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1. Introduction 

The Electromagnetic (EM) Modeling Team at the US Army Combat Capabilities 
Development Command (DEVCOM) Army Research Laboratory (ARL) has a long 
track record of developing advanced simulations of radar scattering for a wide 
variety of complex sensing scenarios for the purposes of radar system analysis, 
performance prediction and optimization, and understanding the underlying EM 
phenomenology. Throughout this work, the team has been using several EM 
modeling software packages, such as AFDTD1,2 (developed entirely at the 
DEVCOM Army Research Laboratory), Xpatch3 (developed under Air Force 
funding), and Feko4 (commercial software). All these codes can handle both far- 
and near-field radar-scattering scenarios, depending on the sensing configuration 
under investigation. 

Traditionally, when analyzing a radar system, the designer assumes that the target 
and radar antenna are in the far-field region with respect to one another. This 
assumption simplifies many of the equations involved in analysis and allows one 
to precisely define quantities such as antenna directivity and radar cross section 
(RCS). As a result, most of the theory presented in radar textbooks relies on far-
field configurations. Following this tradition, the majority of our team’s simulation 
efforts in the past have used the EM software packages in the far-field mode, which 
is easier to handle and more computationally efficient than the near-field mode, 
since it does not have to explicitly include the radar antennas in the model. 

However, many modern radar applications do not conform to the far-field model. 
The three major departures from this model consist of (1) spherical instead of planar 
radar wavefronts in the target area; (2) nonuniform antenna patterns in the target 
area; and (3) polarimetric coupling via target scattering for non-boresight antenna 
look angles. Typical examples of these applications are short-range radar 
configurations, such as sensing-through-the-wall (STTW) and ground-penetrating 
radar (GPR), which operate at low frequencies, with wide bandwidth waveforms 
and wide beam antennas. More generally, the analysis of any strip-map synthetic 
aperture radar5 (SAR) system operating with wide-beam antennas must take into 
account all three near-field effects previously mentioned. Another application 
requiring the near-field treatment is imaging with millimeter-wave radar,6 where 
the wavefront curvature has a major impact on the image formation procedure at 
any practical operational range. 

To obtain realistic simulations of these radar scenarios, our team has created near-
field models of the scenes under investigation, which include both the radar 
antennas and the target area. Although these models have generally provided 
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important phenomenological information to the radar designers, two shortcomings 
have limited their usefulness in the past. The first issue is the limited number of 
built-in antenna types that can be accommodated by some of the EM modeling 
software packages. For instance, AFDTD can only include dipole or rectangular 
aperture antennas in its near-field simulations. The integral equation solver in Feko 
can incorporate full-scale antenna models; however, combining those with arbitrary 
target models in one single radar scenario simulation is very difficult to achieve for 
any useful practical application.  

Another problem is the lack of calibration of the radar-received signals in terms of 
power. This stems from the fact that the antenna excitation is not typically set to 
produce a radiated power of 1 W in the EM simulation software. One should note 
that calibrated power calculations represent a very important result of radar 
modeling from the system designer’s point of view. In far-field modeling scenarios, 
this type of calculation is readily achievable in post-processing via the radar 
equation.7 However, their near-field counterparts are more difficult to handle and 
require some modifications of the classic radar equation. 

If one could create a complete calibrated model of the radar-sensing scenario 
including the actual transmitter (Tx) and receiver (Rx) antennas, as well as the 
target area, that model would provide all the relevant information about the 
scenario. However, as already discussed, such models are difficult to achieve with 
currently available EM solvers. Therefore, indirect methods based on existing 
solvers need to be developed to produce calibrated data in near-field radar scenarios 
involving arbitrary antenna types; this constitutes the main goal of the current 
investigation. The emphasis is on the AFDTD software, which is our team’s most 
frequently used radar modeling tool. 

This report is organized as follows. In Section 2, we discuss the concept of near-
field RCS and derive expressions for some simple shape targets. Section 3 
reformulates the traditional radar equation for general sensing scenarios. In Section 
4, we develop methods for RCS and radar power calculations using AFDTD near-
field models. These methods are illustrated with numerical examples in Section 5. 
We draw conclusions in Section 6. 

2. The Near-Field Radar Cross Section 

In this section, we discuss the near-field RCS definition and its analytic formulas 
for several simple target shapes. This material draws heavily from a paper by 
Pouliguen et al.,8 which contains full derivations of the RCS analytic expressions 
(those derivations are not repeated in this report). However, the subsequent 
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interpretation of those results in the context of the radar equation is an original 
contribution of this study. 

The far-field definition of RCS is9 

 
2 2

2 2 2
2 2lim 4 lim 4 lim 4s ss

FF R R R
i i i

E HWR R R
W E H

σ π π π
→∞ →∞ →∞

= = = . (1) 

In this equation, ,  and W E H are the power density, electric field magnitude, and 

magnetic field magnitude, respectively, with the subscript i standing for “incident 
on the target”, and the subscript s for “scattered at the receiver”. Note the R → ∞  
limit (R stands for range), which is characteristic to far-field scenarios. For near-
field geometries, we remove this limit and write the general RCS equation as8 

 
2 2

2 2 2
2 24 4 4s ss

i i i

E HWR R R
W E H

σ π π π= = = . (2) 

One of the first issues with the general definition of the near-field RCS is how we 
define the incident field on the target. In the far-field case, where we work with 
plane waves, this quantity is well defined; however, in the near-field case, the 
incident electric field vector Ei can vary across the target extent in phase, 
magnitude, and direction. (These variations correspond roughly to the three 
departures from the far-field model mentioned in the Introduction, respectively.) 
Since only the magnitude matters in the RCS calculation, we can pick a reference 
point on the target (similar to the “phase center” of an antenna) and consider that 
the incident field has the same magnitude at any point on the target as at the 
reference point. In effect, we assume that the wave incident on the target is locally 
a uniform spherical wave emanating from the radar antenna. This situation amounts 
to neglecting the antenna pattern magnitude variations across the target and is 
typically a reasonable assumption for most radar scenarios, except for cases where 
we deal with very large targets or very short radar-target ranges. 

In their paper, Poulinguen et al.8 employ the physical optics (PO) method to 
perform analytic calculations of the near-field RCS of a circular and a rectangular 
plate at normal incidence. In the following paragraphs, we limit the discussion to 
monostatic radar. Additionally, all the targets considered in this section are made 
of perfect electric conductor (PEC). One should note that the PO method is 
approximate and typically accurate only in the high-frequency regime. Moreover, 
the near-field analytic calculations can only be performed for very particular shapes 
and incidence angles, and would be almost impossible to carry out for more 
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complex situations, such as oblique incidence. Therefore, these results have very 
limited practical applications. However, it is instructive to discuss these results, 
because they reveal some important aspects of the near-field RCS, which differ 
from the traditional far-field RCS concept. 

The RCS formula obtained for the circular plate of radius a, which is the simplest 
case for near-field geometry, can be written as 

 
2 2

2 2 24 sin 2 1 cos
2
ka kaR R

R R
σ π π

    
= = −    

    
, (3) 

where 2 fk
c
π

=  is the wave number and f is the frequency. For reference, the far-

field RCS formula for the same plate at normal incidence is 

 
2

2 4
2

4
FF

A k aπσ π
λ

= = . (4) 

where A is the target area and 2
k
πλ =  is the wavelength. This result can be easily 

obtained from Eq. 3 in the limit R → ∞ . 

There are two striking aspects where the near-field RCS differs from the far-field 
RCS: (1) the near-field RCS depends on the range R, whereas the far-field RCS 
depends only on target size and frequency; (2) the near-field RCS exhibits an 
oscillatory nature as a function of range (R), target size (a), and frequency (k), 
whereas the far-field RCS for the same target and incidence angle increases 
monotonically with size and frequency.  

For a fixed size plate at a fixed range, we obtain the following maximum value of 
the near-field RCS as we vary the frequency: 2

max 4 Rσ π= . The same limit applies 
if we keep the frequency and range fixed and vary the plate size. At first, the fact 
that the RCS should depend on range seems unusual and raises the question whether 
this increase with range is in some way unbounded. However, this should not be a 
reason for concern; in fact, one can look at the increase of RCS with range as an 
effect of the way the RCS is defined. To interpret this result, we notice the 
following:  

1) One can show that as long as the near-field condition is satisfied 

(
28aR

λ
< ), the near-field RCS is always smaller than the far-field RCS.  
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2) As the range keeps increasing, we transition into the far-field regime, and 
then the near-field and far-field RCS formulas converge to the same value.  

3) The significance of the RCS can only be properly understood in the context 
of the radar equation, as explained in a subsequent paragraph. 

Two simple numerical examples demonstrate these aspects. At Ka-band (35 GHz) 
and R = 1000 m, σmax is 71 dBsm, whereas for R = 200 m, σmax is 57 dBsm 
(remember that these quantities are independent of the plate size). We can compare 
these values with the far-field RCS of a 2.5-m-radius circular plate, which is 78 
dBsm, or greater than both near-field σmax values (and in turn does not depend on 
range).  

The graph in Fig. 1 compares the near-field and far-field RCS of a circular plate of 
radius 0.5 m at a 5-m range (fixed) as a function of frequency. For this geometry, 
we are in the far field only at the lowest end of the frequency range, where the two 
RCS curves coincide. As the frequency increases, the two curves diverge, and the 
near-field RCS displays an oscillatory variation, with a maximum given by 24 Rπ , 
or approximately 25 dBsm. 

 

Fig. 1 Comparison of the near-field and far-field RCS of circular plate of radius 0.5 m at a 
5-m range, as a function of frequency 

The RCS evaluation is most relevant when used in conjunction with the radar 
equation. According to this equation, the radar-received power is proportional to 

4R
σ .7 When  σ ~ R2 (as for a plate in the near field), the range dependence in the 

radar-received power goes as 2

1
R

instead of 4

1
R

; apparently, this says we are 

receiving larger power from the target in the near-field than in the far-field case. 
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However, that is not the case when all factors in the equation are taken into 
account—the received power in the near field is always smaller than that received 
in the far field, all other quantities being kept equal. 

The next example considered by Pouliguen et al.8 is a flat square plate with side a 
at normal incidence. The PO derivation for that case is much more complicated 
than for the circular plate and the resulting near-field RCS does not display the 
same well-defined oscillations. In fact, this RCS tends to a limit value as we 
increase the frequency, which is 2lim

f
Rσ π

→∞
= . The complete RCS formula for the 

square plate at normal incidence is 

 
( )2 21 1 14 2 sin 2 1 2 sin

4 4 2
R X X X X X

X X
πσ π

π π
    = + + − − + −         , (5) 

where 2 2

RX
a
λ

π
= . A careful examination of this formula reveals that it contains 

terms in the following powers of R: 2 3 3.5 4, ,  and .R R R R  The key thing to 
understand when analyzing the formula is that as long as we are in the near-field 
regime, the lowest-power term in R (which in this case is R2) is the dominant one. 
Consequently, upon inserting the RCS formula into the radar equation, the 
rectangular plate produces a radar-received power that displays the same-order 

variation with range as the circular plate, proportional to 2

1
R

. 

In addition to the two targets considered so far, we also investigated the interesting 
case of a target with one large dimension, consistent with near-field geometry, and 
one small dimension, consistent with far-field geometry (note this type of target 
was not discussed by Pouliguen et al.). An example of such a target is a long straight 
wire. In this calculation, we assume a rectangular plate with the long side a and the 
short side b, at normal incidence. The PO method yields 

 
2 2 1.5 2 2

2

2 4 2 sin cos
4 4

b R R ka kaR
ka a R R

λσ π
λ

     
= + + +           

. (6) 

Once again, as long as we are in the near field with respect to the long side, the 
lowest-power term in R is the dominant one. In this case, this term is simply 
proportional to R, not R2 (as in the previous case of a plate of “balanced 
dimensions”). Consequently, when inserted into the radar equation, this RCS 
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produces a range dependence proportional to 3

1
R

. A high-frequency limit also 

applies to this near-field RCS, which is 
22lim

f

b Rπσ
λ→∞

= . 

The phenomenological explanation of the fact that the far-field RCS of a flat plate 
at normal incidence may exceed its near-field counterpart by a large margin has to 
do with the coherence of the scattered field across the target extent. Thus, a plane 
wave (characterizing the far-field case) at normal incidence to the plate has wave- 
fronts conforming perfectly to the scattering surface, which creates coherent returns 
from all points on the surface. On the other hand, a spherical wave (characterizing 
the near-field case) reaches different points on the flat surface with different phases, 
which reduces the coherence of returns from these points. 

Nevertheless, one should not attempt to generalize these results to targets of 
arbitrary shapes or oblique incidence scenarios. Although differences between the 
far- and near-field RCS exist in most cases, there is no obvious reason to expect the 
far-field to exceed the near-field value, and certainly not by a large margin. This 
effect has to do with the loss of coherence in target scattering for those general 
scenarios, in both far- and near-field geometries. The simulations in Section 5 of 
this report support this statement. 

The main usefulness of the results obtained in this section consists of establishing 
an upper bound for the target RCS in a near-field radar-sensing scenario, when the 
target dimensions are not precisely known. As already shown, this upper bound 
does not depend on the target dimensions, but only on range. This maximum RCS 
value is an important parameter in the front-end design of the radar receiver, which 
must avoid saturation of the amplifier for proper operation.7 

3. A General Formulation of the Radar Equation 

A major goal of radar system modeling is the evaluation of the radar transmitter 
power required to achieve a given signal-to-noise ratio. The traditional tool for this 
analysis is the radar equation. However, the classic radar equation (written in terms 
of transmitted and received powers) has some major shortcomings, the most 
obvious one being that it does not account for the radar signal’s phase. 
Consequently, we cannot directly use the conventional form of the radar equation 
to analyze systems that perform coherent processing, such as SAR, range-Doppler, 
space-time adaptive processing, etc.10 The typical way to account for coherent 
processing when evaluating the power is via certain factors representing the 
coherent processing gain. This very coarse procedure may work reasonably well 
for point–target-type analysis but is completely inadequate for more complex 
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modern radar-sensing scenarios, such as those involving ultra-wideband (UWB), 
wide-angle SAR imaging of complex-shaped targets. These are exactly the kind of 
scenarios we have been typically investigating in our advanced computer models 
at ARL; therefore, our processing tools must go beyond the radar equation to fully 
exploit the information contained in those models. 

In addition to the radar signal’s phase, the model should also be able to account for 
the polarimetric coupling between the antenna patterns and the target scattering. 
Although this aspect is always emphasized in texts related to polarimetric radar,11 
our argument is that the polarization coupling effect is important in single-channel 
radar systems as well (i.e., systems equipped with only one Tx and one Rx antenna) 
and must always be taken into account in modeling strip-map SAR systems 
operating with wide-beam antennas, both in near- and far-field configurations. 
These issues have been discussed in some of our previous work. Thus, Dogaru12 
made the analysis of a near-field wide-beam GPR UWB SAR system in the 
presence of a point target, whereas Dogaru and Le13 dealt with a more complex 
STTW radar-scattering scene placed in the far field. In the current report, we 
generalize this analysis to near-field scenarios in the presence of arbitrary targets. 

To formulate a general model of the radar signal, we start by introducing the main 
concepts and equations involved in this analysis. One of these concepts is the 
effective length of the antenna h,11,14 which is a vector quantity that characterizes 
the polarimetric antenna patterns. This vector has two components: hθ and hφ. 
(Throughout this report, we use the θ and φ subscripts for the vertical and horizontal 
polarization, respectively.) The electric field incident on the target Ei is related to 
the effective length of the Tx antenna by11 

 0

2
TjkRT

i T
T

jZ I e
Rλ

−=E h , (7) 

while the open-circuit voltage at the Rx antenna VR is related to its effective length 
by11 

 T
R R sV = h E . (8) 

In these equations, IT is the current at Tx antenna terminals, Es is the scattered 
electric field at the Rx antenna, and Z0 is the free-space impedance. Throughout the 
rest of this report, we use the subscripts T for “transmitter” and R for “receiver”. 
However, in situations where the symbols involve too many subscripts, we use T 
and R as superscripts; the difference between the two cases should be clear from 
the context. In Eq. 8, the superscript T stands for matrix transpose. On a different 
note, the derivations in this report use the definition of h for the Tx found in Mott,11 
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which differs from the one in Balanis,14 who takes a minus sign in Eq. 7. One 
important feature of typical antenna patterns is that in directions away from the 
principal planes (also known as the E- and H-planes14), any antenna generates a 
cross-polarized field, meaning that both elements of h are nonzero. This 
observation is especially relevant to radar applications that use wide-beam 
antennas, such as strip-map SAR imaging at low frequencies. 

Another crucial concept that accounts for the polarimetric coupling is the scattering 
matrix of the target.7 This is defined as 

 
S S
S S

θθ θφ

φθ φφ

 
=  

 
S , (9) 

where ,

,

R s pjkR
pq R

i q

E
S R e

E
=  (the indexes p and q stand for either θ or φ). While this is 

the general definition of the scattering matrix elements (for arbitrary range), in the 
far-field case we take the limit of these expressions as RR → ∞ . Their relation to 

the polarimetric RCS is 
2

4pq pqSσ π= . Note though that the S matrix elements 

offer a more complete characterization of target scattering than the polarimetric 
RCS, since they include the phases as well as the magnitudes. 

Based on the previous equations, we obtain the radar-received signal as 

 ( )0

2
R Tjk R R TT

R R T
R T

jZ IV e
R Rλ

− += h Sh . (10) 

For generality, in this section we consider the case of bistatic radar, with separate 
(and possibly different) Tx and Rx antennas. Equation 10 is valid at one frequency 
(or narrowband radar waveforms). In the case of wideband waveforms, Eq. 10 can 
be applied frequency-by-frequency, followed by an inverse Fourier transform. 

The quantities IT and VR are related to the transmitted and received powers by the 
following equations14: 

 
2 2

,       
2 8

T
A T R

T R R
A

Z I V
P P

Z
= = , (11) 

where  and T R
A AZ Z  are the input impedances of the Tx and Rx antennas, 

respectively. More precisely, PT is the power radiated by the Tx antenna, while PR 
is the power delivered to the load by the Rx antenna. In writing Eq. 11, we assumed 
that both antennas are matched to the generator/load and the feed lines, although 
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this assumption is not critical (mismatch losses can be separately introduced in the 
signal equation). Combining Eqs. 10 and 11, we obtain 

 
2 20

2 2 216
TT

R R TR T
R T A A

ZPP
R R Z Zλ

= h Sh , (12) 

which starts resembling the classic radar equation. Moreover, the magnitudes of the 
effective lengths are related to the antenna directivities (Dθ and Dφ) by the following 
equations14: 

 , ,
0

AZh D
Zθ φ θ φλ

π
= . (13) 

Upon inserting Eq. 13 into Eq. 12 and ignoring the polarimetric coupling, we obtain 

 
( )

2

3 2 24
R T

R T
R T

D DP P
R R
λ σ

π
= , (14) 

which is exactly the radar equation for bistatic radar configurations.7 However, Eq. 
12 is a more accurate model of the radar signal power than Eq. 14, because it 
accounts for the polarimetric coupling between antenna patterns and target 
scattering. 

While Eq. 10 offers a complete characterization of the complex radar signal, typical 
RF system measurements consist of signal power and phase rather than currents 
and voltages.15 Therefore, it is more convenient to obtain equivalent formulas that 
preserve the phase information, but involve the powers (PT and PR) and directivities 
(Dθ and Dφ), rather than IT , VR , and h, which are less familiar to the radar engineer. 
For this purpose, we take the phase of IT as reference (meaning its phase is zero) 

and write 2 T
T T

A

PI
Z

= . Then, we have 

 
0 0

j
SQA A

j

D eh Z Z
h Z ZD e

θ

φ

ψ
θθ

ψ
φ φ

λ λ
π π

  
 = = = 
    

h D . (15) 

In this equation, which is valid for both Tx and Rx antennas, we introduced the 
symbol SQD  (SQ stands for the “square-root” of the directivities), while ψθ and ψφ 
represent the phases of hθ and hφ, respectively. Any complete characterization of 
the antenna pattern, by either measurements or modeling, should include the 
quantities Dθ, Dφ, ψθ, and ψφ, which are described compactly by SQD . For example, 
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when modeling an antenna with the Feko software, these quantities can be readily 
found in tabulated form in the output files, at the frequencies and angles of interest. 
We can then rewrite Eq. 10 as 

 ( ) ( )2
2

R T

R
Tjk R RA T SQ SQ

R R T
R T

j Z P
V e

R R
λ

π
− += D SD . (16) 

At the receiver end, we have 8 RjR
R R AV P Z e ψ= , where ψR is the phase of the 

received voltage VR. If instead of VR we want to measure or compute the signal

8
RjR

RR
A

VX P e
Z

ψ= = , we obtain 

 ( ) ( )4
R T

Tjk R RT SQ SQ
R T

R T

j P
X e

R R
λ
π

− += D SD  . (17) 

Another possible quantity of interest is RjR

TT

PXY e
PP

ψ= = , which is an alternate 

version of X, normalized to the Tx power. This signal is given by 

 ( ) ( )4
R T

Tjk R R SQ SQ
R T

R T

jY e
R R
λ

π
− += D SD . (18) 

By definition, the signal Y has a magnitude equal to the square root of the Rx-to-
Tx-power ratio, and a phase equal to the difference between the Rx and Tx signal 
phases. As such, it provides all the relevant information related to the radar-sensing 
scenario and can be used in subsequent coherent processing schemes. In addition, 
the signal X, which is scaled up by the Tx power, provides an absolute measure of 
the radar signal’s magnitude and phase. 

The received power can be computed as 

 ( )
2 2 2

2 2 28 16
TR SQ SQ

R T R TR
A R T

V
P P

Z R R
λ

π
= = D SD . (19) 

The equations modeling the radar signal developed in this section are generally 
valid for both near- and far-field configurations. The main difference between the 
two consists of the scattering matrix and polarimetric RCS definitions: the far-field 
version considers these quantities in the limit R → ∞ . The antenna effective 
lengths and directivities are quantities characterizing the antenna patterns in the far-
field region. However, their formulations in Eqs. 7 and 8 are also valid for most of 
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the near-field scenarios of interest, as long as the antennas have relatively small 
sizes and the target is placed at least several wavelengths away, outside their 
reactive field region.14 

4. Near-Field Target Scattering Characterization Using the 
AFDTD Modeling Software 

In this section, we examine ways to exploit data provided by EM modeling software 
for the calculations involved in Eqs. 17 and 18, for near-field radar-sensing 
configurations. The key quantities required by these equations are SQ

TD  and SQ
RD , 

which characterize the Tx and Rx antennas, respectively, and S, which 
characterizes the target scattering. The procedure presented here assumes that the 
antenna patterns and target scattering are modeled separately (alternatively, one can 
mix simulated and measured data for either of these stages). As already discussed, 
antenna modeling software typically provides all the ingredients necessary for the 
computation of SQD . In this section, we focus on the derivation of S based on EM 
modeling data. More specifically, we develop a procedure of extracting S from 
AFDTD near-field simulations involving infinitesimal (or Hertzian) dipoles,14 
which are the most common type of antennas used by this software package. 

In far-field configurations, finding S via EM models is a straightforward task—one 
can use plane-wave incident fields with each polarization (θ and φ) separately and 
evaluate the plane-wave scattered field in both polarizations for each incident 
polarization, respectively. In fact, AFDTD (as well as other EM modeling software 
packages) outputs the S matrix elements directly for far-field configurations, with 
the proper phases and power normalizations.1 

The procedure is more complicated for near-field configurations, where it is rather 
difficult to find antennas that transmit purely polarized fields (with either θ or φ 
polarization), so the S elements cannot be evaluated by the same direct method as 
in the far field. To solve this problem, let us assume we make two separate radar 
measurements involving the same sensing geometry, with Tx antennas that have 
linearly independent polarizations (for now, the Rx antenna stays unchanged). 
These measurements are characterized by currents IT1 and IT2 and non-collinear 

effective length vectors 1
1

1

T

T T

h
h

θ

φ

 
=  

  
h  and 2

2
2

T

T T

h
h

θ

φ

 
=  

  
h , respectively. The voltages 

obtained at the receiver in the two measurements are 

 ( )0
1,2 1,2 1,22

R Tjk R R T
R R T T

R T

jZV e I
R Rλ

− += h Sh . (20) 



 

13 

The primary quantity evaluated at the receiver by the AFDTD software is the 

electric field vector 
R

R R

E
E

θ

φ

 
=  

  
e  rather than the voltage, so a more natural way of 

describing the results of the two radar simulations is 

 ( )0
1,2 1,2 1,22

R Tjk R R
R T T

R T

jZ e I
R Rλ

− +=e Sh . (21) 

In matrix format, this equation can be written as 

 ( )0

2
R Tjk R R

R T T
R T

jZ e
R Rλ

− +=E SH I , (22) 

where 1 2

1 2

R R

R R R

E E
E E

θ θ

φ φ

 
=  

  
E , 1 2

1 2

T T

T T T

h h
h h

θ θ

φ φ

 
=  

  
H , and 1

2

0
0
T

T
T

I
I

 
=  

 
I . The matrix S can 

then be extracted from Eq. 22 as 

 ( ) 1 1

0

2
R Tjk R RR T

R T T
R R e
jZ

λ + − −=S E I H . (23) 

The requirement to have non-collinear vectors hT1 and hT2 simply ensures that the 
inverse of the matrix HT exists.  

A practical procedure of evaluating S from AFDTD near-field models involves 
using two infinitesimal dipoles with unit dipole moment ITl oriented in the θ and φ 
directions (θ  now stands for “1” and φ  stands for “2”) in separate simulations, and 
measuring the θ  and φ  components of the electric field at the Rx location for each 
Tx polarization. The results of these simulations are combined in the matrix 

R R
SS
D R R

E E
E E

θθ θφ

φθ φφ

 
=  

  
E , where we used the subscript D for “dipoles” and the SS 

superscript for “spherical-spherical” to indicate that the quantities characterizing 
both the Tx and the Rx are expressed in spherical coordinates. For an infinitesimal 
dipole antenna, the effective length polarimetric matrix H expressed in spherical 
coordinates (θ and φ) is14 

 
0

0
l

l
− 

=  − 
H , (24) 

where l is the dipole length (note that if we followed the effective length vector 
definition used by Balanis,14 l would appear with positive signs in Eq. 24). Then 
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( )

( )

1
11 1

1
2

0 1 0
0 10

T
T T

T

I l

I l

−

− −
−

 −  
 = = −  
 −   

I H , (25) 

and Eq. 23 becomes 

 ( )

0

2
R Tjk R R SSR T

D
j R R e

Z
λ +=S E . (26) 

The last equation shows a one-to-one correspondence between the elements of the 
SS
DE matrix (which is evaluated with the AFDTD software) and the elements of the 

scattering matrix S. The latter can then be computed simply as 

 ( )

0

2
R Tjk R R RR T

pq pq
j R RS e E

Z
λ += , (27) 

with p and q standing for θ or φ .  

Although AFDTD allows the direct implementation of dipoles with arbitrary 
orientations, it is more convenient to run simulations with the dipoles oriented along 
the Cartesian directions, x, y, and z. Similarly, at the receiver, we measure directly 
the components x, y, and z of the electric field, so we would like to re-derive Eq. 26 
using these components rather than the spherical components. For this purpose, we 
use the transformation matrices from spherical to Cartesian coordinates (notation 

S C→Q ) and from Cartesian to spherical coordinates (notation C S→Q ). We have14 

 
cos cos cos sin sin

sin cos 0
C S θ φ θ φ θ

φ φ
→ − 

=  − 
Q ,  (28) 

and ( )TS C C S→ →=Q Q . Additionally, 
1 0
0 1

C S S C→ →  
=  

 
Q Q . We can then write 

 SS C S CC S C
D R D T

→ →=E Q E Q , (29) 

where 

R R R
xx xy xz

CC R R R
D yx yy yz

R R R
zx zy zz

E E E
E E E
E E E

 
 =  
  

E  (superscript CC stands for “Cartesian-Cartesian”). 

Here, the notation R
pqE means the p-component of the electric field measured at the 

Rx when we use a q-oriented dipole as Tx, where p and q can be either of x, y, or z. 
The angles involved in the coordinate transformation matrices Q are evaluated at 
the Tx or Rx locations, according to the subscript denoting those matrices. 
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Based on CC
DE , the scattering matrix is computed by the following formula 

 ( )

0

2
R Tjk R R C S CC S CR T

R D T
j R R e

Z
λ + → →=S Q E Q ,  (30) 

This completes the characterization of the scattering matrix of a target in the near 
field. To implement the procedure with the AFDTD software, we need to run  three 
separate simulations using Tx dipoles in the x, y, and z orientations, respectively, 
and record the electric field components at the Rx location for each case. Once we 
build the CC

DE  matrix, we use Eq. 30 to find S. The other quantities in Eq. 30 
(including the angles required by the coordinate transformation matrices) can be 
readily derived from the sensing geometry. The dipole simulations used in the 
calculation of S must use exactly the same geometry as the one involving the actual 
antennas. If we change the antenna positions relative to the target, S changes and 
we need to repeat the dipole-based evaluation procedure for the new set of 
coordinates. 

After finding S, we can compute the complex signal or power received from the 
same target with arbitrary Tx and Rx antennas by using one of the Eqs. 16–19, as 
long as we know the SQD vectors characterizing those antennas. If we do not require 
the explicit evaluation of the scattering matrix, the voltage VR, the signal Y, and the 
received power PR can be computed directly by the following formulas, 
respectively: 

 ( )
2

0

2 R
TA T SQ C S CC S C SQ

R R R D T T

Z P
V

Z
λ

π
→ →= − D Q E Q D , (31) 

 ( )
2

02
TSQ C S CC S C SQ

R R D T TY
Z

λ
π

→ →= − D Q E Q D , (32) 

 ( )
4 2

2 2
04

TSQ C S CC S C SQ
R T R R D T TP P

Z
λ

π
→ →= D Q E Q D . (33) 

5. Numerical Examples 

The theory developed so far in this study would be incomplete without a numerical 
example to validate the procedure. For this purpose, besides the Tx infinitesimal 
dipoles, we consider another type of antenna that can be implemented directly in 
the AFDTD software—namely, a rectangular aperture (RA) with uniform surface 
current density.14 The validation consists of computing the scattering by a target 
with the RA antenna as Tx by (1) directly modeling the entire problem with the RA 



 

16 

antenna and (2) obtaining the matrix S from dipole-based simulations, then using 
Eq. 16 to compute the received signal with the RA antenna. In the process, we also 
evaluate the target’s near-field RCS for all polarization combinations. 

The sensing geometry is described in Fig. 2. The target is a PEC plate with 
dimensions 1 m × 0.6 m, in vertical orientation (y-z plane). The radar is placed at a 
distance 5 m × 2.8 m × 2 m with respect to the center of the plate, in the x, y, and z 
directions, respectively. The antenna is a rectangular aperture in the y-z plane 
(dimensions 0.15 m × 0.3 m), with uniform-density magnetic surface currents 
oriented in the z direction, producing horizontal polarization. For this monostatic 
geometry, we have 6 mT RR R R= = ≅ . 

    

Fig. 2 Geometry of the near-field radar-sensing configuration used for validating the 
indirect near-field RCS calculation via the dipole method described in Section 4 

As previously described, we first run the simulations with dipoles oriented in the 
three Cartesian directions, and placed at the real antenna’s phase center, and record 
the electric field Cartesian components at the Rx location. The result of these three 
simulations is the CC

DE  matrix. Next, we run the simulation with the RA antenna as 
Tx and measure the Cartesian components of the electric field vector at two 
locations: in the center of the target ( C

iAE ) and back at the Rx ( C
RAE ). Let S

iAE  and 
S
RAE  be the spherical coordinate counterparts of these two vectors. (The notations 

in this section allow us to differentiate an electric field vector from a matrix made 
of multiple electric field vectors by using a single superscript in the former case, 
e.g., C

RAE , vs. a double superscript in the latter case, e.g., CC
DE .)  

Knowing the values of the electric field vectors in the center of the target and at the 
Rx enables a streamlining of the procedure described in Section 4. Thus, according 
to the scattering matrix definition, we have 
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jkR jkR

S S C S C
RA iA T iA

e e
R R

− −
→= =E SE SQ E .  (34) 

 
jkR

C S C S S C C S C
RA R RA R T iA

e
R

−
→ → →= =E Q E Q SQ E . (35) 

One possible way to perform the validation is to compute the S matrix by the dipole 
method, plug its elements into Eq. 35, and compare the results of this formula (the 
components of C

RAE ) with the direct RA antenna simulation results. However, a 
more direct way to compute C

RAE  is to replace the expression of S from Eq. 30 into 
Eq. 35, and obtain  

 
0

2C jkR CC C
RA D iA

j R e
Z
λ

=E E E . (36) 

Consequently, this validation method does not require the explicit evaluation of the 
scattering matrix elements. The results of the comparison between the two methods 
for the three Cartesian components of the electric field as a function of frequency 
are shown in Fig. 3. The match is reasonably good, with the more significant 
differences occurring in regions of low field intensity. Possible sources of errors 
are numerical dispersion in the finite-difference time-domain EM solver16 (which 
is completely unrelated to the method outlined in this report); and for targets of 
large extent, the fields generated by dipoles do not display pure polarization (either 
θ−  or φ− oriented) properties across the entire target surface (in other words, the 
matrix H in Eq. 24 is no longer diagonal). 
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(a)  

 

(b) 

 

(c) 

Fig. 3 Comparison of electric field magnitudes at the receiver obtained by the direct and 
indirect methods: (a) Ex component; (b) Ey component; and (c) Ez component 
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Equation 30 allows the calculation of the scattering matrix elements and the RCS 
for all polarization combinations. The results of the near-field calculations are 
shown in Fig. 4, together with their far-field counterparts obtained directly by 
AFDTD simulations of the same target, with Tx and Rx placed at the same angles 
as in the near-field case.  

 

(a)                                                    (b) 

 

(c)                                                             (d) 

Fig. 4 Comparison between the near-field and far-field RCS of a rectangular plate of 
dimensions 1 m × 0.6 m, computed by AFDTD simulations for (a) V-V (θ−θ) polarization; (b) 
H-H (φ−φ) polarization; (c) V-H (θ−φ) polarization; and (d) H-V (φ−θ) polarization 

We can clearly see differences between the near- and far-field RCS in Fig. 4; these 
differences typically become larger as the frequency is increased. However, for this 
oblique incidence angle, the far-field RCS is not consistently larger than the near-
field RCS (in fact, they both follow similar trends on the average), unlike in the 
normal incidence case examined in Section 2. One can also notice some differences 
between the vertical-horizontal (V-H) and horizontal-vertical (H-V) polarization 
RCS, due to the slightly bistatic sensing geometry (note that the Tx and Rx are not 
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exactly collocated, but shifted by 0.3 m in the x direction with respect to one 
another).  

Finally, we verify the analytic formula for near-field RCS of a circular PEC plate 
(Eq. 3) vs. near-field AFDTD simulations. In the case of normal incidence to a 
vertical plate, only the vertical-vertical (V-V) RCS is relevant (since the horizontal-
horizontal [H-H] RCS is identical), so we only need to run the AFDTD model with 
a z-oriented dipole. Figure 5 shows the results of this comparison for a plate with 
radius a = 0.5 m, placed at a 5-m range. In the same graph, we included the far-
field RCS of the same plate at normal incidence, obtained by both far-field AFDTD 
simulation and analytic formula (Eq. 4). As before, the main point of this 
comparison is to illustrate the divergence between the near- and far-field RCS as 
the frequency increases. 

 

Fig. 5 Comparison between the near- and far-field RCS of a circular plate of radius 0.5 m 
at 5-m range, computed analytically and by AFDTD simulations 

6. Conclusions 

The purpose of this report is to illustrate the development of near-field radar 
modeling techniques able to produce the power-calibrated radar-received signal for 
arbitrary antennas and target configurations. To ensure the model’s accuracy and 
fidelity, the final results must preserve the signal’s phase, the near-field effects (due 
primarily to the spherical wavefront curvature), and the polarimetric coupling 
effects between the antenna patterns and target scattering. As such, the radar-
sensing scenario simulations can provide essential information to the radar designer 
in terms of performance prediction and system parameter trade space. 
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Throughout this study, we emphasized the differences between the near- and far-
field models, showing that the former requires a more careful description of the 
sensing scenario, which must specifically include the radar antennas and their 
polarimetric patterns. After introducing the concept of near-field RCS in Section 2, 
we developed a general version of the radar equation in Section 3. This version, 
which preserves the phase and the polarimetric coupling effects, offers a complete 
description of the radar-received signal that can be used in complex processing 
algorithms such as SAR image formation. 

After acknowledging that currently available EM modeling software is not capable 
of directly simulating the full near-field radar-sensing scenario, in Section 4 we 
developed an indirect procedure to accomplish this goal based primarily on the 
AFDTD solver. In this procedure, we perform target-scattering simulations using 
infinitesimal dipoles with unit dipole moments, which are readily implemented as 
the simplest form of Tx antennas by AFDTD, and evaluate the target’s scattering 
matrix. This is used in conjunction with the antenna models or measurements 
(which must be performed separately outside the AFDTD software) to produce the 
radar-received signals in the presence of those antennas. 

A simple numerical example in Section 5 demonstrates the validity of this 
simulation method. Although this work is primarily theoretical, it hopefully lays 
the foundations for future advanced models of complex radar-sensing scenarios that 
prove useful in system analysis and design. 
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List of Symbols, Abbreviations, and Acronyms 

ARL Army Research Laboratory 

DEVCOM US Army Combat Capabilities Development Command 

EM electromagnetic 

GPR ground-penetrating radar 

H-H  horizontal-horizontal 

H-V  horizontal-vertical 

PEC perfect electric conductor 

PO physical optics 

RA rectangular aperture 

RCS radar cross section 

RF radio frequency 

Rx receiver 

SAR synthetic aperture radar 

STTW sensing through the wall 

Tx transmitter 

UWB ultra-wideband 

V-H vertical-horizontal 

V-V vertical-vertical 

 



 

24 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
 
 1 DEVCOM ARL 
 (PDF) FCDD RLD DCI 
   TECH LIB 
 
 5 DEVCOM ARL 
 (PDF) FCDD RLS RU 
   A SULLIVAN  
   T DOGARU 
   C LE 
   B PHELAN 
   C KENYON  
    
 
 


	List of Figures
	1. Introduction
	2. The Near-Field Radar Cross Section
	3. A General Formulation of the Radar Equation
	4. Near-Field Target Scattering Characterization Using the AFDTD Modeling Software
	5. Numerical Examples
	6. Conclusions
	7. References
	List of Symbols, Abbreviations, and Acronyms

