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Abstract 

     In the noisy intermediate-scale quantum (NISQ)-era, quantum computers (QC) are highly 

prone to noise-related errors and suffer from limited connectivity between their physical qubits. 

Circuit transformations must be made to abstract circuits to address the noise and hardware 

constraints of NISQ-era devices. Such transformations introduce additional gates to the original 

circuit, thereby reducing the circuit's overall fidelity. To address the aforementioned constraints 

of NISQ-era QCs, dynamic remapping procedures permute logical qubits about physical qubits of 

the device to increase the fidelity of operations and make operations hardware-compliant. The 

quantum layout problem (QLP) is the problem of mapping logical qubits of the circuit to physical 

qubits of the target QC in a way that maximizes circuit fidelity and satisfies all device 

connectivity constraints. This research effort seeks to use metaheuristic algorithms to find high-

quality solutions to the QLP. In this work, the QLP is mathematically modeled, integrated into 

various optimization algorithm domains, and resultant algorithms evaluated for efficiency and 

effectiveness. Moreover, fitness landscape analysis is performed based on the devised 

representation, objective functions, and search operators. 
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SOLVING THE QUANTUM LAYOUT PROBLEM FOR NISQ-ERA QUANTUM 
COMPUTERS VIA METAHEURISTIC ALGORITHMS 

I. Introduction 

1.1  Motivation 
 
     A new, potentially disruptive, revolution in computing is underway: quantum computing. 

Quantum computers (QC) use the quantum physical phenomena of superposition and 

entanglement to perform computations that are infeasible on classical computers. According to 

Herman, countries such as China invest billions of dollars each year into QC technologies [1]. 

Research in quantum computing technologies is of utmost importance, as information security is 

at risk should this new form of computation mature to solve more complex problems. Moreover, 

mature QCs have the ability to solve several NP, NP-Complete, and NP-Hard problems currently 

intractable on classical computers. Consider Shor’s algorithm, which finds the prime factors of a 

number in polynomial time. The factoring problem lies in the class NP, but no poly-time 

algorithms are known for classical computers. Thus, QCs appear to be able to tractably solve 

computationally challenging problems that their classical counterparts cannot.    

     While QCs exhibit substantial capabilities, state-of-the-art (SOTA) QCs cannot execute even 

moderately sophisticated programs due the unreliability of current quantum bits (qubits) and 

quantum gates applied to qubits, as well as the topological constraints of quantum hardware. Even 

though QCs are fickle devices, efforts have been made to mitigate noise-related issues via 

intelligent transpilation of quantum circuits. Specifically, when transpiling a circuit, numerous 

optimization passes are applied to a circuit that aim to maximize the probability of successful 

circuit execution on a target QC.  

     This research effort seeks to find good approximate solutions to a specific transpilation step 

applied to quantum circuits in which a logical quantum circuit is mapped onto a physical QC. 

This problem is commonly called the Quantum Layout Problem (QLP). Metaheuristics are an 
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acceptable approach to finding good solutions to the QLP due to the NP-hardness of the QLP and 

difficulty of relevant problem-instances. Moreover, previous work in this area of research mainly 

used greedy local (informed) search algorithms to find solutions to the QLP. In their strategies, 

algorithmic steps proceed based on locally available information about the circuit (e.g. upcoming 

gates that need to be executed). Metaheuristics can be used to instead consider global information 

about the entire circuit in its search process, an area of research on the QLP not well studied.  

     The potential impact of the results of this study are information superiority over adversaries. 

The utility of QCs is still unknown, but future research in this field is of highest military and 

civilian importance as the Pearl Harbor attack of the 21st  century could very well be in the form 

of a cyberattack based on quantum technology. AFIT’s mission is to “[e]ducate our Total Force 

military and civilian defense professionals to innovatively accomplish the deterrence and 

warfighting missions of the U.S. Air and Space Forces … today and tomorrow” (“Air Force 

Institute of Technology”) [2]. This research fits directly into this mission, as attaining an 

understanding of these new quantum technologies is necessary for both prevention of and 

deterrence from attack by adversaries. 

1.2  Problem Background 

     At this point in time, computer scientists can easily devise and implement algorithms on 

classical computers without knowledge of the low-level mechanisms of a classical computer. For 

instance, programmers commonly write code in a high-level programming language and compile 

their code into an executable program via a compiler. A programmer does not need to understand 

the bit-level realization of their high-level program since the compiler translates their program 

into a low-level executable. In contrast, current QCs require quantum programmers to write their 

code at the qubit-level. That is, quantum programmers must specify their algorithms to perform 

elementary operations on a collection of qubits. Currently, sufficient resources do no not exist for 
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quantum programmers to write high-level quantum programs and compile their programs to an 

executable for a QC.  

     Even though quantum programmers must write code at the qubit-level, transpilation steps must 

still be taken on their circuit in order for it to be executable on a QC. This is due to several 

constraints of QCs. First, abstract quantum circuits generally contain gate operations not 

realizable on QCs. Thus, one transpilation step converts the gates of the quantum circuit into 

functionally equivalent gates (or sequences of gates) that the QC understands. Before addressing 

the next constraint, note that the logical qubits of a quantum circuit must be placed in physical 

qubits of the target QC in order for operations to execute. This is like the situation in classical 

computing in which bits must be loaded into registers in order for logic gates to execute.  

     The second constraint is that QCs require all logical qubits 𝑞𝑞𝛼𝛼 and 𝑞𝑞𝛽𝛽 involved in a two-qubit 

gate operation be placed in physically adjacent physical qubits 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝛿𝛿, respectively. This is 

because when two qubits interact on the transmon QC architectures studied in this research effort, 

they must share a microwave-pulse wave-guide. If 𝑞𝑞𝛼𝛼 and 𝑞𝑞𝛽𝛽 are placed in non-adjacent physical 

qubits, the operation cannot execute since a microwave-pulse cannot be applied to both qubits 

concurrently. These constraints are commonly referred to as 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints. Thus, another 

transpilation step ensures all logical qubit pairs �𝑞𝑞𝛼𝛼,𝑞𝑞𝛽𝛽� involved in two-qubit gate operations are 

placed in physical qubits �𝑃𝑃𝛾𝛾,𝑃𝑃𝛿𝛿� where 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝛿𝛿 share a wave-guide. 

    A third constraint is that QCs are error-prone. Though gate operations on classical computers 

can fail, this occurs infrequently [3]. In addition, classical computers implement error-correcting 

codes to fix errors when they do occur. However, operations on QCs have much higher error 

rates. According to Tannu and Qureshi, single-qubit gate operations have a failure-rate of order 

10−3, while two-qubit gate operations have a failure-rate of order 10−2 [4]. Moreover, QCs are 

too resource-constrained to implement quantum-error-correcting codes. On top of that, noisy-



  

4 
 

intermediate-scale quantum (NISQ) computers, the current SOTA quantum computing devices, 

have high variability in their gate-operation error rates. On a given day, physical qubits 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝛿𝛿 

may share a wave-guide that successfully performs a two-qubit operation with probability 99%. 

Then, on another day, that same wave-guide may only succeed with probability 85%. As such, 

during transpilation, it is essential to place logical qubits in physical qubits that are highly 

reliable, and that share wave-guides that are highly reliable. Additionally, QCs are constrained by 

the fact that qubits can only hold their quantum state for a given period of time before they lose 

their coherence. This limits the number of gate operations that can be performed in a quantum 

circuit.  

     Of the three aforementioned constraints of QCs, the latter two are the responsibilities of a 

QLP-solver. A QLP-solver seeks to place logical qubits in physical qubits such that all logical 

qubits involved in two-qubit operations are placed in adjacent physical qubits, and also attempts 

to place logical qubits in physical qubits that are highly reliable and share highly reliable wave-

guides. These two objectives jointly constitute the QLP. The QLP addresses the question what is 

the best mapping between logical and physical qubits that satisfies all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints and 

maximizes the probability that the circuit executes successfully?  

     In general, no single mapping between physical and logical qubits (P2L mapping) satisfies all 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints. As such, the QLP involves finding a collection of P2L mappings that 

collectively satisfy all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints. Then, (abstract) SWAP gates are applied to permute the 

logical qubits about the physical qubits to rearrange the mappings. Thus, a QLP-solver is also 

responsible for inserting SWAP gates to make the circuit executable. Since a SWAP gate is a 

two-qubit gate with a high associated error rate, inserting many SWAP gates degrades overall 

circuit fidelity (thereby affecting the second objective). 
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1.3  Research Objectives 

     Prior research on the QLP, such as work done by IBM research and various authors, 

predominantly use greedy local (informed) search algorithms to find solutions to the QLP (mainly 

the 𝐴𝐴∗ search algorithm). Though their approaches vary slightly in their search algorithms, most 

use cost functions that attempt to minimize the number of additional gates added to the circuit by 

their QLP-solver or maximize the probability that all gates in the transpiled circuit execute 

successfully. The key point is their approaches greedily (albeit some with lookahead capability) 

choose steps to find locally optimal solutions to the QLP. However, choosing steps greedily for 

the QLP does not guarantee obtaining a circuit that globally minimizes (or maximizes) the 

objective. This research effort seeks to use metaheuristics that consider global information about 

the circuit (as opposed to local information used by previous research) to find higher-quality 

solutions of the QLP. The following research questions arise when considering the primary goals 

of this research: 

1. How effective and efficient are various metaheuristic algorithms at finding high-quality 

solutions to the QLP? 

2. For various QLP problem-instances, how can the topology of the fitness landscape induced 

by the representation, objective function(s), and search operator(s) devised for the 

metaheuristics-based (meta-based) QLP-solvers be characterized? 

     The first research question seeks to fill a void in an area of QLP research not extensively 

studied. As previously mentioned, prior research efforts (and now SOTA QLP-solvers) seek to 

find solutions to the QLP mainly via greedy heuristic approaches. Their approaches are limited by 

near-term knowledge about upcoming gates in the circuit, making decisions to solve QLP 

problem-instances based on heuristic cost functions that attempt to minimize or maximize global 

objectives. Research question #1 challenges this approach and asks whether global optimization 
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strategies based on metaheuristic algorithms can effectively and efficiently prune the search space 

of the QLP to find high-quality solutions.  

     The second research question seeks to gain an understanding of the fitness landscape of the 

QLP. In search algorithm development, the interplay between the representation, objective 

function, and search operators in the induced fitness landscape provide insight to tailor and 

choose effective algorithms to employ to find high-quality solutions. Wolpert and Macready 

introduce the no-free-lunch (NFL) theorem, which states “if some algorithm 𝑎𝑎1’s performance is 

superior to that of another algorithm 𝑎𝑎2 over some set of optimization problems, then the reverse 

must be true over the set of all other optimization problems” [5]. In other words, the NFL 

theorem says that no optimization algorithm is superior to all other optimization algorithms over 

the set of all optimization problems. A good way to find effective optimization algorithms for a 

given problem is to empirically study global features of the search landscape and local features 

visible to the search operator(s). Regardless of the findings for research question #1, findings for 

the second research question are anticipated to identify features of the QLP fitness landscape that 

future researchers can exploit to devise novel optimization algorithms for the QLP. 

1.4  Limitations and Assumptions 

     This research seeks to optimize the QLP-solver involved in quantum program transpilation for 

IBM transmon QC architectures. While there exist other variants of quantum computing 

architectures, such as quantum annealing-based QCs and topological QCs, this research focuses 

only on transmon architectures, targeting IBM’s QCs specifically. For transmon architectures, 

this research assumes limited connectivity between physical qubits and noisy qubits/gate 

operations. Care should be taken in generalizing the results and conclusions of this research if 

connectivity is substantially increased and/or qubit noise is greatly reduced.  

     Next, the following additional assumptions are made in this research effort: 
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• For a quantum circuit to execute successfully, all 1-qubit and 2-qubit gates must 

execute correctly. Furthermore, these events are assumed to be independent. 

• Qubit coherence errors are correlated with circuit depth. The longer a quantum circuit 

executes, the higher the probability that a coherence error occurs. 

     In addition, the devised software for the meta-based QLP-solvers is intended to be integrated 

into the Qiskit quantum computing framework. As such, most of the software is written in the 

Python programming language. Therefore, running the software requires a user to have Python 

and Qiskit installed. Python 3.7.4 is used. Table 1 provides the main Python libraries used in this 

research effort.  

Name Version 
Qiskit 

 
Qiskit-Terra 
Qiskit-Aer 

Qiskit-Ignis 
Qiskit-IBMQ-Provider 

Qiskit-Aqua 

0.23.1 
 

0.16.1 
0.7.1 
0.5.1 

0.11.1 
0.8.1 

Networkx 2.3 
Json 2.0.9 

Pymoo 0.4.2.1 
Numpy 1.19.2 

Table 1: Main Python libraries used in this research effort. 

 

     Finally, all fitness landscape analysis is built upon the proposed representations, objective 

functions, and search operators. Thus, the findings for research question #2 are only applicable 

under the imposed fitness landscape. Alternative representations, objective functions, and search 

operators induce alternative fitness landscapes, which may have vastly different features than 

those identified in this research effort. Nonetheless, techniques employed in this research can be 

augmented to explore alternative fitness landscapes.  
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1.5  Mathematical Notation and Conventions 

     In this section, mathematical notation and conventions used in the remainder of this thesis are 

defined. Table 2 provides descriptions of various notation. 

Notation Description 
[𝑎𝑎,𝑏𝑏] The set of all reals between 𝑎𝑎 and 𝑏𝑏, 

inclusive. 
⟦𝑎𝑎,𝑏𝑏⟧ The set of all integers between 𝑎𝑎 and 𝑏𝑏, 

inclusive. 
𝑦𝑦 = (1,2,3, … ) 𝑦𝑦 is a sequence of elements. 

|𝑦𝑦| The number of elements in sequence 𝑦𝑦. 
𝑦𝑦𝑖𝑖 
 
 

𝑦𝑦∗ = (𝑎𝑎0, 𝑏𝑏1,𝑎𝑎1,𝑏𝑏1, … ) 
𝑎𝑎𝑖𝑖 ∈ 𝑦𝑦∗ 

Element of sequence 𝑦𝑦 with index 𝑖𝑖 (indexing 
is 0-based). 

 
Against common practice, given a sequence 
𝑦𝑦∗ composed of objects of types 𝑎𝑎, 𝑏𝑏, etc.,  let 
𝑎𝑎𝑖𝑖 ∈ 𝑦𝑦∗ be the set of all objects of type 𝑎𝑎 from 

sequence 𝑦𝑦∗. 
{0,1}𝑛𝑛 The set of strings of length 𝑛𝑛 with each 

character being either zero or one.  
𝐺𝐺 = (𝑉𝑉,𝐸𝐸) A graph 𝐺𝐺 with vertex-set 𝑉𝑉 and edge-set 𝐸𝐸. 

The vertex-set and edge-set of 𝐺𝐺 are also 
commonly denoted 𝑉𝑉(𝐺𝐺) and 𝐸𝐸(𝐺𝐺), 

respectively.  
𝑓𝑓 = �0

1 12 … � 
 
 

𝑖𝑖 ↦ 𝑗𝑗 

A bijective function 𝑓𝑓 that maps a domain to a 
codomain. In this example, 𝑓𝑓(0) = 1 and 

𝑓𝑓(1) = 2. 
 

Element 𝑖𝑖 of the domain maps to element 𝑗𝑗 of 
the codomain. In function 𝑓𝑓, 0 ↦ 1. 

Table 2: Notation used in this thesis.  

 

     Given a graph 𝐺𝐺 and a path 𝑝𝑝 from vertex 𝑉𝑉𝑖𝑖 ∈ 𝐸𝐸(𝐺𝐺) to 𝑉𝑉𝑗𝑗 ∈ 𝐸𝐸(𝐺𝐺), 𝑝𝑝 is a sequence of vertices 

where 𝑝𝑝𝑖𝑖 ∈ 𝑉𝑉(𝐺𝐺). The length of path 𝑝𝑝 is the number of vertices in the path and is denoted |𝑝𝑝|. 

For a path of length 𝑘𝑘 from 𝑉𝑉𝑖𝑖 to 𝑉𝑉𝑗𝑗 , 𝑝𝑝0 = 𝑉𝑉𝑖𝑖,  𝑝𝑝𝑘𝑘−1 = 𝑉𝑉𝑗𝑗, and 𝑝𝑝1 … 𝑝𝑝𝑘𝑘−2 are intermediate vertices 

between 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 .  

     A list is a computer science data structure similar to a sequence in mathematics. A list 𝑙𝑙 is 

composed of elements, each of which is addressable by index (0-based indexing). For example, 

given a list 𝑙𝑙 = [𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑], 𝑙𝑙[0] = 𝑎𝑎 and 𝑙𝑙[2] = 𝑐𝑐. The number of elements in a list is denoted by 
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|𝑙𝑙|. A list has an associated function 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖) which takes an element 𝑖𝑖 and adds it to the end of 

the list. In the above example, 𝑙𝑙. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒) augments 𝑙𝑙 as follows: 𝑙𝑙 = [𝑎𝑎,𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒].  

1.6  Document Overview 

     Chapter II provides background information on quantum computation, the transpilation 

process required to execute quantum circuits on quantum devices, IBM’s quantum computing 

framework, and previous research on the QLP. In addition, metaheuristic algorithms and fitness 

landscapes are presented and defined.  Chapter III defines the methodology used to design and 

analyze the proposed meta-based QLP-solvers. Moreover, fitness landscape definition and 

analysis procedures are defined in Chapter III. Chapter IV presents the effectiveness and 

efficiency of the proposed meta-based QLP-solvers compared against SOTA QLP-solvers, as 

well as an analysis of the fitness landscapes of the QLP. Finally, Chapter V concludes this work, 

addresses the research questions, and provides future directions for research in QLP-solver 

development.  
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II. Background and Literature Review 

2.1  Overview 

     This chapter provides necessary background information on quantum computation and the 

main problem addressed in this research effort: The QLP. Section 2.2 presents, via analogy to 

classical computing concepts, the quantum analogues of bits, gates, and circuits. Section 2.3 

explores the necessity of quantum program transpilation (QPT), defines the QLP, and presents 

SOTA QLP-solvers. Section 2.4 presents a widely used quantum computing framework 

developed by IBM. Section 2.5 then provides necessary background information on the 

metaheuristic algorithms used in this research effort to find solutions to the QLP. Section 2.6 

explains fitness landscapes and provides techniques to analyze them. Finally, Section 2.7 presents 

a problem related to the QLP called the token-swapping problem.  

2.2  Quantum Computation 

     Quantum computation is commonly introduced by analogy to classical computation. The 

world of classical computation mainly involves bits, logic gates, and logic circuits. Logic gates 

operate on bits to produce new states of the bits, and logic circuits are a collection of logic gates 

that operate on a set of bits. In Sections 2.2.1 through 2.2.3, the quantum analogues of the bit, 

gate, and circuit are introduced, respectively.  

2.2.1  Qubits 

     In classical computation, bits are the basic unit of information. The mathematical object of a 

bit represents a logical state with one of two possible values: 0 or 1. In quantum computation, 

qubits are the basic unit of information. Two possible states of a qubit are |0⟩ and |1⟩, which 

correspond to the states 0 and 1 of a classical bit, respectively. Qubits can also be in states other 

than |0⟩ and |1⟩. Qubits can be in a linear combination of states, called superpositions [7]. Let 

|𝜓𝜓⟩ represent an arbitrary state of a qubit.  
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|𝜓𝜓⟩ = 𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ ∶ 𝛼𝛼,𝛽𝛽 ∈ ℂ ∧ |𝛼𝛼|2 + |𝛽𝛽|2 = 1 (2.1) 

 

     Therefore, while a classical bit’s state is a discrete number 𝑖𝑖 such that 𝑖𝑖 ∈ {0,1}, a qubit’s state 

is a vector in a two-dimensional complex vector space. The states |0⟩ and |1⟩ are known as 

computational basis states and form an orthonormal basis over the vector space [7]. In Equation 

2.1, 𝛼𝛼 and 𝛽𝛽 are amplitudes where the absolute square of their values represent the “|0⟩-ness” and 

“|1⟩-ness” of a qubit’s state, respectively.  

     A classical bit’s value can be examined via memory access. That is, at any point in time, the 

exact state of a classical bit can be determined. However, the state of a qubit cannot be examined 

to determine its state (i.e. the values of 𝛼𝛼 and 𝛽𝛽). Instead, when a qubit is examined, the state |0⟩ 

is obtained with probability |𝛼𝛼|2 and the state |1⟩ with probability |𝛽𝛽|2. This strange behavior is 

due to one of the postulates of quantum mechanics (QM). Thus, classical bits are governed by the 

laws of classical mechanics, while qubits are governed by the laws of QM. In Equation 2.1, since 

the absolute squares of 𝛼𝛼 and 𝛽𝛽 equate to probabilities, the sum of the absolute squares must 

equal 1 (thus imposing the need for the normalization constraints in the definition of |𝜓𝜓⟩) [8].  

     Consider a qubit in the state |𝜓𝜓0⟩ = 1 ∙ |0⟩ + 0 ∙ |1⟩. First, this is a valid state as |1|2 + |0|2 =

1 ∧ 0,1 ∈ ℂ. Reduction of the qubit’s state results in |𝜓𝜓0⟩ = |0⟩. Thus, this qubit is in the pure 

ground state. Measurement of this qubit results in |0⟩ 100% of the time. An example of a qubit in 

the pure excited state is |𝜓𝜓1⟩ = 0 ∙ |0⟩ + 1 ∙ |1⟩ = |1⟩. Next, consider a qubit in a superposition 

state:  |𝜓𝜓+⟩ = 1
√2

|0⟩ + 1
√2

|1⟩. This is also a valid state as � 1
√2
�
2

+ � 1
√2
�
2

= 1 ∧ 1
√2
∈ ℂ. Since the 

absolute squares of 𝛼𝛼 and 𝛽𝛽 represent the “|0⟩-ness” and |1⟩-ness” of the qubit’s state, 

measurement of this qubit results in |0⟩ with probability � 1
√2
�
2

= 50% and |1⟩ with probability 

� 1
√2
�
2

= 50%. Before measurement, the qubit’s state was neither purely |0⟩ nor |1⟩, but a mixture 
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of both. After measurement, however, the qubit’s state jumps to one of the computational basis 

states with probabilities defined by 𝛼𝛼 and 𝛽𝛽.  

     Since a quantum state must satisfy the normalization constraint |𝛼𝛼|2 + |𝛽𝛽|2 = 1, Equation 2.1 

can be rewritten as follows [7]: 

|𝜓𝜓⟩ = 𝑒𝑒𝑖𝑖𝑖𝑖(cos
𝜃𝜃
2

|0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖 sin
𝜃𝜃
2

|1⟩) ∶ 𝜃𝜃,𝜑𝜑, 𝛾𝛾 ∈ ℝ (2.2) 

Moreover, the factor of 𝑒𝑒𝑖𝑖𝑖𝑖 in Equation 2.2 can be discarded as it has no observable effects 

according to Nielsen and Chuang [7]. Therefore, a qubit’s state can be expressed as follows: 

|𝜓𝜓⟩ = cos
𝜃𝜃
2

|0⟩ + 𝑒𝑒𝑖𝑖𝑖𝑖 sin
𝜃𝜃
2

|1⟩ ∶ 𝜃𝜃,𝜑𝜑 ∈ ℝ (2.3) 

     By Equation 2.3, the state of a single qubit can be expressed via the polar coordinates 𝜃𝜃 and 𝜑𝜑, 

where 𝜃𝜃 and 𝜑𝜑 define a point on a 3-dimensional unit sphere [7]. This sphere is commonly 

referred to as the Bloch sphere. Figure 1 provides an illustration of a Bloch sphere.  

 

Figure 1: A Bloch sphere, used to visualize the state of a single qubit. Reproduced from Nielsen 
and Chuang [7]. 

 

     Each point on the Bloch sphere represents a unique state of a single qubit. The antipodal points 

correspond to the orthogonal computation basis states |0⟩ and |1⟩. Also notice that the state-space 
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of a single qubit is infinite, as illustrated by the infinite number of points on the surface of the 

Bloch sphere. While the Bloch sphere is a useful concept to visualize the state of a single qubit, 

no generalization of the Bloch sphere exists beyond a 2-level system (i.e. single qubit).  

     Multiple Qubit Systems: Prior to this point, only systems containing a single qubit have been 

defined and analyzed. To explore the concept of multiple qubit systems, a system of two classical 

bits is first analyzed. In a classical two bit system, the possible states of the system are 00, 01, 10, 

and 11. Correspondingly, a system of two qubits has four computational basis state: 

|00⟩, |01⟩, |10⟩, and |11⟩. A pair of qubits can also exist in superpositions of the four 

aforementioned basis states [7]. Thus, the state of a pair of qubits can be defined as follows: 

|𝜓𝜓⟩ = 𝛼𝛼00|00⟩ + 𝛼𝛼01|01⟩ + 𝛼𝛼10|10⟩ + 𝛼𝛼11|11⟩ (2.4) 

s.t. 

𝛼𝛼00,𝛼𝛼01,𝛼𝛼10,𝛼𝛼11 ∈ ℂ ∧ � |𝛼𝛼𝑥𝑥|2 = 1
𝑥𝑥∈{0,1}2

 

 

In general, a system of 𝑛𝑛 qubits has 2𝑛𝑛 computation basis states, and the system can exist in 

superpositions of all computational basis states. As such, the state of an 𝑛𝑛 qubit system can be 

defined as follows: 

|𝜓𝜓⟩ = � 𝛼𝛼𝑥𝑥|𝑥𝑥⟩
𝑥𝑥∈{0,1}𝑛𝑛

 (2.5) 

s.t. 

∀𝛼𝛼𝑥𝑥 ∈ |𝜓𝜓⟩,𝛼𝛼𝑥𝑥 ∈ ℂ ∧ � |𝛼𝛼𝑥𝑥|2 = 1
𝑥𝑥∈{0,1}𝑛𝑛

 

 

     Entanglement: A strange quantum phenomenon can occur in multi-qubit systems called 

entanglement. To aid in understanding entanglement, consider the following two-qubit state:  
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|𝜓𝜓⟩ =
1
√2

|00⟩ +
1
√2

|11⟩. 

This state is commonly referred to as a Bell state or an EPR pair. Consider measuring only the 

first qubit of the Bell state. Upon measurement of the first qubit, |0⟩ is obtained with probability 

50% and |1⟩ with probability 50%. The state of the system after measuring the first qubit is either 

|𝜓𝜓′⟩ = |00⟩ (when |0⟩ measured on first qubit) or |𝜓𝜓′⟩ = |11⟩ (when |1⟩ measured on first 

qubit). Oddly, measurement of the second qubit always results in the same computational basis 

state measured on the first. These measurement outcomes are said to be correlated [7]. Even 

more strangely, the qubits continue to be correlated even if the distance between them is vast (e.g. 

one qubit is on Earth and the other is in a distant galaxy). That is, the state measured on the first 

qubit  instantaneously “pops” the second qubit to the same state, regardless of the distance 

separating them. This appears to violate the universal speed limit (i.e. information cannot travel 

faster than the speed of light). Entanglement puzzled Albert Einstein, and he coined the 

phenomenon “spooky action at a distance” [7]. Later, physicist John Bell proved that correlation 

does not violate the laws of physics, and debunked alternative theories (e.g. hidden-variable 

theory). His work also proved that “the measurement correlations in the Bell state are stronger 

than could ever exist between classical systems” [7]. 

     An entangled quantum state is one which cannot be expressed as the product of its constituent 

qubits. To illustrate this, consider the following non-entangled state: 

�𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒����������������� =
1
√2

|00⟩ +
1
√2

|01⟩. 

This state can be factored into the product of its constituent qubits as follows: 

�𝜓𝜓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒����������������� =
1
√2

(|00⟩ + |01⟩) =
1
√2

(|0⟩)(|0⟩ + |1⟩). 
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Thus, the first qubit is in the state |0⟩ and the second is in the superposition state |0⟩+|1⟩
√2

. Now 

consider factoring the entangled Bell State: 

�𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� =
1
√2

|00⟩ +
1
√2

|11⟩ =
1
√2

(|00⟩ + |11⟩). 

No further factoring can be done to this state. Therefore, the state of the first and second qubits 

cannot be expressed individually. Thus, their states are entangled.  

2.2.2  Quantum Gates 

     Without loss of generality, quantum gates can be divided into three categories: single-qubit, 

two-qubit, and measurement gates. This is because all multi-qubit gates with more than two input 

qubits can be decomposed into sequences of single- and two-qubit gates [9]. In order to 

understand how a quantum gate manipulates the state of a qubit(s), the notation describing the 

state of a qubit must be explained. Previously, a given qubit’s state was expressed via equations 

containing |0⟩ and |1⟩. The bracket-notation used in these equations is called Dirac notation. 

Dirac notation can equivalently be expressed in vector notation. For example, a single qubit’s 

state can be expressed in vector notation as follows: 

𝛼𝛼|0⟩ + 𝛽𝛽|1⟩ = �
𝛼𝛼
𝛽𝛽�  (2.6) 

In general, a multi-qubit state of 𝑛𝑛 qubits can be expressed in vector notation as follows: 

� 𝑎𝑎𝑥𝑥|𝑥𝑥⟩ = �

𝛼𝛼0
𝛼𝛼1…

𝛼𝛼2𝑛𝑛−1
�

𝑥𝑥∈{0,1}𝑛𝑛
 (2.7) 

In Dirac notation, the state of a system of 𝑛𝑛 qubits is typically defined as |𝜓𝜓⟩ = |𝑄𝑄0𝑄𝑄1 …𝑄𝑄𝑛𝑛−1⟩. 

In vector notation, this equates to the tensor product of each 𝑄𝑄𝑖𝑖 ∈ |𝜓𝜓⟩ (from left to right). Thus,  

|𝜓𝜓⟩ = |𝑄𝑄0𝑄𝑄1 …𝑄𝑄𝑛𝑛−1⟩ = |𝑄𝑄0⟩ ⊗ |𝑄𝑄1⟩ ⊗ …⊗ |𝑄𝑄𝑛𝑛−1⟩ = �
𝛼𝛼0,0
𝛼𝛼0,1

� ⊗ �
𝛼𝛼1,0
𝛼𝛼1,1

� ⊗ …⊗ �
𝛼𝛼𝑛𝑛−1,0
𝛼𝛼𝑛𝑛−1,1

�, 
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where 𝛼𝛼𝑖𝑖𝑖𝑖 is the amplitude on |𝑗𝑗⟩ of qubit 𝑄𝑄𝑖𝑖 . 

 

     All valid quantum gates must be both linear and norm-preserving. The linearity requirement is 

due to the postulates of QM [7]. Quantum gates must also be norm-preserving in order to create 

transformations of the quantum state which still satisfy the normalization constraint of |𝜓𝜓⟩. Given 

a quantum gate 𝑈𝑈, 𝑈𝑈 is a valid gate if 𝑈𝑈†𝑈𝑈 = 𝑈𝑈𝑈𝑈† = 𝐼𝐼 [7]. Therefore, a valid quantum gate is 

always be defined by a unitary matrix.  

     Single-Qubit Gates: Operations on a single-qubit are described by norm-preserving 2 × 2 

unitary matrices. To understand the workings of single-qubit gates, consider a classical 𝑁𝑁𝑂𝑂𝑂𝑂 gate. 

A classical 𝑁𝑁𝑁𝑁𝑁𝑁 gate operates on a single bit and its actions are described by the following truth 

table: 

Input (𝒂𝒂) Output (∼ 𝒂𝒂) 
0 1 
1 0 

Classical 𝑁𝑁𝑁𝑁𝑁𝑁 gate truth table. 

Now, a quantum analogue of a 𝑁𝑁𝑁𝑁𝑁𝑁 gate should take the computation basis states |0⟩ → |1⟩ and 

|1⟩ → |0⟩. In addition, a quantum 𝑁𝑁𝑁𝑁𝑁𝑁 gate should negate any superposition state appropriately.  

Due to the linearity of QM, an operator which defines how the basis states transform also defines 

how any superposition (linear combination) state transforms [7]. Thus, to create any single-qubit 

gate, define a 2 × 2 unitary matrix where the first column defines the resultant state of the 

operator applied to |0⟩ and the second column defines the resultant state of the operator applied to 

|1⟩. Let 𝑋𝑋 define a quantum 𝑁𝑁𝑁𝑁𝑁𝑁 gate. 

𝑋𝑋 = �0 1
1 0� 
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In the proposed quantum 𝑁𝑁𝑁𝑁𝑁𝑁 gate above, the first column maps |0⟩ = �1
0� ↦ �0

1� = |1⟩, and the 

second column maps |1⟩ = �0
1� ↦ �1

0� = |0⟩. Further, 𝑋𝑋 is a unitary matrix because 𝑋𝑋†𝑋𝑋 =

𝑋𝑋𝑋𝑋† = 𝐼𝐼. Therefore, 𝑋𝑋 is a valid quantum gate and transforms a qubit’s state by rotating it by 𝜋𝜋 

radians about the x-axis of the Bloch sphere [10]. Consider the following examples which 

illustrate the 𝑋𝑋 gate applied to various quantum states: 

𝑋𝑋|0⟩ = �0 1
1 0� �

1
0� = �0

1� = |1⟩ 

𝑋𝑋|1⟩ = �0 1
1 0� �

0
1� = �1

0� = |0⟩ 

    Another important single-qubit gate is known as the “Hadamard gate” (𝐻𝐻). This gate 

transforms the state |0⟩ ↦ |+⟩ and |1⟩ ↦ |−⟩, where |+⟩ = 1
√2
�1

1� and |−⟩ = 1
√2
� 1
−1�. The 𝐻𝐻 

gate, based on how it transforms the basis states, is defined as follows: 

𝐻𝐻 =
1
√2

�1 1
1 −1�. 

The provided 𝐻𝐻 gate is a valid quantum operation because 𝐻𝐻†𝐻𝐻 = 𝐻𝐻𝐻𝐻† = 𝐼𝐼. The 𝐻𝐻 gate 

transforms a qubit’s state by rotating it by 𝜋𝜋 radians about the z-axis followed by 𝜋𝜋
2
 radians about 

the y-axis of the Bloch sphere [10].  

     Two-Qubit Gates: Operations on two qubits are described by norm-preserving 4 × 4 unitary 

matrices. To understand how a two-qubit gate works, consider a classical 𝑋𝑋𝑋𝑋𝑋𝑋 gate. A classical 

𝑋𝑋𝑋𝑋𝑋𝑋 gates operates on two bits and its actions are described by the following truth table: 

Input 1 (𝒂𝒂) Input 2 (𝒃𝒃) Output (𝒂𝒂⊕ 𝒃𝒃) 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Classical 𝑋𝑋𝑋𝑋𝑋𝑋 gate truth table. 
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Now, a quantum analogue of the 𝑋𝑋𝑋𝑋𝑋𝑋 gate should take the computational basis states |00⟩ ↦

|00⟩, |01⟩ ↦ |01⟩, |10⟩ ↦ |11⟩, and |11⟩ ↦ |10⟩. Here, the first qubit is the control and the 

second is the target (thus, the resultant state should preserve the state of the control qubit and flip 

the state of the target qubit if the control is |1⟩). Similar to single-qubit gates, to create a two-

qubit gate define a 4 × 4 unitary matrix where the first column defines the resultant state of the 

operator applied to |00⟩, …, and the final column defines the resultant state of the operator 

applied to |11⟩. Let 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 define a quantum 𝑋𝑋𝑋𝑋𝑋𝑋 gate.  

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 = �𝐼𝐼2×2 02×2
02×2 𝑋𝑋 � = �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

�. 

In the provided 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate, the first column maps |00⟩ = (1 0 0 0)𝑇𝑇 ↦ (1 0 0 0)𝑇𝑇 = |00⟩, the 

second column maps |01⟩ = (0 1 0 0)𝑇𝑇 ↦ (0 1 0 0)𝑇𝑇 = |01⟩, the third column maps |10⟩ =

(0 0 1 0)𝑇𝑇 ↦ (0 0 0 1)𝑇𝑇 = |11⟩, and the fourth column maps |11⟩ = (0 0 0 1)𝑇𝑇 ↦ (0 0 1 0)𝑇𝑇 =

|10⟩.  Further, 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 is a unitary matrix because 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁
† 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁

† = 𝐼𝐼. A generalization of 

the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate is a controlled-𝑢𝑢 gate (𝐶𝐶𝑢𝑢). A 𝐶𝐶𝑢𝑢 gate can be defined as follows: 

𝐶𝐶𝑢𝑢 = �𝐼𝐼2×2 02×2
02×2 𝑢𝑢 � = �

1 0 0 0
0 1 0 0
0 0 𝑢𝑢0,0 𝑢𝑢0,1
0 0 𝑢𝑢1,0 𝑢𝑢1,1

�. 

The 𝐶𝐶𝑢𝑢 gate functions similar to the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate, except when the control qubit is in the state |1⟩, 

unitary 𝑢𝑢 is applied to the target (where 𝑢𝑢 is a 2 × 2 unitary matrix).  

     One final 2-qubit gate that is of importance to this research effort is the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 gate. The 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 gate exchanges the state of two qubits. The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 gate is defined as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

� 
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The 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 gate is best illustrated via example. Consider the following examples: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|01⟩ = |10⟩ 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|10⟩ = |01⟩ 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|+ −⟩ = | − +⟩ 

Thus, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 gate exchanges the states of the two qubits which it acts on. This will become 

particularly useful in quantum transpilation. In this section, only a few gates are presented. Figure 

2 provides some commonly used 1- and 2-qubit gates and their associated unitaries.  

 

Figure 2: Commonly used 1- and 2-qubit gates. Reproduced from Nielsen and Chuang [7].  

 

     Measurement Gates: The only valid non-unitary gate that can be applied to qubits is the 

measurement gate. A measurement gate collapses the wave function defining a qubit’s state, and 

is an irreversible operation as consequence. As an example, consider a single qubit prepared in 

the state |𝜓𝜓⟩ = |+⟩ = �
1
√2
1
√2

�. Measurement can be performed in any orthonormal basis [7], 

however for this research, understanding measurement in the computational basis is sufficient. 

Let 𝑀𝑀𝑐𝑐 denote a measurement gate which projects a quantum state into the computational basis. 

Applying the measurement gate 𝑀𝑀𝑐𝑐|+⟩ results in a measurement of |0⟩ 50% (post-measurement 



  

20 
 

|𝜓𝜓⟩ = |0⟩) of the time (post-measurement, |𝜓𝜓⟩ = |0⟩)  and |1⟩ 50% of the time (post-

measurement, |𝜓𝜓⟩ = |1⟩). 

2.2.3  Quantum Circuits  

     A quantum circuit can be defined as a sequence of 𝑐𝑐 unitary operations 𝑂𝑂 = (𝑈𝑈0,𝑈𝑈1, … ,𝑈𝑈𝑐𝑐−1) 

to apply to system of 𝑛𝑛 qubits defined by |𝜓𝜓⟩ = |𝑞𝑞0𝑞𝑞1 …𝑞𝑞𝑛𝑛−1⟩. In this definition, 𝑂𝑂0,𝑂𝑂1, … ,𝑂𝑂𝑐𝑐−1 

are 2𝑛𝑛 × 2𝑛𝑛 dimensional unitary matrices. The resulting state |𝜓𝜓′⟩ of applying all unitary 

operations to |𝜓𝜓⟩ can be defined as follows: 

|𝜓𝜓′⟩ = �𝑂𝑂𝑐𝑐−𝑘𝑘|𝜓𝜓⟩
𝑐𝑐

𝑘𝑘=1

 (2.8) 

This concept is best understood via an example. Consider the quantum circuit in Figure 3.  

 
Figure 3: Example quantum circuit which creates a Bell state.  

Preliminaries:  

1. When a quantum circuit is drawn, assume that each qubit is initialized to the state |0⟩. In 

Figure 3, this means |𝑞𝑞0⟩ = |𝑞𝑞1⟩ = |0⟩.  

2. A circuit can be divided into layers. A layer 𝑙𝑙𝑖𝑖 is defined as “contain[ing] only gates that act 

on distinct sets of qubits” [11]. This will be important for circuit analysis. Figure 4 shows the 

circuit in Figure 3 divided into layers.  
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Figure 4: Circuit in Figure 3 divided into layers 𝑙𝑙0 and 𝑙𝑙1. 

For each layer 𝑙𝑙𝑖𝑖 of a circuit, if a gate is not applied to qubit 𝑞𝑞𝑗𝑗, this implies that the identity  

gate 𝐼𝐼 is being applied to 𝑞𝑞𝑗𝑗.  

 

3. Each layer 𝑙𝑙𝑖𝑖 of a circuit can be defined by a 2𝑛𝑛 × 2𝑛𝑛 unitary 𝑈𝑈𝑖𝑖 which is equal to the tensor 

product, from top to bottom, of the gates within it.  

4. Equation 2.8 defines the resultant state of applying all gates in the circuit to the system of 

qubits.  

     To process these preliminaries, first recognize that this is a system of 2 qubits defined by 

initial state |𝜓𝜓0⟩ = |00⟩ (by preliminary 1). Next, after dividing the circuit into layers 𝑙𝑙0 and 𝑙𝑙1, 

preliminary 3 specifies that since no gate is applied to 𝑞𝑞1 in 𝑙𝑙0, this implies that the identity gate is 

implicitly being applied to 𝑞𝑞1 in 𝑙𝑙0. The identity gate (i.e. the “do-nothing-but-make-the-math-

work” gate) is defined by the following unitary: 

𝐼𝐼 = �1 0
0 1�. 

Thus, the identity gate can be applied to 𝑞𝑞1 in 𝑙𝑙0 and does not alter the results of the computation. 

Finally, preliminary 4 says that each layer 𝑙𝑙𝑖𝑖 can be expressed as a unitary 𝑈𝑈𝑖𝑖. Figure 5 shows the 

circuit divided into layers and the associated unitaries for each layer.  
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Figure 5: Circuit from Figure 3 divided into layers and associated unitaries.  

Based on preliminary 4, the unitaries 𝑈𝑈𝑖𝑖 are calculated as the tensor product, from top to bottom, 

of all gates in 𝑙𝑙𝑖𝑖. For this circuit, 𝑈𝑈0 = (𝐻𝐻⊗ 𝐼𝐼) and 𝑈𝑈1 = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁. Finally, analysis of this circuit 

should confirm that the resultant state-vector is |𝜓𝜓′⟩ = |00⟩+|11⟩
√2

. 

|𝜓𝜓′⟩ = �𝑈𝑈𝑐𝑐−𝑘𝑘|𝜓𝜓⟩
𝑐𝑐

𝑘𝑘=1

 

= (𝑈𝑈1 ∙ 𝑈𝑈0)|𝜓𝜓⟩ 
= [(𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁) ∙ (𝐻𝐻⊗ 𝐼𝐼)]|00⟩ 

= ��

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� ∙
1
√2

�

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

���
1
0
0
0

� 

=
1
√2

�
1
0
0
1

� =
|00⟩ + |11⟩

√2
 

     This process can be applied to any arbitrary quantum circuit to analyze how it operates. 

However, some situations can occur that make this procedure cumbersome. For instance, consider 

the circuit in Figure 6. 

 

Figure 6: A circuit which is non-trivial to analyze. 
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This circuit can clearly be divided into layers 𝑙𝑙0 and 𝑙𝑙1. The unitary associated with 𝑙𝑙0 is 𝑈𝑈0 =

(𝐼𝐼 ⊗ 𝑋𝑋). However, what is the unitary associated with layer 𝑙𝑙1? At first glance, it appears that 

𝑈𝑈1 = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁. However, the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 unitary expects the first qubit to be the control and the second to 

be the target. To get around this issue, the following circuit identity is used: 

 

Figure 7: Reversal circuit identity for backwards 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation. Reproduced from Murali et al. 
[12]. 

 

Thus, an equivalent circuit, incorporating the reversal identity, is shown in Figure 8. This circuit 

can now be analyzed using Equation 2.8.  

 

Figure 8: Equivalent circuit to Figure 6 which can be analyzed. Here, 𝑈𝑈0 = (𝐼𝐼 ⊗ 𝑋𝑋), 𝑈𝑈1 = (𝐻𝐻⊗
𝐻𝐻), 𝑈𝑈2 = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁, and 𝑈𝑈3 = (𝐻𝐻⊗𝐻𝐻). 

 

     Another situation is when the distance between the control and target qubits of a controlled 

unitary operation is greater than 1 (e.g. for a 3 qubit system, a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 between control 𝑞𝑞0 and target 

𝑞𝑞2). For this case, the generalized bridge operation defined in Section 3.3.1.3 or SWAP gates can 

be used. Figure 9 shows another circuit identity which, along with the reversal of Figure 7, is 

important for quantum transpilation. Figure 9 shows that a SWAP gate decomposes to three 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

gates. The second step in Figure 9 applies a reversal to the middle 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation.  
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Figure 9: SWAP gate decomposition. Reproduced from Siraichi et al. [13]. 

 

     Overall, while this method of analysis may appear to circumvent the need for QCs (i.e. why 

use a QC if basic linear algebra can be used to analyze a circuit), consider a system with 𝑛𝑛 = 500 

qubits. Then the unitaries defining each layer of a circuit for this system would be of size 

2500 × 2500. Performing arithmetic (or let alone persisting) such unitaries is computationally 

unfeasible for classical computers. 

2.3  Quantum Program Transpilation 

     In this section, the need for and steps taken to transpile a quantum program are explored. 

Section 2.3.1 explains why QPT is necessary. Section 2.3.2 then explores a particularly difficult 

step of QPT and the focus of this research effort, the QLP. Finally, Section 2.3.3 presents SOTA 

optimization techniques used to find solutions to the QLP.   

2.3.1  Necessity of Quantum Program Transpilation 

     Although an abstract quantum circuit consists of low-level operations which are performed on 

qubits, limitations of the backend QC require transformations be made to the input logical circuit. 

Without these transformations, the circuit cannot execute on the backend QC. In QPT, two steps 

are required to make a circuit executable on a given backend QC.  

1. The gates used in the logical circuit must be converted into gates the backend QC 

understands. 

2. ∀(𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) pairs of logical qubits involved in 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations in the circuit, 

𝑞𝑞𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 must be placed in adjacent physical qubits.  
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     Gate Decomposition: The first step is necessary because the set of gates available to quantum 

programmers is typically larger than the set of gates the backend QC understands. A given 

backend QC has a basis set of gates. According to Adedoyin et al., for most of IBM’s QCs, the 

basis set of gates is {𝑢𝑢1,𝑢𝑢2,𝑢𝑢3, 𝐼𝐼,𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁} [9]. The 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3 gates are parameterized single-

qubit gates (shown in Figure 10 below). The basis gate-set must be a universal gate-set, meaning 

that any gate of an abstract quantum circuit can be realized by a sequence of the basis gates. 

Fortunately, IBM’s QCs all have basis gate-sets which are universal. Thus, in the first step of 

QPT, the gates of the circuit are decomposed into functionally equivalent sequences of the basis 

gates.  

 

Figure 10: 𝑢𝑢1, 𝑢𝑢2 and 𝑢𝑢3 gate definitions. Reproduced from Zhang et al. [14]. 

 

     𝑪𝑪𝑵𝑵𝑵𝑵𝑵𝑵 Constraints: Next, a problem arises from the fact that logical qubit pairs involved in 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations must be placed in physically adjacent physical qubits. An abstract quantum 

circuit of 𝑀𝑀 logical qubits assumes that a subgraph of the topology defining the backend QC is 

isomorphic to 𝜅𝜅𝑀𝑀. However, in reality, the backend topology has limited connectivity between its 

physical qubits. In the literature, these constraints are commonly referred to as 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints 

[11]. To illustrate this concept, consider the logical circuit and backend QC in Figure 11. 
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Figure 11: Logical circuit (left) to execute on backend QC (right). 

 

     Using the circuit of Figure 11, a coupling map Ω and related coupling graph 𝐺𝐺Ω are 

constructed in Figure 12 to illustrate the interactions between logical qubits in the circuit, as done 

by Murali et al. [12]. For Ω, the element (𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗) is added if there is a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation between 𝑞𝑞𝑖𝑖 

and 𝑞𝑞𝑗𝑗 in the circuit. For 𝐺𝐺Ω, add the directed edge (𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗) if �𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗� ∈ Ω.  

 

Figure 12: Coupling map and coupling graph for the circuit in Figure 11. 

 

     Figure 12 illustrates the fact that 𝐺𝐺Ω is not isomorphic to a subgraph of the topology defining 

the backend QC from Figure 11. Therefore, there exists no placement of logical on physical 

qubits which satisfies all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints. In other words, there is no single mapping between 

logical and physical qubits which places all logical qubits involved in 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations in adjacent 

physical qubits. This turns out to be generally true for most conceivable circuits. That is, in 

general, no single mapping between logical and physical qubits satisfies all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints.  
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     Addressing 𝑪𝑪𝑵𝑵𝑵𝑵𝑵𝑵 Constraints: A quantum program transpiler is also responsible for making 

all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations in the input circuit valid. That is, the transpiler must ensure that for each 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation in the circuit, the control and target qubits of the operation must be placed in 

adjacent physical qubits. Since no single mapping can generally satisfy all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints, a 

mechanism to change the mapping must be introduced. Mappings between logical and physical 

qubits can be changed via 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 operations. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 operations permute the logical qubits along 

the physical qubits, thereby changing the mapping. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 operations, like 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s, can only be 

applied to physically adjacent qubits (for the curious reader, this is because a 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 decomposes 

into 3 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 ops). Figure 13 illustrates steps that can be taken to address 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints.  

 

Figure 13: Steps to satisfy 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints for the circuit, backend of Figure 11. In this figure, 
the logical circuit is superimposed onto the physical topology to illustrate that the operations are 

happening, in reality, between the physical qubits which hold each logical qubit.  

 

     In step 1, an initial mapping between logical and physical qubits is established. In this 

example, the mapping which allowed the most 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations to be executed was chosen. 
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Section 2.3.3 will discuss how SOTA transpilers determine this mapping. Next, the first gate to 

execute in the circuit is a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 between (𝑞𝑞0,𝑞𝑞1). Since the initial mapping placed 𝑞𝑞0 and 𝑞𝑞1 in 

adjacent physical qubits, this operation can execute successfully (shown in step 2). The next gate 

is a 𝐶𝐶𝑁𝑁𝑂𝑂𝑂𝑂 between (𝑞𝑞0,𝑞𝑞2). As in step 2, step 3 can execute successfully based on the initial 

mapping. In step 4, the application of the final 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate between (𝑞𝑞1,𝑞𝑞2) is attempted. However, 

since the physical qubits holding 𝑞𝑞1 and 𝑞𝑞2 are not adjacent, this gate cannot be executed. In step 

5, the mapping between logical and physical qubits is changed via a 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 operation in order to 

make the physical qubits holding 𝑞𝑞1 and 𝑞𝑞2 adjacent. Finally, in step 6, the final 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate can be 

executed.  

     Noise of Quantum Computers: QCs are fickle devices. Currently, quantum computing is in 

the Noisy Intermediate-Scale Quantum (NISQ) era. NISQ-era QCs are prone to noise and 

variability which affect their reliability. While quantum error correcting codes (QEC) exist, 

NISQ-era QCs are too resource-constrained to implement QEC [12]. The main sources of error 

for NISQ-era QCs are from quantum decoherence and erroneous gate operations.  

     The first source of error is due to a phenomenon known as decoherence. In quantum 

computing, the collection of qubits used to carry out computations are the ideal quantum system. 

However, the system is not ideal since it also interacts with the environment (i.e. there is no way 

to isolate the qubits from the environment). Eventually, a system of qubits succumbs to the 

external noise of the surrounding environment and loses its quantum coherence.  

     Decoherence can be measured via 𝑇𝑇1 and 𝑇𝑇2 coherence times. 𝑇𝑇1 is the decay constant 

associated with how long it takes a qubit in the excited state |1⟩ to decay to the ground state |0⟩. 

𝑇𝑇1 measures the loss of energy of a quantum system [15]. 𝑇𝑇2 is the decay constant associated with 

how long it takes a qubit to lose its phase. Table 3 and Table 4 explain how to measure 𝑇𝑇1 and 𝑇𝑇2 

coherence times, respectively.  
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Table 3: Steps to measure 𝑇𝑇1 coherence, 

reproduced from [15]. 

 
Table 4: Steps to measure 𝑇𝑇2 coherence, 

reproduced from [15]. 

For 𝑇𝑇2, After some time 𝑡𝑡, it is expected that the state goes to |0⟩±|1⟩
√2

 (since something in the 

environment likely caused the qubit to go to state |0⟩ or |1⟩, and applying the last 𝐻𝐻 gate causes 

the state to go to |0⟩±|1⟩
√2

  [15]). Figure 14 illustrates the expected results for 𝑇𝑇1 and 𝑇𝑇2 times on a 

1-qubit system. 

 

Figure 14: Expected results of experiments for 𝑇𝑇1 and 𝑇𝑇2. Reproduced from Chuang [15]. 

 

     The second source of error is due to erroneous gate operations. When gates are applied to 

qubits in a QC, they do not always transform the qubit’s state to the correct state-vector. For 

instance, an 𝑋𝑋 gate is supposed to rotate a qubit’s state by 𝜋𝜋 radians about the x-axis. However, 

this operation might be erroneous, and instead rotate the qubit’s state by 𝜋𝜋 + 𝜖𝜖 radians. For IBM’s 

QCs, single-qubit gates have associated error rates of order 10−3, and two-qubit gates have 

associated error rates of order 10−2 [4]. Since two-qubit gate error rates are an order of 

magnitude larger than single-qubit gate error rates, two-qubit gates usually dominate the overall 

1  Initialize a qubit to the state     

2  Apply an X  gate to transform its state to 

3
 Wait for time t  and measure the probability of being in
 the state 

Steps to Measure T1 Coherence

1  Initialize a qubit to the state 

2  Apply an H gate to transform its state to 

3  Wait for time t , then apply an H  gate again, and measure
  the probability of being in the state 

Steps to Measure T2 Coherence
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error incurred by gate operations. Figure 15 shows associated error rates for single-qubit and two-

qubit operations on the IBM QX2.  

 
Figure 15: IBMQ QX2 topology and associated single-qubit and two-qubit error rates. 

Reproduced from “IBM Quantum Experience” [16]. 

 

     Empirical Difference Between Naïve and Intelligent Transpilation: Consider the following 

quantum circuit to be executed on the IBM QX2 backend.  

 

Figure 16: Circuit to transpile (left) on backend QC (right) from [11]. 

 

This circuit ideally has one correct state vector which is |11111⟩. That is, after this circuit 

executes, each qubit should be in the excited state |1⟩. Figure 17 and Figure 18 show two 

transpilations of the circuit to the backend.  
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Figure 17: A naïve transpilation of the circuit in Figure 16 to the IBM QX2 backend. 

 
Figure 18: An intelligent transpilation of the circuit in Figure 16 to the IBM QX2 backend.  

 

First note that both circuits are functionally equivalent (meaning in an ideal case, they produce 

the same state-vector). Next, notice that even though they are functionally equivalent, the first has 

significantly more gates than the second. As discussed earlier in this section, since there is a 

chance that each gate produces an erroneous result, requesting more gates increases the 

probability that an error will occur. Figure 19 shows the results of running the naïvely and 

intelligently transpiled circuits on the IBM QX2.  
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Figure 19: Results of running the naïvely transpiled circuit (left) versus intelligently  transpiled 
circuit (right) on the IBM QX2.  

 

     Figure 19 shows that the naïvely transpiled circuit obtains the correct state-vector 8.7% of the 

time while the intelligently transpiled circuit obtains the correct state-vector 69.1% of the time. 

This example shows the necessity of intelligent QPT. Intelligent QPT maximizes the probability 

that a circuit produces the correct results when run on NISQ-era devices.  

2.3.2  Quantum Layout Problem 

     Before defining the QLP, a more methodical approach to addressing 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints is 

explained. Steps 1-4 below provide a pseudo algorithm to address 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints.  

Step 1: Break the circuit into layers (this process is defined in Section 2.2.3). 

 

𝑙𝑙0 𝑙𝑙1 𝑙𝑙2 
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Step 2: For each layer 𝑙𝑙𝑖𝑖, assign a physical-to-virtual (P2L) mapping 𝜆𝜆𝑖𝑖 such that all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

constraints are satisfied in 𝑙𝑙𝑖𝑖 . For 𝑁𝑁 physical qubits and 𝑀𝑀 logical qubits, let 𝑉𝑉 =

{𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑁𝑁−1} be the set of all physical qubits and 𝑇𝑇 = {𝑞𝑞0, 𝑞𝑞1, … , 𝑞𝑞𝑀𝑀−1} be the set of all 

logical qubits. Now, 𝜆𝜆 is defined as 𝜆𝜆 ∶ 𝑉𝑉 → 𝑇𝑇.  

 

 

These layouts are satisfying because all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations occur between adjacent physical qubits. 

In this example, 𝜆𝜆0 = 𝜆𝜆1 = �𝑃𝑃0𝑞𝑞1
 𝑃𝑃1𝑞𝑞0

 𝑃𝑃2𝑞𝑞2
� and 𝜆𝜆2 = �𝑃𝑃0𝑞𝑞0

 𝑃𝑃1𝑞𝑞1
 𝑃𝑃2𝑞𝑞2
�. 

 

Step 3: Insert layers of SWAP gates 𝜋𝜋𝑖𝑖 to permute between each 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖. In this example, 

since 𝜆𝜆0 = 𝜆𝜆1, no SWAP operations are required to permute between 𝜆𝜆0 and 𝜆𝜆1. However, 𝜆𝜆1 ≠

𝜆𝜆2. Thus, a sequence of SWAP operations must be found to transform 𝜆𝜆1 → 𝜆𝜆2.  

 

 

Satisfying layout 𝜆𝜆0 for 𝑙𝑙0 Satisfying layout 𝜆𝜆1 for 𝑙𝑙1 Satisfying layout 𝜆𝜆2 for 𝑙𝑙2 

Satisfying layout 𝜆𝜆1 for 𝑙𝑙1 Swap layer 𝜋𝜋2 to 
permute 𝜆𝜆1 to 𝜆𝜆2  

Satisfying layout 𝜆𝜆2 for 𝑙𝑙2 
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As illustrated, to permute 𝜆𝜆1 → 𝜆𝜆2 a SWAP must be performed between physical qubits 𝑃𝑃0 and 

𝑃𝑃1. Note that a SWAP layer 𝜋𝜋𝑖𝑖 may consists of no SWAP operations (e.g. 𝜋𝜋1 in above example), 

or multiple 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 operations. As will be explored in later sections, finding a sequence of SWAPs 

to permute between two configurations is generally a difficult task.  

Step 4: Convert satisfying layouts and SWAP layers into a transpiled circuit.  

 

     In the transpiled circuit, each horizontal line represents a physical qubit (as opposed to an 

abstract logical circuit where the horizontal lines represent logical qubits). In QPT, logical qubits 

are “loaded” into each physical qubit via the 𝜆𝜆s. Then, 𝜋𝜋 layers permute the logical qubits along 

the physical qubits. Summarizing, first satisfying 𝜆𝜆s are chosen for each layer of the circuit. Then, 

sequences of SWAP operations are inserted to permute each 𝜆𝜆𝑖𝑖−1 to 𝜆𝜆𝑖𝑖. The resulting transpiled 

circuit, after gate decomposition (i.e. the inserted SWAP gates must be converted into 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

operations), is able to execute on the specified backend QC. Moreover, the functionality of the 
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original circuit is preserved, meaning the transpiled circuit and original abstract circuit are 

functionally equivalent.  

     The Quantum Layout Problem: At this point, a solution to the QLP can be defined. 

Zulehner et al. define a solution to the QLP 𝑀𝑀ℎ as follows [11]: 

𝑀𝑀ℎ = (𝜆𝜆0,𝜋𝜋1, 𝜆𝜆1,𝜋𝜋2, … , 𝜆𝜆𝐿𝐿−2,𝜋𝜋𝐿𝐿−1, 𝜆𝜆𝐿𝐿−1) ∶ 𝜆𝜆𝑖𝑖 ⊢ li (2.9) 

where 𝐿𝐿 is the number of layers in the logical circuit. 

Thus, to find solutions to the QLP, first satisfying layouts 𝜆𝜆0 … 𝜆𝜆𝐿𝐿−1 (denoted by constraints 𝜆𝜆𝑖𝑖 ⊢

li in 𝑀𝑀ℎ) must be found for each layer 𝑙𝑙𝑖𝑖 of the circuit. Then, based on the 𝜆𝜆s, SWAP layers 

𝜋𝜋1 …𝜋𝜋𝐿𝐿−1 must be found, where each 𝜋𝜋𝑖𝑖 permutes 𝜆𝜆𝑖𝑖−1 to 𝜆𝜆𝑖𝑖. 

     The QLP is the problem of mapping logical qubits of a quantum circuit to physical qubits of a 

backend QC such that the mappings satisfy all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints. Here, the mappings refer to the 

𝜆𝜆s defined above. This is a loose definition of the QLP. Stricter definitions add one of the 

following requirements: 

1. The satisfying 𝜆𝜆s result in SWAP layers of minimum aggregate cardinality. That is, 

∑ |𝜋𝜋𝑖𝑖|𝜋𝜋𝑖𝑖∈𝑀𝑀ℎ  is minimized. 

2. The satisfying 𝜆𝜆s result in a transpiled circuit which executes with the maximum 

probability of success.  

Unfortunately, to solve either approach optimally is NP-Hard, as proven by Siraichi et al. [13], 

and Tan and Cong [17]. The following section provides SOTA QLP-solvers that heuristically find 

solutions to the aforementioned definitions of the QLP.  

2.3.3  State of the Art Optimization Techniques for the QLP 

     In defining the QLP, two stricter definitions were proposed in Section 2.3.2 that were both 

NP-Hard to optimally solve. The first, commonly known as finding depth-optimal solutions to the 
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QLP, were the first to be explored by researchers. The second, for which this research calls 

finding fidelity-optimal solutions to the QLP, were later explored. In this section, SOTA depth-

optimal and fidelity-optimal QLP-solvers are discussed.  

     In 2018, Zulehner et al. proposed a novel depth-optimal QLP-solver [11]. Their approach was 

the first to use layering to finding solutions to the QLP. In a layered-approach, the input circuit is 

first divided into layers (as defined earlier in this section), then compliant mappings are found for 

each layer of the circuit. Their work is particularly ground-breaking as layering is a common step 

taken in subsequently devised QLP-solvers. They then define a solution to the QLP as a sequence 

𝑀𝑀ℎ = (𝜆𝜆0,𝜋𝜋1, … , 𝜆𝜆𝐿𝐿−2,𝜋𝜋𝐿𝐿−1, 𝜆𝜆𝐿𝐿−1) where each 𝜆𝜆𝑖𝑖 is a satisfying P2L mapping for 𝑙𝑙𝑖𝑖 (i.e. each 𝜆𝜆𝑖𝑖 

satisfies all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints of 𝑙𝑙𝑖𝑖), and each 𝜋𝜋𝑗𝑗 is a sequence of SWAP operations to permute 

between each 𝜆𝜆𝑗𝑗−1 and 𝜆𝜆𝑗𝑗 .  

     Next, Zulehner et al. define their objective as finding an 𝑀𝑀ℎ where each 𝜆𝜆𝑖𝑖 ⊢ li and the 

distance between each 𝜆𝜆𝑗𝑗−1 and 𝜆𝜆𝑗𝑗  is minimized (thus, this is a depth-optimal approach). As the 

search space to find such an 𝑀𝑀ℎ is exponential, they use an 𝐴𝐴∗ search algorithm to efficiently 

prune for high-quality satisfying solutions. In their approach, they start with the mapping of the 

previous layer 𝜆𝜆𝑖𝑖−1 and generate a minimum sequence of SWAP operations to permute to a 

compliant 𝜆𝜆𝑖𝑖. Their approach generates locally optimal solutions (i.e. between a given 𝜆𝜆𝑖𝑖−1 and 

𝜆𝜆𝑖𝑖, |𝜋𝜋𝑖𝑖| is minimized), but does not guarantee globally optimal solutions (i.e. ∑ |𝜋𝜋𝑖𝑖|𝜋𝜋𝑖𝑖∈𝑀𝑀ℎ  is not 

always minimized). To overcome this issue, they use a look-ahead scheme to account the 

estimated cost of 𝜋𝜋𝑖𝑖+1 into the cost function of their 𝐴𝐴∗ search algorithm. They further improve 

their look-ahead scheme by defining an initial placement scheme that yields a good guess for 𝜆𝜆0 

(the initial mapping) by considering upcoming 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gates early in the circuit. 

     In 2019, Li et al. proposed another depth-optimal QLP-solver which uses a SWAP-based 

Bidirectional (SABRE) heuristic search algorithm to find solutions to the QLP [18]. Li et al. 
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noticed that previous work, mainly from Zulehner et al. [11], suffered from high complexity, poor 

initial mapping, and limited flexibility. To address the shortcomings of previous efforts, Li et al. 

developed a SABRE-based QLP-solver. Their algorithm is provided in Figure 20 below.  

 

Figure 20: SABRE algorithm. Reproduced from Li et al. [18]. 

 

     Their algorithm differs from previous QLP-solvers in that first it is run several times to yield a 

high-quality initial mapping for 𝜆𝜆0. They do this by traversing the reverse circuit, where they not 

only consider gates at the beginning of the circuit to generate 𝜆𝜆0, but also gates in the rest of the 

circuit [18]. This differs from the QLP-solver devised by Zulehner et al. in which their initial 

mapping only considers gates at the beginning of the circuit. Next, Li et al.’s routing method 

improves upon that of Zulehner et al. by considering a candidate SWAP list, which they use to (in 

conjunction with a heuristic cost function) to make informed decisions on the best SWAP 

operations to perform in order to execute more gates. They notice that the routing method of 
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Zulehner et al. considers many candidate SWAPs that are redundant or unnecessary. Their 

informed routing method also operates with time complexity 𝑂𝑂(𝑛𝑛) as opposed to that of Zulehner 

et al. [11] which operates with time complexity 𝑂𝑂(exp(𝑛𝑛)) [18]. Their novel layout and routing 

methods, as compared to the best-known at the time by Zulehner et al., have an exponential 

speedup and comparable to better results on various benchmark QLP problem-instances [18].  

     In 2019, the first fidelity-optimal QLP-solvers were proposed by Tannu et al. [4] and Murali et 

al. [12]. In their approaches, rather than focusing on minimizing the number of SWAP gates 

inserted in the transpiled circuit, their objectives seek to maximize the probability that the 

transpiled circuit executes successfully. In both works, noise-data regarding the reliability of 1-

qubit and 2-qubit operations is considered when determining mappings for each 𝜆𝜆𝑖𝑖.  

     In Murali et al., their strategy to solve the QLP is to first find an initial mapping for 𝜆𝜆0 such 

that the mapping places logical qubits in physical qubits with high reliability. Next, they schedule 

gates in the circuit such that the circuit finishes execution within the coherence time of the qubits. 

Finally, they seek to minimize the number of SWAP gates inserted into the transpiled circuit [12]. 

In their research, they devise two QLP-solvers. In the first, they pose the QLP as a constrained 

optimization problem and use Satisfiability Modulo Theory (SMT) solvers to find solutions. In 

the second, they use greedy heuristics to find solutions to the QLP.  

     In Murali et al.’s SMT-based QLP-solver, they define variables to for P2L mappings (i.e. 𝜆𝜆𝑖𝑖s), 

gate start times, and routing paths used in the 𝜋𝜋 layers. Next, they define constraints to ensure 

each 𝜆𝜆𝑖𝑖 is a valid P2L mapping (the mapping must be bijective), gates are executed in the correct 

order, and routing paths do not overlap [12]. Finally, they define an objective function which is to 

maximize the probability of successful circuit execution based on the calibration data from IBM.  

     Murali et al. admit that their SMT-based QLP-solver’s time complexity scales poorly. 

Accordingly, they also devise two greedy heuristics-based QLP-solvers. In their greedy 
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heuristics-based QLP-solvers, both greedily choose the highest fidelity SWAP paths for the qubit 

routing policy. For initial placement, they devise a 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 strategy which places logical qubits 

involved in more 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s in strong subgraphs of the physical topology with high 2-qubit and 

readout fidelities. In their 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 strategy, they place logical qubit pairs which frequently 

entangle in physically adjacent qubits that have high 2-qubit and readout fidelities. No direct 

comparison of their devised QLP-solvers are made against Li et al.’s [18], however their QLP-

solvers outperform Qiskit’s baseline in all test cases, with average performance gains of 2.9x and 

up to 18x over Qiskit [12].  

2.4  Qiskit: A Quantum Computing Framework 

     Qiskit is an open-source framework that allows quantum researchers to create and execute (on 

either circuit on either a real QC or a simulator) quantum circuits. Moreover, Qiskit handles QPT, 

which in turn drastically increases the productivity of quantum researchers. Qiskit consists of four 

foundational elements: Terra, Aer, Ignis, and Aqua [10]. In this research, only Qiskit Terra and 

Aer are used. At a high level, Qiskit Terra provides quantum researchers with the ability to create 

quantum circuits, optimize them for a particular QC, and manage execution of batches of 

experiments [10]. Qiskit Aer provides QC simulators to aid quantum researchers. Sections 2.4.1 

and 2.4.2 provide details on the core modules of Qiskit Terra and Qiskit Aer, respectively. 

Finally, Section 2.4.3 defines Qiskit’s transpilers.  

2.4.1  Qiskit Terra 

     Qiskit Terra is the “foundation on which the rest of Qiskit lies” [10]. Qiskit Terra’s 

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 module allows a user to construct quantum circuit objects. Sequences of gates can 

then be applied to a set of logical qubits in the user’s quantum circuit object. Furthermore, 

measurement gates can be applied to read the states of logical qubits into classical bits. Algorithm 

1 shows the construction of a Bell-state (bs) circuit in Qiskit.  
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Algorithm  Construction of a Bell-State circuit in Qiskit. 
    Imports: Qiskit (qk) ; 
 
    /* Initialize circuit with 2 logical qubits and 2 classical bits */ 
    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑞𝑞𝑞𝑞.𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄(2,2);  
 
    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. ℎ(0) ; /* Apply Hadamard gate to 1st logical qubit */ 
    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑐𝑐𝑐𝑐(0,1) ; /* Apply 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate where 𝑞𝑞0 is the control and 𝑞𝑞1 is the target */ 
 
    /* Measure 1st and 2nd logical qubits into 1st and 2nd classical bits, respectively */ 
    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚([0,1], [0,1]) ;  
 
    Output A 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 object which encapsulates a Bell-State circuit. 
 

Algorithm 1: Bell-state circuit in Qiskit. 

 

     Next, Qiskit Terra’s 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 module allows a user to define a backend QC to 

execute their quantum circuit on. In this module, a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is an object that provides access to  

various backend QCs [10]. A 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 interacts with a backend QC and obtains information 

such as noise-data (e.g. 1-qubit, 2-qubit, and readout error rates), the coupling map of the QC, etc. 

A 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is an object that represents the QC (or simulator) [10]. In particular, a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

object has a 𝑟𝑟𝑟𝑟𝑟𝑟() method which takes a transpiled circuit and executes it on the specific 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 instance. Algorithm 2 shows the instantiation of a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 in Qiskit. 

Algorithm  Instantiating a provider and backend in Qiskit. 
    Imports: Qiskit (qk) ; 
 
    /* 𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝()  returns a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 object; user req’d to create account with IBMQ */ 
    𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑞𝑞𝑞𝑞. 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼.𝑔𝑔𝑔𝑔𝑔𝑔_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(ℎ𝑢𝑢𝑢𝑢 = ′𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢′,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = ′𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢′,  
                                                                   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ′𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢′) ;  
    /* 𝑔𝑔𝑔𝑔𝑔𝑔_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏() returns a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 object */ 
    𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑔𝑔𝑔𝑔𝑔𝑔_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_5_𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦′) ;  
 
    Output A 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 object encapsulating a QC to run a circuit on. 
 

Algorithm 2: Provider and backend configuration in Qiskit. 

 

     After a circuit is constructed and a backend is instantiated, the circuit is transpiled via methods 

and mechanisms available in Qiskit Terra’s 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 module. In Qiskit, QPT is handled 
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via a modular mechanism called a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. A 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is composed of a collection 

of transpilation passes which are applied to the circuit. For example, a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 commonly 

has passes to address gate decomposition and 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints (see Section 2.4.3 for more 

information about passes). Qiskit Terra also has a 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡() method that takes a 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄, 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, and optimization level and automatically creates and executes a 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 on the circuit. Thus, the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 method handles all QPT steps and create a 

satisfying circuit that is executable on the selected backend. The optimization level dictates which 

passes are applied to the circuit (see Section 2.4.3 for more information). Algorithm 3 shows how 

to use the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 method to create a transpiled circuit, optimized for a given backend.  

Algorithm  Transpiling a circuit in Qiskit. 
    Imports: Qiskit (qk) ; 
    Inputs: A 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 to execute, a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 to execute on, and an 𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 
 
    𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑞𝑞𝑞𝑞. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ; 
 
    Output A 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 object encapsulating a functionally equivalent transformation of 
                  the input circuit optimized to execute on the input backend. 
 

Algorithm 3: Transpiling a circuit in Qiskit. 

  

     If 𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =3,  then all optimization passes available in Qiskit are executed, and this 

optimization level embodies the SOTA transpiler offered by Qiskit. Finally, the transpiled circuit 

can be executed on the backend via the backend’s 𝑟𝑟𝑟𝑟𝑟𝑟() method. As execution is not 

synchronous, this method returns a  𝐽𝐽𝐽𝐽𝐽𝐽 object. The job, once complete, returns a 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 object, 

which contains the results of running the circuit on the backend QC. Algorithm 4 shows how to 

submit a job and extract the results of running the circuit on the backend.  
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Algorithm  Running a transpiled circuit on a backend in Qiskit. 
    Imports: Qiskit (qk) ; 
    Inputs: A 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 encapsulating the transpiled circuit to execute, and a 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 to  
                  execute on. 
     
    /* Before submitting a job, serialize circuit and backend into a 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 */ 
    𝑞𝑞_𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑞𝑞𝑞𝑞. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒) ; 
 
    /* Submit the job and receive 𝐽𝐽𝐽𝐽𝐽𝐽 object */ 
    𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞_𝑜𝑜𝑜𝑜𝑜𝑜) ; 
 
    /* Monitor for completion of job */ 
    𝑞𝑞𝑞𝑞. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑗𝑗𝑗𝑗𝑗𝑗_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑗𝑗𝑗𝑗𝑗𝑗) ; 
    /* Above command returns when job complete */ 
 
    /* Retrieve results of job */ 
    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑗𝑗𝑗𝑗𝑗𝑗. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟().𝑔𝑔𝑔𝑔𝑔𝑔_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ;  
 
    Output A dictionary where the keys are measured basis states and the values are the number 
                  of shots that returned each basis state. 
 

Algorithm 4: Transpiling and running a circuit in Qiskit. 

 

     In Algorithm 4, first the transpiled circuit and backend are serialized into a 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 (this is 

the format that the 𝑟𝑟𝑟𝑟𝑟𝑟() method expects). Then, the job is submitted via Qiskit’s 𝑟𝑟𝑟𝑟𝑟𝑟() method. 

Next, a job monitor is used to wait for the backend to return a 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 object. Finally, a 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 

object is obtained. By default, a Qiskit program executes 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 1024 times on the backend 

QC. As such, the results obtained from Algorithm 4 are encapsulated in a dictionary where the 

keys are the measured basis states, and the values are the number of shots which returned each 

basis state.  

2.4.2  Qiskit Aer 

     Qiskit Aer’s primary functionality is the speed up development time by providing quantum 

researchers with QC simulators. While real quantum hardware provide the most authentic results,  

simulators are demanded for two main reasons: 

1. Reproducibility of experiments 
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2. Long wait times in queue 

     First, when quantum researchers perform experiments, results inevitably vary due to the 

stochastic noise of QCs. Effectively, it is impossible to accurately reproduce results unless the 

state of the QC at the time of program execution is determinable (which is currently unfeasible). 

Second, and most frustratingly, for many of IBM’s backend QCs, the wait time to actually run an 

experiment is exceptionally long (from personal experience, some queue times are over 24 

hours).  

     To address these demands, Qiskit Aer provides a 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 [10]. A base 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 can be thought of as a backend QC with connectivity defined by 𝜅𝜅𝑁𝑁 (i.e. for 𝑁𝑁 

physical qubits, all physical qubits are connected to each other) and perfect fidelity (i.e. all gate 

operations produce the correct state-vectors without noise and environmental noise, such as 𝑇𝑇1 

and 𝑇𝑇2 errors). Algorithm 5 shows how to run the Bell-State circuit on the 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄.  

Algorithm  Running Bell-State circuit on simulator in Qiskit. 
    Imports: Qiskit (qk) ; 
     
    /* Create Bell-State circuit as done previously in this section */ 
    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐() ;  
 
    /* Get the simulator backend */ 
    𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑞𝑞𝑞𝑞.𝐴𝐴𝐴𝐴𝐴𝐴.𝑔𝑔𝑔𝑔𝑔𝑔_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(′𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′) ;  
 
    /* Submit the job; execute automatically performs 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡() and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎() */ 
    𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑞𝑞𝑞𝑞. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑠𝑠𝑠𝑠𝑠𝑠) ; 
 
    /* Retrieve results of job */ 
    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑗𝑗𝑗𝑗𝑗𝑗. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟().𝑔𝑔𝑔𝑔𝑔𝑔_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ; 
 
    Output A dictionary where the keys are measured basis states and the values are the number of  
                  shots that returned each given basis state. 
 

Algorithm 5: Running a circuit on Qiskit’s backend simulator. 

 

     In some experiments, the noisiness of QCs is a variable of the research effort. However, the 

variability of real QCs make results irreproducible. Qiskit Aer provides a means to address the 
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communities demand for consistently unreliable QC simulators via a 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. A 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 can augment a 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 and provides it with configurable noise data [10]. 

A quantum researcher can customize their own 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, or derive one from a specific 

backend QC. While a 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 does not perfectly mimic a given backend QC, it performs 

similar by accounting for gate-related errors (1-qubit, 2-qubit, and measurement), as well as 𝑇𝑇1 

and 𝑇𝑇2 related errors [10]. Algorithm 6 shows how to augment a 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 with a 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 for a given backend QC.  

Algorithm  Running Bell-State circuit on simulator with a NoiseModel in Qiskit. 
    Imports: Qiskit (qk), qk.aer.NoiseModel (NoiseModel) ; 
    Inputs: A 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 object encapsulating the QC to mimic.  
 
    /* Create Bell-State circuit as done previously in this section */ 
    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐() ; 
 
    /* Create a noise model for the backend */ 
    𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ; 
    𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑() ;    /* Can save noise model for later use */ 
 
    /* Get the simulator backend */ 
    𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑞𝑞𝑞𝑞.𝐴𝐴𝐴𝐴𝐴𝐴.𝑔𝑔𝑔𝑔𝑔𝑔_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(′𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′) ;  
 
    /* Get coupling map and basis gates for backend */ 
    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(). 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚 ; 
    𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ; 
 
    /* Submit job */ 
    𝑗𝑗𝑗𝑗𝑗𝑗 = 𝑞𝑞𝑞𝑞. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 
                                    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,  
                                    𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 3, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1, 𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1) ; 
 
    /* Retrieve results of job */ 
    𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑗𝑗𝑗𝑗𝑗𝑗. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟().𝑔𝑔𝑔𝑔𝑔𝑔_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ;  
 
    Output A dictionary where the keys are measured basis states and the values are the number of 
                  shots that returned each given basis state. 
 

Algorithm 6: Augmenting Qiskit’s backend simulator with a NoiseModel. 

 

     In Algorithm 6, first notice that the noise model can be saved for later use. That is, 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 can be used to instantiate the same 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁. Next, since the Qiskit 
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transpiler and simulator are stochastic, the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒() command must be provided seeds if 

consistent results are required. The output of running a circuit on a simulated noisy backend 

mimics executing the circuit on the real backend, accounting for decoherence, single and two-

qubit gate errors, and measurement errors.  

2.4.3  Qiskit’s Transpiler  

     Qiskit’s transpiler is implemented via a 𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀. A 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 iterates through a 

series of passes, where each pass either creates a transformation of the circuit, or runs analysis on 

the circuit. A minimal 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 first runs a decomposition pass (to convert all gates to the 

devices basis gate-set), then a pass to ensure all 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 constraints are satisfied, and finally a final 

decomposition pass (to convert all inserted gates from the previous pass to the devices basis gate-

set). Qiskit offers four pre-defined 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, optimization levels 0 through 3, where the 

optimization level 0 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 does minimal optimization, and optimization level 3 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 applies a series of SOTA passes to optimize a circuit for a given backend QC 

[10]. Figure 21 provides the passes Qiskit applies in its baseline 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (optimization 

level 1) and its optimal 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (optimization level 3). Let 𝑄𝑄𝑄𝑄𝑇𝑇𝑖𝑖 denote the Qiskit 

transpiler with optimization level 𝑖𝑖.  

 



  

46 
 

 
Figure 21: Transpiler passes executed by Qiskit optimization levels 1 and 3. Reproduced from 

Kamaka [19]. 

      

     Qiskit’s SOTA transpiler (𝑄𝑄𝑄𝑄𝑇𝑇3) is composed of a series of transpiler passes which 

collectively exhibit the SOTA transpilation tool available to Qiskit users. The transpiler passes 

can be divided into three main categories: decomposition passes, gate-consolidation passes, and 

QLP-solver passes. The gate decomposition passes decompose the gates of the abstract circuit 

into gates which are realizable on quantum hardware. The gate-consolidation passes combine 

sequences of operations into new sequences of operations which are shorter, mainly using circuit 

identities (e.g. 𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑍𝑍, 𝐻𝐻𝐻𝐻𝐻𝐻 = −𝑌𝑌, and 𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑋𝑋 [7]).  

     In Qiskit, the QLP is divided into two transpiler passes: first, a satisfying initial mapping of 

between logical and physical qubits (i.e. a solution for 𝜆𝜆0) is established via a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 pass. 

Second, all subsequent mappings (i.e. 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1) are established, as well as SWAP gates 

inserted, via a 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 pass. In the 𝑄𝑄𝑄𝑄𝑇𝑇3, the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 passes, 

by default, are the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 passes, respectfully.  
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     While the 𝑄𝑄𝑄𝑄𝑇𝑇3 has a series of pre-defined QPT steps, it can easily be augmented to execute 

additional/alternative passes if needed. For instance, the 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 pass can be replaced by a 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 pass which uses a different algorithm for the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 than the 

former. The modularity of the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 allows quantum researchers to easily test various 

transpiler configurations, which is particularly useful in this research effort when comparing the 

effectiveness of the devised QLP-solvers versus SOTA QLP-solvers. Table 5 and Table 6 provide 

the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 passes available in Qiskit.  

Layout Method Description 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Each physical qubit is mapped to each logical qubit in increasing 

order [10]. For instance, for 3 logical and physical qubits, {𝑃𝑃0 →
𝑞𝑞0,𝑃𝑃1 → 𝑞𝑞1,𝑃𝑃2 → 𝑞𝑞2}. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 Logical qubits are mapped to physical qubits by placing the most 
frequently entangled logical qubits in the most connected subset of 
the physical qubits [10]. The cost function uses a depth-optimal 
strategy. 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 Employs the qubit mapping method of  Murali et al. [12]. Their cost 
function uses a fidelity-optimal strategy. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Employs the qubit mapping method of Li et al. [18]. Their cost 
function uses a depth-optimal strategy. 

Table 5: Layout methods available in Qiskit. 

 

Routing Method Description 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 Naively routes logical qubits along physical qubits to satisfy 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

constraints (in a greedy manner).  
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒 Employs the qubit routing method of Zulehner et al. [11]. Their cost 

function uses a depth-optimal strategy. 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Using a randomized algorithm, iteratively tests random permutations 

of P2L mappings and selects lowest-cost permutation at each step 
[19]. The cost function uses a depth-optimal strategy. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Employs the qubit routing method of Li et al. Their cost function uses 
a depth-optimal strategy. 
Table 6: Routing methods available in Qiskit.  
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2.5  Metaheuristics 

     Talbi defines metaheuristics as a family of approximation techniques used to find high-quality 

solutions to difficult optimization problems [6]. Boyd and Vandenberghe define an optimization 

problem as follows [20]: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 

𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1, … ,𝑚𝑚 

ℎ𝑗𝑗(𝑥𝑥) = 0,           𝑗𝑗 = 1, … ,𝑝𝑝 

Here, 𝑥𝑥 is an 𝑛𝑛-variable vector of real and/or discrete values, 𝑓𝑓 is the objective function (also 

known as a fitness function) to optimize where 𝑓𝑓 ∶  (ℤ ∨ ℝ)𝑛𝑛 → ℝ, 𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 0 are the inequality 

constraints, ℎ𝑗𝑗(𝑥𝑥) = 0 are the equality constraints, and 𝑚𝑚 ≥ 0, 𝑝𝑝 ≥ 0 [20]. Each element 

(variable) of 𝑥𝑥 is known as a decision variable. Although the above formulation minimizes the 

objective function, maximization is  accomplished by negating the objective function. Thus, 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓(𝑥𝑥) is the same as 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 1 ∙ 𝑓𝑓(𝑥𝑥).  

     An optimization problem can be converted into a problem that metaheuristics can be applied 

to by defining a representation to encode solutions of the problem. In other words, a 

representation is a function 𝑅𝑅 ∶ 𝑋𝑋 → 𝑆𝑆, where 𝑆𝑆 is the search space. Thus, 𝑅𝑅 induces a search 

space on the solution space which metaheuristics can traverse. In literature, the search space is 

commonly called the genotypic space and the solution space is called the phenotypic space (and 

encoded solutions are genotypes while decoded solutions are phenotypes). According to Talbi, a 

representation 𝑅𝑅 is sufficient if it meets the following criteria [6]: 

1. Completeness: ∀𝑥𝑥 ∈ 𝑋𝑋, 𝑥𝑥 is represented by 𝑅𝑅.  

2. Connexity:  ∀𝑠𝑠1, 𝑠𝑠2 ∈ 𝑆𝑆 × 𝑆𝑆, there is a search path from 𝑠𝑠1 to 𝑠𝑠2 in 𝑆𝑆.  

a. This ensures that given any solution 𝑠𝑠 ∈ 𝑆𝑆, a global optimum 𝑠𝑠∗ is reachable. 
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3. Efficiency: The representation is easy to manipulate via search operators. 

     Once a sufficient representation function 𝑅𝑅 has been defined, 𝑅𝑅−1 ∶ 𝑆𝑆 → 𝑋𝑋 can be used to 

decode an encoded solution. Then, the feasibility of a solution is determined via the constraints, 

and the quality of a solution evaluated via the objective function.  

     Random-Key Encoding: To provide an example of encoding, consider the traveling salesman 

problem (TSP). For a TSP instance with 𝑛𝑛 cities 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 (where 𝑐𝑐1 is the start city), a feasible 

solution (i.e. a tour) is represented by a permutation of  the list 𝑡𝑡𝑘𝑘 = (𝑐𝑐2, 𝑐𝑐3 … , 𝑐𝑐𝑛𝑛). Thus, the 

solution space 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇 is the set of all permutations of 𝑡𝑡𝑘𝑘. How can all solutions in 𝑋𝑋𝑇𝑇𝑇𝑇𝑇𝑇 be 

represented for a metaheuristic? Naively, 𝑛𝑛 − 1 decision variables 𝑑𝑑2, 𝑑𝑑3, … ,𝑑𝑑𝑛𝑛 can be defined, 

where each 𝑑𝑑𝑖𝑖 is assigned to a city 𝑐𝑐𝑗𝑗. However, such a representation is inefficient, as it produces 

many infeasible solutions (e.g. a city is visited more than once). Alternatively, a random-key 

encoding can be used. In random-key encoding, real-valued variables are used to represent 

permutations [21]. For the TSP, first define 𝑛𝑛 − 1 decision variables 𝑑𝑑2,𝑑𝑑3, … , 𝑑𝑑𝑛𝑛 where each 𝑑𝑑𝑖𝑖 

corresponds to 𝑐𝑐𝑖𝑖. Then, assign each 𝑑𝑑𝑖𝑖 a real-value in range [0,1]. Finally, to decode a valid 

permutation from the decision variables, sort the elements of 𝑡𝑡𝑘𝑘 by their corresponding 𝑑𝑑𝑖𝑖s in 

ascending order (via a stable sorting algorithm). The resultant phenotype is always a valid 

permutation of 𝑡𝑡𝑘𝑘. The search space, 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇, is defined by the continuous space ℝ𝑛𝑛−1. Figure 22 

shows how random-key encoding works on a sample TSP problem. 
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Figure 22: Example of how random-key encoding induces a permutation of a tour in a 5-city TSP 
problem-instance.  

 

     Metaheuristic algorithms are generally classified into two categories: single-solution-based 

and population-based metaheuristics. These classes of metaheuristics significantly differ in 

strategy employed to optimize a given problem. Sections 2.5.1 and 2.5.2 explain the single-

solution based metaheuristics and population-based metaheuristics used in this research effort, 

respectively. 

2.5.1  Single-Solution Based Metaheuristics 

     Single-solution based-metaheuristics (S-metaheuristics) iteratively improve a single solution. 

Talbi describes that this class of metaheuristics can be thought of as taking “walks” through the 

search space of the optimization problem [6]. During these walks, the goal is to move from the 

initial solution to a solution of better fitness. 

     In the design of S-metaheuristics, walking through the search space is commonly done via 

exploration of neighborhoods. A neighborhood function 𝑁𝑁 is a function that assigns each solution 

𝑠𝑠 ∈ 𝑆𝑆 a set of solutions 𝑁𝑁(𝑠𝑠) ⊂ 𝑆𝑆 [6]. Talbi says a neighbor 𝑛𝑛 ∈ 𝑁𝑁(𝑠𝑠) is “generated by the 

application of a move operator that performs a small perturbation to the solution 𝑠𝑠.” The 

perturbation a move operator performs is also known simply as a move. The structure of a 

neighborhood is dependent on the optimization problem. In order for S-metaheuristics to perform 
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meaningful search, the neighborhood should have strong locality. Locality is defined as the effect 

on the fitness when small perturbations are made in the representation [6]. Strong locality loosely 

means that ∀(𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠′ ∈ 𝑁𝑁(𝑠𝑠)), 𝑓𝑓(𝑠𝑠) is similar to 𝑓𝑓(𝑠𝑠′).  

     One of the most common S-metaheuristics used in practice is local search. In local search, one 

starts with an initial solution 𝑠𝑠0. Then, a single neighborhood function 𝑁𝑁 is defined. At each 

iteration, the algorithm replaces the current solution with a neighboring solution of better 

objective score than the current (until none exists) [6]. Algorithm 7 presents the local search 

algorithm. 

Algorithm  Template of a local search algorithm. 
    Inputs: A neighborhood function 𝑁𝑁(𝑠𝑠).  
     
    𝑠𝑠 = 𝑠𝑠0 ; /* Generate an initial solution 𝑠𝑠0 */ 
    While not 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Do 
        𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑁𝑁(𝑠𝑠) ; /* Generation of candidate neighbors */  
        If there is no better neighbor Then Stop ;  
        𝑠𝑠 = 𝑠𝑠′ ; /* Otherwise, select a better neighbor 𝑠𝑠′ ∈ 𝑁𝑁(𝑠𝑠) */ 
    End While 
 
    Output Final solution (local optima).  
 

Algorithm 7: Local search. Reproduced from Talbi [6]. 

 

Local search continues until some 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are satisfied. In general, search 

ceases when for a given solution 𝑠𝑠, ∀𝑠𝑠′ ∈ 𝑁𝑁(𝑠𝑠), 𝑓𝑓(𝑠𝑠′) ≤ 𝑓𝑓(𝑠𝑠) (for maximization problems) or 

𝑓𝑓(𝑠𝑠′) ≥ 𝑓𝑓(𝑠𝑠) (for minimization problems).  

     While local search is a useful S-metaheuristic, it tends to get stuck in local optima. To 

overcome this, Talbi proposes numerous strategies [6]. For this research effort, the technique of 

variable neighborhood descent (VND) is selected as a means to perform local search and escape 

local optima.  
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2.5.1.1  Variable Neighborhood Descent 

     VND improves upon local search by systematically changing the landscape of the 

optimization problem. Specifically, VND uses numerous neighborhood functions (as opposed to 

local search which uses only one neighborhood function). VND, like local search, is a 

deterministic algorithm. In VND, first a set of neighborhood structures 𝑁𝑁𝑙𝑙(𝑙𝑙 = 1, … , 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) are 

defined. Next, an objective function to optimize is defined. Then, an initial solution 𝑠𝑠0 is provided 

(or generated randomly). VND then searches 𝑁𝑁1 for an improving neighbor until no improving 

neighbors are found in 𝑁𝑁1. At which point, the neighborhood structure is changed from 𝑁𝑁𝑙𝑙 to 

𝑁𝑁𝑙𝑙+1. If an improving solution is found in 𝑁𝑁𝑙𝑙, the neighborhood structure returns to the first 

neighborhood (𝑁𝑁1). This process continues until no improving solutions are found in 𝑁𝑁1 …𝑁𝑁𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚.  

Algorithm 8 presents the VND. 

Algorithm  Template of the VND algorithm. 
    Inputs: A set of neighborhood structures 𝑁𝑁𝑙𝑙 for 𝑙𝑙 = 1, … , 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  and an objective function 𝑓𝑓 
                 to optimize. 
 
    𝑠𝑠 = 𝑠𝑠0 ; /* Generate an initial solution 𝑠𝑠0 */ 
    𝑙𝑙 = 1 ;  
    While 𝑙𝑙 ≤ 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  Do 
        Find the best neighbor 𝑠𝑠′ of 𝑠𝑠 in 𝑁𝑁𝑙𝑙(𝑠𝑠) ;  
        If 𝑓𝑓(𝑠𝑠′) ≤ 𝑓𝑓(𝑠𝑠) Then 𝑠𝑠 = 𝑠𝑠′; 𝑙𝑙 = 1; /* for minimization problem */ 
        Otherwise 𝑙𝑙 = 𝑙𝑙 + 1 ;  
     
    Output Final solution found (local optima with respect to all neighborhoods). 
 

Algorithm 8: VND. Reproduced from Talbi [6]. 

 

Mladenović and Pérez explain that VND is built upon the following perceptions [22]: 

1. A locally optimal solution with respect to one neighborhood structure is not necessarily a 

locally optimal solution in a different neighborhood structure. 

2. A globally optimal solution is locally optimal with respect to all neighborhood structures. 
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3. In many problems, locally optimal solutions with respect to one or several neighborhood 

structures are relatively close to each other.  

     In the development of metaheuristics to solve optimization problems, one must account for 

two competing objectives: intensification and diversification. Intensification refers to exploitation 

of the best solution(s) found. Diversification refers to exploration of the search space. Local 

search primarily focuses on intensification. Given an initial solution, local search iteratively 

selects the most improving neighbor until none exists. However, if the initial solution was in a 

region of the search space not close to a global optima, local search can reach a local optima that 

is not near (in fitness) to the global optimal. VND, like local search, intensifies a given solution 

until no improving solutions are found in 𝑁𝑁1. Then, VND changes the neighborhood to search for 

improving solutions in different neighborhoods. By doing so, this allows VND to potentially 

escape the basin of attraction of local optima. In VND, diversification is managed via systematic 

neighborhood changes.  

2.5.2  Population-Based Metaheuristics 

     While S-metaheuristics improve a single solution, population-based metaheuristics (P-

metaheuristics) iteratively improve a population of solutions. Algorithm 9 presents a template for 

P-metaheuristics. 

Algorithm  High-level template of P-Metaheuristics. 
 
    𝑃𝑃 = 𝑃𝑃0 ; /* Generation of initial population */ 
    𝑡𝑡 = 0;  
    Repeat 
        𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑡𝑡′) ; /* Generation of a new population */ 
        𝑃𝑃𝑡𝑡+1 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃𝑡𝑡 ∪ 𝑃𝑃𝑡𝑡′) ; /* Select new population */     
        𝑡𝑡 = 𝑡𝑡 + 1 ;  
    Until Stopping criteria satisfied 
 
    Output Best solution(s) found. 
 

Algorithm 9: P-metaheuristics template. Reproduced from Talbi [6]. 
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In P-metaheuristics, first an initial population of solutions is generated. Then, P-metaheuristics 

iteratively generate new populations of solutions and apply a selection operation to select the next 

generation’s population from the current population and the newly spawned population.  

     Whereas S-metaheuristics focus more on intensification of a given solution, P-metaheuristics 

generally focus more on diversification by using an evolving population of candidate solutions. In 

this research effort, two P-metaheuristic approaches are explored: evolutionary algorithms and 

evolution strategies. Both approaches are stochastic bio-inspired techniques for optimization.  

     Evolutionary algorithms (EA): In EAs, first an initial population of solutions is generated. 

Generally, the initial population is generated by uniformly sampling the search space. Doing so 

allows for appropriate diversification. Next, each member of the population is scored via the 

fitness (objective) function. EAs employ the following operators each iteration (in the following 

order) [6]:  

1. Selection: This operation determines which parents of the current population are chosen 

for the next generation with a bias towards better fitness. 

2. Reproduction: In EAs, reproduction consists of the following two operations: mutation 

and crossover.  

a. Mutation: The mutation operator creates perturbations to members of the 

population to create new offspring. Mutation is necessary in order to manage 

diversity in the search process.  

b. Crossover: The crossover operator combines two or more solutions in the 

population to generate new offspring. Crossover is necessary in order to manage 

intensification in the search process. Crossover takes parents from the population, 
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mates them, and attempts to generate offspring which exhibit the best traits of 

their parents.  

3. Replacement: This operation determines which members of the previous generation’s 

population and newly spawned offspring from (2) move on to the next generation. Thus, 

replacement employs survival of the fittest in Darwinian evolution.  

Algorithm 10 presents the high-level template for an EA. 

Algorithm  Template of an EA. 
    Generate(𝑃𝑃(0)) ; / Initial population */ 
    𝑡𝑡 =  0 ;  
    While not 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃(𝑡𝑡)) Do 
        𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃(𝑡𝑡)) ; 
        𝑃𝑃′(𝑡𝑡) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃(𝑡𝑡)) ;  
        𝑃𝑃′(𝑡𝑡) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑃𝑃′(𝑡𝑡)) ; 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃′(𝑡𝑡)) ;  
        𝑃𝑃(𝑡𝑡 + 1) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑃𝑃(𝑡𝑡), 𝑃𝑃′(𝑡𝑡)) ;  
        𝑡𝑡 = 𝑡𝑡 + 1 ;      
    End While 
 
    Output Best individual or best population found. 
 

Algorithm 10: Template for an EA. Reproduced from Talbi [6]. 

 

     Genetic Algorithms (GA) and Evolution Strategies (ES): GAs and ESs are both types of 

EAs. Both metaheuristics are bio-inspired population-based stochastic optimization techniques. 

Table 7 shows the main differences between GAs and ESs.  
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Table 7: Main characteristics of GAs versus ESs. For ES, 𝜆𝜆 is the number of offspring and 𝜇𝜇 is 
the number of parents. Reproduced from Talbi [6].   

 

     The first main difference between GAs and ESs is that the former are generally used for 

discrete optimization, while the latter are generally used for continuous optimization. Second, 

GAs traditionally use 𝑛𝑛-point or uniform crossover, while ESs typically use either no crossover or 

uniform crossover [6]. Third, GAs traditionally use a “bit-flipping” mutation while ESs use 

normally (Gaussian) distributed mutation [6] [23]. Fourth, replacement strategies are similar for 

both; either selecting members of the next generation based on the best (i.e. highest fitness) 

members of the children (non-elitist GA, (𝜆𝜆, 𝜇𝜇)-ES) or children∪parents (elitist GA, (𝜆𝜆 + 𝜇𝜇)-ES). 

Finally, in terms of overall structure, GAs evolve a population of solutions, where each member 

of the population is composed of tunable parameters. ESs also do this, except it is also popular to 

jointly evolve strategy parameters, where the strategy parameters manage mutation step size for 

each traditional parameter. As such, ESs are coined as employing self-adaptation [6].  

2.5.2.1  Biased Random-Key Genetic Algorithm 

     A biased random-key genetic algorithm (BRKGA) is a variant of a canonical GA tailored to 

optimize problems whose solutions are encoded via random-keys. Before a BRKGA can execute, 

the following hyperparameters must be configured [24]: 
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1. Population size (𝑝𝑝): The total number of individuals to make up the population for a 

given generation. 

2. Elite population portion (𝑝𝑝𝑒𝑒): Automatically persist ⌊𝑝𝑝 ∗ 𝑝𝑝𝑒𝑒⌋ most fit individuals of the 

current population to the next generation.  

3. Mutant population size (𝑝𝑝𝑚𝑚): Introduce ⌊𝑝𝑝 ∗ 𝑝𝑝𝑚𝑚⌋ random solutions into the next 

generation.  

4. Bias (𝜌𝜌𝑎𝑎): In crossover, children inherit genes from elite parent with probability 𝜌𝜌𝑎𝑎 > 0.5 

and from non-elite parent 1 − 𝜌𝜌𝑎𝑎.  

In addition, the BRKGA must be provided with an objective function(s) to optimize and the 

number of decision variables. Algorithm 11 presents the BRKGA.  
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Algorithm  Template of a BRKGA. 
    Inputs: Population size 𝑝𝑝, elite population portion 𝑝𝑝𝑒𝑒, mutant population portion 𝑝𝑝𝑚𝑚, number 
                 of decision variables 𝑛𝑛, probability to inherit genes from an elite parent 𝜌𝜌𝑎𝑎, and an  
                 objective function to optimize 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . 
     
    /* Calculate size of elite population 𝑒𝑒 and size of mutant population 𝑚𝑚 */ 
    𝑒𝑒 = ⌊𝑝𝑝 ∗ 𝑝𝑝𝑒𝑒⌋ ; 𝑚𝑚 = ⌊𝑝𝑝 ∗ 𝑝𝑝𝑚𝑚⌋ ; 
 
    𝑓𝑓∗ = ∞ ; /* Initial value of best solution found */ 
    𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃) ; / Initial population 𝑃𝑃 */ 
 
    While not 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 Do 
        𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃) ; /* Evaluate current population via 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  */ 
    
        /* Split population into elite and non-elite partitions via 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  */ 
        𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 into two sets 𝑃𝑃𝑒𝑒  and 𝑃𝑃𝑒̅𝑒 ;  
 
        𝑃𝑃+ = 𝑃𝑃𝑒𝑒  ; /* Initialize population of next generation */ 
 
        𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 set 𝑃𝑃𝑚𝑚 of mutants, each mutant with 𝑛𝑛 random keys ;  
        𝑃𝑃+ = 𝑃𝑃+ ∪ 𝑃𝑃𝑚𝑚 ; /* Add mutant population to next generation */ 
 
        𝑃𝑃𝑐𝑐 = {} ; /* Initialize offspring population */ 
        For (𝑖𝑖 = 0 ; 𝑖𝑖 < 𝑛𝑛 ; 𝑖𝑖++) Do 
            𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 parent 𝑎𝑎 at random from 𝑃𝑃𝑒𝑒  ; 
            𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 parent 𝑏𝑏 at random from 𝑃𝑃𝑒̅𝑒 ; 
            For (𝑗𝑗 = 0 ; 𝑗𝑗 < 𝑛𝑛 ; 𝑗𝑗++) Do 
                Throw a biased coin with probability 𝜌𝜌𝑎𝑎 of resulting heads;  
                If ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 Then 𝑐𝑐[𝑗𝑗] = 𝑎𝑎[𝑗𝑗] ; 
                Otherwise 𝑐𝑐[𝑗𝑗] = 𝑏𝑏[𝑗𝑗] ; 
            End For 
            𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑐𝑐 ∪ {𝑐𝑐} ; / Add offspring 𝑐𝑐 to offspring population */ 
        End For 
        𝑃𝑃+ = 𝑃𝑃+ ∪ 𝑃𝑃𝑐𝑐 ; */ Add offspring population to next generation */ 
        𝑃𝑃 = 𝑃𝑃+; /* Update population */  
 
       Find best solution 𝜒𝜒+ in 𝑃𝑃 ;  
       If 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝜒𝜒+) < 𝑓𝑓∗ Then 𝑓𝑓∗ = 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝜒𝜒+) ; 
 
    End While 
 
    Output Best solution found 𝑓𝑓∗. 

Algorithm 11: BRKGA. Adapted from Goncalves and Resende [24].  

 

     After the algorithm’s parameters are configured, the BRKGA begins by partitioning the 

population 𝑃𝑃 into two partitions, 𝑃𝑃𝑒𝑒  and 𝑃𝑃𝑒̅𝑒. The elite population, 𝑃𝑃𝑒𝑒 , consists of the 𝑒𝑒 = ⌊𝑝𝑝 ∗ 𝑝𝑝𝑒𝑒⌋ 
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most fit members of 𝑃𝑃. The remaining members of 𝑃𝑃 are placed in the non-elite population, 𝑃𝑃𝑒̅𝑒. 𝑃𝑃𝑒𝑒  

is automatically added to the next generations population. Next, 𝑚𝑚 = ⌊𝑝𝑝 ∗ 𝑝𝑝𝑚𝑚⌋ random solutions 

(mutants) are introduced into the next generations population. In BRKGAs, there is no direct 

mutation operator. Instead, mutation is mimicked by introducing random solutions into each 

population. Next, 𝑝𝑝 − 𝑒𝑒 −𝑚𝑚 children are generated via crossover. In BRKGAs, a parameterized 

uniform crossover operator is used. In this crossover, a parent 𝑎𝑎 is selected from 𝑃𝑃𝑒𝑒  and a parent 𝑏𝑏 

is selected from 𝑃𝑃𝑒̅𝑒. Then, traditional uniform crossover is applied between 𝑎𝑎 and 𝑏𝑏, except the 

children inherit genes from 𝑎𝑎 with probability 𝜌𝜌𝑎𝑎 and genes from 𝑏𝑏 with probability 1 − 𝜌𝜌𝑎𝑎. 

Thus, there is a bias to select genes from the elite (more fit) parent. Finally, the population is 

replaced by 𝑃𝑃𝑒𝑒 ∪ 𝑃𝑃𝑚𝑚 ∪ 𝑃𝑃𝑐𝑐, where 𝑃𝑃𝑚𝑚 is the mutant population and 𝑃𝑃𝑐𝑐 are the offspring generated 

via crossover. The algorithm iterates until some 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are satisfied. 

2.5.2.2  Multi-Objective Evolution Strategies 

     Multi-Objective Evolution Strategies (MOES) is a software package which is capable of 

performing single-objective or multi-objective optimization of real and/or integer parameters. 

Moreover, MOES is efficient, written in C/C++ and is massively parallel (since evaluation of 

individuals in a population is an embarrassingly parallel task) [23]. Parallelism is achieved either 

through using MPI with compiled functions to evaluate the objectives, or in the so-called 

“offline” mode where a serial implementation of MOES communicates with an external parallel 

program through a series of Python scripts that read and write files. Furthermore, when 

performing single objective optimization, MOES can use a hybrid optimization algorithm, 

employing a local search (the Conjugate Gradient algorithm if a gradient is available, or 

otherwise the Nelder-Mead algorithm) after the ES portion of the calculation terminates [23]. 

Figure 23 shows the high-level master-slave architecture of MOES. The same architecture is 

employed when performing single objective optimization in MPI-mode, only the step to perform 

DEA analysis is omitted. 
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Figure 23: Master-slave architecture of MOES. Reproduced from Lill and Smith [23]. 

 

     As is shown in Figure 23, the master processor handles all evolutionary operations, while the 

slave processors are used to evaluate the objective function on each member of the population. 

According to Lill and Smith, MOES requires the user to do the following in order to optimize a 

given problem: 

1. Define objective function(s) in C/C++ function. 

2. On the initial call, provide MOES with the number of objective functions and 

parameters, and whether each parameter is real or integer.  

3. On the initial call, tell MOES whether to minimize or maximize each objective. 

4. On the initial call, specify strict [𝑎𝑎, 𝑏𝑏] bounds and initial the standard deviations for 

each real parameter; initialize the mutation probabilities for each integer parameter. 

5. On all subsequent calls, accept a set of mutated parameters from MOES and return 

the objective(s) to MOES. 
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     On the master processor in Figure 23, the evolutionary process employed by MOES is shown. 

First, children are created via mutation and possibly crossover operations. Next, each member of 

the population is scored via the objective function. For multiple objective problems, Pareto-based 

fitness scores are computed using Data Envelopment Analysis [23]. Since this research effort 

seeks to optimize a single-objective optimization problem, DEA is not performed. Finally, 

selection is performed (i.e. which members of the population survive to the next generation) by 

simple truncation. This is standard in ES, but MOES also includes an option to perform 

tournament selection. This cycle continues until some termination criteria are satisfied.  

     MOES has numerous options to create new children. First, the parents can be simply mutated 

(asexual reproduction) using either uncorrelated or correlated mutations. Additionally, MOES 

provides several options for performing sexual reproduction using crossover [23]:  

• No crossover 

• Uniform crossover 

• Diagonal crossover 

When crossover is employed, one must choose both the recombination mode (sexual or 

panmictic) and the recombination operator (discrete or intermediate) independently for each class 

of physical and strategy parameters: the real and/or integer physical parameters, the associated 

standard deviations and/or mutation probabilities, as well as the covariant angles if correlated 

mutations are used [23]. When recombining in the sexual mode each child is produced from two 

parents only; when recombining in the panmictic mode, the first parent is chosen at random and 

then a new partner is chosen for each parameter [23]. When employing a discrete recombination 

operator, the child’s parameter is chosen to be the corresponding parameter of one of the parents; 

when employing an intermediate recombination operator, the child’s parameter is chosen to be 

the average of the parents parameters [23]. According to Bäck [25], the default modes for 

Evolution strategies are sexual for the physical parameters and panmictic for the strategy 
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parameters; the default operators are discrete for the physical parameters and intermediate for the 

strategy parameters.  

     Since each physical parameter has one associated strategy parameter, the total number of 

parameters is 2 ∙ �𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�, where 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the number of real physical parameters and 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the number of integer physical parameters [23]. Each strategy parameter dictates how 

large of a step-size is allowed for a mutation of its corresponding physical parameter. In MOES, 

the strategy parameters for real physical parameters are standard-deviations. A high (low) 

standard-deviation for a given strategy parameter means larger (smaller) Gaussian perturbations 

are allowed on the corresponding physical parameter by the mutation operator. In effect, with 

high standard-deviations ES explores more of parameter space, while with low standard-

deviations ES explores smaller regions of parameter space. In ES, the indication that an evolution 

is converging on a local optima is when the standard deviations for all the physical parameters are 

driven towards 0 [23]. 

     MOES employs a common notation used in ES to describe particular “strategy”. In a (𝜇𝜇, 𝜅𝜅, 𝜆𝜆)-

evolution, 𝜇𝜇 is the number of parents, 𝜆𝜆 is the number of children, and 𝜅𝜅 is the maximum lifetime 

(in generations) of a solution [23]. When combined with truncation selection, the 𝜇𝜇 + 𝜆𝜆 solutions 

in the evolving population are ordered according to their objective values. Those solutions who 

have reached their maximum lifetime 𝜅𝜅 are put in the back of the queue, and the best 𝜇𝜇 of the 

remaining solutions are selected as the parents for the next generation [23]. 

     In this research, MOES is used for single-objective optimization of a problem. At a high-level, 

the single objective optimization employed by MOES begins by using ES to evolve a population 

of solutions. Evolution continues until the “stall test” indicates evolution has stalled. Finally, 

based on the problem, either a gradient-based or non-gradient based local search is performed on 
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the elite population. Figure 24 illustrates the hybrid algorithm for single objective optimization 

employed by MOES. 

 
Figure 24: Hybrid algorithm for single objective optimization. Reproduced from Lill and Smith 

[23].  

 

     MOES, being highly customizable, offers many configurable hyperparameters which can be 

tuned for a given optimization problem. Table 8 summarizes the main hyperparameters of MOES.  

Parameter Name Parameter Settings Description 
Problem_Type 0, 1, or 2 0 for multiple objective, 1 

for constrained single 
objective, and 2 for 
unconstrained single 

objective. 
Num_Evolutions 𝑖𝑖 ∈ ℕ Number of evolutions to 

perform. 
Num_Generations 𝑖𝑖 ∈ ℕ Maximum number of 

generations in a given 
evolution.  

𝜇𝜇 𝑖𝑖 ∈ ℕ Number of parents in 
crossover. 

𝜆𝜆 𝑖𝑖 ∈ ℕ Number of children in 
crossover. 

𝜅𝜅 𝑖𝑖 ∈ ℕ Maximum lifetime, in 
generations in crossover. 

𝜌𝜌 𝑖𝑖 ∈ ℕ Number of parents used in 
crossover. 

Selection {truncation, tournament} Selection mechanism 
employed. 
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Recombination {None, uniform, diagonal} Type of crossover to 
perform. 

Use_Amoeba 0, 1, or 2 Apply Downhill Simplex 
algorithm after each 
evolution (1), to best 

solution obtained after all 
evolutions (2), do not apply 

(0). 
Table 8: Main hyperparameters available for MOES. Adapted from Lill and Smith [23]. 

 

2.6  Fitness Landscapes 

     Fitness landscapes are a geographic metaphor used to describe the topology of a search space. 

A search operator traverses through a fitness landscape seeking to find the highest peak or lowest 

trough (for maximization and minimization problems, respectively). For some fitness landscapes 

coupled with a search operator, traversal towards a global optima is straightforward (e.g. the 

landscape is convex and selecting improving neighbors always leads towards the global optima). 

In others, local optima prevent the search process from reaching a global optima (e.g. the 

landscape is rugged, with many local optima). In such a case, the local optima “confuse” the 

search operator, since to the operator, it appears that every surrounding point is uphill (for 

minimization problem).  

     Metaphors aside, fitness landscapes are a useful construct to consider when devising search 

algorithms. Insight into the topology of the landscape can provide optimization algorithm 

designers with useful knowledge needed to effectively prune a search space for a high quality 

optima. A fitness landscape, as defined by Malan and Engelbrecht [26], includes the following: 

1. A set 𝑋𝑋 of configurations (solutions to the problem), 

2. a notion 𝑁𝑁 of neighborhood, nearness, distance, or accessibility on 𝑋𝑋, and 

3. a fitness function 𝑓𝑓 ∶ 𝑋𝑋 → ℝ. 

     (1) describes the necessity of a search space in defining a fitness landscape. Next, (2) is 

needed to provide a relationship between elements of the search space. Finally, (3) is needed to 
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assess the quality of solutions in the search space. For instance, consider an optimization problem 

where the goal is to reach the highest point in the state of Colorado. 𝑋𝑋 could be, for example, all 

𝑐𝑐𝑖𝑖 = (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) coordinates in Colorado. 𝑁𝑁 could be the Euclidean distance between 

two arbitrary coordinates 𝑐𝑐1 and 𝑐𝑐2. Finally, 𝑓𝑓 could be the altitude of point 𝑐𝑐𝑖𝑖. Collectively, 

𝑋𝑋, 𝑁𝑁, and 𝑓𝑓 define a fitness landscape.   

 

Figure 25: Example fitness landscape. From the metaphor above, all (𝑥𝑥,𝑦𝑦) coordinates represent 
coordinates in the state of Colorado. Then, 𝑁𝑁 could be used to describe the distance between any 

two arbitrary points. Finally, 𝑓𝑓 is the 𝑧𝑧 axis, where 𝑧𝑧𝑖𝑖 denotes the altitude of point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖). A 
search process could take small steps through this landscape in attempt to find the global optima. 

Reproduced from Olson [27]. 

 

2.6.1  Fitness Landscape Analysis Metrics 

     Characterizing a fitness landscape is non-trivial when the parameter space is greater than two 

dimensions and/or when the search space cannot be enumerated completely. In this section, a 

collection of fitness landscape analysis metrics is provided. Many of the techniques are from a 

survey of fitness landscape analysis techniques by Malan and Engelbrecht [26]. These metrics are 

used to gain insight into the topology of a complex fitness landscape and to analyze the 

effectiveness of a search operator in the landscape. Table 9 provides commonly used metrics for 

fitness landscape analysis.  
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Metric Description 
Ruggedness This metric is used to analyze the number and 

distribution of local optima in the search 
space. Rugged landscapes have many local 
optima, while smooth landscapes have few 
local optima. 

Evolvability This metric broadly measures the capability of 
a search process to move to a place in the 
fitness landscape of better fitness. 

Epistasis This metric is used to analyze the amount of 
interactions among the decision variables. The 
more rugged the fitness landscape, the higher 
the epistasis [6]. Thus, ruggedness metrics can 
also be used to analyze epistasis. 

Fitness Distribution This metric is used to analyze how fitness 
values are distributed across the search space. 

Table 9: Metrics commonly used to analyze fitness landscapes. 

 

     Ruggedness and Epistasis: Most commonly, ruggedness and epistasis are measured 

simultaneously via the autocorrelation function proposed by Weinberger [28]. The 

autocorrelation function, as provided in Talbi [6], is defined as follows: 

𝜌𝜌(𝑑𝑑) = �
�𝑓𝑓(𝑠𝑠) − 𝑓𝑓�̅�𝑓𝑓(𝑡𝑡) − 𝑓𝑓�̅

𝑛𝑛 ∙ 𝜎𝜎𝑓𝑓2𝑠𝑠,𝑡𝑡∈𝑆𝑆×𝑆𝑆,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠,𝑡𝑡)=𝑑𝑑
 

In this definition, 𝑑𝑑 is the distance between solutions in the search space. Commonly, 𝜌𝜌(1) is 

analyzed to measure ruggedness and epistasis (that is, immediate neighbors of 𝑠𝑠 are analyzed). 

𝜌𝜌(𝑑𝑑) → 𝑖𝑖 ∶ 𝑖𝑖 ∈ [−1,1]. When |𝜌𝜌(1)| ≈ 0, this indicates the landscape is rugged (i.e. neighboring 

solutions have very different fitness); when |𝜌𝜌(1)| ≈ 1, this indicates the landscape is flat (i.e. 

neighboring solutions have similar fitness). The autocorrelation function by Weinberger has been 

adapted into pseudocode, as shown below in Algorithm 12.  
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Algorithm  Autocorrelation function. 
    Inputs: The number of sample points 𝑛𝑛 and objective function 𝑓𝑓.  
 
    𝑋𝑋 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛 random sample points in search space 𝑆𝑆;  
 
    𝑓𝑓𝑠𝑠 = [] ; 𝑓𝑓𝑡𝑡 = []; /* Lists to hold scores of parents and scores of best neighbors of parents,  
                                  respectively */ 
     
    For 𝑥𝑥 in 𝑋𝑋 Do 
        𝑥𝑥′ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 a random neighbor of 𝑥𝑥 ;  
        𝑓𝑓𝑥𝑥 = 𝑓𝑓(𝑥𝑥) ; 𝑓𝑓𝑥𝑥′ = 𝑓𝑓(𝑥𝑥′) ; /* score 𝑥𝑥 and neighbor 𝑥𝑥′ of 𝑥𝑥, respectively */ 
        𝑓𝑓𝑠𝑠 .𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓𝑥𝑥) ; 𝑓𝑓𝑡𝑡 . 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓𝑥𝑥′) ; /* persist score of parent and best neighbor */ 
    End For 
 
    𝑓𝑓 ̅= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑡𝑡) ; /* calculate average fitness of sample points */ 
    /* note that 𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑡𝑡 denotes extending list 𝑓𝑓𝑠𝑠 with list 𝑓𝑓𝑡𝑡  */ 
 
    𝜎𝜎𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑓𝑓𝑠𝑠 + 𝑓𝑓𝑡𝑡) ; /* calculate standard deviation of sample points */ 
 
    /* Calculate 𝑝𝑝(1) */ 
    𝑠𝑠𝑠𝑠𝑠𝑠 = 0 ; 
    For (𝑖𝑖 = 0 ; 𝑖𝑖 < |𝑓𝑓𝑠𝑠| ; 𝑖𝑖++) Do 
        𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠 + �𝑓𝑓𝑠𝑠[𝑖𝑖] − 𝑓𝑓�̅ ∗ �𝑓𝑓𝑡𝑡[𝑖𝑖] − 𝑓𝑓�̅ ; 
    End For 
 
    𝑝𝑝  = 𝑠𝑠𝑠𝑠𝑠𝑠 / (𝑛𝑛 ∗ 𝜎𝜎𝑓𝑓2) ;  
     
    Output 𝑝𝑝, the autocorrelation function value. 
 

Algorithm 12: Autocorrelation function. Adapted from Weinberger [28]. 

 

      Evolvability: Evolvability captures a search process’s ability to move to regions of better 

fitness in the search space. When evolvability is high, a search process can efficiently traverse to 

higher-fitness regions of the search space. Conversely, when evolvability is low, moving to 

higher-fit regions of the search space is challenging for a search process. Evolvability can be 

measured via technique 16 of Malan and Engelbrecht [26] called the “Fitness Cloud” technique 

(devised by Verel et al. [29]). The fitness cloud technique describes the relationship between the 

fitness of a solution 𝑠𝑠 and the fitness of its best neighbor 𝑛𝑛∗ ∈ 𝑁𝑁(𝑠𝑠). If for many solutions in the 

search space neighboring solutions have higher fitness, the search process can iteratively choose 

improving neighbors to reach highly fit optima. Technique 16 is provided in Algorithm 13.  
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Algorithm  Fitness cloud. 
    Inputs: The number of sample points 𝑛𝑛 and objective function 𝑓𝑓.  
 
    𝑋𝑋 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛 random sample points in search space 𝑆𝑆;  
 
    For 𝑥𝑥 in 𝑋𝑋 Do 
        𝑥𝑥′ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 best neighbor 𝑥𝑥′ ∈ 𝑆𝑆 of 𝑥𝑥 based on search operator ; 
        𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 the point �𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑥𝑥′)� ; 
    End For 
 
Algorithm 13: Fitness Cloud evolvability technique. Adapted from Malan and Engelbrecht [26]. 

 

     In addition, techniques 21 and 22 of Malan and Engelbrecht (both devised by Lu et al. [30]), 

called the “Fitness-Probability Cloud” and “Accumulated Escape Probability” techniques, can be 

used to measure evolvability. The fitness-probability cloud technique is similar to the fitness 

cloud technique, except instead describes the relationship between the fitness of a solution 𝑠𝑠 and 

the percentage of neighbors 𝑁𝑁(𝑠𝑠) with better fitness than 𝑠𝑠. The accumulated escape probability 

technique provides the probability that a random solution has neighbors of better fitness. If the 

escape probability is low, the search process can get “stuck” at local optima easily. Conversely, if 

the escape probability is high, the search process can continuously select improving neighbors to 

“escape” local optima. As both these techniques work in conjunction, both are provided below in 

Algorithm 14.  
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Algorithm  Fitness-probability cloud with accumulated escape probability.  
    Inputs: The number of sample points 𝑛𝑛 and objective function 𝑓𝑓.  
 
    𝑋𝑋 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛 random sample points in search space 𝑆𝑆;  
    𝑃𝑃 = [] ; /* List to hold 𝑃𝑃𝑖𝑖s each iteration */ 
     
    For 𝑥𝑥 in 𝑋𝑋 Do 
        𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 all neighbors 𝑥𝑥′ ∈ 𝑆𝑆 of 𝑥𝑥 based on search operator ; 
        𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 fitness of all neighbors of 𝑥𝑥 ; 
        𝑃𝑃𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proportion of neighbors with greater fitness than 𝑥𝑥 ; 
        𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 the point (𝑓𝑓(𝑥𝑥),𝑃𝑃𝑖𝑖) ; 
        𝑃𝑃. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑖𝑖) ; 
    End For 
 
    𝑃𝑃𝚤𝚤� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) ; /* Calculate the mean of 𝑃𝑃 */ 
 
    Output 𝑃𝑃𝚤𝚤�, the accumulated escape probability. 
 

Algorithm 14: Fitness-Probability Cloud evolvability technique combined with Accumulated 
Escape Probability technique. Adapted from Malan and Engelbrecht [26]. 

 

     Fitness Distribution: Fitness distribution describes the spread of fitness scores of solutions in 

the search space. Statistical analysis can be performed on a fitness distribution, such as looking at 

the mean, mode, median, and range, to learn more about fitness spread. In order capture fitness 

distribution, technique 9 of Malan and Engelbrecht [26] (devised by Rose et al. [31]) can be used. 

Technique 9 is presented in Algorithm 15.  

Algorithm  Density of states. 
    Inputs: The number of sample points 𝑛𝑛 and objective function 𝑓𝑓.  
 
    𝑋𝑋 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑛𝑛 random sample points in search space 𝑆𝑆;  
 
    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = [] ; /* list to hold all observed fitness scores */ 
    For 𝑥𝑥 in 𝑋𝑋 Do 
        𝑓𝑓𝑥𝑥  = 𝑓𝑓(𝑥𝑥) ; /* Score 𝑥𝑥 */ 
        𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑓𝑓𝑥𝑥) ;  
    End For 
 
    /* statistically analyze fitness scores in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 */ 
 

Algorithm 15: Density of States fitness distribution technique. Adapted from Malan and 
Engelbrecht [26]. 
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2.6.2  Multi-Dimensional Scaling 

     If the parameter space of an optimization problem is two-dimensional, a three-dimensional 

graph can be used to plot the fitness landscape. Alternatively, a two-dimensional plot with colors 

denoting heights (commonly referred to as a heat map) can be used. However, for more than two-

dimensions of parameter space, this visualization procedure does not work. To address this 

dimensionality issue, consider multidimensional scaling (MDS). 

     MDS is used to analyze a dissimilarity matrix and produce a spatial configuration where the 

objects are points [32]. According to Wickelmaier, MDS arranges the points in such a way that 

“their distances correspond to the similarities of the objects: similar object are represented by 

points that are close to each other, dissimilar objects by points that are far apart” [32]. Typically, 

a dissimilarity matrix is provided as input to MDS. A dissimilarity matrix is a 𝑡𝑡 × 𝑡𝑡 matrix 𝐷𝐷 

where 𝐷𝐷𝑖𝑖𝑖𝑖 represents the distance (Euclidean, Manhattan, etc.) between points 𝑖𝑖 and 𝑗𝑗.   

     MDS is an optimization problem. Dimensionality reduction inevitably incurs some loss of 

information, so MDS seeks to find the best solution possible. That is, there is no way to project 

points from a higher dimensional space to a lower dimensional space and preserve all properties 

of the points in the higher dimensional space. A high quality solution of MDS is a configuration 

of points where distance between the points in the lower dimensional space (typically two) is as 

similar as possible to the distance between the points in original dimensionality of the space.    

     Consider a distance matrix 𝐷𝐷(𝑋𝑋), which is a 𝑡𝑡 × 𝑡𝑡 dimensional matrix. MDS tries to find 𝑡𝑡 

points 𝑦𝑦1, … , 𝑦𝑦𝑡𝑡 which exist in 𝑑𝑑 dimensional space. If 𝑑𝑑𝑖𝑖𝑖𝑖
(𝑋𝑋) represents the distance between 𝑥𝑥𝑖𝑖 

and 𝑥𝑥𝑗𝑗  in the original space, and 𝑑𝑑𝑖𝑖𝑖𝑖
(𝑌𝑌) denotes the distance between 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗 in the 𝑑𝑑 dimensional 

space, MDS attempts to minimize the following equation [33]:  
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀���𝑑𝑑𝑖𝑖𝑖𝑖
(𝑋𝑋) − 𝑑𝑑𝑖𝑖𝑖𝑖

(𝑌𝑌)�
2

𝑡𝑡

𝑖𝑖=1

𝑡𝑡

𝑖𝑖=1

 

The term being minimized is often called “stress”. When stress is minimized, points which were 

close in the original space are placed as close as possible in the reduced dimensional space.  

2.7  Token-Swapping Problem 

     An important problem related to the QLP is the token-swapping problem (TokSP). Yamanaka 

et al. describe the TokSP as follows: “[G]iven a graph in which each vertex has an initial and 

target color. Each pair of adjacent vertices can [SWAP] their current colors. [The] goal is to 

perform the minimum number of SWAPs so that the current and target colors agree at each 

vertex” [34]. Consider Figure 26. In this figure, instead of each vertex having an initial and target 

“color”, each vertex has an initial and final token 𝑡𝑡𝑖𝑖.  

 

Figure 26: An instance of the token-swapping problem. Tokens on vertices are written inside 
circles. Vertices are labeled 𝑣𝑣0 … 𝑣𝑣3 and edges are labeled 𝑒𝑒0 … 𝑒𝑒3. Along each thick edge 𝑒𝑒𝑖𝑖 =

�𝑣𝑣𝑗𝑗 ,𝑣𝑣𝑘𝑘�, the token on 𝑣𝑣𝑗𝑗  and 𝑣𝑣𝑘𝑘 are swapped. (a) The initial token-placement. (b)-(c) Intermediate 
token-placements. (d) The target token-placement. 
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     Alternatively, let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) define a graph with vertex-set 𝑉𝑉 = {𝑣𝑣0,𝑣𝑣1, … } and edge-set 𝐸𝐸 

and 𝑇𝑇 = {𝑡𝑡0, 𝑡𝑡1, … } be a set of tokens that can be placed on vertices. Given an initial 

configuration of tokens-on-vertices 𝑓𝑓𝑖𝑖 and a target configuration 𝑓𝑓𝑡𝑡 , the objective of the TokSP is 

to find a minimum sequence of transpositions along 𝐸𝐸(𝐺𝐺) to permute 𝑓𝑓𝑖𝑖 → 𝑓𝑓𝑡𝑡 . In general, it is 

difficult to find optimal solutions to the TokSP. This is supported by Miltzow et al. who prove 

that the TokSP is NP-complete [35].  

     Due to the NP-hardness of the TokSP, finding optimal solutions to TokSP problem-instances 

is a computationally intractable task. Nonetheless, Miltzow et al. devised an approximation 

algorithm for TokSP that returns a solution no worse than 4 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂, where 𝑂𝑂𝑂𝑂𝑂𝑂 is the cost of the 

optimal solution. Their approximation algorithm is guaranteed to run in polynomial time, unlike 

exact methods which run in exponential time. A refinement of their approximation algorithm for 

the TokSP is presented in Appendix B.  

     Miltzow et al. also provide lower- and upper-bounds for the TokSP. In their paper, they begin 

by defining function 𝑑𝑑(𝑡𝑡𝑖𝑖) which yields the distance of token 𝑡𝑡𝑖𝑖 to its target vertex 𝑣𝑣𝑡𝑡. Then, they 

define the aggregate distance 𝐷𝐷 of all tokens from their initial vertices to final vertices as follows: 

𝐷𝐷 = �𝑑𝑑(𝑡𝑡𝑖𝑖)
𝑡𝑡𝑖𝑖∈𝑇𝑇

 

They then prove that their 4-approximation algorithm requires at least 𝐷𝐷
2
 SWAPs and at most 4𝐷𝐷 

SWAPs [35].  

2.8  Summary 

     Section 2.2 begins this chapter by providing background information on an alternative form of 

computation: quantum computing. Next, the necessity for and steps taken in QPT are presented in 

Section 2.3. In the QPT background, the QLP is defined as a critical subroutine of QPT. 

Thereafter, SOTA QLP-solvers are presented and analyzed. Then Section 2.4 provides a tour of a 
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quantum computing framework called Qiskit. A variety of metaheuristic algorithms used in this 

research effort are defined in Section 2.5 along with fitness landscape analysis procedures in 

Section 2.6. Finally, the TokSP is presented in Section 2.7.  
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III. Methodology 

3.1  Overview 

     This chapter defines and describes the methodology used to analyze the research questions 

posed in Chapter I. First, an overview of the approach of this research is provided in Section 3.2. 

In Section 3.3, the QLP is mathematically modeled and integrated into various metaheuristic 

algorithm domains. Section 3.3 also justifies the applicability of metaheuristics to finding 

solutions to the QLP. Section 3.4 outlines the performance analysis metrics used in this research 

to compare the devised meta-based QLP-solvers versus SOTA QLP-solvers. Finally, Section 3.5 

provides procedures to analyze the fitness landscape of the QLP.  

3.2  Approach 

     This research effort has three primary goals. The first is to develop meta-based QLP-solvers. 

The second is to analyze the performance of the meta-based QLP-solvers versus SOTA QLP-

solvers. The final goal is to analyze the fitness landscape of the QLP.  

3.3  Design of QLP-Solvers using Metaheuristics 

     Table 10 provides steps to design metaheuristic algorithms for optimization problems per 

recommendations of Talbi [6].       
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Steps to Design Metaheuristic Algorithms for 
Optimization Problems  

1  Model the problem 

2  Analyze the complexity/difficulty of the    
 problem 

3  Analyze the requirements of the   
 application 

4  Design a metaheuristic 

5  Tune parameters 

6  Evaluate performance 

Table 10: Metaheuristic algorithm design steps. Adapted from Talbi [6]. 

 

In Section 3.3, Steps 1 through 5 are taken to design metaheuristic algorithms to find high-quality 

solutions to the QLP. In Section 3.4, Step 6 is addressed, in which test procedures and metrics are 

defined for performance analysis of the devised QLP-solver.  

3.3.1  Model the Problem 

     Integer programming (IP) is used to model the QLP as an optimization problem. In the design 

of metaheuristic algorithms, the identification of decision variables, constraints, and objective 

function(s) is required to model the problem as an optimization problem that metaheuristics can 

optimize. When modeling a problem, Talbi suggests developing a model based on others 

proposed in previous literature. In Section 2.3.2, an abstract solution 𝑀𝑀ℎ to the QLP is defined as 

follows: 

𝑀𝑀ℎ = (𝜆𝜆0,𝜋𝜋1, 𝜆𝜆1,𝜋𝜋2, … , 𝜆𝜆𝐿𝐿−2,𝜋𝜋𝐿𝐿−1, 𝜆𝜆𝐿𝐿−1) ∶ 𝜆𝜆𝑖𝑖 ⊢ li 

where 𝐿𝐿 is the number of layers in the circuit. 

     Reiterating, to find solutions to the QLP, first a set of satisfying layouts 𝜆𝜆0 … 𝜆𝜆𝐿𝐿−1 must be 

found for each 𝑙𝑙𝑖𝑖 of the circuit. Then, based on the 𝜆𝜆𝑖𝑖′𝑠𝑠, SWAP layers 𝜋𝜋1 …𝜋𝜋𝐿𝐿−1 must be found, 

where each 𝜋𝜋𝑖𝑖 permutes 𝜆𝜆𝑖𝑖−1 to 𝜆𝜆𝑖𝑖. The goal then of the QLP is to find the best 𝑀𝑀ℎ, in the sense 
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of having the highest probability of executing the problem-instance circuit successfully on the 

problem-instance backend. This definition directly follows from the works of Tannu and 

Qureshi [4] and Murali et al. [12], and it corresponds to the second definition of the QLP in 

Section 2.3.2.  

     The following sections cast the QLP as an IP problem based on the model defined by 

Zulehner, Paler, and Wille [11] with the objective defined by Tannu and Qureshi and Murali et al. 

Section 3.3.1.1 defines mathematical formalisms needed for the IP formulation of the QLP. 

Section 3.3.1.2 enumerates the decision variables for the QLP. Section 3.3.1.3 defines the 

constraints of the QLP. Finally, Section 3.3.1.4 and 3.3.1.5 construct objective functions for the 

QLP.  

3.3.1.1  QLP Formalisms 

     Let 𝑀𝑀 be the number of logical qubits in the circuit and 𝑁𝑁 the number of physical qubits on 

the QC topology, 𝑉𝑉 = {𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑁𝑁−1} the set of physical qubits, and 𝑇𝑇 = {𝑞𝑞0, 𝑞𝑞1, … ,𝑞𝑞𝑁𝑁−1} the 

set of logical qubits. Note that when 𝑀𝑀 < 𝑁𝑁, {𝑞𝑞𝑀𝑀 … 𝑞𝑞𝑁𝑁−1} are unused logical qubits. On the other 

hand, if 𝑀𝑀 > 𝑁𝑁, the circuit cannot be executed on the topology, as there are not enough physical 

qubits to hold all logical qubits. Let 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) be a weighted directed graph defining the 

topology of a backend QC. The edge-weight of a directed edge 𝑒𝑒𝑖𝑖𝑖𝑖 = �𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� ∈ 𝐸𝐸(𝐺𝐺) is the 2-

qubit gate error rate between 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗 . A P2L mapping is expressed via the bijective function 𝜆𝜆 ∶

𝑉𝑉 → 𝑇𝑇. To begin, first initialize each 𝜆𝜆𝑖𝑖 to the trivial P2L mapping. That is, initialize  

𝜆𝜆𝑖𝑖 = �𝑃𝑃0𝑞𝑞0
 𝑃𝑃1𝑞𝑞1

… 𝑃𝑃𝑁𝑁−1𝑞𝑞𝑁𝑁−1
�. 

     In each mapping, 𝜆𝜆𝑖𝑖�𝑃𝑃𝑗𝑗� = 𝑞𝑞𝑘𝑘 means physical qubit 𝑃𝑃𝑗𝑗  is maps to logical qubit 𝑞𝑞𝑘𝑘 in 𝜆𝜆𝑖𝑖. 

Consider the following P2L mapping: 

𝜆𝜆𝑖𝑖 = �𝑃𝑃0𝑞𝑞0
 𝑃𝑃1𝑞𝑞1

 𝑃𝑃2𝑞𝑞2
 𝑃𝑃3𝑞𝑞3
�. 
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In this example 𝑁𝑁 = 4, 𝑀𝑀 ≤ 𝑁𝑁,𝑉𝑉 = {𝑃𝑃0,𝑃𝑃1,𝑃𝑃2,𝑃𝑃3}, and 𝑇𝑇 = {𝑞𝑞0,𝑞𝑞1,𝑞𝑞2, 𝑞𝑞3}. 𝜆𝜆𝑖𝑖 represents the 

following P2L mapping: 

𝑃𝑃0 ↦ 𝑞𝑞0 

𝑃𝑃1 ↦ 𝑞𝑞1 

𝑃𝑃2 ↦ 𝑞𝑞2 

𝑃𝑃3 ↦ 𝑞𝑞3 

Equivalently stated, 𝜆𝜆𝑖𝑖(𝑃𝑃0) = 𝑞𝑞0, 𝜆𝜆𝑖𝑖(𝑃𝑃1) = 𝑞𝑞1, 𝜆𝜆𝑖𝑖(𝑃𝑃2) = 𝑞𝑞2, and 𝜆𝜆𝑖𝑖(𝑃𝑃3) = 𝑞𝑞3. Thus, all physical 

qubits are assigned distinct logical qubits. Since 𝜆𝜆 is a bijective function, 𝜆𝜆−1 ∶ 𝑇𝑇 → 𝑉𝑉 represents 

the inverse mapping. 

     Let 𝑡𝑡𝑗𝑗𝑗𝑗 ∶ 𝑇𝑇 → 𝑇𝑇 be the transposition of logical qubits 𝑞𝑞𝑖𝑖𝑗𝑗 and 𝑞𝑞𝑖𝑖𝑘𝑘: 

𝑡𝑡𝑗𝑗𝑗𝑗 = �
𝑞𝑞𝑖𝑖0
𝑞𝑞𝑖𝑖0
⋯
⋯
𝑞𝑞𝑖𝑖𝑗𝑗
𝑞𝑞𝑖𝑖𝑘𝑘

 
⋯
⋯ 
𝑞𝑞𝑖𝑖𝑘𝑘
𝑞𝑞𝑖𝑖𝑗𝑗  

⋯
⋯
𝑞𝑞𝑖𝑖𝑁𝑁−1
𝑞𝑞𝑖𝑖𝑁𝑁−1

�. 

Then, given a mapping 𝜆𝜆𝑖𝑖 where 𝜆𝜆𝑖𝑖�𝑃𝑃𝑗𝑗� = 𝑞𝑞𝑙𝑙 and 𝜆𝜆𝑖𝑖(𝑃𝑃𝑘𝑘) = 𝑞𝑞𝑚𝑚, 𝜆𝜆𝑖𝑖′ = 𝑡𝑡𝑗𝑗𝑗𝑗 ∘ 𝜆𝜆𝑖𝑖 yields 𝜆𝜆𝑖𝑖′�𝑃𝑃𝑗𝑗� = 𝑞𝑞𝑚𝑚 

and 𝜆𝜆𝑖𝑖′(𝑃𝑃𝑘𝑘) = 𝑞𝑞𝑙𝑙. The application of a transposition after a P2L mapping “exchanges” logical 

qubits between two physical qubits. Accordingly, a transposition is commonly called a 

1-exchange operation. More generally, an 𝑛𝑛-exchange operation denotes the application of 𝑛𝑛 

transposition operations to a mapping.  In this definition, 𝑛𝑛 is the total number of transposition 

operations to apply to a given mapping and not the minimum number of transpositions to achieve 

the resulting permutation. For example, 𝑡𝑡𝑗𝑗𝑗𝑗 ∘ 𝑡𝑡𝑗𝑗𝑗𝑗 ∘ 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖 is a 2-exchange even though the 

resulting permutation is the same as the initial.  

     In 𝑀𝑀ℎ, 𝜋𝜋𝑖𝑖 is a sequence of SWAP operations needed to permute configuration 𝜆𝜆𝑖𝑖−1 to 𝜆𝜆𝑖𝑖. 

Mathematically, 𝜋𝜋𝑖𝑖 is a sequence (𝑒𝑒𝑎𝑎𝑎𝑎, 𝑒𝑒𝑐𝑐𝑐𝑐 , … ) where 𝑒𝑒𝑎𝑎𝑎𝑎 , 𝑒𝑒𝑐𝑐𝑐𝑐 … ∈ 𝐸𝐸(𝐺𝐺). Let 𝜋𝜋𝑖𝑖,𝑗𝑗  be the term in 

𝜋𝜋𝑖𝑖 with index 𝑗𝑗 (where the first term in the sequence is 𝜋𝜋𝑖𝑖,0). Given that an edge 𝑒𝑒𝑚𝑚𝑚𝑚 = (𝑃𝑃𝑚𝑚 ,𝑃𝑃𝑛𝑛), 

let 𝑡𝑡(𝑒𝑒𝑚𝑚𝑚𝑚) yield transposition 𝑡𝑡𝑚𝑚𝑚𝑚. Then 𝜋𝜋𝑖𝑖 is a satisfying SWAP sequence if: 
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𝑡𝑡�𝜋𝜋𝑖𝑖,𝑙𝑙� ∘ … ∘ 𝑡𝑡�𝜋𝜋𝑖𝑖,1� ∘ 𝑡𝑡�𝜋𝜋𝑖𝑖,0� ∘ 𝜆𝜆𝑖𝑖−1 = 𝜆𝜆𝑖𝑖   

where 𝑙𝑙 = |𝜋𝜋𝑖𝑖| − 1. 

 

3.3.1.2  Decision Variables 

     In this section, the random-key encoding presented in Section 2.4 is used to represent unique 

permutations of logical on physical qubits for configurations 𝜆𝜆0 … 𝜆𝜆𝐿𝐿−1. As described in 

Section 2.4, random-key encoding uses real-valued variables to represent permutations [21]. For 

the QLP, encoding is performed via the function 𝜒𝜒 ∶ 𝑉𝑉 → [0,1]. First, for each 𝜆𝜆𝑖𝑖 ∈ 𝑀𝑀ℎ, the 

encoding creates an associated mapping 𝜒𝜒𝑖𝑖. Decoding is then applied as follows: for each 𝜆𝜆𝑖𝑖, the 

decoder visits each 𝑃𝑃0,𝑃𝑃1, …𝑃𝑃𝑁𝑁−1 ∈ 𝑉𝑉(𝐺𝐺) and sorts (in ascending order via a stable sorting 

algorithm) 𝜆𝜆𝑖𝑖 based on the corresponding 𝜒𝜒𝑖𝑖. Consider Algorithm 16, which uses a naïve stable 

sorting algorithm to decode unique permutations of each 𝜆𝜆𝑖𝑖 based on their corresponding 𝜒𝜒𝑖𝑖’s. 

Algorithm  Decoding unique permutations for each 𝜆𝜆𝑖𝑖 via random-key encoding. 
    Inputs: Decision variables 𝜒𝜒0 …𝜒𝜒𝐿𝐿−1, number 𝐿𝐿 of layers in the circuit, graph 𝐺𝐺 defining the 

QC topology, number 𝑁𝑁 of physical qubits, and the set 𝑇𝑇 of logical qubits. 
     
    For (𝑖𝑖 = 0 ; 𝑖𝑖 < 𝐿𝐿 ; 𝑖𝑖++) Do 
 
        𝑈𝑈 = 𝑉𝑉(𝐺𝐺) ; /* current unsorted set */ 
 
        /* create mapping 𝜆𝜆𝑖𝑖 based on 𝜒𝜒𝑖𝑖 */ 
        For (𝑗𝑗 = 0; 𝑗𝑗 < 𝑁𝑁; 𝑗𝑗++) Do 
               
             𝑃𝑃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑦𝑦∈𝑈𝑈  𝜒𝜒(𝑦𝑦) ; /* get unsorted vertices with lowest assigned value */ 
             𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = select 𝑃𝑃𝑘𝑘 ∈ 𝑃𝑃 with lowest index 𝑘𝑘 ; /* ensures stable sort */ 
  
             𝜆𝜆𝑖𝑖(𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑞𝑞𝑗𝑗 ; /* add mapping */ 
             𝑈𝑈 = 𝑈𝑈 − {𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚} ;  /* remove 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 from unsorted set */          
 
    Output 𝜆𝜆0 … 𝜆𝜆𝐿𝐿−1, sorted based on 𝜒𝜒0 … 𝜒𝜒𝐿𝐿−1, respectively.  
 

Algorithm 16: Random-key decoding for the QLP. 

 

In the encoding phase, a 𝜒𝜒𝑖𝑖 is created for each 𝜆𝜆𝑖𝑖. To construct a 𝜒𝜒𝑖𝑖, each element 𝑃𝑃𝑗𝑗  of the 

domain 𝑉𝑉 is mapped to a real number 𝑘𝑘𝑖𝑖𝑖𝑖  selected randomly according to a continuous uniform 
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distribution over [0,1]. Since the domain of 𝜒𝜒 has cardinality 𝑁𝑁, and 𝐿𝐿 distinct 𝜒𝜒𝑖𝑖s are created 

during encoding, this encoding results in  𝐿𝐿 ∙ 𝑁𝑁 real-valued decision variables for the QLP, 

enumerable as follows: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑖𝑖𝑖𝑖 ∶ 𝑘𝑘𝑖𝑖𝑖𝑖~𝑈𝑈([0,1]) 

∀𝑖𝑖 ∈ ⟦0,𝐿𝐿 − 1⟧,∀𝑗𝑗 ∈ ⟦0,𝑁𝑁 − 1⟧. 

 

Consider Figure 27. 

 
Figure 27: Random-key encoding example for the QLP.  

 

The QLP problem-instance in Figure 27 considers a circuit with 𝑀𝑀 = 3 logical qubits and 𝐿𝐿 = 2 

layers, and a QC with 𝑁𝑁 = 3 physical qubits. First, two P2L mappings are created for each layer, 

each of which consist of three elements (one for each physical qubit). Then, a 𝜒𝜒𝑖𝑖 is created for 
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each 𝜆𝜆𝑖𝑖. The previous two steps represent the encoding phase. Finally, to decode a valid 

permutation of each 𝜆𝜆𝑖𝑖, each 𝜆𝜆𝑖𝑖 is sorted by its corresponding 𝜒𝜒𝑖𝑖.  

3.3.1.3  Constraints 

     At first glance, the QLP appears to be a constrained optimization problem due to the 

connectivity constraints of the physical topology. That is, 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations can only be executed if 

all control, target pairs (𝑞𝑞𝑐𝑐,𝑞𝑞𝑡𝑡) are placed in physically adjacent physical qubits (𝑃𝑃𝛾𝛾,𝑃𝑃𝜏𝜏). 

However, these constraints can be eliminated from the IP formulation of the QLP by considering 

the generalized bridge operation (GBO).  

     Generalized Bridge Operation: Given a logical control qubit 𝑞𝑞𝑐𝑐 placed in physical qubit 𝑃𝑃𝛾𝛾 

and a logical target qubit 𝑞𝑞𝑡𝑡 placed in physical qubit 𝑃𝑃𝜏𝜏, a bridge operation allows one to achieve 

the effect of a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation between 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑡𝑡 when the distance between 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝜏𝜏 is greater 

than one link. Moreover, performing the bridge operation does not permute the logical qubits on 

physical qubits, and none of the states of the intermediate qubits between 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑡𝑡 are altered. 

Accordingly, the GBO is a layout-preserving operation since the GBO does not induce SWAP 

operations.  

     In some cases, performing a bridge as opposed to swapping requires fewer 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations, 

and in others, the bridge incurs a large cost. The cost of a bridge operation depends on the 

distance separating 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝜏𝜏. For instance, if the distance between 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝜏𝜏 in 𝐺𝐺 is two, a bridge 

operation at this distance requires four 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations, whereas swapping at this distance 

requires two SWAP operations + one 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 = seven 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s (as each SWAP gate decomposes to 

three 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁’s and after swapping the requested 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate is performed). Even though the bridge 

operation in this example requires fewer 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations, if the SWAP operations reduce the 

distance between other qubits involved in 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations, swapping can be more beneficial than 
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bridging in the previous example. The objective functions proposed below rate such candidates 

appropriately. 

     Siraichi et al. provide an example bridge operation when the distance between the physical 

qubits holding 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑡𝑡 is 2 [13]. Figure 28 illustrates how such a bridge operation is performed.  

 

 

Figure 28: Bridge operation at distance 2 where 𝑞𝑞𝑎𝑎 is the control qubit, 𝑞𝑞𝑐𝑐 is the target qubit, and 
𝑞𝑞𝑏𝑏 is an intermediate qubit between 𝑞𝑞𝑎𝑎 and 𝑞𝑞𝑐𝑐. Adapted from Siraichi et al. [13]. 

 

     Next, quantum state analysis [7] is used to demonstrate the correctness of the bridge operation 

posed in Figure 28. Let 𝜓𝜓0 = |𝑞𝑞𝑎𝑎𝑞𝑞𝑏𝑏𝑞𝑞𝑐𝑐⟩. Because 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁�𝑞𝑞𝛼𝛼,𝑞𝑞𝛽𝛽� = �𝑞𝑞𝛼𝛼, 𝑞𝑞𝛼𝛼 ⊕ 𝑞𝑞𝛽𝛽�, it must be 

shown that |𝜓𝜓4⟩ = |𝑞𝑞𝑎𝑎,𝑞𝑞𝑏𝑏,𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑐𝑐⟩. Let 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗) denote a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation between control 

𝑞𝑞𝑖𝑖 and target 𝑞𝑞𝑗𝑗.  

|𝜓𝜓0⟩ = |𝑞𝑞𝑎𝑎 𝑞𝑞𝑏𝑏 𝑞𝑞𝑐𝑐⟩ 
|𝜓𝜓1⟩ = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑏𝑏,𝑞𝑞𝑐𝑐)|𝜓𝜓0⟩ = |𝑞𝑞𝑎𝑎, 𝑞𝑞𝑏𝑏, (𝑞𝑞𝑏𝑏 ⊕ 𝑞𝑞𝑐𝑐)⟩ 
|𝜓𝜓2⟩ = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑎𝑎,𝑞𝑞𝑏𝑏)|𝜓𝜓1⟩ = |𝑞𝑞𝑎𝑎, (𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑏𝑏), (𝑞𝑞𝑏𝑏 ⊕ 𝑞𝑞𝑐𝑐)⟩ 
|𝜓𝜓3⟩ = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑏𝑏,𝑞𝑞𝑐𝑐)|𝜓𝜓2⟩ = |𝑞𝑞𝑎𝑎, (𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑏𝑏), [(𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑏𝑏) ⊕ (𝑞𝑞𝑏𝑏 ⊕ 𝑞𝑞𝑐𝑐)]⟩ 
|𝜓𝜓4⟩ = 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞𝑎𝑎,𝑞𝑞𝑏𝑏)|𝜓𝜓3⟩ = |𝑞𝑞𝑎𝑎, [𝑞𝑞𝑎𝑎 ⊕ (𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑏𝑏)], [(𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑏𝑏) ⊕ (𝑞𝑞𝑏𝑏 ⊕ 𝑞𝑞𝑐𝑐)]⟩ 

 

The properties shown in Table 11 can be used to reduce |𝜓𝜓4⟩.  

 

         Table 11: XOR Properties. Adapted from Lewin [36]. 

 

Identity  
Self Inverse  

Communitive  
Associative  

XOR Properties
𝐴𝐴⊕ 0 = 𝐴𝐴
𝐴𝐴⊕ 𝐴𝐴 = 0

𝐴𝐴 ⊕ 𝐵𝐵 ⊕ 𝐶𝐶 = 𝐴𝐴 ⊕ 𝐵𝐵 ⊕ 𝐶𝐶
𝐴𝐴 ⊕ 𝐵𝐵 = 𝐵𝐵 ⊕ 𝐴𝐴

𝜓𝜓1 𝜓𝜓2 𝜓𝜓3 𝜓𝜓4 

𝑞𝑞𝑎𝑎 

𝑞𝑞𝑏𝑏 

𝑞𝑞𝑐𝑐 𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑐𝑐 

𝜓𝜓0 
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|𝜓𝜓4⟩ = |𝑞𝑞𝑎𝑎, [𝑞𝑞𝑎𝑎 ⊕ (𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑏𝑏)], [(𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑏𝑏) ⊕ (𝑞𝑞𝑏𝑏 ⊕ 𝑞𝑞𝑐𝑐)]⟩ 
= �𝑞𝑞𝑎𝑎, [(𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑎𝑎)⊕𝑞𝑞𝑏𝑏], [𝑞𝑞𝑎𝑎 ⊕ (𝑞𝑞𝑏𝑏 ⊕ 𝑞𝑞𝑏𝑏) ⊕𝑞𝑞𝑐𝑐]� 
= �𝑞𝑞𝑎𝑎, (0⊕𝑞𝑞𝑏𝑏), (𝑞𝑞𝑎𝑎 ⊕ 0 ⊕𝑞𝑞𝑐𝑐)� 
= |𝑞𝑞𝑎𝑎, 𝑞𝑞𝑏𝑏, (𝑞𝑞𝑎𝑎 ⊕ 𝑞𝑞𝑐𝑐)⟩ 

Thus, only the state of the target qubit is changed via the bridge operation at distance 2. No other 

qubits are affected. Algorithm 17 presents a novel algorithm to perform a bridge operation at an 

arbitrary distance.  

Algorithm  Generalized Bridge Operation. 
    Preliminaries: Let 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑡𝑡 be the control and target logical qubits of a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation, 

respectively. Let 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝜏𝜏 be the physical qubits that hold 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑡𝑡, 
respectively. Let 𝑝𝑝 be a sequence holding the shortest weighted path between 
𝑃𝑃𝛾𝛾 and 𝑃𝑃𝜏𝜏 in 𝐺𝐺 (where the edge weights are the 2-qubit error rates between 
adjacent physical qubits. The elements of 𝑝𝑝 are unique physical qubits from 
𝑉𝑉(𝐺𝐺). Further, 𝑝𝑝0 = 𝑃𝑃𝛾𝛾 and 𝑝𝑝𝑑𝑑 = 𝑃𝑃𝜏𝜏 .). Let 𝑑𝑑 = |𝑝𝑝| − 1 (where |𝑝𝑝| denotes the 
number of vertices in 𝑝𝑝).  

     
    𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = [] ; /* List to hold 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 ops to perform, defined by �𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� pairs where 𝑃𝑃𝑖𝑖 is the   
                            control and 𝑃𝑃𝑗𝑗  is the target */ 
 
     /* Phase 𝜌𝜌1 : descending 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations */ 
     /* “Descending” refers to moving backwards along path 𝑝𝑝 */  
    For (𝑖𝑖 = 𝑑𝑑 ; 𝑖𝑖 > 0 ; 𝑖𝑖--) Do 
        𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�(𝑝𝑝𝑖𝑖−1, 𝑝𝑝𝑖𝑖)� ;  
    End For 
 
    /* Phase 𝜌𝜌2 : ascending 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations */ 
    /* “Ascending” refers to moving forwards along path 𝑝𝑝 */ 
    For (𝑖𝑖 = 1 ; 𝑖𝑖 < 𝑑𝑑 ; 𝑖𝑖++) Do 
        𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�(𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖+1)� ; 
    End For 
 
    /* Phase 𝜌𝜌3 : repair */ 
    For (𝑖𝑖 = 1 ; 𝑖𝑖 ≤ (2 ∙ 𝑑𝑑) − 3 ; 𝑖𝑖++) Do 
        𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑖𝑖]) ; 
    End For 
 
    Output 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, which is a sequence of �𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� pairs which must be performed, in order, to  
                  simulate 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑃𝑃𝑐𝑐,𝑃𝑃𝑡𝑡).  
 

Algorithm 17: Generalized bridge operation. 
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     This algorithm consists of phases 𝜌𝜌1, 𝜌𝜌2, and 𝜌𝜌3. Let |𝑝𝑝𝑖𝑖⟩ denote the state of qubit 𝑝𝑝𝑖𝑖 and let 

|𝜓𝜓0⟩ = |𝑝𝑝0𝑝𝑝1 …𝑝𝑝𝑑𝑑⟩ define the initial state of the system. In phase 𝜌𝜌1, a descending chain of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

operations is performed to transform the initial state of the system |𝜓𝜓0⟩ → |𝜓𝜓𝜌𝜌1⟩, where �𝜓𝜓𝜌𝜌1� =

|𝑝𝑝0⟩(⊗𝑖𝑖=1
𝑑𝑑 |𝑝𝑝𝑖𝑖−1 ⊕ 𝑝𝑝𝑖𝑖⟩). Next, phase 𝜌𝜌2 performs an ascending chain of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations to 

transform the state of the system �𝜓𝜓𝜌𝜌1� → �𝜓𝜓𝜌𝜌2�, where �𝜓𝜓𝜌𝜌2� = |𝑝𝑝0⟩(⊗𝑖𝑖=1
𝑑𝑑 |𝑝𝑝0 ⊕ 𝑝𝑝𝑖𝑖⟩). The 

resultant state of �𝜓𝜓𝜌𝜌2� occurs due to 𝑋𝑋𝑋𝑋𝑋𝑋 cancellations. After phase 𝜌𝜌2 completes, 𝑝𝑝0 and 𝑝𝑝𝑑𝑑 are 

entangled. However, all qubits along 𝑝𝑝 are also entangled with 𝑝𝑝0. To fix this, phase 𝜌𝜌3 performs 

the same sequence of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s that were performed to get the intermediate qubits to the states 

|𝑝𝑝0 ⊕ 𝑝𝑝𝑖𝑖⟩. Since the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 is its own inverse operation, applying the same sequence of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s 

reverts the intermediate qubits back to their original states.  After 𝜌𝜌3, the state of the system is 

transformed from �𝜓𝜓𝜌𝜌2� → |𝜓𝜓𝜌𝜌3⟩, where �𝜓𝜓𝜌𝜌3� = |𝑝𝑝0𝑝𝑝1 …𝑝𝑝𝑑𝑑−1⟩|𝑝𝑝0 ⊕ 𝑝𝑝𝑑𝑑⟩. Thus, this algorithm 

successfully entangles the distant control and target qubits without disrupting the states of other 

qubits (and requires no SWAP operations). Figure 29 illustrates the phases of the GBO. 

 

Figure 29: Illustration of GBO where 𝑝𝑝0 is the control and 𝑝𝑝4 is the target, and the distance 
between them is 4. In 𝜌𝜌1, a chain of descending 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s is performed. In 𝜌𝜌2, a chain of ascending 
𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s is performed. Finally, in 𝜌𝜌3, the portion of the circuit that got 𝑝𝑝1,𝑝𝑝2, and 𝑝𝑝3 entangled with 

𝑝𝑝0 is re-executed to return them to their original states. 

 

𝑝𝑝0 

𝑝𝑝1 

𝑝𝑝2 

𝑝𝑝3 

𝑝𝑝4 
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3.3.1.4  Objective Functions 

     After decision variables and constraints are defined, the final step in modeling the QLP as an 

optimization problem is to define an objective function. The objective function encapsulates the 

quality of a solution to the QLP. A high-quality solution to the QLP contains P2L mappings that: 

• place logical qubits involved in 1-qubit operations in highly-reliable physical qubits; 

• place pairs of logical qubits involved in 2-qubit operations in physical qubits that 

have highly-reliable links between them; and 

• are as uniform as possible, meaning the mappings induce SWAP layers 𝜋𝜋1 …𝜋𝜋𝐿𝐿−1 of 

minimum aggregate cardinality. That is,  ∑ |𝜋𝜋𝑖𝑖|𝐿𝐿−1
𝑖𝑖=1  is minimized. 

     The goal is to find high-quality P2L mappings that meet these three criteria, and as such they 

motivate the objective functions: 

1. Objective 1. Maximize the probability of successful gate execution for both 1- and 

2-qubit operations.  

2. Objective 2. Maximize the probability of successfully swapping logical qubits 

between each 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑖𝑖+1.  

The first two criteria seek to maximize the reliability of each layout by placing logical qubits in 

physical qubits that are highly-reliable and connected by highly reliable links, leading to  

Objective 1. The third criterion seeks to minimize the number of SWAP operations needed to 

permute between layouts. Following prior research efforts by Murali, et al. [12] as well as Tannu 

and Qureshi [4], Objective 2 is reformulated to maximize the probability of successfully 

executing all SWAP operations.  

     Note that while these objective functions do not explicitly use the decision variables, each 𝜆𝜆𝑖𝑖 

implicitly uses them. Let a partial solution 𝑠𝑠 to the QLP be defined as follows: 
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𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1) 

where 𝐿𝐿 is the number of layers in the circuit. 

 

For 𝑖𝑖 ∈ ⟦1,𝐿𝐿 − 1⟧ each 𝜆𝜆𝑖𝑖 in 𝑠𝑠 has been appropriately permuted relative to 𝜆𝜆𝑖𝑖−1 via the decision 

variables. Partial solution 𝑠𝑠 is used because the calculation of 𝜋𝜋1 …𝜋𝜋𝐿𝐿−1 is incorporated into the 

objective function. As such, their values are determined by the selected P2L mappings.  

      Objective 1 Formulation: Objective 1 seeks to maximize the probability of successfully 

executing all 1-qubit and 2-qubit gate operations within each layout based on the assigned P2L 

mappings for each 𝜆𝜆𝑖𝑖. In other words, the goal is to minimize the cost of placing each logical 

qubit 𝑞𝑞𝑖𝑖 in physical qubit 𝑃𝑃𝑗𝑗  (in terms of both 1-qubit and 2-qubit operations) per layer.  

     To begin, the sub-objective for 1-qubit gate success probability is defined. First, let 𝑟𝑟1(𝑃𝑃𝑖𝑖) be 

the probability that a 1-qubit operation executes successfully on 𝑃𝑃𝑖𝑖. Next, let 𝑔𝑔1�𝑙𝑙𝑖𝑖 , 𝑞𝑞𝑗𝑗� = 1 if a 1-

qubit gate is assigned to 𝑞𝑞𝑗𝑗 in 𝑙𝑙𝑖𝑖; 0 otherwise. Then the probability that a 1-qubit operation 

executes successfully on 𝑞𝑞𝑗𝑗, placed in physical qubit 𝑃𝑃𝑘𝑘 = 𝜆𝜆𝑖𝑖−1�𝑞𝑞𝑗𝑗�, is  

𝑠𝑠1�𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗� = �  𝑟𝑟1 �𝜆𝜆𝑖𝑖
−1�𝑞𝑞𝑗𝑗��  if 𝑔𝑔1�𝑙𝑙𝑖𝑖, 𝑞𝑞𝑗𝑗� = 1,

 1  otherwise.
 (3.1) 

 

     Each 1-qubit operation in 𝑙𝑙𝑖𝑖 is treated as an independent event, and all such events must be 

successful for the event that all 1-qubit operation in 𝑙𝑙𝑖𝑖 execute without error to occur. 

Accordingly,  for a given layout 𝜆𝜆𝑖𝑖 and associated layer 𝑙𝑙𝑖𝑖, the probability 𝜉𝜉1(𝜆𝜆𝑖𝑖) that all 1-qubit 

operations execute successfully in 𝑙𝑙𝑖𝑖 is the product of the 1-qubit success rates of all physical 

qubits that hold a logical qubit assigned to a 1-qubit gate in 𝑙𝑙𝑖𝑖. This probability is 

𝜉𝜉1(𝜆𝜆𝑖𝑖) = �𝑠𝑠1�𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗�
𝑞𝑞𝑗𝑗∈𝑇𝑇

 (3.2) 
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     Now, given a solution 𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1) to the QLP, the probability 𝑓𝑓1𝑞𝑞(𝑠𝑠) that all 1-qubit 

operations execute successfully is the product of 𝜉𝜉1(𝜆𝜆0) ∙ 𝜉𝜉1(𝜆𝜆1) ∙… ∙ 𝜉𝜉1(𝜆𝜆𝐿𝐿−1) because all 1-qubit 

operations of each layer are assumed to be independent events, and all events must be successful 

for the event that all 1-qubit operations execute without error to occur. This probability is  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓1𝑞𝑞(𝑠𝑠) = �𝜉𝜉1(𝜆𝜆𝑖𝑖)
𝜆𝜆𝑖𝑖∈𝑠𝑠

 (3.3) 

where 𝑠𝑠 is a partial solution to the QLP. 

 

     Next, the sub-objective for 2-qubit gate success probability is defined. First, let 𝑒𝑒�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = 1 

if there is a directed edge from 𝑃𝑃𝑖𝑖 to 𝑃𝑃𝑗𝑗  in 𝐺𝐺; 0 otherwise. Second, let 𝑟𝑟2�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� be the probability 

that a 2-qubit operation executes successfully between control 𝑃𝑃𝑖𝑖 and target 𝑃𝑃𝑗𝑗  if 𝑒𝑒�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� = 1; 0 

otherwise. Third, let 𝑔𝑔2�𝑙𝑙𝑖𝑖 ,𝑞𝑞𝑗𝑗, 𝑞𝑞𝑘𝑘� = 1 if a 2-qubit gate is assigned between control qubit 𝑞𝑞𝑗𝑗 and 

target qubit 𝑞𝑞𝑘𝑘 in 𝑙𝑙𝑖𝑖; 0 otherwise. Fourth, let 𝑝𝑝 = 𝑠𝑠𝑠𝑠�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� be the shortest weighted path from 𝑃𝑃𝑖𝑖 

to 𝑃𝑃𝑗𝑗  (see Section 1.5 for conventions).  

     Now, given a 2-qubit operation (for IBM’s QCs, all 2-qubit operations decompose to 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

operations) between control 𝑞𝑞𝑎𝑎 placed in 𝑃𝑃𝑖𝑖 and target 𝑞𝑞𝑏𝑏 placed in 𝑃𝑃𝑗𝑗 , the probability that the 

gate executes successfully depends on the distance separating 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  and the direction of the 

link connecting them in 𝐺𝐺.  

1. In the trivial case, there is a directed edge 𝑃𝑃𝑖𝑖 → 𝑃𝑃𝑗𝑗 . The probability of the 2-qubit 

operation executing successfully is the fidelity of the link 𝑃𝑃𝑖𝑖 → 𝑃𝑃𝑗𝑗.  

2. In the backwards case, there is only a directed edge 𝑃𝑃𝑗𝑗 → 𝑃𝑃𝑖𝑖. A reversal operation is 

performed to apply the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation along edge 𝑃𝑃𝑗𝑗 → 𝑃𝑃𝑖𝑖 (as shown in Figure 7) since 
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𝑃𝑃𝑗𝑗  is the target (needs to be the control) and 𝑃𝑃𝑖𝑖 is the control (needs to be the target). A 

reversal operation requires two Hadamard operations on both 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  and a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

between control 𝑃𝑃𝑗𝑗  and target 𝑃𝑃𝑖𝑖. Since all operations of a reversal are assumed to be 

indepependent events, and and all events must be successful for the event that a reversal  

operation executes without error to occur, the probability of the reversal operation 

executing successfully is the fidelity of the link 𝑃𝑃𝑗𝑗 → 𝑃𝑃𝑖𝑖 multiplied by the fidelity of 

applying two Hadamard gates both on 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗 .  

3. In the either-direction case, there are directed edges 𝑃𝑃𝑖𝑖 → 𝑃𝑃𝑗𝑗 and 𝑃𝑃𝑗𝑗 → 𝑃𝑃𝑖𝑖. The probability 

of the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation executing successfully is the highest-fidelity choice of the trivial 

and backwards cases. 

4. In the bridge case, 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  do not share a directed edge in either direction. The 

probability of the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation executing successfully is the fidelity of performing a 

bridge operation from the control 𝑃𝑃𝑖𝑖 to the target 𝑃𝑃𝑗𝑗  (via the GBO of Section 3.3.1.3). 

First, let 𝑝𝑝 = 𝑠𝑠𝑠𝑠�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� be the shortest weighted path from 𝑃𝑃𝑖𝑖 to 𝑃𝑃𝑗𝑗 , and 𝑑𝑑 = |𝑝𝑝| −

1. Based on results presented in Appendix A, bridging between two qubits along path 𝑝𝑝 

consists of the following operations: 

• Event 1: Two 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations must first be performed between qubits 𝑃𝑃𝑎𝑎 = 𝑝𝑝0 

and 𝑃𝑃𝑏𝑏 = 𝑝𝑝1. 

• Event 2: Two 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations must be performed between qubits 𝑃𝑃𝑎𝑎 = 𝑝𝑝𝑑𝑑−1 and 

𝑃𝑃𝑏𝑏 = 𝑝𝑝𝑑𝑑 .  

• Event 3: Four 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations must be performed between all pairwise adjacent 

qubits between 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  in 𝑝𝑝.  

Let 𝛽𝛽, 𝛾𝛾, and 𝛼𝛼 be the probabilities that the operations in Events 1, 2, and 3 execute 

successfully, respectively. Since all operations of Events 1, 2, and 3 are assumed to be  
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independent events, and all events must be successful for the bridge operation to execute 

without error, the probability of successfully bridging between distant qubits 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  is 

the product of 𝛼𝛼 ∙ 𝛽𝛽 ∙ 𝛾𝛾.  

Considering cases 1-4, the probability that a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate between control 𝑃𝑃𝑖𝑖 and target 𝑃𝑃𝑗𝑗  is 

𝑏𝑏�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧

 

 𝑟𝑟2�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗�  if 𝑒𝑒�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = 1 and 𝑒𝑒�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖� = 0,
 𝜔𝜔  if 𝑒𝑒�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖� = 1 and 𝑒𝑒�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = 0,
max�𝑟𝑟2�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗�,𝜔𝜔�   if 𝑒𝑒�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = 1 and 𝑒𝑒�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖� = 1,
𝛼𝛼 ∙ 𝛽𝛽 ∙ 𝛾𝛾  if 𝑒𝑒�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� = 0.

 (3.4) 

s.t. 

𝜔𝜔 = 𝑟𝑟2�𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑖𝑖� ∙ �𝑟𝑟1(𝑃𝑃𝑖𝑖)�
2
∙ �𝑟𝑟1�𝑃𝑃𝑗𝑗��

2
, 

𝑝𝑝 = 𝑠𝑠𝑠𝑠�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� and 𝑑𝑑 = |𝑝𝑝| − 1, 
𝛽𝛽 = �𝑏𝑏(𝑝𝑝0,𝑝𝑝1)�

2
, 

𝛼𝛼 = ��𝑏𝑏(𝑝𝑝ℎ, 𝑝𝑝ℎ+1)�
4

𝑑𝑑−2

ℎ=1

, and 

𝛾𝛾 = �𝑏𝑏(𝑝𝑝𝑑𝑑−1,𝑝𝑝𝑑𝑑)�
2

. 

 

     If a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gate is assigned between control 𝑃𝑃𝑙𝑙 = 𝜆𝜆𝑖𝑖−1�𝑞𝑞𝑗𝑗� and target 𝑃𝑃𝑚𝑚 = 𝜆𝜆𝑖𝑖−1(𝑞𝑞𝑘𝑘) in 𝑙𝑙𝑖𝑖, then 

𝑏𝑏(𝑃𝑃𝑙𝑙 ,𝑃𝑃𝑚𝑚) is the probability the gate executes successfully. Otherwise, the probability that the gate 

executes successfully is 1 since no operation needs to be executed. Thus, the probability that a 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 in 𝑙𝑙𝑖𝑖 between 𝑞𝑞𝑗𝑗 and 𝑞𝑞𝑘𝑘 executes successfully is 

𝑠𝑠2�𝜆𝜆𝑖𝑖 , 𝑞𝑞𝑗𝑗,𝑞𝑞𝑘𝑘� = �  𝑏𝑏 �𝜆𝜆𝑖𝑖
−1�𝑞𝑞𝑗𝑗�, 𝜆𝜆𝑖𝑖−1(𝑞𝑞𝑘𝑘)�   𝑖𝑖𝑖𝑖 𝑔𝑔2�𝑙𝑙𝑖𝑖 ,𝑞𝑞𝑗𝑗, 𝑞𝑞𝑘𝑘� = 1,

 1  otherwise.
 (3.5) 

 

     For a given layout 𝜆𝜆𝑖𝑖 and associated layer 𝑙𝑙𝑖𝑖, the probability 𝜉𝜉2(𝜆𝜆𝑖𝑖) that all 2-qubit operations 

execute successfully in 𝑙𝑙𝑖𝑖 is the product of the 2-qubit success rates of all physical qubit pairs that 

hold a logical qubit pair assigned to a 2-qubit gate in 𝑙𝑙𝑖𝑖. This is because each 2-qubit operation in 
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𝑙𝑙𝑖𝑖 is treated as an independent event, and all such events must be successful for the event that all 

2-qubit operations in 𝑙𝑙𝑖𝑖 execute without error to occur. This probability is  

𝜉𝜉2(𝜆𝜆𝑖𝑖) = � �𝑠𝑠2�𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗, 𝑞𝑞𝑘𝑘�
𝑞𝑞𝑘𝑘∈𝑇𝑇𝑞𝑞𝑗𝑗∈𝑇𝑇

 (3.6) 

 

     Now, given a solution 𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1) to the QLP, the probability 𝑓𝑓2𝑞𝑞(𝑠𝑠) that all 2-qubit 

operations execute successfully is the product of 𝜉𝜉2(𝜆𝜆0) ∙ 𝜉𝜉2(𝜆𝜆1) ∙ … ∙ 𝜉𝜉2(𝜆𝜆𝐿𝐿−1) because all 2-

qubit operations of each layer are treated as independent events, and all events must be successful 

for the event that all 2-qubit operations execute without error to occur. This probability is  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓2𝑞𝑞(𝑠𝑠) = �𝜉𝜉2(𝜆𝜆𝑖𝑖)
𝜆𝜆𝑖𝑖∈𝑠𝑠

(3.7) 

where 𝑠𝑠 is a partial solution to the QLP. 

 

     Finally, for the circuit to execute successfully, all 1-qubit gates must execute correctly and all 

2-qubit gates must execute correctly. These events are assumed to be independent, so the 

probability of both occurring is 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑞𝑞(𝑠𝑠) = 𝑓𝑓1𝑞𝑞(𝑠𝑠) ∙ 𝑓𝑓2𝑞𝑞(𝑠𝑠) (3.8) 

where 𝑠𝑠 is a partial solution to the QLP. 

 

     Objective 2 Formulation: Objective 2 seeks to maximize the probability of successfully 

swapping the logical qubits among the physical qubits between each 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑖𝑖+1. Such fidelity is 

a crucial consideration, as performing many SWAP operations highly degrades the fidelity of the 

overall circuit.  
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     Finding a sequence of SWAP operations to permute between each 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖 is an instance of 

the NP-Hard TokSP, which is described by Miltzow et al. [35] (see Section 2.7). No known 

polynomial-time algorithm exists to find minimal sequences of SWAPs to perform the necessary 

permutations between layouts, and such an algorithm is unlikely to exist due to the NP-hardness 

of the TokSP. Nonetheless, the 4-approximation algorithm devised by Miltzow et al. (presented in 

Appendix B) provides a computationally tractable means of finding a good sequence of SWAPs 

to permute between each 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖. Let 𝑤𝑤�𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗� map ordered pairs of P2L mappings to 

sequences of edges of 𝐺𝐺, in accordance with the application of the 4-approximation algorithm 

with 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑗𝑗  as input. 

     The 4-approximation function 𝑤𝑤�𝜆𝜆𝑖𝑖, 𝜆𝜆𝑗𝑗 , 𝑟𝑟� takes as parameters an initial configuration 𝜆𝜆𝑖𝑖, a 

final configuration 𝜆𝜆𝑗𝑗 , and an optional random seed 𝑟𝑟. If a random seed is provided 𝑤𝑤 acts as a 

deterministic function (without a seed, 𝑤𝑤 is a random function). Function 𝑤𝑤�𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗 , 𝑟𝑟� yields a 

sequence 𝜋𝜋𝑠𝑠 = ��𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗�, (𝑃𝑃𝑘𝑘 ,𝑃𝑃𝑙𝑙), … � of edges from the 𝐸𝐸(𝐺𝐺). First, let 𝜋𝜋𝑠𝑠,𝑗𝑗 denote the 𝑗𝑗𝑡𝑡ℎ 

element in sequence 𝜋𝜋𝑠𝑠. Then let 𝜋𝜋𝑠𝑠,𝑗𝑗,0 (𝜋𝜋𝑠𝑠,𝑗𝑗,1) refer to the first (second) vertex in edge 𝜋𝜋𝑠𝑠,𝑗𝑗. 

     Given a SWAP operation (for IBM’s QCs, all SWAP operations decompose to three 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

operations; see Figure 9 of Section 2.2.3) between 𝑞𝑞𝑎𝑎 placed in 𝑃𝑃𝑖𝑖 and 𝑞𝑞𝑏𝑏 placed in 𝑃𝑃𝑗𝑗 , the 

probability that the SWAP gate executes successfully depends on the direction of the link 

connecting them in 𝐺𝐺 (𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  are assumed to be adjacent in 𝐺𝐺).  

• Case 1: There is only a directed edge from 𝑃𝑃𝑖𝑖 → 𝑃𝑃𝑗𝑗. In this case, 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� is 

performed twice. In addition, 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖� must also be performed. Since there is no 

directed edge from 𝑃𝑃𝑗𝑗 → 𝑃𝑃𝑖𝑖, a reversal is performed to achieve 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖�. Accordingly, 

three 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are performed along edge �𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� and two Hadamard operations are 

performed on both 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗 .  
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• Case 2: There is only a directed edge from 𝑃𝑃𝑖𝑖 → 𝑃𝑃𝑗𝑗. In this case, 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� is 

performed twice. In addition, 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖� must also be performed. Since there is no 

directed edge from 𝑃𝑃𝑗𝑗 → 𝑃𝑃𝑖𝑖, a reversal is performed to achieve 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖�. Accordingly, 

three 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are performed along edge �𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖� and two Hadamard operations are 

performed on both 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗 . 

• Case 3: There is an edge in both directions and the highest-fidelity SWAP is selected. No 

reversal operation is required for this case. Accordingly, either three 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are performed 

along edge �𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� or three 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are performed along edge �𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑖𝑖� (whichever direction 

has higher-fidelity).  

Let event 𝑒𝑒 be the probability that the operations of the appropriate case (Case 1, Case 2, or 

Case 3) execute successfully. Since all operations of the case are treated as independent 

events, and all events must be successful for the event that the SWAP operation executes 

without error to occur, the probability of successfully swapping between qubits 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑗𝑗  is 

𝛿𝛿�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧

 

 �𝑟𝑟2�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗��
3
∙ �𝑟𝑟1(𝑃𝑃𝑖𝑖)�

2
∙ �𝑟𝑟1�𝑃𝑃𝑗𝑗��

2
  𝑖𝑖𝑖𝑖 𝑒𝑒�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� = 1 and 𝑒𝑒�𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑖𝑖� = 0,

 �𝑟𝑟2�𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑖𝑖��
3
∙ �𝑟𝑟1(𝑃𝑃𝑖𝑖)�

2
∙ �𝑟𝑟1�𝑃𝑃𝑗𝑗��

2
  𝑖𝑖𝑖𝑖 𝑒𝑒�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� = 1 and 𝑒𝑒�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = 0,

 max{𝜇𝜇, 𝜈𝜈}   𝑖𝑖𝑖𝑖 𝑒𝑒�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗� = 1 and 𝑒𝑒�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖� = 1.

 (3.9) 

where 

 𝜇𝜇 = �𝑟𝑟2�𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗��
2
∙ �𝑟𝑟2�𝑃𝑃𝑗𝑗,𝑃𝑃𝑖𝑖�� , and 

𝜈𝜈 = �𝑟𝑟2�𝑃𝑃𝑗𝑗 ,𝑃𝑃𝑖𝑖��
2
∙ �𝑟𝑟2�𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗��. 

 

     Each SWAP operation in 𝜋𝜋𝑠𝑠 is treated as an independent event, and all such events must be 

successful for the event that all SWAP operations in 𝜋𝜋𝑠𝑠 execute without error to occur. Thus, the 

probability that all SWAP operations in 𝜋𝜋𝑠𝑠 execute successfully is the product of the fidelities of 

each SWAP operation in 𝜋𝜋𝑠𝑠. This probability is  
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𝑐𝑐(𝜋𝜋𝑠𝑠) =  � 𝛿𝛿�𝜋𝜋𝑠𝑠,ℎ0 ,𝜋𝜋𝑠𝑠,ℎ1�
|𝜋𝜋𝑠𝑠|−1

ℎ=0

 (3.10) 

 

     Now, given a solution 𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1) to the QLP and random seed 𝑟𝑟, let 𝜋𝜋1 …𝜋𝜋𝐿𝐿−1 be 

sequences of SWAP operations to permute each 𝜆𝜆𝑖𝑖 to 𝜆𝜆𝑖𝑖+1. Then, the probability 𝑓𝑓𝑠𝑠(𝑠𝑠, 𝑟𝑟) that all 

SWAP operations execute successfully is the product of 𝑐𝑐(𝜋𝜋1) ∙ 𝑐𝑐(𝜋𝜋2) ∙ … ∙ 𝑐𝑐(𝜋𝜋𝐿𝐿−1) because all 

SWAP operations of each SWAP sequence are treated as independent events, and all events must 

be successful for the event that all SWAP operations execute without error to occur. This 

probability is  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑠𝑠(𝑠𝑠, 𝑟𝑟) = � 𝑐𝑐�𝑤𝑤(𝜆𝜆𝑖𝑖−1, 𝜆𝜆𝑖𝑖 , 𝑟𝑟)�
𝜆𝜆𝑖𝑖−1,𝜆𝜆𝑖𝑖∈𝑠𝑠

 (3.11) 

where 𝑠𝑠 is a partial solution to the QLP and 𝑟𝑟 is a random seed. 

 

     Single Objective Function: Since the codomain of both objective functions is a probability of 

successfully executing operations, objective functions 1 and 2 can be combined into a single 

objective function.. Moreover, the events of each objective function are independent. The single 

objective function for the QLP is   

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠, 𝑟𝑟) = 𝑓𝑓𝑞𝑞(𝑠𝑠) ∙ 𝑓𝑓𝑠𝑠(𝑠𝑠, 𝑟𝑟) (3.12) 

where 𝑠𝑠 is a partial solution to the QLP and 𝑟𝑟 is a random seed. 

 

     The value of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  for a given 𝑠𝑠 is the probability that a given circuit transpiled to a given 

backend with layouts determined by the decision variables of  𝑠𝑠 and SWAP layers generated 

using 𝑟𝑟 will execute successfully. For the circuit to execute successfully, all 1- and 2-qubit gate 

operations must execute correctly as well as all SWAP operations required to permute the logical 
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qubits in 𝜋𝜋1 …𝜋𝜋𝐿𝐿−1. Since 𝑓𝑓𝑞𝑞 captures the probability of the former and 𝑓𝑓𝑠𝑠 the probability of the 

latter, 𝑓𝑓𝑞𝑞 ∙ 𝑓𝑓𝑠𝑠 is the probability both events occur.  

     Note that 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  only deals with gate-related fidelities. In reality, numerous other sources of 

error degrade the fidelity further (such as 𝑇𝑇1 and 𝑇𝑇2 related errors). These errors are impossible to 

accurately account for due to not knowing the state of the wave-function at an arbitrary point in 

the circuit. Nonetheless, 𝑇𝑇1 and 𝑇𝑇2 related errors are mitigated by producing circuits of minimum 

depth. Since minimizing gate related errors generally results in circuits of minimum depth, 𝑇𝑇1 and 

𝑇𝑇2 errors are subsequently minimized via 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 .  

3.3.1.5  Surrogate Objective Functions 

     In the literature, an approximation of an objective function is commonly called a surrogate 

objective function or surrogate fitness function (e.g. Brownlee, Woodward, and Swan [37]). The 

execution time bottleneck of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  is the TokSP approximation algorithm. To mitigate this 

bottleneck, the upper- and lower-bound number of SWAPs required to permute between each 

𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖 are used as the basis for a surrogate objective function.  

     Let 𝐷𝐷𝑖𝑖 be the sum of all distances of logical qubits from their current vertices in 𝜆𝜆𝑖𝑖−1 to their 

target vertices in 𝜆𝜆𝑖𝑖. Then Miltzow, et al. state that their algorithm needs at most 4 ∙ 𝐷𝐷𝑖𝑖 SWAPs 

and at least  𝐷𝐷𝑖𝑖
2

  SWAPs, to permute between 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖. Since each SWAP operation 

decomposes to 3 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations, the upper bound number of  𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gates required is  𝜂𝜂𝑢𝑢 = 3 ∙

4 ∙ 𝐷𝐷𝑖𝑖, and the lower bound is 𝜂𝜂𝑙𝑙 = 3 ∙ 𝐷𝐷𝑖𝑖
2

. Let 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚 be the minimum 2-qubit success rate and 

𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚 the maximum 2-qubit success rate. Then 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂𝑢𝑢  bounds the fidelity of performing all 𝜂𝜂𝑢𝑢 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations from below, and 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂𝑙𝑙  bounds the fidelity of performing all 𝜂𝜂𝑙𝑙 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations 

from above. The functions below define how to calculate the upper and lower bound fidelities of 

performing all SWAP sequences 𝜋𝜋1 …𝜋𝜋𝐿𝐿−1. 
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     Let 𝑑𝑑1�𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗 , 𝑞𝑞𝑘𝑘� be the length shortest unweighted path from 𝑃𝑃𝑙𝑙 = 𝜆𝜆𝑖𝑖−1(𝑞𝑞𝑘𝑘) to 𝑃𝑃𝑚𝑚 = 𝜆𝜆𝑗𝑗−1(𝑞𝑞𝑘𝑘) 

in 𝐺𝐺. Given function 𝑑𝑑1, 𝐷𝐷𝑖𝑖 is: 

𝐷𝐷𝑖𝑖 = � 𝑑𝑑1�𝜆𝜆𝑖𝑖−1, 𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗�
𝑀𝑀−1

𝑗𝑗=0

 (3.13) 

For the QLP, there are 𝐿𝐿 − 1 SWAP sequences 𝜋𝜋1, … ,𝜋𝜋𝐿𝐿−1. Each SWAP sequence has an 

associated 𝐷𝐷𝑖𝑖 since 𝜋𝜋𝑖𝑖 = 𝑤𝑤(𝜆𝜆𝑖𝑖−1, 𝜆𝜆𝑖𝑖). Let 𝜂𝜂𝑢𝑢(𝐷𝐷𝑖𝑖) = 3 ∙ 4 ∙ 𝐷𝐷𝑖𝑖 and 𝜂𝜂𝑙𝑙(𝐷𝐷𝑖𝑖) = 3 ∙ 𝐷𝐷𝑖𝑖
2

. Given 

𝐷𝐷1 …𝐷𝐷𝐿𝐿−1, the lower- and upper-bound fidelities of executing all SWAP sequences are then: 

𝑓𝑓𝑠𝑠,𝑙𝑙(𝑠𝑠) = 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜚𝜚𝑢𝑢  (3.14) 

s.t. 

𝜚𝜚𝑢𝑢 = �𝜂𝜂𝑢𝑢(𝐷𝐷𝑖𝑖)
𝐿𝐿−1

𝑖𝑖=1

 

 

𝑓𝑓𝑠𝑠,𝑢𝑢(𝑠𝑠) = 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜚𝜚𝑙𝑙  (3.15) 

s.t. 

𝜚𝜚𝑙𝑙 = �𝜂𝜂𝑙𝑙(𝐷𝐷𝑖𝑖)
𝐿𝐿−1

𝑖𝑖=1

 

 

     Equation 3.14 defines the lower-bound and Equation 3.15 the upper-bound. In 𝑓𝑓𝑠𝑠,𝑙𝑙, 𝜚𝜚𝑢𝑢 is the 

upper-bound number of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations that need to be performed for all 𝜋𝜋𝑖𝑖. In 𝑓𝑓𝑠𝑠,𝑢𝑢, 𝜚𝜚𝑙𝑙 is the 

lower-bound number of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations that need to be performed for all 𝜋𝜋𝑖𝑖. Given that 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚 is 

the minimum 2-qubit success rate of some edge 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸(𝐺𝐺), in the worst-case all 𝜚𝜚𝑢𝑢 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 

operations occur on 𝑒𝑒𝑖𝑖𝑖𝑖; thus, 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜚𝜚𝑢𝑢  is the lower-bound fidelity. Via the same logic, given that 

𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum 2-qubit success rate of some edge 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸(𝐺𝐺), in the best-case 𝜚𝜚𝑙𝑙 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 
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operations occur on 𝑒𝑒𝑖𝑖𝑖𝑖; thus, 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜚𝜚𝑙𝑙  is the upper-bound fidelity. Now, the upper and lower bound 

objective functions are defined as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙(𝑠𝑠) = 𝑓𝑓𝑞𝑞(𝑠𝑠) ∙ 𝑓𝑓𝑠𝑠,𝑙𝑙(𝑠𝑠) (3.16) 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢(𝑠𝑠) = 𝑓𝑓𝑞𝑞(𝑠𝑠) ∙ 𝑓𝑓𝑠𝑠,𝑢𝑢(𝑠𝑠) (3.17) 

     Here, 𝑓𝑓𝑠𝑠,𝑙𝑙 (𝑓𝑓𝑠𝑠,𝑢𝑢) is a lower (upper) bound on the probability that all SWAP sequences execute 

successfully. 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙 and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 bound the true objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  by considering lower- and 

upper- bounds developed by Miltzow et al. By construction, for any partial solution 𝑠𝑠 =

(𝜆𝜆0, 𝜆𝜆1, … 𝜆𝜆𝐿𝐿−1) to the QLP, it will always be the case that: 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙(𝑠𝑠) ≤ 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠) ≤ 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢(𝑠𝑠) (3.18) 

 

     The functions 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙 are the candidate surrogate functions considered. The former is 

chosen rather than the latter for two reasons. First, due to the underestimated fidelity of swapping 

(consequence of Equation 22) in 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙, maximizing 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙 results in solutions that tend to use very 

few (if any) SWAPs. This is unlikely to be advantageous; while swapping is costly, performing 

some SWAPs is generally beneficial. That is, performing a small number of SWAPs can result in 

better layouts and the benefit of using a better layout can outweigh the cost of doing a few 

SWAPs. Second, the link(s) between one or more pairs of physical qubits could be dead (i.e. have 

a fidelity of 0). If 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑙𝑙 were used in such a problem instance, the surrogate objective score would 

be uniformly 0.  

3.3.2  Complexity and Difficulty 

     The solution space of the QLP consists of all sequences of  P2L assignments and all sequences 

of SWAP operations to permute between layouts. The solution space is infinite in size because 

the set of SWAP sequences to permute between a given 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑗𝑗  is infinite. Due to the infinite 
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size of the solution space, a design choice is made in this research effort to only consider a finite 

subset of the solution space.  

     In Section 3.3.1, a solution to the QLP is represented as 𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1 , … , 𝜆𝜆𝐿𝐿−1). In this 

representation, SWAP sequences are considered to be determined by P2L mappings and the 

choice of a random seed. That is, given a 𝜆𝜆𝑖𝑖, 𝜆𝜆𝑗𝑗 , and random seed 𝑟𝑟, the approximation function 

𝑤𝑤�𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗 , 𝑟𝑟� deterministically yields a single SWAP sequence to permute 𝜆𝜆𝑖𝑖 to 𝜆𝜆𝑗𝑗 . Since the 

TokSP solver only yields a single SWAP sequence and the solution space consists of all SWAP 

sequences to permute between 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑗𝑗 , the search space1 does not represent all solutions in the 

solution space.  Nevertheless, many of the potential SWAP sequences are obviously bad (e.g. 

those that include a 2-cycle 𝜋𝜋𝑠𝑠 = �… , 𝑒𝑒𝑖𝑖𝑖𝑖 , 𝑒𝑒𝑖𝑖𝑖𝑖 , … �). Moreover, since the optimality gap is bounded 

in the TokSP solver, this research acknowledges that given some inputs, the TokSP solver yields 

optimal or near-optimal sequences of SWAPs, and given other inputs, sequences of SWAPs no 

worse than 4 ∙ 𝑂𝑂𝑂𝑂𝑂𝑂. 

     Since each permutation consists of 𝑁𝑁 elements, and there are 𝐿𝐿 layers, the search space is of 

size 𝑂𝑂((𝑁𝑁!)𝐿𝐿). Thus, the search space is finite. For the QLP, the decision variables are discrete-

valued (when considering the canonical representation). Thus, the QLP satisfies Talbi’s definition 

of a combinatorial optimization problem [6].  

     The QLP is composed of two sets of sub-problems. The first set of sub-problems is a sequence 

of 𝐿𝐿 assignment problems. For each layer of the circuit, the goal is to find an assignment of P2L 

assignments that maximizes the layer’s probability of executing successfully. The second set of 

sub-problems is a sequence of 𝐿𝐿 − 1 instances of the TokSP. The role of the TokSP in the QLP is 

to find sequences of SWAP operations of maximal success probability to permute between each 

 
1 Following Talbi [5], a solution space is the set of all conceivable solutions to a problem. A search space is 
induced by a representation and is the set of all solutions represented by that representation.  
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layout 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖. Thus, the QLP is a combination of assignment problems and TokSPs. The 

optimal solution to the QLP is a balance between high-fidelity P2L assignments for each 𝜆𝜆𝑖𝑖 and 

high-fidelity sequences of SWAP operations to permute between each 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖.  

     Finding optimal solutions that balance high-fidelity P2L assignments for each 𝜆𝜆𝑖𝑖 and high-

fidelity sequences of SWAP operations to permute between each 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖 is a computationally 

difficult task. Typically, optimal P2L mappings for each layout result in low-fidelity SWAP 

sequences. Conversely, high-fidelity SWAP sequences generally result in low-fidelity P2L 

mappings for each 𝜆𝜆𝑖𝑖. In fact, Tan and Cong [17] prove that the decision version of the QLP is in 

NPC.  

     The NP-hardness alone of the QLP does not justify the use of metaheuristics. Even if a 

problem is NP-Hard, small instances can be solved via exact approaches. For the QLP, this 

research seeks to find good approximate solutions to problem-instances that cannot be solved via 

exact approaches and that push NISQ-era QCs beyond the boundary of computations that can be 

performed on classical computers.  

     Beyond problem-instance size, Talbi states that the structure of instances is also a factor in 

assessing the applicability of metaheuristics to a problem. Indeed, for the QLP there exist trivially 

solvable instances (e.g. in the presence of uniform qubit and link reliabilities, a circuit with no 

𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations or on a complete graph topology). However, this research focuses on problem-

instances of the QLP with challenging structures, such as circuits with a hub-and-spoke topology 

(following Kamaka [19]) transpiled to QCs for which the topologies are general graphs with 

limited connectivity. The power of QCs is largely due to their capability to entangle qubits (as 

well as QCs ability to place qubits in superposition), which on IBM’s QCs and similar 

architectures can only be achieved via 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations.  
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     Due to the complexity, difficulty, and combinatorial nature of the QLP, as well as the 

instance-sizes and structures of the QLP this research seeks to solve, there are good reasons to 

believe that metaheuristics could be a fruitful approach to finding good approximate solutions to 

the QLP.  

3.3.3  Requirements Analysis 

     This section outlines the requirements of a QLP-solver to compete with SOTA quantum 

program transpilers. Talbi provides three criteria that must be analyzed for a metaheuristic [6]. 

The first, search time requirements, relates to efficiency and analyzes how much time is available 

for the optimization algorithm to find quality solutions. The second, quality of solutions 

requirements, relates to effectiveness and analyzes the sense in which the solutions obtained by 

the solver must be near-optimal.  

     Search Time Requirements: For the QLP in the context of the IBMQ, the execution time of a 

proposed QLP-solver should be significantly less than the period with which IBM updates their 

calibration data because once the calibration data is updated, the reported 1- and 2-qubit error 

rates can be very different. Since qubit and link error rates are key parameters in the objective 

functions, if they change, so does the objective space. Next, the QLP-solvers proposed in this 

research are anticipated to run much more slowly than SOTA QLP-solvers. The proposed QLP-

solvers are intended to spend more time searching for high-quality solutions via metaheuristics to 

find higher quality local optima.  

     Quality of Solutions Requirements: Solutions obtained from the QLP-solvers proposed in 

this research should yield transpiled circuits that return the correct state-vector more often than  

the circuits generated by SOTA QLP-solvers.  
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3.3.4  Design of Metaheuristic Algorithms 

     This section outlines the design choices that must be made in the development of meta-based 

QLP-solvers. This research effort seeks to develop both single-solution-based and population-

based metaheuristic solvers for the QLP. The single-solution-based solvers focus on 

intensification of a single solution to settle in on a locally optimal solution. The population-based 

solvers focus on diversification via a population of candidate solutions to evolve prominent 

features of strong solutions in the search space.  

     First, representations for the single-solution based and population-based metaheuristic 

algorithms are defined. Then, Sections 3.3.4.1 through 3.3.4.4 provide candidate meta-based 

QLP-solvers.  

     Representation for Single-Solution-Based Solver: The proposed single-solution-based 

solvers work directly on the phenotypic representation. That is, given a partial solution 𝑠𝑠 to the 

QLP, each 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠 is a permutation of the trivial P2L mapping defined in Section 3.3.1.1. Thus, the 

phenotypic representation works on the partial solution 𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1) defined in Section 

3.3.1.4. Below, the completeness, connexity, and efficiency of the phenotypic representation are 

addressed.  

• Completeness: As discussed in Section 3.3.2, all solutions to the QLP are by design not 

represented by the partial solution 𝑠𝑠.  

• Connexity: Via an 𝑛𝑛-exchange search operator operating on each 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠, all solutions 

associated with the problem are reachable from each other. This is because via a 

1-exchange search operator operating on each 𝜆𝜆𝑖𝑖, all permutations of 𝜆𝜆𝑖𝑖 are generated (a 

proof is offered by Conrad [38]). Moreover, any 𝑛𝑛-exchange operation for 𝑛𝑛 > 1 also 

includes all 1-exchanges.  
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• Efficiency: Applying 𝑛𝑛-exchange operations to a given 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠 is computationally 

efficient (𝑂𝑂(𝑛𝑛)).   

     Representation for Population-Based Solver: Computationally efficient evolutionary 

operators (e.g. mutation and crossover) acting on the phenotypic representation would produce 

infeasible solutions. For instance, consider a mutation operator that randomly alters an element 

𝑃𝑃𝑗𝑗 ↦ 𝑞𝑞𝑘𝑘 of a P2L mapping by reassigning 𝑃𝑃𝑗𝑗 → 𝑞𝑞𝑙𝑙 ∶ 𝑘𝑘 ≠ 𝑙𝑙. In this case, the mutated P2L mapping 

is invalid because a P2L mapping must be bijective and some other 𝑃𝑃𝑚𝑚 ↦ 𝑞𝑞𝑙𝑙. Thus, to ensure 

mutation and crossover operators always yield feasible solutions, the population-based solvers 

encode solutions via the random-key encoding discussed in Section 3.3.1.2. While the phenotypic 

representation uses partial solution 𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1), this genotypic representation uses 

partial solution 𝑥𝑥 = (𝜒𝜒0,𝜒𝜒1, … , 𝜒𝜒𝐿𝐿−1). Since a given 𝜒𝜒𝑖𝑖 decodes as a 𝜆𝜆𝑖𝑖, the completeness 

argument for the genotypic representation is the same as for the phenotypic representation since 

every assignment of a 𝜆𝜆𝑖𝑖 is represented by some assignment of 𝜒𝜒𝑖𝑖. Talbi provides justification of 

the connexity and efficiency of random-key encoding.  

3.3.4.1  Variable Neighborhood Descent QLP-Solver 

     In this section, two VND-based QLP-solvers are proposed. As discussed in Section 2.5.1.1, the 

VND is classified as a single-solution based metaheuristic. The design of both VND-based QLP-

solvers begins with definition of an initial solution, neighborhoods, and an order of their 

application [6].  

• Initial solution: The initial solution is generated either by randomly sampling the search 

space, or by providing a solution obtained by another metaheuristic (e.g. the best solution 

found by the BRKGA-based QLP-solver). 

• VND requires the definition of a set of neighborhood structures 𝑁𝑁1, … ,𝑁𝑁𝑙𝑙 for 𝑙𝑙 distinct 

neighborhoods. To minimize overall execution time, the cardinality of each resulting 
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neighborhood must be considered. Table 13 define the neighborhoods studied in this 

research effort. 

Variable/Function Name Description 
𝐺𝐺 Graph representing the topology of target architecture, as 

defined in Section 3.3.1.1. 
𝑁𝑁 Number of physical qubits; 𝑁𝑁 = |𝑉𝑉(𝐺𝐺)|. 
𝐿𝐿 Number of layers in the circuit. 

𝐸𝐸�(𝑥𝑥) The undirected edge-set of graph 𝑥𝑥. 
𝐸𝐸 𝐸𝐸 = �𝐸𝐸�(𝐺𝐺)�. 
𝜅𝜅𝑁𝑁 The complete graph sharing the vertex-set of 𝐺𝐺.  
𝑃𝑃(𝑥𝑥) The powerset of set 𝑥𝑥. 
𝜉𝜉(𝑥𝑥) The set containing exactly the elements of the multiset 𝑥𝑥. 
𝜈𝜈𝑝𝑝(𝑙𝑙) The number of occurrences of element 𝑙𝑙 in multiset 𝑝𝑝. 
𝑉𝑉(𝑥𝑥) The vertex-set of graph 𝑥𝑥. 
𝑠𝑠 A partial solution 𝑠𝑠 = (𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1) to the QLP.  
𝑁𝑁𝑖𝑖  Neighborhood name, not related the number of physical qubits 

𝑁𝑁 (above). 
Table 12: Notation used in Table 13: Neighborhood functions devised for VND 

algorithm. 
 

Neighborhood 
Name 

Description Size 

𝑁𝑁1 All 1-exchanges over 𝐸𝐸�(𝐺𝐺) of each 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠. 𝐿𝐿 ∙ 𝐸𝐸 
𝑁𝑁2 All 1-exchanges over 𝐸𝐸�(𝜅𝜅𝑁𝑁) of each 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠. 𝐿𝐿 ∙

𝑁𝑁(𝑁𝑁 − 1)
2

 

𝑁𝑁3 All 2-exchanges over 𝐸𝐸�(𝐺𝐺) of each 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠. 𝐿𝐿 ∙ 𝐸𝐸 ∙ (𝐸𝐸 − 1) 

𝑁𝑁4 All 2-exchanges over 𝐸𝐸�(𝜅𝜅𝑁𝑁)  of each 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠. 
𝐿𝐿 ∙ �

𝑁𝑁(𝑁𝑁 − 1)
2

�
2

 

𝑁𝑁5 ∀𝜆𝜆𝑖𝑖 , λi+1 ∈ 𝑠𝑠, all (1-exchanges over 𝐸𝐸�(𝜅𝜅𝑁𝑁) of 
𝜆𝜆𝑖𝑖) × (1-exchanges over 𝐸𝐸�(𝜅𝜅𝑁𝑁) of 𝜆𝜆𝑖𝑖+1).  (𝐿𝐿 − 1) ∙ �

𝑁𝑁(𝑁𝑁 − 1)
2

�
2

 

𝑁𝑁6 ∀𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑖𝑖+1 ∈ 𝑠𝑠, all (1-exchanges over 𝐸𝐸�(𝐺𝐺) of 
𝜆𝜆𝑖𝑖) × (1-exchanges over 𝐸𝐸�(𝐺𝐺) of 𝜆𝜆𝑖𝑖+1).   

(𝐿𝐿 − 1) ∙ 𝐸𝐸2 

𝑁𝑁7 Math: 𝐿𝐿𝐿𝐿𝐿𝐿 𝐴𝐴 = {𝜆𝜆𝑖𝑖 ∈ 𝜉𝜉(𝑠𝑠): 𝜈𝜈𝑠𝑠(𝜆𝜆𝑖𝑖) > 1}. 
∀𝜆𝜆𝑖𝑖 ∈ 𝐴𝐴, all 1-exchanges over 𝐸𝐸�(𝜅𝜅𝑁𝑁) of 𝜆𝜆𝑖𝑖 
∀𝜆𝜆𝑗𝑗 ∈ 𝑠𝑠 ∶ 𝜆𝜆𝑗𝑗 = 𝜆𝜆𝑖𝑖. 
English: Here, 𝐴𝐴 is a set that holds all 𝜆𝜆𝑖𝑖 that 
occur more than once in 𝑠𝑠. For all layouts 
𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗 , … , 𝜆𝜆𝑘𝑘 that are the same in 𝑠𝑠, create all 1-
exchanges of 𝜆𝜆𝑖𝑖 and duplicate across 𝜆𝜆𝑗𝑗 … 𝜆𝜆𝑘𝑘 .  

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙
𝑁𝑁(𝑁𝑁−1)

2
 , where 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the number 
of unique layouts that 

occur more than once in 
𝑠𝑠. 
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𝑁𝑁8 For all layouts that have (𝑞𝑞𝑖𝑖, 𝑞𝑞𝑗𝑗) placed in 
(𝑃𝑃𝑘𝑘 ,𝑃𝑃𝑙𝑙), exchange 𝑃𝑃𝑘𝑘 with 𝑃𝑃𝑚𝑚 and 𝑃𝑃𝑙𝑙 with 𝑃𝑃𝑛𝑛 in 

each layout such that 𝑃𝑃𝑚𝑚 ≠ 𝑃𝑃𝑛𝑛 ∧ 𝑞𝑞𝑖𝑖 ≠ 𝑞𝑞𝑗𝑗. 
 
 

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∙ �
𝑁𝑁(𝑁𝑁−1)

2
�
2
, 

where 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the 
number of unique  
logical qubit pairs 

(𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗) that are placed 
in physical qubit pair 
(𝑃𝑃𝑘𝑘 ,𝑃𝑃𝑙𝑙) in more than 

one layout of 𝑠𝑠.  
𝑁𝑁9 For all layouts that have 𝑞𝑞𝑖𝑖 placed in 𝑃𝑃𝑗𝑗 , 

exchange 𝑃𝑃𝑗𝑗  with 𝑃𝑃𝑘𝑘 such that 𝑃𝑃𝑗𝑗 ≠ 𝑃𝑃𝑘𝑘.  
𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗ ∙ 𝑁𝑁(𝑁𝑁−1)

2
, where 

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗  is the number 
of unique logical qubits 
𝑞𝑞𝑖𝑖 that are placed in 
physical qubit 𝑃𝑃𝑗𝑗  in 

more than one layout of 
𝑠𝑠.  

Table 13: Neighborhood functions devised for VND algorithm. 

 

• Finally, the VND algorithm requires an objective function to optimize. For the VND 

QLP-solver, the objective functions to optimize are 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢. 

     The neighborhoods in Table 13 are not defined arbitrarily. In the design of the neighborhoods, 

the goal is to transform solutions into better solutions. For the QLP, the general structure of a 

good solution 𝑀𝑀ℎ = (𝜆𝜆0,𝜋𝜋1, … ,𝜋𝜋𝐿𝐿−1, 𝜆𝜆𝐿𝐿−1) is one which the ∑ |𝜋𝜋𝑖𝑖|𝑖𝑖  is minimal and 

𝑓𝑓𝑞𝑞�(𝜆𝜆0, 𝜆𝜆1, … , 𝜆𝜆𝐿𝐿−1)� is maximal. In other words, good solutions contain 𝜋𝜋𝑖𝑖s of minimal 

aggregate cardinality and 𝜆𝜆𝑗𝑗s that maximize the probability that all 1- and 2-qubit operations 

succeed. In the following three paragraphs, consider the neighborhoods are visited in ascending 

order (based on neighborhood subscript) by a VND algorithm.   

     𝑁𝑁1 through 𝑁𝑁4 use 1- and 2-exchange operators acting on each 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠 to achieve a solution 

𝑠𝑠′ = (𝜆𝜆0′ , 𝜆𝜆1′ , … , 𝜆𝜆𝐿𝐿−1′ ) such that no defined 1- or 2-exchange operator acting on any 𝜆𝜆𝑖𝑖′ ∈ 𝑠𝑠′ 

increases the fitness score of 𝑠𝑠′. In other words, they achieve a locally optimal solution 𝑠𝑠′ in 

which small perturbations to each 𝜆𝜆𝑖𝑖′  do not yield a solution 𝑠𝑠′′ of higher fitness.  
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     After 𝑁𝑁1 through 𝑁𝑁4 achieve solution 𝑠𝑠′, neighborhoods 𝑁𝑁5 and 𝑁𝑁6 use pairs of 1-exchange 

operators, each acting on one of the adjacent layouts (𝜆𝜆𝑖𝑖′ , 𝜆𝜆𝑖𝑖+1′ ) ∈ 𝑠𝑠′ with the goal of reducing the 

aggregate distance between all pairs of consecutive layouts in 𝑠𝑠′. For instance, a 1-exchange 

operator acting on a given 𝜆𝜆𝑖𝑖′  may not yield a solution 𝑠𝑠′′ of higher fitness than 𝑠𝑠′. However, a 

pair of 1-exchange operators, one acting on 𝜆𝜆𝑖𝑖′  and the other on 𝜆𝜆𝑖𝑖+1′ , may yield a solution 𝑠𝑠′′ of 

higher fitness than 𝑠𝑠′. This situation is anticipated because simultaneous exchanges in two 

adjacent layouts enable perturbations to 𝑠𝑠′ that reduce the distance between 𝜆𝜆𝑖𝑖′  and 𝜆𝜆𝑖𝑖+1′ .  

     At the point 𝑁𝑁7 is reached, it is anticipated that many of the layouts in the solution 𝑠𝑠′′ are 

identical because 𝑁𝑁5 and 𝑁𝑁6 are anticipated to significantly reduce the distance between each pair 

of consecutive layouts. When the distance between two consecutive layouts is small, the P2L 

mappings are nearly identical. 𝑁𝑁7, 𝑁𝑁8, and 𝑁𝑁9 exploit the similarity of consecutive layouts via 1- 

and 2-exchange operators acting on multiple (similar) layouts in 𝑠𝑠′′. Simultaneous perturbation of 

multiple similar layouts is anticipated to yield increases in fitness to 𝑠𝑠′′ that cannot be achieved 

using the previous neighborhoods. This is because 𝑁𝑁7,𝑁𝑁8, and 𝑁𝑁9  create larger perturbations to 

𝑠𝑠′′ than previous neighborhoods and these perturbations are anticipated to permute frequently 

used logical qubits to stronger subgraphs of 𝐺𝐺 (i.e. subgraphs of 𝐺𝐺 with lower error rates). For 

instance, consider a frequently entangled logical qubit pair �𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗�. Suppose that in multiple 

layouts of 𝑠𝑠′′ logical qubit 𝑞𝑞𝑖𝑖 is placed in 𝑃𝑃𝑘𝑘 and 𝑞𝑞𝑗𝑗 in 𝑃𝑃𝑙𝑙. Now instead suppose 𝑞𝑞𝑖𝑖 is placed in 𝑃𝑃𝑚𝑚 

and 𝑞𝑞𝑗𝑗 in 𝑃𝑃𝑛𝑛 and the success rate of link 𝑒𝑒𝑘𝑘𝑘𝑘 = (𝑃𝑃𝑘𝑘,𝑃𝑃𝑙𝑙) is much less than that of link 𝑒𝑒𝑚𝑚𝑚𝑚 =

(𝑃𝑃𝑚𝑚 ,𝑃𝑃𝑛𝑛). Movement of 𝑞𝑞𝑖𝑖 to 𝑃𝑃𝑚𝑚 and 𝑞𝑞𝑗𝑗 to 𝑃𝑃𝑛𝑛 increases circuit fidelity by up to �𝑒𝑒𝑚𝑚𝑚𝑚
𝑒𝑒𝑘𝑘𝑘𝑘
�
𝑔𝑔

 times if 

�𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗� entangle 𝑔𝑔 times.  

     Now, the first VND-based QLP-solver algorithm is presented. Due to the poor asymptotic 

execution time of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and large number of anticipated objective function calls by the VND, a 

surrogate objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 is used conditionally via a Boolean variable 𝛾𝛾 (see Appendix 



  

104 
 

C for time-complexity analysis of the objective functions). Given that the worst-case time 

complexity of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  is 𝑂𝑂(𝐿𝐿𝑁𝑁3) while that of 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 is 𝑂𝑂(𝐿𝐿𝑁𝑁2), significant runtime performance 

gains are achievable by using the surrogate objective function.  

     For the first proposed VND-based QLP-solver, if 𝛾𝛾 = True, then the surrogate objective 

function is first used to produce a high-quality solution (albeit, likely of overestimated quality 

since the upper-bound surrogate uses the lower-bound number of SWAP operations that must be 

performed and the highest-fidelity link success rate). Nonetheless, even in this approximation, the 

aggregate distance 𝜚𝜚𝑙𝑙  between all 𝜆𝜆𝑖𝑖−1 and 𝜆𝜆𝑖𝑖 is anticipated to be reduced considerably since the 

surrogate objective function yields low-fidelity objective scores when 𝜚𝜚𝑙𝑙 is large. For instance, 

consider a plausible maximum 2-qubit link success rate of 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚 = 0.99.  For a sufficiently large 

𝜚𝜚𝑙𝑙, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 = 𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜚𝜚𝑙𝑙  approaches 0. The first VND-based QLP-solver is provided in Algorithm 18. 

Note that this algorithm is really two distinct QLP-solvers (when 𝛾𝛾 = True and when 𝛾𝛾 = False). 
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Algorithm  VND-based QLP-solver. 
    Inputs: An initial solution 𝑠𝑠0 (if available) and a Boolean 𝛾𝛾 denoting whether to use 
                  the surrogate objective function prior to the true objective function. 
 
    𝑠𝑠 = 𝑠𝑠0 or 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() ; 
    𝑋𝑋 = (𝑁𝑁1,𝑁𝑁2,𝑁𝑁3,𝑁𝑁6,𝑁𝑁7 ,𝑁𝑁9,𝑁𝑁8) ; /* Sequence of neighborhoods to explore */ 
    𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = |𝑋𝑋| ; /* 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  is the number of elements in 𝑋𝑋 */ 
 
    If 𝛾𝛾 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 Then 
        /* First, run VND algorithm with surrogate objective function */ 
        𝑙𝑙 = 0; 
        While 𝑙𝑙 < 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  Do 
            𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 the best neighbor 𝑠𝑠′ of 𝑠𝑠 in 𝑋𝑋𝑙𝑙(𝑠𝑠) via 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 ; 
            If 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢(𝑠𝑠′) > 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢(𝑠𝑠) Then  
                𝑠𝑠 = 𝑠𝑠′; 𝑙𝑙 = 0;  
            Otherwise  
                  𝑙𝑙 = 𝑙𝑙 + 1 ; 
        End While 
     
    /* At this point, if 𝛾𝛾 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝑠𝑠 holds the best solution found from the VND running with the 
           Surrogate objective function */ 
 
    /* Run VND algorithm with true objective function */ 
    𝑙𝑙 = 0 ; 
    While 𝑙𝑙 < 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  Do 
        𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 the best neighbor 𝑠𝑠′ of 𝑠𝑠 in 𝑋𝑋𝑙𝑙(𝑠𝑠) via 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  ; 
        If 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠′) > 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠) Then  
              𝑠𝑠 = 𝑠𝑠′; 𝑙𝑙 = 0; 
        Otherwise  
              𝑙𝑙 = 𝑙𝑙 + 1 ; 
    End While 
 
    Output The best solution found 𝑠𝑠, which is locally optimal with respect to all neighborhoods. 
 
Algorithm 18: VND-based QLP-solver. Neighborhoods 𝑁𝑁4 and 𝑁𝑁5 are omitted due to their large 

cardinalities. 

 

     The second VND-based QLP-solver is presented to address the computational expense of the 

objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . This variant, called the Gradient-VND QLP-solver, uses the surrogate 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 to evaluate candidates at each iteration. Then, the top 𝑘𝑘 candidates are scored via the actual 

objective function, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . In doing so, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  is presented with a limited number of candidates that 

are likely to increase the current best score obtained from 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜. This variant of the VND was 

devised with influence from Brownlee et al. [37] as well as Ky et al. [39], who discuss the 
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applicability of surrogate fitness functions to poor runtime (costly) objective functions. The 

Gradient-based QLP-solver is provided in Algorithm 19. 

Algorithm  Gradient-VND-based QLP-solver. 
    Inputs: An initial solution 𝑠𝑠0 (if available) and a maximum number of evaluations 𝑘𝑘 to  
                  perform with 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  per iteration of the VND. 
 
    𝑠𝑠 = 𝑠𝑠0 or 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() ; 
    𝑋𝑋 = [𝑁𝑁1,𝑁𝑁2,𝑁𝑁3,𝑁𝑁6,𝑁𝑁7,𝑁𝑁9,𝑁𝑁8] ; /* Sequence of neighborhoods to explore */ 
    𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 = |𝑋𝑋| ; /* 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  is the number of elements in 𝑋𝑋 */ 
 

    /* First, run VND with surrogate objective function */ 
    𝑙𝑙 = 0 ;  
    𝑥𝑥′ = 𝑠𝑠 ; /* persist best found solution in 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  objective space */ 
 
    While 𝑙𝑙 < 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚  Do  
        𝐾𝐾 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 the best 𝑘𝑘 neighbors 𝑠𝑠1′ , … , 𝑠𝑠𝑘𝑘′  of 𝑠𝑠 where 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢(𝑠𝑠𝑖𝑖′) > 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢(𝑠𝑠) ; 
        If |𝐾𝐾| = 0 Then  
            𝑙𝑙 = 𝑙𝑙 + 1; /* No improvements found */ 
        Otherwise 
            𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∅ ; 
            For 𝑧𝑧 in 𝐾𝐾 Do 
                If 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑧𝑧) > 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥′) Then 𝑥𝑥′ = 𝑧𝑧; 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑧𝑧; 
            End For 
 
            If 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≠ ∅ Then  
                𝑠𝑠 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖; 𝑙𝑙 = 0; 
            Otherwise  
                𝑙𝑙 = 𝑙𝑙 + 1 ; 
    End While 
 
    Output Best solution found 𝑥𝑥′, which is locally optimal with respect to all neighborhoods. 
 

Algorithm 19: Gradient VND-based QLP-solver. 

 

3.3.4.2  Genetic Algorithm QLP-Solver 

     The GA-based QLP-solver uses a BRKGA as described in Section 2.5.2.1. Reference 

Algorithm 11 of Section 2.5.2.1 for a full description of the BRKGA. A BRKGA requires an 

initial population, mutant population generator, crossover operator, and a selection mechanism. 

The GA-based QLP-solver uses the following operators: 
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• Initial population: The initial population is generated by randomly sampling the search 

space. As each decision variable takes on a value from [0,1] and there are 𝐿𝐿 ∙ 𝑁𝑁 decision 

variables, random individuals (solutions) are generated by uniformly sampling [0,1]𝐿𝐿∙𝑁𝑁.  

• Mutation: BRKGA’s do not have a mutation operator that acts on individuals. Rather, the 

population 𝑃𝑃 is augmented with a set 𝑃𝑃𝑚𝑚 of mutants. Each 𝑠𝑠𝑚𝑚 ∈ 𝑃𝑃𝑚𝑚 is randomly 

generated using the same mechanism as the individuals in the initial population.  

• Crossover: BRKGA’s typically use parameterized uniform crossover. In BRKGA’s, the 

population is partitioned into an elite population 𝑃𝑃𝑒𝑒  and a non-elite population 𝑃𝑃𝑒̅𝑒 at the 

beginning of each generation of an evolution. The elite partition consists of the 𝑒𝑒 =

⌊𝑝𝑝 ∙ 𝑝𝑝𝑒𝑒⌋ highest-fitness members of the population for a population size 𝑝𝑝 and elite 

population portion 𝑝𝑝𝑒𝑒 and the non-elite partition consist of the remaining members of the 

population. Then, parent 𝑝𝑝1 is selected from 𝑃𝑃𝑒𝑒  and parent 𝑝𝑝2 is selected from 𝑃𝑃𝑒̅𝑒. Prior to 

running the GA, a hyperparameter 𝜌𝜌𝑎𝑎 is assigned a real-value from (0.5,1]. Finally, 

crossover is performed by iterating over all loci of 𝑝𝑝1 and 𝑝𝑝2, and for each locus selecting 

the allele from 𝑝𝑝1 with probability 𝜌𝜌𝑎𝑎 and the allele from 𝑝𝑝2 with probability 1 − 𝜌𝜌𝑎𝑎.  

• Selection: Each iteration of the BRKGA updates the population as follows: 𝑃𝑃 = 𝑃𝑃𝑚𝑚 ∪

𝑃𝑃𝑒𝑒 ∪ 𝑃𝑃𝑐𝑐 . Here, 𝑃𝑃𝑐𝑐 is the offspring generated via crossover.  

Thus, the BRKGA manages diversification via the introduction of mutants into the population 

and intensification via the parameterized uniform crossover. The BRKGA also requires the 

following: 

• An objective function to optimize. Due to the large number of function evaluations 

performed by the BRKGA, the surrogate objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 is used. Details about 

why this surrogate was selected are in Section 3.3.1.5.   
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• The number of decision variables. For the QLP under the random-key encoding, there are 

𝐿𝐿 ∙ 𝑁𝑁 decision variables. See Section 3.3.1.2 for more information.  

3.3.4.3  Evolution Strategies QLP-Solver 

     The evolution strategies-based QLP-solver primarily uses MOES for stochastic population-

based search and Nelder-Mead for local search at the end of each evolution. Section 2.5.2.2 

presents MOES. Thus, the ES-based solver is a hybrid QLP-solver (as discussed in Section 

3.3.4.4). For both MOES and Nelder-Mead, the true objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  is used.  

3.3.4.4  Hybrid QLP-Solvers 

     A hybrid QLP-solver is composed of both a population-based and single-solution based QLP-

solver 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, respectively, and denoted 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚-based QLP-solver. First, 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

is used to find a solution or set of solutions to the QLP. Next, the best solution(s) found from 

𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 are used as input to 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 as an initial solution(s). If 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the VND, the best 

solutions(s) found from 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+VND are guaranteed to be locally optimal with respect to the 

defined neighborhood structures of the VND.  

3.3.5  Parameter Tuning 

     Each metaheuristic algorithm defined in section 3.3.4 has hyperparameters that must be set. In 

this section, the hyperparameters for the VND, BRKGA, and ES solvers are enumerated, and the 

configurations of the algorithms are discussed. 

      VND Parameters: Three hyperparameter choices must be made for the VND. The first 

selects the neighborhood functions to descend through. The second defines the order in which to 

descend through the selected neighborhoods. The third determines whether to accept the first 

improving neighbor in a neighborhood or to select the best neighbor in a neighborhood. The latter 

choice requires the complete evaluation of the neighborhood, which is computationally expensive 

for large-sized neighborhoods.  



  

109 
 

• Selected Neighborhoods: In Section 3.3.4.1, nine neighborhood functions are defined. Of 

the nine neighborhood functions, the following are used in the VND algorithm for this 

research: 𝑁𝑁1,𝑁𝑁2,𝑁𝑁3,𝑁𝑁6,𝑁𝑁7,𝑁𝑁8,𝑁𝑁9 . Neighborhoods 𝑁𝑁4 and 𝑁𝑁5 are omitted due to their 

larger cardinality (space complexity 𝑂𝑂(𝑁𝑁4)).  

• Order of Neighborhoods: The following order of neighborhoods is used for the VND 

algorithm in this research: 𝑁𝑁1,𝑁𝑁2,𝑁𝑁3 ,𝑁𝑁6,𝑁𝑁7,𝑁𝑁9,𝑁𝑁8. This order is chosen based on the 

sizes of the neighborhoods and the maximum number of moves (i.e. transposition 

operations) each neighborhood function 𝑁𝑁𝑙𝑙 applies to a solution 𝑠𝑠. In Table 14, the select 

neighborhood functions are first ranked from smallest to largest by maximum move 

count. When maximum move count is the same between neighborhoods functions, the 

space complexity is the tie-breaker. 

Neighborhood Space 
Complexity 

Perturbation Performed Maximum 
Move Count 

𝑁𝑁1 𝑂𝑂(𝐿𝐿𝐿𝐿) 1-exchange over the 𝐸𝐸(𝐺𝐺) of 
layout 𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠. 

1 

𝑁𝑁2 𝑂𝑂(𝐿𝐿𝑁𝑁2) 1-exchange over 𝐸𝐸(𝜅𝜅𝑁𝑁) of layout 
𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠. 

1 

𝑁𝑁3 𝑂𝑂(𝐿𝐿𝐸𝐸2) 2-exchange over 𝐸𝐸(𝐺𝐺) of layout 
𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠. 

2 

𝑁𝑁4 𝑂𝑂(𝐿𝐿𝑁𝑁2) 2-exchange over 𝐸𝐸(𝜅𝜅𝑁𝑁) of layout 
𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠.  

2 

𝑁𝑁6 𝑂𝑂(𝐿𝐿𝐸𝐸2) 1-exchange over 𝐸𝐸(𝐺𝐺) of layout 
𝜆𝜆𝑖𝑖 ∈ 𝑠𝑠 and another 1-exhange 
over 𝐸𝐸(𝐺𝐺) of layout 𝜆𝜆𝑖𝑖+1 ∈ 𝑠𝑠. 

2 

𝑁𝑁7 𝑂𝑂(𝐿𝐿𝑁𝑁2) For all layouts 𝜆𝜆𝑖𝑖 , 𝜆𝜆𝑗𝑗 , … , 𝜆𝜆𝑘𝑘 ∈ 𝑠𝑠 
where 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑗𝑗 = ⋯ = 𝜆𝜆𝑘𝑘, 1-
exchange of 𝜆𝜆𝑖𝑖 over 𝐸𝐸(𝜅𝜅𝑁𝑁) 
duplicated across 𝜆𝜆𝑗𝑗 … 𝜆𝜆𝑘𝑘. 

𝐿𝐿 

𝑁𝑁9 𝑂𝑂(𝐿𝐿𝑁𝑁2) For all layouts 𝜆𝜆𝑖𝑖 , … , 𝜆𝜆𝑘𝑘 ∈ 𝑠𝑠 that 
have 𝑞𝑞𝑖𝑖 placed in 𝑃𝑃𝑗𝑗 , exchange 𝑃𝑃𝑗𝑗  
with 𝑃𝑃𝑘𝑘 in each layout. 

𝐿𝐿 

𝑁𝑁8 𝑂𝑂(𝐿𝐿𝑁𝑁4) For all layouts 𝜆𝜆𝑖𝑖 , … , 𝜆𝜆𝑘𝑘 ∈ 𝑠𝑠 that 
have (𝑞𝑞𝑖𝑖,𝑞𝑞𝑗𝑗) placed in (𝑃𝑃𝑘𝑘 ,𝑃𝑃𝑙𝑙), 
exchange 𝑃𝑃𝑘𝑘 with 𝑃𝑃𝑚𝑚 and 𝑃𝑃𝑙𝑙 with 
𝑃𝑃𝑛𝑛 in each layout. 

2𝐿𝐿 

            Table 14: Ranking select neighborhoods by maximum move count and space complexity. 
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• Acceptance Criterion: Due to the low-order polynomial size of each neighborhood, all 

neighborhoods are completely evaluated to select the best neighbor. 

     BRKGA Parameters: Section 2.5.2.1 presents the hyperparameters of a BRKGA. In Table 

15, all BRKGA hyperparameters are enumerated and configured.  

Parameter Name Parameter Value 
Population Size (𝑝𝑝) 𝑁𝑁 ∙ 𝐿𝐿 

Elite Population Portion (𝑝𝑝𝑒𝑒)  𝑝𝑝 ∙ 0.15 
Mutant Population Portion (𝑝𝑝𝑚𝑚) 𝑝𝑝 ∙ 0.10 

Bias (𝜌𝜌𝑎𝑎) 0.65 
Termination Criterion: Maximum Number of 

Generations (𝐺𝐺) 
5000 

Table 15: Parameters and selected values for BRKGA-based QLP-solver. 

 

     As discussed in Section 2.5.2.1, Goncalves and Resende [24] recommend a population size 

𝑝𝑝 of 𝑅𝑅, where 𝑅𝑅 is the number of decision variables. For the QLP under random-key encoding, 

𝑅𝑅 = 𝐿𝐿 ∙ 𝑁𝑁. Accordingly, a population size of 𝐿𝐿 ∙ 𝑁𝑁 is selected. The population size scales linearly 

with input size of the problem-instance, where the input size is defined by the number of decision 

variables 𝐿𝐿 ∙ 𝑁𝑁. In effect, as input size increases, the number of candidate solutions evaluated per 

generation of the BRKGA scales linearly. This is desired because the solution-space size of the 

QLP also scales with 𝐿𝐿 and 𝑁𝑁. Overall, the BRKGA explores at most 𝐺𝐺∙𝐿𝐿∙𝑁𝑁∙100
(𝑁𝑁!)𝐿𝐿

% of the solution-

space. 

     Next, as also discussed in Section 2.5.2.1, Goncalves and Resende recommend the elite 

partition 𝑝𝑝𝑒𝑒 be between 10% and 25% of 𝑝𝑝 and the mutant partition 𝑝𝑝𝑚𝑚 be between 5% and 20% 

of 𝑝𝑝. In addition, they recommend the bias 𝜌𝜌𝑎𝑎 be greater than 50%. In this research effort, 𝑝𝑝𝑒𝑒, 

𝑝𝑝𝑚𝑚, and 𝜌𝜌𝑎𝑎 are jointly configured considering of the recommendations of Goncalves and 

Resende, and considering intensification and diversification. 𝑝𝑝𝑒𝑒 and 𝜌𝜌𝑎𝑎 manage intensification 

while 𝑝𝑝𝑚𝑚 manages diversification. That is, higher values of 𝑝𝑝𝑒𝑒 and 𝜌𝜌𝑎𝑎 increase the probabilities 

that elite members of the population survive to the next generation and offspring are generated 



  

111 
 

with genes from elite members, respectively. Higher values of 𝑝𝑝𝑚𝑚 result in an evolving 

population consisting of more random solutions, thereby diversifying the evolving population. 

For the QLP, 𝑝𝑝𝑒𝑒 is set to 15% of 𝑝𝑝, 𝑝𝑝𝑚𝑚 to 10% of 𝑝𝑝, and 𝜌𝜌𝑎𝑎 to 65%. Intensification is slightly 

favored (given that 𝑝𝑝𝑒𝑒 > 𝑝𝑝𝑚𝑚 and 𝜌𝜌𝑎𝑎 > 0.5) for the QLP due to the large size of the solution-

space. Experimentation indicated higher intensification yields faster convergence on lower-

quality solutions and lower intensification yields slower convergence (if any). At the extreme, 

low intensification and high diversification mirrors random search for the QLP.    

     Finally, experimental results show that with the selected configuration of all other 

hyperparameters of the BRKGA, signs of convergence by the algorithm are apparent within 5000 

generations for most test cases. Convergence in this research effort is considered “apparent” when 

the fitness of the best member of the evolving population does not increase for 𝐺𝐺
2
 generations for 

some  𝐺𝐺 ≫ 10.  

     ES Parameters: The ES-based QLP-solver’s hyperparameters are tuned as shown in Table 

16. 

Parameter Name Selected Parameter Value Description 
Problem_Type 2 0 for multiple objective, 1 for 

constrained single objective, 
and 2 for unconstrained 

single objective. 
Num_Evolutions 10 Number of evolutions to 

perform. 
Num_Generations 5000 Maximum number of 

generations in a given 
evolution.  

𝑝𝑝 10 ∙ 𝑁𝑁 ∙ 𝐿𝐿 Evolving population size. 

𝜇𝜇 1
5
∙ 𝑝𝑝 Number of parents in 

crossover. 
𝜆𝜆 4

5
∙ 𝑝𝑝 Number of children in 

crossover. 
𝜅𝜅 𝑀𝑀 ∙ 𝐿𝐿 Maximum lifetime, in 

generations in crossover. 
𝜌𝜌 2 Number of parents used in 

crossover. 
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Selection 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Selection mechanism 
employed. 

Recombination 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 Type of crossover to perform. 
Use_Amoeba 1 Apply Downhill Simplex 

algorithm after each 
evolution (1), to best solution 
obtained after all evolutions 

(2), do not apply (0). 
Table 16: Parameters and selected values for the ES-based QLP-solver. Adapted from Lill and 

Smith [23]. 

 

     First, since the QLP is modeled as a single-objective unconstrained optimization problem, the 

problem type is chosen to be 2 (MOES considers the QLP as unconstrained because it does not 

consider bounding constraints as constraints). Second, because MOES is a stochastic algorithm, 

10 evolutions are run, which is sufficient to allow for statistical analysis while still being 

computationally feasible within the time available for the high-performance computers (HPC) 

used to transpile the test cases. Third, experimentation with MOES showed that 5000 generations 

is sufficient to obtain indications of convergence (i.e. the average standard deviation of strategy 

parameters approach zero) for select problem-instances.  

     Fourth, Lill recommends that the overall evolving population size 𝑝𝑝 be an order of magnitude 

greater than the number of decision variables; an empirically derived rule he and colleagues have 

established over years of applying MOES to a variety of problems. For a given QLP problem-

instance, there are 𝐿𝐿 ∙ 𝑁𝑁 decision variables. Accordingly, 𝑝𝑝 is set to 10 ∙ 𝐿𝐿 ∙ 𝑁𝑁. Fifth, Beyer and 

Schwefel suggest that the number of children in the population 𝜆𝜆 be four to five times greater 

than the number of parents 𝜇𝜇 [40]. As such, 𝜆𝜆 is configured to be 4
5
 of the evolving population and 

𝜇𝜇 is configured to be 1
5
 of the evolving population. As with the BRKGA, the size of the evolving 

population scales with input size. After configuration of 𝜆𝜆 and 𝜇𝜇, 𝜅𝜅 was initially set to 50 

generations. However, this lifespan was too long for many of the easier test cases and not long 

enough for the more challenging test cases. Experimental results found that a 𝜅𝜅 of about 𝑀𝑀 ∙



  

113 
 

𝐿𝐿 provided long enough lifespan to yield sufficient perturbations to members of the evolving 

population for most problem-instances.  

     Sixth, a truncation selection (as opposed to tournament selection scheme) is used since 

truncation is the standard selection mechanism employed traditionally in ES. Seventh, uniform 

crossover is chosen based on experimentation exhibiting that this type of crossover yields the 

highest-quality results for the QLP (when compared to mutation-only and diagonal crossover). 

Finally, the Nelder-Mead downhill simplex method is applied after each evolution and attempts to 

further improve the fitness score of the best solution found in the evolution.  

3.3.6  Devised QLP-Solvers 

     In this research effort, numerous candidate QLP-solvers are proposed in Sections 3.3.4.1 

through 3.3.4.3. In addition, Section 3.3.5 provides parameter tuning for all metaheuristic 

algorithms employed in each candidate QLP-solver. As defined in section 3.3.4.4, combinations 

of QLP-solvers can be selected to create hybrid QLP-solvers. The selected QLP-solvers use both 

the real and surrogate objective functions. In addition, all population-based solvers use a single-

solution based solver on the tail end in order to settle on a local optima with respect to all defined 

neighborhoods. In all of the following solvers, the subscript H is added to the solver’s name if it 

uses (in some capacity) the surrogate objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢. The following QLP-solvers are 

studied in this research effort: 

1. VNDH-based QLP-solver 

• This QLP-solver employs Algorithm 18 with 𝛾𝛾 = True. The VNDH-based solver is 

classified as a single-solution based solver. This solver first runs a round of VND 

with the surrogate 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 to find a locally optimal solution 𝑠𝑠∗. Then, a second round 

of VND is run with the true objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  with 𝑠𝑠∗ as the initial solution.  

2. VND-based QLP-solver 
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• This QLP-solver employs Algorithm 18 with 𝛾𝛾 = False. The VND-based solver is 

also classified as a single-solution based solver. This solver runs a single round of 

VND with the true objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . The initial solution is randomly selected 

from the search space.  

3. BRKGAH+VNDH-based QLP-solver 

• This QLP-solver first uses a BRKGA (configuration defined in Section 3.3.4.2), 

which uses the surrogate, to find a solution 𝑠𝑠∗. Here, 𝑠𝑠∗ is the highest-fitness 

solution found by the BRKGA. Then, 𝑠𝑠∗ is provided as the initial solution to the 

VNDH-based QLP-solver. The BRKGAH+VNDH-based solver is classified as a 

hybrid solver. 

4. ES+VND-based QLP-solver 

• This QLP-solver first uses ES (configuration defined in Section 3.3.4.3), which 

uses the true objective function, to find a solution 𝑠𝑠∗. Here, 𝑠𝑠∗ is the highest-

fitness solution found be ES. Then, 𝑠𝑠∗ is provided as the initial solution to the 

VND-based QLP-solver. The ES+VND-based solver is also classified as a hybrid 

solver.  

3.4  Performance Analysis 

     Section 3.4 presents the process used to evaluate the effectiveness and efficiency of the 

devised meta-based QLP-solvers. In this performance analysis, the meta-based QLP-solvers are 

compared against SOTA QLP-solvers. Research question #1 asks “how effective and efficient are 

various metaheuristic algorithms at finding high-quality solutions to the QLP?” A solution is of 

high-quality if it yields a transpiled circuit which, when executed, yields the correct state-vector 

as frequently as possible, in the presence of gate and coherence errors. Since the QLP is only a 

subproblem of QPT, and solution quality is measured based on the output of the resultant 
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transpiled circuit yielded by a QLP-solver, the meta-based QLP-solvers must be integrated into 

transpilers.   

     Section 3.4.1 explains how the meta-based QLP-solvers are integrated into Qiskit’s transpilers. 

Section 3.4.2 presents the benchmark QLP-solvers used in this research effort to evaluate their 

effectiveness and efficiency. Section 3.4.3 defines this research effort’s experimental design. 

Finally, Section 3.4.4 defines metrics to analyze the effectiveness and efficiency of the meta-

based QLP-solvers. 

3.4.1  Integrating QLP-Solvers into Qiskit’s Transpiler 

     The Qiskit transpiler, defined in Section 2.4.3, is composed of a series of transpiler passes 

(encapsulated in a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) that transform an input circuit and optimize it to run on a 

specified backend QC. In the 𝑄𝑄𝑄𝑄𝑇𝑇3, the QLP-solver is broken into two transpiler passes: the 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 pass and the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 pass. A QLP-solver, by itself, does not create a 

circuit that is executable on quantum hardware. Thus, in order to analyze the effectiveness of the 

proposed QLP-solvers compared to Qiskit’s (and address the posed research questions), each 

QLP-solver must be integrated into a 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 which performs all appropriate transpilation 

steps to create an executable circuit for a given backend QC.  

     In this experimental design, all meta-based transpilers are derived from the 𝑄𝑄𝑄𝑄𝑇𝑇0. The 𝑄𝑄𝑄𝑄𝑇𝑇0, 

by default, only includes gate decomposition passes, a 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 pass, and a 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 

pass. The passes corresponding to a QLP-solver (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 passes) are 

replaced by a meta-based QLP-solver. As such, the only experimental variable is the selected 

QLP-solver. As discussed in Section 3.3.6, this research effort considers the following meta-

based QLP-solvers: 

1. VNDH-based QLP-solver.  
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• Variable Neighborhood Descent-based QLP-solver; uses both the surrogate 

and true objective functions. 

2. BRKGAH+VNDH-based QLP-solver. 

• Biased Random-Key+Variable Neighborhood Descent-based QLP-solver; 

the BRKGA uses the surrogate only and the VNDH uses both the surrogate 

and true objective functions.  

3. VND-based QLP-solver. 

• Variable Neighborhood Descent-based QLP-solver; uses only the true 

objective function.  

4. ES+VND-based QLP-solver. 

• Evolution Strategies+Variable Neighborhood Descent-based QLP-solver; 

both ES and the VND use only the true objective function.  

     Each meta-based QLP-solver is integrated into the 𝑄𝑄𝑄𝑄𝑇𝑇0. Let 𝑄𝑄𝑄𝑄𝑇𝑇0(𝑄𝑄𝑄𝑄𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) define the 

𝑄𝑄𝑄𝑄𝑇𝑇0 with the 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 passes replaced by 𝑄𝑄𝑄𝑄𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  By replacing the 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 passes in the 𝑄𝑄𝑄𝑄𝑇𝑇0 with the meta-based QLP-solvers, the 

following meta-based transpilers are created: 

1. 𝑄𝑄𝑄𝑄𝑇𝑇0(𝑉𝑉𝑉𝑉𝐷𝐷𝐻𝐻) 

2. 𝑄𝑄𝑄𝑄𝑇𝑇0(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐻𝐻 + 𝑉𝑉𝑉𝑉𝐷𝐷𝐻𝐻) 

3. 𝑄𝑄𝑄𝑄𝑇𝑇0(𝑉𝑉𝑉𝑉𝑉𝑉) 

4. 𝑄𝑄𝑄𝑄𝑇𝑇0(𝐸𝐸𝐸𝐸 + 𝑉𝑉𝑉𝑉𝑉𝑉) 

3.4.2  Benchmark State of the Art QLP-Solvers 

     To make a fair comparison of the meta-based QLP-solvers versus Qiskit’s SOTA QLP-

solvers, all of Qiskit’s SOTA QLP-solvers are also integrated into the 𝑄𝑄𝑄𝑄𝑇𝑇0 (as done for the 

meta-based transpilers). Qiskit’s SOTA transpiler, the 𝑄𝑄𝑄𝑄𝑇𝑇3, has a QLP-solver composed of the 
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 passes. However, these two passes are not necessarily (or 

even claimed to be by IBMQ) superior to other 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 passes 

available in Qiskit. As such, the 𝑄𝑄𝑄𝑄𝑇𝑇0 is augmented with other 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 

passes in order to test against all SOTA options for QLP-solvers available in Qiskit.  

     Let 𝑄𝑄𝑄𝑄𝑇𝑇0(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 , 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜) define the 𝑄𝑄𝑄𝑄𝑇𝑇0 with 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 pass and a 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑜𝑜𝑜𝑜 pass. For this research effort, the following benchmark transpilers are created via 

augmentations of the 𝑄𝑄𝑄𝑄𝑇𝑇0 and are used for performance analysis of the meta-based transpilers: 

1. 𝑄𝑄𝑄𝑄𝑇𝑇0(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 

2. 𝑄𝑄𝑄𝑄𝑇𝑇0(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒) 

3. 𝑄𝑄𝑄𝑄𝑇𝑇0(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 

The first includes the base QLP-solver of the 𝑄𝑄𝑄𝑄𝑇𝑇3. The second includes a 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 initial 

mapping procedure and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒 qubit routing method. The 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (NA) pass is 

derived from SOTA work by Murali et al. [12], and the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (LA) pass is based on SOTA 

work by Zulehner et al. [11]. This configuration was also a benchmark in Niu et al. [41]. Finally, 

the last includes the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 initial mapping and qubit routing methods of Li et al. [18]. Note that 

the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 routing method from Section 2.4.3 are not included, as they do not 

employ any optimization techniques, and thus generally perform worse than available 

alternatives. 

3.4.3  Experimental Design 

     Defining the experimental design begins with defining the goals of the research effort. In 

Section 3.3.3, quality of solutions and computational effort requirements are presented for the 

meta-based QLP-solvers. Since each meta-based QLP-solver is integrated into a meta-based 

transpiler, the requirements of Section 3.3.3 are modified as follows: 
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1. Solutions obtained from the meta-based transpilers should yield transpiled circuits 

that return the correct state-vector more often than the circuits generated by 

benchmark transpilers.  

2. The meta-based QLP-solvers’ execution time is significantly less than the period with 

which IBM updates calibration data. 

     Next, instances are selected to compare the effectiveness and efficiency of the meta-based 

transpilers to those of the benchmark transpilers. These instances are of varying difficulty. For 

backends, difficulty is imposed by testing against QCs with varying numbers of qubits. Another 

factor in backend difficulty is connectivity. All available IBM backends IBM have limited 

connectivity between their physical qubits. For circuits, difficulty is imposed by varying the depth 

(i.e. number of layers) and entanglement requirements (i.e. number of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations).  

     Test Instance Backends: Backends are selected based on the number of physical qubits and 

connectivity between physical qubits. Backend (1) has 5 physical qubits and a nearest-neighbor 

topology. Backend (2) has 15 physical qubits and a grid-like topology. Both backends have 

limited connectivity between their physical qubits and are noisy (i.e. varying fidelities of 1-qubit 

and 2-qubit gates, limited 𝑇𝑇1 and 𝑇𝑇2 times). Figure 30 shows the topologies of the selected 

backends. 

1. IBMQ Yorktown (5-Qubit QC) 

2. IBMQ Melbourne (15-Qubit QC) 
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Figure 30: IBMQ Yorktown (top) and IBMQ Melbourne (bottom) topologies. Reproduced from 

“IBM Quantum Experience” [16]. 

 

     Test Instance Circuits: Circuits are chosen based on varying depth. Also, Zulehner and 

Willie claim SU(4) circuits are a “worst-case” scenario for QPT due to high entanglement 

requirements [42], so all selected test circuits have such requirements. Moreover, test circuits 

should be easy to analyze, in the sense that when executed on an ideal QC, they have one correct 

state-vector output consisting of a single computational basis state (i.e. not a superposition state). 

In this research, the correct state-vector is referred to as a truth-vector. The following circuit 

classes are selected: 

1. Quantum Fourier Transform (𝑞𝑞𝑞𝑞𝑞𝑞-𝑥𝑥): The truth-vector of each instance is (⊗𝑖𝑖=1
𝑥𝑥−1 |0⟩)|1⟩. 

This circuit class is chosen as it exhibits high entanglement requirements. In addition, the 𝑞𝑞𝑞𝑞𝑞𝑞 

is a fundamental component of many other quantum algorithms, such as Shor’s factoring 

algorithm [43].  

2. Bernstein-Vazirani (𝑏𝑏𝑏𝑏-𝑥𝑥): The truth-vector of each instance is ⊗𝑖𝑖=1
𝑥𝑥 |1⟩. This circuit class is 

chosen as it illustrates challenging entanglement requirements; namely, hub-and-spoke 

entanglement [19]. In hub-and-spoke entanglement, one logical qubit is entangled with every 
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other logical qubit. With the chosen truth-vector, each measured qubit should be in the state 

|1⟩. Holding such a truth-vector makes this circuit even more difficult to execute, as 𝑇𝑇1 errors 

decay each |1⟩ → |0⟩. 

     Breakdown of Individual Test Cases: Since the QLP has inputs of both a backend and a 

circuit, individual test cases are created by selecting (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) pairs from the 

Cartesian product 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. Table 17 enumerates the test cases performed 

in this study. As stated previously, let 𝐿𝐿 be the number of layers in the circuit, 𝑀𝑀 be the number 

of logical qubits used in the circuit, and 𝑁𝑁 be the number of physical qubits on the backend QC. 

Backend Name Circuit 
Name 

L M N Number of Decision 
Variables  

IBMQ Yorktown bv-2 4 2 5 20 
IBMQ Yorktown bv-3 5 3 5 25 
IBMQ Yorktown bv-5 7 5 5 35 
IBMQ Yorktown qft-3 15 3 5 75 
IBMQ Melbourne bv-5 7 5 15 105 
IBMQ Yorktown qft-5 31 5 5 155 
IBMQ Melbourne bv-8 10 8 15 150 
IBMQ Melbourne qft-3 15 3 15 225 
IBMQ Melbourne bv-15 17 15 15 255 
IBMQ Melbourne qft-6 39 6 15 585 

Table 17: Test cases to be evaluated in this study. 

 

     As stated by Talbi, “[t]he selection of input instances to evaluate a given metaheuristic [must] 

be chosen carefully. The set instances must be diverse in terms of size of instances, their 

difficulties, and their structure” [6].  The test cases in Table 17 are diverse in terms of size of 

instances (as indicated by the number of decision variables). The number of decision variables 

also correlates with the problem-instance difficulty. That is, optimization problems with more 

decision variables are typically more difficult to solve. Finally, most test circuits are of the most 

difficult structure to optimize (many 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 gates in circuits and backends with limited 

connectivity between their qubits). In addition, all test cases are executed on noisy backend 

simulators and yielded the correct state-vector an observable number of times.  
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     Experiments: The ES-based transpiler is executed via HPCs. The elapsed time between job 

insertion into the queue and retrieval of results is on the order of days (rendering the calibration 

data obsolete; see Section 3.4.4 for more details). In addition, to execute quantum programs on 

IBM’s QCs, the circuit must be submitted as a job. At the time of this writing, the queue times for 

the selected backends exceed the calibration window defined in Section 3.4.4. Accordingly, in 

lieu of testing the transpiled circuits directly on quantum hardware, Qiskit’s 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑 

instances are used to evaluate transpiler performance. A 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 instance captures the main 

parameters of the objective functions, as well as the cost functions of all SOTA QLP-solvers 

being used as the basis for comparison. These parameters include single-qubit error rates, two-

qubit error rates, readout error rates, 𝑇𝑇1 error rates, 𝑇𝑇2 error rates, connectivity of backend QC, 

and the basis gate-set of the backend QC.  

     First, a 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 instance is created for each test case backend QC. Then, for each test 

case in Table 17, the test case is transpiled via each meta-based transpiler and each benchmark 

transpiler (in both cases using the test case’s associated 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 instance for its backend). 

Finally, the resultant transpiled circuits from the meta-based transpilers and benchmark 

transpilers are executed on a simulated backend (again with the test case’s associated 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 instance for its backend), and results are compared using metrics defined in Section 

3.4.4. The testing procedure is defined in Algorithm 20. 
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Algorithm  Testing procedure for meta-based transpilers versus Qiskit. 
    Inputs: All test cases from Table 17 (set 𝑇𝑇).  
 
    𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [𝑄𝑄𝑄𝑄𝑇𝑇0(𝑉𝑉𝑉𝑉𝑉𝑉),𝑄𝑄𝑄𝑄𝑇𝑇0(𝑉𝑉𝑉𝑉𝐷𝐷𝐻𝐻),𝑄𝑄𝑄𝑄𝑇𝑇0(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐻𝐻 + 𝑉𝑉𝑉𝑉𝐷𝐷𝐻𝐻),  
                                          𝑄𝑄𝑄𝑄𝑇𝑇0(𝐸𝐸𝐸𝐸 + 𝑉𝑉𝑉𝑉𝑉𝑉)] ; 
    𝐵𝐵𝐵𝐵𝐵𝐵_𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = [𝑄𝑄𝑄𝑄𝑇𝑇0(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎),𝑄𝑄𝑄𝑄𝑇𝑇0(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑒𝑒𝑒𝑒𝑒𝑒),  
                                        𝑄𝑄𝑄𝑄𝑇𝑇0(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)] ; 
 
    /* Generate noise models for each backend a priori */ 
    𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = {} ; /* Dictionary to hold noise models for each backend */ 
    For 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in 𝑇𝑇 Do 
        𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏] = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) ; 
    End For 
 
    /* Transpile and run each test case against appropriate noise model */ 
    For 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in 𝑇𝑇 Do 
        𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏] ; /* get noise model for backend */ 
 
        /* Transpile and execute circuit with all 𝑇𝑇𝛽𝛽 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 */ 
        𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑏𝑏 = [] ; /* List to results from 𝐵𝐵𝐵𝐵𝐵𝐵_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 */ 
        For 𝑇𝑇𝛽𝛽 in 𝐵𝐵𝐵𝐵𝐵𝐵_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Do 
            𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑇𝑇𝛽𝛽 . 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ; 
            𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑏𝑏,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ; 
            𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑏𝑏.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑏𝑏𝑏𝑏𝑏𝑏) ; 
        End For 
 
        For 𝑇𝑇𝛼𝛼 in 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Do 
            /* Transpile circuit with 𝑇𝑇𝛼𝛼 */ 
            𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝛼𝛼. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ; 
 
            /* Execute transpiled circuits on simulator with noise model */ 
            𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ; 
 
            /* Compare results via measurements defined in Section 3.4.4 */ 
        End For 
    End For 
 

Algorithm 20: Testing procedure for meta-based transpilers versus Qiskit.  

 

     The test procedure in Algorithm 20 is carried out three times because all meta-based QLP-

solvers are stochastic (as well as some benchmark transpilers). Three rounds provide more data 

points to statistically analyze the effectiveness of all transpiler options and is a computationally 

feasible number of rounds to carry out the test procedure in Algorithm 20. After three trials, only 

the highest-fidelity solutions attained by each transpiler are analyzed in Chapter IV because 
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highest-fidelity is favored over average-fidelity in the assessment of effectiveness of various 

QLP-solvers in this research effort.  

     Highest-fidelity is favored because in the assessment of effectiveness, this research seeks to 

determine if meta-based transpilers are capable of outperforming benchmark transpilers. Thus, 

the potential efficacy of meta-based transpilers is contingent on their ability to achieve higher-

quality solutions than benchmark transpilers. Average-fidelity assessment is a step beyond this 

research effort, as it does not make sense to improve the average-case if the best-case fidelities of 

the meta-based transpilers do not surpass those of the benchmark transpilers.  

3.4.4  Measurements 

     In this section, metrics are defined to quantify the effectiveness and efficiency of a transpiler. 

First, effectiveness metrics are defined in sub-section “Quality of Solution Measurements”. Then, 

efficiency metrics are defined in sub-section “Computational Effort Measurements”.  

     Quality of Solution Measurements: The quality of a solution depends on the state-vectors 

returned by the circuit being measured. By the design of the experiment, the ideal output of each 

of the circuits used in these experiments is a single computational basis state. Thus, for a circuit 

with 𝑥𝑥-qubits, exactly one of the 2𝑥𝑥  computational basis states is the correct answer. First, for all 

test cases, 1024 shots are executed on the backend QC of the transpiled circuit (that is, the same 

circuit is executed 1024 times for a given test case). Let 𝐶𝐶 be the set of all test cases in Table 17. 

Then, for a test case 𝑐𝑐 ∈ 𝐶𝐶 and a transpiler 𝑇𝑇 ∈ {meta-based transpilers, benchmark transpilers}, 

let 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇, 𝑐𝑐) be the number of shots that return the correct state-vector for the circuit of test 

case 𝑐𝑐. The success rate of the resultant transpiled circuit is defined as follows: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇, 𝑐𝑐)� =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇, 𝑐𝑐)

1024
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The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 represents the fidelity of the resultant transpiled circuit generated by 𝑇𝑇 for test 

case 𝑐𝑐.  

      Computational Effort Measurements: The computational effort depends on how long the 

meta-based QLP-solvers take to find high-quality solutions to QLP-problem instances. Even 

though the transpilers do perform other transpiler passes, the QLP-solver pass is the most time-

intensive subroutine of QPT, and all other transpiler passes (consisting only of gate 

decomposition passes for the studied transpilers) have negligible execution times. Since Qiskit 

uses heuristics-based methods to find solutions to the QLP, the meta-based QLP-solvers are 

anticipated to execute much more slowly than Qiskit’s QLP-solvers.  

     While the meta-based QLP-solvers are anticipated to transpile much more slowly than Qiskit’s 

QLP-solvers, the calibration data (provided by IBM) that the meta-based QLP-solvers rely on is 

updated approximately every 24 hours according to Wilson et al. [44]. As such, the meta-based 

QLP-solvers must find a solution to the QLP within this 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤; otherwise, the 

solution found is no longer relevant  since the noise-data for the QC is likely different. Let 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 be the amount of time, in milliseconds (ms), a given meta-based QLP-solver 

takes to find a good solution to the QLP and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 24 hours = 86,400,00 ms. 

Now, a relative computational effort metric is defined as follows: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

 

      

3.5  Fitness Landscape Analysis of the QLP 

     This section defines fitness landscapes induced by the neighborhood functions and 

representations of the QLP. Sections 3.5.1 and 3.5.2 define the phenotypic and the genotypic 

fitness landscape for the QLP, respectively. Then, Section 3.5.3 provides the fitness landscape 
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analysis metrics used in this research effort to analyze QLP fitness landscapes. In addition, 

Section 3.5.3 provides the fitness landscape analysis procedure. 

3.5.1  Phenotypic Landscape 

     The phenotypic landscape ℒ𝑝𝑝 of the QLP is defined via sequences of 𝐿𝐿 permutations of 𝑁𝑁 

discrete-valued elements (i.e. all 𝜆𝜆𝑖𝑖 ∈ 𝑀𝑀ℎ). Each such sequence is a configuration of ℒ𝑝𝑝. Two 

distinct phenotypic landscapes are induced by considering both the true and surrogate objective 

functions 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢, respectively. The landscape is analyzed in the context of the 

neighborhood function 𝑁𝑁2 from Section 3.3.4. 

     𝑁𝑁2 was selected because it represents a strong locality neighborhood used frequently by the 

VND as well as (implicitly) by the BRKGA and ES (during evolutionary operations). In addition, 

the size of 𝑁𝑁2 is relatively small (space complexity 𝑂𝑂(𝐿𝐿 ∙ 𝑁𝑁2)). Moreover, in most permutation-

based problems, 1-exchange neighborhoods are frequently used to explore parameter space. Next, 

let 𝑑𝑑�𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗� denote the distance between solutions 𝑠𝑠1 and 𝑠𝑠2, where the distance is calculated as 

the number of displaced elements between 𝑠𝑠1 and 𝑠𝑠2. Figure 31 illustrates this distance metric. 

 

Figure 31: Distance metric in ℒ𝑝𝑝. In this figure, 𝑑𝑑(𝑠𝑠1, 𝑠𝑠2) = 4, as four elements are displaced 
between 𝑠𝑠1 and 𝑠𝑠2. 
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3.5.2  Genotypic Fitness Landscape 

     The genotypic fitness landscape ℒ𝑔𝑔 of the QLP is defined by 𝐿𝐿 lists of 𝑁𝑁 real-valued variables 

where the value of each variable is in range [0,1]. That is, the set 𝑋𝑋 of configurations of ℒ𝑔𝑔 is all 

valid assignments of each decision variable in the continuous space ℝ𝐿𝐿∙𝑁𝑁 (when all 𝜆𝜆𝑖𝑖 ∈ 𝑀𝑀 are 

flattened into a 1-dimensional list). Similar to the ℒ𝑝𝑝, this fitness landscape also uses the 

objective functions 𝑓𝑓𝑜𝑜𝑏𝑏𝑏𝑏  and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢. Given a solution 𝑠𝑠, the neighborhood 𝑁𝑁(𝑠𝑠) is the ball with 

center 𝑠𝑠 and radius 𝜖𝜖 for some 𝜖𝜖 > 0. The distance metric between solutions 𝑠𝑠, 𝑠𝑠′ ∈ ℝ𝐿𝐿∙𝑁𝑁 is 

defined by the Euclidean norm  

𝑑𝑑(𝑠𝑠, 𝑠𝑠′) = � � �𝑠𝑠𝑖𝑖′ − 𝑠𝑠𝑖𝑖�
2

(𝐿𝐿∙𝑁𝑁)−1

𝑖𝑖=0

 

 

3.5.3  Fitness Landscape Analysis Procedure 

     The analysis of  ℒ𝑝𝑝 is carried out via enumeration of the entire search space (for smaller 

problem-instances) and sampling of the search space (for larger problem-instances). In this 

research effort, only ℒ𝑝𝑝 is analyzed. While analysis of ℒ𝑔𝑔 would provide insight, it is beyond the 

scope of this research effort.  

     To learn about the topology of ℒ𝑝𝑝, MDS (described in Section 2.6.2) is used to plot the fitness 

landscape on a 2-dimensional plot. Since MDS is operationally intensive, MDS is only used to 

analyze small problem-instances. Specifically, MDS is used to analyze the bs-1 circuit (shown in 

Figure 3 of Section 2.2.3) transpiled to the IBMQ Yorktown backend. In addition, objective 

functions 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 are plotted. This circuit was chosen as the total number of permutations 

for this circuit transpiled to the IBMQ Yorktown is (𝑁𝑁!)𝐿𝐿 = (5!)2 = 14,400 (a computationally 

feasible problem-size for MDS).  
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     While plotting the fitness landscape is interesting, other metrics exist to analyze fitness 

landscapes that do not require complete enumeration of the search space. Malan and Engelbrecht 

provide many metrics that can be used to analyze a fitness landscape [26]. In this study, the 

following metrics are selected to analyze ℒ𝑝𝑝: 

Metric Description Technique(s) to Analyze 
Ruggedness This metric is used to analyze 

the number and distribution 
of local optima in the search 
space. Rugged landscapes 
have many local optima, 
while smooth landscapes 
have few local optima.  

Autocorrelation function of 
Weinberger [28] 

Evolvability This metric broadly measures 
the capability of a search 
process to move to a place in 
the fitness landscape of better 
fitness. 

Fitness Cloud Technique of 
Verel et al. [29] 

 
Fitness-Probability Cloud and 

Accumulated Escape 
Probability Techniques of Lu 

et al. [30] 
  

Epistasis This metric is used to analyze 
the amount of interaction 
among the decision variables. 
The more rugged the fitness 
landscape, the higher the 
epistasis [6]. Thus, 
ruggedness metrics can also 
be used to analyze epistasis.  

Autocorrelation function of 
Weinberger 

Fitness Distribution This metric is used to analyze 
how fitness values are 
distributed across the search 
space.  

Density of States Technique 
of Rose et al. [31] 

Table 18: Metrics used in this research effort to analyze fitness landscapes. 

 

     Details on the techniques selected and algorithms employed for each technique are in Section 

2.6.1. Next, Table 19 provides the test cases selected for analysis of ℒ𝑝𝑝. The test cases are 

selected based on the diversity of problem-instances (e.g. number of decision variables and circuit 

classes) and computational effort needed to carry out the fitness landscape analysis techniques. 
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Backend Name Circuit 
Name 

L N Number of Decision 
Variables  

IBMQ Yorktown bv-2 4 5 20 
IBMQ Yorktown bv-5 7 5 35 
IBMQ Yorktown qft-3 15 5 75 
IBMQ Yorktown qft-5 31 5 155 

Table 19: Selected test cases to analyze fitness landscape ℒ𝑝𝑝 in this research effort. 

 

Algorithm  Testing procedure for fitness landscape analysis. 
    Inputs: All test cases from Table 19 (set 𝑇𝑇). 
 
    𝑛𝑛 = 500 ; /* number of sample points */ 
 
    /* Use MDS to plot fitness landscapes of small problem */ 
    𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = get all permutations of bs-1 solution transpiled to IBMQ Yorktown ; 
    𝐷𝐷 = compute distance matrix for all permutations ;  
 
    𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐷𝐷, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2) ; 
    𝐶𝐶1,𝐶𝐶2 = create distinct canvases to plot the true and surrogate fitness landscapes ;  
    For 𝑖𝑖𝑖𝑖𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) Do /* 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� */ 
        𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 point �𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖𝑖𝑖𝑖𝑖])� on 𝐶𝐶1; 

        𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 point �𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖𝑖𝑖𝑖𝑖])� on 𝐶𝐶2; 
    End For 
 
    /* Perform fitness landscape analysis techniques on test cases from Table 19 */ 
    𝑜𝑜𝑜𝑜𝑜𝑜_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = [𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜, 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢] ;  
    For 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in 𝑇𝑇 Do 
        For 𝑓𝑓 in 𝑜𝑜𝑜𝑜𝑜𝑜_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 Do 
            /* 1. Perform autocorrelation function test */ 
            𝑝𝑝 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑓𝑓(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑓𝑓,𝑁𝑁2, 𝑛𝑛) ; 
 
            /* 2. Perform fitness distribution test */ 
            𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑓𝑓,𝑁𝑁2, 𝑛𝑛) ; 
 
            /* 3. Perform fitness cloud test */ 
            𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑓𝑓,𝑁𝑁2, 𝑛𝑛) ; 
 
            /* 4. Perform fitness-probability cloud and accumulated escape probability tests */ 
             𝑒𝑒𝑝𝑝 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑓𝑓,𝑁𝑁2,𝑛𝑛) ; /* 𝑒𝑒𝑝𝑝 is the escape probability */ 
   
            /* Analyze results */ 
        End For 
    End For 
 

Algorithm 21: Testing procedure for fitness landscape analysis. 
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     Algorithm 21 provides the testing procedure for fitness landscape analysis. In this procedure, 

first MDS is used to plot the fitness landscapes of the bs-1 transpiled to the IBMQ Yorktown. 

Next, the selected landscape analysis techniques are performed on each selected test case in Table 

19. Since a fitness landscape is induced by a representation (unchanged, always phenotypic), a 

neighborhood function (unchanged, always 𝑁𝑁2), and an objective function (varies, using 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢), the techniques must be carried out for both objective functions (as each induces a distinct 

fitness landscape). Each iteration of the innermost for loop yield plots for each technique as well 

as an autocorrelation value (𝑝𝑝) and an escape probability (𝑒𝑒𝑝𝑝).   

3.6  Summary 

     This chapter has presented the methodology used to analyze the research questions presented 

in Chapter I. First, in Section 3.3 the QLP is mathematically modeled and integrated into various 

metaheuristic algorithm domains. Section 3.4 then defines the performance analysis procedures 

and metrics this research effort uses to evaluate the effectiveness and efficiency of the meta-based 

QLP-solvers. Finally, Section 3.5 outlines the fitness landscape analysis procedure for this 

research effort used to analyze the induced fitness landscapes of various QLP problem-instances.  
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IV. Results and Analysis 

4.1  Overview 

     The research results are presented and analyzed in this chapter. This chapter is divided into 

four sections. In Section 4.2, the quality of solutions is presented and analyzed for the devised 

meta-based QLP-solvers versus SOTA QLP-solvers. In Section 4.3, the computational effort of 

each meta-based QLP-solver is presented and analyzed. In Section 4.4, the results of all fitness 

landscape analysis techniques are presented and analyzed. Table 20 provides the abbreviated 

names given to each transpiler for the remaining chapters. The first three transpilers in Table 20 

are Qiskit’s and the remaining are meta-based transpilers devised in this research effort (see 

Sections 3.4.1 and 3.4.2).  

Transpiler Abbreviated Name Description 
𝑄𝑄𝑄𝑄𝑇𝑇0(𝐷𝐷𝐷𝐷) DS Benchmark transpiler 
𝑄𝑄𝑄𝑄𝑇𝑇0(𝑁𝑁𝑁𝑁) NA Benchmark transpiler 
𝑄𝑄𝑄𝑄𝑇𝑇0(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) Sabre Benchmark transpiler 
𝑄𝑄𝑄𝑄𝑇𝑇0(𝑉𝑉𝑉𝑉𝐷𝐷𝐻𝐻) VND-H Meta-based transpiler 

𝑄𝑄𝑄𝑄𝑇𝑇0(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐻𝐻 + 𝑉𝑉𝑉𝑉𝐷𝐷𝐻𝐻) BRKGA-H+VND-H Meta-based transpiler 
𝑄𝑄𝑄𝑄𝑇𝑇0(𝑉𝑉𝑉𝑉𝑉𝑉) VND Meta-based transpiler 

𝑄𝑄𝑄𝑄𝑇𝑇0(𝐸𝐸𝐸𝐸 + 𝑉𝑉𝑉𝑉𝑉𝑉) ES+VND Meta-based transpiler 
𝑄𝑄𝑄𝑄𝑇𝑇0(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴𝐴𝐻𝐻) BRKGA-H Meta-based transpiler 

𝑄𝑄𝑄𝑄𝑇𝑇0(𝐸𝐸𝐸𝐸) ES Meta-based transpiler 
Table 20: Abbreviated transpiler names. 

 

     Moreover, the names of the meta-based transpilers and the algorithms that they employ are 

used interchangeably in the remaining chapters. The only distinguishing factor between two given 

transpilers is the QLP-solver they employ. Also, note that any time success rate or fidelity are 

mentioned, these refer to the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 outcome of a test case and transpiler.  

4.2  Quality of Solutions  

     In this section, the quality of solutions is presented and analyzed for all test cases in Table 17. 

To collect results, the testing procedure from Section 3.4.3 is used, along with measurements 

defined in Section 3.4.4. Below, the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 metric for each test case is presented in Figure 
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32. This metric provides an absolute comparison of the quality of solutions obtained by the meta-

based and benchmark transpilers. The 𝑥𝑥-axis captures the test case and the 𝑦𝑦-axis captures the 

percentage of shots that returned the correct state-vector.  

 
Figure 32: Quality of solutions (absolute) for all test cases in Table 17.  

 

     First, the results in Figure 32 suggest that in the first four test cases, meta-based transpilers and 

benchmark transpilers obtain similar-quality results. Consider Table 21, which presents the 

standard deviations of each test case.  
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Test Case # Test Case Standard Deviation 
1 Yorktown BV2 0.0182 
2 Yorktown BV3 0.0099 
3 Yorktown BV5 0.0268 
4 Yorktown QFT3 0.0193 
5 Melbourne BV5 0.0732 
6 Yorktown QFT5 0.0409 
7 Melbourne BV8 0.0653 
8 Melbourne QFT3 0.0432 
9 Melbourne BV15 0.0216 
10 Melbourne QFT6 0.0426 

Table 21: Standard deviations of test cases.  

 

Visual analysis of the results in Table 21 also indicate that the first four test cases have lower 

standard deviations than the latter six. To further investigate, the first four test cases and last six 

test cases are analyzed collectively. Test cases 1-4 have a mean standard deviation of 

approximately 2%, while test cases 5-10 have a mean standard deviation of approximately 5%. 

This means that for the latter test cases, the quality of solutions obtained by each transpiler vary 

more than the former test cases. This is likely because the latter test cases have much larger 

solution spaces, which causes the benchmark transpilers to make numerous globally sub-optimal 

steps and the meta-based transpilers to converge on low-quality local optima. The observed 

standard deviations indicate that test cases 1-4 are easier for the QLP-solvers to optimize than test 

cases 5-10.  

     Meta-based transpilers obtain equal or higher-quality solutions over all benchmark transpilers 

in 7 of the 10 test cases, which include challenging test cases such as the Melbourne BV8 and 

Melbourne QFT3. Table 22 breaks down the test cases in which each meta-based transpiler 

attained equal or higher-quality solutions than all benchmark transpilers.  

Meta-Based Transpiler Test Cases Attained Equal or Higher-Quality 
Solution Over All Benchmark Transpilers 

VND-H 1, 4, 7 
BRKGA-H+VND-H 1 

VND 1, 2, 3, 4, 6 
ES+VND 3, 7, 8 
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Table 22: Comparison of solution-quality attained by meta-based transpilers versus benchmark 
transpilers. 

 

Results in Table 22 show that the VND performed best across all test cases out of the meta-based 

transpilers, followed by the VND-H and ES+VND. The BRKGA-H+VND-H performed poorly 

on most test cases, only attaining equal or higher-quality solutions than benchmark transpilers in 

the easiest test case. These results also show that the meta-based transpilers outperform all 

benchmark transpilers more frequently for the first four test cases. This also supports the claim 

that the latter test cases are much more challenging (at least for the meta-based transpilers).   

     While 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is a useful metric to analyze each test case, it fails to show the relative 

effectiveness of each meta-based transpiler versus each benchmark transpiler. To analyze relative 

quality of solutions, let 𝑇𝑇𝛼𝛼 ∈ {benchmark transpilers} and 𝑇𝑇𝛽𝛽 ∈ {meta-based transpilers}. For a 

given test case 𝑐𝑐, the relative performance of a meta-based transpiler 𝑇𝑇𝛼𝛼 and a benchmark 

transpiler 𝑇𝑇𝛽𝛽 is defined as follows: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝛼𝛼, 𝑐𝑐), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑇𝑇𝛽𝛽 , 𝑐𝑐�� =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑇𝑇𝛽𝛽 , 𝑐𝑐��

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇𝛼𝛼, 𝑐𝑐)�
 

     Next, the average relative success across all test cases of a given meta-based transpiler 𝑇𝑇𝛼𝛼 in 

comparison to a given benchmark transpiler 𝑇𝑇𝛽𝛽 is expressed as follows: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
∑ �𝑇𝑇𝛼𝛼,𝑇𝑇𝛽𝛽� =

∑ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 �𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛(𝑇𝑇𝛼𝛼, 𝑐𝑐), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑇𝑇𝛽𝛽, 𝑐𝑐��𝑐𝑐∈𝐶𝐶

|𝐶𝐶|
 

     Now, consider Table 23 which presents the relative effectiveness of each meta-based transpiler 

versus each benchmark transpiler. 
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Meta-Based vs. 
Benchmarks 

VND-H BRKGA-
H+VND-H 

VND ES+VND 

DS +19% +6% +8% +6% 
NA +7% -6% -5% -8% 

Sabre +5% -4% -2% -2% 
Table 23: Quality of solutions (relative) for all test cases in Table 17. Read across then down (e.g. 

the VND-H obtains results that are on average 19% better than the DS). 

 

The relative success metric shows that all meta-based transpilers obtained, on average, higher 

quality solutions than the DS. The BRKGA-H+VND-H, VND, and ES+VND all obtain lower-

quality solutions than the NA and Sabre, on average. Interestingly, the VND-H outperforms all 

benchmark transpilers, with average solution-quality gains of 19% over DS, 7% over NA, and 5% 

over Sabre. This suggests that the VND-H obtains high-quality solutions more consistently than 

the benchmark transpilers. 

     To further analyze the quality of solutions, the number of layers inserted by all transpilers is 

used to gain insight into the local optima reached by each. Consider Figure 33. 

 

Figure 33: Number of layers added by each transpiler. 
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     For the first four test cases, all transpilers add a small number of layers to the input circuit. 

Correspondingly, the yielded fidelities in Figure 32 are similar among all transpilers for the first 

four test cases. However, for the more challenging test cases, there is much higher variation in the 

number of layers added by each transpiler. The first four test cases have a mean standard 

deviation of 0.55, whereas the latter six test cases have a mean standard deviation of 4.55. This 

implies that in the first four test cases, the number of layers inserted by all transpilers differs, on 

average, by 0.55 layers. For the latter six test cases, the number of layers inserted by all 

transpilers differs, on average, by 4.55 layers.  

     When comparing the success rates of Table 22 and layers added, the Pearson correlation 

coefficient between the two data sets yields a value of −0.91. This statistical analysis verifies the 

hypothesis: higher 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is correlated with a smaller number of layers added. As an 

example, the ES+VND adds 45 layers and has a 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 of 1% for the Melbourne BV15. On 

the same test case, the Sabre adds 28 layers and has a 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 of 8%. For the longer running 

circuits, adding more layers highly degrades 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 due to 𝑇𝑇1 and 𝑇𝑇2 errors. The effects of 

this are not as obvious for the easier test cases, as they are able to perform calculations within the 

coherence window of the devices’ qubits.  

     The quality of solutions attained by the BRKGA-H+VND-H and ES+VND are further 

analyzed via trajectory information collected for both population-based algorithms. In Table 24 

and Table 25, the trajectory information for the algorithms employed by the BRKGA-H and ES 

are presented, respectively. For the ES, the average standard deviations of the strategy parameters 

are also provided. Since both population-based solvers are executed multiple times per test case, 

only trajectory information for the runs which yielded the best results are shown.  
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Yorktown BV2 Yorktown BV3 

  
Yorktown BV5 Yorktown QFT3 

  
Melbourne BV5 Yorktown QFT5 

  
Melbourne BV8 Melbourne QFT3 
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Melbourne BV15 Melbourne QFT6 

  
Table 24: BRKGA objective score trajectory data.  
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Yorktown BV3 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆) = (58,5,232) 

HPC = Gaffney 
 

Yorktown BV5 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆) = (82,8,328) 

HPC = Gaffney 
 

Yorktown QFT3 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆)  = (175,22,700) 

                                                              HPC = Mustang 
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Melbourne BV5 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆)  = (250,17,1000) 

                                                             HPC = Mustang 
 

Yorktown QFT5 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆)  = (370,77,1480) 

                                                             HPC = Mustang 
 

Melbourne BV8 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆)  = (350,40,1400) 

                                                             HPC = Mustang 
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Melbourne QFT3 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆)  = (525,20,2100) 

                                                             HPC = Gaffney 
 

Melbourne BV15 

 
(𝜇𝜇,𝜅𝜅, 𝜆𝜆)  = (600,200,2400) 

                                                            HPC = Mustang 
 

Melbourne QFT6 

 
(𝜇𝜇, 𝜅𝜅, 𝜆𝜆) = (1400,250,5600) 

                                                          HPC = Gaffney 
 

Table 25: ES objective score and standard deviation trajectory data. 
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     The BRKGA-H and ES both use 5,000 generations for each test case. The BRKGA-H uses a 

population size of 𝐿𝐿 ∙ 𝑁𝑁 while the ES uses a population size of 10 ∙ 𝐿𝐿 ∙ 𝑁𝑁. Further, the BRKGA-H 

uses the surrogate objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 while the ES uses the true objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . 

Accordingly, the objective scores from the BRKGA-H are anticipated to be higher than those 

from ES because the surrogate objective function is an upper-bound on the true objective 

function.  

     Convergence of the BRKGA-H is apparent when the fitness of the best-found solution does 

not increase for 2,500 generations (as defined in Section 3.3.5). Based on the objective 

trajectories, the BRKGA-H shows signs of convergence on all test cases except the Yorktown 

QFT5, Melbourne BV15, and Melbourne QFT6. In all other test cases, the BRKGA-H attains its 

highest fidelity solution within 2,500 generations. Consider Table 26, which compares the 

fidelities of the best-solutions found by the BRKGA-H and those of any other transpiler. 

Test Case # Test Case BRKGA Highest-Fidelity Solution 
Found  

1 Yorktown BV2 88% 89% 
2 Yorktown BV3 76% 79% 
3 Yorktown BV5 67% 68% 
4 Yorktown QFT3 66% 80% 
5 Melbourne BV5 30% 62% 
6 Yorktown QFT5 18% 50% 
7 Melbourne BV8 5% 33% 
8 Melbourne QFT3 33% 80% 
9 Melbourne BV15 0% 8% 
10 Melbourne QFT6 3% 25% 

Table 26: BRKGA-H solution-fidelities versus best found.  

 

The BRKGA-H shows signs of convergence on test cases 1, 2, 3, 4, 5, 7, and 8. For these test 

cases, the BRKGA-H attains solution-qualities that are on average 40% worse than the best 

found. This confirms that the BRKGA-H settles on poor local optima even when the algorithm 

appears to converge. For the test cases where convergence is not apparent, more generations of 
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the BRKGA-H are required to see where evolution stalls. Alternatively, further parameter tuning 

of the BRKGA-H’s hyperparameters may yield better convergence and/or convergence on 

higher-fit optima.  

     Convergence in ES is apparent when the average standard deviation of all strategy parameters 

decreases towards zero. For most test cases, the average standard deviations indicate that the ES 

solver was unable to settle on a local optimum. Like the BRKGA-H, consider Table 27, which 

compares the fidelities of the best-solutions found by the ES and those of any other transpiler. 

Test 
Case # 

Test Case ES Highest-Fidelity Solution 
Found  

1 Yorktown BV2 88% 89% 
2 Yorktown BV3 73% 79% 
3 Yorktown BV5 65% 68% 
4 Yorktown QFT3 73% 80% 
5 Melbourne BV5 59% 62% 
6 Yorktown QFT5 34% 50% 
7 Melbourne BV8 28% 33% 
8 Melbourne QFT3 81% 80% 
9 Melbourne BV15 0% 8% 
10 Melbourne QFT6 4% 25% 

Table 27: ES solution-fidelities versus best found. 

 

The ES only shows signs of convergence on test cases 6 and 7. For these test cases, the ES attains 

solution-qualities that are on average 24% worse than the best found. This suggests that the ES 

also settles on poor local optima even when the algorithm shows signs of convergence (albeit, the 

ES settles on higher-quality local optima than the BRKGA-H). Interestingly, on test case 8 the ES 

attains a solution of higher-fidelity than any other transpiler, even though there are no signs of 

convergence by the algorithm for this test case. The provided results indicate that the ES solver 

needs either more generations with the current configuration or further parameter tuning of 𝜇𝜇,𝜅𝜅, 

and 𝜆𝜆.  
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     For several test cases, the best solutions found by both the BRKGA-H and ES are much lower 

fidelity than the best solutions found after application of the VND. Table 28 compares the 

fidelities of the best solutions found by the BRKGA-H, BRKGA-H+VND-H, ES, and ES+VND.  

 BRKGA-H BRKGA-
H+VND-H 

ES ES+VND 

Yorktown BV2 88% 89% 88% 87% 
Yorktown BV3 76% 77% 73% 77% 
Yorktown BV5 67% 65% 65% 68% 
Yorktown QFT3 66% 75% 73% 76% 
Melbourne BV5 30% 55% 59% 60% 
Yorktown QFT5 18% 41% 34% 40% 
Melbourne BV8 5% 27% 28% 32% 
Melbourne QFT3 33% 75% 81% 80% 
Melbourne BV15 0% 1% 0% 1% 
Melbourne QFT6 3% 14% 4% 13% 

Table 28: Comparison of fidelities obtained by population-based QLP-solvers and hybrid QLP-
solvers. 

 

In 9 out of the 10 test cases, the BRKGA-H+VND-H attains higher-quality solutions than the 

BRKGA-H. In 8 out of the 10 test cases, the ES+VND attains higher-quality solutions than the 

ES. Analysis of the data in Table 28 finds that the BRKGA-H+VND-H yielded solutions that are 

on average 14% better than those of the BRKGA-H. Moreover, the ES+VND yielded solutions 

that are on average 3% better than those of the ES. Thus, both the BRKGA-H and ES benefit 

from the VND local search algorithm.  

4.3  Computational Effort 

     In this section, the computational effort for all test cases in Table 17 is provided and analyzed. 

To collect results, the testing procedure from Section 3.4.3 is used, along with measurements 

defined in Section 3.4.4. Below, the 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 metric for each test case is presented in 

Figure 34. In addition, Table 29, Table 30, and Table 31 provide the device specifications of all 

devices used to run the meta-based transpilers.  
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Figure 34: Transpilation times for test cases from Table 17 on various meta-based QLP-solvers. 

 

Specification Value 
Processor Intel® Core™ i7-8565U CPU @ 1.80GHz  1.99 GHz 

Installed RAM 16.0 GB (15.8 usable) 
System Type 64-bit operating system, x64-based processor 

Table 29: Device specifications for personal computer (PC). 

Specification Value 
System Name mustang.afrl.hpc.mil 
Cores/Nodes 48 

Core Type/Core Speed Intel Xeon Platinum 8168/2.7 GHz 
Operating System RHEL 

Table 30: Device specifications for Mustang HPC from [45]. 

Specification Value 
System Name gaffney.navydsrc.hpc.mil 
Cores/Nodes 48 

Core Type/Core Speed Intel Xeon Platinum 8186/2.7 GHz 
Operating System RHEL 

Table 31: Device specifications for Gaffney HPC from [46]. 
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     First, the BRKGA-H uses only 1 core during execution while the ES uses 48 cores. Next, from 

Appendix C, the complexities of the true and surrogate objective functions are 𝑂𝑂(𝐿𝐿𝑁𝑁3) and 

𝑂𝑂(𝐿𝐿𝑁𝑁2), respectively. Then, for a given population size 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , number of generations 𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔, 

and number of evolutions 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, the BRKGA-H and ES execute 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 iterations. 

At each step, the BRKGA-H uses the surrogate objective function on each member of the 

population and the ES uses the true objective function. For the BRKGA-H, 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐿𝐿 ∙ 𝑁𝑁, 

𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔 = 5000, and 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1. For the ES, 𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 10 ∙ 𝐿𝐿 ∙ 𝑁𝑁, 𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔 = 5000, and 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 10.  

     This means that the BRKGA-H makes 1 ∙ 5000 ∙ 𝐿𝐿 ∙ 𝑁𝑁 = 5000 ∙ 𝐿𝐿𝐿𝐿 surrogate objective 

function calls and the ES makes 10 ∙ 5000 ∙ 𝐿𝐿 ∙ 𝑁𝑁 = 500,000 ∙ 𝐿𝐿𝐿𝐿 true objective function calls. 

Considering the BRKGA-H is executed on a PC via 1 core and the ES is executed on an HPC via 

48 cores, the ES makes 500,000∙𝐿𝐿∙𝑁𝑁
48

≈ 13158 ∙ 𝐿𝐿 ∙ 𝑁𝑁 true objective function calls per core. Thus, 

the ES effectively makes 2.63 times more objective function calls than the BRKGA-H. Moreover, 

since the BRKGA-H uses the surrogate 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 with time complexity 𝑂𝑂(𝐿𝐿𝑁𝑁2) and the ES uses the 

true objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  with time complexity 𝑂𝑂(𝐿𝐿𝑁𝑁3), each objective function call by the ES 

is 𝑁𝑁 times longer than the BRKGA-H. Thus, the ES is effectively 2.63 ∙ 𝑁𝑁 times slower than the 

BRKGA-H. The corresponding time complexities of the BRKGA-H and ES are 𝑂𝑂(𝐿𝐿𝐿𝐿 ∙ 𝐿𝐿𝑁𝑁2) =

𝑂𝑂(𝐿𝐿2𝑁𝑁3) and 𝑂𝑂(𝐿𝐿𝐿𝐿 ∙ 𝐿𝐿𝑁𝑁3) = 𝑂𝑂(𝐿𝐿2𝑁𝑁4), respectively. As such, both algorithms are of polynomial 

time complexity.  

     The VND, unlike the BRKGA-H and ES, iterates an unknown number of times. At each step, 

it evaluates all solutions in its current neighborhood until no improving neighbors are found in 

any of the neighborhoods. All neighborhoods used in the VND are polynomial in size, and 

therefore each step of the VND is of polynomial time complexity (since the objective functions 

are of polynomial time complexity). However, there is no sufficient means to bound how many 

steps the VND will execute. In  
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Figure 35 and Figure 36, trend lines are calculated to approximate the number of objective 

function evaluations for a problem-instance of 𝐿𝐿 ∙ 𝑁𝑁 decision variables. The points represent the 

number of objective function evaluations used by the VND(-H) for each of the QLP problem-

instances in Table 17.   

 

Figure 35: Approximate number of objective function calls by the VND. 

  

Figure 36: Approximate number of objective function calls by the VND-H.  
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     Figure 35 and Figure 36 suggest that the VND and VND-H make approximately (𝐿𝐿𝐿𝐿)2.55 and 

𝑂𝑂(𝐿𝐿𝐿𝐿)2.38 objective function calls, respectively. Even though the coefficient of determination for 

both are greater than 0.9 (indicating a good fit), several points are underestimated. For example, 

consider the points at 𝑥𝑥 = 150 and 𝑥𝑥 = 255 which represent the Melbourne BV8 and Melbourne 

BV15 test cases, respectively. Both points are underestimated for the VND and VND-H. Upon 

closer inspection, the point 𝑥𝑥 = 105, which represents the Melbourne BV5, is also 

underestimated. Since these three test cases are the only BV test cases executed on the IBMQ 

Melbourne, this suggests that the entanglement requirements of the BV circuits are more 

challenging to satisfy on the IBMQ Melbourne than those of the QFT. As such, this likely leads 

both algorithms to prune more solutions in the search space to find improving moves (neighbors).  

     Next, Table 32 presents the 𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 metric for all meta-based transpilers and test cases. 

Test Case # Test Case VND-H BRKGA-
H+VND-H 

VND ES+VND 

1 Yorktown BV2 0% 0% 0% 3% 
2 Yorktown BV3 0% 0% 0% 3% 
3 Yorktown BV5 0% 0% 0% 4% 
4 Yorktown QFT3 0% 0% 0% 13% 
5 Melbourne BV5 0% 0% 0% 32% 
6 Yorktown QFT5 0% 1% 0% 67% 
7 Melbourne BV8 1% 1% 2% 86% 
8 Melbourne QFT3 0% 1% 0% 159% 
9 Melbourne BV15 17% 7% 52% 453% 
10 Melbourne QFT6 26% 15% 74% 470% 

Table 32: Percentage of transpilation window each meta-based transpiler used to find a solution 
to the QLP for test cases of Table 17. 

With the exception of the ES+VND, all meta-based transpilers obtain solutions for all test cases  

within the calibration data window. Excluding the ES+VND, only the Melbourne BV15 and 

Melbourne QFT6 take considerably longer to solve for the meta-based QLP-solvers. Furthermore, 

solutions for test cases 1-8 are obtained within 2% of the calibration window for all meta-based 

transpilers (again excluding the ES+VND). The ES+VND takes considerably more time because 

it makes many more true objective function calls than the other meta-based QLP-solvers.  
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4.4  Fitness Landscapes 

     The first step of the fitness landscape analysis procedure defined in Section 3.5.3 is to use 

MDS to plot a small fitness landscape of the QLP. Figure 37 illustrates the fitness landscapes 

induced by the distance metric defined in Section 3.5.1 coupled with the real and surrogate 

objective functions for the 1-Bell-state circuit.  

 
Figure 37: The phenotypic fitness landscapes induced by the distance metric in Section 3.5.1 

coupled with the objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  (left) and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 (right). 

 

     First, notice that both fitness landscapes appear chaotic. In both, there are large regions where 

the fitness score is nearly the same. Then, on the borders of those regions, either deep basins or 

higher plateaus are present. There are also multiple globally optimal solutions for this problem-

instance (indicated by multiple regions of the highest fitness). Next, notice that the surrogate 

landscape is flatter than the true fitness landscape. In the surrogate landscape, there are larger 

regions with similar fitness score, compared to the “pockets” of similar fitness in the true fitness 

landscape.  

     A given point 𝑠𝑠𝑖𝑖 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) is some unique permutation of P2L mappings. MDS attempts to 

place points close to 𝑠𝑠𝑖𝑖 which are small perturbations of 𝑠𝑠𝑖𝑖 (i.e. via the distance metric defined in  

Objective Score Objective Score 
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Section 3.5.1). MDS shows that small changes in the representation can largely affect the 

objective score. This means that the transpiled circuits of two configurations 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗  may be 

much different from each other, given that there exists pairs of �𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗� in the landscape which are 

close to each other but have very different objective scores.     

     Next, using the techniques specified in Section 3.5.3, the fitness landscapes of the problem-

instances provided in Table 19 are analyzed. In this analysis, fitness landscapes are induced by 

both 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢, coupled with neighborhood function 𝑁𝑁2. Due to the overall similarity of 

results for fitness landscapes induced by 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢, most results in this chapter only consider 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . 

     First, the following four figures show the fitness distribution for the BV2, BV5, QFT3, and 

QFT5 transpiled to the IBMQ Yorktown. The induced fitness landscapes use neighborhood 

function 𝑁𝑁2 and objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 .   
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     Second, the following four figures show the fitness cloud tests for the BV2, BV5, QFT3, and 

QFT5 transpiled to the IBMQ Yorktown. The induced fitness landscapes use neighborhood 

function 𝑁𝑁2 and objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . The dotted line in each figure is the line 𝑦𝑦 = 𝑥𝑥. When 

points are above that line, this means the fitness of the best neighbor is greater than the fitness of 

the parent.  
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     Third, the following four figures show the fitness probability cloud tests for the BV2, BV5, 

QFT3, and QFT5 transpiled to the IBMQ Yorktown. The induced fitness landscapes use 

neighborhood function 𝑁𝑁2 and objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 .   
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Test Case Autocorrelation 
Value (𝒑𝒑) 

Escape Probability (𝒆𝒆𝒑𝒑) 

Yorktown BV2 0.635 0.484 
Yorktown BV5 0.841 0.491 
Yorktown QFT3 0.915 0.481 
Yorktown QFT5 0.963 0.488 

Table 33: Autocorrelation and escape probabilities for QLP fitness landscapes induced by 𝑁𝑁2 and 
𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . 

Test Case Autocorrelation 
Value (𝒑𝒑) 

Escape Probability (𝒆𝒆𝒑𝒑) 

Yorktown BV2 0.747 0.480 
Yorktown BV5 0.892 0.472 
Yorktown QFT3 0.942 0.426 
Yorktown QFT5 0.974 0.439 

Table 34: Autocorrelation and escape probabilities for QLP fitness landscapes induced by 𝑁𝑁2 and 
𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢. 

 

     From the fitness landscape analysis of problem-instances above, one of the overarching 

features prevalent in all is a high autocorrelation value 𝑝𝑝. When 𝑝𝑝 is close to 0, this indicates that 
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the landscape is rugged. Conversely, when 𝑝𝑝 is close to 1, this indicates the landscape is flat. 

Even for the simplest test case, 𝑝𝑝 is 0.635 and monotonically increases to near 1 as the 

complexity of the test-cases increase. This indicates that the fitness landscape induced by both the 

surrogate and true objective functions coupled with 𝑁𝑁2 is flat. In the analyzed fitness landscapes, 

search is very difficult. Often, search in flat landscapes like these are called “needle-in-the-

haystack” searches.  

     Next, notice that all analyzed fitness landscapes have an escape probability of around 0.5. This 

means that progression to higher regions of fitness score in the analyzed landscapes is relatively 

easy. This is also supported by the fitness cloud (𝐹𝐹𝑐𝑐) and fitness-probability cloud (𝐹𝐹𝑝𝑝𝑝𝑝) tests, 

which show that for a given solution 𝑠𝑠, the fitness of neighboring solutions of 𝑠𝑠 are higher than 

that of 𝑠𝑠 in most problem-instances. 𝐹𝐹𝑝𝑝𝑝𝑝 also shows that as fitness of a given parent solution 

increases, the percentage of neighbors with higher fitness decreases.  

     Finally, notice from the fitness distribution (𝐹𝐹𝑑𝑑) tests that randomly selected solutions in the 

search space have similar fitness. Moreover, notice that as problem difficulty increases, the 

quality of a random solution decreases. This suggests that there exist many low-quality solutions 

with similar fitness in the search space. Consider Table 35. 

Test Case Number of 
Decision Variables 

Median Sample 
Objective Score 

VND-H Best 
Objective Score 

Median / 
Best 

Yorktown BV2 20 0.578 0.909 
 

0.636 
 

Yorktown BV5 35 0.177 
 

0.651 
 

0.272 
 

Yorktown QFT3 75 0.05 
 

0.753 
 

0.0664 
 

Yorktown QFT5 155 0.00056 
 

0.433 
 

0.00129 
 

Table 35: Median randomly sampled objective score versus best objective score from VND-H. 

 

When the median random sample scores are compared to the best score by the VND-H, the 

quality of the random sample monotonically decreases as the problem-difficulty increases (based 
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on number of decision variables). For the easiest test case (Yorktown BV2), the quality of a 

random sample is about 63% of the best found by the VND-H. In the hardest test case (Yorktown 

QFT5), the quality of a random sample is about 0.12% of the best found by the VND-H. When 

considering 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝑝𝑝𝑝𝑝, moving from these low-quality solutions to higher-quality solutions is 

relatively easy (by continuously selecting improving neighbors).  

     The fitness landscape analysis provides insight as to why local search strategies outperformed 

population-based metaheuristic algorithms for the QLP. As determined earlier in this section, as 

the QLP problem-instance complexity increases, the flatness of the fitness landscape increases. 

For population-based metaheuristics, this means larger perturbations are required to escape the 

basin of attraction of local optima. During parameter tuning, a mutation rate of 10% is used for 

the BRKGA. For the ES, 𝜅𝜅 is set to 𝐿𝐿 ∙ 𝑀𝑀  generations. These configurations may not provide 

enough genetic diversity to escape local optima once the population settles around a point/set of 

points in the search space.  

     In addition, the escape probability for all problem-instances is around 0.5. This is helpful for 

local search algorithms because for a given point in the search space, there is a high probability 

that a neighboring point has higher fitness. The fitness landscape analysis only analyzed 𝑁𝑁2, but 

the research results suggest the reason the VND works well for the QLP is because once no more 

improving neighbors are found in 𝑁𝑁2, the lower locality neighborhoods can create large enough 

perturbations to escape the basin of attraction. Moreover, these lower locality neighborhoods use 

problem-domain specific knowledge to guide the search process towards solutions that coincide 

with the general structure of highly-fit optima (i.e. high-fidelity P2L mappings for each layer of 

the circuit where the aggregate distance between all pairs of consecutive layouts is minimal).  
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4.5  Summary 

     In Sections 4.2 and 4.3, the quality of solutions and computational effort are presented, 

respectively. Then, Section 4.4 provides the results after fitness landscape analysis of the QLP. 

All three sections seek to address the research questions posed in Chapter I. Section 4.2 and 4.3 

provide results that address the effectiveness and efficiency of various meta-based QLP-solvers. 

Finally, Section 4.4 provides results to describe various fitness landscapes of the QLP.  
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V. Conclusions 

5.1  Overview 

     In Section 5.2, the research questions posed in Chapter I are revisited. Section 5.3 provides the 

contributions of this work to the quantum computing research field. In Section 5.4, future work in 

QLP-solver development is provided based on insights made during this research effort. Finally, 

Section 5.5 provides closing remarks to summarize the work in this study.  

5.2  Addressing Research Questions 

     At this point, the research questions posed in Chapter I are revisited and addressed.  

1. How effective and efficient are various metaheuristic algorithms at finding high-

quality solutions to the QLP? 

2. For various QLP problem-instances, how can the topology of the fitness landscape 

induced by the representation, objective function, and search operator(s) devised for 

the metaheuristics based QLP-solvers be characterized? 

For research question #1, metaheuristic algorithms appear to be a fruitful approach to finding 

high-quality solutions to the QLP. Meta-based transpilers obtained the same or higher-quality 

solutions in 7 of the 10 test cases. Moreover, the VND-H had average solution-quality gains of 

19%, 7%, and 5% over the three benchmark transpilers. However, no meta-based transpiler 

outperformed the benchmark transpilers on the two hardest test cases. This suggests that while the 

meta-based transpilers may be effective for smaller-sized problem instances of the QLP, they may 

not be effective for larger-sized problem instances.  

     Next, an argument could be made that the poor runtimes shown in Chapter IV exhibit that 

metaheuristic approaches are impractical. However, both the objective functions and 

metaheuristic algorithms run in polynomial time (for the VND, this was only observed). 

Moreover, the task of evaluating an objective function on a collection of candidate solutions is an 
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embarrassingly parallel task for which HPCs can evaluate much more efficiently. For all meta-

based QLP-solvers, evaluating a collection of solutions at each step is the most computationally-

intensive task. Further, few enhancements are done in this research effort to optimize the 

objective functions. Most of the objective function software is written in the Python programming 

language. If instead the objective function software is written in a compiled language, such as 

C++, performance could be enhanced by orders of magnitude.  

     For research question #2, the most defining features observed from fitness landscape analysis 

of the induced fitness landscapes are: 

1. The fitness landscape of the QLP is relatively flat, as shown by the autocorrelation function 

tests. In addition, the MDS plots further support the flatness of the QLP landscape and show 

that there are numerous plateaus in the QLP landscape.  

2. While the landscape is relatively flat, the escape probability of around 50% for all problem-

instances suggests that there is a slight incline to the plateaus. However, the direction of that 

incline is not guaranteed to lead towards a global optimum (otherwise local search with 𝑁𝑁2 

would always yield a highly-fit optimum, which was not observed).  

3. There are many low-quality solutions in the QLP solution space. When randomly sampling, 

the fitness scores of the random samples are not close to the score of highly fit optima.  

     The observed characteristics of the QLP fitness landscape suggest that traversing the high-

dimensional space of the QLP is a difficult task. Moreover, they illustrate why the VND (with 

both the true and surrogate objective functions) was an effective metaheuristic algorithm to 

employ for the QLP. Talbi suggests a common technique to “break plateaus” is to change the 

objective function [6]. In the VND algorithm with 𝛾𝛾 = True (the algorithm employed by the 

VND-H), first a round of VND is carried out with the surrogate objective function 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢. Then, 

when no improving solutions are found with that objective function, the objective function is 
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changed to 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 . Thus, the VND with 𝛾𝛾 = True employs both objective space change and 

neighborhood function change, which likely helps guide the search process to better local optima 

than other metaheuristic algorithms for the QLP.  

5.3  Contribution 

     In this research effort, extensions of the mathematical model of the QLP are devised. In 

previous research, the QLP is defined as a constrained optimization problem with nonlinear 

constraints. In this work, the QLP is formulated as a single-objective constrained optimization 

problem with linear constraints via problem reductions made possible by the GBO and TokSP 

solver. Next, extensions of objective functions devised by previous research efforts are created to 

mathematically formalize and objectively score solutions to the QLP. The devised representation 

and objective functions may provide future researchers with a framework to develop novel 

optimization algorithms to find high-quality solutions to the QLP.  

     Next, the mathematical model of the QLP is integrated into various metaheuristic algorithm 

domains. Specifically, a single-solution (VND) and two population-based (BRKGA and ES) 

metaheuristic algorithms are devised to find solutions to the QLP. While previous research efforts 

mainly use local search strategies to find solutions to the QLP, none specifically use a VND 

algorithm as done in this work. In addition, the BRKGA and ES-based QLP-solvers lay a 

foundation for population-based QLP-solvers, an area of research that has not been extensively 

considered in previous research efforts.  

     Finally, the fitness landscape of several QLP problem-instances is analyzed. The analysis of 

the induced QLP fitness landscapes provides insight into global and local characteristics of the 

QLP fitness landscape. Empirical analysis of QLP fitness landscapes is not conducted in previous 

research efforts. The observed characteristics of QLP fitness landscapes in this research provide 

problem-domain specific knowledge to the QLP-solver development community that can be used 

to tailor (meta)heuristics-based QLP-solvers in future research endeavors. 
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5.4  Future Work 

     First, the meta-based QLP-solvers rely on a TokSP solver to calculate minimal sequences of 

SWAP operations to permute between layouts. In this research, a TokSP solver is implemented 

based on a high-level algorithm from Miltzow et al. [35]. In their paper, they claim that their 

TokSP algorithm is of polynomial time complexity and is a 4-approximation algorithm. In this 

work, no optimizations are introduced for the provided TokSP algorithm. Future research efforts 

can devise and implement an optimized TokSP solver, as well as characterize the best-, average-, 

and worst-case time complexities of that solver. In this work, surrogate objective functions are 

created to address the poor asymptotic execution time of the TokSP solver. Potentially, the need 

for surrogate objective functions could be eliminated given an optimized TokSP solver. 

     In addition, the TokSP algorithm provided by Miltzow et al. considers the edge weights to be 

1 for all vertices of the graph. For the QLP, the edge weights are instead probabilities of 

successfully swapping along an edge with edge-weights in [0,1]. As such, there is a need for a 

TokSP solver that finds a fidelity-optimal sequence of SWAPs to permute between two given 

configurations. The author’s review of the literature did not identify research that has provided 

such an algorithm (let alone with some approximation guarantee).  

     Next, due to the poor asymptotic execution time of the TokSP-Solver, lower and upper bound 

surrogate objective functions are devised. While these surrogates provide a useful approximation 

of the true objective function, the bounds are not tight. For future research, development of a 

surrogate that more closely mimics the true objective function would likely guide the search 

process towards highly fit optima in absence of the true objective function. Moreover, the true 

objective function appears, from Chapter IV, to not provide an amenable fitness landscape for a 

search process to optimize. A clever surrogate objective function may induce a more amenable 

fitness landscape for which a search process can navigate to the “needles” in the “haystack” of the 

search space (as illustrated in Section 4.4, where the fitness landscape tends towards flatness as 
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problem difficulty increases). Following up on suggestions for a fidelity optimal TokSP-Solver, a 

clever surrogate fitness function would, for example, approximate the lower bound fidelity of 

swapping between two configurations of tokens on a graph.  

     The objective functions devised for the QLP only consider gate fidelities. A fruitful direction 

for future research efforts is to incorporate 𝑇𝑇1 and 𝑇𝑇2 times into the objective function as well. As 

𝑇𝑇2 time is generally less than 𝑇𝑇1 time, the incorporation of 𝑇𝑇2 time is sufficient to provide a more 

meaningful objective score for a given solution. The 𝑇𝑇2 decay can be characterized by 0.5 +

�0.5 ∙ 𝑒𝑒
−𝑡𝑡
𝑇𝑇2�, where 𝑡𝑡 is the amount of time since the qubit has been placed in the state |+⟩, and 𝑇𝑇2 

is the decay constant associated with spin-relaxation (for a given qubit).  

     Based on the results gathered in Chapter IV, the VND-based QLP-solver appears to be the 

backbone of all devised meta-based QLP-solvers. The results of this research effort show that the 

population-based QLP-solvers, when not augmented with the VND, perform poorly. The VND, 

however, uses a variety of neighborhood functions to escape the basin of attraction of local 

optima that the population-based metaheuristic algorithms tend to get stuck in. To accomplish 

this, weaker locality neighborhoods that transform a given candidate solution towards the 

anticipated global optimal structure are evaluated when stronger locality neighborhoods cannot 

perturb the candidate in a way that increases fitness. Future research efforts could focus on 

evaluating the effectiveness of specific neighborhoods and devising new neighborhood functions 

that create more useful perturbations that lead towards global optima. As the VND currently 

operates, much time is wasted evaluating neighborhoods that do not contain improving neighbors. 

Moreover, many neighbors are selected regardless of how much they improve fitness. Future 

research efforts could alter acceptance criterion to only accept solutions that improve the current 

candidate’s fitness by some variable 𝜖𝜖 to enhance performance of the VND.  
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     Another option for future work is to use metaheuristic algorithms to find high-quality solutions 

to a sub-problem of the QLP, such as finding an initial mapping. For example, Liu et al. use a 

simulated-annealing algorithm to find solutions to the initial mapping problem of the QLP. Other 

metaheuristic algorithms can be explored to tackle one of the subproblems of the QLP. Solving 

subproblems, rather than the entire QLP, would significantly reduce the number of decision 

variables even for larger problem-instances. By reducing the size of the search space, 

metaheuristic algorithms may yield higher-quality optima. Moreover, a cleverer representation, 

objective function, and search operator may induce a fitness landscapes for the subproblem that 

are easier for a search process to traverse than the induced fitness landscapes in this research 

effort.   

     Finally, the population-based QLP-solvers tend to get stuck in poor local optima. One way 

future efforts could address this issue is to tune the hyperparameters of the BRKGA and ES more 

intelligently. Hyperparameters are configured based on previous research efforts and 

experimentation, but much more analysis can be done to find parameter tunings which lead the 

algorithms to convergence on higher-quality optima (e.g., higher mutation rate, lower elitism). In 

addition, the population-based QLP-solvers can be augmented with a local search strategy. 

Specifically, one or several neighborhood functions can be used to perturb 𝑘𝑘 solutions in the 

current population. For each of the 𝑘𝑘 selected members, the local search strategy attempts to find 

an improving neighbor. Then, if one is found, the member is updated to its improving neighbor. 

This variant of hybrid metaheuristic algorithms is described in detail by Talbi [6], where he 

describes combining local search with population-based metaheuristics. Based on the 

effectiveness of local search strategies for the QLP, augmentation of the population-based solvers 

with iterative local search may yield faster convergence on higher-quality optima.  
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5.5  Concluding Remarks 

     The potential for meta-based QLP-solvers to find higher-fidelity solutions to the QLP appears 

feasible from results gathered in this research effort. While there is a runtime tradeoff between the 

SOTA and meta-based QLP-solvers, certain situations require the highest possible fidelity 

transpiled circuit, where researchers are willing to sacrifice runtime for quality of solutions. Talbi 

describes two extreme types of problems: design problems and control problems. Design 

problems are generally solved once, whereas control problems must be solved frequently. The 

QLP lies somewhere between these two extrema and is considered a “medium-term problem” [6]. 

Calibration data is updated approximately every 24 hours, which provides a window of time for 

optimization algorithms to prune for high-quality solutions to the QLP.  

     The fitness landscape analysis provides insight into both global and local characteristics of the 

induced fitness landscape for the QLP. Globally, the QLP fitness landscape appears flat, with 

numerous plateaus. Locally, the fitness landscape has a small gradient for local search operators 

to follow (but the direction of improvement is not guaranteed to lead towards global optima). 

Moreover, most solutions in the search space are low-quality. With this knowledge, future 

researchers can tailor optimization algorithms to traverse the observed landscape. Overall, the 

fitness landscape analysis shows that the QLP is indeed a difficult problem to optimize.  

     The implementation of a TokSP-Solver, novel linearly-constrained mathematical model of the 

QLP, and GBO offer QLP-researchers with additional tools that can be used in future research 

endeavors. In addition, the fitness landscape analysis procedure provides QLP-researchers with 

an empirical approach to characterize the topology of their induced fitness landscape. In this 

research effort, the QLP is first integrated in various metaheuristic algorithm domains. Steps are 

then taken to integrate a mathematical formulation of the QLP into various metaheuristic 

algorithm domains. The results in Chapter IV indicate that single-solution based metaheuristics 

may be particularly applicable to the QLP. Thus, future research endeavors should strongly 
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consider the design decision to sacrifice runtime for quality of solutions as done in this body of 

work, as doing so may permit complex circuits to yield the correct solution(s) in the NISQ-era of 

quantum computing.  
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Appendix A. Number of CNOT Gates Used in Generalized 
Bridge Operation 

 

     This section addresses the number of 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations performed in the GBO algorithm 

between pairwise adjacent vertices of path 𝑝𝑝, where 𝑝𝑝 is the shortest weighted path between 

distant control and target qubits 𝑝𝑝0 and 𝑝𝑝𝑑𝑑, separated by distance 𝑑𝑑. Consider the GBO algorithm 

from chapter III. 

Algorithm  Generalized Bridge Operation. 
    Preliminaries: Let 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑡𝑡 be the control and target logical qubits of a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operation, 

respectively. Let 𝑃𝑃𝛾𝛾 and 𝑃𝑃𝜏𝜏 be the physical qubits that hold 𝑞𝑞𝑐𝑐 and 𝑞𝑞𝑡𝑡, 
respectively. Let 𝑝𝑝 be a sequence holding the shortest weighted path between 
𝑃𝑃𝛾𝛾 and 𝑃𝑃𝜏𝜏 in 𝐺𝐺 (where the edge weights are the 2-qubit error rates between 
adjacent physical qubits. The elements of 𝑝𝑝 are unique physical qubits from 
𝑉𝑉(𝐺𝐺). Further, 𝑝𝑝0 = 𝑃𝑃𝛾𝛾 and 𝑝𝑝𝑑𝑑 = 𝑃𝑃𝜏𝜏 .). Let 𝑑𝑑 = |𝑝𝑝| − 1 (where |𝑝𝑝| denotes the 
number of vertices in 𝑝𝑝).  

     
    𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = [] ; /* List to hold 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 ops to perform, defined by �𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� pairs where 𝑃𝑃𝑖𝑖 is the   
                            control and 𝑃𝑃𝑗𝑗  is the target */ 
 
     /* Phase 𝜌𝜌1 : descending 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations */ 
     /* “Descending” refers to moving backwards along path 𝑝𝑝 */  
    For (𝑖𝑖 = 𝑑𝑑 ; 𝑖𝑖 > 0 ; 𝑖𝑖--) Do 
        𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�(𝑝𝑝𝑖𝑖−1, 𝑝𝑝𝑖𝑖)� ;  
    End For 
 
    /* Phase 𝜌𝜌2 : ascending 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations */ 
    /* “Ascending” refers to moving forwards along path 𝑝𝑝 */ 
    For (𝑖𝑖 = 1 ; 𝑖𝑖 < 𝑑𝑑 ; 𝑖𝑖++) Do 
        𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�(𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖+1)� ; 
    End For 
 
    /* Phase 𝜌𝜌3 : repair */ 
    For (𝑖𝑖 = 1 ; 𝑖𝑖 ≤ (2 ∙ 𝑑𝑑) − 3 ; 𝑖𝑖++) Do 
        𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁[𝑖𝑖]) ; 
    End For 
 
    Output 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, which is a sequence of �𝑃𝑃𝑖𝑖,𝑃𝑃𝑗𝑗� pairs which must be performed, in order, to  
                  simulate 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝑃𝑃𝑐𝑐,𝑃𝑃𝑡𝑡).  
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    Phases 𝜌𝜌1 and 𝜌𝜌2 each perform one 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 between control 𝑝𝑝𝑑𝑑−1 and 𝑝𝑝𝑑𝑑. Note that phase 𝜌𝜌3 

never inserts a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 between 𝑝𝑝𝑑𝑑−1 and 𝑝𝑝𝑑𝑑 since 𝜌𝜌3 only performs the 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 operations that got 

𝑝𝑝0 …𝑝𝑝𝑑𝑑−1 entangled with 𝑝𝑝0. Thus, a total of 2 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are performed by the GBO algorithm 

between 𝑝𝑝𝑑𝑑−1 and 𝑝𝑝𝑑𝑑.  

     Phases 𝜌𝜌1 and 𝜌𝜌3 each perform one 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 between 𝑝𝑝0 and 𝑝𝑝1. Note that phase 𝜌𝜌2 never inserts 

a 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 between 𝑝𝑝0 and 𝑝𝑝1. Thus, a total of 2 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are performed by the GBO algorithm 

between 𝑝𝑝0 and 𝑝𝑝1. 

     Phases 𝜌𝜌1 and 𝜌𝜌2 each perform one 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁 between all intermediate pairwise adjacent qubits in 

𝑝𝑝; that is, �(𝑝𝑝1,𝑝𝑝2), (𝑝𝑝2,𝑝𝑝3), … , (𝑝𝑝𝑑𝑑−2,𝑝𝑝𝑑𝑑−1)�. In phase 𝜌𝜌3, these same two 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are applied 

again to revert all intermediate qubits back to their original states. Thus, a total of 4 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁s are 

performed between all intermediate pairwise adjacent qubits of 𝑝𝑝.  
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Appendix B. Token-Swapping Problem Algorithm 
 

     Miltzow et al. present a 4-approximation algorithm for the TokSP on general graphs [35]. To 

devise the pseudocode below, the algorithmic steps described by Tilman et al. are used. The 

following pseudocode presents an implementable algorithm for a TokSP-Solver. To the best of 

my knowledge, this is the first presentation of an implementable algorithm for Miltzow et al.’s 

approximation algorithm. In other words, the high-level algorithmic steps of Miltzow et al.’s 

TokSP algorithm are refined to a form that is easier to implement for computer scientists.  

     In the provided TokSP algorithm, logical qubits are synonymous with tokens, physical qubits 

are the vertices of graph 𝐺𝐺, and 𝜆𝜆𝑖𝑖 and 𝜆𝜆𝑓𝑓 are P2L mappings (token placements). Furthermore, 

this algorithm works even when the number of logical qubits (tokens) is less than the number of 

physical qubits (vertices in 𝐺𝐺). Let 𝑞𝑞𝜖𝜖 denote an unused logical qubit (token). 

Algorithm  For Token-Swapping problem. 
Inputs: A graph 𝐺𝐺, an initial configuration 𝜆𝜆𝑖𝑖, a final configuration 𝜆𝜆𝑓𝑓, and an optional random 

seed 𝑟𝑟. 
 
    If 𝑟𝑟 ≠ ∅ Then initialize pseudorandom number generator with 𝑟𝑟 ;  
 
    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠 = [] ; /* list to hold generated SWAP sequence */ 
 
    𝜆𝜆𝑝𝑝 = 𝜆𝜆𝑖𝑖 ; /* partial solution */ 
     
    While 𝜆𝜆𝑝𝑝 ≠ 𝜆𝜆𝑓𝑓 Do  /* loop 1 */ 
        /* define directed graph 𝐹𝐹 on 𝑉𝑉(𝐺𝐺) */ 
        𝐹𝐹 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ(); 𝐹𝐹. 𝑎𝑎𝑎𝑎𝑎𝑎_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�𝑉𝑉(𝐺𝐺)�; 
         
        For 𝑃𝑃𝑣𝑣 ,𝑃𝑃𝑤𝑤 in 𝐸𝐸(𝐺𝐺) Do  /* loop 2 */ 
            /* simulate swapping over edge (𝑃𝑃𝑣𝑣 ,𝑃𝑃𝑤𝑤) */ 
            𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜆𝜆𝑝𝑝 ; 
            𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑣𝑣), 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑤𝑤) = 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑤𝑤), 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑃𝑃𝑣𝑣) ; 
             
            𝑞𝑞𝑣𝑣 = 𝜆𝜆𝑝𝑝(𝑃𝑃𝑣𝑣) ; /* get token assigned to 𝑃𝑃𝑣𝑣 */ 
            If 𝑞𝑞𝑣𝑣 ≠ 𝑞𝑞𝜖𝜖 Then 
                /* get distance of 𝑞𝑞𝑣𝑣 from source to target before and after swapping using 𝑑𝑑() from  
                    section 3.3.1.4 */ 
                𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑑𝑑�𝜆𝜆𝑝𝑝−1(𝑞𝑞𝑣𝑣), 𝜆𝜆𝑓𝑓−1(𝑞𝑞𝑣𝑣) � ; 



  

171 
 

                𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑑𝑑�𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑞𝑞𝑣𝑣), 𝜆𝜆𝑓𝑓−1(𝑞𝑞𝑣𝑣) � ; 
 
                /* if the token on 𝑃𝑃𝑣𝑣 reduces its distance to its target by swapping along current edge,  
                    add directed edge to 𝐹𝐹 */ 
                If 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 Then  
                    𝐹𝐹.𝑎𝑎𝑎𝑎𝑎𝑎_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�(𝑃𝑃𝑣𝑣 ,𝑃𝑃𝑤𝑤)� ; 
        End For  /* loop 2 */ 
 
        /* choose any vertex that does not hold the right token */ 
        𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑛𝑛𝑛𝑛𝑛𝑛_ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [] ; 
        For 𝑃𝑃𝑖𝑖 in 𝑉𝑉(𝐹𝐹) Do  /* loop 3 */ 
            If 𝜆𝜆𝑓𝑓(𝑃𝑃𝑖𝑖) ≠ 𝜆𝜆𝑝𝑝(𝑃𝑃𝑖𝑖) and 𝜆𝜆𝑝𝑝(𝑃𝑃𝑖𝑖) ≠ 𝑞𝑞𝜖𝜖 Then 
                𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑛𝑛𝑛𝑛𝑛𝑛_ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑖𝑖) ; 
        End For  /* loop 3 */ 
        𝑣𝑣 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑛𝑛𝑛𝑛𝑛𝑛_ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ; 
 
        /* construct a directed path from 𝑣𝑣 by following directed edges of 𝐹𝐹 */ 
        𝑣𝑣𝑝𝑝 = 𝑣𝑣 ; 
        𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = False; 
        𝑝𝑝𝑝𝑝𝑝𝑝ℎ = [𝑣𝑣𝑝𝑝] ; /* list to hold path explored */ 
         
        /* loop until a happy SWAP (i.e. a cycle in path) found or an unhappy SWAP (i.e. vertex  
            with an out-degree of 0) encountered */ 
        While not 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Do  /* loop 4 */ 
            𝑣𝑣𝑝𝑝 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 �𝐹𝐹.𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑣𝑣𝑝𝑝�� ; /* choose any neighboring vertex of 𝑣𝑣𝑝𝑝 */ 
            𝑝𝑝𝑝𝑝𝑝𝑝ℎ.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑣𝑣𝑝𝑝) ; 
 
            If 𝑝𝑝𝑝𝑝𝑝𝑝ℎ. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑣𝑣𝑝𝑝� > 1 Then 
                𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝ℎ. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑣𝑣𝑝𝑝) ; /* get path index of first occurrence of 𝑣𝑣𝑝𝑝 */ 
                𝑣𝑣𝑣𝑣_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖 = |𝑝𝑝𝑝𝑝𝑝𝑝ℎ| − 1 ; /* last index of the path is the second occurrence of 𝑣𝑣𝑝𝑝 */ 
 
                𝑝𝑝𝑝𝑝𝑝𝑝ℎ = 𝑝𝑝𝑝𝑝𝑝𝑝ℎ[𝑣𝑣𝑣𝑣_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑖𝑖𝑖𝑖𝑖𝑖: (𝑣𝑣𝑣𝑣_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖 − 1)] ; /* extract cycle */ 
                /* the cycle is broken by omitting the last element */ 
 
               𝑝𝑝𝑝𝑝𝑝𝑝ℎ. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() ; /* reverse path to perform SWAPs in correct order */ 
 
                /* perform happy SWAP chain */ 
                For (𝑖𝑖 = 1 ; 𝑖𝑖 < 𝑝𝑝𝑝𝑝𝑝𝑝ℎ. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠() ; 𝑖𝑖++) Do 
                    𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗  = 𝑝𝑝𝑝𝑝𝑝𝑝ℎ[𝑖𝑖 − 1], 𝑝𝑝𝑝𝑝𝑝𝑝ℎ[𝑖𝑖] ; 
                    𝜆𝜆𝑝𝑝(𝑃𝑃𝑖𝑖), 𝜆𝜆𝑝𝑝(𝑃𝑃𝑗𝑗)  = 𝜆𝜆𝑝𝑝(𝑃𝑃𝑗𝑗), 𝜆𝜆𝑝𝑝(𝑃𝑃𝑖𝑖) ; 
                    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎((𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗)) ;         
                𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ; 
 
            Else If 𝐹𝐹.𝑜𝑜𝑜𝑜𝑜𝑜_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣𝑝𝑝) = 0 Then 
                /* extract last two elements of path */ 
                𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 = |𝑝𝑝𝑝𝑝𝑝𝑝ℎ| ; /* get length of path */ 
                𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗  = 𝑝𝑝𝑝𝑝𝑝𝑝ℎ[𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 − 2], 𝑝𝑝𝑝𝑝𝑝𝑝ℎ[𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 − 1] ; 
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                /* perform unhappy SWAP */ 
                𝜆𝜆𝑝𝑝(𝑃𝑃𝑖𝑖), 𝜆𝜆𝑝𝑝(𝑃𝑃𝑗𝑗) = 𝜆𝜆𝑝𝑝(𝑃𝑃𝑗𝑗), 𝜆𝜆𝑝𝑝(𝑃𝑃𝑖𝑖) ; 
                𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎((𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗)) ;         
                𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ; 
        End While  /* loop 4 */ 
           
    End While  /* loop 1 */ 
     
    Output 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑠𝑠𝑠𝑠𝑠𝑠, which is a sequence of (𝑃𝑃𝑖𝑖 ,𝑃𝑃𝑗𝑗) pairs that when used as transpositions  
                  applied to 𝜆𝜆𝑖𝑖 (in order), permute configuration 𝜆𝜆𝑖𝑖 to configuration 𝜆𝜆𝑓𝑓. 
 
 

    Time Complexity: Since at each iteration of loop 1 either a happy or unhappy SWAP is 

performed (otherwise, all tokens have arrived at the targets and the algorithm is done), and [35] 

claims their algorithm is a 4-approximation and the upper bound number of SWAPs required is 

4 ∙ 𝐷𝐷, the outermost while loop executes at most 4 ∙ 𝐷𝐷 times, where 𝐷𝐷 is the aggregate distance of 

all tokens to from their positions in 𝜆𝜆𝑖𝑖 to their destinations in 𝜆𝜆𝑓𝑓. Then, loop 2 executes 𝐸𝐸 times, 

where 𝐸𝐸 = |𝐸𝐸(𝐺𝐺)|. Next, loop 3 executes at most 𝐸𝐸 times since in the worst case all tokens are 

not at their target vertices. Finally, loop 4 executes at most 𝑁𝑁 times, where 𝑁𝑁 = |𝑉𝑉(𝐺𝐺)|. This 

occurs when the entire graph is a happy SWAP cycle. Thus, the overall time complexity of the 

provided TokSP algorithm is 𝑂𝑂�4𝐷𝐷 ∙ (𝐸𝐸 + 𝐸𝐸 + 𝑁𝑁)� = 𝑂𝑂�4𝐷𝐷 ∙ (2𝐸𝐸 + 𝑁𝑁)�. From Miltzow et al. 

[35], 𝐷𝐷 is bounded by 𝑁𝑁2 for general graphs. Thus, the time complexity is 𝑂𝑂�4𝑁𝑁2 ∙ (2𝐸𝐸 + 𝑁𝑁)� →

𝑂𝑂�𝑁𝑁2 ∙ (𝐸𝐸 + 𝑁𝑁)�. Considering 𝐸𝐸 ≈ 𝑁𝑁 for NISQ-era QCs, the time complexity for TokSP-

instances for NISQ-era QCs can be expressed as approximately 𝑂𝑂�𝑁𝑁2 ∙ (𝑁𝑁 + 𝑁𝑁)� → 𝑂𝑂(𝑁𝑁3).  
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Appendix C. Time Complexity of Objective Functions 

     In this section, the worst-case time complexity of both the surrogate (𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢) and true objective 

functions (𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜) from Section 3.3.1 are presented. Table 36 and Table 37 present the worst-case 

time complexity derivations for 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜  and 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢, respectively.  

Step # Step Description 
1 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑂𝑂�𝑓𝑓𝑞𝑞�+ 𝑂𝑂(𝑓𝑓𝑠𝑠) 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 is composed of two separate 

operations: 𝑓𝑓𝑞𝑞 and 𝑓𝑓𝑠𝑠. 
2 → 𝑂𝑂�𝑓𝑓1𝑞𝑞�+ 𝑂𝑂�𝑓𝑓2𝑞𝑞�+ 𝑂𝑂(𝑓𝑓𝑠𝑠) Expanding 𝑓𝑓𝑞𝑞. 
3 

→ 𝑂𝑂���𝑠𝑠1�𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗�
𝑞𝑞𝑗𝑗∈𝑇𝑇𝜆𝜆𝑖𝑖∈𝑠𝑠

�+ 𝑂𝑂����𝑠𝑠2�𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗 ,𝑞𝑞𝑘𝑘�
𝑞𝑞𝑘𝑘∈𝑇𝑇𝑞𝑞𝑗𝑗∈𝑇𝑇𝜆𝜆𝑖𝑖∈𝑠𝑠

�

+ 𝑂𝑂(𝑓𝑓𝑠𝑠) 

Expanding 𝑓𝑓1𝑞𝑞 and 𝑓𝑓2𝑞𝑞. 

4 
→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂(𝑓𝑓𝑠𝑠) 

Given that |𝑇𝑇| = 𝑁𝑁, |𝑠𝑠| = 𝐿𝐿, and 
both 𝑠𝑠1 and 𝑠𝑠2 are 𝑂𝑂(1) 
operations, 𝑂𝑂�𝑓𝑓1𝑞𝑞� = 𝑂𝑂(𝐿𝐿𝐿𝐿) 
and 𝑂𝑂�𝑓𝑓2𝑞𝑞� = 𝑂𝑂(𝐿𝐿𝑁𝑁2). 

5 
→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂� � 𝑐𝑐�𝑤𝑤(𝜆𝜆𝑖𝑖 ,𝜆𝜆𝑖𝑖+1)�

𝜆𝜆𝑖𝑖,𝜆𝜆𝑖𝑖+1∈𝑠𝑠

� 
Expanding 𝑓𝑓𝑠𝑠. 

6 
→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂� � 𝑂𝑂(𝑁𝑁3)

𝜆𝜆𝑖𝑖,𝜆𝜆𝑖𝑖+1

� 

→ 𝑂𝑂(𝐿𝐿𝐿𝐿 + 𝐿𝐿𝑁𝑁2 + 𝑂𝑂�(𝐿𝐿 − 1) ∙ 𝑂𝑂(𝑁𝑁3)�

→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂(𝐿𝐿𝑁𝑁3)

Considering 𝜋𝜋𝑠𝑠 = 𝑤𝑤(𝜆𝜆𝑖𝑖,𝜆𝜆𝑖𝑖+1) 
takes at most 𝑂𝑂(𝑁𝑁3) steps for 
NISQ-era QCs (per Appendix B) 
and |𝜋𝜋𝑠𝑠| is no greater than 4𝐷𝐷 
which is upper-bounded by 𝑁𝑁2 
(per [35]), 𝑂𝑂 �𝑐𝑐�𝑤𝑤(𝜆𝜆𝑖𝑖 ,𝜆𝜆𝑖𝑖+1)�� =
𝑂𝑂(𝑁𝑁2 +𝑁𝑁3) = 𝑂𝑂(𝑁𝑁3). 

7 → 𝑂𝑂(𝐿𝐿𝑁𝑁3) Final time complexity. 
Table 36: Worst-case time complexity derivation for true objective function. 

Step # Step Description 
1 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 = 𝑂𝑂�𝑓𝑓𝑞𝑞�+ 𝑂𝑂�𝑓𝑓𝑠𝑠,𝑢𝑢� 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜,𝑢𝑢 is composed of two 

separate operations: 𝑓𝑓𝑞𝑞 and 𝑓𝑓𝑠𝑠,𝑢𝑢. 
2 → 𝑂𝑂�𝑓𝑓1𝑞𝑞�+ 𝑂𝑂�𝑓𝑓2𝑞𝑞�+ 𝑂𝑂�𝑓𝑓𝑠𝑠,𝑢𝑢� Expanding 𝑓𝑓𝑞𝑞. 
3 

→ 𝑂𝑂���𝑠𝑠1�𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗�
𝑞𝑞𝑗𝑗∈𝑇𝑇𝜆𝜆𝑖𝑖∈𝑠𝑠

�+ 𝑂𝑂����𝑠𝑠2�𝜆𝜆𝑖𝑖 ,𝑞𝑞𝑗𝑗 ,𝑞𝑞𝑘𝑘�
𝑞𝑞𝑘𝑘∈𝑇𝑇𝑞𝑞𝑗𝑗∈𝑇𝑇𝜆𝜆𝑖𝑖∈𝑠𝑠

�

+ 𝑂𝑂�𝑓𝑓𝑠𝑠,𝑢𝑢� 

Expanding 𝑓𝑓1𝑞𝑞 and 𝑓𝑓2𝑞𝑞. 

4 
→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂�𝑓𝑓𝑠𝑠,𝑢𝑢� 

Given that |𝑇𝑇| = 𝑁𝑁, |𝑠𝑠| = 𝐿𝐿, and 
both 𝑠𝑠1 and 𝑠𝑠2 are 𝑂𝑂(1) 
operations, 𝑂𝑂�𝑓𝑓1𝑞𝑞� = 𝑂𝑂(𝐿𝐿𝐿𝐿) 
and 𝑂𝑂�𝑓𝑓2𝑞𝑞� = 𝑂𝑂(𝐿𝐿𝑁𝑁2). 

5 → 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂�𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚
𝜚𝜚𝑙𝑙 � Expanding 𝑓𝑓𝑠𝑠,𝑢𝑢. Here, 

𝜚𝜚𝑙𝑙 = ∑ 𝜂𝜂𝑙𝑙(𝐷𝐷𝑖𝑖)𝐿𝐿−1
𝑖𝑖=1 .  

6 
→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂�(𝐿𝐿 − 1) ∙ 𝑀𝑀�
→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂(𝐿𝐿𝐿𝐿) 
→ 𝑂𝑂(𝐿𝐿𝐿𝐿) + 𝑂𝑂(𝐿𝐿𝑁𝑁2) + 𝑂𝑂(𝐿𝐿𝐿𝐿) 

Since 𝜚𝜚𝑙𝑙  takes at most 𝐿𝐿 − 1 
steps, 𝐷𝐷𝑖𝑖 takes at most 𝑀𝑀 steps 
(see equation TBD), and both 𝜂𝜂𝑙𝑙 
and 𝑑𝑑1 are 𝑂𝑂(1) operations, 
𝑂𝑂�𝜛𝜛𝑚𝑚𝑚𝑚𝑚𝑚

𝜚𝜚𝑙𝑙 � = 𝑂𝑂�(𝐿𝐿 − 1) ∙ 𝑀𝑀�. 
Further, 𝑀𝑀 is upper-bounded by 
𝑁𝑁.

7 → 𝑂𝑂(𝐿𝐿𝑁𝑁2) 
 

Final time complexity. 
Table 37: Worst-case time complexity derivation for surrogate objective function. 
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