information to constrain the problem

and containing the fewest suppressed modes. Having located preferential

α, β ranges, we conducted tests to determine the performance of the algo-

rithm for these preferred values. Monte carlo simulations were run for α, β
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planes in the targeted regions for 50 additional randomly generated fields.

In each optimization, α, β values were chosen randomly from the ranges in

column 4 of Table 5.2. Using a single random ~̂φinit, the percentage of phase

vectors retrieved successfully is shown in column 3 of Table 5.2. With two

well-chosen planes, a similar fraction of successful retrievals were obtained

for field superpositions of up to 21 modes (6th order).

Table 5.2: Success rates of two intensity plane GOI phase retrieval

HG order # Modes % Success (α, β) Ranges

` = 2 3 81 (0.1, 0.3), (1.4, 1.6)

` = 3 6 80 (0.1, 0.3), (1.2, 1.4)

` = 4 10 70 (0.1, 0.3), (1.2, 1.4)

` = 5 15 72 (0.1, 0.3), (1.4, 1.6)

` = 6 21 65 (0.1, 0.3), (1.2, 1.4)

5.3.4 Three-Plane Phase Retrieval

With the increased success of the two-plane phase retrievals, a third plane

was added in an attempt to further improve rate of successful retrieval with a

single ~̂φinit starting guess. To simulate this, the range of the fFT orders was

limited to [0.2−0.4] for the first plane and [1.4−1.6] for the second plane, each

in range sampled in 4 equally-spaced increments. α, β pair selections for the

third intensity plane were allowed to vary from order α = β = 0 to α = β = 2,
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Figure 5.6: Heatmaps detail success of three-plane phase retrieval of a 6th

order superposition with 22 equally-spaced values of α in the third plane.

in 22 equally spaced intervals. The percentage of successful retrievals with

respect to the α-value of three intensity planes used is shown in Fig. 5.6. The

best success rates are seen for a third fFT plane whose α, β values are in the

range [0.72, 1.04]. This range is roughly equidistant from the regions of the

first two planes. This would be in line with our earlier speculation that the

preferred planes will occur in the regions that provide the optimizer with the

most unique information. The rate of successful retrieval with intensity plane

combinations in this range is consistently greater than 90% for a single ~̂φinit

starting point. No obvious trend was observed, with respect to amplitude and

phase values, that would imply that certain values of coefficient phases and

amplitudes, or combinations thereof, caused more failures or successes than

172 
Approved for public release; distribution is unlimited.



CHAPTER 5. GOI PHASE RETRIEVAL 145

any others. In Fig. 5.4 there are a few cases where a greater number of modes

experienced a greater percentage of overall successes. This is most likely due

to the randomness of the fields generated and the modest number of fields

and ~̂φinit values that were used. Given a large enough sample of randomly

generated fields and random starting points, we expect the percentage of

success will be monotonically decreasing as the number of modes present in

the superposition increases. It is worth noting that the process for choosing

the α, β range for the three plane superposition may not be ideal. The best

way to determine the most ideal three plane combination would be to conduct

a monte carlo simulation allowing the α, β pairs for all three planes to vary

simultaneously. We chose not to use this process because of the time and

resources needed to conduct a monte carlo simulation in this way and because

the method we did use to determine preferential α, β values was more than

sufficient to create a robust algorithm.

5.3.5 Final Array Detector Algorithm Performance and
Discussion

With success rates consistently greater than 85% achieved in the three-plane

retrievals for a single ~̂φinit, the algorithm was deemed effective and final

performance runs with targeted plane selections were conducted. For each set

of simulated data, the algorithm was permitted a maximum of five attempts,

each with a different ~̂φinit, to retrieve the correct phase. Phase retrieval
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Figure 5.7: Percent successful retrievals when three targeted α planes and
five random starting sets of phase values are permitted (noiseless).

was attempted using 100 random fields composed of 2nd through 6th order

superpositions. The results of this final algorithm, with a breakdown of

success by starting-guess number, are shown in Fig. 5.7. It shows that if the

algorithm fails with the first random starting guess, the second starting guess

was successful the majority of the time. Almost 100% of cases succeeded

within the five permitted attempts. For real world applications where one

cannot check the algorithm against the known phase values, the error metric

was more than sufficient to identify successes and failures for the fields we

retrieved. The smallest gap between the error metric of failed retrievals and

the error metric of successful retrievals occurred in 4th order phase retrievals.

In this noise-free group, the average error metric of a failed retrieval was

greater than 10−5 while average error metric value for successful retrievals
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Figure 5.8: Variability of success with Poisson noise.

was less than 10−20.

Additionally, runs were conducted where reference intensities reflected

Poisson noise statistics. These reference intensities varied in mean total num-

ber of photons, enabling us to test the robustness of the algorithm and es-

tablish SNR requirements for good performance. Again, up to five attempts

to retrieve the phase vector were permitted. Each attempted retrieval used

three targeted intensity planes from the preferential α-value regions estab-

lished in earlier simulations. The mean number of total photons per intensity

over the 256×256 pixel array varied from 102 to 107. The exponent determin-

ing the average number of total photons varied in 21 uniformly spaced values

from 2 to 7. Fig. 5.8 shows the results: Nearly all phases were correctly
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retrieved at 107 average total photons per intensity plane and greater than

90% of all phases were retrieved at 106 average total photons per intensity,

for up to 6th order superpositions. As expected, superpositions composed

of fewer modes are generally more successful, especially for low SNRs. For

example, at 103 average total photons per intensity plane, 90% of 2nd order

superposition phases were recovered successfully, whereas no 6th order super-

position phases were recovered successfully. When the average total photons

increased to 104, 25% of phases were recovered at 6th order and 96% all 2nd

order superposition phases were recovered successfully.

5.4 Phase Retrieval in a Generalized
Mach-Zehnder Interferometer Using a
Single-Pixel Detector

Here, we again consider a Mach-Zehnder-type GOI which contains two gen-

eralized phase operators (GPOs), one in either arm as shown in Fig. 5.1. We

build on our array-based phase retrieval work in [27] by designing and imple-

menting a phase retrieval algorithm in simulation which only requires bucket

detection. In Section 5.5, we describe our novel nonlinear optimization-based

phase retrieval algorithm which retrieves modal coefficient phases of an input

field using measurements from a bucket detector. In Section 5.6 we describe

monte carlo studies conducted using this algorithm, then share the results of

these studies, providing our analysis.
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5.5 Algorithm Design and Performance Assess-
ment

5.5.1 Nonlinear Optimization

Again, the intensity at the upper output port of the MZI containing the

detector in Fig. 5.1 is [27]

Iout(x, y;α, β) =
∑
m,n

|cmn|2HG2
mn(x, y)

[
1 + cos

(
mπα

2
− nπβ

2

)]
+

1

2

∑
m,n;m′,n′

m,n6=m′,n′

|cmn||c∗m′n′|ei(φmn−φm′n′ )

×HGmn(x, y)HGm′n′(x, y)

×
(
e
imπα

2 + e
inπβ

2

)(
e−

im′πα
2 + e−

in′πβ
2

)
,

(5.13)

where α and β are the orders of fFT encoded on the upper and lower GPOs,

respectively. During the amplitude recovery process, the entire transverse

extent of the output field is assumed to be integrated spatially. Ideally this

measurement is conducted using a bucket detector because of its desirable

hardware characteristics, as compared to an array detector.

In our array detector-based phase retrieval, we used a gradient-based

nonlinear optimization to minimize a sum-of-squared-error objective function

to estimate the desired modal piston phases [27]. This approach proved very

effective and was robust to shot noise. Thus, we sought to develop a similar
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phase retrieval technique that could be implemented using a bucket detector.

Observe that the second summation term on the right-hand side of Eq.

(5.13) is suppressed due to HG mode orthogonality if all of the output field

energy is measured by the bucket detector (i.e. integrated over all x and

y). Since this second term is the only one which is dependent on the modal

phases we would thus be unable to construct a useful error metric for phase

retrieval.

To remedy this, we proposed a technique where we only measure only a

portion of intensity distribution with each detector integration. This allowed

the phase-dependent cross terms in Eq. (5.13) to be nonzero, making it

possible to modulate a bucket detector signal as a function of coefficient

phase. This strategy could be implemented in a laboratory apparatus by

simply placing a binary mask in front the detector, allowing only a limited

portion of the energy in the detector plane to be collected by the bucket. The

only firm restriction on the detector plane region you select with the mask

is that the change in the number of detected photons α, β and ~φ.

In our simulations, we chose to integrate only over the first quadrant

of the plane of the detector. This meant we assumed a binary mask where

all photons in the second, third, and fourth quadrants of the output port’s

energy distribution were not detected. The expression for the total measured
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energy for a given α, β with phase-independent terms removed is

P (α, β) =
∑

m,n;m′,n′

m,n6=m′,n′

|cmn||cm′n′ |eiφmne−iφm′n′

×
(
e
imπα

2 + e
inπβ

2

)(
e
−im′πα

2 + e
−in′πβ

2

)
Smn;m′n′ ,

(5.14)

where Smn;m′n′ =
∑

x,y A(x, y)HGmn(x, y)HGm′n′(x, y), where A(x, y) is the

binary mask covering all but the first quadrant of the energy distribution,

and HG modes are assumed to be energy normalized.

We chose our error metric to be

E =
∑
α,β

[
Pest

(
α, β; ~̂φ

)
− Pref(α, β)

]2

, (5.15)

where ~̂φ is a vector containing φ̂mn for allm,n in order `. The error metric was

minimized with respect to ~̂φ. Pref(α, β) represents the total energy measured

by the bucket detector in the first quadrant and Pest(α, β; ~̂φ) is the estimate

of the measured energy as a function of our estimated phases, ~̂φ. We used

the SciPy implementation of the L-BFGS gradient-based optimizer [23] with

an analytic gradient to conduct minimization.
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5.6 Monte Carlo Simulations

5.6.1 Monte Carlo Study Design

After developing our phase retrieval algorithm, we conducted a monte carlo

study to characterize its performance. One hundred randomized fields were

simulated for each combination of parameters in the study. The study’s

parameter space consisted of three key elements, varied α, β parameters for

each measurement, a varied number of measurements, and varied Poisson

noise statistics. Each simulation attempted phase retrieval of 100 randomized

fields with a unique combination of elements from these three categories.

We simulated fields using 2nd through 6th order HG mode superpositions.

This meant our study included fields made from 3, 6, 10, 15, or 21 total

HG modes. All HG modes were unit-normalized and centered at the beam

waist. Simulated modes were well-sampled for their order in 32 × 32 pixel

arrays whose transverse sample spacing was w0/10, where w0 is the radius

of the beam at the waist. In our study, 100 random amplitude and phase

vectors, |~c| and ~φ were created for every order of HG mode superposition we

wished to simulate. In total, our study included 500 unique fields, before the

application of shot noise statistics.

We ran our study with various numbers of α and β values determined

using the following selection methodology. A given phase retrieval used the
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set of α values {(4/R)(r−1)} where r is a natural number in the range [1, R]

and R is the total number of α values. Similarly, β values were the set of

values {(4/S)(s− 1)} where s is a natural number in the range [1, S] and S

was the total number of β values. Simulations were conducted for all combi-

nations of the natural numbers R and S in the range [1, 12], subject to the

caveats that S ≤ R (to avoid redundancy in simulations) and R/S ≥ 2/3 (to

ensure comparable amounts of information diversity were delivered by each

GPO). The αβ-pairs used in a given phase retrieval were therefore all the

combinations of the α and β values in the current set totaling R · S pairs

and therefore an R × S Pref(α, β) array. Values of α or β less than zero or

greater than or equal to four would have been redundant (assuming an ideal

system) due to the periodic nature of the fFT [21]. This is why our α and

β values are all in the range [0, 4). In all, simulations were conducted with

between 1 and 144 measurements per phase retrieval. Though due to multi-

plicity of R · S values, simulations were not conducted in one measurement

increments. Given our constraints, total measurements followed the pattern

(1, 4, 6, 9, 12, 16, ..., 110, 121, 132, 144), all the products of the natural num-

bers between 1 and 12. One can deduce from the parameter selection criteria

that Pref(α, β) arrays were not generally square since the number of α and β

values were not generally equal.

So to give a couple short examples of sets of α values, in the R = 1 case,

the only α value was 0. For the R = 3 case, α values were 0, 4/3, 8/3. For the

R = 8 case, the α values were 0, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2. With respect to
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β selections, in the R = 3 case, the only S values which fit our constraints are

S = 2 or S = 3. Therefore the β values were either identical to the α values

or the β values were 0 and 2, yielding either 6 total αβ-pairs (measurements)

in the R = 3, S = 2 case, or 9 total αβ-pairs in the (R = 3, S = 3) case. In

the R = 8 case, S would have been 6, 7, or , 8, and produced β values in

accordance with the previously defined relation.

To explore the fundamental noise limitations of our algorithm, phase re-

trieval for each intensity distribution was conducted using shot noise profiles

of 103, 104, 105, 106 and 107 mean signal photons per detector measurement

(mspm). To be clear, this is the mean number of photons in the detector

plane, not the mean number of detected photons. For comparison purposes,

simulations were also conducted with no shot noise.

Coefficient amplitudes, |~c|, were assumed to be recovered using the tech-

nique outlined in [27], and therefore considered known prior to conducting

phase retrieval. In order to avoid failure through convergence to local min-

ima, each phase retrieval attempt was permitted up to 5 attempts to retrieve

the correct relative phases. Each of these attempts used a different random

starting guess for ~̂φ. A phase retrieval was considered successful if it achieved

a relative error of 0.07 waves RMS between the estimated phases, ~̂φ and the

actual simulated phases, ~φ.
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Figure 5.9: Logistic regressions of data points showing different shot noise
profiles as a function of measurements per unknown phase coefficient (mpu).

5.6.2 Monte Carlo Results and Discussion

In Fig. 5.9 are logistic curves showing success as a function of measurements

per unknown (mpu). Logistic regression was used to visualize data to enhance

the interpretability of trends, as the placing all data points in the same figure

resulted in tightly clustered and often overlapping data points which made

it difficult to interpret. Though we show two of these plots individually

in what follows. Each data point in our study represented the percentage

of successful phase retrievals, out of 100, for a given combination of noise

profile, collection of αβ-pairs (i.e. GPO settings for the interferometer), and

order of superposition.
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Figure 5.10: 107 mspm series success scatter plot as a function of mpu.

Figure 5.11: 104 mspm series success scatter plot as a function of mpu.
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Figure 5.12: Scatter plot success rate data points of of all mspm values for
each superposition order as a function of ppu phase coefficient per measure-
ment.
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Most importantly in Fig. 5.9 we observe that the phase retrieval algo-

rithm is consistently capable of retrieving the φmn phase coefficients, given a

sufficient number of photons and measurements. We also observe a not un-

expected relationship between mspm and mpu. In short, more mspm meant

fewer mpu were necessary. In order to get consistently successful results

(≥ 95% average success) in the noise-free (Ideal) case, as well as the 107

mpsm and 106 mpsm cases, we needed three to four mpu. This is somewhat

reminiscent of the requirement in phase-shifting interferometers where three

or four measurements are required to calculate a closed-form solution for the

phase. We’ve added an additional vertical line to the chart at mpu= 3 for

reference. The 105 mspm case achieved consistent success between 8-10 mpu,

the 104 mspm case with between 18-20 mpu, and finally the 103 mspm with

between 33-35 mpu.

Notice that the linear regression for 105, 104, and 103 mspm fits do

intercept y-axis at 0% at mpu= 0. Consider as examples Figs. 5.10 and

5.11, plots of the 107 and 104 mspm series, respectively. Data points in the

104 mspm series are much more dispersed over the mpu axis than in the

107 series. We attribute this to the increasing negative effects which Poisson

statistics had on the fidelity of our simulated measurements as signal photons

became more scarce.

Additionally, these two figures display an interesting trend, though it

is more apparent in the 104 mspm case. There is a discernible difference in
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success for orders which have very similar mpu. Since superposition order

is essentially a way of describing the total number of modes present in a

superposition, we interpret this as mpu not the only contributing factor to

the relative difficulty of our optimizations.

We thought perhaps this was due to a significant difference in the number

of photons per unknown per measurement (ppu), which would indicate a

higher likelihood of Poisson statistics deteriorating the necessary data. Said

differently, the more modes that are present in a single measurement, the

larger the effect each Poisson fluctuation will cause in the optimization.

In Fig. 5.12 we plot all of the data points as a function of log(ppu).

Again, the plot markers represent the order of superposition, i.e. they are

representative of how many phases we are trying to retrieve. All levels of

shot noise can be observed in this graphic as well as order. Levels of shot

noise increase from the left-most set of 2nd through 6th order data points

at 103 mspm to right-most set of 2nd through 6th order data points at 107

mspm.

We see that the 104 mspm series, the 2nd set of 2nd through 6th order

data point if moving left to right, has broad success marker spreads for the

fourth, fifth, and sixth orders, than in any other mspm series, save for per-

haps the 103 mspm series. We interpret these broad data point spreads as

indicators that these optimization orders were on the cusp between having

enough and too little information for the algorithm to succeed, largely as a
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result of ppu. Clearly, in the 107 mspm series, we have very tight clustering

of almost all data markers for all superposition orders, indicating that the

optimizer had ample information to use in estimating coefficient phases and

small Poisson fluctuations caused little adverse effect.

We would like to point out also in Fig. 5.12 that in spite of having more

ppu, superpositions with more modes did not perform as well as superposi-

tions with fewer modes. As an example, consider the 6th order cases in the

107 mspm series. All orders of superposition in the 106 mspm series, save

for the 6th order, clearly displayed better performance. We cite this as a

clear example of the curse of dimensionality [28], referring to the phenomena

where a profound increase in calculation/optimization difficulty occurs as the

dimensionality of a problem increases.

It’s clear that if one has more than 106 mspm, and more than, say, five

mpu, GOI phase retrievals will likely be consistently successful. It’s also clear

that success at mspm levels at or below 105 will be lower unless additional

mpu are collected by the instrument to offset this poor signal. However, as

stated, there does appear to be some minimum ppu threshold below which

the chances of successful phase retrieval quickly diminish, regardless of how

many measurements were collected. Finally, as is typical in problems with in-

creasing dimensionality, the more phases we try to retrieve, the more difficult

the process will become.
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Chapter 6

Conclusions and Future Work

6.1 Key Contributions

6.1.1

In Chapter 2 we laid out the necessary conceptual framework to understand

the material presented in Chapters 3 and 4. Additionally, we presented our

K-formalism which we use to approach sampling and propagation using the

SAS. This formalism eased the burden of understanding sampling require-

ments for plane-to-plane propagation and permits the user a the ability to

conduct discrete Fresnel transforms using fewer discrete parameters than

would otherwise required. We also presented a novel DOF-based approach

used to determine the limits of separability between range-compression inte-

gration and spatial phase propagation integrals when conducting RCH imag-
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ing.

6.1.2 Multiplane Turbulence Mitigation Simulations Us-
ing Iterative Sharpness Maximization

In Chapter 3 we developed and tested our novel ISM algorithm used to

mitigate the effects of turbulence in RCH imaging. Our monte carlo study

showed success for noiseless cases, greatly improving range image fidelity for

turbulence strengths up to and including D/r0 = 36 and κ = 128 using four

estimated phase screens and only a single speckle realization of simulated

data. Additionally, we were able to test the robustness of our ISM turbu-

lence mitigation in the presence of shot noise, characterizing the drop-off

in algorithm performance as a function mtpps. We showed that our algo-

rithm was unable to improve images through phase plane estimation with

10−2 mtpps (understandably since this is very little target signal at all). We

showed that the algorithm’s turbulence mitigation performance increased for

the 10−1 mtpps case and continued increasing until achieving near-parity

with the noiseless case at 102 mtpps level.
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6.1.3 Experimental Turbulence Mitigation in Range-
compressed Holography

In Chapter 4, we constructed a RCH laboratory system using a CW-LFM

laser and a high speed IR detector. After calibrating this system to ensure

that our datasets attained the best possible SNR for the available compo-

nents and system design, we used our lab system to generate high quality 2D

intensity and 3D range images. After producing these high quality results,

we introduced Lexitek phase plates to the path of optical propagation, pro-

ducing good approximations to turbulence aberrated fields with significant

anisoplanatism. We presented two case studies showing that our ISM algo-

rithm was able to correct the effects of phase turbulence. For a mild to mod-

erate turbulence profile created using two phase plates to aberrate our fields,

our algorithm achieved results which were nearly indistinguishable from cases

with no phase turbulence effects. In the second case using three phase plates

to aberrate our fields, our algorithm was able to profoundly improve the im-

ages aberrated by severe turbulence, taking an amplitude image which was

nearly indistinguishable from an empty frame and making an image which

was clearly very similar to the unaberrated amplitude. The corrected range

image in the severe case achieved a mildly aberrated but clearly recognizable

image of our target, having started from an unrecognizable series of colored

blobs.
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6.1.4 GOI Phase Retrieval

In our GOI phase retrieval work we have shown that, using a modest number

of random starting guesses for phase values, both array detector data and

bucket detector data can reliably be used to retrieve the modal coefficient

phases of fields which are composed of superposed HG modes.

Our array detector phase retrieval algorithm showed robustness to shot

noise, achieving near 100% success for fields composed of up to 21 super-

posed HG modes with as few as 105 mean signal photons per array detector

measurement.

Our single pixel phase retrieval work showed most importantly that,

in theory, a GOI can generate enough information diversity to successfully

retrieve phases using only a single pixel of measurement for each unique GPO

setting. Additionally, we showed that the ability to retrieve modal phases

in the single pixel case is dependent on both the number of measurements

per unknown (mpu) and photons per unknown (ppu). We also showed that,

regardless of how many mpu or ppu are available, it gradually becomes more

difficult to retrieve phases using our single pixel approach as the number of

parameters we wish to estimate increases.
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6.2 Future Work

This thesis has shown work that ISM algorithms can be used to mitigate

the effects of atmospheric turbulence, both in simulation and experiment,

and that phase retrieval can be conducted on data from generalized optical

interferometry systems to enable complete characterization of the measured

coherent scalar field.

That said, our work has also presented us with a myriad of ideas regard-

ing work which could and should be conducted to improve and/or better

utilize these techniques/systems.

6.2.1 Improving the ISM Algorithm

The ISM algorithm has been shown to be a useful method of mitigating the

effects of phase turbulence in our work. However, application of this algo-

rithm has always been ad hoc, tuning empirical parameters, e.g. sharpness

coefficient, penalty term weighting coefficients, method of sieves kernel stan-

dard deviation size, etc., to suit the exact situation the imaging system is

presented with.

The end state goal for this algorithm is to enable turbulence mitiga-

tion in long range RCH imaging systems, and to ideally execute this task

in real time. In order to accomplish this, work must be completed which
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makes the algorithm adaptable to changing targets and conditions. Future

work should, in part, focus on discovering which empirical parameters work

best in a given situation and, ideally, how these parameter should change

with variables such as target contrast, turbulence severity, distance to tar-

get, target reflectivity, etc. Additionally, future development should also

focus on making this algorithm a continuously updating "online" algorithm

which continually improves turbulence estimates. This work should consider

adapting other control theory-based online turbulence mitigation algorithms

which have been developed for applications such as adaptive optics correc-

tion of turbulent effects in terrestrial-based astronomical telescopes. These

algorithms have proven very effective at improving system resolution.

Finally, we believe that while it would add hardware complexity to the

imaging system, the addition of a structured illuminator, i.e. an illuminator

which creates some known pattern with predictable null amplitude regions on

the target, should be explored. We believe this would be extremely helpful

in creating additional optimization constraints which would aid not only in

estimating phase aberrations, but could also prove helpful in the mitigation

of log-amplitude aberrations, which we did not study in this work.

[Write about exploring degenerate phase solutions using a data consis-

tency metric on simulated turbulence to force the creation of degenerate

phase solutions and to study these solutions]
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6.2.2 Improving the RCH Laboratory Apparatus

Though our lab apparatus ultimately proved adequate to show experimental

proof that our algorithm could indeed mitigate turbulent effects in real world

image data, improvements to the current system should be considered prior to

attempting any additional turbulence mitigation studies. In order to be able

to sample our chirp spectrum, we needed to use a camera with an extremely

high frame rate. This resulted in a trade-off where we accepted both a

smaller number of effective pixels in our detector array and considerable

amount of spatially varying detector noise. Our decision to bin pixels to boost

effective frame rate resulted in our data being critically sampled. Whereas

this is adequate for imaging under ideal conditions, it offered very little data

redundancy to help overcome turbulent effects and noise when conducting

turbulence mitigation in post-processing.

Though we implemented both coherent and incoherent summing tech-

niques to make our data more robust, these methods do reach a point of

diminishing returns and are not a perfect substitute for per-frame SNR. Pur-

chasing a camera with a 16.45 KHz frame rate (using no pixel binning) with

decreased noise would likely prove very helpful, though we understand this

is a non-trivial detector engineering challenge.

Aside from the camera improvements, augmenting laser power by using

our laser as the seed for a master oscillator power amplifier setup would also

be useful. Our need to engage in coherent summing of frames to increase
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SNR would become less important if each chirp-sampled frame had a higher

SNR. Moreover, this increased laser power would permit us to use a more

distant target and attain more independent speckle realizations per radian

of stage rotation.

6.2.3 Future Work with the GOI

Our GOI phase retrieval work has generated some interesting ideas. As very

fundamental research, it is ripe with opportunity to adapt the system and

techniques to address various challenges. Foremost in our mind, we consider

the ability to use mode suppression, caused by the summing of GPO terms

in the output field, as a mechanism to greatly expedite modal coefficient

analysis by creating a small cascade of GOI interferometers, with each pre-

vious interferometer’s output creating the input for two new interferometers.

We think about this as an optical processing approach to dimensionality

reduction in our optimization problem, with the output field of each inter-

ferometer deeper in the cascade consisting of fewer HG modes than were

input into the last interferometer. We propose to use the coefficients of this

expedited modal analysis as a feature set for target recognition applications,

avoiding the commonly used and computationally costly practice of princi-

pal component analysis of isolating data into orthogonal basis vectors and

coefficients.

There is a great deal of fundamental work which would need to be real-
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ized prior to achieving this goal. First, finding the most economical/efficient

arrangement of GPO settings in the interferometer cascade is essential to

the process. Additionally, a preliminary study of the performance of HG

mode coefficients as features in a target recognition problem needs to be

conducted. This study should compare the relative worth of the HG modes

as a feature set in terms of its per photon information as well as how HG

modes/coefficients compare to other more traditional feature sets in terms of

required computation and processing time.

We believe that a technique like the one described here could have sig-

nificant SNR advantages over more traditional methods of feature extraction

from images because of the presence of phase information, the ability to boost

signal through heterodyne gain, and the ability to use only bucket detectors.
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Chapter 7

Appendices

7.1 Analytical Gradient

7.1.1 Algorithmic Differentiation

The derivation and use of analytic gradients was necessary for timely ex-

ecution of our nonlinear optimizations. We eased the burden of this often

cumbersome and error-prone task of deriving an analytic gradient by employ-

ing a technique called algorithmic differentiation [1]. If what follows does not

immediately strike you as compact and non-burdensome, we would encourage

the reader to consider the alternative, explicit method of gradient derivation

for a very similar objective function contained in [2].

Algorithmic differentiation allows one to construct an analytic gradient

by using the elementary operations of the optimization model to derive their

202 
Approved for public release; distribution is unlimited.



CHAPTER 7. APPENDICES 175

corresponding elementary derivative pieces. After finding these derivatives,

the full analytic gradient is typically straight-forward to assemble through

algebraic substitution (as we will show).

This technique, at its core, is a user-friendly way of implementing the

chain rule and combining different contributions to a gradient. We include

five tables in this appendix, each corresponding to one of the five optimiza-

tion model components described in Section 3.1. Table 7.1 shows the nec-

essary optimization model elementary operations (left columns) needed for

Eq. (3.5), Table 7.2 the components necessary for Eq. (3.9), Table 7.3 the

components for Eq. (3.8), Table 7.4 the components for Eq. (3.2), and fi-

nally Table 7.5 the components for Eq. (3.3). The overbar notation signifies

a partial derivative of the final output quantity of the physical model with

respect to the symbol under the bar. For example in Table 7.1

∂s

∂ŨS
= ŨS. (7.1)

Note that a single elementary operation in the optimization model can result

in more than one gradient operation, as seen in Table 7.3 for the qs elemen-

tary operation. When this occurs, we have placed a dash in the optimization

model column below the original optimization model component in order to

provide two cells in the right column for the necessary gradient components.

To promote compact notation, only terms on the left side of the equation

in the table columns are accompanied by their function arguments. Opti-
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Table 7.1: Sharpness component algorithmic differentiation components
needed for Eqs. (3.5).

Model component ∇ component Ref [1] Eqs.

s = sgn (α−1)
sinit

∑
~r⊥S ,z

E E = sgn (α−1)
sinit

s (47),(51)

E(~r⊥S , z
′) = Iαavg Iavg(~r⊥S , z

′) = αIα−1avg E (52)

Iavg(~r⊥S , z
′) = (1/η)

∑η
η I I(~r⊥S , z

′) = (1/η)Iavg (47),(51)

I(~r⊥S , z
′, η) = |ŨS |2 ŨS(~r⊥S , z

′, η) = 2ŨS ◦ I (53)

ŨS(~r⊥S , z
′, η) = F2ν/c→z {US} US(~r⊥S , ν, η) = F−1z′→2ν/c

{
ŨS

}
(80)

mization model components represented by an upper-case letter (Greek or

Roman) are assumed to be computationally represented by arrays with two

or more dimensions, while lower-case letters represent scalar or values which

are a one dimensional array with length S.

A single explicit expression for the gradient of a quantity of interest

can be constructed by starting in the top row of the gradient column of a

table and plugging each respective overbar expression (or expression from the

optimization model in some cases) into the partial derivative component(s)

which is(are) dependent upon that overbar expression in the rows beneath it.

Continue substitution until only a single expression for the gradient remains.
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Table 7.2: Pupil penalty term algorithmic differentiation components neces-
sary for Eq. (3.9).

Model component ∇ component Ref [1] Eqs.

pC = (λc/εinit)j j = (λc/εinit)pC (51)

j =
∑
~r⊥0,ν,η

K K = j (47)

K(~r⊥0, ν, η) = M (~r⊥0) ◦ L L(~r⊥0) = M (~r⊥0) ◦K (49)

L(~r⊥0, ν, η) = |Ŭ0|2 Ŭ0(~r⊥0, ν, η) = 2Ŭ0 ◦ L (53)

Ŭ0(~r⊥0, ν, η) = PS→0{US} US(~r⊥S , ν, η) = P−1
0→S{Ŭ0} (49),(80),(81)

Table 7.3: Defocus penalty term algorithmic differentiation components
needed for Eq. (3.8).

Model component ∇ component Ref [1] Eqs.

pD = (λD/S)
∑
s qs qs = (λD/S)pD (47),(51)

qs = rsss rs = ssqs (49)

- ss = rsqs (49)

ss = t−1s ts = −t−2s ss (52)

rs = χ2
s χs = 2χsrs (52)

χs =
∑
~r⊥s

Vs Vs = χs (47)

Vs(~r⊥s) = Φ̂s ◦ Z4 Φ̂s,1(~r⊥s) = Vs ◦ Z4 (49)

ts =
∑
~r⊥s

Fs Fs = ts (47)

Fs(~r⊥s) = Φ̂2
s + β Φ̂s,2(~r⊥s) = 2Φ̂sFs (47),(52)
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Table 7.4: Propagation algorithmic differentiation components necessary for
Eq. (3.2).

Model component ∇ component Ref [1] Eqs.

Us(~r⊥sν, η) = Ps−1→s−1{U ′s−1} U ′s−1(~r⊥s−1, ν, η) = P−1
s→s−1{Us} (49),(80),(81)

U ′s−1(~r⊥s−1ν, η) = Us−1 ◦Ψs−1 Ψs−1(~r⊥s−1, ν, η) = U∗s−1 ◦ U ′s−1 (49)

- Us−1(~r⊥s−1, ν, η) = Ψ∗s−1 ◦ U ′s−1 (49)

Table 7.5: Phase screen algorithmic differentiation components needed for
(3.3).

Model component ∇ component Ref [1] Eqs.

Ψs(~r⊥s) = exp (iAs) As(~r⊥s) =
∑
ν,η Im{Ψ∗s ◦Ψs} (57)

As(~r⊥s) = Φ̂s ∗Gs Φ̂s(~r⊥s) = As ∗Gs (49),(80),(81)

7.1.2 Explicit Gradient Expressions

As an example, consider our Table 7.3, the most complicated of our derivative

tables. To construct the explicit gradient
[
Φ̂s

]
pD
, we first substitute qs into

rs

rs =
λD
S
ss =

λD
S
t−1
s =

λD
S

(∑
~r⊥s

Us(~r⊥s)

)−1

=
λD
S

(∑
~r⊥s

Φ̂2
s(~r⊥s) + β

)−1

,

(7.2)
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and also into ss

ss =
λD
S
rs =

λD
S
χ2
s =

λD
S

(∑
~r⊥s

Vs(~r⊥s)

)2

=
λD
S

(∑
~r⊥s

Φ̂s(~r⊥s) ◦ Z4(~r⊥s)

)2

,

(7.3)

since pD = ∂pD/∂pD = 1. Next, we insert Eq. (7.2) into χs

χs =
2λD
S

(∑
~r⊥s

Φ̂s(~r⊥s) ◦ Z4(~r⊥s)

)(∑
~r⊥s

Φ̂2
s(~r⊥s) + β

)−1

, (7.4)

and then insert Eq. (7.3) into ts

ts = −λD
S

(∑
~r⊥s

Φ̂2
s(~r⊥s) + β

)−2(∑
~r⊥s

Φ̂s(~r⊥s) ◦ Z4(~r⊥s)

)2

. (7.5)

We observe that χs = Vs and thus we insert χs directly into Φs

Φ̂s,1(~r⊥s) =
2λD
S

Z4(~r⊥s)

(∑
~r⊥s

Φ̂s(~r⊥s) ◦ Z4(~r⊥s)

)(∑
~r⊥s

Φ̂2
s(~r⊥s) + β

)−1

.

(7.6)

Similarly, since ts = Us we insert Eq. (7.5) into Φ̂s(~r⊥s)

Φ̂s,2(~r⊥s) =
−2λD
S

Φs(~r⊥s)

(∑
~r⊥s

Φ̂2
s(~r⊥s) + β

)−2(∑
~r⊥s

Φ̂s(~r⊥s) ◦ Z4(~r⊥s)

)2

.

(7.7)
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The overall gradient of pD with respect to Φ̂s(~r⊥s) is

[
Φ̂s(~r⊥s)

]
pD

= Φ̂s,1(~r⊥s) + Φ̂s,2(~r⊥s) =
2λD
S

(
χs
t2s

)[
tsZ4(~r⊥s)− χsΦ̂s(~r⊥s)

]
,

(7.8)

where χs =
∑

~r⊥s
Φ̂s(~r⊥s) ◦ Z4(~r⊥s) and ts =

∑
~r⊥s

Φ̂2
s(~r⊥s) + β.

Using the same substitution method from Tables 7.1, 7.4, and 7.5 the

sharpness portion of our gradient is expressed

[
Φ̂s(~r⊥s)

]
s

=
2α sgn (α− 1)

Hsinit

[∑
ν,η

Im

{
Ψ∗s(~r⊥s) ◦ U∗s (~r⊥s, ν, η)

◦P−1
s+1→s

{
Ψ∗s+1(~r⊥s+1) ◦P−1

s+2→s+1

{
Ψ∗s+2(~r⊥s+2) ◦ . . .

◦P−1
S→S−1

{
Fz′→2ν/c

{
ŨS(~r⊥s, z

′, η) ◦ Iα−1
avg (~r⊥s, z

′)

}}
. . .

}}}]
.

(7.9)

Finally, the pupil penalty term contribution to the gradient is expressed

[
Φ̂s(~r⊥s)

]
pC

=
2λC
εinit

[∑
ν,η

Im

{
Ψ∗s(~r⊥s) ◦ U∗s (~r⊥s, ν, η)

◦P−1
s+1→s

{
Ψ∗s+1(~r⊥s+1) ◦P−1

s+2→s+1

{
Ψ∗s+2(~r⊥s+2) ◦ . . .

◦P−1
S→S−1

{
P0→S

{
Ŭ0(~r⊥0, ν, η) ◦M (~r⊥0)

}}}
. . .

}}}]
,

(7.10)
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using elementary operations in Tables 7.2, 7.4, and 7.5. The gradient of our

overall objective function Eq. (3.11) is then

Φ̂s(~r⊥s) =

[
Φ̂s(~r⊥s)

]
s

−
[
Φ̂s(~r⊥s)

]
pC

−
[
Φ̂s(~r⊥s)

]
pD

. (7.11)

7.2 Penalty Term Bounds

As mentioned in Section 3.1, we paid special attention to the design of our

penalty terms, Eqs. (3.8) and (3.9), in order to maintain control of the scale

of our overall objective function, Eq. (3.11), during optimization. To do this,

we designed our penalty terms such that they were bounded between zero

and their scaling coefficients, λD and λC .

The maximum value of Eq. (3.9) clearly only occurs when the combined

energy of all fields ends up in the region of the mask function M (~r⊥0) with

unity transmittance. In this special case

pC =
λc
εinit

∑
~r⊥0,ν

|U0(~r⊥0, ν)|2. (7.12)

We observe that the summation above is equivalent to Eq. (3.10), εinit. Thus,

the maximum possible value of pC = λc.

To determine the maximum value of Eq. (3.8), we consider it’s gradient

expression, Eq. (7.8). The only non-trivial case where this expression equals
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zero is when

Z4ts − Φ̂sχs = 0. (7.13)

To accomplish this, we must assume the extreme case where all of the phase

in our estimated screens is defocus, Z4 and can thus be expressed Φ̂s =

αsZ4, where αs is a real-valued, scalar weighting coefficient. We assume our

stabilizing constant β = 0 for the purposes of finding the maximum value.

In this case

Z4ts − Φ̂sχs = Z4

∑
~r⊥s

(αsZ4)2 − αsZ4

∑
~r⊥s

αsZ
2
4

= α2
sZ4

(∑
~r⊥s

Z2
4 −

∑
~r⊥s

Z2
4

)

= 0.

(7.14)

Plugging this condition for the maximum into Eq. (3.8) and assuming or-

thonormalized Zernikes

pD =
λD
S

∑
s

(∑
~r⊥s

αsZ4

)2∑
~r⊥s

α2
sZ

2
4

=
λD
S

∑
s

(∑
~r⊥s

Z2
4

)2∑
~r⊥s

Z2
4

= λD.

(7.15)
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7.3 The Fractional Fourier Transform Operator
Eigenvalue Relationship

Here, we explicitly derive the eigenvalue relationship between HG modes and

the fFT operator. The following derivation is composed of elements in [3]

and [4].

Assume that one desires to construct an operator that exhibits the fol-

lowing eigenfunction relationship when applied to a Hermite-Gaussian func-

tion,

Fα

{
e−

x2

2 Hm(x)
}

= e
imπα

2 e−
x2

2 Hm(x), (7.16)

where Hm(x) is the Hermite polynomial of degree m and α is the order

parameter of the desired operator, and x is a unitless quantity.

Since Hermite-Gaussian polynomials form a basis set, any complex-

valued one dimensional function can be described using a linear superposition

of weighted Hermite-Gaussian polynomials

f(x) =
∞∑
m=0

cme
−x

2

2 Hm(x), (7.17)

where the weighting coefficient, cm, is generally complex-valued. The results

of this discussion in 1-D are generalizable to the 2-D case, which is more

relevant to freespace scalar wave propagation.
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The orthogonality relation of the Hermite-Gaussian modes is

∫ ∞
−∞

Hm(x)Hs(x)e−x
2

dx = δmn
√
π2mm!. (7.18)

In order to find cm, we use this orthogonality relation on an arbitrary function

that is expressed in its HG mode decomposition

∫ ∞
−∞

Hm(x)e−
x2

2 f(x)dx =

∫ ∞
−∞

Hm(x)e−
x2

2

(
∞∑
n=0

cse
−x

2

2 Hs(x)

)
dx

=
∞∑
n=0

cs

∫ ∞
−∞

Hm(x)Hs(x)e−x
2

dx

=
∞∑
n=0

csδmn
√
π2nn!

= cm
√
π2mm!.

(7.19)

∴ cm =
1√

π2mm!

∫ ∞
−∞

Hm(x)e−
x2

2 f(x)dx. (7.20)

From Eqs. (7.16) and (7.17)

Fα{f(x)} =
∞∑
m=0

cme
imπα

2 Hm(x)e−
x2

2 . (7.21)

Now we consider Mehler’s Hermite Polynomial Formula [3, 4]

∞∑
m=0

tm

2mm!
√
π
Hm(x)Hm(x′)e

−
(
x2+x′2

2

)

=
1√

π (1− t2)
exp

[
4xx′t−

(
x2 + x′2

)
(1 + t2)

2 (1− t2)

]
,

(7.22)
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where t is just a placeholder variable. Let t = exp (iπα/2). This implies

∞∑
m=0

e
imπα

2

2mm!
√
π
Hm(x)Hm(x′)e

−
(
x2+x′2

2

)

=
1√

π (1− eiπα)
exp

[
4xx′e

iπα
2 −

(
x2 + x′2

)
(1 + eiπα)

2(1− eiπα)

]
.

(7.23)

The fractional term on the right hand side of of Eq. (7.23) can be expressed

1√
π (1− eiπα)

=
1√

−2πie
iπα
2

√
e
iπα
2 −e

−iπα
2

2i

=
ei
π
4
−iπα

4√
2π sin (πα

2
)
.

(7.24)

Next, we express the exponential term on the right hand side of Eq. (7.23)

as

exp

[
4xx′e

iπα
2 −

(
x2 + x′2

)
(1 + eiπα)

2(1− eiπα)

]

= exp

e
iπα
2 4xx′ − 2e

iπα
2

(
x2 + x′2

)(
e
iπα
2 +e

−iπα
2

2

)
e
iπα
2 (−4i)

(
e
iπα
2 −e

−iπα
2

2i

)


= exp

[
−ixx′ csc

(πα
2

)
+
i

2

(
x2 + x′

2
)

cot
(πα

2

)]
.

(7.25)
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For our chosen t we can express Eq. (7.23) as

∞∑
m=0

e
imπα

2

2mm!
√
π
Hm(x)Hm(x′)e

−
(
x2+x′2

2

)

=
exp iπ

4
− iπα

4√
2π sin (πα

2
)

exp

[
−ixx′ csc

(πα
2

)
+
i

2

(
x2 + x′

2
)

cot
(πα

2

)]
.

(7.26)

Substituting Eq. (7.20) into Eq. (7.21)

Fα {f(x)} =
∞∑
m=0

[
1

2mm!
√
π

∫ ∞
−∞

Hm(x) exp

(
−x2

2

)
f(x)dx

]
×Hm(x′) exp

(
imπα

2

)
exp

(
−x′2

2

)
=

∫ ∞
−∞

{
∞∑
m=0

exp
(
imπα

2

)
2mm!

√
π
Hm(x)Hm(x′)

× exp

[
−
(
x2 + x′2

)
2

]}
f(x)dx

=
exp

(
iπ

4
− iπα

4

)√
2π sin

(
πα
2

) ∫ ∞
−∞

f(x)

× exp

[
−ixx′ csc

(πα
2

)
+
i

2

(
x2 + x′

2
)

cot
(πα

2

)]
dx.

(7.27)

Now performing a change of variables where
√

2πy = x, dy = dx/
√

2π, and
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√
2πy′ = x′, we find the definition of the fFT [5]

Fα {f(y)} =
ei
π
4
−iπα

2√
sin (πα

2
)

∫ ∞
−∞

f(y)e[−iyy
′ csc (πα2 )+ i

2(y2+y′2) cot (πα2 )]dy. (7.28)

We therefore can conclude that

Fα {f(x)} = Fα

{
∞∑
m=0

cmHm(x)e−
x2

2

}
=

∞∑
m=0

cme
imπα

2 Hm(x)e−
x2

2 , (7.29)

is an alternative form of the fFT of a function f(x).
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