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Abstract

Quantum circuit simplification improves program execution on quantum hardware

by reducing error from prolonged environmental interaction and noisy gate operations.

One simplification technique is template matching, which repeatedly conducts local

optimization by replacing small sequences of gates within a circuit by optimized

versions. Underlying this method is the problem of identifying sequences matching

templates. This is challenging because some, but not all, gates can commute within

a circuit. This means there may not be a subcircuit that matches a template in the

original circuit specification, but a match may exist in an equivalent rearrangement

of gates. In such cases, certain reductions are possible only after the consideration of

alternative gate orderings. This research focuses on the identification of commuting

gate sequences in support of circuit reduction. In particular, this work generalizes

the notion of commuting gates and layers to n-layer commuting compositions and

identifies all three-layer commuting compositions composed of Toffoli, CNOT, and

NOT gates for circuits with three to five qubits.
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COMMUTING COMPOSITIONS

FOR QUANTUM CIRCUIT REDUCTION

I. Introduction

1.1 Motivation

The United States is in a great power competition with near-peer adversaries [38].

Establishing a strategic edge in this competition is crucial to national defense. A

key component to reaching that state is technological superiority. As quoted in the

U.S. Air Force’s Science and Technology Strategy, former Secretary of the Air Force

Heather Wilson said, “The advantage will go to those who create the best technologies

and who integrate and field them in creative operational ways that provide military

advantage” [63]. Leading the race to develop and utilize game-changing technologies

is vital to securing a military and economic advantage over adversarial nations.

Quantum computing is one of the developing technologies that will contribute to

this competitive edge. The United States has recognized it as so with the enactment of

the National Quantum Initiative (NQI) Act in December 2018 [54]. This Act creates

a coordinated federal approach to quantum development in order to ensure U.S.

leadership in quantum sciences for the nation’s security and economic prosperity [47].

In addition to the United States, China and Russia have recognized quantum

sciences as a technology leading to a strategic edge. China is building a national

quantum science research center, leads the world in number of quantum communica-

tion and cryptography patents, and is investing generous funding towards quantum

development [21]. Russia, while lagging behind in the early years of quantum re-
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search, has joined the race by investing $790 million for quantum research and devel-

opment [20, 57]. The active pursuit by near-peer adversaries of quantum development

increases the urgency for the United States to develop a quantum computer capable

of solving real-world problems and using it to strengthen military capabilities.

The foreseen advantage of quantum computers is due to the novel method in

which they processes data. Rather than simply speeding up classical computation

techniques, it fundamentally alters the manner in which information is processed by

harnessing properties of quantum mechanics [45]. As a result, some problems that

are classically infeasible to compute have known quantum solutions. This promises

huge implications to fields such as data security and materials engineering.

One of the first contributions heralding the power of quantum computing is the

algorithm created by Peter Shor in 1999 that efficiently solves the problem of fac-

toring large prime numbers, which is believed to be classically intractable [59]. The

difficulty of factoring such numbers is the foundation of the widely-used RSA en-

cryption algorithm. This algorithm is used for securing data in many applications,

ranging from bank transactions to military communications. Once a quantum com-

puter exists that is capable of running non-trivial instances of Shor’s algorithm, this

prominent encryption algorithm will no longer be secure.

Another example of quantum computing potential is its foreseen capability to sim-

ulate atomic-level molecular chemistry [19]. Classical computers struggle to precisely

simulate molecular behavior of anything larger than a few atoms due to computa-

tional constraints [45]. The ability to simulate the structure of complex molecules

will enable a more robust understanding of chemical interactions [54]. This could

be applied to a range of defense-oriented material engineering problems to create

stronger equipment or weapon systems, for example.

While known quantum algorithms such as Shor’s exist, hardware capable of run-
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ning such algorithms is still being developed. The current state of quantum computers

is termed the Noisy Intermediate Scale Quantum Computing (NISQ) era. This refers

to quantum computers that have low qubit counts, short coherence times, and high er-

ror rates [6]. This is a promising step towards developing useful quantum computers,

but it is not enough to achieve the anticipated uses of quantum computing technolo-

gies. In order to do so, the physical quantum devices must be improved. While this

hardware is being developed, however, there is still much software-oriented research

that can be done to improve the state of existing technology and accelerate the ad-

vent of quantum computers useful for solving real problems. The research presented

in this work contributes to that endeavor by presenting a new way to decrease circuit

cost, thus making programs execute more efficiently and yield better results in the

current noisy environment.

1.2 Problem Background

The initiative to improve the state of quantum computing spans a wide berth of

scientific fields and research areas. Among others, physicists, mathematicians, and

computer scientists are working to investigate physical qubit technologies, develop

quantum algorithms, and improve computations via quantum error correction codes.

The focus of this research—reversible and quantum circuit optimization—is another

such field dedicated to the advancement of quantum computing.

The goal of circuit optimization is to minimize the costs associated with circuit

execution. This is an objective of both classical and quantum computing—the more

efficiently a circuit runs the better. However, the low coherence times and high

noise present in current quantum computers add to the importance of streamlining

the execution process. Coherence time relates to the length of time a qubit can be

expected to remain in an excited state, which is key to harnessing the potential of
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quantum computers [24]. The longer a circuit takes to execute, the more likely a

qubit is to decohere, rendering the computation useless. Coherence times are low in

current devices due to noise, or disruption from interaction with the environment, that

disturbs the fragile qubit state. Every gate operation in a circuit induces additional

noise; therefore, fewer gates will lead to not only faster execution time, but also less

error.

One of the methods designed to reduce the cost of a circuit is template matching.

This technique searches a circuit for a subcircuit matching a template of gates, then

replaces the subcircuit with an optimized version. An underlying challenge in this

approach is pattern matching, or finding a sequence of gates that matches a given

template. A significant difficulty of this problem lies in the fact that some, but not all,

gates can commute in a quantum circuit. This means that there may exist alternate

orderings of gates that realize the same function, and a template may be found in the

rearranged order of gates but not the original.

This leads to the main premise of this research: to identify equivalent alternative

orderings of gates so that pattern matching algorithms may discover more template

matches and corresponding simplifications, leading to greater reductions in circuit

costs.

1.3 Quantum Circuit Commuting Compositions

Commutations of quantum gates within a circuit can result in multiple gate se-

quences realizing the same function. Alternative orderings could yield gate sequences

that match templates with known reductions. Previous researchers of quantum circuit

simplification, such as Rahman, et al. and Iten, et al., account for pairwise commu-

tation of gates in their algorithms [53, 28]. The latter of these works presents the

idea of considering commutations of more than two gates. It states that “in general,
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it could happen that in a circuit C = (C1, C2, C3), no gates commute pairwise, but

the unitary corresponding to (C1, C2) could commute with the unitary corresponding

to C3. Hence, one could bring the circuit C into the form (C3, C1, C2), which could

help matching in principle”[28].

The present work generalizes and formalizes that postulate with the proposal of

the commuting composition property.

A commuting composition is defined as a sequence of n ≥ 2 elements such that

the product (i.e. composition) of the first k elements (0 < k < n) commutes with the

product (i.e. composition) of the remaining (n− k) elements.

An n-layer commuting composition is a commuting composition of n elements

where no subsequences of (n− 1) or fewer elements create a commuting composition.

In other words, n is the minimal number of elements in this sequence required for a

commutation to exist.

In regards to quantum circuits, the elements can be gates or layers (where a layer

can contain multiple concurrent gates). The composition of elements corresponds to

the product of the unitary matrices corresponding to each element. The identity gate

is included as an element: if k = 1 or (n− k) = 1, the single layer can be viewed as

a composition in the sense that it is equivalent to itself composed with the identity.

More detailed explanations of these concepts are given in Sections 2.1.2 and 2.1.3.

1.4 Research Objectives

This goal of this research is to answer the following research question and test the

associated hypotheses:

Research Question:

How can commuting compositions of layers within a quantum circuit be used

to make circuit transpilation more effective?
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Hypotheses:

1. Three-element commuting compositions for circuits composed of NOT, CNOT

and Toffoli gates exist.

2. Rearrangements of quantum gates in a circuit can yield reductions not otherwise

captured by state of the art optimization tools.

3. Consideration of commuting layers will yield more three-element commuting

compositions than accounting for gates alone.

The idea the research question addresses is whether alternative orderings of quan-

tum gates realizing the same function as the original circuit could result in improved

program execution after undergoing transpilation techniques. It has already been

shown that accounting for pairwise commutation of gates within template matching

algorithms can yield better results than searching the original gate specification alone

[53, 28]. Pairwise commutation, however, is a small subset of the greater problem that

the research question poses. This work further investigates the topic by expanding

the search from two to three elements and examining commutations of groupings of

gates rather than commutations of single gates. The hypotheses are the propositions

tested in support of this investigation. They are designed to prove whether such com-

muting circuits exist, whether they can improve current reduction techniques, and

whether it is beneficial to consider commutations of layers of gates.

1.5 Scope

1.5.1 Three Layers

This work searches for and analyzes commuting compositions of three layers. This

extends previous research in two respects. First, previous work considered only single
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gates per layer, not the more general layers considered here. Second, it considered

only sequences of two gates, not three.

1.5.2 Three to Five Qubits

This work analyzes circuits composed of three to five qubits. It begins with circuits

of three qubits because that is the minimum required to allow all gates from the NOT,

CNOT, and Toffoli gate set to be in the circuit. It ends with five qubits because this

number allows for an initial exploration of three-layer commuting compositions that

will help inform whether it is worthwhile to search for commuting compositions in

circuits containing more than five qubits. The O(n!) complexity of the problem

(See Appendix A) makes it computationally expensive to search for high-qubit count

circuits. This five-qubit analysis lays the groundwork to determine whether to expend

the resources to consider greater numbers.

1.6 Document Overview

The remainder of this document is structured as follows. Chapter II discusses

background information and previous work related to quantum circuit reduction

and template optimization techniques. Chapter III describes the methodology em-

ployed to identify and analyze three layer NCT commuting compositions. Chapter IV

presents the results of the investigation of the commuting sequences. Finally, Chap-

ter V concludes the document by summarizing the contributions of this research and

proposes future work.
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II. Background and Literature Review

This chapter presents an overview of concepts related to quantum circuit optimiza-

tion via template matching. It lays the groundwork for understanding the commuting

composition problem and its role in quantum circuit reduction. Section 2.1 reviews

fundamental concepts of quantum computing; Section 2.2 discusses the process of

realizing a given function as a quantum circuit; Section 2.3 describes cost metrics

used to analyze the efficiency of a circuit; Section 2.4 presents the template matching

optimization technique; and 2.5 describes Qiskit, which is the primary toolset used

in this research.

2.1 Quantum Computing Preliminaries

Quantum computing is a computational paradigm using quantum mechanics to

process information. This section describes key elements of quantum computation

and how they differ from classical computation. It begins with explaining the quan-

tum bit (qubit) in Section 2.1.1, proceeds with how qubits are manipulated via gates

in Section 2.1.2, and explains how gates are combined to make a circuit in Sec-

tion 2.1.3. Finally, this section ends by describing ways in which circuits are specified

in Section 2.1.4.

2.1.1 Qubits

The basic unit of information for quantum computing is the qubit. Unlike a

classical bit which can exist in only the 0 or 1 state, a qubit can exist in a linear

combination of 0 and 1. The state of a qubit is represented as |ψ〉 = α |0〉 + β |1〉,

with α, β ∈ C and |α|2 + |β|2 = 1. This state can also be represented as a vector,(
α
β

)
. When a qubit is in a linear combination in which both α and β are nonzero,
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it is in a state of superposition. When a qubit is observed, or measured, it collapses

from the superposition to either 0 or 1 [45]. The state corresponding to 0 is written

as |0〉 = 1 |0〉 + 0 |1〉 = ( 1
0 ) and the state corresponding to 1 is written as |1〉 =

0 |0〉+ 1 |1〉 = ( 0
1 ).

The state space of a quantum system is a Hilbert space over the complex num-

bers [17]. Specifically, a quantum system’s state is described by a unit vector within

this complex space [45]. For a single qubit, |ψ〉 = α |0〉+ β |1〉, the amplitudes α and

β span a 2-dimensional Hilbert space that comprises every state in which the single

qubit quantum system can exist. This 2-dimensional state space is often represented

by the Bloch sphere, as shown in Figure 1.

Figure 1: Bloch sphere. Adapted from QuTech [48].

For a system with n qubits, the state space corresponds to a 2n-dimensional Hilbert

space, given by the tensor product of the individual qubit state vectors [27]. For

example, a quantum system with two qubits |ψ1〉 = α1 |0〉+β1 |1〉 and |ψ2〉 = α2 |0〉+

β2 |1〉 spans a 4-dimensional Hilbert space, given by
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|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =

 α1

β1

⊗
 α2

β2

 =



α1α2

α1β2

β1α2

β1β2


(1)

Qubits are currently realized by a variety of physical technologies, to include ion

traps, superconductors, linear optic tools, diamonds, and quantum dots [55]. It is an

ongoing area of research to determine which existing or new technologies will emerge

as the primary materials used, as each have advantages and disadvantages. For exam-

ple, ion trap-based systems have seen higher coherence times, lower error rates, and

more connectivity between qubits, but have lower qubit counts due to the difficulty

of controlling them and their high susceptibility to noise [33, 43]. Superconducting

quantum computers, which use the transmon qubit, have higher qubit counts and

are easier to control, but have lower coherence times, experience higher error, and

have fewer adjacent qubits [33, 34, 43]. The concept of adjacent qubits is described

in Section 2.2.3.

2.1.2 Quantum Gates

To perform a computation on a qubit, a quantum gate is applied to it. This is a

physical operation, such as a microwave pulse, that is performed on a qubit to alter

its state. All quantum gates can be represented as unitary matrices [9]. A unitary

matrix is a matrix U such that UU † = I, where U † is the adjoint of U (complex

conjugate of U transposed) [45]. Since UU † = I, the inverse of U (U †) exists and

thus every quantum gate is reversible. A gate operation on a single qubit can be

visualized by a rotation about the origin on the bloch sphere.
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For example, Equation 2 shows the matrix corresponding to the Pauli X gate, also

known as the NOT gate [25]. The X gate functions similarly to the classical NOT

gate: as the classical NOT gate inverts a bit, the quantum NOT gate inverts a qubit.

Visualized on the Bloch sphere, this gate rotates the state vector by 180° around the

x-axis.

X =

 0 1

1 0

 (2)

Thus, the X gate inverts a qubit |ψ〉 = α |0〉+ β |1〉 by switching the positions of

α and β to give |ψ〉 = β |0〉 + α |1〉. This can be verified by calculating the product

of the the X gate and the qubit state, as shown in Equation 3.

 0 1

1 0


 α

β

 =

 β

α

 (3)

Most quantum computing devices support gates that operate on one or two

qubits [6]. In the two-qubit case, one of the qubits is specified as the control qubit

and the other is specified as the target qubit. When the control qubit is in the |1〉

state, the operation is applied to the target qubit. For example, Figure 2 shows the

two-qubit CNOT gate, which applies the X gate to the target qubit (|q1〉) when the

control qubit (|q0〉) is |1〉. The matrix representation of this gate is in Equation 4.

|q0〉 •

|q1〉

Figure 2: CNOT gate
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CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(4)

2.1.3 Quantum Circuits

A quantum circuit is a sequence of operators applied to qubits in a quantum sys-

tem. The circuit corresponds to a unitary matrix that is the product of the operator

for each layer in the circuit multiplied in reverse order [27]. As an example, consider

the circuit generating a Bell State as shown in Figure 3. This circuit entangles two

qubits, which means that their states cannot be isolated from one another—the state

of the quantum system cannot be written as the product of two individual qubit

states [45]. To compute the final circuit unitary, the matrices corresponding to the

individual layers must first be computed. This is done by calculating the tensor prod-

uct of the matrices corresponding to the gates operating on the individual qubits in

the system for each layer.

|q0〉 H •

|q1〉

Figure 3: Bell State circuit

In the Bell State example, let L1 refer to the layer in which the Hadamard gate is

applied to |q0〉. In this layer, no state-changing operations are applied to |q1〉, so the

identity matrix can be used to represent the gate for that qubit. The unitary matrix

corresponding to the operator for the entire layer is therefore computed as shown in

Equation 5.
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L1 = H ⊗ I =
1√
2

 1 1

1 -1

⊗
 1 0

0 1

 =
1√
2



1 0 1 0

0 1 0 1

1 0 -1 0

0 1 0 -1


(5)

The matrix representation of the second layer of operations, which in this case

will be denoted L2, is the matrix for the CNOT operation, as shown in Equation 6.

L2 =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(6)

The unitary corresponding to the entire circuit can then be calculated by taking

the product of L2 and L1. As previously mentioned, to calculate the circuit unitary,

the order of operands is multiplied in reverse order relative to how it appears in the

circuit diagram. A state analysis of the quantum system after the operand is applied

for each layer shows the reason for this. The original state is |ψ0〉. The state of the

system after application of the first layer operand is |ψ1〉 = L1 |ψ0〉. The final state of

the system after application of the second layer operand is |ψ2〉 = L2 |ψ1〉 = L2L1 |ψ0〉.

Therefore, to calculate the state of the final system, the operator for the entire circuit

can be applied to the original state. In this case, that operator is L2 ·L1. The matrix

analysis for this is shown in Equation 7.
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L2L1 =
1√
2



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





1 0 1 0

0 1 0 1

1 0 -1 0

0 1 0 -1


=

1√
2



1 0 1 0

0 1 0 1

0 1 0 -1

1 0 -1 0


(7)

Using the operator for the circuit, the resulting state of the quantum system can

be computed by multiplying the circuit operator and the quantum system’s state

vector (by which it is meant to left-multiply the state vector by the matrix of the

circuit operator). For example, Equation 8 shows the result of a quantum system

in the state |00〉 =

(
1
0
0
0

)
with the Bell State circuit applied to it is 1√

2

(
1
0
0
1

)
=

1√
2

[(
1
0
0
0

)
+

(
0
0
0
1

)]
= 1√

2

(
|00〉+ |11〉

)
.

U |00〉 = L2L1 |00〉 =
1√
2



1 0 1 0

0 1 0 1

0 1 0 -1

1 0 -1 0





1

0

0

0


=

1√
2



1

0

0

1


(8)

This means that, when measured, the system will collapse to either |00〉 or |11〉

with a 50% probability for each possibility.

2.1.4 Circuit Representations

Quantum circuits can be specified in multiple ways. Three of the most common

methods are circuit diagrams, instruction lists, and directed acyclic graphs (DAGs).

A quantum circuit diagram is a figure showing “wires” that represent the logical
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qubits in the quantum system. Each gate that is applied to a single qubit is repre-

sented with a symbol, commonly a boxed letter or a crossed circle. Gates that operate

on more than one qubit are shown with a dot on the control qubit(s) connected to

a gate symbol on the target qubit. The representation of the Bell State circuit in

Figure 3 is an example of defining a circuit via a diagram.

In addition to diagrams, circuits can be described in text by defining a list of

instructions operating on qubits, called a netlist [44]. This is similar to writing

a classical program using assembly language. Netlists can be created in multiple

formats. Example languages are OpenQASM, Qiskit, and REAL [14, 25, 60]. Circuits

represented in these languages are text files that describe the gates in the circuit and

the qubit registers on which the gates act. Figure 4 shows an OpenQASM instruction

list format specifying a Bell State circuit. OpenQASM is defined in more detail in

Section 2.5.2.

Figure 4: OpenQASM code for Bell State circuit

In addition to diagrams and netlists, quantum circuits can be represented as di-

rected acyclic graphs (DAG)s. In this representation, the nodes of the graph corre-

spond to gates, quantum registers, and classical registers, and the edges correspond to

logical qubits or classical bits that are the input or output for each of the nodes [25, 44].
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As an example, a DAG representation of the Bell State circuit is shown in Figure 5.

Figure 5: Bell State circuit DAG

Circuit diagrams, netlists, and most DAGs show a specific sequence of gates in the

circuit, but that sequence is not necessarily the only one that will compute to the same

overall matrix operator. For any two gates A and B, if AB = BA, the gates commute

and can switch execution order in the circuit without altering the function. In other

words, the output after the execution of both gates does not change depending on

which executes first.

One example of this is the moving rule, formally defined as the property that

“two adjacent gates g1 and g2 with controls c1 and c2, and targets t1 and t2 can be

interchanged if c1 ∩ t2 = ∅ and c2 ∩ t1 = ∅” [53]. The two gates depicted in Figure 6a

show an example. In this case, each gate’s control lines are disjoint from the other

gate’s target line. This means the gates can be interchanged, yielding the equivalent

circuit in Figure 6b.

In contrast to this example is the circuit given in Figure 7, in which the two gates
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•
• •

(a)

•
• •

(b)

Figure 6: Gate commutation via moving rule

share a common line between the target of the first gate and the control of the second

gate. In this case, the gates cannot commute and must be executed in the order

shown in order to realize the desired function.

•
•
•

Figure 7: Non-commuting gates

The moving rule shows one instance of when two gates can commute within a cir-

cuit. It is not sufficient, however, to account for all gate commutations. In particular,

it does not generalize to more than two gates or to gates that are not directly adja-

cent. The research conducted in this work considers problems that are not captured

by the moving rule.

Rahman et al. presented a type of DAG that incorporates the moving rule, known

as the canonical form or DependencyDAG [25, 28, 53]. Unlike the DAG shown in

Figure 5, a DependencyDAG only has an edge between gate nodes if one of those

nodes depends on the other.

The difference between the previously-mentioned DAG and the DependencyDAG

is shown in Figure 8. Both graphs represent the same circuit, but unlike Figure 8a,

Figure 8b shows the existence of a dependency between gates by an unlabelled edge
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(a) DAG circuit representation

(b) Canonical circuit representation

Figure 8: DAG circuit representations

between nodes. Where there is not an edge, no dependency exists. In contrast, the

edges in Figure 8a correspond to the logical qubits upon which the gates are operating.

Those edges give no indication of whether the gates can commute. For example, the

two CCX gates in this circuit can commute. Figure 8a has a directed edge between

the first and second of these gates, corresponding to the gate order in which the circuit

was originally specified. It does not indicate whether this order is required for the

circuit to realize the desired function. Figure 8b does not have an edge between these

gates (nodes 2 and 3). This indicates that they are independent of one another and

that the order in which they execute will not impact the functionality of the circuit.

While the canonical form shows pairwise commutations that allow for some gate

reorderings (two gates can commute if they are not dependent on one another), it

does not depict all possible gate sequences that can realize the original function.

It considers dependency between neighboring gates, but there could exist a case in
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which pairs of gates could move together in the circuit without compromising the

dependency between them or changing the circuit’s function. This would yield an

alternative gate sequence not captured by the canonical form.

2.2 Circuit Synthesis

The process of realizing an algorithm or function on a physical quantum computer

can be decomposed into three steps: synthesizing the function into a reversible circuit

(Section 2.2.1), mapping gates from the reversible to quantum level (Section 2.2.2),

and modifying the quantum-level circuit to account for physical constraints (Sec-

tion 2.2.3). Understanding these abstraction levels is important for circuit optimiza-

tion as simplification can be conducted during any of the steps in this process. De-

pending on the method used, it may be more effective to run the technique at a

higher or lower abstraction level. Furthermore, understanding the decomposition of a

high-level reversible gate into quantum gates lends insight into which gates to target

for reduction in order to achieve the best performance when the circuit is run on

quantum hardware.

2.2.1 Reversible Circuit Synthesis

The first step in implementing a function on a quantum computer is synthesis into

a reversible circuit. A reversible circuit is a bijective mapping of inputs to outputs,

composed of cascades of reversible gates, and has no fanout or feedback [15]. Unlike

a classical gate, a reversible gate must have an equal number of inputs and outputs

and a one-to-one mapping between them [56].

Any function, reversible or irreversible, can be implemented as a reversible cir-

cuit [2]. If the function is irreversible, ancilla inputs and garbage outputs are used

to embed the function into a reversible circuit. Ancilla lines are added to the origi-
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nal inputs to enable the function, and garbage outputs are lines for which the final

output values are not considered in the result [56]. For example, Figure 9 shows a

reversible embedding of a one-bit full adder function (a one-bit full adder includes

both a carry-in input and a carry-out output) [61]. The one-bit full adder function is

|a〉 • • |garbage〉
|b〉 • • • |garbage〉
|c〉 • |c〉

ancilla: |0〉 |d〉

Figure 9: NCT 1-bit adder circuit. Bits a, b, c are added and the result is dc

not inherently reversible, but the addition of the ancilla line and the exclusion of the

two garbage lines from the result allows for the reversible embedding.

Although all quantum gates are reversible, not all reversible circuits are composed

of quantum gates. Often, abstract reversible gates, which can operate on arbitrar-

ily many inputs, are used. While these gates work well to embed a function into

a reversible circuit, they cannot be run directly on a quantum computer, as most

quantum devices are only able to implement gates that operate on one or two inputs.

There are several universal gate libraries used for reversible circuit synthesis: among

the most common are the Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates,

Multiple-Control Toffoli (MCT) gates, and NCT gates [2, 5]. These gate sets are

listed below from higher to lower levels of abstraction.

• The MPMCT gate library is the set containing MPMCT gates. A MPMCT

gate is defined as a gate g(C, t) where C is the set of controls lines and t is the

target. Each control element is either a positive or negative control. The X

operation is performed on the target line if and only if the state of the control

line is asserted in accordance with its specification of a positive or negative
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c4 •
c3
c2 •
c1

t

Figure 10: MPMCT gate with four control lines

control [1]. An example of a MPMCT gate is shown in Figure 10. In this

example, an X operation is performed on the target if control lines c1 and c3

are in the |0〉 state and control lines c2 and c4 are in the |1〉 state.

• The MCT gate library is a subset of the MPMCT gate library for which all

controls are positive. This means that the control lines are asserted, and the

X is performed on the target, if and only if the control lines are in positive

states [2]. An example of a MCT gate is shown in Figure 11. In this example,

c3 •
c2 •
c1 •
t

Figure 11: MCT gate with three control lines

an X operation is performed on the target if c1, c2, and c3 are in the |1〉 state.

• The NCT gate library is a subset of the MCT library in which the number

of control lines is two or fewer. In other words, it is exactly the set containing

the NOT, CNOT, and Toffoli gates [2]. The NOT, CNOT and Toffoli gates are

also referred to as the X, CX and CCX gates, respectively. The NCT gates are

shown in Figure 12. The matrices corresponding to these gates are shown in

Equations 9–11.
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•
• •

Figure 12: The NOT, CNOT, and Toffoli gates

X =

 0 1

1 0

 (9)

CX =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(10)

CCX =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(11)

2.2.2 Quantum Circuit Mapping

Once a function has been synthesised into a cascade of reversible gates, those gates

are decomposed into sequences of quantum gates. The quantum gate decomposition is

based on a chosen gate library. Two of the common universal quantum gate libraries

are the NCV library and the Clifford+T library [2].
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The NCV gate library is composed of the Pauli-X gate, the CNOT gate, the

Controlled-V (CV) gate, and the Controlled-V † gate [30]. The V gate is also known

as the square-root-of-not gate. The matrix representations for the X and CX gates

are shown in Equations 9 and 10 in Section 2.2.1; the remaining gate matrices are

shown in Equations 12 and 13.

CV =



1 0 0 0

0 1 0 0

0 0 1+i
2

1−i
2

0 0 1−i
2

1+i
2


(12)

CV † =



1 0 0 0

0 1 0 0

0 0 1−i
2

1+i
2

0 0 1+i
2

1−i
2


(13)

The NCV gate library was used frequently in early work on quantum circuit mapping.

Recently, the Clifford+T gate library has been used more often than the NCV

gate library due to its role in fault tolerant computing [46]. In particular, the set

of Clifford gates has seen promising results in research on quantum error correction

using stabilizer codes [12]. The T gate is added to the Clifford set in order to achieve

universality. The Clifford+T gate library is composed of the Clifford gates (X, CNOT,

H, S, and S†), along with the T and T† gates [41]. The matrix representations of these

gates (other than the X and CNOT gates shown previously in Equations 9 and 10,
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respectively) are shown in Equations 14–18.

H =
1√
2

 1 1

1 -1

 (14)

S =

 1 0

0 i

 (15)

S† =

 1 0

0 -i

 (16)

T =

 1 0

0 e
iπ
4

 (17)

T † =

 1 0

0 e
−iπ
4

 (18)

Regardless of the gate set used for mapping, this step produces a logical circuit

composed of quantum gates that is at the low-level instruction set required to run

on an ideal quantum computer. However, there is one final step before it can be run

on an actual device—the logical circuit must be converted into a physically realizable

circuit by accommodating for any hardware-imposed constraints.

2.2.3 Hardware Constraints

Once an algorithm has been mapped to a logical quantum circuit, the final step is

to modify that circuit to account for architecture-specific physical constraints. These

are restrictions due to the the construction of the quantum computer rather than the

abstract laws of quantum physics.

NISQ-era quantum computers have limited connectivity between qubits. The
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physical connectivity of the qubits on a quantum device is referred to as its topology.

A topology diagram shows what connections exist between physical qubits. Qubits

corresponds to the nodes and an edge indicates they qubits connected [25]. Two qubits

are adjacent if they are physically connected, which means two-qubit operations are

allowed between them. Examples of toplogies for two IBM quantum computers are

shown in Figures 13 – 14.

Figure 13: Topology diagram for 5-qubit ibmq 5 yorktown

Figure 14: Topology diagram for 15-qubit ibmq 16 melbourne

The linear nearest neighbor (LNN) constraint states that a two qubit gate can

only be applied to physically adjacent qubits [31]. For example, physical qubits 0

and 2 in Figure 13 can be used in a two-qubit operation, but physical qubits 0 and

3 cannot. In order to achieve adjacency when a pair of physical qubits involved in a

two-qubit operation are not in positions allowing it to occur, SWAP operations are
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applied to interchange the positions of logical qubits on the physical topology. SWAP

operations are costly and noisy, so an open field of research is how to minimize the

number of SWAP operations required to implement a quantum circuit.

One example of such work is presented by Bataille and Luque, in which they

analyze the mathematical properties of the set of circuits generated by SWAP and

CNOT gates to find minimization techniques [9]. These are incorporated into an

algorithm that optimizes gate selection for the circuit, which works so long as the

qubit topology is a complete graph. Another example is by Rahman et al., which

presents a method to account for the nearest neighbor constraint during the reversible

circuit synthesis step as opposed to a post-processing step [52].

A problem related to minimizing the number of SWAP operations is mapping log-

ical qubits to physical qubits. If the logical qubits are mapped to physical qubits such

that the two physical qubits involved in a two qubit operation are already adjacent

or able to be made adjacent with a relatively small number of SWAPs, the circuit

execution will be more efficient and output better results.

An example of this type of work can be seen in the research presented by Murali

et al., which inputs an optimization problem formulated from hardware constraints

and circuit characteristics to the Z3 satisfiability modulo theory (SMT) solver to

output a logical to physical qubit mapping that minimizes execution time by reducing

number of inserted SWAPs [42]. Another example of work on qubit mapping is

presented by De Almeida et al., which focuses specifically on CNOT restrictions

present in IBM quantum hardware. In this research, the authors find optimal qubit

permutations adhering to IBM CNOT gate restrictions by formulating it as an integer

linear programming problem that accounts for different mapping costs [16].
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2.2.4 Previous Work on Circuit Decomposition

This Section describes previous research that has been done on reversible circuit

synthesis. It focuses on converting high-level reversible circuits into quantum circuits.

Section 2.2.4.1 describes decomposing MCT gates into NCT gates, and Section 2.2.4.2

describes methods for mapping reversible circuits into equivalent quantum-level real-

izations.

2.2.4.1 Reversible Level

One of the major works used for decomposition of a reversible circuit into a quan-

tum circuit is Elementary gates for quantum computation, in which Barenco et al.

propose techniques for decomposing MCT gates with large numbers of control lines

into NCT gates (MCT gates with two or fewer control lines) [8]. This is commonly

referred to as Barenco decomposition or basic Toffoli gate decomposition [58]. An ex-

ample of this decomposition is shown in Figure 15. This decomposition algorithm is

Figure 15: Barenco decomposition example. Reproduced from Barenco et al. [8].

often used as a starting point for researchers mapping reversible circuits to quantum

circuits. Barenco decomposition is used to convert high-level reversible circuits to

circuits containing only NCT gates. From there, the NCT gates are decomposed into

a quantum-level gate set. It is also important to note that while Barenco decomposi-
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tion provides an effective method for breaking large MCT gates into smaller ones, it

is not the only or necessarily the most efficient way. An ongoing area of research is

finding other methods for large MCT gate decomposition.

2.2.4.2 Reversible to Quantum Circuit Mapping

Many methods are employed for synthesis and optimization of reversible circuits

into cascades of quantum gates. This present research focuses on template matching,

which is described in greater detail in Section 2.4. This section presents alternative

approaches so that the reader has a broader understanding of the field and how

template matching compares to other solutions.

Much research towards mapping a reversible circuit to a Clifford+T based quan-

tum circuit first maps the reversible circuit to an NCV circuit before transforming

the NCV circuit to a Clifford+T circuit. One example is by Miller et al., in which

the authors map NCV circuits to Clifford+T circuits by replacing all V and V† gates

with Clifford+T equivalents, then rearranging the placement of the T gates to en-

able possible gate cancellations, and finally optimizing the subcircuits between the T

gates by looking for possible CNOT reductions [41]. For each step of this process the

authors provide the algorithm for how they accomplished it.

Another example is by Abdessaied et al., which presents an approach to map

MPMCT Toffoli gates (as opposed to starting with only MCT or NCT gates) into

Clifford+T based circuits [1]. The method presented defines four cases to which a

gate can belong. It then considers a reversible circuit gate by gate, and for each gate

maps it to a Clifford+T gate cascade based on which of the four cases it matches.

An example of a template-based mapping approach is shown in the work by Biswal

et al. [11]. In this paper, the authors use a tool called Colorado University Decision

Diagram (CUDD) to transform a function into a binary decision diagram (BDD).
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The resulting BDD graph is traversed node by node, and each node is replaced with

the quantum subcircuit from a template library that corresponds to the specific node

structure. The node is mapped to a reversible circuit, which is then mapped to a

circuit comprised of elementary gates from the NCV library, and finally all gates

that are not in the Clifford+T library are exchanged for equivalent sequences of fault

tolerant gates. After this, the new circuit is traversed for redundant gates that can

be eliminated and for patterns in which T gates can be restructured to cancel each

other (reducing the T-count) or be executed in parallel (reducing the T-depth).

Another technique used to map reversible circuits to quantum circuits is exclusive

sum of products (ESOP). An example of this method for the design of Clifford+T

based circuits is by Meuli et al. [39]. This paper first uses a k-input lookup table

(k-LUT) mapping technique to map a single large gate into sequences of smaller

gates. It then uses ESOP decomposition to map the smaller gates to a Clifford+T

network. Following this, they use a post-synthesis optimization method based on

graph matching to further reduce the T-count and T-depth.

2.3 Logical Circuit Optimization

Circuit optimization is a major area of research within the quantum computing

field. This is particularly important in the current NISQ-era because of the low

resource availability and high error rates. Circuit simplification is not only a matter of

making a program run more efficiently, but of making it capable of executing correctly

at all. Current per-qubit and per-gate error rates are high, meaning that more efficient

execution translates to lower overall error rates. Furthermore, the circuit optimization

problem is complicated by the fact that current and anticipated quantum computers

only implement gates between selected pairs of qubits (See Section 2.2.3). Three

primary cost metrics considered in evaluating quantum circuits are gate count, circuit
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depth, and ancilla line count [7]. These are discussed in Sections 2.3.1, 2.3.2, and 2.3.3,

respectively.

2.3.1 Gate Count

The number of gates in a circuit is a key component in the overall circuit efficiency.

In addition to requiring more processing time, the application of a quantum gate to

one or more qubits will result in some error, which contributes to decoherence and

can affect the outcome of the computation [18]. Therefore, the lower the gate count,

the faster the circuit will run and the higher the likelihood it will produce usable

results.

The total number of quantum gates that are in the circuit is known as as the

quantum cost. Often, variations of total quantum cost are considered based on the

difficultly of implementing a certain type of gate or the gate type that is preferred

for a specific architecture.

For example, most optimization techniques for circuits composed of gates from the

Clifford+T set (discussed in Section 2.2.2) aim to reduce the T-count, or number of T

and T† gates, as the cost of a fault-tolerant implementation of a T gate is significantly

higher then the rest of the gates in the set [1, 11, 46]. This has been the emphasis of

most Clifford+T based optimization research in the past, although more recently the

number of CNOT gates in a Clifford+T circuit is being considered as well.

Reduction of CNOT gates is important because two-qubit gates have higher error

rates than single-qubit gates [23]. Additionally, they can be more costly to implement

due to the LNN constraint, which requires the physical qubits involved in a two-qubit

operation to be adjacent [10]. In order to achieve that requirement, SWAP operations,

which exchange the location of two qubits and are composed of three CNOT gates,

are repeatedly used to move the control and target qubits until they are adjacent so
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that the logical operation can be executed [6]. This means that in order to execute

one logical CNOT operation, many physical CNOTs may be required.

2.3.2 Circuit Depth

Circuit depth refers to the number of distinct layers that exist in the circuit. A

layer is a set of quantum gates that can be executed concurrently. The more gates that

can be executed concurrently, the smaller the total execution time of the circuit [2].

As with gate count, circuit depth has variations that depend on the gate set used

for circuit construction. For example, a Clifford+T adaptation of circuit depth is the

T-depth, or number of layers containing one or more T or T† gates [46]. Again, the

strong focus on reducing T-depth is due to the high cost of the T-gate implemen-

tations. If the T or T† gates are in the same layer, processing time is used more

efficiently. This is because the slot of time used for the layer will be the length re-

quired to execute the T gate. If the other gates that need to be executed in this layer

are also T gates, their execution times overlap. If the other gates take less time to

execute, the processor is doing nothing on the non-T gate lines while waiting for the

T operation to finish. The goal, therefore, is to group the T gates into as few layers

as possible to minimize the number of layers with long execution times.

2.3.3 Ancilla Lines

Ancilla lines are extra control or data lines added to a circuit [2]. They are required

to embed a non-reversible function into a reversible circuit [56]. Additional ancilla

lines may also be necessary in the decomposition process from a reversible circuit to

a quantum circuit [62].

There is often a trade off between the number of ancilla lines in a circuit vs the

other costs, particularly gate count and circuit depth. An example is the approach
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taken by Biswal et al., which achieves very low T-depth at the cost of using many

ancilla qubits [11]. In this work, the number of ancilla qubits can outnumber the

number of non-ancilla of qubits in the computation. This is infeasible with current

devices, as existing hardware technologies have low qubit counts.

2.4 Template Matching for Circuit Synthesis and Optimization

This section describes the circuit optimization method of template matching. Sec-

tion 2.4.1 defines template matching and explains the difference between identity and

library templates. Section 2.4.2 explains the main challenges inherent to template

matching.

2.4.1 Template Matching Overview

Template matching is an optimization method that reduces circuit cost by re-

peatedly conducting local optimization of subcircuits [35]. This technique traverses a

circuit searching for subcircuits matching known templates, then replaces each iden-

tified subcircuit with the corresponding lower-cost but functionally equivalent gate

sequence [37].

Research into template matching for reversible circuit simplification started in

2003 with the work done by Miller et al. [40]. This work presents the idea of reducing

circuit cost by replacing a sequence of gates with an equivalent but smaller sequence

for circuits composed of gates from the NCT set. Building upon this, Maslov et

al. published an article in 2005 on template matching specifically for quantum cir-

cuits [35]. It extends the earlier work by creating NCV gate templates and presenting

the idea of a stand-alone template called an identity template, discussed in Section

2.4.1.1. Since then, there have been many implementations of template matching to

improve cost metrics of quantum circuits. Variations include abstraction level, gate
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set, number of qubits, and type of template used. There are two primary types of

templates for circuit reduction: identity templates and library templates.

2.4.1.1 Identity Templates

As defined by Abdessaied et al., identity templates are circuits realizing the iden-

tity operator that are composed of “m gates such that each subcircuit of size less

than m/2 cannot be replaced by another template” [3]. Since the matrix correspond-

ing to the template is equal to the identity, if the complete sequence of gates in the

template is found, the entire sequence can be removed from the circuit. An example

of an identity template is shown in Figure 16.

a • • •
b • •
c

Figure 16: Identity template example. Reproduced from Maslov et al. [35]

Identity templates have the useful property that was presented as Lemma 2 in

Toffoli network synthesis using templates : “If a network G0G1...Gm realizes the iden-

tity function, then for any k-shift, GkG(k+1) mod m · · ·G(k−1) mod m realizes the iden-

tity” [36]. This property is useful in that the template can be thought of as a cycle—

it can start with any of the gates present in the template and the sequence of gates

going around the ring from the starting gate to the ending gate (directly preceding

the starting gate) is an equivalent identity template. Therefore, a sequence matching

the template does not necessarily have to start at the first gate specified, but rather

can start at any gate so long as the subsequent gate order remains the same.

Furthermore, identity templates have the advantage that the entire gate sequence

does not need to be present in order to yield a reduction by template application.
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The only criterion to result in a reduction is that more than half of the gates in the

template match, with a greater number matching meaning a greater reduction. For-

mally, this is the following: “a series of gates in a network that matches the sequence

of gates GiG(i+1) mod m · · ·G(i+k−1) mod m of the template G0G1 · · ·Gm−1 exactly, is re-

placed with the sequence G(i−1) mod mG(i−2) mod m · · ·G(i+k) mod m without changing the

network’s output, where k ∈ N, k ≥ m
2

” [36].

For example, given the m = 5 gate template G0G1G2G3G4 shown in Figure 16, at

least 5
2

gates need to match for a reduction. Therefore, if three gates are matched, say

G0G1G2, they can be replaced with G4G3, thereby reducing the gate count by one.

This can be seen in Figure 17. The boxed subcircuit in Figure 17a can be replaced

with the boxed subcircuit in Figure 17b.

(a) Circuit prior to template application (b) Circuit after template application

Figure 17: Application of identity template

A disadvantage of approaches based on identity templates is that they cannot be

used to convert between gate sets: the template and its application must be done

at the same level of abstraction. One use of template application techniques is to

combine the decomposition of a high-level reversible circuit to a quantum-level circuit

with the optimization step. Identity templates do not allow this—the decomposition

and optimization steps must be done independently.

The previously discussed work by Maslov et al. is an example of template matching

using identity templates [35]. This work presents NCV gate templates and applies

them to quantum-level realizations of MCT gates with up to 11 lines. The results
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are compared to the best-known quantum realizations at the time of the writing to

evaluate differences in gate count. The results ranged from 76.56% to 93.75% fewer

gates in the circuits simplified by the NCV templates.

2.4.1.2 Library Templates

Library templates are a type of template composed of two sequences of gates of

differing lengths but equivalent operator matrices. These are referred to as library

templates in this work to distinguish them from identity templates. In literature,

only the term “template” is used; the specific type is determined by context.

Cost savings via library templates can therefore be realized by replacing occur-

rences of one element of each pair by occurrences of the corresponding element. These

templates do not necessarily compute to the identity; the only requirement is that

the correlated templates realize the same operator. An example of a library template

is shown in Figure 18.

a • •
b • •
c

(a)

a • •
b • •
c V V V

(b)

Figure 18: Library template. Subfigure (b) shows the optimal NCV version of the
circuit in subfigure (a). This template is designed to combine the optimization and
decomposition steps so that decomposing the NCT circuit into the NCV circuit will
produce better results. Reproduced from Arpita et al. [7]

Two advantages of library templates are that they can realize any operator and

that the paired sequences can be composed of different gate sets. Lifting the restric-

tion that the gate sequence must compute the identity offers more flexibility in the

construction of templates; any sequence with an optimized corresponding version can

be used. This significantly increases the number of templates available. The fact that
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the template and its pair can be composed of different gate sets is advantageous in

that these templates can be used to combine the optimization and mapping proce-

dures into one step. Rather than decomposing the circuit to a lower level gate set,

then applying an optimization scheme, the optimization can occur at the same time

as decomposition by mapping small sequences of a higher level gate set to a known

optimized sequence of lower level gates.

A disadvantage of library templates is that, for the majority of cases, the entire

sequence of gates in the template must be matched. This makes it more difficult to

find template matches within the larger circuit, and leads to the templates more often

being composed of a smaller number of gates than that of the identity templates.

An example of research using this method was conducted by Scott and Dueck,

in which the researchers considered pairs of MCT gates operating on three or fewer

qubits on up to four lines and identified the optimal NCV gate realization of each

pair [58]. Therefore, the templates in this case were composed of two NCT gates and

their equivalent NCV realization. The authors report on the results of computational

experiments comparing the effectiveness of decomposing a large circuit gate by gate,

as had previously been done, to doing so two-gates at a time. Their experiments

use their template matching technique on all 3-bit reversible functions and a set of

benchmarks from Revlib [60]. They discovered that of the 40,310 circuits tested for the

3-bit reversible case, 91.45% of them were improved, with an average improvement of

19.565% reduction in gate count. Of the 16 benchmark functions, all were improved.

The improvements ranged from a 11.6% to 63.2% reduction in gate count.

Following on to this work is that done by Arpita et al., in which the researchers

create the same type of templates as Scott and Dueck, but increase the number of

gates in the template to three [7]. Using benchmarks from RevLib, they apply Barenco

decomposition to decompose the large MCT gates into NCT gates, then decompose
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the NCT circuit into a NCV circuit using their triple-gate templates. They compared

the gate count of the resulting circuits to that of Scott and Dueck for eight common

benchmarks to find that five circuits had better results using triple gate templates

and three circuits had better results using template pairs.

2.4.2 Template Matching Challenges

Although template matching techniques have been shown to improve circuit costs,

the challenges of generating templates and identifying template-matching sequences

currently limit the impact these techniques can have.

2.4.2.1 Template Search

The paper presented by Rahman and Dueck demonstrates the need for more quan-

tum templates in order to achieve better optimization results [51]. Their research

analyzes how template matching reduction compares to proven optimal sequences for

3-qubit circuits. To do so, all three-qubit optimal NCV circuits are generated by an

exhaustive search. Next, Barenco decomposition is used to map known MCT real-

izations of three-qubit functions to NCV circuits. These are simplified via template

application with previously published NCV identity templates. The results show that

the circuits simplified by template matching rarely produced optimal circuits. The

authors analyzed the template library and concluded that it did not contain all tem-

plates that would have been applicable in the circuit simplification. From this, they

conjectured that finding more templates would improve the results.

The method Rahman and Dueck used to find optimal circuit realizations—an ex-

haustive search—quickly becomes infeasible with the addition of more qubits [49, 51].

Therefore, their test serves as a case study of the need to find more templates rather

than suggesting an exhaustive search is the best way to find optimal circuits. They
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concluded their paper with the remark that a fuller set of templates with a corre-

sponding template matching algorithm is required for template matching to produce

optimal results [51].

Rahman and Dueck published another paper that tackles the problem of gen-

erating templates by finding all identity circuits with three qubits and up to eight

gates [50]. While this contribution is beneficial in providing a complete set of tem-

plates according to the accepted definition, the authors found that there could exist

identity circuits that are not by definition a template, but could result in circuit

reduction regardless. Specifically, they noted that the restriction of an identity cir-

cuit containing an identity subcircuit could be a limitation in finding optimal circuit

realizations. They left the exploration of this idea as future work.

2.4.2.2 Pattern Matching

Finding patterns matching templates within a quantum circuit is challenging be-

cause of the property that some of the gates within the circuit can commute, but

not all of them. As Iten et al. point out, “If all gates in a circuit commute, pattern

matching is straightforward: we can simply check whether all gates in the pattern

can be found in the circuit. The other extreme case is to assume that none of the

gates in a circuit commute” [28]. In the second case, the list of gates can be searched

in-order to determine whether a match exists. Since quantum gates can commute

in only some instances, neither of those cases apply. Rather, all of the possible gate

orderings must be considered to evaluate the existence of a match.

One work that addresses this problem is presented by Abdessaied et al. [3]. In this

work, the authors encode the pattern matching problem into a boolean satisfiabilty

problem, which they use a SMT solver called metaSMT to answer. To account for

gate commutation, they encode the moving rule (described in Section 2.1.4) into the
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SMT solver. They apply to their approach to a set of reduced benchmarks from

RevLib, and obtain an average of 11.42% reduction in cost from the original circuits.

Two additional works that address this problem are by Rahman et al. and by Iten

et al. [28, 53]. Both of these works present exact template matching algorithms that

traverse the canonical representation of a circuit forwards and backwards to identify

matching sequences. Both of these works provide heuristic options for reducing the

search space at the expense of possibly missing a match. The work by Iten et al.

offers more granularity over the heuristics employed. This algorithm has been incor-

porated into Qiskit, which is discussed in the next section. Both the Rahman and

Iten algorithms show positive results when tested on a set of MCT benchmarks.

All three of these works account for gate commutation, but they only consider

commutation of adjacent gates. As discussed in the paper by Iten et al., it is possi-

ble that commutations other than pairwise exist within a circuit that would not be

captured by these algorithms.

2.5 Qiskit Software

The primary software used in this research is IBM’s quantum development frame-

work Qiskit [4]. Written in Python, Qiskit is “an open source SDK for working with

quantum computers at the level of pulses, circuits and algorithms” [24]. Four compo-

nents comprise Qiskit: Qiskit Terra, Qiskit Aer, Qiskit Ignis, and Qiskit Aqua [25].

The focuses of the elements are circuits and pulses, simulators, noise and errors, and

applications, respectively [26].

As the foundational code base for Qiskit and the element geared towards circuit

development between abstraction levels, Qiskit Terra is the component used in this

work. Background information on Qiskit Terra is presented in Section 2.5.1. Inte-

grated into Qiskit is the Open Quanutm Assembly Language, which is discussed in
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2.5.2.

2.5.1 Qiskit Terra

The Qiskit Terra classes most relevant to this work are the QuantumCircuit,

Operator, DAGCircuit, and DAGDependency classes. Section 2.5.1.1 describes them

in more detail. Additionally, modules for transpilation and conversion are used. The

transpilation modules are template_optimization and preset_passmanagers. The

conversion modules are circuit_to_dag and dag_to_circuit. These are discussed

in Section 2.5.1.2.

2.5.1.1 Circuit Representation Classes

The QuantumCircuit class is used to represent quantum circuits and contains

methods for creating, modifying, and analyzing them. Among other functions, a

QuantumCircuit object can run on real or simulated backends, pass through tran-

spilation routines, and compute the output expected in a perfect environment. To

create a QuantumCircuit object, the IBM QX circuit composer, Qiskit language, or

OpenQASM string can be used.

Objects from the Operator class represent a matrix operator that will evolve a

state vector or density matrix [25]. To initialize an Operator, a quantum circuit can

be passed into the Operator constructor as a parameter. This has the convenient

result that the unitary matrix corresponding to the circuit can be accessed with the

data property of the Operator object. The Operator class also contains the compose

method, which calculates the product of two operator matrices.

The DAGCircuit class represents a quantum circuit as a directed acyclic graph

(DAG). Before undergoing any transpilation routine, a circuit is first converted into

a DAG. In this form, the nodes correspond to inputs, outputs, and gate operations,
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and the edges correspond to the qubits or bits that are the input or output of the

node [25].

Closely related to the DAGCircuit is the DAGDependency class. This class also

represents circuits as directed acyclic graphs, but does so in a way that shows pairwise

dependency between gates. In a DAGDependency object, the nodes represent gates in

the circuit and the edges represent dependencies between two operations. In other

words, if there is an edge between two nodes, it means that those nodes do not

commute. This class corresponds to the canonical form described in [28] and is used

in that work to find sequences within a circuit matching given patterns.

2.5.1.2 Transpiler Passes

The Qiskit transpiler is responsible for circuit transformations. It chains together

algorithms that modify a circuit (transpiler passes) via a pass manager [25]. A pass

manager consists of one or more passes and schedules the order in which the passes

will be applied to the circuit. Qiskit offers preset_passmanagers that consist of a

defined set of transpiler passes. It also allows for custom creation of passes and pass

managers.

2.5.1.3 Preset Pass Managers

The preset_passmanagers consist of pipelines of passes corresponding to various

optimization levels [25]. These are beneficial when the user requires control over the

rigor of optimization applied to the circuit, without configuring the specific passes.

There are four optimization levels that range from zero to three. A higher level

corresponds to more aggressive optimization. A trade-off exists between level of

optimization and transpilation time: a higher level of optimization results in a longer

transpilation time [25]. The descriptions of each level are given below [4]:
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• Level 0: “No explicit optimization other than mapping to backend”

• Level 1: “Light optimization by simple adjacent gate collapsing”

• Level 2: “Medium optimization by noise adaptive qubit mapping and gate

cancellation using commutativity rules”

• Level 3: “Heavy optimization by noise adaptive qubit mapping and gate can-

cellation using commutativity rules and unitary synthesis”

“Adjacent gate collapsing” in Level 1 refers to cancellation of adjacent CX gates

in the circuit. “Gate cancellation using commutativity rules” in Levels 2 and 3 is

similar, but it considers a larger set of gates and cancels the gates if a gate and its

adjoint are adjacent. The “unitary synthesis” conducted in Level 3 means that some

gates are composed into a single operator that is returned as a unitary gate defined

by a corresponding matrix [4].

2.5.1.4 Template Optimization Pass

The template_optimization pass implements the pattern matching and tem-

plate reduction algorithms presented in [28]. The pass is instantiated with a set of

identity templates, then traverses the circuit (considering pairwise commutation of

gates) for the longest sequences matching the templates. It then replaces the longest

sequences with the corresponding shorter versions. If no templates are specified upon

pass instantiation, the default templates of two X gates, two CX gates, and two

CCX gates are used. The application of these default passes can be summarized as

traversing the circuit for cancellation of adjacent identical gates with consideration

of pairwise commutation.
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2.5.2 OpenQASM

Integrated with Qiskit is Open Quantum Assembly Language, OpenQASM, which

is used to specify quantum circuits [14]. A Qiskit quantum circuit can easily be con-

verted into an OpenQASM string. The language syntax is straightforward, which

makes it simple to manually or automatically read a circuit specified as an Open-

QASM string. Furthermore, the file format is integrated into tools outside of IBMQX,

such as the JKQ Quantum Functionality Representation [13]. This makes it beneficial

for quantum computing research regardless of whether Qiskit is the software being

used.

2.6 Summary

This chapter covers background information and previous work related to quantum

circuit simplification via template matching. Section 2.1 discusses preliminaries on

quantum computing. Section 2.2 explains how an arbitrary function is embedded

in a quantum circuit. Section 2.3 explains the goals of logical circuit optimization.

Section 2.4 presents the technique of template matching for circuit reduction. Finally,

Section 2.5 describes Qiskit, which is the primary software used in this work. Previous

research related to these topics is presented throughout the respective sections.
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III. Methodology

3.1 Overview

This chapter describes the methodology employed to answer the question of whether,

within a quantum circuit, there exist triplets of layers such that directly adjacent lay-

ers cannot commute, but the first or last layer may commute with the remaining pair

of layers. Section 3.2 describes the goals and questions of the research. Section 3.3

describes design decisions for the investigation. Section 3.4 describes the process to

find matching sequences, and Section 3.5 describes the analysis of the found matches.

3.2 Goals

The goal of this research is to identify the existence of sequences of three quantum

layers with the property that no directly adjacent layers commute, but a single layer

may commute with the remaining pair of layers. More formally, this property can be

described as a circuit with layers L1L2L3 such that L1L2 6= L2L1 and L2L3 6= L3L2,

but L1L2L3 = L3L1L2 or L1L2L3 = L2L3L1.

The significance of such sequences is that, should they exist, they could yield com-

pletely new realizations of a given gate netlist. This would impact circuit optimization

techniques that rely on finding patterns of gates within a circuit, such as template

matching [28]. By introducing a new arrangement of gates, pattern matching al-

gorithms could potentially identify longer gate sequences that would allow further

reduction of quantum cost or depth within the circuit.

The specific research question and hypotheses guiding this work are presented in

Section 1.4.
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3.3 Design Decisions

This section describes the decisions made in searching for three-layer quantum

circuit commuting compositions.

3.3.1 NCT Gate Set

The search for quantum circuits that are three-layer commuting compositions can

be done with any gate set. This work focuses on the NCT gate set, which, as described

in Section 2.2.1, consists of the Toffoli, CNOT, and X gate. This set is chosen because

it is a useful abstraction level for improving circuits to run on quantum hardware,

but is not specific to a single type of device.

High-level reversible circuits, such as those composed of MPMCT or MCT gates,

are often first decomposed to NCT gates. There are several well-known algorithms

for this, such as Barenco decomposition or Nielsen and Chung mapping [2], [8], [45].

From the NCT gate set, the circuit is decomposed to a quantum circuit composed of

one or two qubit gates that can be run on hardware. For example, the three qubit

Toffoli gates must be decomposed to machine level gates prior to being run on a

device. Figure 19 shows how IBM does this, by decomposing the Toffoli gate into

Clifford+T gates. The Clifford+T gate set is currently used in IBM devices, but

should that change the NCT gates could just as easily be decomposed into the new

low-level gate set implemented on the machine.

By using the NCT gate set to search for matching sequences, circuit simplification

Figure 19: Decomposed Toffoli gate
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is done at a low enough level that most functions embedded into a quantum circuit

will at some point be decomposed into these gates, but high enough that it will

still be relevant should the machine-level gate set change based on differing physical

technologies.

A property of the NCT gates set is that, as show in Section 2.2.1, the matrices

corresponding to each gate will be a 2 x 2 (X gate), 4 x 4 (CX gate), or 8 x 8 (CCX

gate) matrix where each row and column has exactly one ‘1’, and the remaining

entries are ‘0’. Since the matrix corresponding to a layer is calculated by taking the

tensor product of the gates in the layer (including the identity matrix), the unitary

corresponding to the entire layer will maintain the property that each row and column

will contain a single one with zeros as the remaining entries. Furthermore, the unitary

corresponding to the entire three-layer sequence will maintain this property.

3.3.2 Layers vs Gates

This work looks at layers of gates rather than single gates. This is a broader

scope than single gates alone, as each layer can contain one or more gates. For

example, a layer with three qubits could consist of both a CNOT gate and an X

gate. The primary motivation for this is that the inclusion of multi-gate layers yields

more three-layer sequences to check for commuting compositions, which means that

there are more options to find matching sequences, thus greater potential for circuit

reordering and cost reduction.

3.3.3 Qiskit Software

Qiskit is the primary toolset selected for this research. It is not the only software

that could be used for this purpose: other quantum programming languages such

as Jaqa, TriQ, or Quipper would work [22], [32], [43]. Furthermore, a quantum
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specific language is not strictly necessary to accomplish the main goal of finding

three-layer NCT commuting compositions. For that purpose, all that is needed is

software capable of large matrix multiplication. However, Qiskit is chosen because it

offers features that smoothly integrate the various elements of this research. These

include methods for converting between gates and matrices, statistics about each

circuit, hardware compatibility, and straightforward extensibilty for future work.

In particular, the circuit representation and transpilation classes described in Sec-

tion 2.5.1 led to the design decision of using Qiskit for this work. The application of

these classes to this research is described below.

1. QuantumCircuit: Stores single-layer and three-layer gate sequences. This al-

lows for conversion to DAGCircuits and Operators, obtaining circuit cost met-

rics, and running on quantum hardware to evaluate result differences.

2. DAGCircuit: Separates three-layer circuits into single layers, then converts each

layer into distinct QuantumCircuit objects to pass through the CheckMatch

algorithm or transpiler passes.

3. Operator: Returns the unitary matrix corresponding to a circuit and composes

matrices for use in determining whether they are commutative.

4. Preset Pass Managers: Applied to circuits with and without rearranged com-

muting gates to determine if current techniques yield different results based on

gate order.

5. TemplateOptimization Pass: Applied to circuits with and without rearranged

commuting gates to compare transpiled circuit outputs. Specifically, returns

whether the alternative gate orderings result in matched templates that would

not be found within the original circuit specification.
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In addition to having a well-documented and supported codebase that is directly

applicable to the work done in this research, Qiskit was chosen because it is widely

used across the quantum community and contains state of the art techniques for

quantum computing developments. This makes it a valuable choice for incorporating

new ideas with what is currently being done and posturing follow-on work for seamless

integration with both this research and the wider quantum computing field.

3.4 Search For Three-Layer NCT Commuting Compositions

The first step in investigating three-layer NCT commuting compositions is to

determine if such sequences exist, and if so, to find them.

A brute force search is the chosen method for this. The remainder of this section

describes how the brute force search is implemented. Section 3.4.1 presents the initial

step of generating all possible unique layers composed of NCT gates given n qubits. It

then describes how these layers are combined, with repetition allowed, in sequences

of three to obtain all possible three-layer circuits. Once all possible circuits are

generated, they are checked to identify whether they meet the criteria to be a three-

layer commuting composition. This is described in Section 3.4.2.

3.4.1 Layer and Sequence Generation

To identify the unique layers, gate combinations are broken into cases that corre-

spond to the possible qubit operations on one layer (i.e. CX only, CX and X, CCX

Only, CCX and X, etc..). Each case is analyzed to determine the possible layers using

those gates. The qubit ordering does matter, as gates with different target qubits will

correspond to a different matrices. For example, the three cases for the Toffoli gate

acting on three qubits is shown in Figure 20.

Once the unique layers are identified, they are constructed as QuantumCircuit
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Figure 20: Toffoli gate layers

objects in Qiskit. This allows them to be converted to the Operator class, which is

useful for algebraic operation and obtaining the circuit’s unitary.

The code used to create QuantumCircuits corresponding to each layer type is

slightly different for each gate composition. For each case, two functions are utilized:

CreateParams and MakeQuantumCircuit. The CreateParams function returns a list

of integers corresponding to the target and control qubits. The MakeQuantumCircuit

function takes in the result of CreateParams to create the QuantumCircuit object. An

example of the CreateParams and MakeQuantumCircuit code is shown in Algorithm 1

and Algorithm 2. This example is for the CCX only case for five qubits. For the CCX

only case with fewer qubits, the num qubits variable is set to three or four. Similar

code is created for the additional gate cases.

Algorithm 1 CreateParams CCX 5

1: num qubits← 5
2: params← []
3: for i in range(num qubits) do
4: for j in range(num qubits) do
5: if j 6= i then
6: for k in range(j, num qubits) do
7: if k 6= i and k 6= j then
8: params← [i, j, k]
9: end if

10: end for
11: end if
12: end for
13: end for
14: return params
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Algorithm 2 MakeQuantumCircuit CCX 5

Parameters: params – List of integers corresponding to [target, control1, control2]

1: num qubits← 5
2: Instantiate QuantumCircuit object qc with num qubits qubits
3: qc.ccx(params[1], params[2], params[0]) . Add CCX gate to circuit
4: return qc

When a layer is composed of two or more gates, CreateParams uses the lists

of single-gate layers to create the multi-gate case. It then iterates through all the

elements in each list. For each iteration, it checks if any of the gates are operating

on the same qubits. If all the qubits being operated on are distinct, it combines the

two lists and appends the newly combined list to the return structure. An example

of this is shown in Algorithm 3 for the CCX and X gate case with five qubits.

Algorithm 3 CreateParams CCX X 5

1: params← []
2: ccx list← CreateParams CCX 5()
3: x list← CreateParams X 5()
4: for ccx in ccx list do
5: for x in x list do
6: match← False
7: for qb in ccx do
8: if qb in x then
9: match← True

10: break
11: end if
12: if match == False then
13: new ← ccx+ x
14: params.append(new)
15: end if
16: end for
17: end for
18: end for
19: return params

The MakeQuantumCircuit function corresponding to each multi-gate case makes

a quantum circuit, then adds the two or more gates to the circuit according to the
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order of integers appearing in the list. For example, in the CCX and X case for five

qubits, the first three integers correspond to the CCX gate, and the remaining one or

two integers correspond to X gates. The pseudocode for this is shown in Algorithm 4.

Algorithm 4 MakeQuantumCircuit CCX X 5

Parameters: params – List of integers corresponding to [target, control1, control2,
x1, x2 (optional)]

1: Instantiate QuantumCircuit object qc with five qubits
2: qc.ccx(params[1], params[2], params[0]) . Add CCX gate to circuit
3: qc.x(params[3]) . Add X gate to circuit
4: if len(params) == 5 then
5: qc.x(params[4]) . Add second X gate to circuit if it exists
6: end if
7: return qc

To generate all possible three-layer sequences of the identified layers, Python’s

Itertools module is used in a CombineLayers function. This function is shown in

Algorithm 5. It takes in the set of unique layers and combines them in sets of three.

It does this by generating the Cartesian Products of three instances of the set of single

layers and returning the result. In other words, it returns all three-layer combinations

with repetition allowed. The returned list contains tuples of QuantumCircuit objects

corresponding to layers 0, 1, and 2 in the three-layer circuit.

Algorithm 5 Combine Layers

Parameters: single layers – List of single-layer QuantumCircuit objects

1: three layers← []
2: for i in itertools.product(single layers, repeat=3) do
3: three layers.append (i) . Stores cartesian products of three single layer sets
4: end for
5: return single layers

The result of the CombineLayers function is then fed into the CheckMatch algo-

rithm. The results of the sequence and layer generation are presented in Section 4.2.1.
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3.4.2 CheckMatch Algorithm

The CheckMatch algorithm checks if a three-layer sequence matches the target

criteria of having no adjacent commuting layers, but a single layer that can commute

with a pair of layers. The pseudocode for this algorithm is shown in Algorithm 6.

The algorithm first checks if any two neighboring layers in the three-layer sequence

are the same. If so, it is returned as not a match. This is because the two layers

are redundant as they compute the identity. They can be removed from the circuit

entirely and the sequence is not of use to this problem. This would be caught in

the next step, but checking for sameness first eliminates the need to compute the

matrices.

After checking for repeated layers, the algorithm calculates the products of the

unitary matrices corresponding to neighboring layers to see if L1L2 = L2L1 or L2L3 =

L3L2. If so, the tuple is returned as not a match as it does not match the desired

property.

Finally, the algorithm calculates the product of the matrices corresponding to

a pair of layers and the remaining single layer, then the product of those terms in

reverse. If the result is the same forwards and backwards, the sequence matches the

target criteria and the tuple is returned as a match.

All tuples that return true when fed into the CheckMatch algorithm are stored as

OpenQASM strings.

Section 4.2.3 presents the results after all three-layer sequences for three to five

qubit NCT circuits are run through the CheckMatch algorithm.
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Algorithm 6 CheckMatch

Parameters: sequence – Tuple of three QuantumCircuit objects corresponding to
Layers 0, 1, and 2 in the three-layer sequence to check

1: C ← Operator(sequence[0]) . Create Operator objects from QuantumCircuit
objects

2: B ← Operator(sequence[1])
3: A← Operator(sequence[2])
4: if sequence[0] == sequence[1] then . Check if layers 0 and 1 are the same
5: return False
6: end if
7: if sequence[1] == sequence[2] then . Check if layers 1 and 2 are the same
8: return False
9: end if

10: if CB == BC then . Check for pairwise commutation between layers 0 and 1
11: return False
12: end if
13: if BA == AB then . Check for pairwise commutation between layers 1 and 2
14: return False
15: end if
16: if ABC == BCA then . Check if layer 3 commutes with composition of layers

1 and 2
17: return True
18: end if
19: if ABC == CAB then . Check if layer 1 commutes with composition of layers

2 and 3
20: return True
21: end if

3.5 Sequence Analysis

At this point, all sequences of NCT gate layers operating on three to five qubits

that are three-layer commuting compositions have been found. The next step is to

analyze the sequences to see what observations can be made. Section 3.5.1 describes

how the results are assessed to determine the existence and frequency of three-layer

NCT commuting compositions. Section 3.5.2 outlines the procedure for determining

whether the identified commutations can make a difference in circuit reduction using

current state of the art techniques. This procedure includes creating a circuit that con-

tains the commuting composition (Section 3.5.2.1), rearranging the gates according to
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the allowed commutation (Section 3.5.2.2), running the original and modified circuits

through existing optimization algorithms (Section 3.5.2.3), analyzing the resulting

circuit costs (Section 3.5.2.4), and evaluating the performance differences on actual

quantum hardware (Section 3.5.2.5). Next, Section 3.5.3 explains the methodology

for determining whether the commuting compositions are in reduced form. Following

this, Section 3.5.4 presents how to determine whether any of the identified sequences

contain a single gate per layer. Finally, Section 3.5.5 described how the number and

type of operations in each circuit are analyzed.

3.5.1 Number of Matching Sequences

The initial observation to make is the existence and quantity of three-layer com-

muting compositions using the NCT gate set.

The first part of this—existence—is to determine whether such patterns of NCT

gates can be found. If not, this vein of research may not be worth pursuing and

efforts would be better spent looking at two-layer commuting compositions (pairwise

commutations) or three-layer commuting compositions of different gate sets.

If three-layer NCT commuting compositions do exist, the next question to answer

is how many of them there are. This helps determine whether it’s worthwhile to

invest the computational resources to parse a circuit in search of sequences matching

commuting compositions. If there are very few sequences of this type, the likelihood of

finding a match within a circuit leading to gate reductions is small. This could imply

that, for the typical scenario, the possible gate reduction is not worth the additional

transpilation time. Such cases are when a “close enough” result is adequate, or when

the fidelity of the computer is high enough that a fewer number of additional gates is

unlikely to affect the outcome of the computation. For scenarios where obtaining the

greatest circuit simplification is more important than transpilation time, however, it
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may be worth the extra resources to search for the additional reductions commuting

compositions could yield. This could include cases where accuracy is more important

than the speed of obtaining the result, or where resources are very limited (as is the

case in the NISQ-era).

If there are many three-layer NCT commuting compositions, it may be worth

searching for them in most scenarios, with the exception being when compilation

time greatly exceeds circuit reduction in importance.

After finding the number of such sequences, the percentage of commuting compo-

sitions compared to all possible circuits is determined. This is to identify if, as qubit

count increases, the proportion of three-layer commuting compositions increases, de-

clines, or stays the same. This informs whether searching for matching sequences

composed of a greater number of qubits is likely to produce fruitful results.

The results corresponding to this section are presented in Section 4.3.1.

3.5.2 Possibility of Circuit Reduction

Once the existence (or lack thereof) of three-layer NCT commuting compositions

has been established, the next consideration is whether they can result in greater

circuit reductions than that which are found with current state of the art techniques.

To determine this, an existence proof is used to show whether there does exist a

case in which this is true. To do so, the following steps are performed for three, four,

and five qubits:

1. Create a circuit containing a three-layer commuting composition subcircuit

2. Modify the circuit by commuting the subcircuit

3. Reduce the original and modified circuits with current optimization techniques

4. Compare the circuit costs following the reductions
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5. Compare performance of the original, modified, and reduced circuits on current

quantum hardware

The pseudocode for these steps is shown in Algorithm 7.

Algorithm 7 Circuit Reduction Experiment

Parameters: L1L2L3 – Three-layer NCT commuting composition
Cpre – sequence of quantum gates
Cpost – sequence of quantum gates

1: Corig ← CpreL1L2L3Cpost
2: Cmod ← CpreL2L3L1Cpost or Cmod ← CpreL3L1L2Cpost
3: pm← PassManager(TemplateOptimization()) . Instantiate template

optimization pass
4: for circ in [Corig, Cmod] do
5: pm.run(circ) . Apply template optimization pass
6: for i in [1, 2, 3] do . Apply preset pass managers
7: transpile(circ, optimization level = i)
8: end for
9: circ.size() . Obtain cost metrics

10: circ.count ops()
11: circ.depth()
12: end for
13: Cred ← transpiled circuit with lowest costs . Select most reduced circuit
14: for circ in [Corig, Cmod, Cred] do . Execute circuits on quantum hardware
15: Run circ on ibmq vigo
16: Run circ on ibmq santiago
17: end for

The results of these tests are presented in Section 4.2.3.1 for three qubits, Section

4.2.3.2 for four qubits, and Section 4.2.3.3 for five qubits.

3.5.2.1 Circuit Creation

The first step is to create a circuit containing an NCT three-layer commuting

composition as a subcircuit. This corresponds to Line 1 in Algorithm 7.

The circuit created in this step is of the form Corig = CpreL1L2L3Cpost, where

Cpre is the subcircuit containing all gates before the three-layer NCT commuting
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composition, L1L2L3 are the layers of the commuting subcircuit, and Cpost is the

subcircuit containing all gates after the commuting composition.

These circuits are designed to show possible gate reductions rather than implement

a specific functionality. While the circuits do not serve known useful purposes on their

own, they could occur within a larger circuit. For example, they could exist as part of

the objective function in the quantum approximate optimization algorithm (QAOA).

3.5.2.2 Circuit Modification

To modify the circuit, the commuting subcircuit is replaced with its alternate

gate sequence. The gates before and after the subcircuit remain unchanged. The

original and modified circuits implement the same function, which can be confirmed

by comparing the unitary matrices corresponding to the operator of each circuit.

This step corresponds to Line 2 in Algorithm 7. In some cases, it may be true that

L1L2L3 = L2L3L1 = L3L1L2. In such a case, either L2L3L1 or L3L1L2 is selected for

use in the modified circuit. As this is an existence proof, as long as a reduction from

the modification occurs, only one of the two options is necessary for the algorithm.

In this research, the circuits under consideration are small and can be scrutinized

by hand. Therefore, the option chosen is based on manually viewing the circuit and

selecting the commutation that will result in the cancellation of more high-cost gates.

3.5.2.3 Circuit Reduction

Then next step is to reduce the original and modified circuit using current op-

timization techniques. These techniques are implemented as transpilation passes in

Qiskit. Four passes are used: the first is the template optimization pass; the remain-

ing three are preset pass managers with optimization levels one through three.

The application of the template optimization pass corresponds to Line 5 in Algo-

57



rithm 7. This experiment uses the default templates of two X gates, two CX gates,

and two CCX gates. The application of the preset pass managers corresponds to

Line 7. Optimization levels one through three are used. Optimization level zero is

omitted as it does not perform any explicit optimization; rather, it only makes the

circuit runnable by mapping it to a backend [25].

3.5.2.4 Cost Metric Comparison

After both the original and modified circuits are run through the four transpilation

passes, the resulting circuits are analyzed for total number of gates, number of each

type of gate, and depth. This corresponds to Lines 9 through 11 in Algorithm 7.

These metrics are compared to identify cost differences. The transpiled circuit with

the lowest cost is saved as the “reduced modified” circuit for use in the final step.

3.5.2.5 Hardware Performance Comparison

Finally, to compare the difference in performance of the original, modified, and

reduced circuits, they are run on two IBM quantum computers: ibmq vigo and

ibmq santiago. Both are five qubit devices, but with different qubit topologies. The

two topologies are shown in Figures 21 and 22. Given that the qubit and link reli-

abilites for a given machine are not identical, it is possible that either the original

circuit or the modified circuit benefits from a “lucky” mapping from logical qubits to

physical qubits. Ideally, this would be addressed by gathering statistics over a large

number of mappings for each circuit.

Before running the circuits, the device error rates are recorded from that day’s

calibration. This informs prediction and understanding of the results. A higher error

rate will result in the correct answer being returned a lower percentage of the time.

Every time a circuit is executed on a device, it is run 1,024 times. The results
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Figure 21: Qubit layout for ibmq vigo

Figure 22: Qubit layout for ibmq santiago

are returned as measurement probabilities, which correspond to how many of the

runs return each output. The correct answer is calculated by applying the unitary

operator corresponding to the circuit to a quantum system in the state |0..0〉. The

measurement probabilities corresponding to the correct answer for the original, mod-

ified, and reduced modified circuits are compared to determine the impact of circuit

reduction in outputting the correct answer.

3.5.3 Removing Redundant Gates

An additional consideration of the identified sequences is whether they are in

reduced form, meaning that they cannot be further optimized. Some of the sequences

may have trivial reductions, such as the example in Figure 23. In this case, the
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adjacent X gates cancel, and the circuit can be reduced to the one shown in Figure

24.

Figure 23: Circuit with redundant X gates

Figure 24: Circuit with redundant gates removed

The cancellation of two adjacent gates will affect the unitary matrix of the layer,

so the layer products must be recomputed to determine if the sequence is still a

three-layer commuting composition after it is reduced.

A likely use case of commuting compositions is further simplification of already

reduced circuits. If a circuit has already been reduced, it is likely that adjacent gates

of the same type (at least the X and CX gates) have been eliminated. For example,

redundant CX cancellation is included in optimization levels one through three for

IBM’s preset transpilation passes. Redundant Toffoli gates are not cancelled with

the preset pass managers, although they are with the template optimization pass.

If a circuit has already been reduced with these techniques, commuting triplets that

contain redundant gates will not be found. In such a case, it would be advantageous to

eliminate such circuits from the sequences list, as searching for them would consume

computational resources but would not result in any further reductions.
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To eliminate redundant gates, Qiskit’s template optimization pass is used on the

NCT commuting compositions.

First, each sequence is composed as a QuantumCircuit object with a depth of

three. Next, a template optimization pass is created with the three default templates:

two X gates, two CX gates, and two CCX gates. After that, the pass is added to a pass

manager, and the pass manager is run for each circuit. The output is the transpiled

circuit with any redundant gates removed. Finally, all of the transpiled circuits are

run through the CheckMatch algorithm to identify if they are still three-layer NCT

commuting compositions. If so, they are stored as OpenQASM strings.

The results of this analysis are presented in Section 4.3.2.

3.5.4 Existence of Single-Gate Layer Sequences

The three-layer commuting compositions can be composed of one or more gates

per layer. It is worth identifying whether any of the sequences contain a single gate

per layer. Firstly, this is because it answers the original question posed by Iten et

al. (quoted in Chapter I), which motivated this research [28]. Additionally, single-

gate layer sequences could be simpler to find in the follow-on problem of searching

a larger circuit for a commuting composition subcircuit. It would require looking at

the precursors or successors of a single node in the DAG for a specific sequence of

three nodes, rather than the precursors and successors of multiple nodes.

To determine whether any of the three-layer NCT commuting compositions identi-

fied for circuits of three, four, or five qubits contain a single gate per layer, the circuits

are analyzed with Qiskit’s size() function. This function returns the total number of

operations in the circuit. For there to be a single gate per layer, this means there are

exactly three gate operations. Therefore, the size() function is run on all identified

sequences. If the size is exactly equal to three, the sequence is saved as a single-gate
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layer sequence, otherwise the sequence is ignored.

The above step will show whether there exist three-gate circuits with three to

five qubits that are three-gate commuting compositions. If any are returned as such,

the existence question is answered. However, if no three-gate NCT commuting com-

positions are identified, the question remains open. To fully answer it, all possible

three-gate NCT circuits are examined.

Circuits with up to seven qubits are evaluated for this. The seven qubit upper

bound is because the sets of qubits operated on by any two adjacent gates cannot be

disjoint. If they were, the gates could commute as they have no qubits in common

and therefore are not dependent on one another. Thus, the circuit would not satisfy

the criteria to be a three-element commuting composition.

NCT circuits with eight or more qubits cannot meet the requirement that adjacent

gates operate on at least one shared qubit. The most qubits operated on by a gate

from the NCT set is three (the Toffoli gate). If adjacent gates share at least one

qubit, each Toffoli gate after the first adds a maximum of two previously unused

qubits to the circuit. This gives 3 + 2 + 2 = 7 total qubits in the circuit. An example

distribution for this is shown in Figure 25. A circuit with eight qubits would require

that at least two consecutive gates have no qubits in common, so the circuit fails to

meet the requirement to be a three-gate commuting composition. An illustration of

this is shown in Figure 26.

|q0〉
|q1〉 •
|q2〉 •
|q3〉 •
|q4〉 •
|q5〉 •
|q6〉 •

Figure 25: Seven qubits allows for adjacent gates sharing at least one qubit
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|q0〉
|q1〉 •
|q2〉 •
|q3〉
|q4〉 •
|q5〉 •
|q6〉 •
|q7〉 •

Figure 26: Impossible to use all eight qubits and satisfy the condition that adjacent
gates must operate on a shared qubit

Therefore, to prove via exhaustion whether three-gate NCT commuting composi-

tions exist, one, two, six and seven qubit circuits need to be checked in addition to

circuits with three to five qubits.

A similar methodology as that to find three-layer commuting compositions is used

to search for three-gate commuting compositions. First, all combinations of control

and target qubits are generated for the NCT gates. Second, they are combined in

sequences of three. Next, the sequences are checked to see if all qubits in the circuit

are utilized (if not all the qubits are utilized, that circuit would have already been

checked by one of the checks for circuits of a lower qubit count). If all qubits are in

use, the intersections of the qubits for the first and second and second and third gates

are checked. If they are not empty, that sequence moves to the final step. Lastly, the

sequences are run through the CheckMatch algorithm to check if they are three-gate

commuting compositions.

The results of this search is presented in Section 4.3.3.

3.5.5 Number and Type of Operations Per Match

A final consideration for the identified sequences is the number and type of gate

operations in each circuit. This informs the type of reductions that could be possible
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by rearrangements of commuting composition subcircuits within a circuit. For exam-

ple, one approach of how to use these matches may have the goal of eliminating as

many CCX gates as possible. In that case, it could be helpful to know which commut-

ing compositions have higher counts of CCX gates because they may be more likely

to provide possible CCX cancellations. Alternatively, it could be possible that it is

more common to find X or CX gate cancellations after rearranging the commuting

subcircuit. Should that be true, it would be beneficial to know what circuits contain

high numbers of X or CX gates. Either way, knowing the number of each type of

operations in a circuit could create a rough gauge of possible reductions and help

select commuting composition subcircuits to search for in the larger circuit.

To determine these counts, the size() and count ops() functions from Qiskit are

used on each commuting composition QuantumCircuit objects. These methods re-

turn the total gate count and number of each type of gate in the circuit, respectively.

The results are saved in a file, which can then be parsed to select the circuit to study,

observe averages, and identify trends.

These results are presented in Section 4.3.4.

3.6 Summary

This chapter covers the methodology used to evaluate the existence, quantity,

and properties of three-layer NCT commuting compositions. It describes the design

decisions and why they were chosen, the process of generating layers of NCT gates

and using those layers to create circuits of depth three. It then presents the algorithm

that determines if a circuit is a three-layer NCT commuting composition and explains

how the identified commuting composition circuits are analyzed.
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IV. Results and Analysis

4.1 Overview

This chapter presents the investigation results and analysis for three-layer NCT

commuting compositions. Section 4.2 describes the results from the search for such

circuits, to include how many unique three-layer NCT circuits exist for three to five

qubits, how many of those are three-layer commuting compositions, and whether the

identification of additional commutations can affect the result of circuit execution

on quantum hardware. Section 4.3 analyzes the identified circuits for the properties

discussed in Chapter III. Finally, Section 4.4 concludes the chapter.

4.2 Search for Three-Layer NCT Commuting Compositions

This section describes the results of searching for three-layer NCT commuting

compositions. Section 4.2.1 presents the results of generating all possible layers and

layer triplets. Section 4.2.2 uses one of the three-qubit sequences to show an example

of the whole process of determining if a sequence meets the target property. Section

4.2.3 presents the results of running the triplets through the checkMatch algorithm.

For each qubit count, it gives an example of one of the identified matches and how it

improves the circuit transpilation and execution. Finally, Section 4.2.4 gives the time

it took to search the circuit sets.

4.2.1 Generation of Sequences to Check

This section describes the generation of all unique layers and three-layer circuit

possibilities for three, four, and five qubits operated on by gates from the NCT set.
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4.2.1.1 Three Qubit Layers

Circuits with three qubits are the first evaluated. The set of unique layers of NCT

gates operating on three qubits contains 22 elements. There are three CCX only

layers, six CX only layers, seven X only layers, and six CX and X layers. A layer with

only identity gates is not considered due to the fact that a three-layer circuit with

an identity layer will not meet the target criteria. The identity layer will commute

with its adjacent layers, which disqualifies it from being a three-layer commuting

composition.

The breakdown of the 22 layers is below:

• CCX Gates Only: Three qubits gives three target options. For each target,

there is only one choice of controls: the two remaining qubits. The total number

of layers is equal to the number of targets times the number of options for each

target. This gives 3 ·
(
2
2

)
= 3 · 1 = 3 unique layers.

• CX Gates Only: Again, three qubits gives three target options. For each

target, any one of the remaining lines can be selected for the control. With

three qubits, this means there are two options for control selection. This gives

3 · (3− 1) = 6 unique layers.

• X Gates Only: The options to apply X gates to a three-qubit circuit are as

follows: all lines have X gates; two of the three lines have X gates; one of the

three lines has an X gate. Thus, the number of unique layers with X gates is(
3
3

)
+
(
3
2

)
+
(
3
1

)
= 1 + 3 + 3 = 7.

• CX and X Gates: There are six options to apply a CX gate to a three qubit

circuit. For each CX gate, there is a single line remaining on which an X gate

can be applied. This gives 6 · 1 = 6 layers.
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Figure 27: Three-qubit CCX gate layers

Figure 28: Three-qubit CX gate layers

Figure 29: Three-qubit CX and X gate layers

Figure 30: Three-qubit X gate layers

Visualizations of these layers are shown in Figures 27 to 30.

The unitary matrix for each of these layers corresponds to an 8 by 8 matrix. With

22 unique layers, there are 223 = 10, 648 combinations of three layers.
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4.2.1.2 Four Qubit Layers

The next case considered is four-qubit circuits. There are 99 unique layers for

four-qubit circuits operated on by NCT gates. The case of CCX only gates contains

12 layers, the CX only case contains 24, the X only case contains 15, the CCX and

X case contains 12, and the CX and X case contains 36. Theses cases are described

below:

• CCX Gates Only: Four qubits gives four options for target selection. Once

a target is selected, there are three remaining lines, from which two controls

are selected. Thus, the number of target options times the number of control

options for each target yields 4 ·
(
3
2

)
= 4 · 3 = 12 unique layers.

• CX Gates Only: Four qubits allows for two cases of layers with only CX

gates: one CX gate applied or two CX gates applied.

– One CX Gate: There are four options for target selection. For each

target, one control is selected from the three remaining lines. Thus, the

number of layers is 4 ·
(
3
1

)
= 4 · 3 = 12.

– Two CX Gates: For each single CX gate applied, there are two remain-

ing lines on which another CX gate can be applied. There are two options

for that CX gate (each line can be either the target or control). This gives

12 · 2 = 24 possibilities. This number accounts for each layer twice. For

any two-gate layer composed of gates g1 and g2, there is one instance where

g1 is chosen first and g2 second, and another where g2 is chosen first and

g1 second. Since the order does not matter, the total number is divided in

half, giving 24
2

= 12 unique layers.

• X Gates Only: The layers with only X gates can have gates applied to all
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qubits, three qubits, two qubits, or one qubit. This gives
(
4
4

)
+
(
4
3

)
+
(
4
2

)
+
(
4
1

)
=

1 + 4 + 6 + 4 = 15 unique layers.

• CCX and X Gates: For each CCX gate applied, there is one remaining line

on which an X gate can be applied. This gives 12 · 1 = 12 layers.

• CX and X Gates: For each single CX gate applied, there are two remaining

lines on which one or two X gates can be applied. If two CX gates are applied,

there are no remaining lines. Therefore, the number of single CX layers times

the X options for each of those gives 12 · 2 = 36 unique layers.

Each layer corresponds to a 24 x 24 = 16 x 16 matrix. Combining the layers yields

993 = 970, 299 unique three-layer sequences.

4.2.1.3 Five Qubit Layers

The last case considered is a five-qubit circuit. There are 491 unique layers for

circuits of five qubits operated on by NCT gates. These layers correspond to the

following: 31 options for the X only case, 200 options for the CX and X case (140

possibilities for one CX gate and one to three X gates and 60 possibilities for two CX

gates and one X gate), 80 possibilities for the CX only case (20 for one CX gate and

60 for two CX gates), 60 options for the CCX and CX case, 90 options for the CCX

and X case, and 30 options for the CCX only case.

• CCX Gates Only: For each of the five target options, there are four remain-

ing lines from which to select two controls. This gives 5 ·
(
4
2

)
= 5 ·6 = 30 unique

layers.

• CX Gates Only: As with the four-qubit case, a five-qubit circuit allows for

CX only layers containing one or two CX gates.
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– One CX Gate: There are five options for target selection. This leaves

four qubits from which to select one control. Therefore, there are 5 ·4 = 20

unique layers.

– Two CX Gates: For each CX gate applied, there are three remaining

lines for the second CX gate. As shown in Section 4.2.1.1, there are six

unique options for applying a CX gate to three lines. This gives 20·6 = 120.

Again, this accounts for each layer twice, so the total number of unique

layers is 120
2

= 60.

• X Gates Only: Layers with only X gates can operate on five, four, three, two,

or one of the five qubits. This gives
(
5
5

)
+
(
5
4

)
+
(
5
3

)
+
(
5
2

)
+
(
5
1

)
= 1+5+10+10+5 =

31 layers.

• CCX and CX Gates: For each application of a CCX gate, there are two

lines remaining. That give two options to apply a CX gate to each layer. The

yields 30 · 2 = 60 layers.

• CCX and X Gates: For each CCX gate, there are two remaining lines that

give 3 options to apply X gates. This yields 30 · 3 = 90 layers.

• CX and X Gates: Layers consisting of CX and X gates can be divided into

two cases: one CX gate and one to three X gates or two CX gates and one X

gate.

– One CX Gate: When one CX gate is applied in a layer, three lines are

remaining to apply X gates. As shown in Section 4.2.1.1, there are seven

ways to apply X gates to three qubits. This gives 20 · 7 = 140 distinct

layers.
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– Two CX Gates: When two CX gates are applied to a layer, there is

one line remaining to apply an X gate. This gives 20 · 1 = 20 layers.

Each of these layers corresponds to a 25 x 25 = 32 x 32 matrix. The 491 layers

are combined to form 4913 = 118, 370, 771 unique three-layer sequences.

4.2.2 Example of Matching Three-Qubit Sequence

Once all of the possible three-layer sequences composed of NCT gates operating on

three, four, and five qubits have been generated, the next step is to identify which are

three-layer commuting compositions. This section show the process used to determine

this by providing a three qubit example. The four and five qubit sequences follow the

same process, with the exception that the matrices are 16x16 and 32x32, respectively.

The example circuit is shown in Figure 31.

Figure 31: Diagram of example three-qubit circuit

The matrix analysis to determine if the sequence is a three-layer commuting com-

position is shown in Figures 32 through 35. To start, the matrices corresponding to

each layer are shown in Figure 32. The L1 layer corresponds to the layer of three X

gates, L2 to the layer with a CX gate controlled by q0 and targeting q2, and L3 to the

layer with an X gate acting on q0 and a CX gate controlled by q1 targeting q2.

After verifying there are no identical adjacent layers, L3L2 and L2L3 are computed

to check for equality. Their products are shown in Figure 33. Similarly, L2L1 and
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L1 =



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


L2 =



1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0



L3 =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0


Figure 32: Matrix representations of layers 1, 2, and 3

L1L2 are computed to check for equality (shown in Figure 34). Since the compositions

are not equivalent, this gate sequence does not have pairwise commutation of layers.

L3L2 =



0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0


L2L3 =



0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0


Figure 33: Layers 2 and 3 do not commute

Finally, after validating that the sequence does not commute pairwise, the final

step is to check if a single layer commutes with the composition of two layers. This is

done by computing L3L2L1 (the unitary for the original sequence), L1L3L2 (moving

layer 1 to the back) and L2L1L3 (moving layer 3 to the front). Figure 35 shows this

result. As shown in the figure, the matrices are equivalent. Therefore, both the first
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L2L1 =



0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0


L1L2 =



0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0


Figure 34: Layers 1 and 2 do not commute

and the last layer commute with the composition of the remaining two layers. This

means that all three circuits in Figure 36 yield the same results.

L3L2L1 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0



L1L3L2 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0


L2L1L3 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0


Figure 35: Matrix representations of commuted circuits

A benefit of this circuit is that the commuted realizations of it contain adjacent

gates that can be eliminated. In the original subcircuit, this reduction would not

have been found since the neighboring layers do not commute. However, changing

gate order according to the three-layer commutation yields a new flow of gates that

allows for reduction in quantum cost. Specifically, the gate count is lowered from
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(a) Original sequence

(b) Layer 3 moved to front

(c) Layer 1 moved to back

Figure 36: Equivalent circuit realizations

six to four. This type of reduction can be used as a library template: if the original

sequence of layers is found in a circuit, that sub-circuit can be replaced with the

less-costly version to reduce the overall circuit cost.

4.2.3 Identifying Matching Sequences

This section shows the results of applying the algorithm described in Section 3.4.2

and Section 4.2.2 to the identified three-layer NCT circuits to determine which are

three-layer commuting compositions. For each three, four, and five qubit case, an

example is given of how rearranging the gates within a circuit according to the iden-

tified commutation can reduce circuit cost using existing techniques. The three, four,

and five qubit cases are in Section 4.2.3.1, Section 4.2.1.2, and Section 4.2.1.3, respec-

tively. An overview of the total number of three-layer NCT commuting compositions

found compared to the total number of sequences is shown below in Figure 37.

4.2.3.1 Three Qubit Layers

When run through the checkMatch algorithm, the three qubit circuits yielded 72

of the original 10,648 sequences to be three-layer NCT commuting compositions.

One of the sequences is shown in Figure 38a. In this circuit, either the first or third
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Figure 37: Number of three-layer NCT commuting compositions relative to total
sequences

layer can commute with the composition of the two other layers. These commutations

are shown Figures 38b and 38c.

The impact of the sequence’s commuting property can be seen in the circuit exam-

ple shown in Figure 39. This circuit is deliberately created to highlight the potential

cost reduction commuting compositions can bring to quantum circuit reduction; it is

not taken from an existing benchmark. It is left to future work to create a method

to search existing and future circuits for the presence of such sequences.

When the three-layer subcircuit, outlined in red on the circuit diagram, is replaced

with its commuted version (first layer commuted with the second and third layers),

the circuit changes to that shown in Figure 40.

The new sequence of gates presents further cost reduction opportunities. In par-

ticular, adjacent gates of the same type can be eliminated. The reduced circuit after

adjacent gate cancellation is shown in Figure 41. Comparison of the unitary ma-

trices corresponding to the orignial, modified, and reduced circuits show that they
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(a) Three qubit three-layer commuting composition

(b) First layer commuted with composi-
tions of second and third layers

(c) Third layer commuted with composi-
tion of first and second layers

Figure 38: Equivalent three-qubit circuits

Figure 39: Circuit containing three-layer commuting composition subcircuit

implement the same function.

To show that current optimization techniques would not result in this reduction

without the gate rearrangement achieved via the subcircuit commutation, the circuit

is transpiled with Qiskit’s preset pass managers and the recently added template

optimization pass.

Table 1 and Table 2 show the cost metrics post-transpilation for the original circuit
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Figure 40: Original three-qubit circuit replaced with commuted subcircuit

Figure 41: Modified three-qubit circuit after elimination of redundant gates

and modified circuits, respectively.

Pre-Transpiled Level 1 Level 2 Level 3 Template

Total Gates 11 11 11 7 11
CX Gates 5 5 5 3 5
X Gates 6 6 6 3 6
Synthesized U Gates n/a n/a n/a 1 n/a
Depth 7 7 7 5 7

Table 1: Original three-qubit circuit costs post-transpilation

Pre-Transpiled Level 1 Level 2 Level 3 Template

Total Gates 11 7 3 3 3
CX Gates 5 1 1 1 1
X Gates 6 6 2 1 2
Synthesized U Gates n/a n/a n/a 1 n/a
Depth 6 4 2 3 2

Table 2: Modified three-qubit circuit costs post-transpilation

As can be seen from the results, these reduction techniques do not output the
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optimized circuit when applied to the original circuit. In fact, three of the four

techniques tested resulted in no cost improvements to the original circuit. The preset

pass manager with optimization level three did see cost reductions, but the most-

reduced circuit resulting from the original circuit still had a higher cost than the

most-reduced circuit resulting from the modified circuit.

In contrast to the original circuit, all of the optimization techniques reduced circuit

cost when applied to the circuit modified by rearranging commuting layers. Even

the preset pass manager with optimization level one, while outputting the maximal

reduction, achieved better cost metrics than that of level three with the original

circuit. Of particular importance is the reduction in CX count in these circuits, as

CX gates result in more error than X gates. Another interesting note is that, even

without transpilation, simply re-ordering the gates in the circuit led to a reduction in

circuit depth. While this is not necessarily standard, it does show the importance of

considering alternate ordering of gates within a circuit. Simple reductions may exist

that could result in lower cost circuits and therefore more accurate results.

To see the difference in execution results, the original, modified, and reduced mod-

ified circuits were run on two IBM quantum computers: ibmq vigo and ibmq santiago

[23]. The test was run on 24 November 2020.

On ibmq vigo, the error rates ranged from 3.608 × 10−4 to 1.099e−2 (averaging

2.582e3) for single qubit gates and 5.964e−3 to 1.000 (averaging 2.556e−1 ) for CNOT

gates. The 1.000 error rate is abnormal and corresponds to the unreliability of the

physical qubit labeled as q0 on the topology graph. A CNOT operation performed

between q0 and its neighbor q1 could return up to a 1.000 error.

On ibmq santaigo, the error rates ranged from 1.825e−4 to 2.831e−4 (averaging

2.282e−4) for single qubit gates and 6.094−3 to 7.506e−3 (averaging 6.631e−3) for

CNOT gates.
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The matrix corresponding to the entire circuit is shown in Figure 42. To calculate

the expected results, this operator is applied to a three qubit system |q2q1q0〉 in the

state |000〉 to show that, in a perfect environment, the circuit would output the result

|100〉. 

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


Figure 42: Unitary corresponding to the three-qubit circuit

When the original, modified, and reduced modified circuits were run on the quan-

tum computers, the impact of reducing the circuits with the commuting composition

is apparent. The circuits were executed 1,024 times on both computers.

On the ibmq vigo computer, the original circuit had a measurement probability

of returning the right answer of 37.988%. The modified circuit had a measurement

probability of returning the correct answer of 22.266%. The reduced circuit run on

the same computer had a measurement probability of returning the correct answer

of 72.754%. The histograms showing the full results are shown in Figures 43 to 45.

These graphs show the percentage of total runs that each output value was returned.

When run on the ibmq santiago computer, the measurement probabilities of re-

turning the correct answer were 83.691% for the original circuit, 85.156% for the

modified circuit, and 93.848% for the reduced circuit. The histograms showing the

full results are displayed in Figures 46 to 48.

A summary comparing the percentage of runs for which the correct answer was
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Figure 43: Three-qubit original circuit results - ibmq vigo

Figure 44: Three-qubit modified circuit results - ibmq vigo
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Figure 45: Three-qubit reduced circuit results - ibmq vigo

Figure 46: Three-qubit original circuit results - ibmq santaigo
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Figure 47: Three-qubit modified circuit results - ibmq santaigo

Figure 48: Three-qubit reduced circuit results - ibmq santaigo
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outputted for each test is shown in Figure 49. In both cases, the reduced circuit

returned the correct result a higher percentage of the time. This shows that the re-

ductions found after the gate rearrangement were able to create a circuit implementing

the original function that returns better results when run on quantum hardware.

Figure 49: Measurement results on ibmq vigo and ibmq santiago

4.2.3.2 Four Qubit Layers

Of the 970,299 four-qubit circuits, 13,536 are three-layer NCT commuting com-

positions. An example of one of the circuits and its commutations are shown in

Figure 50. As with the three qubit example, the first layer can commute with the

composition of the second and third layers, or the third layer can commute with the

composition of the first and second layers.

To demonstrate cost reduction impact from the application of this commuting

composition, the circuit shown in Figure 51 is reduced with and without the rear-

ranging gates within the three layer commutation. Again, as in Section 4.2.3.1, this

circuit was designed to prove the existence of potential cost reductions via commuting

compositions. It was not taken from a benchmark or algorithm known to the author.
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(a) Four qubit three-layer NCT commuting composi-
tion

(b) First layer commuted with composi-
tions of second and third layers

(c) Third layer commuted with composi-
tion of first and second layers

Figure 50: Equivalent four-qubit circuits

Figure 51: Four-qubit circuit containing three-layer commuting composition subcir-
cuit

The modified circuit after the match is replaced with one of its commuted versions

is shown in Figure 52.

Both the original and modified circuits were run through the preset pass managers

for optimization levels one, two, and three, as well as the template optimization pass.

The results from those transpilation passes are shown in Tables 3 and 4.
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Figure 52: Original circuit replaced with commuted subcircuit

Pre-Transpiled Level 1 Level 2 Level 3 Template

Total Gates 11 11 9 43* 9
CCX Gates 3 3 3 n/a 3
CX Gates 3 3 3 18 3
X Gates 5 5 3 3 3
T gates n/a n/a n/a 11 n/a
T † gates n/a n/a n/a 8 n/a
H gates n/a n/a n/a 2 n/a
Synthesized u gates n/a n/a n/a 1 n/a
Depth 7 7 6 32 7

*Clifford+T (hardware level) decomposition

Table 3: Original four-qubit circuit costs post-transpilation

Pre-Transpiled Level 1 Level 2 Level 3 Template

Total Gates 11 11 7 41* 5
CCX Gates 3 3 3 n/a 1
CX Gates 3 3 3 18 3
X Gates 5 5 1 1 1
T gates n/a n/a n/a 11 n/a
T † gates n/a n/a n/a 8 n/a
H gates n/a n/a n/a 2 n/a
Synthesized u gates n/a n/a n/a 1 n/a
Depth 7 7 6 32 4

*Clifford+T (hardware level) decomposition

Table 4: Modified four-qubit circuit costs post-transpilation
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Unlike the three-qubit case, the output of the optimization level three transpi-

lation results includes T , T †, and H gates. This is because 3,792 of the four qubit

matches contain one or two CCX gates, and the CCX gate must be decomposed

to the quantum level Clifford+T gates prior to running on IBMQX hardware. The

Clifford+T decomposition of the CCX gate is shown in Figure 19 in Section 3.3.1.

Another difference between the four-qubit and the three-qubit case is that the pre-

set pass managers have worse results than the template optimization pass when run on

the modified circuit. Again, this difference is due to the existence of CCX gates. The

preset pass managers do not cancel adjacent CCX gates. CommutativeCancellation—

the optimization pass used in the preset pass managers—only considers H, X, Y , Z,

CX, CY , and CZ gates [25]. In contrast, the default template optimization pass

does cancel redundant CCX gates because it is initialized with adjacent, X, CX, and

CCX gates for the identity templates.

The circuit with the least cost is the modified circuit after the template optimiza-

tion pass. This circuit is shown in Figure 53 and is used as the reduced modified

circuit for the hardware test.

Figure 53: Modified four-qubit circuit after undergoing template optimization pass

To evaluate the circuit reduction impact on computational performance, the origi-
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nal, modified, and reduced modified circuits were run on ibmq vigo and ibmq santiago.

The correct result of this circuit operating on four qubits |q3q2q1q0〉 in the |0000〉 state

is |0100〉 with 100% probability. The two circuits were run on each device 1,024 times.

The test was performed on 8 Dec 20, on which day the error rates averaged 4.986e−4

for single qubit and 8.520e−3 for two qubit gates on ibmq vigo, and 2.798e−4 for single

qubit and 1.009e−2 for two qubit gates on ibmq santiago.

The histograms showing the detailed results for ibmq vigo are shown in Figures

54 to 56.

Figure 54: Four-qubit original circuit results - ibmq vigo

The histograms showing the detailed results for ibmq santiago are shown in Fig-

ures 57 to 59.

Just as in the three qubit case, the reduced circuit yielded the best results on

both ibmq vigo and ibmq santiago. On ibmq vigo, the reduced circuit produced the

correct result 68.262% of the time, as compared to 43.457% and 39.844% for the

original and modified circuits, respectively. On ibmq santiago, the reduced circuit
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Figure 55: Four-qubit modified circuit results - ibmq vigo

Figure 56: Four-qubit reduced circuit results - ibmq vigo
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Figure 57: Four-qubit original circuit results - ibmq santaigo

Figure 58: Four-qubit modified circuit results - ibmq santaigo
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Figure 59: Four-qubit reduced circuit results - ibmq santaigo

output the correct results 79.688% of the time, compared to 18.262% and 13.574%

for the original and modified circuits, respectively. The summary of correct results

for both devices is shown in Figure 60.

Figure 60: Four-qubit circuit measurement results
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4.2.3.3 Five Qubit Layers

Of the 118,370,771 five-qubit circuits, 1,518,480 are three-layer commuting com-

positions. One of the matches is shown in Figure 61a. This sequence is different than

the sequences chosen as examples for the three and four qubit cases in that the first

layer commutes with the composition of the second and third layers, but the third

layer does not commute with the composition of the first and second layers. The

allowed commutation is shown in Figure 61b.

(a) Five qubit three-layer NCT commuting composition

(b) Third layer commuted with the composition of the
first and second layers

Figure 61: Equivalent five-qubit circuits

As with the three and four qubit cases, to prove a cost reduction is possible using

existing techniques when accounting for the commuting composition but not without

the commutation, a circuit containing the match was created. This circuit is shown

in Figure 62 (with the three layer commuting composition boxed in red). The circuit
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modified by rearranging the gates according to the commuted sequence is shown in

Figure 63.

Figure 62: Five qubit circuit containing three layer commuting composition subcircuit

Figure 63: Original five-qubit circuit replaced with commuted subcircuit

The original and modified circuits were run through the Qiskit preset pass man-

agers with optimization levels one, two, and three, and the template optimization

transpilation pass. The results from the transpilation passes are shown in Tables 5

and 6. As seen in the tables, the original circuit did not have any reductions resulting

from a transpilation pass. The modified circuit had reductions with every pass. The

greatest cost reduction once again occurred with the template optimization pass on

the modified circuit. This reduced circuit is shown in Figure 64.

The Clifford+T decomposition of the original and modified circuits resulting from

the level three transpilation pass had no difference in the number of T and T † gates.
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Pre-Transpiled Level 1 Level 2 Level 3 Template

Total Gates 11 11 11 51* 11
CCX Gates 3 3 3 n/a 3
CX Gates 3 3 3 21 3
X Gates 5 5 5 5 5
T gates n/a n/a n/a 9 n/a
T † gates n/a n/a n/a 9 n/a
H gates n/a n/a n/a 6 n/a
Synthesized u gates n/a n/a n/a 1 n/a
Depth 5 5 5 32 5

*Clifford+T (hardware level) decomposition

Table 5: Original five-qubit circuit costs post-transpilation

Pre-Transpiled Level 1 Level 2 Level 3 Template

Total Gates 11 9 7 46* 5
CCX Gates 3 3 3 n/a 1
CX Gates 3 1 1 19 1
X Gates 5 5 3 3 3
T gates n/a n/a n/a 9 n/a
T † gates n/a n/a n/a 9 n/a
H gates n/a n/a n/a 4 n/a
Synthesized u gates n/a n/a n/a 2 n/a
Depth 5 5 4 30 3

*Clifford+T (hardware level) decomposition

Table 6: Modified five-qubit circuit costs post-transpilation

As discussed in Section 2.3, the T -count is a heavily considered metric when evaluating

quantum circuits because of the high cost to implement T gates. While the T -count

was not reduced by the optimization level three pass on the original and modified

circuits, it was reduced when that pass was applied to the reduced circuit (circuit

outputted from template optimization on the modified circuit). Table 7 shows the

comparison of gate counts for the original, modified, and reduced circuits run through

the level three transpilation pass.

This demonstrates an example of where optimizing circuits at a higher level of
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Figure 64: Modified five-qubit circuit after template optimization pass

Original
Modified, not previously
reduced

Modified and reduced by
template optimization

Total
Gates

51 46 19

CX Gates 21 19 7
X Gates 5 3 3
T gates 9 9 4
T † gates 9 9 4
H gates 6 4 2
Synthesized
u gates

1 2 0

Depth 32 30 12

Table 7: Level three optimization results for five-qubit circuit

abstraction prior to decomposing and optimizing at the hardware-level gates could

yield greater reductions than optimizing only at the low level.

To see how the circuits compare when run on real hardware, the original, modified,

and reduced circuits were again run on IBMQX machines. The circuit chosen for the

reduced circuit is the result of the template optimization pass on the modified circuit,

and is shown in Figure 64. All three circuits were run on ibmq vigo and ibmq santiago

1,024 times on 14 December 2020. On this day, the ibmq vigo error rates averaged

4.278e−4 for single qubit gates and 7.897e−3 for CNOT gates, while ibmq santiago

error rates averaged 4.296e−4 for single qubits and 1.060e−2 for CNOT gates. The
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expected result of the circuit operator acting on a quantum system |q4q3q2q1q0〉 in

state |00000〉 is |10011〉 with a 100% probability.

The histograms showing the detailed results for ibmq vigo are shown in Figures

65 to 67. The histograms showing the detailed results for ibmq santiago are shown

Figure 65: Five-qubit original circuit results - ibmq vigo

in Figures 68 to 70.

Figure 71 shows the percentage of times that the correct result was returned from

the circuit execution. As can be seen from the table, higher device error rates lead

to a greater difference in the percentage of correct results.

4.2.4 Note on Computational Time to Find Matches

The computational time required to find three-layer commuting compositions in-

creases with the number of qubits. The asymptotic time complexity of this problem

is O(n!). The analysis of this is shown in Appendix A. The factorial complexity is

due to the increasing number of possible layers per qubit count.
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Figure 66: Five-qubit modified circuit results - ibmq vigo

Figure 67: Five-qubit reduced circuit results - ibmq vigo
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Figure 68: Five-qubit original circuit results - ibmq santaigo

Figure 69: Five-qubit modified circuit results - ibmq santaigo

97



Figure 70: Five-qubit reduced circuit results - ibmq santaigo

Figure 71: Five-qubit circuit measurement results on ibmq vigo and ibmq santiago

In addition to the growing number of sequences to evaluate, the size of the matrices

corresponding to each layer also grows. For a circuit with n qubits, the matrix will be

2nx2n. Therefore, the check to find sequences matching the three-layer commuting

98



composition property requires the resources to compute matrix multiplication for

exponentially growing matrices.

The python code for the algorithm to check for three-layer commuting composi-

tions was run on an Intel Xeon 2.30GHz processor with 256 GB RAM running the

Windows 10 operating system. In wall clock time, it took 1 minute and 17 seconds

to check all 10,648 three-qubit three-layer sequences for commuting compositions, 1

hour, 4 min and 44 seconds to check all 970,299 four-qubit sequences, and 5 days, 6

hours, 49 minutes and 48 seconds to check all 118,370,771 five-qubit sequences. The

other workload on the machine was minimized so as not to detract resources from the

checkMatch algorithm.

4.3 Sequence Analysis

4.3.1 Existence of Three-Layer Commuting Compositions

As seen in Section 4.2.3, there do exist three layer sequences of NCT gates with

the property that no adjacent layers commute, but a single layer commutes with a

pair of layers. Therefore, there can exist alternative gate orderings within a larger

circuit that are not considered with current techniques that consider only pairwise

commutation.

While such three-layer commuting circuits do exist, the amount of them is small

in proportion to the number of all possible sequences. For the three qubit case,

0.676% of all three-layer combinations meet the three-layer commuting composition

property. The percentage is slightly higher but still small for the four and five qubit

case: 1.395% and 1.28% respectively.

With only three cases, a trend cannot be definitively identified as to whether

there is a correlation between number of qubits in the circuit and percentage of all

possible circuits that are three-layer commuting compositions. Increasing the number
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of qubits from three to four raised the proportion by .719%, which initially seemed

to indicate more qubits would result in a higher percentage of three-layer commuting

compositions. However, the five qubit case had a lower proportion of such sequences,

proving that hypothesis to be false. Circuits with more qubits could be checked;

however, commuting compositions with higher numbers of qubits would become more

specific and less generic. The more specific the sequence, the less likely it will be found

in a larger circuit. Therefore, there may not be a practical benefit to finding sequences

of gate combinations acting on many qubits.

4.3.2 Elimination of Redundant Gates within Sub-Circuits

After finding the three-layer commuting compositions for three, four, and five

qubits, they were processed to determine how many could be simplified via elimination

of adjacent gates. To do this, they were run through the template optimization

transpiler pass with Qiskit to find instances of identical adjacent gates and replace

with the identity. Next, they were run through the checkMatch algorithm which

maintained the three-layer commuting composition property.

This is to determine how many three-layer NCT commuting compositions exist

such that there are no trivial reductions within the sub-circuit itself. Such subcircuits

have a higher likelihood of existing within already reduced circuits and resulting in

additional cost reductions.

The results of this test are shown in Table 8. They show that the number of non-

reducible commuting compositions is much fewer than the total number of commuting

compositions. However, despite the relatively low numbers, the existence of such

sequences shows promise for the possibility of pre-reduced circuits to have further

reductions via the use of commuting compositions.

Two of the three qubit reduced sequences are shown in Figure 72. The twelve
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Possible Sequences Matching Sequences Non-reducible Sequences

Three Qubits 10 648 72 12
Four Qubits 970 299 13 536 3888
Five Qubits 118 370 771 1 518 480 474 420

Table 8: Non-reducible three-layer NCT commuting compositions

total possibilities for three qubit circuits are permutations of these two sequences.

4.3.3 Single Gate Layer Sequences

As described in Section 3.5.4, all of the identified matches were analyzed to see

if they contain a single gate per layer by checking if any circuits contain exactly

three gates. None of the identified three-layer NCT commuting compositions had

that property; all had five or more gates. Therefore, three-gate NCT commuting

compositions with three to five qubits do not exist.

To determine whether three-gate NCT commuting compositions exist at all, one,

two, six and seven qubit circuits were evaluated according to the experiment described

in the latter part of Section 3.5.4. Circuits of three gates were created. They were

checked for all qubits to be in use and that sequential gates operate on at least one

similar qubit.

The one qubit case has only the circuit of three X gates that meets these criteria.

(a) (b)

Figure 72: Three-qubit three-layer NCT commuting compositions in reduced form
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The two qubit case has 64 circuits that meet these criteria: each layer contains a

single X gate or a CNOT gate.

The six qubit case has 84,240 circuits to check. There are 729,000 three gate

circuits in total. After eliminating the circuits that do not use all six lines, there

are 171,900 circuits remaining. Finally, after eliminating circuits with adjacent gates

operating on disjoint sets of qubits, there are 84,240 circuits remaining to check if

they are three-gate commuting compositions.

The seven qubit case has 51,030 circuits to check. In total, there are 1,157,625

three-gate NCT circuits with seven qubits. Of those, 153,090 utilize all seven qubits.

That number is further reduced to 51,030 after checking that adjacent gates operate

on at least one shared qubit.

All of the circuits meeting the requirements were then fed through the CheckMatch

algorithm to see if any met the conditions to be a three-gate commuting composition.

None did. As circuits with greater than seven qubits containing three NCT gates will

contain pairwise commuting gates, this final check of one, two, six and seven qubit

circuits proves that three-layer NCT commuting compositions do not exist.

4.3.4 Number and Types of Gates in Sequences

As described in Section 3.5.5 the three-layer NCT commuting compositions were

analyzed for total number of gates and how many of each type of operation. The

purpose of this is to have a better understanding of the makeup of the identified

matches. Additionally, it could inform which commuting compositions to search for

when evaluating a given circuit.

The results of the number and types of operations in the three, four, and five

qubit circuits are shown in Tables 9 through 11, respectively.
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Maximum Minimum Average

Total Gates 6 5 5.500
CCX Gates 0 0 0
CX Gates 2 2 2
X Gates 4 3 3.500

Table 9: Number and types of gates in three-qubit circuits

Maximum Minimum Average

Total Gates 9 5 6.390
CCX Gates 2 0 1.350
CX Gates 5 0 2.480
X Gates 7 0 3.550

Table 10: Number and types of gates in four-qubit circuits

Maximum Minimum Average

Total Gates 12 5 7.170
CCX Gates 3 0 0.950
CX Gates 6 0 2.860
X Gates 10 0 3.360

Table 11: Number and types of gates in five-qubit circuits

4.4 Summary

This chapter presents the results from the experiments run in this research. The

main contribution is the identification of three-layer NCT commuting compositions.

In support of that, this chapter also describes the results of the steps taken to generate

all possible sequences for three, four, and five qubit circuits. Furthermore, it presents

analysis of the found circuits to inform decisions on when to search for the commuting

compositions, how they can help reduce a circuit, and properties they contain.
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V. Conclusions

This chapter concludes this research by describing its contribution to the field of

quantum computing and offering areas of future work. Section 5.1 overviews how this

research fits into the broader problem of logical quantum circuit reduction. Section

5.2 presents the contributions of this work to the field. Section 5.3 identifies areas of

future work. Finally, Section 5.4 offers concluding remarks.

5.1 Overview

Quantum circuit optimization is a broad field encompassing many focus areas and

techniques. One of the techniques is circuit optimization via templates. One of the

computational problems underlying this method is that of finding sequences of gates

that match templates within a circuit. The difficulty of this problem lies in the fact

that a template may not match a sequence of gates in the original specification of

the circuit, but may match if the gates in the circuit are rearranged with allowable

commutations. This research analyzes such commutations to identify alternative gate

sequences that could realize a circuit without changing its functionality.

The broad research question presented in Section 1.4 of how commuting compo-

sitions of layers within a quantum circuit can be used to make circuit transpilation

more effective drives this work. Results of computational experiments testing three

hypotheses are reported to inform that question. Those hypotheses are:

1. Three-element commuting compositions for circuits composed of NOT, CNOT

and Toffoli gates exist.

• This hypothesis is true for three-layer NCT commuting compositions

(See Section 4.2.3).
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• This hypothesis is false for three-gate NCT commuting compositions

(See Section 4.3.3.)

2. Rearrangements of quantum gates in a circuit can yield reductions not otherwise

captured by state of the art optimization tools.

• This is true using Qiskit’s preset optimization passes and template match-

ing pass (See Sections 4.2.3.1 through 4.2.3.3). Qiskit is actively managed

by experts across IBM and the quantum computing community. The tem-

plate optimization pass is the implementation of the 2020 algorithm by

Iten et al., which claims to “further improve practically relevant quantum

circuits that were already optimized with state-of-the-art techniques” [28].

While not the only optimization tools existent, these are solid representa-

tions of the simplifications current research is capable of coducting.

3. Consideration of commuting layers will yield more three-element commuting

compositions than accounting for gates alone.

• This is true for the NCT gate set — considering gates alone resulted

in no three-element commuting compositions while consideration of layers

yielded 72, 13,536, and 1,518,480 three-element commuting compositions

for three, four, and five qubit layers, respectively (Sections 4.2.3 and 4.3.3).

These results offer insight into the usefulness of application of commuting com-

positions in circuit reduction. In addition to strictly determining whether the tested

hypotheses are true or false, this research identifies characteristics of the commuting

compositions that may be helpful in future work.
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5.2 Contributions

5.2.1 Presentation of the Commuting Composition Problem

The first contribution this research makes to quantum computing advances the

theory of the field by providing the definition of the commuting composition property.

This generalizes previous work on circuit commutations to account for layers instead of

single gates and compositions of layers rather than each considered individually. The

formalism of this property paves the way for an entirely new area of research within

logical circuit reduction. Work in this area could yield new methods to analyze a

circuit for alternative gate orderings that compute to the same operator matrix. This

allows for the possibility of finding sequences of gates that could be reduced, thereby

lowering the overall cost of the circuit.

5.2.2 Investigation of Three-Layer NCT Commuting Compositions

The second contribution of this research advances the state of the quantum com-

puting research infrastructure through the identification, presentation, and analysis of

commuting compositions composed of three layers of NCT gates operating on three,

four, and five qubits. The examples identified are ready to be incorporated into tran-

spilation software such as Qiskit, which will both facilitate further research and accel-

erate the arrival of practical quantum computing. This sub-area within the broader

commuting composition problem proves the existence of commutations composed of

more than two single-gate layers and that they can result in greater reductions to

circuit cost. It serves as an initial work investigating alternative commutations of

gates in a circuit.

This answers whether, within a NCT circuit, there exist sequences of three layers

such that no adjacent layers commute but a single layer commutes with the remaining

pair of layers. It turns out that such sequences do exist, and that they can result
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in reductions to a quantum circuit that are not captured in current state of the art

optimization techniques.

In addition to establishing the existence of such circuits, this research performs

an exhaustive search of all possible three-layer NCT circuits for three, four, and five

qubits to find which circuits contain this property. All of the identified circuits are

recorded as OpenQASM strings so that they can be used in future work.

Finally, this work analyzes the results to identify which of the three-layer com-

muting compositions are optimized, if there are any with a single gate per layer, and

the number and type of gate operations in each. These metrics offer insight to the

situations in which the application of the identified commuting compositions may

result in an overall reduction. Optimized sequences will be useful in circuits that

have gone through initial simplification passes. In such cases, neighboring same gates

will have already been eliminated and the commuting compositions containing redun-

dant gates will not exist in the circuit. Therefore, it would waste resources to search

for them. Single gate layers may be easier to find within a larger circuit. Finally,

the number and type of operations in each commuting composition gives a general

understanding of the types or reductions possible. Sequences that contain more of

a specific gate are more likely to result in a reduction in the overall count of that

gate in the larger circuit. While not an exact indicator of what transformations will

occur, understanding the composition of a circuit offers a rough gauge of the possible

reductions. This could benefit work that is targeting specific gate types, such as that

discussed in Section 5.3.5.

107



5.2.3 Proof of Non-Existence of Three-Gate NCT Commuting Com-

positions

The motivation for this research was based on the idea posed by Iten et al., that

“it could happen that in a circuit C = (C1, C2, C3), no gates commute pairwise, but

the unitary corresponding to (C1, C2) could commute with the unitary corresponding

to C3.” [28]. This is the underlying idea that was generalized to form the commuting

composition problem.

The third contribution of this research also advances the theory of the field by

following on to that premise by proving it false for a circuit C = (C1, C2, C3), where

C1, C2, C3 are gates from the NCT set. This premise may be true for other gate sets,

such as the XYZ circuit example in Section 5.3.1. However, the fact that it is not

true for the NCT gate set contributes to the work done by Iten et al. by showing

that modifying the algorithm to account for the premise stated above would yield

no better results than the current version [28]. While the algorithm is capable of

running with any gate set, the set of templates currently available and default to the

pass creation in Qiskit is from the NCT set [4]. To modify the pattern matching

algorithm to account for more commutations, the authors will either need to use a

different set of templates or consider commutations of layers of gates.

5.3 Future Work

This section describes areas of future work within the commuting composition

problem.
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5.3.1 Search for Commuting Compositions of Alternative Gate Sets

or Numbers of Elements

A straightforward area of future work is searching for commuting compositions of

different types. This work looked specifically for commuting compositions composed

of three layers of NCT gates, but that search could be extended to any gate set and

number of elements. In particular, it would be interesting to see how commuting com-

positions of gates compare at a hardware level to that of the NCT gate set. Searching

for sequences with this property within the Clifford+T gate set seems promising, as

subcircuits composed of fewer than three qubits could be found. For example, using

only one qubit, the sequence XYZ is a three layer commuting composition, as can be

seen in Figures 73 through 76. Rearrangements of gates at a lower level of abstraction

could potentially find more reductions than the higher level.

X =

(
0 1
1 0

)
Y =

(
0 -i
i 0

)
Z =

(
1 0
0 -1

)
Figure 73: X, Y, and Z gate matrices

XY =

(
i 0
0 -i

)
Y X =

(
-i 0
0 i

)
Figure 74: X and Y gates do not commute

Y Z =

(
0 i
i 0

)
ZY =

(
0 -i
-i 0

)
Figure 75: Y and Z gates do not commute

XY Z =

(
i 0
0 i

)
Y ZX =

(
i 0
0 i

)
ZXY =

(
i 0
0 i

)
Figure 76: XYZ three-layer commuting composition
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5.3.2 Develop an Efficient Method to Traverse a Quantum Circuit to

Find Sub-Circuits and Replace with the Commuted Gate Or-

dering

Another extension of this work is to create an algorithm that searches for com-

muting composition sequences within a larger circuit and replaces the match with its

commuted version. The most likely method for this is via the DAG format of the

circuit. This problem boils down to searching a graph to see if it contains a specific

subgraph. This is an instance of the subgraph isomorphism problem, which is NP-

Complete [29]. However, it is possible that properties of the commuting composition

search problem that are not shared by all instances of the subgraph isomorphism prob-

lem admit an efficient solution. Even if this is not the case, it is possible that there

are heuristic solutions that could provide satisfactory results. Future work could look

at existing heuristic algorithms for the subgraph isomorphism problem, and apply

those to finding the commuting composition graph within the DAG representation

for the entire circuit. Another possible solution would be treating the commuting

composition circuits as templates, then using the pattern matching algorithm by Iten

et al. to find and replace the commuting composition subcircuit [28].

5.3.3 Improve Implementation of CheckMatch Algorithm

To save time and resources, the CheckMatch algorithm could be modified to run

more efficiently. Two possible improvements are parallel programming and storing

computation results for future use. The algorithm is highly parallelizable, as checking

each triplet for a match can be done independently. Furthermore, as the algorithm

is currently implemented, it computes the same matrix multiplication many times:

each time two layers are adjacent it recomputes the product of the two layers. This is

a redundancy that could be eliminated by a technique such as memoization. Storing
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previously computed results to be looked up rather than recomputed reduces the

execution time associated with duplicating the work to compute the product of two

matrices, at the expense of greater use of memory.

5.3.4 Analyze Trend between Sequence Count and Matches

The number of unique three layer NCT sequences in relation to three-layer NCT

commuting compositions appears to have a log-linear relationship for three, four and

five qubits. This relationship is shown in Figure 37. Future work could characterize

this relationship and determine if it is expected to hold for six or more qubits. This

would help predict the quantity of three-layer NCT commuting compositions that

exist for higher qubit counts.

5.3.5 Apply Commuting Compositions to Reduce High-Cost Gates

One of the results of this work is the discovery that the existence of unnecessary

adjacent X gates in a three-layer circuit could create a three-layer commuting com-

position, while the absence of such gates prevents the composition of two gates from

commuting with the remaining one. At first glance, the inclusion of superfluous gates

seems wasteful. However, when considering the ease of implementing an X gate com-

pared to a CX gate or CCX gate, perhaps neighboring (and therefore unnecessary)

X gates are useful in that they would allow elimination of the higher-cost gates.

The premise of this idea is to use commuting compositions to eliminate the maxi-

mum number of high-cost gates before eliminating lower cost gates. Given a circuit, it

would be iteratively searched for cancellations of the highest cost gate (in the NCT set

this would be the CCX gate). After the first iteration, the algorithm would rearrange

the layers in the circuit according to the commuting compositions existent in it, then

re-search the circuit for additional cancellations of the highest cost gate. This would
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continue until no more commutations are available that result in elimination of the

targeted gate. The algorithm would then proceed to do the same process for the next

highest-cost gate, and so on until the lowest-cost gate. An optional first step for this

method would be to insert extra X gate pairs prior to searching for cancellations of

high-cost gates, as they would result in a greater number of commutations and thus

potential rearrangements yielding a reduction.

The goal of this is to prioritize elimination of high-cost gates at the expense of

more single qubit gates. Commuting compositions would be used to avoid preemp-

tively canceling low-cost gates when their existence within the circuit could allow a

commutation that would eliminate a higher cost gate.

5.4 Concluding Remarks

According to the National Defense Strategy, the primary national security concern

of the United States is long term strategic competition with nation states that are

advancing in military modernization and aggression [38]. These competitors under-

stand the power technological superiority brings to the fight. One such technology

with the potential to radically favor the nation that develops and operationalizes it

first is the quantum computer. Leading the way in research, development, and ap-

plication of quantum sciences is key to the United States maintaining a position of

influence in the great power competition. One element of this is creating effiencient

quantum circuits.

Quantum circuit simplification aims to reduce circuit cost so that circuits run

more accurately and efficiently on quantum computers. This work contributes to that

effort by presenting the generalized commuting composition problem, then proceeding

to identify all three-layer commuting compositions for three-, four-, and five-qubit

circuits composed of NOT, CNOT, and Toffoli gates.

112



These commuting compositions provide a way to reorder gates in a quantum circuit

such that the circuit operator is unchanged. This provides alternative sequences of

gates to be evaluated for circuit transpilation and optimization passes. A direct

application of this is the potential to find more gate sequences that match templates

for template optimization techniques. However, the benefits extend beyond this single

case. Alternative orderings of gates in a circuit could result in better physical mapping

solutions so that fewer SWAP gates are required; the ability to combine multiple

gates into a single gate supported by the device; or the discovery of new sequences of

gates to use as reducible templates. Each such improvement makes headway towards

realizing a quantum computer that is capable of solving problems not feasible by

classical computers.

Once this milestone is reached, quantum computers will significantly impact na-

tional security and economic prosperity. Some of the ways in which it will make a

difference are known, such as defeating encryption algorithms used to secure sensi-

tive data and communications [59]. Other applications remain to be developed: they

could include solving multivariate optimization problems, developing new material

technologies, or creating more effective pharmaceuticals [19, 45]. These technologi-

cal advancements could lead to improving intelligence, surveillance, and reconnais-

sance efforts, planning in data-saturated conflict, and developing stronger weapon

systems. Such applications of quantum computers will increase the United States mil-

itary’s competitive advantage, thereby strengthening its position of influence across

the globe.
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Appendix A. Asymptotic Time Complexity to Find
Three-Layer NCT Commuting Compositions

This appendix presents the asymptotic time complexity of the problem of finding

three-layer NCT commuting compositions as qubit count n increases to be O(n!).

The dominating factor in the complexity of this problem is the number of three-

layer sequences to be checked for the target property. The number of three-layer

sequences is the cube of the number of unique layers. However, it will be shown that

the number of sequences in a single layer is super-polynomial in n, so raising that

number to a constant power does not change the asymptotic complexity. Therefore,

this problem can be reduced to finding the complexity of the number of unique layers

over n qubits using gates from the NCT set.

The number of layers can be calculated by defining cases based on gate composition

that accounts for all possible gate combinations, then adding the quantities for each

case.

The basic cases for this problem are X gates only, CX gates only, and CCX gates

only. All other cases will be combinations of these three.

The X only case contributes an exponential complexity. This can be seen by

the following: Given n qubits, the options for layers composed of only X gates are n,

(n−1), (n−2),...,1 line(s) contain(s) an X gate(s). This corresponds to Equation (19).

n∑
i=1

(
n

i

)
= 2n − 1 (19)

The case of CX gates contributes a factorial complexity term to the expression

for the overall complexity. The number of layers containing only CX gates for n ≥ 2

qubits is given in Equation (20).

m∑
i=1

n!

i! · (n− 2i)!
, where m =

⌊n
2

⌋
(20)
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Each term in this summation corresponds to the number of layers possible with

the application of i CX gates. The maximal number of CX gates that can be applied

in a given layer is m, as two qubits are required for the gate operation and no two

gates in a layer can operate on the same qubit. For n even, m = n
2
. For n odd,

m = n−1
2

. The total number of possible layers is the sum of the number of layers with

each possible number of CX gates from 1 to m.

The number of layers with one CX gate is the number of options for the control

qubit multiplied by the number of options for the target qubit. With n qubits, this

gives n · (n− 1) = n!
(n−2)! .

The number of layers with two CX gates is the number of options for choosing

the first gate multiplied by the number of options for choosing the second gate.

Choosing the first gate (as previously shown) is n · (n − 1). There are (n − 2) lines

remaining from which to choose the second gate, so there are (n− 2) · (n− 3) choices

for the second gate. This gives the total number of options for two gates to be

n · (n− 1) · (n− 2) · (n− 3). This number accounts for all two-gate layers twice: for a

layer with gates g1g2, it accounts for g1 chosen first and g2 chosen second, as well as

g2 first and g1 second. The order of gates does not matter, so the number of unique

layers is 1
2
(n · (n− 1) · (n− 2) · (n− 3)) = 1

2
· n!
(n−4)! .

Similarly, the number of layers with three CX gates is the number of options for

the first gate multiplied by the number of options for the second gate multiplied by

the number of options for the third gate. This is divided by 3! to avoid accounting for

repeated layers. This gives 1
3!

(n · (n−1) · (n−2) · (n−3)) · (n−4) · (n−5)) = 1
3!
· n!
(n−6)! .

This continues up to m gates. The number of options for m gates is the number

of options for one gate times two gates times three gates and so on until m gates. To

eliminate repetition, this number is divided by m!.

For n even, this gives 1
m!

(n · (n− 1) · (n− 2) · (n− 3) · · · · 2 · 1) = 1
m!
· n!
(n−2m)!

.
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For n odd, this gives 1
m!

(n · (n− 1) · (n− 2) · (n− 3) · · · · 3 · 2) = 1
m!
· n!
(n−2m)!

.

The total number of layers accounts for all the layer options for all cases from one

to m gates. This summation gives Equation (20) and shows that the complexity for

this case is O(n!).

The final base case, CCX only, also contributes O(n!) complexity. The generic

formula for this case in given in Equation (21), with n ≥ 3.

m−1∑
i=0

1

(i+ 1)!
· (n− 3i) ·

(
(n− 3i− 1)

2

)
=

m−1∑
i=0

1

(i+ 1)!
· (n− 3i)!

2! · (n− 3i− 3)!
, where m =

⌊n
3

⌋
(21)

This formula follows the same logic as the CX case. For each number of CCX

gates k, the total layers is the number of options for the first gate times the number

of options for the second gate, and so on until the kth gate. This is divided by k! to

eliminate repetition. The total number of layers for all qubits is the summation of

the number of options for k gates from k = 1 to k = m, where m is the maximal

number of CCX gates that can fit in one layer over n qubits. For clarity of expression,

Equation (21) begins with i = 0 to represent the first case of k = 1 gates, and finishes

at i = m− 1 to compute the k = m case.

This expression differs from the CX only case in that for each choice of target

qubit, two control qubits must be chosen. The order of the control qubits for each

target qubit does not matter, hence the use of a combination rather than permutation.

As can be seen from Equation (21), the complexity for the CCX only case is O(n!).

This means that of the basic cases, the highest complexity is O(n!). All other cases

for gate compositions per layer will be of the form

O(Nall) = O(NX(j)NCX(k)NCCX(l)) (22)
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with NX(j) the number of options for j X gates, NCX(k) the number of options for k

CX gates, NCCX(l) the number of options for l CCX gates, and k+2j+3l ≤ n. Since

the highest complexity of those three basic options is O(n!), the highest complexity

of any combination of those options will also be O(n!).

Therefore, since the total number of layers using NCT gates on n qubits is the

summation of the number of layers for each gate composition case, the asymptotic

time complexity for total layers is that of the highest complexity existent within the

summation, which is O(n!).
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