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1. Introduction 

The speed and complexity of Multi-Domain Operations (MDO) against a peer 
adversary are likely to exceed the cognitive abilities of a human command staff in 
conventional, largely manual command and control (C2) processes. At the same 
time, emerging findings in artificial intelligence (AI) techniques such as deep 
reinforcement learning (DRL)1 begin to suggest the potential to support C2 of 
MDO. Discoveries that occurred within the last two years showed that DRL-based 
algorithms could outperform human world champions in complex, relatively 
unstructured, partial-information, strategic games such as Dota 2 and StarCraft II.2,3 
Through these breakthroughs, reinforcement learning (RL) has demonstrated the 
potential for AI to develop and implement multilayered strategies followed by the 
control of multiple agents in complex games. Battle command of future MDO is 
characterized by a high level of complexity within unstructured task domains, 
which shares some similarities with complex game simulation environments. 
Extending the use of AI-based approaches to the military domain, therefore, may 
offer important possibilities for enhancing capabilities in battle command.  

The long-term intent of the project described in this report is not new. The past few 
decades have seen a number of ideas and corresponding research toward developing 
automated or semi-automated tools that could support decision-making in planning 
and executing military operations. What follows are a few past efforts in this space 
to which some authors of this report contributed to personally.  

The Defense Advanced Research Projects Agency’s (DARPA’s) Joint Force Air 
Component Commander (JFACC) program took place in the late 1990s4 and 
developed a number concepts and prototypes for agile management of a joint air 
battle. Most of the approaches considered at that time involved continuous real-
time optimization and re-optimization (as the situation continually changes) of 
routes and activities of various air assets. Also in the mid-to-late 1990s, the Army 
funded the Course of Action Development and Evaluation Tool (CADET) project,5 
which explored potential utility of classical hierarchical planning, adapted for 
adversarial environments, for transforming a high-level battle sketch into a detailed 
synchronization matrix—a key product of the doctrinal Military Decision-Making 
Process (MDMP). In the early 2000s, DARPA initiated the Real-time Adversarial 
Intelligence and Decision-making (RAID) project,6 which explored a number of 
technologies for anticipating enemy battle plans, as well as dynamically proposing 
friendly tactical actions. Game-solving algorithms emerged as the most successful 
among the technological approaches explored.  
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The role of multiple domains and their extremely complex interactions—beyond 
the traditional kinetic fights but also political, economic, and social effects—were 
explored in the late 2000s in DARPA’s Conflict Modeling, Planning and Outcome 
Experimentation (COMPOEX) program.7 This program investigated the use of 
interconnected simulation submodels, mostly system-dynamic models, in order to 
assist senior military and civilian leaders in planning and executing large-scale 
campaigns in complex operational environments. The importance of non-
traditional warfighting domains such as the cyber domain has been recognized and 
was studied in the mid-2010s by a NATO research group8 that looked into 
simulation approaches to assessing mission impacts of cyberattacks and highlighted 
the strong nonlinear effects of interactions among cyber, human, and traditional 
physical domains.  

All approaches taken in the research efforts mentioned previously—and many other 
similar ones—have major and somewhat common weaknesses. They tend to 
require a rigid, precise formulation of the problem domain. Once such a formulation 
is constructed, they tend to produce effective results. However, as soon as a new 
element needs to be incorporated into the formulation (e.g., a new type of a military 
asset or a new tactic), a difficult, expensive, manual, and long effort is required to 
“rewire” the problem formulation and fine-tune the solution mechanism. And the 
real world presents an endless stream of new elements that must be taken into 
account.  

In the rule-based systems of the 1980s, a system would become un-maintainable as 
more and more rules (with often unpredictable interactions between them) had to 
be added to represent the real-world intricacies of the domain. In optimization-
based approaches, similarly, an endless number of relations between significant 
variables and a variety of constraints had to be continually manually added (a 
maintenance nightmare) to represent the real-world intricacies of the domain. In 
game-based approaches, the rules governing the legal moves and effects of moves 
of each piece would gradually become hopelessly convoluted as more and more 
realities of the domain had to be manually contrived and added to the game 
formulation. 

In short, such approaches are unaffordable in their representation-building and 
maintenance. Ideally, we would like to see a system that “learns” (i.e., self-
programs) its problem formulation and solution algorithm directly from its 
experiences in a real or simulated world, without any (or with very little) manual 
programming. Machine learning, particularly RL, offers exactly that promise. This 
is a major motivation behind our project.  
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1.1 Army Relevance and Problem Domain 

The US Army currently does not have an AI-based, partly autonomous mission 
command tool that operates at high operational tempo (OPTEMPO) at the tactical 
or operational level.9,10 The modus operandi entails hand-crafted strategic and 
operational planning that is relatively inefficient and slow. Often, life and death 
decisions are made by few individuals, working with imperfect information under 
time constraints. Tools currently available to the planners (e.g., Advanced Field 
Artillery Tactical Data System [AFATDS],11 Blue Force Tracker,12 and so on) are 
generally limited to rudimentary decision aids for analyzing terrain of the battlefield 
and automation tools to record decisions. Commanders experience information 
overload while providing guidance at a rapid OPTEMPO to lower echelons.13,14 
Battle Damage Assessment (BDA) is slow and is not synchronized with unit 
movement/sensor-to-shooter linkage, nor does it allow for the exploitation of 
windows of superiority.15,16 Course of action (CoA) analysis largely focuses on the 
assessment of friendly plans with little emphasis on the complexity of an 
adversary’s objectives and capabilities.17 

MDO exponentially increases the complexity of C2 with the inclusion of space, 
cyber-electromagnetic activities (CEMA), and robotic assets,18 which are likely to 
drive the OPTEMPO even higher than in the past. Additionally, it will be intractable 
for human commanders to provide highly detailed instructions19 using currently 
available decision aids.20 There are credible reports21 that US peer and near-peer 
competitors, especially China, are vigorously pursuing AI in military applications 
that include command decision-making and military deduction (i.e., wargaming). 
Therefore, there is substantial risk associated with failure in the pursuit of an AI-
enabled C2 system that can only be overcome by continuous progress toward this 
goal and a continued effort toward the actualization of an AI system capable of 
performing C2 in MDO.  

1.2 Long-Term Goal 

By 2035, we envision the need to develop agile and adaptive AI-enabled C2 
systems for operational planning and decision support in complex, high 
OPTEMPO, hyperactive MDO. These systems will continuously integrate several 
domains of future warfare. The envisioned system will be capable of analyzing 
enemy activities; and continuously planning, preparing, executing, and assessing 
campaigns to enable the rapid response of Army capabilities by continually sensing, 
identifying, and quickly exploiting emerging windows of superiority. These 
windows of superiority will emerge during operations across the MDO framework 
at different echelons, but recognizing and exploiting them requires capabilities that 
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rely less on deliberate planning cycles and more on continuous, integrated planning. 
AI-enabled C2 systems have the potential for rapid synchronization of multiple 
actions across echelons, domains and, multiple simultaneously operating assets to 
exploit windows of superiority. Forces will predominantly consists of robotic assets 
(ground, aerial), and the AI-enabled C2 system will collect and process data from 
intelligent sensors and platforms, evaluate emerging trends in the operational 
environment, and recommend actions that reduce cognitive burden to allow human 
commanders to act quickly and effectively. The AI-enabled processes will also 
provide quantitative analysis, predictive analytics, and other salient data that is 
tailorable for efficient use by humans. This will ultimately allow the US Army to 
respond with the ability to reallocate, reorganize, and employ capabilities based on 
an understanding of enemy vulnerabilities and detailed friendly estimates across 
functions and domains during an armed conflict, and will produce specific, detailed 
commands to control autonomous assets. 

The DEVCOM Army Research Laboratory has active research programs in 
robotics, autonomy, AI, and machine learning. The authors of this report have led 
research and integration activities for large collaborative robotic research efforts 
among government, academic, and industry partners,22 conducted path-breaking 
research in scene understanding,23 human‒AI teaming,24,25 RL,26 multi-agent RL,27 
and multi-agent co-operative systems.28 Further, ARL also has extensive 
infrastructure for conducting research in the abovementioned areas. This include 
ground and aerial platforms for robotic research; the Robotics Research 
Collaboration Campus (R2C2) for scenario-driven research capable of hosting live, 
scalable, multi-domain experimentation; a containerized supercomputer designed 
to support emerging requirements for AI and machine learning applications; to 
name a few. We believe these expertise and resources can be leveraged to building 
a success program that incorporates AI for C2 applications.  

1.3 Objective of the DSI 

The ARL Director’s Strategic Initiative (DSI) program is a mechanism for cross-
disciplinary basic and applied research, with successful proposals reaching across 
boundaries of scientific and technical disciplines. The program identifies topic 
areas representing strategic research opportunities of very high potential payoff to 
the Army mission, to expand existing programs or establish new core competencies 
and build up in-house expertise in these areas.  

As part of the “AI for C2 of MDO” DSI project that was awarded in FY20, we 
explore the degree to which DRL-based algorithms can be used for estimating the 
state of the Red Force, assessing Red and Blue battle losses (attrition), predicting 
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Red’s strategy and upcoming actions as the battle unfolds, and formulating Blue 
plans based on all this information. This approach has the potential to generate 
novel plans for the Blue Forces that exploit potential windows of opportunities at a 
speed much faster than an expert planner. The recent success of DRL in 
unstructured, strategic games has provided significant suggestive evidence that AI 
approaches may be capable of discovering appropriate tactical concepts essentially 
“from scratch”, and selecting, applying, and executing strategies at faster than 
human speeds.  

In this DSI, we explore the use of DRL for developing detailed plans prior to 
combat operations and generating real-time plans and suggestions during execution 
of ongoing operations. We plan to advance the state of the art in two key  
areas: 1) conceptualizing, designing, and implementing DRL-based agents for 
generating plans that are as good as or better than plans generated by an expert 
planner and 2) incorporating humans into the command and learning loops and 
evaluating these AI-human (human-in/on-the-loop) solutions. While developing a 
pathway for this AI-enabled C2, several research questions will need to be 
answered. In this DSI, we try to answer three specific questions:  

• What are the training and data requirements for the DRL C2 agents to learn 
accurately and sufficiently fast?  

• How can we make the DRL agents generalizable so that they perform 
reasonably, as judged by human experts, especially when previously unseen 
details are introduced into a situation?  

• What is the effect of human intervention in an AI-enabled C2 system? 

The first year of this project focused on developing essential building blocks for 
the research including 1) developing simulation capabilities and advanced 
interfaces by adapting and using StarCraft II- and OpSim-based environments,  
2) developing initial end-to-end AI that executes the C2 function, 3) developing 
computational capabilities by integration with a high-performance computing 
(HPC) environment, and 4) initial characterization of the volume of data and 
training requirements. This report provides the details of each of these tasks. 

2. Experimental Capabilities 

As part of this project, we develop C2 simulation and experimentation capabilities 
that include simulated battlespaces with interfaces to DRL-based AI algorithms and 
capabilities for scalable RL on a DOD HPC system (Fig. 1). We use two simulation 
environments for generating C2 scenarios: the StarCraft II Learning Environment 
(SC2LE)29 and OpSim.30 Tiger Claw, a scenario developed by Maneuver Center of 
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Excellence (Fort Benning, Georgia) generates realistic combat environments within 
the simulation environments. Finally, we use RLlib,31 a library that provides 
scalable software primitives for RL to scale the learning on an HPC system.  

 
Fig. 1 Overview of the C2 infrastructure 

2.1 Tiger Claw 

Operation Tiger Claw is a predefined combat scenario consisting of Red and Blue 
Forces developed by military subject-matter experts (SMEs) at the Captain’s Career 
Course, Fort Benning, Georgia. This hypothetical scenario shows Task Force  
(1–12 CAV) attack in zone to seize OBJ Lion in order to pass the division’s decisive 
operation (DO) east. The goal of the Task Force is to cross the Thar Thar Wadi, 
destroy the Red Force, and seize OBJ Lion (Fig. 2). The Task Force consist of 
combat armor with M1A2 Abrams, Infantry Fighting Vehicles with Bradleys, field 
artillery howitzer and mortar, armored recon cavalry with Bradley, combat 
aviation, air defense, and unmanned aerial vehicles. The Red Force consist of 
mechanized infantry with BMP-2M, combat armor with T-90 tanks, field artillery 
howitzer, armored recon cavalry BMP-2M, combat aviation, anti-armor, and 
combat infantry. The Tiger Claw scenario also includes probable plans by the Blue 
and Red Forces developed by expert military SMEs. These plan are generated using 
doctrinal force employment in accordance with the Operation Order (OPORD) and 
corresponding threat tactics. The Tiger Claw scenario has been incorporated into 
both OpSim and StarCraft II, and is serving as a benchmarking baseline for 
comparison across different neural network architectures and reward-driving 
attributes.  

 

 

 

 

Simulation  
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Fig. 2 TF 1‒12 CAV area of operations (AO) in Tiger Claw 

2.2 StarCraft II Simulation Environment 

StarCraft II is a complex real-time strategy game in which players balance high-
level economic decisions with low-level individual control of potentially hundreds 
of units in order to overpower and defeat an opponent force. StarCraft II has a 
number of difficult challenges for AI that make it a suitable simulation environment 
for C2 in MDO. For example, the game has complex state and action spaces, and 
can last tens of thousands of time steps with thousands of actions selected in real 
time and captures uncertainty due to the partial observability or “fog of war” from 
the game. Further, the game has heterogeneous assets available for MDO 
emulation, an inherent C2 architecture, embedded military (kinetic) objectives, and 
a shallow learning curve for implementation/modification compared to more robust 
simulations (e.g., One Semi-Automated Force [OneSAF]). DeepMind’s SC2LE 
framework exposes Blizzard Entertainment's StarCraft II machine learning 
application programming interface as an RL environment. This tool provides access 
to StarCraft II and associated map editor and an interface for RL agents to interact 
with StarCraft II, getting observations and sending actions.  

As part of the DSI, a SC2LE map was developed based on the Tiger Claw OPORD 
and supporting documentation (Fig. 3). The game was militarized by re-skinning 
the icons to incorporate 2525B military symbologies and unit parameters (weapons, 
range, scaling) associated with the Tiger Claw scenario. The internal scoring system 
was repurposed to calculate a reward function for RL, which includes convergence 
of mission objective (cross the wadi), minimization of Blue attrition, and 
maximization of Red attrition. 

http://blizzard.com/
https://github.com/Blizzard/s2client-proto
https://github.com/Blizzard/s2client-proto
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Fig. 3 Tiger Claw map in StarCraft II 

2.2.1 StarCraft II Editor  

The Tiger Claw scenario is re-created in StarCraft II using its Editor. This Editor is 
included with the free download of StarCraft II from Blizzard Entertainment and 
has many capabilities for creating custom content. A good resource for mastering 
the capabilities are the online community forums dedicated to the Editor. In the 
following sections, the development of the map, units, and rewards using the Editor 
are discussed in detail. 

2.2.1.1 StarCraft II Map Development  

We created a new Melee Map for the Tiger Claw scenario using the StarCraft II 
Editor. The map size was the largest available in the Editor (256 by 256), using the 
StarCraft II coordinate system. A wasteland tile set was used as the default surface 
of the map since it visually resembled a desert region in the AO in Tiger Claw  
(Fig. 4). 

 

Fig. 4 Initial Tiger Claw map in the StarCraft II Editor 
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After the initial setup, we used the Terrain tools to modify the map to loosely 
approximate the AO. The key terrain feature was the impassable wadi with limited 
crossing points. 

Distance scaling was an important factor for the scenario creation. In the initial 
map, we used the known distance between landmarks to translate the StarCraft II 
distance, using its internal coordinate system, into kilometers. This translation is 
important for adjusting weapons range during unit modification (Fig. 5). 

 

Fig. 5 Modified StarCraft II Editor map 

Initial experiments used StarCraft II to visualize the simulation replays. The game-
like feel of these replays became a noted distraction. To remedy this issue, other 
methods of visualization were desired, specifically Aurora, a mixed-reality 
environment developed by ARL. The new visualization uses geographic maps of 
the AO. As a result, it was necessary to modify the StarCraft II map to align to the 
latitude and longitude of the AO. In the modified map, distance scaling was 
determined by translating the StarCraft II coordinates to latitude and longitude. 

2.2.1.2 StarCraft II Unit Modification  

To simulate the Tiger Claw scenario, we selected StarCraft II units that 
approximated the capabilities of military units. The StarCraft II units were 
duplicated and their attributes modified in the Editor to support the scenario.  

First, we modified the appearance of the units and replaced it with an appropriate 
MIL-STD-2525 symbol (Table 1). In StarCraft II, each unit is associated with 
multiple actors, which control the appearance of the unit in the game. We were able 
to unlink the actors from their default renderings, effectively making the units 
invisible. Next, we imported images of the required military symbols into the 
Editor. Finally, we used the “rr Sprite Engine” (LGPL 2.1 license) library posted at 
SCMapster.com to link the units to their military symbol. 
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Table 1 Mapping of Tiger Claw units to StarCraft II units 

Tiger Claw unit StarCraft II unit 
Armor Siege tank (tank mode) 
Mechanized infantry Hellion 
Mortar Marauder 
Aviation Banshee 
Artillery Siege tank (siege mode) 
Anti-Armor Reaper 
Infantry Marine 

 

Other attributes modified for the scenario included weapon range, weapon damage, 
unit speed, and unit life (how much damage it can sustain). Weapon ranges were 
discerned from open-source materials and scaled to the map’s dimensions. Unit 
speed was established in the Tiger Claw OPORD and fixed at that value. The 
attributes for damage and life were estimated, with the guiding principle of 
maintaining a balanced conflict. Each StarCraft II unit usually had only one 
weapon, making it challenging to simulate the variety of armaments available to a 
company-sized unit. Additional effort to increase the accuracy of unit modifications 
will require wargaming SMEs. 

After modifications, the units were placed on the map to approximate the Tiger 
Claw scenario (Fig. 6). During experimentations, the Blue Force would be 
controlled by an intelligent learning agent developed using PySC2 (DeepMind's 
Python component of the SC2LE). Additionally, the Blue Force units were 
modified to have no innate aggressiveness. In other words, they would not engage 
offensively or defensively unless specifically commanded by the agent. To control 
the Red Force, we used two different strategies. The first strategy was to include a 
scripted CoA for Red Force movements, which is executed in every simulation. 
The units default aggressiveness attributes controlled how it engaged Blue. The 
second strategy was to let a StarCraft II bot AI control the Red Force to execute an 
all-out attack, or suicide as it is termed in the Editor. The built-in StarCraft II bot 
has several difficulty levels (1–10), which dictate the proficiency of the bot, where 
a level 1 is a fairly rudimentary bot that can be easily defeated and level 10 is a very 
sophisticated bot that uses information not available to players (i.e., a cheating bot). 
Finally, environmental factors, such as fog of war, were toggled across experiments 
to investigate their impact. 

http://deepmind.com/
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Fig. 6 StarCraft II using MILSTD2525 symbols 

2.2.1.3 StarCraft II Rewards Implementation  

The reward function is an important component of RL and it controls how the agent 
reacts to environmental changes by giving them a positive or negative reward for 
each situation. We incorporated the reward function for the Tiger Claw scenario in 
SC2LE and our implementation overrode the internal SC2LE scoring system. The 
original scoring system rewarded players for the resource value of their units and 
structures. Our new scoring system focused only on the military aspect of the game 
of gaining and occupying new territory as well as destroying the enemy.  

Our reward function awarded +10 points for the Blue Force crossing the wadi 
(river) and –10 points for retreating back. In addition, we awarded +10 points for 
destroying a Red Force unit and –10 points if a Blue Force unit was destroyed. 

To implement the reward function, it was necessary to first use the SC2LE Editor 
to define the various regions and objectives of the map. Regions are areas, defined 
by the user, which are utilized by triggers (Fig. 7). 
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Fig. 7 Regions and objectives in StarCraft II 

Triggers are templates for creating a set of instructions that allows the user to 
program effects into the simulation related to specific events (Fig. 8). In general, a 
trigger is composed of the following: 

• Events: Initiates the trigger (i.e., a unit enters a region). 

• Variables: Stores information. (i.e., BlueForceScore, the score for the Blue 
Force). 

• Conditions: A restriction on the action that needs to be true for the action 
to take place. (i.e., unit is member of Blue Force). 

• Actions: The result or outcome of the event (i.e., unit gains points). 

 
Fig. 8 Example trigger for the Tiger Claw scenario in StarCraft II 
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As part of future work, we plan to incorporate additional rewards based on the 
specific team goals defined by the commander’s intent in the Tiger Claw Warning 
Order (WARNORD). The reward function will attempt to train the agent to 
maintain units as teams, engage the intended objective together as teams, and create 
optimal behavior that is reasonable to a military SME.  

2.3 OpSim Simulation Environment 

OpSim is a decision support tool developed by Cole Engineering Services Inc. 
(CESI) that provides planning support, mission execution monitoring, mission 
rehearsal, embedded training, and mission execution monitoring and re-planning. 
OpSim integrates with SitaWare Command, Control, Communications, Computers 
and Intelligence (C4I), a critical component of the Command Post Computing 
Environment (CPCE) fielded by the Program Executive Office Command Control 
Communications-Tactical (PEOC3T), allowing all levels of command to have 
shared situational awareness and coordinate operational actions, thus making it an 
embedded simulation that connects directly to operational mission command. It is 
fundamentally constructed as an extensible service-oriented architecture (SOA)‒based 
simulation and is capable of running faster than current state-of-the-art simulation 
environments such as OneSAF and the MAGTF Tactical Warfare Simulator 
(MTWS). While traditional constructive simulations run at most 1–20 times wall 
clock time, OpSim can run 30 replications of Tiger Claw—which would take  
240 h if run serially in real time. Output of a simulation plan in OpSim include an 
overall ranking of Blue Force plans based on criteria such as ammunition 
expenditure, casualties, equipment loss, fuel usage, and so on. The OpSim tool, 
however, was not designed for AI applications and had to be adapted by 
incorporating interfaces to run DRL-based algorithms. An OpenAI Gym interface 
was developed to expose simulation state and offer simulation control to external 
agents with the ability to supply altered actions for select entities within the 
simulation, as well as the amount of time to simulate before responding back to the 
interface. 

2.4 Deep Reinforcement Learning with OpenAI Gym and the 
RLlib Interface 

RL can be formalized as a Markov decision process consisting of a set of actions, 
a transition probability function, a reward signal, and the state of an environment.32 
In RL, the goal is to find an optimal action that maximizes the expected, cumulative 
sum of discounted rewards. Combining deep neural networks with RL, DRL 
integrates a deep neural network architecture with a RL framework for 
approximating optimal actions for states within an environment. Design of DRL 
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entails the following components: state space (environment state representation), 
action space (set of actions), reward signal(s), and a deep neural network.  

For access to the environment states, the RL framework uses an OpenAI Gym-like 
interface33 with the OpSim and StarCraft II simulators, providing an abstraction of 
the environment for RL (Fig. 9). OpenAI Gym is an open-source software package 
that provides a collection of environments with a common interface for RL 
development and testing. OpenAI Gym focuses on the abstraction of an 
environment for RL, thereby keeping an agent development flexible. The specific 
action, state space, and the reward signal used in the two simulation environments 
will be discussed in detail in the subsequent sections.  

 
 

Fig. 9 RL framework using OpenAI Gym with the OpSim and StarCraft II simulators 

DRL requires many episodes of an agent interacting with an environment for 
collecting experiences, and a standard approach is to scale through parallel data 
collection. In this project, HPC is being leveraged to scale DRL algorithms to 
support a population of agents learning from many thousands of parallel instances 
to solve the action space complexity of C2. ARL’s FOB system was initially 
utilized for distributed training, then ported to the DOD Supercomputing Resource 
Center’s (DSRC’s) latest SCOUT system. The FOB system is an experimental 
heterogeneous cluster of 64 nodes, each with an Intel 8-core Xeon CPU and 64 GB 
of memory. SCOUT is an unclassified HPC-in-a-container system located at the 
ARL DSRC with 22 training nodes and 128 inference nodes. Each of the compute 
nodes in SCOUT is equipped with an IBM Power9 40-core processor and 256 GB 
of memory for inference nodes and 700 GB of memory for training nodes. 

In conjunction, RLlib, an open-source library for a scalable RL framework 
developed at the University of California, Berkeley RISELab, was used for 
executing distributed learning. RLlib provides a framework agnostic mechanism to 
efficiently scale training of the DRL neural network architecture on both OpSim 
and StarCraft II. The framework is deployed on the HPC system to demonstrate 
scaling of RLlib algorithms across multiple nodes of the system and provides 
flexibility of customizable neural network models and simulation environment. 

  

Gym Interface 

OPSIM 

GYM Artificial 
Commander  
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3. Results and Discussions 

Using the infrastructure described in Section 2, we developed an end-to-end DRL 
framework for both StarCraft II and OpSim environments and initial 
experimentations were conducted. In this section, we describe the network 
architecture, implementation, and some initial experimentation results.  

3.1 Deep Reinforcement Learning Using StarCraft  

We trained a multi-input and multi-output deep reinforcement neural network using 
the tactical version of StarCraft II that is described in Section 2.2. We used the 
Asynchronous Advantage Actor Critic (A3C) algorithm,29 a state-input processing 
approach consisting of multilayer convolution nets with a long short-term memory 
(LSTM) recurrent layer adding memory to the network.  

3.1.1 Asynchronous Advantage Actor Critic Architecture  

In StarCraft II, the state space consists of 7 mini-map feature layers of size 64x64 
and 13 screen feature layer maps of size 64x64 for a total of 20 64x64 2-D images 
(left panel of Fig. 9). Additionally, it also consists of 13 non-spatial features 
containing information such as player resources and build queues. These game 
features were processed using an input processing pipeline, as shown in Fig. 10. 
The actions in StarCraft II are compound actions in the form of functions that 
require arguments and specifications about where that action is intended to take 
place on the screen. For example, an action such as “attack” is represented as a 
function that would require the x-y attack locations on the screen. The action space 
consists of the action identifier (i.e., which action to run) and two spatial actions (x 
and y) that are represented as two vectors of length 64 real-valued entries between 
0 and 1. Table 2 delineates the observation space, action space, and rewards for the 
StarCraft II simulations. 

Figure 10 provides an overview of the state input processing pipeline for the 
mutual-embedding model and the A3C agent for the StarCraft II task. StarCraft II 
provides three primary streams of state information: mini-map layers, screen layers, 
and non-spatial features (such as resources, available actions, and build queues). 
The mini-map and screen features were processed by identical two-layer 
convolutional neural networks (CNNs) (top two rows) in order to extract visual 
feature representations of the global and local states of the map, respectively. The 
non-spatial features were processed through a fully connected layer with a 
nonlinear activation. These three outputs were then concatenated to form the full 
state-space representation for the agent, as well as for the state-based portion of the 
mutual-embedding model. 



 

16 

 

Fig. 10 State input processing for StarCraft II 

Table 2 Observation space, action space, and rewards for the StarCraft II simulations 

Observation space Screen images, mini-map images, non-image features 
Action space No-op, select point, attack position,  move, patrol, select Army 
Rewards OPFOR platoon destroyed (10), BLUEFOR platoon destroyed  

(–10), BLUEFOR platoon crosses the Wadi to the east (+10) 
Note: OPFOR = Opposing Force, BLUEFOR = Blue Force.  

The A3C is a distributed version of the advantage actor-critic algorithm in which 
multiple, parallel copies of the actor are created to execute actions and collect 
experience simultaneously. Having multiple actors collect experience increases the 
exploration efficiency and thus improves learning. The architecture of the A3C 
agent we use is similar to the Atari-net agent from Mnih et al.,34 which is an A3C 
agent adapted from Atari to operate on the SC2LE state and actions space. We make 
one slight modification to this agent and add an LSTM layer as it was shown in 
Mnih et al.,34 that adding memory to the model to improve performance. The 
architecture of our A3C agent is shown in Fig 11. 
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Fig. 11 Architecture of the A3C agent. Shown here is a schematic diagram of the full RL 
agent and its connection to StarCraft II. As typical of an on-policy agent, the A3C agent here 
(in green) takes in states and reward information from the task environment and uses the 
information to compute actions for the next time step, as well as compute gradients to 
increment reward maximization. 

3.1.2 Experiments and Results  

We trained the A3C models with 20 parallel actor-learners using 8,000 simulated 
battles against StarCraft II bot operating on hand-crafted rules developed by 
DeepMind. A positive reinforcement of +10 was provided if the BLUEFOR crosses 
the wadi or OPFOR platoons are destroyed and a negative reinforcement  
–10 is provided if the BLUEFOR is destroyed.  

We tested the trained A3C model on 100 rollouts of the agent on the StarCraft II 
Tiger Claw scenario. The models were compared against a random baseline with 
randomized actions as well as a human player playing 10 simulated battles against 
the StarCraft II bot. Summary plots of the metrics collected including the total 
episode reward and number of Blue Force casualties are provided in Fig. 12. We 
see that the AI commander has not only achieved comparable performance 
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compared to a human player, but has also performed slightly better at the task  while 
also reducing Blue Force casualties. 

 
Fig. 12 Total reward and BLUEFOR casualties of the trained AI commander (A3C agent) 
compared to human and random agent baselines. The AI commander is able to achieve a 
reward that is comparable (and slightly better) than the human baseline while taking a 
reduced number of Blue Force casualties. 

3.2 Deep Reinforcement Learning with OpSim 

Two types of commanders were developed for the OpSim simulation environment. 
The first is based on an expert designed rule engine developed by military SMEs at 
Ft Benning, Georgia, using doctrinal rules. The second is a DRL-trained neural 
network with a multi-input and multi-output LSTM neural network trained with the 
A2C algorithm. A2C is similar to A3C but without the asynchronous part. OpSim’s 
RL interface supports multi-agent training where each force can be either rule-
based or an AI commander. 

The policy network was first trained on 15 nodes on FOB with 75 parallel workers 
collecting 482k simulated battles taking 36 h. This is a significant performance 
speedup from a serialized version that would take 78 days to simulate 482k battles. 
Furthermore, local tangent plane position and no goal reward updates were applied 
and trained on the SCOUT system. With the updated observations and rewards, 39 
parallel workers collected 175k battle experiences, which took 37 h. 

The observation space consists of 17 features vector where the observation space is 
partially observable based on each entity’s equipment sensors. Unlike S2CLE, 
OpSim currently does not use image inputs or spatial features from the screen 
images. The action space primarily consists of simple movements and engagement 
attacks (Table 3). 
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Table 3 Observation space, action space, and rewards for OpSim simulations 

Observation space  Damage state, x location, y location, equipment loss, weapon range, 
sensor range, fuel consumed, ammunition consumed, ammunition 
total, equipment category, max speed, perceived opposition entities, 
goal distance, goal direction, fire support, taking fire, engaging targets 

Action space No op, move forward, move back, move right, move left,  speed up,  
slow down, orient to goal, halt, fire weapon, call for fire, react to 
contact,  

Rewards Friendly damaged (–0.5), friendly destroyed (–1.0), enemy damaged 
(0.5), enemy destroyed (1.0) , –0.01×km from goal destination 

3.2.1 Experiments and Results 

Trained models are evaluated with 100 rollout simulation results using the frozen 
policy at a checkpoint with the highest mean reward for BLUFOR. On SCOUT, 
checkpoint 4510 reached a rolling average of 200 for the BLUFOR policy mean 
reward and –322 for the OPFOR policy mean reward. Analysis of 100 rollout show 
that the DRL trained BLUFOR agent minimizes loss from about 4 to 0.5 and 
increases OPFOR’s losses (Fig. 13). This outcome is reached by employing a 
strategy to engage using only combat armor companies and fighting infantry 
company. It has learned a strategy to utilize BLUFOR’s most lethal units with 
Abrams and Bradleys while protecting vulnerable assets from engaging with 
OPFOR (Fig. 14).  

 
Fig. 13 Entity loss comparison between SME and AI commanders 
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Fig. 14 Snapshot of beginning and end of one rollout 

4. Conclusion 

As part of the DSI, two novel testbeds for DRL of C2 were developed: StarCraft 
II-based and OpSim-based. End-to-end DRL methods were developed using these 
state-of-the-art testbeds. The infrastructure is ported to the DOD’s HPC systems to 
scale the training for parallel data collection. 

Initial experimentation results showed preliminary observations that DRL achieved 
effective and reasonable C2 without pre-coded knowledge, and a DRL-based 
“artificial commander” could execute an integrated planning-execution process in 
a simulated brigade-scale battle. Some of the results, especially in the StarCraft II 
environment, have shown that the strategies taken by the AI are comparable to that 
of a competent human player. It has also showed that computational resources are 
not a showstopper for AI in C2; we see adequate speed of learning using the HPC 
system with convergence in 37 h. Overall, the first year of the DSI has provided 
adequate evidence that learning-based AI has potential to be used as a key 
technology for future C2 of military operations. 
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A3C Asynchronous Advantage Actor Critic 

AFATDS Advanced Field Artillery Data System 

AI artificial intelligence 

AO area of operations 

ARL Army Research Laboratory 

BDA Battle Damage Assessment 

BLUEFOR Blue Force 

C2 command and control 

C4I Command, Control, Communications, Computers and 
Intelligence  

CADET Course of Action Development and Evaluation Tool 

CEMA cyber-electromagnetic activities 

CESI Cole Engineering Services Inc. 

CNN convolutional neural network 

CoA course of action 

COMPOEX Conflict Modeling, Planning and Outcome Experimentation  

CPCE Command Post Computing Environment 

CPU central processing unit 

DARPA Defense Advanced Research Projects Agency 

DRL deep reinforcement learning 

DO decisive operation 

DSI Director’s Strategic Initiative 

DSRC DOD Supercomputing Resource Center  

HPC high-performance computing 

JFACC Joint Force Air Component Commander 

LSTM  long short-term memory 
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MDMP Military Decision-Making Process  

MDO Multi-Domain Operations 

MTWS MAGTF Tactical Warfare Simulator 

NATO North Atlantic Treaty Organization 

OneSAF One Semi-Automated Force 

OPFOR Opposing Force 

OPORD Operation Order 

OPTEMPO operational tempo 

PEOC3T Program Executive Office Command Control Communications-
Tactical  

R2C2 Robotics Research Collaboration Campus  

RAID Real-time Adversarial Intelligence and Decision-making 

RL reinforcement learning 

SC2LE StarCraft II Learning Environment  

SME  subject-matter expert 

SOA service-oriented architecture 

WARNORD Warning Order 
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