

AFRL-RY-WP-TR-2021-0038

COMPUTATIONAL ACTIVITY MONITORING BY
EXTERNALLY LEVERAGING INVOLUNTARY
ANALOG SIGNALS (CAMELIA)

Alenka Zajic, Milos Prvulovic, and Alessandro Orso

Georgia Institute of Technology

Matthew Welborn

Northrop Grumman Information Systems

MAY 2021
Final Report

Approved for public release; distribution is unlimited.

See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
SENSORS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with The Under Secretary of Defense memorandum dated
24 May 2010 and AFRL/DSO policy clarification email dated 13 January 2020. This report is
available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RY-WP-TR-2021-0038 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// *//Signature//
IGOR V. TERNOVSKIY OLGA L. MENDOZA-SCHROCK, Chief
Program Manager Decision Sciences Branch
Decision Sciences Branch Multi-Domain Sensing Autonomy Division
Multi-Domain Sensing Autonomy Division

*//Signature//
ROY L. BALLARD
Division Chief
Multi-Domain Sensing Autonomy Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

May 2021 Final 26 May 2016 – 30 August 2020
4. TITLE AND SUBTITLE

COMPUTATIONAL ACTIVITY MONITORING BY EXTERNALLY
LEVERAGING INVOLUNTARY ANALOG SIGNALS (CAMELIA)

5a. CONTRACT NUMBER
FA8650-16-C-7620

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Alenka Zajic, Milos Prvulovic, and Alessandro Orso (Georgia Institute of
Technology)
Matthew Welborn (Northrop Grumman Information Systems)

5d. PROJECT NUMBER
N/A

5e. TASK NUMBER
N/A

5f. WORK UNIT NUMBER
 Y1H5

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Georgia Institute of
Technology
85 5th Street NW
Atlanta, GA 30308

Northrop Grumman Information
Systems
3005 Carrington Mill Parkway
Morrisville, NC 27560

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH
45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research
Projects Agency
(DARPA/I20)
675 North Randolph Street
Arlington, VA 22203

AFRL/RYAT
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
AFRL-RY-WP-TR-2021-0038

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This report is the result of contracted fundamental research deemed exempt from public affairs security and policy review in
accordance with The Under Secretary of Defense memorandum dated 24 May 2010 and AFRL/DSO policy clarification email dated
13 January 2020. This report is available to the general public, including foreign nationals. This material is based on research
sponsored by the Air Force Research Lab (AFRL) and the Defense Advanced Research Projects Agency (DARPA) under agreement
number FA8650-16-C-7620. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force
Research Labs (AFRL), the Defense Advanced Research Projects Agency (DARPA) or the U.S. Government. Report contains color.

14. ABSTRACT
In this project, we have developed a system called CAMELIA that monitors computation in an EMSD (or
phone/laptop/server) device by leveraging the involuntary electromagnetic (EM) emanations from the
monitored device.

15. SUBJECT TERMS
Side-channels, analog side-channels, electromagnetic side-channels, program monitoring, malware dedection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES
286

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Igor Ternovskiy
19b. TELEPHONE NUMBER (Include Area Code)

N/A
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

BROOKS, KIM L CIV USAF AFMC AFRL/RYOX
Use this, verify all

i

Approved for public release; Distribution is unlimited.

TABLE OF CONTENTS

Section ... Page

List of Figures .. iv
List of Tables ... viii
1.0 SUMMARY .. 1
2.0 INTRODUCTION .. 3
3.0 METHODS, ASSUMPTIONS, and PROCEDURES ... 7
3.1 Task 1.1 - Purpose-Designed Antenna Arrays .. 7

3.1.1. Planar Antenna Array Design for Long Range EM Side-channel Detection 7
3.1.2. Design Procedure .. 9
3.1.3. Element Spacing ... 10

3.2 Task 1.2 – Automated Discovery of Sub-Channels .. 15
3.2.1 Unintentional FM and AM Carriers in Computer Systems 16
3.2.2 Creating System Activity at Controlled Frequencies .. 18
3.2.3 Finding AM and FM Unintentional Carriers in Computer Systems 20

3.3 Task 2.1 – Spectral Monitoring for Anomaly Detection 32
3.3.1 Spectral Samples (SS) ... 33
3.3.2 Distance Metric for Comparing Spectral Samples .. 33
3.3.3 Black Box Training ... 37
3.3.4 Monitoring .. 39

3.4 Task 2.2 – Spectral Monitoring for Multi-core Anomaly Detection 41
3.4.1 Emanated EM Signals During Program Execution .. 43
3.4.2 Markov Model Based Program Profiling: MarCNNet 47
3.4.3 Input Signal and Training Phase ... 51
3.4.4 Testing While Multiple Cores Are Active .. 56

3.5 Tasks 3-5 Basic Block Tracking ... 61
3.5.1 Signal Pre-processing: Amplitude Demodulation .. 63
3.5.2 Instrumented Training ... 65
3.5.3 Uninstrumented Training .. 71
3.5.4 Program Execution Monitoring .. 76

3.6 Task 6 Single Instruction Tracking ... 81
3.6.1 Determining Instruction Types by Using EM Side-Channels 82

ii

Approved for public release; Distribution is unlimited.

3.6.2 Generating List of Instructions Under Investigation .. 83
3.6.3 Generating Micro-benchmarks for Instructions .. 84
3.6.4 Implementing the Codes and Recording EM Emanations 85
3.6.5 Data Processing to Obtain EM Signatures .. 85
3.6.6 Generating Correlation Matrix .. 87
3.6.7 Identifying Instruction Type ... 88
3.6.8 Detecting Permutations of Instruction Types ... 89
3.6.9 Picking an Instruction to Represent Each Instruction Type 92
3.6.10 Generating Microbenchmarks for Permutations ... 92
3.6.11 Implementing Code and Recording EM Emanations 93
3.6.12 Training: Generating Templates for Each Permutation 94
3.6.13 Testing: Predicting Instruction Sequences Using Templates 95

4.0 RESULTS AND DISCUSSION ... 96
4.1 Task 1.1 - Results .. 96

4.1.1 Antenna Fabrication and Measurements ... 98
4.1.2 SNR Measurements and Malware Detection .. 103
4.1.3 Line of Sight (LoS) Measurements ... 104
4.1.4 Non-LoS Measurements ... 109
4.1.5 Malware Detection .. 110

4.2 Task 1.2 – Results for Automated Discovery of Sub-Channels 111
4.2.1 Experimental Setup ... 111
4.2.2 Experimental Results .. 113

4.3 Task 2.1 – Results for Spectral Profiling .. 117
4.3.1 Experimental Setup ... 118
4.3.2 File-less Attacks on Cyber-Physical-Systems .. 120
4.3.3 Shellcode Attack on IoTs .. 129
4.3.4 APT Attack on Commercial CPS ... 131
4.3.5 Further Evaluation of Robustness – Interrupts and System Activity 132
4.3.6 Further Evaluation of Robustness – Hardware Platforms and Distance 134
4.3.7 Further Evaluation of Robustness – Manufacturing Variations 135
4.3.8 Further Evaluation of Robustness – Variations Over Time 137
4.3.9 Further Evaluation of Robustness – Multi-tasking/Time-sharing 139

4.4 Task 2.2 – Results for Multi-Core Spectral Profiling ... 140
4.4.1. Experimental Setup ... 141
4.4.2 Program Profiling When Only One of the Cores is Active 142
4.4.3 Program Profiling When Multiple Cores Are Active 146

4.5 Tasks 3-5 – Results for Basic Block Tracking .. 157
4.5.1. Evaluation Matrix ... 157
4.5.2 Benchmark Applications ... 158
4.5.3 FPGA Device Monitoring ... 160

iii

Approved for public release; Distribution is unlimited.

4.5.4 IoT Device Monitoring ... 163
4.6 Task6 – Results for Single Instruction Tracking .. 166

4.6.1 Experimental Setup ... 166
4.6.2 Instruction Type Determination Results ... 168
4.6.3 Permutation Tracking Results ... 177
4.6.4 Further Evaluation of Robustness ... 184
4.6.5 Permutations of Instructions from the Same Instruction Type 187

5.0 CONCLUSIONS... 189
6.0 REFERENCES ... 196
APPENDIX A – Publications and Presentations .. 201
APPENDIX B –Abstracts ... 209
LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 274

iv

Approved for public release; Distribution is unlimited.

LIST OF FIGURES

 Page
Figure 1 Camelia design ... 4
Figure 2 Antenna geometry (a) side view and (b) top view .. 8
Figure 3 Element design at 1.03GHz: (a) Slot loaded disc, (b) Directivity pattern in E and H-

plane, (c) The current distribution of the patch .. 10
Figure 4 Array geometry (a) 2X1 array (b) 1X2 array (c) current distribution of 2X1 array, (d)
1X2 array .. 12
Figure 5 Radiation pattern as a function of array spacing (a) & (b) E & H-plane pattern for
geometry shown in Figure 4 (a), (c) & (d) for the geometry shown in Figure 4 (b) 12
Figure 6 Effect of the center disc on the radiation pattern in (a) 2X1 array E-plane, (b) 2X1
H-plane, (c) 1X2 E-plane, (d) 1X2 H-plane, (e) 2X2 E-plane, (f) 2X2 H-plane, (g) 2X2 array
without lower center disc, E-plane, (h) 2X2 array without lower center disc, H-plane ...
 .. 13
Figure 7 (a) Reflection coefficient vs frequency with array spacing as parameters (b)
Reflection coefficient vs. frequency and (c) Impedance loci variation with lower slot length
as parameter ... 15
Figure 8 Code performs one activity (activity X), and the loop beginning on line 8 performs
another activity (activity Y). The outer loop repeatedly alternates activities X and Y, creating
periodically changing activity whose period equals the execution time for one iteration of the
outer loop. This alternation period Talt is the inverse of the frequency falt =1/Talt. 19
Figure 9 Pseudo-code to generate the X/Y alternation activity 20
Figure 10 A measured spectrum S(f; falti ; dj) at a carrier frequency at 382 kHz and a lower
and upper sidebands around 359 kHz and 405 kHz, respectively.................................... 21
Figure 11 A spectrum Snew(f; falti ; dj) shifted up and down for 23 kHz, the pointwise minimum
between these two spectra, and the pointwise minimum between two spectra with shift
different from falti = 23 kHz.. 24
Figure 12 Minimums of shifted spectra, i.e., Mtrue(f; dj) and Mfalse(f; dj), with the carrier
frequency at 382 kHz and the alternation frequency of 23 kHz 27
Figure 13 Modulated carrier score as a function of frequency for a spectrum with the carrier
frequency at 382 kHz and the alternation frequency of 23 kHz 28
Figure 14 Empirical joint and baseline cumulative distribution functions for MCS score
 .. 30
Figure 15 Remote’s monitoring flow-chart40Figure 16 Hot regions for the profiled micro-
benchmarks from MiBench [16] .. 45
Figure 16 Hot regions when both micro-benchmarks running at different cores 47
Figure 17 Markov models representing the execution of benchmarks 48
Figure 18 Convolutional neural network model to track N different programs 51

v

Approved for public release; Distribution is unlimited.

Figure 19 Detailed convolutional neural network model for the branches 51
Figure 20 The values of output layers for the states 3 and 5 .. 58
Figure 21 Overview of the TESLA execution path reconstruction framework 62
Figure 22 Automatic detection of program’s start: the end of the periodic pattern (for-loop)
indicates the program’s start. We identify this when the moving average of the EM signal
drops below the threshold .. 68
Figure 23 Markers (vertical red lines) are placed on the signal according to their execution
timestamps. The signal snippet between two consecutive markers corresponds to the EM
emanation from the marker-to-marker code-segment .. 69
Figure 24 EM signals corresponding to marker function execution _______________ 71
Figure 25 EM signals corresponding to the uninstrumented (top) and the instrumented
(bottom) program executions. The dotted lines indicate the correspondence between the
uninstrumented and the instrumented signal .. 75
Figure 26 Signal matching process: dashed arrow indicates the correspondence between fixed-
length windows in monitored and training signals. Window size is extended based on signal
similarities, up to the point where the training signal (blue line) starts to deviate significantly
from the monitored signal (overlaid red dots).. 78
Figure 27 Execution path reconstruction exploiting signal correspondence between training
and test signals ... 80
Figure 28 Flowchart of determining instruction types ... 83
Figure 29 Pseudo-code for instruction type detection setup .. 85
Figure 30 Flowchart of data processing ... 87
Figure 31 Pseudo-code for permutation detection setup .. 93
Figure 32 Overview of training and testing ... 95
Figure 33 (a) Reflection coefficient vs. frequency and (b) Impedance loci variation with lower
disc radius a as parameter .. 96
Figure 34 Radiation pattern over the band for the antenna geometry shown in Fig. 2 at (a) E-
plane, (b) H-plane ..
 .. 98
Figure 35 Fabricated antenna (a) front view (b) side view .. 99
Figure 36 (a) Simulated cavity electric field vs normalized radius (𝝆𝝆/𝒂𝒂) for unloaded and
slotted disc operating in TM12 mode (b) Comparison of simulated and measured S11 as a
function of frequency ... 99
Figure 37 Pictures of antenna measurements (a) mounted antenna (b) measurement setup
 .. 100
Figure 38 Simulated and measured radiation patterns in E and H-plane (a) & (b) 1.01GHz, (c)
& (d) 1.02GHz, (e) & (f) 1.03GHz, (g) & (h) 1.04GHz (i) Comparison of simulated and
measured realized gain as a function of frequency .. 101
Figure 39 Comparison of simulated and measured realized gain as a function of frequency
 .. 101

vi

Approved for public release; Distribution is unlimited.

Figure 40 Near field relative power patterns at 3m and 5m distances from the antenna
aperture, (a) & (b) 1.01GHz, (c) & (d) 1.02GHz, (e) & (f) 1.03GHz, (g) & (h) 1.04GHz
 .. 102
Figure 41 SNR Measurements for an IoT (Olimex) board: (a) Block diagram of set up (b) Set
up picture that shows the antenna (on the right side) and the board (on the left side) 105
Figure 42 Measured signal power while code is executing at various distances (a) 3 m and (b)
5 m .. 107
Figure 43 (a) Measured SNR vs. distance in comparison with the theoretical model fit (b)
Measured normalized SNR vs offset distance from the LoS (SNR = 1 corresponds to LoS)
 .. 109
 Figure 44 Measurement setup for laptop or desktop (left) and measurement setup for cell-
phone (right) ... 112
Figure 45 The near-field setup (left) consists of a small EM probe or a hand-made magnetic
probe (not shown) placed 5 cm above the system’s processor. A horn antenna placed 1 m away
from the board for far-field measurements (right) ... 119
Figure 46 Syringe Pump (left) and REMOTE framework (right). In our setup, the signal
processing unit is implemented on a separate PC ... 120
Figure 47 Spectrogram of the Syringe pump application in malware-free (left) and malware-
afflicted (right) runs. Note that the differences in colors between the two spectrograms
correspond to differences in signal magnitude which are caused by different positioning of the
antenna. Such variation is common in practice and has almost no effect on REMOTE’s
functionality because REMOTE was designed to be robust to such variation 123
Figure 48 Adding malicious activity to the main loop of the Soldering-iron 128
Figure 49 A run (left) where exploit, shellcode, and a 100-packet payload are injected into the
execution between the original loops. A run (right) where exploit, shellcode, and a
Ransomware payload are injected into the execution between the original loops. 131
Figure 50 Accuracy of REMOTE with its mechanism for addressing interrupt activity (solid
blue line) and EDDIE [10] (red dashed line). The results are for the SyringePump software
running on the Olimex board ... 133
Figure 51 True positive rate (with 0% false positives) of REMOTE with its non-clock-power
feature when comparing SSs (dark blue) and EDDIE /SYNDROME [10] (light red). The
results are for basicmath running on the TS board .. 135
Figure 52 Accuracy for REMOTE with frequency-adjusting, vs. Eddie/Syndrome 137
Figure 53 Performance of REMOTE with its clock-frequency adjustment feature vs.
Eddie/Syndrome ... 138
Figure 54 Spectrogram of context-switching between the unmodified Bitcount 140
Figure 55 Experimental setups ... 142
Figure 60 State transition diagrams while only a single core is active 145
Figure 61 Proof-of-concept implementation: State transitions of a program 146
Figure 62 State transitions while profiling SAVAT based program 146

vii

Approved for public release; Distribution is unlimited.

Figure 63 Profiling based on the CNN and Markov Model for Bit_count 149
Figure 64 Profiling based on the CNN and Markov Model for Basicmath 150
Figure 65 Hot regions when one of the programs has a malware 152
Figure 66 Profiling based on the CNN and Markov Model when Basicmath has malware
 .. 153
Figure 67 Profiling based on the CNN and Markov Model when Bit_count 154
Figure 68 The states while profiling the system when two Bit counts are 156
Figure 69 Experimental setup: monitoring from 1 m distance .. 162
Figure 70 Experimental setup used for EM emanation recordings 168
Figure 71 Obtained EM signatures of several instructions for the DE1device 172
Figure 72 Obtained EM signatures of several instructions for the A13device 173
Figure 73 Correlation matrices for DE1 and A13 devices ... 175
Figure 74 Dendrogram of the instructions obtained with hierarchical clustering for DE1 and
A13 devices. Different colors represent the clusters .. 176
Figure 75 Sample EM signatures of permutations with different N values for the DE1 device
 .. 178
Figure 76 Sample EM signatures of permutations with different N values for the A13 device
 .. 179
Figure 77 Sample EM signatures when instruction types are repeated 10 181
Figure 78 Sample EM signatures when instruction types are repeated 100 182
Figure 79 Confusion charts for N=1 ... 184
Figure 80 Confusion chart for N = 2, A13 Device .. 184
Figure 81 Impact of SNR on accuracy for permutations of different instructions.......... 187
Figure 82 Impact of N value on accuracy for permutations of instructions 189

viii

Approved for public release; Distribution is unlimited.

LIST OF TABLES

 Page
Table 1 Description of algorithm 1 ... 56
Table 2 Description of measured devices ... 112
Table 3 Carrier frequencies found in laptop ... 114
Table 4 Carrier frequencies found in a cell phone .. 114
Table 5 Carrier frequencies found in a desktop .. 117
Table 6 Boards used in this paper to evaluate REMOTE. .. 122
Table 7 Accuracy of REMOTE for several different systems and attack scenarios using various
boards and applications ... 124
Table 8 Devices and corresponding core frequencies and numbers 141
Table 9 The performance of the framework for different devices when multiple cores are active
(%)... 156
Table 10 Benchmark applications statistics .. 159
Table 11 Training and testing executions ... 159
Table 12 Mean accuracy for FPGA .. 161
Table 13 Mean timing difference for FPGA ... 161
Table 14 Mean accuracy at 1 m .. 162
Table 15 Mean timing difference at 1 m ... 163
Table 16 Mean accuracy for IoT device ... 164
Table 17 Mean timing difference for IoT device .. 165
Table 18 Mean accuracy at 1 m .. 166
Table 19 Mean timing difference at 1 m ... 166
Table 20 Investigated instructions .. 171

1

Approved for public release; Distribution is unlimited.

1.0 SUMMARY

Security monitoring of embedded and mission-specific devices (EMSDs) is challenging as

many of these devices cannot support the memory and performance overheads of traditional

security monitoring. In fact, monitoring activity may interfere with the primary function of

EMSDs. Moreover, many important classes of threats allow attackers to compromise/subvert both

the protected functionality and the monitoring functionality of the system.

In this project, we have developed a system called CAMELIA that monitors computation

in an EMSD (or phone/laptop/server) device by leveraging the involuntary electromagnetic (EM)

emanations from the monitored device. CAMELIA does not require changes to the monitored

device or its software, and its monitoring ability remains intact even after a complete compromise

of the monitored system. CAMELIA collects signals using purpose-designed antennas, then pre-

processes the signals and separates them into sub-channels that carry information about different

aspects of the system’s state. CAMELIA uses models of valid software behavior and

software/system/hardware interactions to form hypothesis about the sequence of execution and

software/system/hardware events in the monitored system, then updates these hypotheses by

matching the expected signals for each hypothesis to the observed signals. This allows CAMELIA

to maintain high accuracy and fidelity even when monitoring large codes, and even in the presence

of interrupts, input/output activity, cache misses, branch miss-predictions, and other events that

2

Approved for public release; Distribution is unlimited.

change emanated EM signals significantly in a way that is seemingly random but that CAMELIA

can account for end even use to improve monitoring.

To manage the tradeoff between fidelity, computational cost of modeling, and timeliness

of reporting, CAMELIA operates at three levels of fidelity. More precisely, CAMELIA can (1)

discover loop/module-level anomalies immediately, (2) detect basic-block-level control flow

violations and anomalies at the granularity of several instructions very rapidly (after one or few

dynamic instances of the violation are observed) and (3) uncover anomalous execution/event

patterns and even “below noise level” problems (e.g., when a valid instruction is replaced by a

similar instructions) after enough dynamic instances are observed.

The accuracy and fidelity of CAMELIA has been assessed not only against the goals listed

in the DARPA LADS solicitation, but also against information-theoretic limits that have been

derived and refined concurrently with the CAMELIA design.

CAMELIA has a potential to revolutionize security monitoring by eliminating the need for

monitoring-related resources and mechanisms on the monitored device itself, and by preventing

even a full compromise of the monitored device from compromising the monitoring functionality.

We have evaluated CAMELIA at 1ft, 3ft, 10ft, and 600ft distance from the monitored systems for

accuracy, fidelity, and reporting timeliness, relative to the targets specified in the DARPA LADS

solicitation and also relative to the limits derived from the information-theoretic models.

CAMELIA meets and exceeds all targets specified in DARPA LADS solicitation.

3

Approved for public release; Distribution is unlimited.

2.0 INTRODUCTION

Figure 1 illustrates the overall CAMELIA approach that uses the inadvertent EM

emanations of the target system to wirelessly monitor its security. The real-time monitoring parts

of CAMELIA are shown in green and describe tasks T1 and T2. The signals are received using a

sophisticated purpose-designed antenna/probe array. Signals from different antenna/probe

elements are then amplified and processed to identify from which direction the signal is coming,

and beamforming and interference cancellation are applied to enhance the signal from the target

device while suppressing other signals. The enhanced signal is then demodulated and separated by

frequency (and possibly other characteristics) into sub-channels that correspond to different

aspects of monitored activity (processor, memory, etc.). The signal is then subjected to real-time

“spectral monitoring”, where quick analyses are applied to the overall spectrum of the signal and

to the most prominent features in the time-domain signal. The spectral monitoring relies on a

coarse-grain (loop/module level) model of the monitored system's software to identify large

deviations from the program's behavior (e.g., when the permissions control code executes right

after string-copy code in a program where such a transition should not occur). The spectral

monitoring also uses typical spectra (acquired during training) to identify deviations, e.g., when

the time-per-iteration of a loop should be very consistent but the observed behavior contradicts

4

Approved for public release; Distribution is unlimited.

that. Spectral monitoring immediately reports major anomalies that correspond to the

“known/unknown code” level of fidelity described in the DARPA LADS BAA., i.e. when the

observed signal is very unlikely to occur during correct execution in the monitored system. It also

identifies potential anomalies and triggers high-fidelity analysis of the corresponding signal from

the signal buffer.

Figure 1 Camelia design

Shown in blue is the high-fidelity verification that corresponds to tasks T3, T4, and T5:

basic-block-level control flow and confirmation of execution of individual instructions. It is highly

accurate and practically feasible because it does not track execution of instructions and basic

blocks in isolation. Instead, it uses a model of the program and hardware characteristics (both

obtained during training) to continuously maintain a probabilistic model of the software state and

software/system/hardware (SW/Sys/HW) interactions. The model of the software state, for

example, keeps track of the probably/likely recent path through the program, and identifies the

5

Approved for public release; Distribution is unlimited.

possible/likely next-step execution, which allows the feature extraction and matching algorithm to

limit its search space to only those that are possible, and the matching is performed in order of

likelihood. For example, if the most probable “current” execution point is just before entering an

if-then-else hammock, and the “else” side is more likely to be taken, the signal matching is first

attempted against the signal template (from training) that corresponds to the “else” path through

this hammock. The model of SW/sys/HW interactions allows the matching algorithms to recognize

and account for significant events, such interrupts, I/O, cache misses, etc., that may significantly

change the timing and signal shape. This eliminates the need to obtain training data for all possible

combinations of events that may (but need not) occur in a particular part of the code. The

interaction model is also informed by the software model, e.g., it allows the cache-miss-like part

of the signal to be matched as a cache miss only if the program actually contains a memory access

at that point in execution, and it monitors the occurrences of such events against expectations to

allow detection anomalies, such as too many cache misses in the part of the code where cache

misses should be rare. Like the spectral monitoring module, the high-fidelity verification module

immediately reports anomalies for which it has enough confidence. But this module also forwards

statistics of seemingly-normal and mildly-anomalous signal-to-execution matches to the multi-

observation verifier.

This multi-observation verifier T6 (shown in pale red) maintains statistics across multiple

dynamic occurrences for each point in the code and verifies that these statistics match expectations.

6

Approved for public release; Distribution is unlimited.

This allows it to detect small but persistent deviations from expected behavior, e.g., when a single

instruction in the program has been replaced with a very similar one.

In the Section 2, we detail tasks T1-T6 and how are the implemented, and in Section 3 we

present results and discuss outcomes.

7

Approved for public release; Distribution is unlimited.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Task 1.1 - Purpose-Designed Antenna Arrays

In this section, we describe a novel high gain antenna design specifically tailored for long

range EM side-channel detection [1]. Scalability was a key factor so that the detection range can

be extended in a straightforward manner by increasing the number of elements cost effectively.

We have also designed helical antenna array for long range EM side-channel detection which is

described in [2], but is omitted here for brevity.

3.1.1. Planar Antenna Array Design for Long Range EM Side-channel Detection

The proposed antenna consists of two layers of slotted conducting metal discs suspended on

air and placed above the ground plane using teflon screws [1]. The circular discs are designed to

operate in the higher order 𝑇𝑇𝑇𝑇12 mode, this allows for each element to have higher directivity with

a simpler feed network. The screws’ locations correspond to the electric field nulls along the disc

radius. The upper layer is 2×2 array of slotted circular discs electromagnetically coupled by a

lower identical disc which is fed directly by a single coaxial feed. The complete fabrication of the

antenna is done using aluminum sheets and involves no of dielectric substrate. The antenna has a

peak gain of 19 dBi with impedance bandwidth (𝑆𝑆11 ≤ −6 dB) of 6.7%. The antenna is tested for

the application of receiving unintentional EM emanations generated by one or multiple embedded,

8

Approved for public release; Distribution is unlimited.

“smart” electronic systems. Finally, the antenna was used to characterize the complex SNR

behavior of EM emanation detection at a distance.

The antenna is a two layer stacked configuration as shown in Figure2 (a).

 (a) (b)

Figure 2 Antenna geometry (a) side view and (b) top view

The upper layer is 2×2 array of slotted circular discs in 𝑇𝑇𝑇𝑇12 mode, shown in Figure 2 (b),

fed by an identical disc in the lower layer, which is directly fed by coaxial probe. A similar feeding

technique was proposed in [3] where a 2×2 array of rectangular patches was excited by a

microstrip fed and centrally located patch in the lower layer. This technique removes dependency

on feed lines. Here, to avoid feed lines, we use coaxial feed to excite the lower disc. All circular

discs have identical geometrical dimensions. The individual circular disc is loaded with narrow

rectangular slot at the center. Slot loading is used to reduce the high sidelobes in the E-plane

radiation pattern of 𝑇𝑇𝑇𝑇12 mode, as explained and discussed in [4].

9

Approved for public release; Distribution is unlimited.

3.1.2. Design Procedure

The design procedure is described as follows. Based on the peak directivity requirements,

the single element is designed first as shown in Figure 3 (a). In the present case, the slot length is

selected for maximum directivity, which is 13.4 dBi. The corresponding disc radius and slot length,

l, are 20.5 and 11.3 cm respectively. Since it is a narrow slot, the slot width, w, is selected to be 1

cm. The thickness, h, is chosen to be 5 mm. Higher thickness values will result in increase in Side-

Lobe Level (SLL) of the element as explained in [4]. The directivity pattern of the single element

in the E and H-plane and its current distribution is shown in the Figure 3 (b) and Figure 3 (c)

respectively. The current density is higher in the region adjacent to slots compared to the other

parts of the patch as the narrow slot at the center intercepts the flow lines of current and gets

excited. This produces the out of phase electric field at the slot aperture, which leads to sidelobe

cancellation as explained in detail in [4]. The 2×2 array of identical elements is then placed at the

height t above this layer as shown in Fgiure 3 (a). In this case, the t is selected to be 5 mm. The

array spacing dx and dy is chosen to reduce E and H-plane sidelobe and to improve impedance

match (S11≤ −6 dB). Additionally, the parameters of the center disc in the lower level can also be

adjusted to improve the impedance match which also results in the reduced H-plane sidelobe.

10

Approved for public release; Distribution is unlimited.

 (a) (b) (c)

Figure 3 Element design at 1.03GHz: (a) Slot loaded disc, (b) directivity pattern in E and
H-plane, (c) the current distribution of the patch

To complete the design, we investigate the effect of array spacing and positioning of the

center disc on the sidelobes in the radiation pattern. This is required since the element radius is ~

0.7𝜆𝜆0 and hence the minimum array spacing will be greater than 1.4𝜆𝜆0. For the spacing greater

than 1.4𝜆𝜆0, array theory predicts that the sidelobe will be high in the radiation pattern, which

reduces the aperture efficiency and the directivity [5]. In antenna arrays, several methods have

been used in the past for sidelobe suppression [6], [7]. In this design, the side lobe in the E-plane

is suppressed by the slot loaded in the disc. In the H-plane the sidelobe is suppressed by the center

disc.

3.1.3. Element Spacing

To explain how element spacing impacts the sidelobe, we investigate E & H-plane

radiation pattern of 2×1 array and 2×2 array of the element shown in Figure 4 (a), assuming

11

Approved for public release; Distribution is unlimited.

infinite ground plane configuration. Figure 4 (a) & (b) shows the geometry of 2×1 and 1×2 array.

Simulations were performed for the various spacing between array elements for both the

geometries. Current distribution for both array geometries are shown in Figure 4 (c) & (d). For

both elements, the excitation amplitudes are equal with zero phase difference. Current density

scaling is the same as used in Figure 3 (c). It is observed that 2X1 array compared to 1X2 array

has strong current density around the slot edges. The reason for this is the aperture field vector of

the slot, which is in the direction of x-axis, as explained in [14], and hence can have possible

coupling effects in the 2X1 configuration.

Figure 4 (a) & (b) shows the E & H-plane pattern for 2X1 array geometry with element

spacing 𝑑𝑑𝑥𝑥 as parameter. As 𝑑𝑑𝑥𝑥 increases from 1.5 to 2𝜆𝜆0, the first sidelobe in the E-plane

increases. For 1.5𝜆𝜆0, there is one lobe in the visible region while for 1.75 and 2𝜆𝜆0, there are two

lobes. In all cases the minor lobes are 10 dB below the main beam. Figure 5 (b) shows that element

spacing has negligible effect on the H-plane pattern.

Figure 4 (c) & (d) shows the E & H-plane pattern for 1X2 array geometry shown in Figure

4 (b). Compared to Figure 4 (a), H-plane pattern shown in Figure 4 (d), has higher sidelobes since

the sidelobe cancellation effect of slot is less dominant in the H-plane configuration. The first

sidelobe is reduced by ~ 3dB in the E-plane of 2X1 array, due to cancellation effect by slot loading,

as compared to the H-plane pattern of the 1X2 array. Based on this study of how the array spacing

impacts radiation pattern, we chose the value of 1.75𝜆𝜆0. We have also observed in simulations that

12

Approved for public release; Distribution is unlimited.

the selected spacing has a good impedance match in the frequency band of interest. This is also

shown in Figure 4 (a).

 (a) (b) (c) (d)

Figure 4 Array geometry (a) 2X1 array (b) 1X2 array (c) current distribution of 2X1
array, (d) 1X2 array

 (a) (b) (c) (d)

Figure 5 Radiation pattern as a function of array spacing (a) & (b) E & H-plane pattern
for geometry shown in Figure 4 (a), (c) & (d) for the geometry shown in Figure 4 (b)

13

Approved for public release; Distribution is unlimited.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 6 Effect of the center disc on the radiation pattern in (a) 2X1 array E-plane, (b)
2X1 H-plane, (c) 1X2 E-plane, (d) 1X2 H-plane, (e) 2X2 E-plane, (f) 2X2 H-plane, (g) 2X2
array without lower center disc, E-plane, (h) 2X2 array without lower center disc, H-plane

To excite the array, an identical disc is placed at the center of the ground plane, at smaller

height than the upper four discs as shown in Figure 5 (a). Figure 6 shows the effect of the lower

layer center disc on the radiation pattern of the antenna. Effect of the center disc on the radiation

pattern was studied in 2X1, 1X2 and 2X2 array configuration, for the selected element spacing of

1.75𝜆𝜆0. Figure 6 (a) & (b) show the effect in the 2X1 array geometry. Compared to Figure 5 the

sidelobes in the E-plane are reduced. In the H-plane, additional lobe is there in the visible region.

Figure 6 (c) & (d) shows the radiation pattern when the 1X2 array geometry is loaded with center

disc. Compared to Figure 5 (c) & (d), it is observed that sidelobes are suppressed in the H-plane

and in the E-plane additional lobes are introduced with the distorted pattern. Figure 6 (e) & (f)

14

Approved for public release; Distribution is unlimited.

show the radiation pattern of 2X2 array, with center disc loading. For the comparison, the radiation

pattern of unloaded 2X2 array is shown in Figure 6 (g) & (h). Compared to the 2×2 array without

center disc, the presence of the center disc reduces the sidelobe in the H-plane by ~ 3 dB. In the

E-plane, the pattern peak is off the boresight by 2°, but the sidelobes are still ~ 10 dB below the

main lobe.

To make the design practical, the simulations are performed with finite ground plane. We

choose 1.04 m×1.04 m squared ground plane made of aluminum, which resembles the fabricated

antenna in the next section. It was shown in [3] that stacked configuration has wideband

characteristics and the impedance match depends on the overlapping area of the two layers. In the

present design, the additional parameter that can affect the impedance is the lower disc slot length

l. Figure 7 shows the effect of the array spacing and the lower disc slot length on the S11 and the

impedance over the frequency band. Each case displays two coupled resonances which

corresponds to the upper and the lower layer. Figure 7 (a) shows that for the array spacing of

1.75𝜆𝜆0, the impedance match is obtained in the desired band. For closer spacing of 1.5𝜆𝜆0, due to

resonance split around 1.045 GHz, there is a mismatch in the band. Hence the array spacing of

1.75𝜆𝜆0was selected for the design. Once the upper 2×2 layer geometry is fixed, the amount of

coupling depends on the lower disc slot length. For l = 100 mm, the impedance is inductive as

shown in the Smith chart in Figure 7 (c). Increasing slot length to 110 mm results in impedance

match for the whole band, shown in Figure 7 (b). Further increase to 120 mm reduces the input

resistance which results in impedance mismatch.

15

Approved for public release; Distribution is unlimited.

(a) (b) (c)

Figure 7 (a) Reflection coefficient vs frequency with array spacing as parameters (b) Reflection
coefficient vs. frequency and (c) Impedance loci variation with lower slot length as parameter

3.2 Task 1.2 – Automated Discovery of Sub-Channels

In this section, we present a fully automated measurement and analysis method for finding

AM and FM modulated EM emanations [8]. Note that the goal of this work is to develop a

measurement technique that automatically identifies all frequencies at which at least some

information about software activity will leak (the proof is the fact that software activity gets

modulated onto the existing carriers), determine the type of modulation (so that it is easy to

determine type of demodulation needed to extract the information) and determine quality of the

modulated signals (SNR) which will determine if the information extraction will be successful or

not. The proposed measurement method is an important tool for both those who want to

demonstrate attacks or those who want to defend against the attacks because it allows them to

identify mechanisms that lead to EM information leakage.

16

Approved for public release; Distribution is unlimited.

To find carrier frequencies at which at least some information about software activity will

leak we use our SAVAT benchmarks [9] to generate an artificial leakage signal at a specific

“baseband” frequency and for a specific duty cycle and record several spectra, generating a

different baseband signal in each spectrum. It is not surprising that the real alternation frequency

differs from the one set in the benchmarks, because the execution time of a program varies from

run to run and cannot be adjusted precisely. Hence, we first propose a method to estimate the real

alternation frequency, before we can proceed in finding carrier frequencies. Next, we propose a

probabilistic method for separating carrier frequencies from all measured frequencies, then

propose a method for identifying if the carrier is AM or FM modulated. To verify the performance

of our algorithm, we tested it on a laptop, desktop, and smartphone and found that the algorithm

finds the spectral patterns caused by modulated carriers with an accuracy of 99%.

3.2.1 Unintentional FM and AM Carriers in Computer Systems

Amplitude modulations (AM) and frequency modulations (FM) are well-studied and are

used in numerous communication systems. Traditional communications rely on carefully designed

transmit and receive signaling (i.e., carrier and baseband signals) and thoroughly regulated

allocation of the frequency spectrum to optimize communication. In contrast, unintentionally

modulated signals in computer systems are generated by many possible “transmitters.” Note that

many periodic carrier signals in computer systems are generated by digital circuits and clocks, and

therefore have sharp transitions that are best approximated by rectangular pulses instead of the

17

Approved for public release; Distribution is unlimited.

sinusoidal waves used as carriers in communications systems. The spectrum of a pulse train with

an arbitrary duty cycle is equivalent via Fourier analysis to a set of sinusoids with various

amplitudes at fc and its multiples (harmonics). In other words, for each carrier signal generated by

a digital circuit or clock, additional carrier signals will also be present at 2fc, 3fc, 4fc, 5fc, etc. As

the duty cycle of a signal approaches 50%, the amplitudes of the odd-numbered harmonics (fc,

3fc, 5fc, etc.) reach their maximum, while amplitudes of the even harmonics (2fc, 4fc, etc.) trend

toward zero. For a small duty cycle (i.e., < 10%) the magnitudes of the first few harmonics (both

even and odd) decay approximately linearly. Finally, note that these observations imply the

amplitudes of all the harmonics are a function of the duty cycle. If program activity modulates the

duty cycle of a periodic signal while keeping its period constant (i.e., causes pulse width

modulation), all of the signal’s harmonics will be amplitude-modulated. Whether the signal is AM

or FM modulated can be determined by tracking the carrier signal as the duty cycle of the baseband

signal changes. For baseband signals with the highest frequency component much lower than the

carrier frequency, the AM and FM spectra look very similar, but FM carrier shifts in frequency

with different duty cycles, while AM carrier does not shift.

The reception of unintentional modulation “signals” differs from traditional

communication receivers in several ways. Since unintentional signals occur at the frequency of the

unintentional carrier, they are mixed in with all the other noise generated by the computer system

(other clocks and switching noise) and other communications signals. Unintentional signals are

subject to electromagnetic compatibility restrictions which impose a maximum noise power (signal

18

Approved for public release; Distribution is unlimited.

power from our point of view). Therefore, unintentional signals are typically weaker, and may be

diffused across the spectrum by spread spectrum clocking or by using clock sources with inherent

variation such as RC oscillators. Also, since the carriers are typically generated by non-sinusoidal

sources, the carrier signals may have harmonics. Finally, communication signals have direct and

obvious control of the baseband (modulation) signal, while unintentionally modulated signals from

computer systems do not. We may be interested in several different system activities (baseband

signals). For example, a baseband signal may be caused by processor activity and another baseband

signal may be caused by memory activity. In some cases, multiple baseband signals may even

modulate the same carrier. These effects complicate the detection of unintentionally modulated

signals. The presence of noise generated by the system makes it difficult to determine which

signals are AM or FM carriers. Some of the unintentional AM or FM carriers are generated by

spread spectrum clocked signals, making them harder to recognize. Existing methods to find AM

and FM modulation based on its spectral properties (i.e., without knowing the baseband signals)

are not designed to deal with these issues and are not able to identify which carriers are modulated

by a specific system activity.

3.2.2 Creating System Activity at Controlled Frequencies

The first step to finding unintentionally generated signals is to create a simple identifiable

baseband signal. These baseband signals are generated by system activity such as the execution of

particular instructions, memory accesses, etc. While we do not know the exact effect a particular

19

Approved for public release; Distribution is unlimited.

activity will have on a particular carrier’s baseband signal, we can create low frequency falt

variations in a particular activity, and then expect that in aggregate these variations will generate

a low frequency component in the baseband signal at falt frequency.

In [9], we have introduced such microbenchmarks for generating such periodic activity.

Here, we just briefly summarize the approach. The loop beginning on line 2 of Figure 8 performs

one activity (activity X), and the loop beginning on line 8 performs another activity (activity Y).

The outer loop repeatedly alternates activities X and Y, creating periodically changing activity

whose period equals the execution time for one iteration of the outer loop. This alternation period

Talt is the inverse of the frequency falt =1/Talt.

Note that prior uses of similar micro-benchmarks [9] used this alternation to generate a

carrier signal at some chosen frequency fc, while we use this alternation at falt to measure FM- and

AM-modulation of any potential carrier signals intrinsically generated (and emanated) by the

system.

20

Approved for public release; Distribution is unlimited.

Figure 9 Pseudo-code to generate the X/Y alternation activity

It is important to emphasize that while the effect of a single event (i.e. execution of a single

memory access or processor instruction) on the baseband signal is unknown, as long as there is

some difference between the X and Y activities, there will be a signal generated at the frequency

falt and also at some of the harmonics of falt (2falt; 3falt; …). Furthermore, we can change the duty

cycle of the benchmark activity (i.e. (i.e. the percentage of time spent in activity X vs. activity Y)

by changing how long the activity X is executed versus activity Y.

3.2.3 Finding AM and FM Unintentional Carriers in Computer Systems

Here we use the benchmarks described in the previous section to create predictable spectral

patterns in the sideband of any carrier modulated by the benchmark activity. The benchmarks are

run at several different alternation frequencies falt1, falt2, …, faltN , for several duty cycles d1; d2; …;

dm, and every combination of alternation frequencies and duty cycles is recorded K times. The

21

Approved for public release; Distribution is unlimited.

frequency spectrum for each run is recorded, the repeated runs are averaged, and the result we

denote as S(f; falti ; dj), where f is the frequency range at which the spectrum is recorded, falti denotes

the chosen alternation frequency, and dj denotes the chosen duty cycle. This is an important step

to allow robust automated detection of both AM and FM modulations.

To illustrate what measured S(f; falti ; dj) looks like, Figure 10 plots a part of one spectrum

around a carrier frequency at 382 kHz. This spectrum was recorded with falt = 23 kHz, so it shows

a lower and upper sideband around 359 kHz and 405 kHz, respectively.

Figure 11 A measured spectrum S(f; falti ; dj) at a carrier frequency at 382 kHz and a lower

and upper sidebands around 359 kHz and 405 kHz, respectively

22

Approved for public release; Distribution is unlimited.

It is not surprising that the real alternation frequency differs from the one set in the

benchmarks, because the execution time of a program varies from run to run and cannot be adjusted

precisely. Hence, we need to estimate the real alternation frequency falt, before we can proceed in

finding carrier frequencies. First, for every duty cycle, we average spectra with different

alternation frequencies, i.e.,

 (1)

and create new spectra as a difference between the original and averaged spectra, i.e.,

 (2)

This attenuates most spectral features that are not related to modulated signals we are

looking for, while preserving most of those that are activity-modulated.

To find the true alternation frequency, we shift all points in the spectrum Snew(f; falti ; dj) by

+/- falti , and take the pointwise minimum between two shifts i.e. we compute

 (3)

23

Approved for public release; Distribution is unlimited.

Figure 10 plots the spectrum Snew(f; falti ; dj) shifted up by falti = 23 kHz (black square curve)

and shifted down by falti = 23 kHz (red circle curve), their pointwise minimum M(f; falti ; dj) (blue

triangle curve). Also shown (magenta diamond curve) is the pointwise minimum computed in the

same way (shifting by 23 kHz) for another spectrum whose alternation frequency is different (e.g.,

29 kHz). We observe that, when the spectrum contains sidebands that correspond to falti, the shift

in frequency aligns these sidebands at the frequency that corresponds, in the original spectrum, to

the carrier that produced the sidebands (382 kHz in this case).

At points that do not correspond to the modulated carrier or its sidebands, the pointwise

minimum will only have a peak if two prominent spectral features (e.g. two radio unrelated signals)

happen to be separated by exactly 2falti. Finally, when the spectrum is shifted by an amount that

does not match the alternation frequency, the sidebands do not align and the pointwise minimum

is unlikely to have a peak even at the carrier’s frequency.

24

Approved for public release; Distribution is unlimited.

Figure 12 A spectrum Snew(f; falti ; dj) shifted up and down for 23 kHz, the pointwise

minimum between these two spectra, and the pointwise minimum between two spectra with shift

different from falti = 23 kHz

Instabilities in program execution can cause the actual alternation frequency to be different

from the intended one. To find that actual alternation frequency, we compute this minimum-of-

shifted-spectra operation with all frequency shifts that are within 25% of the intended one, in 50

Hz increments. For each of these M(f; falti ; dj) we compute the average across f, and the shift that

produced the largest average it taken as the actual alternation frequency. The intuition behind this

is that shifts that correspond to the true alternation frequency will produce the stronger peaks at

frequencies that correspond to modulated carriers and will possibly have other peaks that come

from aligning unrelated signals. In contrast, incorrect shifts will only have the peaks that come

25

Approved for public release; Distribution is unlimited.

from aligning unrelated signals, but their sideband-induced peaks will be attenuated (or completely

eliminated). Thus the shift that corresponds to the actual alternation frequency tends to produce

more (and stronger) peaks, which increases its average-over-f relative to other shifts.

In our experiments we found that the actual alternation frequency is often 150 to 300 Hz

away from the intended one. This difference may seem small, but some sidebands are sharply

defined, e.g., the peak is only 100 to 200 Hz wide, so use of the intended rather than true alternation

frequency may cause our approach to completely miss the actual sideband signals and thus not

report the corresponding modulated carrier signals.

To find the frequencies of carriers that are unintentionally modulated by program activity,

we perform the following steps for each duty cycle dj. First, for every alternation frequency falti,

where 0 < i < N, the spectrum S(f; falti ; dj) (that corresponds to that alternation frequency) is shifted

by +/- falti to the left and by falti to the right. This creates 2N spectra that all correspond to the same

duty cycle and whose sideband signals are shifted to the frequency of the carrier that produced that

sideband signal. Then, the pointwise minimum among all these shifted spectra is found, i.e.,

26

Approved for public release; Distribution is unlimited.

 (4)

Intuitively, at a frequency that corresponds to a modulated carrier, the sidebands that

correspond to different falt will all align, and the minimum will have a peak. At other frequencies,

the minimum will have a peak only if other stronger-than-usual signals happen to be present in the

original spectra at every one of the 2N positions, which becomes increasingly unlikely as we

increase N. However, it is still possible that other signals happen to align and create peaks in

Mtrue(f; dj). To suppress these peaks, for every alternation frequency, we also compute Mfalse(f; k;

dj) by taking each spectrum (collected with falti) and shifting it by ±𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖+𝑘𝑘≠0 , then taking the point-

wise minimum among such spectra:

 (5)

27

Approved for public release; Distribution is unlimited.

The key property of Mfalse(f; k; dj) is that it is computed in exactly the same way as Mtrue(f;

dj), but the use of incorrect falt causes none of the sideband signals to be aligned with each other.

This is repeated for different non-zero values of k and compute the permutations of falti+k , and we

compute Mfalse(f; dj) as the point-wise average among Mfalse(f; k; dj) across all non-zero values of

k. Figure 11 plots Mtrue(f; dj) and Mfalse(f; dj) for the experiment where there is an activity-

modulated carrier at 382 kHz. We can observe that the Mtrue(f; dj) has a distinctive peak at the

carrier frequency, while Mfalse(f; dj) does not. However, accidental alignment of other (non-

sideband) signals would produce similar peaks in Mtrue(f; dj) and Mfalse(f; dj). Thus we compute a

“modulated carrier score” MCS(f) as the point-wise ratio between Mtrue(f; dj) and Mfalse(f; dj):

(6)

Figure 13 Minimums of shifted spectra, i.e., Mtrue(f; dj) and Mfalse(f; dj), with the carrier

frequency at 382 kHz and the alternation frequency of 23 kHz.

28

Approved for public release; Distribution is unlimited.

Intuitively, at each frequency the value of the MCS corresponds to how much stronger (in

dB) is the signal that corresponds to the sidebands of that (potential) carrier, relative to the signal

that would be computed for that frequency even if no sideband present. To illustrate this, Figure

12 shows the MCS(f) that corresponds to Mtrue(f; dj) and Mfalse(f; dj) from Figure 11.

The MCS(f) shown in Figure 12 has a strong peak that strongly suggests that a modulated

carrier is present at 382 kHz, the MCS(f) varies and has many other, smaller, peaks, so it is not

easy to determine what value of MCS should be treated as the threshold for reporting a modulated

carrier. If the MCS threshold is set to some manually selected value, it will need to be adjusted for

each evaluated computer system, environment in which the experiment is carried out, antenna

position, etc.

Figure 14 Modulated carrier score as a function of frequency for a spectrum with the

carrier frequency at 382 kHz and the alternation frequency of 23 kHz

29

Approved for public release; Distribution is unlimited.

Instead, it is highly desirable to set a threshold in terms of the probability that a reported

carrier is a false positive, and then automatically determine the corresponding threshold for MCS.

To accomplish this, we note that Mtrue(f; dj) and Mfalse(f; dj) should be statistically equivalent for

frequencies hat are not modulated carriers, so for those frequencies the values of MCS(f) should

have a zero mean and a CDF that is symmetric around that mean. In contrast, for frequencies that

correspond to modulated carriers, the MCS(f) will have a bias toward positive values, and the

magnitude of that bias increases as the power of sideband signals increases. Thus, the problem of

deciding how likely it is that a particular frequency has a modulated carrier becomes the problem

of determining how likely it is that the MCS(f) value for that frequency belongs to the positive-

biased “modulated carrier” distribution rather than the symmetric “baseline” (no modulated

carrier) distribution.

Although empirical data for the baseline distribution is not available (the MCS(f) contains

points from both distributions), the baseline distribution can be closely approximated by noting

that 1) the baseline distribution is symmetric around zero and 2) negative values of MCS(f) are

very likely to belong to that distribution. The negative-values part of the baseline distribution is

thus approximated by simply using the negative-values part of the empirical joint distribution,

while the positive side of the baseline distribution is approximated by using the “mirror image” of

the empirical joint distribution. Figure 13 shows the empirical joint distribution and the

approximated baseline distribution.

30

Approved for public release; Distribution is unlimited.

Figure 15 Empirical joint and baseline cumulative distribution functions for MCS score.

It can be observed that the empirical joint distribution has more high-magnitude points than

the approximated baseline distribution. Thus, we can now set the probability-of-false-positive

threshold () to a desired value, e.g., , look up the MCS value that corresponds to

, and report carriers whose MCS is no less than that value. For reported MCSs, we than

read the actual CDF value and report it as the confidence level. For example, for , we

find all MCSs that have value larger than MSC that corresponds to CDF=0.98. Then, for each

MCS that satisfies this criteria, we read their actual CDF value. All values should be larger than

0.98.

Section IV-B described how to identify modulated carrier frequencies for a given duty

cycle dj. To identify if the carrier has AM or FM modulated signal, we observe how the carrier’s

frequency and sideband power change as the duty cycle changes. Note that an amplitude-

31

Approved for public release; Distribution is unlimited.

modulated carrier should have the same frequency for all duty cycles (although the magnitude of

the carrier and baseband signals will vary as the duty cycle changes). For a frequency-modulated

carrier, however, the change in the duty cycle changes the DC-value of the baseband signal, which

results in shifting the frequency of the carrier and its sidebands in proportion to the duty cycle.

Intuitively, if we plot the modulated carrier’s frequency on the Y-axis and the duty cycle

on the X-axis, a horizontal line corresponds to AM, while a line with a non-zero slope corresponds

to FM whose _f corresponds to the line’s slope. To reduce the number of spectra that must be

collected, however, we only get discrete points on this line that correspond to duty cycles used in

the experiments. Furthermore, the AM/FM identification (and the estimate of for FM) relies

on estimating the slope of the frequency-vs.-duty cycle line, so the duty cycles used in the

experiments should not be too close to each other. Finally, the linear fit is imperfect – the actual

duty cycle may differ from the intended one, the empirically determined frequency of the

modulated carrier may contain some error, etc. Thus, the key problem in identifying modulation

is how to group together likely-carrier points from different duty cycles, i.e., for a likely-

modulated-carrier point found for a given duty cycle, determining which likely-carrier points from

other duty cycles belong to the same modulated carrier. Unfortunately, simply using the points that

produce the best goodness-of-fit (e.g., squared-sum-or-errors) for the frequency-vs-duty-cycle

produces poor results when several modulated carriers that do not have a very sharply defined

central frequency are present in the same frequency range. To overcome this, we note that the

32

Approved for public release; Distribution is unlimited.

sideband power produced by a carrier is also a function of the duty cycle, i.e. the points that belong

to the same carrier but with different duty cycles should all have the sideband power

, so their Mtrue(f; dj) should also be proportional to . Thus our

modulation-finding consists of finding, for each likely carrier point, the linear fit (that uses one

point from each duty cycle) that produces the smallest product of the squared sum of error for the

frequency fit and the squared sum of errors for the (Mtrue) fit.

Because the slope of the linear fit is estimated, it is highly unlikely to be exactly zero. Thus

we also determine the 95% confidence interval for the estimated slope, and report the carrier as

AM if this confidence includes the zero value. Intuitively, we report a carrier as FM-modulated

only if there is a high enough (95%) confidence that its frequency change is duty-cycle-induced

rather than caused by other (duty-cycle unrelated) variation in estimated frequencies of modulated

carriers.

3.3 Task 2.1 – Spectral Monitoring for Anomaly Detection

In this section, we describe our new framework, REMOTE (Robust External Malware

Detection Framework by Using Electromagnetic Signals), that is designed to address practical

issues for anomaly detection in resource-constrained devices (e.g., embedded devices, IoTs, CPS,

etc.) [10], [11], [12]. We envision that REMOTE can be used in scenarios where the security of

33

Approved for public release; Distribution is unlimited.

the device is critical, e.g., devices that control critical infrastructures, military systems, hospital

equipment, etc.

3.3.1 Spectral Samples (SS)

At a high level, REMOTE has two phases: training and monitoring. In both phases, the EM

signal is first transformed into a sequence of spectral samples (SS) by using short-time Fourier

transform (STFT), which divides the signal into equal-sized segments (windows), where

consecutive segments overlap to some degree. STFT then applies the Fast Fourier Transform

(FFT) to each window to obtain its spectrum. In our measurements, we use a 1ms window size

with 75% overlap between consecutive windows, which provides a balance between the

computation complexity and frequency/time resolution. The rest of the training and monitoring

operates on this sequence of spectra, where each spectrum (i.e., the spectrum of one window) is

referred to as a Spectral Sample (SS).

3.3.2 Distance Metric for Comparing Spectral Samples

In both training and monitoring, REMOTE will need to compare SSs to each other, and for

that, it requires a distance metric – a way to measure the “distance” between SSs in a way that

corresponds how likely/unlikely they are to have been produced by execution of the same code.

This distance metric should be sensitive to the aspects of the signal that change when executing

different code, but insensitive to aspects of the signal that change between physical instances of

34

Approved for public release; Distribution is unlimited.

the same device or over time on the same device instance. To achieve this, we create a new distance

metric, Clock- Adjusted Energy and Peaks (CAPE).

Based on the insights from our prior work [10], [11], the frequencies of the peaks in the

signal around the clock frequency are an excellent foundation for constructing a distance metric

that is sensitive to which region of code is executing. Unfortunately, our experiments have shown

that the clock frequency can vary over time and among device instances, and a change in clock

frequency also changes the frequencies of loop-related peaks around it. One difference is that,

because the peaks’ frequencies are all relative to the carrier frequency, any shift in the clock

frequency also shifts the frequencies of the loop-related peaks by the same amount. The second

change is caused by the relationship between clock frequency and program performance.

Specifically, as the clock frequency increases, the program executes faster, leading to a lower per-

iteration time T; higher frequency of the loop (), and thus moving the loop-related peaks

away from the clock’s frequency. Similarly, lower clock frequency moves the loop-related peaks

closer to the clock frequency.

Thus, the first step in computing our CAPE distance metric is to, for each frequency f that

is of interest in an SS, compute the corresponding normalized frequency as ,

where fclk is the clock frequency for that SS. This normalized frequency is expressed as an offset

from the clock frequency so that a shift in clock frequency does not change fnorm with it and is

35

Approved for public release; Distribution is unlimited.

normalized to the clock, so it accounts for the clock frequency’s first-order effect on execution

time.

To make CAPE robust to weak signals and/or signals that have no well-defined peaks, we

first consider the overall signal power (sum of magnitudes in the spectrum) of the signal outside

the vicinity of the clock. The power of a poorly-defined peak is spread across a range of frequencies

– visually it is a wide and not-very-tall “hump” rather than a narrow and tall “peak”. When

comparing two SSs that are different but each contain only “humps” and no sharp peaks, if we

only consider whether the SSs have power concentrations at the same (clock-adjusted) frequencies,

the overlap among their “humps” causes these SSs to match much better than they otherwise

should, and this can prevent detection of malware-induced changes in signals.

Moreover, under poor signal-to-noise conditions (e.g., when the signal is received at a

distance) sharp peaks are likely to still stand out of the noise, so due to random variation in noise,

some “humps” end up below the noise level and some do not. For two SSs that should be the same

(except for the noise), this causes poor matches, and this can lead to false positives. Thus, to make

our CAPE distance metric more robust against weak/noisy signals, we use a new insight, called

“non-clock-energy” test, that non-clock power varies very little among SSs that do belong to the

same region, and that increases/decreases in a loop’s overall per iteration time concentrate

less/more power toward the clock frequency in an SS. Therefore, SSs whose non-clock power

36

Approved for public release; Distribution is unlimited.

differs by more than 0.5 dB are considered dissimilar by CAPE, and no further comparison

between them is needed.

If the two SSs pass the “non-clock-energy” test, REMOTE compares them according to

the (clock-adjusted) frequencies of their most prominent peaks. Specifically, we take N highest-

magnitude frequency bins from the spectral sample (SS) that are each (i) not part of the NoiseList,

and (ii) not within D spectral bins of a higher-amplitude spectral bin. The number N is determined

differently for training and monitoring, as will be described shortly. The NoiseList contains

frequencies of signals that are present regardless of which specific region of the application is

executing.

For finding the NoiseList, we record the EM signal several times and average them while

no program is being executed (the system is idle). We then choose 10 random SSs in the recorded

signal, and then for each SS, sort it and find all the spikes that are at least 5 dB above the noise

floor and put them in the NoiseList. We empirically find that choosing 10 points is sufficient to

find all the strong peaks since it can accurately capture the transient behavior of the environmental

noise. It is also important to point that, using this method, our detection algorithm is robust to

interference from nearby devices (that are not identical to the monitored device), as their clock and

other frequently-occurring peaks will end up on the NoiseList. The reason for ignoring D spectral

bins that are too close to even-higher-magnitude ones is that a very prominent peak in the spectrum

typically has “slopes” whose magnitude can exceed the magnitude of other peaks, and we found

37

Approved for public release; Distribution is unlimited.

that REMOTE is more robust when its decisions are based on separate peaks rather than just a few

(possibly even one) very strong peaks and a number of frequency bins that belong to their “slopes”.

Finally, REMOTE combines the information about the frequencies of the peaks in the two

SSs into a single value that represents the distance among the SSs. For each peak in one SS,

REMOTE finds the closest-frequency-peak the other. If the frequency difference is large enough,

the peak votes for a mismatch, and the ratio of the mismatch votes to the number of all (mismatch

and match) votes is used as the distance metric between the two SSs.

3.3.3 Black Box Training

To train REMOTE, signals are collected as the unmodified monitored device emanates

them. However, care should be taken to achieve good coverage of the software behaviors, e.g., by

using the same methods that are used to test program correctness. The problem of achieving good

coverage tends to be easier for many applications in the CPS domain, especially those where

correct operation is critical, because correctness concerns and the need for easy verification of

correct operation motivates developers to produce code that has relatively few code regions, and

with very stable patterns for how the execution transitions between them. In such cases, normal

use of the device is likely to provide good coverage of the application’s code regions after a while.

After signals are obtained and converted into SSs, a key part of training is to associate SSs

with the code regions they correspond to. To achieve this without using instrumentation or other

38

Approved for public release; Distribution is unlimited.

on-the-monitored-device infrastructure, REMOTE relies on a general observation that a given

region of code tends to produce EM signals whose SSs are similar to each other, while the SSs

from different regions tend to differ from each other to various degrees. This observation allows

us to group SSs according to similarity, and for that we use Hierarchical Density-Based Spatial

Clustering of Applications with Noise (HDBSCAN), a technique that performs clustering without

any a priory knowledge about which cluster (region) each sample (SS) corresponds to, and with

no a priori knowledge about the number of clusters (regions). Like other clustering algorithms,

HDBCASN needs a distance metric, and in REMOTE that distance metric is the new CAPE metric,

using N = 10 peaks. Using this variation-robust metric allows training signals to be collected over

time (e.g., over many hours), and/or on multiple device instances.

Because HDBSCAN clustering is based solely on similarity among SSs, its result may not

precisely correspond to actual regions of the code, e.g., one region may produce more than one

cluster if there are several distinct ways in which the region can execute, or two regions may end

up in the same cluster if their execution produces very similar signals. Neither of these possibilities

is a problem for REMOTE, and in fact, they result in improved sensitivity and performance. If

separate clusters for distinct behaviors were forced into a single cluster, the resulting unified cluster

would allow a wide variety of SSs to match - all the valid SS options and also everything that lays

in-between in the distance-space used for clustering. By creating a separate cluster for each distinct

possibility, REMOTE will detect anomalies that produce SSs that are not valid but lay in between

the valid ones. Conversely, when multiple regions are clustered together, they have very similar

39

Approved for public release; Distribution is unlimited.

(practically indistinguishable) signals and it is more efficient and robust to treat them as one

cluster. During monitoring, a Finite-State Machine (FSM) is used to keep track of the current

region of the code. For each test, REMOTE compares the new SS to either the current region or

any valid “next region” that has been seen during training.

3.3.4 Monitoring

During monitoring, REMOTE receives the signal and converts it to SSs in the same way it

was done in training (same window size and overlap). After that, REMOTE can be viewed as a

classifier that places each spectral sample (SS) into either one of the known categories (clusters

identified during training) or into the “unknown” category that represents anomalous behavior,

according to our CAPE distance metric (Fig. 14 shows the flow-chart of REMOTE’s monitoring

algorithm). Specifically, a candidate region is rejected if its distance metric is above 50% (fewer

than half of the peaks match). If all candidates are rejected, the observed SS is categorized as

“unknown,” otherwise it is categorized into the candidate category with the lowest CAPE distance

metric. The number of peaks used for each cluster is no longer fixed at 10 – instead, it is identified

for each cluster during training. We start with ten peaks, but then remove those that occur in fewer

than 10% of the SS in the cluster. If this results in removing all peaks, we still retain the two most

frequently occurring (among SSs from that cluster) peaks. This helps matching accuracy when the

SSs in a cluster have few prominent peaks and a number of very weak peaks – in such cases it is

more robust to use only the overall non-clock energy and the prominent peaks for matching than

40

Approved for public release; Distribution is unlimited.

to use the peaks that may “disappear into the noise” due to changes in distance, antenna position,

etc.

Figure 16 Remote’s monitoring flow-chart

However, if the overall decision to report malware is based on only one SS, brief

occurrences of strong transient noise can result in false positives. To avoid that, REMOTE only

reports an anomaly if N consecutive SSs are classified as “unknown.” The value of N should be

chosen depending on the EM noise characteristics of the environment, but we found that N between

3 and 5 tends to work well in all our experiments. We use N=5 because it biases REMOTE toward

avoiding false positives, while still maintaining an excellent detection latency (N=5 corresponds

to only 1.25 ms detection latency in our setup). An FSM is used to count N, report an anomaly,

41

Approved for public release; Distribution is unlimited.

and to keep track of current valid region of code to ensure that the program follow a correct

ordering of regions.

Finally, we found that in the presence of an OS, interrupts and other system activity that

occurs during an SS can make that SS dissimilar to those from training. For example, an interrupt

that lasts <1ms can affect four consecutive SSs (recall that we use 1ms windows with 75%

overlap), so a naive solution would be to add 4 to N (number of consecutive “unknown” SSs that

are needed to trigger anomaly reporting). Using N = 9 indeed eliminates interrupt-induced false

positives, but also prevents detection of attacks that are brief. Unfortunately, real-world malware

(e.g., the attack on Syringe-pump that will be described in Section 3) can introduce only a short

burst of activity into the otherwise-normal activity of the application. Fortunately, our experiments

indicate that spectral features of interrupt activity are similar to each other, so during training

interrupt activity can be clustered. During monitoring, REMOTE includes these clusters as

candidates, allowing it to tolerate interrupts without becoming tolerant of similar-duration

deviations from expected execution.

3.4 Task 2.2 – Spectral Monitoring for Multi-core Anomaly Detection

In this section, we propose a mixture of Markov and convolutional neural network (CNN)

models, called MarCNNet, to monitor multi-core systems to detect malware [13]. In this

framework, the CNN provides the likelihood of executing any state of any program by exploiting

the features that are learned during the training phase, and the Markov Model monitors programs

42

Approved for public release; Distribution is unlimited.

by investigating the possibility of state transitions. Compared to other CNN models that have the

same procedure for training and testing, these phases follow different paths in MarCNNet to

simplify collection of training signals and decrease complexity of the framework. We propose to

use Markov Model to carry dependency information among paths. States of the model are assumed

to be hot paths or loops, and transitions between any two states are only allowed if the program

follows this path. Since the Markov Model is responsible for tracking execution order, neural

network inputs are assumed to be independent of each other during training. The outputs of the

CNN are used as an indicator of the current state. In the testing phase, based on the likelihood of

states obtained from the CNN, the Markov Model tracks whether the estimate-stream of the CNN

coheres with the allowed transitions. The methodology alerts users if the estimates and

corresponding transitions do not adhere. In summary, the work makes the following contributions:

• Proposes a zero-overhead methodology to profile multicore devices while multiple

programs are executed at the same time.

• Proposes a CNN model that extracts the features of program states and provides

likelihood estimates of each state at a given time.

• Defines a new structure that combines Markov and CNN models to simplify and

decrease the complexity of the training phase of the network.

• Defines procedures for generating training data to mimic multi-core systems by

exploiting signals collected only when a single core is active.

43

Approved for public release; Distribution is unlimited.

• Provides a proof-of-concept implementation of the proposed method to demonstrate its

practicality on various devices.

3.4.1 Emanated EM Signals During Program Execution

Program executions change states of transistors in a processor and yield radiation of EM

signals. The correlation between the executions and transitions is the main underlying reason for

these signals to convey sensitive information. It has been shown that these emanated signals are

modulated by the clock frequency of a device [11], i.e., loop activities in a program generate peaks

around the clock frequency. Therefore, with a proper choice of antenna and a clock harmonic that

diminishes the effect of disruptive signals, it is possible to capture informative signals that are

correlated with the program activities even from a considerable distance [14], [15].

Programs or applications are written to serve a specific task, thereby each task within the

program shows some dependency to others. These tasks can be considered as the hot spots since

execution run-time is mainly spent on these regions. Therefore, we can claim that programs are

combinations of these hot spots, and the execution of each of these regions depends on previously

executed ones. To illustrate the modulation of signals and the domination of hot regions, we

consider the Bit_count benchmark from MiBench suit [16]. The spectrogram of the received EM

signal is given in Fig. 15a when only one core of the device is active. To obtain the figure, we first

demodulate the signal by the clock frequency of the device, then take STFT of the signal and plot

in time. The lighter regions in the figure represent the frequency components that are relatively

44

Approved for public release; Distribution is unlimited.

strong. Here, the most powerful frequency component at the center corresponds to the clock

frequency of the device, while the other strong frequency bins around the clock frequency

represent the modulated frequency components due to looping operations that exist in the

benchmark. The main observation is that the benchmark contains seven dominant regions which

are executed in an order. The frequency components observed in the spectrogram are related to

execution time of a single iteration of a loop. For example, if the iteration takes Talt seconds, we

observe an RF signal component at the alternation frequency, falt = 1/Talt. However, if the iteration

time varies in time due to program activities, we observe a smearing around the expected

frequency, as seen in the first loop of Bit_count.

45

Approved for public release; Distribution is unlimited.

Figure 17 Hot regions for the profiled micro-benchmarks from MiBench [16]

46

Approved for public release; Distribution is unlimited.

Similarly, the spectrogram of the received signal when a single core is running Basicmath

(another benchmark from MiBench) is given in Fig. 15b. This time, four different regions are

observed with non-overlapping frequency components. We also observe that these regions follow

a sequential order such that each hot region has only one path like in Bit_count.

The question here is how emanated signals are composed when multi-cores are active. To

investigate the mixtures of signals while multiple programs are executed at the same time, we

perform an experiment while running Basicmath and Bit_count parallel on different cores of a

device. The spectrogram of the received signal is given in Fig. 16. We observe that the received

signal is the superimposed version of the signals when Bit_count and Basicmath are executed in a

single core with lower signal-to-noise ratio (SNR). Therefore, it is possible to reconstruct the

spectrogram of emanated signals when both cores are active if the relative initialization times of

the programs are known. Note here that a perfect superposition of signals is not possible because

whenever multi-cores are active, it draws extra power that causes a certain amount of decrease in

SNR of the received signals. However, the received signal in Fig. 16 illustrates that it still preserves

the characteristics of both programs. The same frequency components with single-core

measurements are still active and relatively stronger. Therefore, the STFT magnitudes of the

received signals for multi-core devices can be modeled as the summation of STFT outputs of single

core measurements with some additive white noise that represents the extra power drawn by the

device. As long as one core measurements are available for each program, any possible signal

combination can be generated irrespective of the time that programs are initialized. Also, this

47

Approved for public release; Distribution is unlimited.

model simplifies training data collection phase since it does not require performing experiments

by varying initialization times of programs.

Figure 18 Hot regions when both micro-benchmarks running at different cores

3.4.2 Markov Model Based Program Profiling: MarCNNet

In this section, we introduce Markovian Convolutional Neural Network Model, called

MarCNNet, to monitor systems with no overhead and detect malware when injected. In this

section, for the simplicity of discussion, we consider a device with two cores and the following

programs: Bit_count and Basicmath.

48

Approved for public release; Distribution is unlimited.

Remembering that execution of a program follows a path, we first investigate the

spectrograms given in Fig. 15a and Fig. 15b. For both cases, hot paths dominate the run-time of

the programs and demonstrate a similar pattern during a loop execution. These loops can be

considered the states of a given program as they activate distinct frequency components which

could be the first candidates to reveal the current state. Moreover, these distinct features follow an

order/path that is defined by the program. To represent this dependency among hot regions, we

propose utilizing Markov Models. The states of the model are considered as hot regions, and

transitions among states are only allowed if there exists a branching operation that enables

consecutive execution of corresponding hot regions.

The state transition diagrams of Markov Models for both benchmarks are given in Fig. 18.

As given in the figure, the states of each benchmark depend only on the previous hot region,

meaning that there is only one path from each state for these benchmarks. Please note that these

benchmarks are state-of-the-art and the proposed model can track a program with many branching

operations hence more complicated Markov Models.

Figure 19 Markov models representing the execution of benchmarks

49

Approved for public release; Distribution is unlimited.

The model is designed to have N parallel units under the assumption that the system is

running N sets of programs. However, the question is how to combine the CNN with Markov

Models. Although the CNN can classify the inputs by extracting the distinctive features, it does

not consider the dependency among its seemingly-independent inputs. To address this dependency,

we exploit Markov Models as the state monitoring machine. In other words, the CNN is considered

as the likelihood estimator of the current state of a given program and the Markov Model behaves

as the inspector of state transitions. The Markov Model is responsible for warning the system that

there could be an anomaly. Therefore, the combination of these two models provides a tool for

monitoring systems against malware.

After having a model to represent the dependency of the execution paths, the question is

how to identify the current execution point of a given program. Please remember that hot paths are

generally a result of looping activities within a program. Assuming each iteration of the loop takes

equal time to execute, we expect that the same frequencies are activated until the end of the loop.

However, the execution times of software activities vary, which causes shifts in the frequency

domain [17]. To be able to deal with problems that arise due to working on multi-core systems and

the spread of the frequency components due to execution time variation, we use a convolutional

neural network, which has better built-in invariance to local variations. Convolutional neural

networks are generally used for image, speech and time series, and the structure of the overall

model is important to achieve better true classification rates.

50

Approved for public release; Distribution is unlimited.

The proposed model, MarCNNet, is given in Figure 19. The model comprises N parallel

units which correspond to the N different programs that are monitored. The detailed CNN model

at each branch is given in Figure 19. Each of these branches contain:

• 3 convolutional layers,

• 3 dense layers,

• 1 output layer whose size changes based on the number of states of the corresponding

program.

After the first and second convolutional layers, we apply max-pooling operations with a

stride of 5 and a kernel size of 10. The kernel sizes of the convolutional layers are 55, 35, 15,

respectively. We also utilize dropout layers before each convolutional layers with a dropout rate

of 0.05. ReLU activation function is exploited at each layer except the output layer. We exploit

cross entropy loss function which is defined as

 (7)

where class id is the state label of the considered training signal and o is a vector containing

the outputs of the neurons at the output layer. We analyze the model with various hyperparameters,

i.e. # of layers, stride, etc., and come up with the parameters given above. However, we do not

claim that this model is the optimal model because there are infinitely many options for the model

selection, yet the proposed CNN model extract features that are distinctive to profile a system.

51

Approved for public release; Distribution is unlimited.

Figure 120 Convolutional neural network model to track N different programs

Figure 21 Detailed convolutional neural network model for the branches

3.4.3 Input Signal and Training Phase

In this section, we first describe the input signal that is fed to the neural network, and then

explain the training phase of the overall framework that extracts and learns the distinctive features

of “hot” paths of each program. These learned features of programs constitute the main structure

of the profiling scheme by providing the matching probabilities of testing signals.

52

Approved for public release; Distribution is unlimited.

Monitoring devices in real-time with high sampling rates results in very large input data

dimensions and requires preprocessing before getting fed to the neural network. In addition, the

measured signal is corrupted by non-relevant activities and this corruption should be minimized

for accurate program tracking. One straightforward approach is to use time series samples with a

specified window. However, because of the high sampling rates of the measuring devices (which

increases the dimension of the input layer), interrupts and corruption due to environmental signals,

this method can return in lower accuracy rates, hence false malware alert [18]. Moreover, this

approach gives a larger number of parameters to optimize. To reduce the size of the data and

increase the SNR level, we utilize the first phase of the Two-Phase-Dimension-Reduction

methodology proposed in [19]. This method first calculates the STFT of the signal and averages

the magnitudes of STFT outputs. For a better explanation of the method, let be the STFT

window size, be the number of non-overlapping samples at each STFT calculation, be the

number of STFT operations to average, and be the extracted features that are inputs to the

neural network. The features can be written as

 (8)

 (9)

53

Approved for public release; Distribution is unlimited.

where is the measured raw signal. To generate [k], the number of time series

samples used in the framework is where

Therefore, the size of the input vector for the neural network reduces to from , which

helps to:

• Improve SNR by diminishing the power of unrelated activities,

• Reduce the number of parameters of the neural network, hence decrease the

complexity.

However, we do not provide to the neural network in linear domain because most of

the power is dominated by the DC component and other frequency components have relatively

small amplitude which can results in floating errors. These frequency components can be

disregarded while training the network, hence a normalization operation is required to pay more

attention on each individual frequency component. The normalization is done by converting the

input vector into dB domain as The normalization is generally done by

dividing the signal by its mean and standard deviation or subtracting the mean from the input

vector. However, converting the input into the dB domain introduces extra non-linearity to the

problem, hence increases the accuracy of profiling.

The proposed neural network has many parallel units that are independent of each other

(there is no interconnection among different units). Therefore, in the training phase, the framework

can be divided into N different CNN models, and treated as separate problems. However, the

54

Approved for public release; Distribution is unlimited.

question is how to obtain training signals to feed the neural network since the collected training

signals correspond to single core measurements. The process to generate training signals with the

available one-core measurements representing various scenarios is given in Algorithm 1. The

possible scenarios and corresponding strategies can be listed as follows:

STRATEGY - 1: The training signal is kept the same assuming that the test signal is

collected when only a single core is active with the same noise figure.

STRATEGY - 2: The training and testing data can be collected in different environments

with different noise figures. To make the proposed model more resilient to noise due to

environment, we add additive noise to the input of the CNN.

STRATEGY - 3: This mimics the behavior of a multi-core signal that has the same noise

figure with the collected training signals. It superimposes signals from different states of different

programs by employing random weights to consider the destructive/constructive effect of multi-

core signals on each other. This approach decreases the time required to collect experimental data

because it does not require performing experiments with random initialization of program

combinations. Another benefit of such a combination is that when more than one program is

running, the neural network can still be able to monitor the system by producing a more confident

estimate.

STRATEGY - 4: This strategy is considered to reflect the scenario that multiple cores are

active, and the test signal is measured in an environment with a different noise figure. Therefore,

55

Approved for public release; Distribution is unlimited.

to consider such a scenario, we combine STRATEGY - 2 and STRATEGY - 3. Therefore, the

generated input is the noisy version of the weighted sum of different training signals.

After establishing such a training procedure, the CNN model needs to be trained to learn

the weights of the layers by applying backpropagation algorithm. Please note that we do not

consider the Markovian structure of the problem in the training phase of the CNN. In other words,

the training is performed by ignoring the Markov part of the proposed framework. The Markov

Model is exploited in the testing phase while we profile the system.

56

Approved for public release; Distribution is unlimited.

Table I Description of Algorithm 1

3.4.4 Testing While Multiple Cores Are Active

57

Approved for public release; Distribution is unlimited.

In this section, we introduce our profiling procedure to detect malware. Although the goal

is to alert malware, we can extend it further to identify the program which has the malware. In

other words, the primary goal of the paper can be restated as malware detection irrespective of the

program and the ultimate goal is as detecting which program contains malware irrespective of the

number of active cores and programs.

However, multi-core activity causes some drawbacks as opposed to single-core. These

drawbacks can be listed as follows:

• Some frequency components can be activated by several cores at the same time and

this can result in misclassification and/or false malware alert.

• Activating more than one core causes extra power consumption, thereby increasing

white noise signal power. This decreases the SNR of the received signal.

When the malware affects all spectrum, the proposed framework could not identify which

program contains malware. However, it still alerts malware because the malware signal distorts

the features that all parallel units of the CNN promote. Therefore, once malware is detected and

the program with the malware could not be identified, these programs can be executed in a single

core to reveal the program with malware.

We summarize the profiling procedure in Algorithm 2. The main intuition behind the

algorithm is that the program has to follow an order to execute the states (hot regions) of the

58

Approved for public release; Distribution is unlimited.

program. Therefore, even if some neurons rather than the expected neuron produce more powerful

outputs, we still choose the expected one as long as the value of this neuron is larger than the given

threshold. Note that we do not apply any operation to the output layer, i.e., softmax, etc. As an

example, we provide output layer values for two states in Figure 20. We only demonstrate these

two states for illustration purposes and a similar pattern is obtained for other states as well.

Whenever a state is activated, the value peaks at the neuron for the corresponding state and the

outcomes for the activated regions are above some threshold. Therefore, we can claim that the

program is in a state at a given time if the transition complies with the Markov Model and the

throughput is larger than a given threshold. The false firings can be a result of another unrelated

activity distorting the actual signal. The switching occurs only if the current state cannot pass

beyond the threshold, i.e. there is another state whose value is larger than the threshold and

transition from the current state to this state is possible.

Figure 22 The values of output layers for the states 3 and 5

59

Approved for public release; Distribution is unlimited.

Because of other computer activities that stall the execution of monitored programs, the

CNN output cannot provide accurate estimates and the Markov Model can alert false positives.

Although false positives are not as critical as false negatives, they still increase the maintenance

cost of the system. Therefore, the algorithm defines two parameters: tM and tS. tM is the mimimum

time that the Markov Model needs to report untrusted estimates before announcing the malware.

tS is the minimum time that each state takes. Utilization of these parameters avoids inaccurate

transition of states and a false alarm because they prevent inaccurate transitions due to misleading

activation of neurons by other software activities. Note here that these parameters also define the

sensitivity of the anomaly detection framework. Therefore, they have to be selected cautiously to

prevent many false positives/negatives.

60

Approved for public release; Distribution is unlimited.

61

Approved for public release; Distribution is unlimited.

3.5 Tasks 3-5 Basic Block Tracking

In this section we propose TESLA – program Tracing through Electromagnetic Side-

channeL Analysis [20]. TESLA exploits device’s electromagnetic (EM) emanations to reconstruct

detailed (basic-block-level) execution path with high accuracy. For this, TESLA has to overcome

the following challenges: 1) train a signal emanation model that associates signal patterns (or

signatures) with code segments or sub-paths, and 2) represent the test signal using such signal

patterns to reconstruct the program execution path. Specifically, we use a two-step training process

that exploits instrumented training to annotate the un-instrumented training signals and identify

which signal snippets correspond to which code segments. We also propose a novel signal

matching technique that efficiently establishes correspondence between the test signal and the

training signals, and exploit this signal correspondence to reconstruct execution path.

The main contributions of this papers are:

• TESLA - a novel framework for zero-overhead and noninvasive program tracing.

• A training process that exploits instrumented executions to annotate un-instrumented

training signals.

• An efficient signal matching algorithm that establishes correspondence between the

training and the test signals and reconstructs the execution path based on the signal

correspondence.

• Empirical evaluations that demonstrate that (1) TESLA achieves high accuracy, and the

predicted timestamps are highly precise (2) TESLA can monitor devices with fast

62

Approved for public release; Distribution is unlimited.

processors and operating systems, and (3) TESLA is able to monitor devices from 1 m

distance.

Figure 23 Overview of the TESLA execution path reconstruction framework.

TESLA provides non-intrusive and zero-overhead program tracing by monitoring the EM

side-channel signal. A high-level overview of TESLA is demonstrated in Figure 21. In the training

phase, TESLA first executes an instrumented version of the program, and records the

corresponding EM emanations. The instrumented program also outputs a marker sequence and

their execution timestamps that indicate the program execution path. TESLA, next executes an un-

instrumented (unaltered) program, and compares the un-instrumented EM signal with the

instrumented EM signal to map (un-instrumented) signal fragments to the underlying program sub-

paths. We call this mapping Virtual Marker Annotation, as it mimics the markers, however,

without any code instrumentation. This process also exploits instrumented markers and timestamps

63

Approved for public release; Distribution is unlimited.

for efficient and precise signal mapping. Next, in the testing phase, TESLA monitors the EM side-

channel signal caused by the execution of the vanilla (i.e., un-instrumented and unaltered) version

of the program. TESLA then matches the test signal with the training signals and exploits virtual

markers to reconstruct the program execution path. In the following sections, we explain the

different steps of TESLA in detail.

3.5.1 Signal Pre-processing: Amplitude Demodulation

To monitor the program execution, TESLA first receives the emanated EM signal through

an antenna, performs amplitude demodulation of the received signal, and then digitizes the

demodulated analog signal using an analog-to-digital converter. The digitized signal is next scale

normalized before any further signal analysis. These pre-processing steps are applied to both

training and testing phases.

We have demonstrated that embedded devices emanate amplitude modulated signals at the

device’s clock frequency [8], [9]. At each processor cycle, the CPU executes instructions, and thus,

changes the states of its internal digital circuits (i.e., switches on and off). This causes an

instruction dependent current at the CPU clock frequency. Here, the CPU clock acts as the carrier,

whose amplitude (i.e., the pulse shape) is modulated by the variations of the executed instructions

[21]. As the current flows within the processor, and through the device’s printed circuit board

(PCB), the device acts as an unintentional and inefficient antenna, and emanates amplitude

64

Approved for public release; Distribution is unlimited.

modulated EM signal [22]. Thus, to monitor program execution, we demodulate the received

signal r(t) at CPU clock frequency fc.

 (10)

Here, xa(t) is the amplitude demodulated analog signal, and t denotes the time. The

demodulated signal xa(t) is then passed through an anti-aliasing filter with bandwidth B, and

sampled at a sampling period Ts.

 (11)

Here, xd(n) denotes the sampled signal at sample index n. The anti-aliasing filter cancels

unwanted signals with frequencies beyond . Note that, the sampling period Ts is determined

by the well-known Nyquist criterion . Next, we scale normalize xd(n).

 (12)

Scale normalization ensures that the system is robust against changes in amplitude of the

EM signals (e.g., due to change in the antenna’s distance, position, etc.). The scale normalized

signal x(n) is then used for further signal analysis by TESLA in the training and testing phases.

65

Approved for public release; Distribution is unlimited.

3.5.2 Instrumented Training

TESLA is first trained with instrumented program executions and their corresponding EM

emanations. We execute an instrumented version of the program, in which the source code is

instrumented by inserting markers (i.e., special probe functions) at selected program locations.

Each marker has a unique identification number (ID) that identifies its position in the program’s

control-flow-graph (CFG). The marker function execution records the marker ID along with the

execution timestamp. Thus, the markers perform as program execution checkpoints that partition

the CFG into smaller code-segments which we refer to as marker-to-marker code-segments or sub-

paths.

We insert these markers in strategic program locations. The marker insertion is dictated by

the following criteria: (1) any program execution control-flow path must be uniquely and

unambiguously represented by a sequence of marker-to-marker sub-paths, and (2) all marker-to-

marker sub-paths must be acyclic and intra-procedural. Based on these criteria, we inserted

markers in the following code locations: entry and exit nodes of functions, loop heads, and target

nodes of go-to statements.

CFG partitioning helps to provide training coverage for program execution. Specifically,

any practical program has a large number of feasible program execution paths. In fact, due to cyclic

paths in CFG, programs can have infinite number of unique execution paths. Hence, it is neither

practical nor possible to provide training for all unique execution paths for any practical program.

66

Approved for public release; Distribution is unlimited.

However, the markers enable us to represent any execution path as a concatenation of marker-to-

marker sub-paths. Thus, instead of providing training for all unique execution paths, we provide

training that covers all marker-to-marker sub-paths. Note that the number of marker-to-marker

sub-paths is limited and can be exercised using a relatively fewer number of strategic executions.

The markers also enable us to annotate the monitored EM signal. The marker execution

timestamps help to establish a correspondence between executed code segments (i.e., marker-to-

marker sub-paths) and the signal fragments they generate. It is important to emphasize that while

the markers provide an abstract partitioning, the program execution (for both training and testing)

follows a single contiguous trace (from program’s start to end) and generates a continuous EM

signal. Consequently, it is not visually identifiable that which marker-to-marker sub-path

generated which part of the emanated signal. So, we use the marker execution timestamps to

annotate the start and the end of each marker-to-marker sub-path in the monitored EM signal.

At the beginning of the program execution, we reset the processor’s Time Stamp Counter

(TSC) to zero. The markers record the TSC values as timestamps, which then indicate the time-

interval (in clock-cycles) from the program’s start. We convert these timestamps to sample-index

using the following equation.

 (13)

67

Approved for public release; Distribution is unlimited.

Here, n indicates the sample-index corresponding to the timestamp t, fs is the sampling rate

of the monitored signal, and fc is the clock frequency of the monitored CPU. The rounding

operation ensures that the resultant n is an integer value.

We also identify the program’s start (i.e., sample-index n = 0) in the signal. To facilitates

the automatic detection of program’s start (shown in Figure 22), we insert a for-loop just before

the beginning of the program execution. The for-loop executes a periodic activity (e.g., increments

a loop counter variable) and generates a periodic and identifiable signal pattern. End of this

periodic pattern indicates the end of the for-loop (i.e., the start of the program). Furthermore, at

the beginning of the program execution, the program is loaded into the system memory. This leads

to memory access, which in turn stalls the processor and causes a dip in the signal amplitude [23].

We identify this transition (from the end of for loop to the beginning of program execution) when

the moving median of the signal drops below a predefined threshold (as shown in Figure 22). This

acts as the reference point (i.e., sample-index n = 0). All markers are then annotated according to

their sample-indices.

68

Approved for public release; Distribution is unlimited.

Figure 24 Automatic detection of program’s start: the end of the periodic pattern (for-loop)

indicates the program’s start. We identify this when the moving average of the EM signal drops

below the threshold

Figure 24 shows an annotated instrumented signal with each marker represented by a

vertical red line. Markers m0, m1, m2, and m3 are placed at sample-index n0, n1, n2, and n3

respectively. The marker ID sequence (e.g., m0, m1, m2, . . .) indicates the program execution path,

while execution timestamps or sample-index sequence (e.g., n0, n1, n2, . . .) identify the start/end

of the marker-to-marker code-segments. Thus, marker annotation establishes a correspondence

between code-segments and emanated EM signal snippets. For instance, in Figure 24, the signal

snippet between sample-index n0 and n1 corresponds to the execution of the code-segment or

subpath between marker m0 and m1.

69

Approved for public release; Distribution is unlimited.

Figure 25 Markers (vertical red lines) are placed on the signal according to their execution

timestamps. The signal snippet between two consecutive markers corresponds to the EM

emanation from the marker-to-marker code-segment

While the instrumented training helps us to partition the CFG and to annotate the signal,

the instrumentation alters the original signal emanation patterns. Thus, the instrumented training

signals and corresponding signal emanation models cannot be used in the testing phase, in which

the device executes a vanilla version (i.e., unaltered and un-instrumented) program. Specifically,

the instrumentation adds overheads to the original program (i.e., function calls that record marker

ID and execution timestamps). The execution of these overhead codes (i.e., marker functions)

70

Approved for public release; Distribution is unlimited.

requires additional computation (and computational time), and in turn, causes extraneous EM

emanations that are irrelevant to the original program.

To evaluate the impact of instrumentation, we investigate the EM signature of the marker

functions. We identify the marker functions in the instrumented signal using their timestamps. We

then crop out and compare these signal snippets. Figure 24 overlays 100 signal snippets

corresponding to the marker function execution. We observe that the marker functions emanate

very similar signal patterns. This is expected as the marker functions execute the same code

segment. However, the beginning and the end of the marker signals demonstrate a marked

variability. This is due to the microprocessor’s instruction pipeline architecture that overlaps

multiple instructions during execution. Thus, the processor’s EM emanation at any instance

depends on all instructions that are moving through different stages of the pipeline, rather than just

one single instruction. Consequently, the execution of the same marker function may demonstrate

signal variability towards the beginning and the end of the function call depending on the variations

in the preceding and the following code segments (i.e., other instructions in the pipeline).

Likewise, the marker functions themselves also affect the EM emanations of the adjacent

code segments. In the instrumented execution, all marker-to-marker code-segments are separated

by marker functions. As such, the EM emanation patterns from the code-segments are altered at

the boundaries due to the “cross-over” effect from the marker functions. For larger code segments

(e.g., consisting of a few hundred instructions), the duration of the emanated signal is much larger

71

Approved for public release; Distribution is unlimited.

compared to the altered boundaries. Thus, the impact of the instrumentation is trivial. However,

for smaller code segments such as basic blocks consisting of only a few instructions,

instrumentation can alter the overall signal emanation pattern significantly. Thus, cropping out the

marker signal-snippets from the instrumented signals would not replicate the un-instrumented

signals. Therefore, we exploit un-instrumented executions to create better signal emanation model.

Figure 26 EM signals corresponding to marker function execution

3.5.3 Uninstrumented Training

TESLA is next trained with uninstrumented program executions. However, before we can

use the uninstrumented training for program execution monitoring, we must first annotate the

signal. Unlike the instrumented executions, the uninstrumented executions do not have markers or

72

Approved for public release; Distribution is unlimited.

timestamps. Thus, we cannot directly annotate or identify which signal snippet corresponds to

which code segment. Instead, we compare uninstrumented execution with the instrumented

execution to identify and demarcate the marker-to-marker code segments in the signal. We call

these demarcations “virtual markers” as they play the same role as the marker functions, albeit,

without adding any overhead code or altering the original program or its signal emanation patterns.

Virtual Marker Annotation: In the instrumented execution, code segments are separated

by marker functions. Each marker function execution records a pair of information m and t, where

m represents the marker ID that indicates the execution point in the CFG, and t is the execution

timestamp. We then convert the timestamp t to its equivalent sample-index n (using equation 13).

If the program executes k marker-to- marker code-segments, the instrumented execution records a

sequence of k + 1 markers (including the starting and the ending markers). Thus, instrumented

execution outputs a maker ID sequence and corresponding sample-

index sequence , with M uniquely identifying the program execution path,

and N indicating which signal snippet corresponds to which code segment. Thus, the task of virtual

marker annotation is to generate marker ID sequence and sample-index sequence for the

uninsrumented training signal, without actually using instrumentation or marker functions. To

annotate the virtual markers, we execute the instrumented and the uninstrumented programs with

the same input. Thus, the executions follow identical paths through CFG (i.e., execute the same

marker-to-marker code segments in exact same order). This ensures the marker ID sequence is

73

Approved for public release; Distribution is unlimited.

identical for instrumented and uninstrumented executions (i.e.,). However, due to the

overhead computations (i.e., marker functions), the timestamps or sample-indices for the virtual

markers are significantly different (i.e.,).

To estimate the virtual marker sample-index sequence , we compare the uninstrumented

and instrumented EM signals (Figure 25). We notice that the execution of the same code segment

(e.g., m0-m1-m2) requires more computational time in the instrumented version due to the marker

function overheads. Thus, we estimate the sample-indices for the virtual markers by adjusting for

the overhead computational time using the following equation

 (14)

Here, and indicate the sample-indices for the (i-1)-th and i-th virtual marker in

the uninstrumented signal, and indicate the sample-indices for the (i-1)-th and i-th

marker in the instrumented signal, and noh is the overhead computational time (in samples) for the

marker function execution. Thus, () is the overheadsubtracted execution time

for the i-th code segment. Note that, sample-index (indicating the starting point of the

program), and we iteratively estimate .

74

Approved for public release; Distribution is unlimited.

While Equation 14 gives a good initial estimation for the virtual marker annotation, it does

not account for the execution-to-execution hardware variabilities such as cache hits or misses that

may lead to variabilities in computational time. To mitigate this issue, we fine-tune the initial

sample index estimations by matching uninstrumented signal with its instrumented counterpart.

First, we identify the signal snippet corresponding to a given code segment in the

instrumented signal using its timestamps.

Let x(n) be the instrumented signal with n indicating its sample-index. Thus, the signal

snippet between sample index and corresponds to the i-th code segment (i.e.,

the subpath between markers). We then exclude or crop-out the first noh samples

from this signal snippet as they correspond to the marker function not the original code segment.

In Figure 25, the dotted lines indicate the correspondence between the uninstrumented and

instrumented signals. Thus, this overhead-subtracted signal snippet acts as the EM signature

or template for the code segment. We search for this signal template by sliding it across the

uninstrumented signal . We limit our search within samples of the initial estimations

(i.e., between sample-index). This makes the search

computationally efficient, and also helps to avoid false signal matches. At each search position,

we compute the Euclidean distance between the template and the uninstrumented signal. We then

choose least Euclidean distance match for updating the initial estimations

75

Approved for public release; Distribution is unlimited.

 (15)

Figure 27 EM signals corresponding to the uninstrumented (top) and the instrumented

(bottom) program executions. The dotted lines indicate the correspondence between the

uninstrumented and the instrumented signal

76

Approved for public release; Distribution is unlimited.

Here, is the Euclidean distance between the template and the uninstrumented

signal , and l indicates the shift from the initial estimated . Thus, l is the shift

corresponding to the best match. Finally, we update initial estimated using the following

equation

 (16)

This iterative process is depicted in Algorithm 1.

3.5.4 Program Execution Monitoring

To reconstruct the program execution path, TESLA compares the device’s EM emanation

with the (uninstrumented) training signals and predicts the control-flow execution path. The path

prediction involves two steps. In step 1, we match the monitored signal with the training signals

77

Approved for public release; Distribution is unlimited.

to establish a signal correspondence. In step 2, we exploit this signal correspondence to predict

program execution path by using the training signal annotations (i.e., the virtual markers). We

discuss these steps with further details in the following paragraphs.

Signal Matching: To establish signal correspondence, we match fixed-length windows

from the monitored signal against the training signals, and then adjust the window-size according

to the signal similarities. The signal matching process is demonstrated in Figure 26. First, we

extract a fixed-length initial window W of size L from the monitored signal. We then slide W

across all training signals to find the best (i.e., the least Euclidean distance) match. This establishes

a window-to-window signal correspondence (shown with a dashed arrow in Figure 26). Next, we

compare the samples that follow these windows. In Figure 26, the initial window and its

subsequent samples are overlaid on the matched window and its subsequent samples using red

dots. We then iteratively extend the signal correspondence as long as the overlaid monitored signal

is similar to the underlying training signal. Specifically, in each iteration, we compare the D

subsequent samples and compute the sample-to-sample squared difference. If the mean squared

difference is below a predefined threshold , we update the matched window size: L = L + D,

and keep comparing the next D samples. Otherwise, we terminate the window extension process.

We then again extract the next unmatched window from the monitored signal, match it across all

training signals, and adjust the window-size. This process goes on until we establish signal

correspondence for the entire monitored signal.

78

Approved for public release; Distribution is unlimited.

Figure 28 Signal matching process: dashed arrow indicates the correspondence between

fixed-length windows in monitored and training signals. Window size is extended based on signal

similarities, up to the point where the training signal (blue line) starts to deviate significantly from

the monitored signal (overlaid red dots).

This approach for signal matching is computationally more efficient than that of multiscale

signal matching, in which multiple windows of different sizes are simultaneously matched against

the training signals. In contrast, we initiate the search using a small fixed-sized window, and then

gradually extend the window size. Furthermore, the time complexity for the window search is

directly proportional to the window size L. Thus, smaller window leads to faster search. However,

if the window is too small, the match becomes unreliable. Therefore, in our experiments, we

79

Approved for public release; Distribution is unlimited.

choose L = 64. In addition, smaller values for D enable finer adjustment of the window size.

However, too small a value for D may lead to early termination of the window extension due to a

few noisy samples. In our experiments, we use D = 8.

Path Reconstruction: We next exploit the correspondence between the monitored and the

training signals to reconstruct the execution path. Figure 27 demonstrates the path reconstruction

process with a simplified example. On the left (Figure 27a), we have the program CFG where the

nodes represent the markers and the edges represent the marker-to-marker subpaths. The training

signals and the monitored signal are shown on the right (Figure 27b). The (virtual) markers are

annotated on the training signals with vertical black lines, and indicate that training signal 1

corresponds the program path , while training signal 2

corresponds to . Note that, for this simple CFG, these two training

executions are sufficient to provide coverage for all marker-to-marker subpaths (i.e., edges on the

graph). However, most applications often require a large number of executions (e.g., hundreds or

even thousands) for high code coverage.

Furthermore, we indicate the correspondence between the monitored and the training

signals using color-matched windows and dashed arrows. For instance, the red windows in the

training and the monitored signals demonstrate similar signal patterns, and so do the green

windows. This signal correspondence enables us to reconstruct the monitored signal by

concatenating matched-windows (e.g., red and green windows) from different training signals.

80

Approved for public release; Distribution is unlimited.

More importantly, the signal similarity or correspondence implies that the matched windows

correspond to the same program subpath. Thus, we reconstruct the program execution path for the

monitored signal by concatenating the program subpaths corresponding to the matched training

windows. For instance, the red window (in training signal 1) corresponds to the program subpath

, and the green window (in training signal 2) corresponds to the program

subpath . Therefore, we concatenate these subpaths to reconstruct the execution

path. In Figure 27, the reconstructed execution path () is indicated

with dashed vertical lines.

Figure 29 Execution path reconstruction exploiting signal correspondence between training

and test signals

81

Approved for public release; Distribution is unlimited.

3.6 Task 6 Single Instruction Tracking

To enable instruction-level tracking when noise is present, we propose a new framework:

PITEM (Permutations-based Instruction Tracking via Electromagnetic Side-channel Signal

Analysis) [24]. This framework consists of two major steps: 1) identifying groups of instructions

that are referred to as instruction types that have similar EM signatures, 2) tracking all possible

orderings, i.e. permutations, of these instruction types and therefore, monitoring program flow at

instruction type granularity. By generating all possible permutations of the instruction types, we

generate instruction sequences systematically and the EM signatures for the sequences address the

pipeline effect to a great extend as they represent the overall EM emanations for longer periods of

time. Also, this method is not limited to devices with lower clock frequencies. Therefore, this

framework is applicable in program activity tracking applications even for devices with complex

processor architectures and higher clock frequencies.

Furthermore, this framework can be used in finer granularity malware detection

applications. By using the permutations as reference signals, modifications that are made at

instruction level can be resolved. In applications where the program is expected to execute one of

the allowable instruction sequences, this technique can determine any unexpected instruction

executions and resolve at what point the modification has been made. Note that, unlike EDDIE

[10] and Remote [12], this method does not rely on per-iteration time of loops and it can detect the

changes when the ordering of the instructions are changed. The malware detection performance of

82

Approved for public release; Distribution is unlimited.

PITEM is not tested on a real-life malware application, but the ability to resolve different orderings

of instructions indicates its potential to finer-granularity malware detection application extension.

To show the feasibility of the proposed method, we perform testing on two devices with

different architectures and operating clock frequencies. These devices are Intel’s DE1 Altera

FPGA Board with Altera NIOS-II (soft) processor [25], and A13-OLinuXino with ARM Cortex

A8 processor [26], operating at 50 MHz and 1 GHz clock frequencies, respectively. The results

are reported for different experimental setups. We note that single execution of the permutations

of the instruction types can be detected with as high as 92.8% accuracy. As the number of

successive executions of the permutations increase, the detection accuracy also increases to as high

as 100%. We also test the performance of the proposed method with different signal-to-noise ratio

(SNR) levels. We note that the system performance is stable for SNR levels higher than 15 dB.

Finally, we test the limits of the system by tracking permutations of instructions from the same

instruction type. As expected, the detection performance for single execution of the permutation

is very low, but it increases significantly (to as high as 92.4% and 98%) when the permutation is

repeated.

3.6.1 Determining Instruction Types by Using EM Side-Channels

The proposed methodology is based on analyzing EM side-channel signals. As mentioned

earlier, EM side-channels are created as a by-product of fast switching currents flowing through

transistors during program execution. Therefore, the execution of certain instructions generates

83

Approved for public release; Distribution is unlimited.

distinct EM signatures. In this section, we describe the procedure to identify these instructions and

call them instruction types. Since different architectures are implemented differently on micro-

architecture level, these instruction types differ for different architectures. Fig. 28 presents an

outline of the procedure step by step. These steps are explained in detail in the following sections.

Figure 30 Flowchart of determining instruction types.

3.6.2 Generating List of Instructions Under Investigation

This step includes examining the available instruction set for the given processor and

selecting the desired and applicable instructions to investigate. The applicability of the instructions

is based on the micro-architecture of the processor.

84

Approved for public release; Distribution is unlimited.

3.6.3 Generating Micro-benchmarks for Instructions

After instruction selection, we generate a microbenchmark for each instruction whose

pseudo-code is given in Fig. 29. One should note that this work uses an instrumented measurement

setup where an input/output (I/O) pin is set to high voltage before the code under observation and

reset to low voltage after the code under observation finishes. Therefore, the input/output pin signal

is used to find the starting and ending points of the region of interest.

For most processors, the EM signature difference caused by a single instruction does not

generate a distinct variation, therefore, the instruction under interest is repeated N times to magnify

the EM signature. Note that this repetition is realistic because the pesudo-code structure is only

used in determining instruction types step and it is not utilized in any testing scheme. The starting

and ending markers are preceded and succeeded by two empty loops, respectively. This for-loop

structure allows for a fair comparison since they make sure that the same instructions are pipelined

before and after all instructions under interests.

85

Approved for public release; Distribution is unlimited.

Figure 31 Pseudo-code for instruction type detection setup

3.6.4 Implementing the Codes and Recording EM Emanations

After microbenchmark implementation, EM emanation measurements are performed. The

measurement includes two synchronized channels: 1) EM emanation signal, 2) I/O pin signal. For

better localization, a near-field antenna with proper antenna gain and size should be utilized. The

choice of the antenna size is based on their ability to capture relevant EM emanations from the

processor and reject the interference from other parts of the device.

3.6.5 Data Processing to Obtain EM Signatures

86

Approved for public release; Distribution is unlimited.

In this step, the recorded EM emanation and I/O signals are processed to obtain EM

signatures of each instruction. Fig. 30 presents an overview of data processing flow. First, the input

I/O signal is filtered with a moving median filter to overcome overshooting. Then, the signal is

normalized to account for possible DC offset. Next, the amplitude values are quantized to their

binary representations by using a 3 dB threshold. The binary stream of data is smoothed by

removing outliers and the starting and ending points are determined.

The input EM signal contains unintentional EM emanations hat are amplitude modulated

(AM) to the periodic signals present on the board [22]. Among these modulations, the one around

the first harmonic of the operating clock frequency is the strongest and the most informative.

Therefore, the input EM signal is firstly down-converted with clock frequency, and then, low-pass

filtered to reject interference from other modulating periodic signals and reduce the measurement

noise at higher frequencies. Since the modulation around the clock frequency is not necessarily

conjugate symmetric in the frequency domain, the resulting signal can be complex-valued. The

amplitude of this complex-valued signal contains the shape information whereas the phase carries

relative time shift information. Since our objective is to determine the shape, we proceed the data

processing by only keeping the magnitude. Finally, the processed EM signal is cropped into chunks

by using the cropping points obtained from input I/O signal, and the EM signatures are generated.

Note that these signatures represent the EM waveforms generated from the repetition of

instructions N times.

87

Approved for public release; Distribution is unlimited.

Figure 32 Flowchart of data processing

3.6.6 Generating Correlation Matrix

In this part, we generate a correlation matrix that represents the similarity between the

generated EM signatures. The degree of (dis)similarity between two time domain signals can be

measured in several ways: L1 norm, L2 norm, and cross-correlation etc. The power consumed by

the devices fluctuates during run-time and this creates a DC offset in the measured EM emanations.

Since L1 norm and L2 norm measure the sum of point-wise distances, it is an error-prone measure

in the presence of DC offsets. Therefore, these distance measures are not suitable without

normalization. On the other hand, cross-correlation measures the similarity of the waveforms,

88

Approved for public release; Distribution is unlimited.

which is a suitable similarity metric for our purposes. Note that the execution of some instructions

take longer than the others and the corresponding EM signatures are longer in length. To account

for different EM signature lengths, while correlating two signals, the correlation is performed by

sweeping the longer waveform with the shorter one and the highest correlation is denoted as the

cross-correlation of these two waveforms. Cross-correlation is performed for all EM signature

pairs to generate the correlation matrix.

3.6.7 Identifying Instruction Type

The objective of this step is to find the groups of instructions that have similar EM

signatures. We refer to these distinct groups that have similar EM signatures as instruction types.

The correlation matrix of the EM signatures shows how much the signatures are correlating with

each other. A subjective method to find the instruction types from the correlation matrix is visual

inspection. However, this approach is prone to misclassifications due to its subjective nature. As

an objective method, we propose to utilize hierarchical (agglomerative) clustering. This clustering

technique is a bottom-up algorithm that starts with treating each sample as a separate cluster and

merges these clusters pair-wise until all samples are merged into a single cluster [27]. As the

clusters are successively merged, a cluster tree (dendrogram), which is sequence of clusterings that

partition the dataset, is generated [28]. Unlike other clustering algorithms such as K-means, this

method does not require a random centroid initialization or a prior cluster number. This is

especially useful in our application since we do not have an apriori knowledge on the number of

89

Approved for public release; Distribution is unlimited.

instruction types. We can decide for the number of clusters by observing the dendrogram. The

main disadvantage of this algorithm is its large time complexity (O(N2 log(N))), and space

complexity (O(N2)). Since the number of instructions under investigation is typically not a large

number, the dataset size is relatively small, therefore, the time and space costs are affordable. The

output of the correlation matrix presents the similarity measure between the signatures. However,

hierarchical clustering is based on the (dis)similarities between samples. Therefore, by using [29],

we convert the cross-correlation values, , to distance values, d, as follows,

 (17)

3.6.8 Detecting Permutations of Instruction Types

This section explains a systematic way of tracking the execution of instruction types. In

previous sections, instruction types are identified by repeating the same instruction for several

times and clustering them based on the similarity of their EM signatures. Next step is to detect

these instruction types in a testing scenario. The most straightforward way to do so is to find the

EM signature of the instruction types when they are executed once instead of N times, and use

these signatures as dictionary while testing. However, this approach has two major drawbacks:

1. Most processors implement pipeline architecture where the execution of the instructions is

divided into different stages. This allows for overlapping executions of consecutive

instructions at different stages. Since all these stages utilize transistor switching activity

90

Approved for public release; Distribution is unlimited.

during their operation, all stages behave as an EM emanation source. Therefore, the measured

EM emanation by the antenna is a combination of the EM waves radiated from different

stages. Due to the lack of a complex model to decouple these combinations, it is not possible

to isolate the EM signature of a given instruction.

2. The variation created by the execution of a single instruction is generally not very strong.

Hence, the EM signatures for different instructions are very similar to each other, which

consequently leads to the inability of tracking these instructions.

Previous work in literature suggests to generate EM signatures for instruction sequences

rather than single instructions and reports high self-correlation and low cross-correlation values

for several instruction sequences to show the applicability of the proposed system [19]. However,

the instruction sequences used in this work are relatively long and the choice of these instruction

sequences is not systematic.

Instructions in a program appear in different orders. We propose to generate the sequences

in a systematic way by generating all possible orderings of the instruction types. In other words,

we propose to generate EM signatures for all permutations of the instruction types and track these

permutations. Note that this approach addresses the aforementioned problems for the following

reasons.

1. By generating EM signatures for the permutations, we observe the overall effect of the

permutation block. Certain interactions caused by different orderings of these

91

Approved for public release; Distribution is unlimited.

instructions and the impact of the pipeline are embedded into the EM signature.

Although it is not possible to isolate the impact generated by each of these instructions,

we obtain an EM signature that covers their aggregate impact.

2. By using permutations instead of single instructions, the EM emanation variation

becomes stronger and the length of the EM signature waveform gets larger. Hence, we

obtain a more informative signal that enhances the testing accuracy.

One should keep in mind that inclusion of permutations is very helpful to address the

pipeline effect but there are a few issues that cannot be addressed with this scheme:

• The EM signature still experiences the pipeline impact in the beginning and at the end

due to the instructions that come before and after the permutation, respectively.

• For some processors, the pipeline length might be longer than the length of the

permutation, and this limits the capability of the permutation to represent the emanation

coming from all pipeline stages.

Finally, note that the number of the permutations is given by K!, where K is the number of

clusters or instruction types that are obtained in Section 2.6.7. For large K, the number of

permutations becomes a large number which leads to a costly measurement and large memory

usage. Therefore, the choice of K from the cluster tree should be made carefully.

92

Approved for public release; Distribution is unlimited.

The steps of detecting permutations of instruction types are explained step-by-step as

follows.

3.6.9 Picking an Instruction to Represent Each Instruction Type

Since the instructions from the same instruction type have similar EM signatures, one

instruction from each type is chosen to represent their types. Instruction types are labelled with the

first K capital letters of the alphabet.

3.6.10 Generating Microbenchmarks for Permutations

As mentioned earlier, with K clusters, we need to generate K! benchmarks that include all

permutations. For example, if there are 4 identified instruction types (A, B, C and D), the

permutations should include: ABCD, ABDC, …, DCBA.

Execution of most programs and embedded systems go through loops during the operation.

These loops include execution of the same instruction sequences several times. Furthermore,

program spends most of the execution time in functions that are called many times successively.

Considering this repetition-based nature of the most programs, we propose to investigate the

93

Approved for public release; Distribution is unlimited.

impact of repetition of instruction blocks on the tracking performance. In particular, we create EM

signatures for different repetitions of the same instruction block. For ease of reference, we use the

notation (ABCD)N, where (ABCD) is the investigated permutation block, and N is the number of

permutation block repetition. Note that the ultimate goal is to track permutation blocks with N =

1. However, due to the repetitive structure of code implementations, N could be different than 1.

For example, a certain permutation might appear within a loop that is repeated several times and

this apriori knowledge can be used to improve tracking performance. The pseudo-code for the new

microbenchmark structure is shown in Fig. 31.

Figure 33 Pseudo-code for permutation detection setup.

3.6.11 Implementing Code and Recording EM Emanations

94

Approved for public release; Distribution is unlimited.

After implementing the pseudo-codes, EM emanations from the device is measured. Two

measurements are taken for each microbenchmark at different times. The waveforms obtained in

the first measurement are used for training, whereas the second measurement waveforms are used

for testing.

3.6.12 Training: Generating Templates for Each Permutation

In this part, we generate templates for each permutation and these templates are used in the

testing phase for prediction. A general overview of training can be found in the left hand part of

Fig. 32. Several EM signature traces are obtained for each permutation from Measurement 1

recordings. These traces from the same permutation are aligned using cross-correlation. Then, they

are cropped so that all of them have the same length. Finally, the EM template for the

corresponding permutation is generated by using the point-wise average of the aligned and cropped

EM signature traces.

95

Approved for public release; Distribution is unlimited.

3.6.13 Testing: Predicting Instruction Sequences Using Templates

A general overview of testing can be found in the right hand part of Fig. 32. Testing traces

are labeled with their permutation order. The prediction step implements a matched filter-like

structure where the filters are the normalized versions of EM templates. We use such a structure

because matched filter is the optimum receiver in terms of maximizing the signal-to-noise ratio

(SNR) when the received signal is corrupted by additive random noise. Another advantage of such

a structure is that the matched filter finds the best offset between the received signal and the

templates on its own without requiring synchronization. After correlating the testing trace with all

filters, the permutation of the trace is predicted as the template whose corresponding filter gives

the highest correlation.

Figure 34 Overview of training and testing

96

Approved for public release; Distribution is unlimited.

4.0 RESULTS AND DISCUSSION

4.1 Task 1.1 - Results

Figure 34 (a) shows the reflection coefficient vs. frequency with lower disc radius, a, as

parameter. With an increase in radius, the resonances shift to lower values. Furthermore, Figure

34 (b) shows less coupling between two resonances due to smaller loop sizes in the smith chart,

which increases with the disc radius. When the disc radius is 205 mm, the impedance is matched

for the band. Slot length, l, for this case is 113 mm, which is also the selected length for the

fabrication.

 (a) (b)

Figure 35 (a) Reflection coefficient vs. frequency and (b) Impedance loci variation with
lower disc radius a as parameter

97

Approved for public release; Distribution is unlimited.

The simulated radiation patterns in the E & H-plane for four frequencies in the band of

interest are shown in Figure 35 (a) and (b). The peak gain is above 18 dBi in the whole frequency

band with a maximum value of 19.1 dBi at 1.03 GHz. The maximum cross polarization level in

H-plane is ~ 20 dB below the main lobe in the entire frequency band. We observe in the

simulations that with the increase in frequency, the H-plane sidelobe increases from -10.2 dB at

1.01 GHz to -7.7 dB at 1.04 GHz. This is because at the higher frequencies of the band the array

spacing becomes larger and hence results in increased SLL. In the E-plane, the beam is shifted 2°

from the maximum at 1.03 GHz.

The antenna geometry shown in the Figure 2 was designed, fabricated and tested. The

center frequency of the designed antenna is 1.03 GHz. A square aluminum sheet of dimension 1.04

m was used as a ground plane. The individual discs have the radius of 20.5 cm with the slot length

and width of 11.3 cm and 1 cm respectively. Each of them is fabricated using aluminum sheet of

thickness 2 mm. The center disc is suspended at 5 mm above the ground plane while the other four

are at 10 mm above the ground plane. The center disc is directly fed by a 50 Ohm coaxial probe,

which is placed at 50 mm away from the center. The fabricated antenna picture is shown in Figure

36.

98

Approved for public release; Distribution is unlimited.

 (a) (b)

Figure 36 Radiation pattern over the band for the antenna geometry shown in Fig. 2 at (a)
E-plane, (b) H-plane

4.1.1 Antenna Fabrication and Measurements

Each disc is suspended using four Teflon screws. Modal electric field distribution of the

𝑇𝑇𝑇𝑇12 mode is used to determine the position of screws. To explain this, Figure 37 shows the

simulated electric field |𝐸𝐸𝑧𝑧| inside the cavity vs. normalized radius, for a single unloaded and slot

loaded disc. The |𝐸𝐸𝑧𝑧| of unloaded (UL) disc follows the first order Bessel function 𝐽𝐽1(𝑘𝑘𝑘𝑘). For UL

case, the electric field null is at ~ 0.7a. We have observed that slot loading does not have significant

effect on the position of electric field null as shown in Figure 37 (a). Compared to the fundamental

mode, this property is an added advantage of 𝑇𝑇𝑇𝑇12 mode since nulls in electric field allow us to

suspend the patch on the air and hence eliminate the need for the substrate.

 1.01GHz 1.02GHz 1.03GHz

99

Approved for public release; Distribution is unlimited.

 (a) (b)

Figure 37 Fabricated antenna (a) front view (b) side view

 (a) (b)

Figure 38 (a) Simulated cavity electric field vs normalized radius (𝝆𝝆/𝒂𝒂) for unloaded and
slotted disc operating in TM12 mode (b) Comparison of simulated and measured S11 as a

function of frequency

Figure 37 (b) shows the simulated and measured reflection coefficient for the antenna

shown. The difference between the measured and the simulated resonant frequencies is less than

1%. The measured 𝑆𝑆11 ≤ −6 dB bandwidth is 6.7% or 70 MHz. It covers the required bandwidth

for the side channel EM detection (shown later in section 3.5). Figure 38 (a) & (b) shows the

100

Approved for public release; Distribution is unlimited.

mounted antenna picture and the measurement set up to measure the near field and far field patterns

of the proposed antenna. The proposed antenna is used as a receiving antenna while the

transmitting antenna is a standard broadband double ridge waveguide horn shown in the Figure 38

(b). A digital protractor was used to measure the angle of rotation. The antenna patterns both near

field and far field were measured at the roof top of Tech Square Research Building at Georgia

Institute of Technology. The measurements were done for 3m, 5m (near field) and 15 m (far field)

distance. The antennas were mounted at the height of 3.5 m above the ground. In the far field

measurements, to reduce the specular ground reflections from the transmitting horn, the absorbers

were used in the middle region of the measurement set up.

 (a) (b)

Figure 39 Pictures of antenna measurements (a) mounted antenna (b) measurement setup

101

Approved for public release; Distribution is unlimited.

Figure 40 Simulated and measured radiation patterns in E and H-plane (a) & (b)
1.01GHz, (c) & (d) 1.02GHz, (e) & (f) 1.03GHz, (g) & (h) 1.04GHz (i) Comparison of simulated

and measured realized gain as a function of frequency

Figure 41 Comparison of simulated and measured realized gain as a function of
frequency

102

Approved for public release; Distribution is unlimited.

Figure 42 Near field relative power patterns at 3m and 5m distances from the antenna
aperture, (a) & (b) 1.01GHz, (c) & (d) 1.02GHz, (e) & (f) 1.03GHz, (g) & (h) 1.04GHz

Figure 39 (a) - (h) shows the measured E & H-plane radiation patterns of the antenna, for

the various frequencies in the band. The measured radiation patterns match well with the simulated

ones. In the measured E-plane pattern at 1.03 GHz, the beam is shifted by 3° as compared to 2° in

the simulations. The measured cross-polarization is less than -21 dB and -19 dB, for the entire

band in the E and H-plane respectively. In Fig. 38, the simulated cross-polarization in the E-plane

are less than -40 dB also shown in Figure 34. Figure 40 shows the simulated and measured realized

gain as a function of frequency for the fabricated antenna. For planar directive antennas, the peak

gain and gain pattern measurements are conveniently conducted in the antenna measurement

ranges. However, since we do not have access to antenna measurement ranges, we have verified

the peak gain of the antenna by using the conventional gain transfer method [30], using standard

horn. The measured gain matches well with the simulated one. Peak measured value is 19.2 dBi

103

Approved for public release; Distribution is unlimited.

as compared to 19.1dBi in the simulations. The measured value is higher due to the ripples in the

gain measurements, which are ~ 1.2 dB and are caused by the standing wave patterns in front of

the aperture due to reflections.

Figure 41 shows the near field patterns of the antenna at 3 and 5m distances from the antenna

aperture. Both the distances are in the radiating near field region of the antenna. The measured

power pattern matches well with the simulated patterns. The measured maximum sidelobe level at

3 and 5m are -6.1dB and -6.6 dB respectively. It is observed that between 1.01 to 1.04 GHz, the

maximum sidelobe level changes by ~ 3 dB, for both 3 m and 5 m distances. The antenna is used

to receive the fields from the board processor at those distances as presented in the next section.

4.1.2 SNR Measurements and Malware Detection

The proposed antenna was used to measure the radiated emissions from the various

embedded systems and Internet-of-Things (IoT) boards, at various distances under two conditions:

direct Line of Sight (LoS) and Non-Line of Sight (NLoS). These IoT boards typically consist of

an ARM processor, a Flash memory, and a set of peripherals (e.g., WiFi modules, etc.). IoT boards

are typically used for controlling a variety of tasks in factory lines, hospitals, critical

infrastructures, etc. Recently, there have been a growing interest in attacking these devices since

both the number and importance of them are growing rapidly. Monitoring these devices using the

EM side channel signals generated by them is one of the ways to improve the security of IoTs

104

Approved for public release; Distribution is unlimited.

against cyber-attacks. Collecting stronger EM signals will improve the accuracy of the malware

detector and that is the main goal of designing our proposed antenna.

4.1.3 Line of Sight (LoS) Measurements

Here, we will first describe the direct LoS measurements for the IoT board shown in Figure

42 in detail. Figure 42 (a) shows a diagram of the measurement setup and Figure 42 (b) shows the

photo of the measurement setup where the proposed antenna is measuring the EM signal from an

IoT device named Olimex [26] which has an ARM processor and runs a Linux operating system.

The signal power measurements, using a spectrum analyzer (Agilent N9020A), were conducted at

various distances between 1-5 m from the device. For each distance, two measurements were

collected and the corresponding Signal to Noise Ratio (SNR) was calculated. Since it is not

straightforward to estimate SNR for emanations from the electronic devices, we have conducted

additional experiments to estimate SNR as described below.

In the first set of measurements the objective is to estimate total emanated power, S,

received when the board is on and running the program activity of interest. In the second set of

measurements, the objective is to estimate the noise spectral power, N, received when the board is

on but there is no application running (idle mode). The noise power here includes thermal

(𝑁𝑁𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎) noise as well as emanations coming from the board itself (𝑁𝑁𝑏𝑏𝑏𝑏𝑎𝑎𝑒𝑒𝑏𝑏) that are not related

to the program activity. SNR is then calculated as:

105

Approved for public release; Distribution is unlimited.

 𝑆𝑆𝑁𝑁𝑆𝑆 (𝑑𝑑𝑑𝑑) = 𝑆𝑆 (𝑑𝑑𝑑𝑑) – 𝑁𝑁 (𝑑𝑑𝑑𝑑) (18)

 SNR =
𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒+𝑁𝑁𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖
 (19)

where, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 ∝
𝑃𝑃𝑒𝑒
𝑒𝑒2

 is the power received when the processor is executing the code,

while 𝑃𝑃𝑎𝑎 is the power at the input. 𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 is the power received when the processor is turned on but

not executing a code. This part carries no useful information, and acts as a source of noise.

𝑁𝑁𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎 is the thermal noise, independent of distance.

 (a) (b)

Figure 43 SNR Measurements for an IoT (Olimex) board: (a) Block diagram of set up (b)
Set up picture that shows the antenna (on the right side) and the board (on the left side).

The proposed antenna is used to receive electromagnetic radiation coming from the board’s

processor. The objective is to find the possible malicious activities by analyzing the program

execution through EM emanations. The main idea behind the malware detection method is that

since there is a correlation between the program activities and the generated EM signals, executing

106

Approved for public release; Distribution is unlimited.

a certain application will generate unique and distinguishable signatures in the EM signal. Thus,

by collecting these EM signals for each application and extracting the signatures, a reference model

for each application can be built. Then during monitoring, if an attacker changes the application’s

code, this will result in generating different EM signals that no longer match with the model and

hence can be detected. Further details can be found in [10], [11].

The signature extraction is based on the premise that a program spends most of its time

executing some repetitive code (e.g., loops) which results in prominent peaks appearing in the

spectrum separated by Δ𝑓𝑓 = 1
𝑇𝑇� , where T is the duration of a single loop iteration. In addition of

base-band signal where these loops can be observed, they can also be observed as a modulated

signal around the processor clock frequency (in our case 1 GHz), which is the signal we are

observing. Measured power spectrum at the distances of 3 m and 5 m are shown in Figure 43 (a)

and (b) respectively. From Figure 43 (a), we can observe that the strong spectral lines are

amplitude modulated by a clock frequency (which acts as a carrier) of 1.008 GHz, which is

significantly stronger than everything else. Each of the labeled harmonics are approximately 1.95

MHz apart from one another, which indicates that each iteration of the loop in the code takes about

514 𝑒𝑒𝑛𝑛. Since the board has many activities going on at once, it creates some other signals that are

not related to the code that is being run on the processor. An example of this is marked as undesired

signal in Figure 43 (a).

107

Approved for public release; Distribution is unlimited.

Figure 44 (a) shows the measured SNR for various distances in comparison with the SNR

obtained by a theoretical model defined in (19). The theoretical fit agrees well with the measured

SNR.

 (a) (b)

Figure 44 Measured signal power while code is executing at various distances (a) 3 m
and (b) 5 m

To explain the measured SNR, with the theoretical model, the noise observed in the

measurements is assumed to be created by two sources: thermal noise and the noise generated by

the board itself. Since the processor is not intended to function as a transmitter, only a part of the

total radiation coming out of the board carries meaningful information. This undesired part of the

radiation lowers the quality of the signal. Since this part of the signal is radiated from the board, it

gets weaker by a factor of 𝑟𝑟2 , whereas the thermal noise is constant, as pointed out in (19). For

108

Approved for public release; Distribution is unlimited.

this reason; at smaller distances 𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 is more significant, at larger distances 𝑁𝑁𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎 is more

significant, and at intermediate distances the SNR trend is neither constant nor 𝑟𝑟2.

SNR fit is given as:

 𝑆𝑆𝑁𝑁𝑆𝑆𝑓𝑓𝑒𝑒𝑒𝑒 =
𝑒𝑒
𝑟𝑟2
𝑏𝑏
𝑟𝑟2+𝑒𝑒

 (20)

 𝑆𝑆𝑁𝑁𝑆𝑆𝑓𝑓𝑓𝑓𝑎𝑎−1 = 𝑏𝑏
𝑎𝑎

+ 𝑐𝑐
𝑎𝑎
𝑟𝑟2 (21)

It can be seen that 𝑆𝑆𝑁𝑁𝑆𝑆𝑓𝑓𝑓𝑓𝑎𝑎−1 is a linear function of 𝑟𝑟2 and the data points were fitted using

linear least squares method. The multiplicative inverse was taken of the resulting line, which fitted

the data very well.

109

Approved for public release; Distribution is unlimited.

(a) (b)

Figure 45 (a) Measured SNR vs. distance in comparison with the theoretical model fit (b)
Measured normalized SNR vs offset distance from the LoS (SNR = 1 corresponds to LoS)

4.1.4 Non-LoS Measurements

As mentioned earlier, the proposed antenna is designed so that it can be hanged on the wall

and received the EM signals from electronic devices that are active in a room. In this scenario, not

all the monitored devices would be in the LoS but the antenna should still be able to monitor them.

In order to use the EM signals for malware detection, the spectral peaks (as shown in Figure 43)

should at least be 1 dB higher than the noise floor. In other words, in order to be able to monitor

non-LoS devices, the receiving signal should have peaks with at least 1dB higher than the noise

floor.

110

Approved for public release; Distribution is unlimited.

 To evaluate the effectiveness of our design, we repeat the measurement in Figure

42 this time with moving the board toward up-down and/or left-right directions from the center of

the antenna with the step of 10 cm. All measurements are done while the center of the board is 3

m away from the center of the antenna. For each step (i.e., different distances from the center of

antenna while being 3m away from it), we measure the SNR for the receiving EM signal. Figure

43 (b) shows the results for the weakest peak in the test application.

 As shown in the Figure 43 (b), the antenna can receive EM signals with only 30%

decrease in SNR while being 1 m away from the center of the antenna. However, our measurements

show that beyond 1m, the SNR decreases dramatically. This is due to directive beam in both E and

H-plane.

4.1.5 Malware Detection

Finally, to illustrate how well the proposed antenna works in the system for malware

detection, we use the antenna to receive EM signals while we are running several standard

embedded systems applications such SHA, Djikstra’s path-finding algorithm, QSort, CRC32, and

FFT from a standard benchmark called MiBench. We also implement two real attacks: one a

Distributed Denial-of-Service (DDoS) attack, and the other a Ransomware attack. We run the

applications first 25 times without having any attack on them (benign), and 25 times with the

DDoS attack, and 25 times with the Ransomware attack. We then used an algorithm proposed in

[10] to analyze the receiving EM signals and label each run as either “benign” or “malicious”. We

111

Approved for public release; Distribution is unlimited.

then calculate False Positive Rate as the number of runs that were incorrectly labeled as

“malicious” divided by the total number of runs. Similarly, True Positive is defined as the number

of runs that are correctly labeled as “malicious”.

Our results show that for all the applications while measuring from 3 m, 4 m, and 5 m

distances, we can perfectly find all the instances of the malware while achieving 0% false positive

rate which confirms that our designed antenna is suitable for receiving EM signals from such

devices from >3 m distance. Note that the results in [10] were reported while measuring from 5

cm distance from the board and collected by a probe.

4.2 Task 1.2 – Results for Automated Discovery of Sub-Channels

4.2.1 Experimental Setup

We have evaluated the algorithm by testing it on spectra from a desktop, a laptop, and a

smartphone system described in Table II. The signals are recorded using the spectrum analyzer

(Agilent MXA N9020A). The desktop and laptop measurements are collected with a magnetic

loop antenna (AOR LA400) at a distance of 30 cm as shown on the left of Figure 44. To receive

weaker signals from smartphones, EM emanations were recorded using a small loop probe with

20 turns and a 4 mm radius positioned on top of the cellphone as shown on the right of Figure 44.

The spectra were measured from 0 to 4 MHz with a resolution bandwidth of 10 Hz.

112

Approved for public release; Distribution is unlimited.

Table III Description of measured devices

Figure 46 Measurement setup for laptop or desktop (left) and measurement setup for cell-

phone (right)

The benchmarks are run at several different alternation frequencies

 Hz with duty cycles . The

alternation frequencies were chosen to ensure sufficient separation between sidebands of

modulated signals, i.e. separation between falt1, falt2, etc. and their harmonics has to be sufficient to

prevent overlapping. For example, if falt1 = 23 kHz is chosen, frequencies in the vicinity of the

harmonics of falt1 should be avoided. Aside from this consideration, the choice of falt is arbitrary.

113

Approved for public release; Distribution is unlimited.

We have found that four alternation frequencies are sufficient in the algorithm to identify carrier

frequencies. To identify if the modulation is AM or FM, we need all five duty cycles.

The benchmarks were run on the laptop and desktop systems single-threaded Windows 7

32-bit user mode console applications, and as normal Android applications on the smartphone.

When possible all unrelated programs and activities were disabled, CPU frequency scaling was

disabled, and screens were turned off. We measured two alternation activities. The first activity

alternated between a load from DRAM memory and a load from the on-chip L1 cache, which we

abbreviate as LDM/LDL1. This alternation is useful in exposing modulated carriers related to

memory activity. The second activity alternated between loads from the on-chip L2 and L1 caches,

which we abbreviate as LDL2/LDL1. This activity exposes carriers modulated by on-chip activity.

We tried other instruction pairs (e.g., arithmetic, memory stores, etc.) and found that that all known

modulated carriers could be found using just these two activities.

4.2.2 Experimental Results

We tested three devices described in Table I, with two measurements per device (one for

LDM/LDL1 and one for LDL2/LDL1). Table II summarizes carrier frequencies found using our

algorithm, type of modulation, signal to noise ratio (SNR) of the received carrier, and the

confidence level that the found carrier is correctly identified from a laptop. Here, we define SNR

as a difference in decibels between Mtrue(f; dj) and Mfalse(f; dj), as defined in equation (6). Our

algorithm has found one FM carrier and it’s two harmonics with confidence level above 99%. We

can also observe that SNR for all three FM modulated frequencies is above 10 dB which indicates

that these carriers are strong and will carry signal to some distance away from the laptop. Our

algorithm has also found one AM modulated carrier but the observed SNR is only 4 dB, which

indicates that this is a weak carrier. Please note that our algorithm finds all carriers independently

and then we check for possible harmonic relationship among found frequencies and if found, we

report the harmonic order.

Table IV Carrier frequencies found in laptop

Table III summarizes carrier frequencies found using our algorithm, type of modulation,

signal to noise ratio (SNR) of the received carrier, and the confidence level that the found carrier

is correctly identified from a cell phone. Here, our algorithm has found one AM carrier and its

second harmonic with confidence level above 99%. The SNR for these two frequencies is above

20 dB, i.e., they are excellent candidates to carry signal outside of the cellphone. Our algorithm

has also found two FM modulated carriers, but the observed SNR is only 1 dB, which indicates

that these are weak carriers.

114

Approved for public release; Distribution is unlimited.

115

Approved for public release; Distribution is unlimited.

Finally, Table IV summarizes carrier frequencies found using our algorithm, type of

modulation, signal to noise ratio (SNR) of the received carrier, and the confidence level that the

found carrier is correctly identified from a desktop. Here, our algorithm has found one AM carrier

and its 11 harmonics with confidence level above 99%. The SNR for first seven harmonics is above

10 dB, while SNR for other five harmonics is above 5 dB. Furthermore, we have found one more

AM carrier and its seven harmonics all with SNR above 10 dB. Finally, we have found one FM

carrier with SNR of 5 dB. To verify the accuracy of the algorithm, we have visually inspected all

spectra and confirmed that carriers found by the algorithm exist in the spectrum. From the results,

it can be observed that there are only 2 or 3 fundamental frequencies and the rest are their

harmonics. The fundamental frequencies that were reported are all attributable to voltage regulator

and memory refresh activity on the measured system. For example, in Figure IV we can observe

that the two strongest sources are voltage regulator (315 kHz) and memory refresh (software

activity in the system at 511 kHz). The voltage regulator emanations can be reduced by better

shielding of coils, and the memory refresh can be eliminated by creating different scheduling

pattern for memory refresh. Alternatively, program code can be changed to avoid power-

fluctuations and memory activity that depends on sensitive information. Please note that carrier

frequencies can be found at higher frequencies as well (here we have tested only up to 4 MHz).

Table V Carrier frequencies found in a cell phone

116

Approved for public release; Distribution is unlimited.

They are typically above 500 MHz and belong to processor or memory clock. While our algorithm

can find these frequencies as well, information about processor and memory clocks is readily

available. Finding carrier frequencies at lower frequency range is more challenging because there

is much more noise-like activity in the spectrum and it is difficult to identify information caring

signals.

Automatic identification of potential carriers in the system has several benefits. From the

security prospective, it allows us to quickly identify frequencies of interest for observing RF

emanations, it allows prediction of distances from which we can expect to receive good quality

signal (based on observed SNR), and the type of demodulation needed to correctly receive signals.

From the system designer prospective, finding carrier frequencies helps us identify leaky circuits.

For example, the unintentional FM and AM carriers found for a desktop and laptop were caused

by voltage regulators and memory refresh commands. For a cell phone, several carriers were found

to be caused by voltage regulators. The remainder of the carriers found on the cell phone were

traced to particular IC packages or modules and were likely caused by either voltage regulators or

an unknown periodic memory activity. However, smartphones integrate many system components

into System on Chip (SoC) modules and often use Package on Package (PoP) technology to

integrate both the processor and memory into the same package and little information is publicly

available describing these components. More information would be needed to definitively

determine the circuits and mechanisms modulating these carriers.

117

Approved for public release; Distribution is unlimited.

Table VI Carrier frequencies found in a desktop

4.3 Task 2.1 – Results for Spectral Profiling

In this section, we evaluate our framework using three set of experiments to show the

effectiveness of REMOTE to detect different types of attack on variety of devices. In the first set

of experiments, we use two real-world cyber-physical system (CPS). The first CPS we use is an

embedded medical device called Syringe-Pump which is a representative of a medical cyber-

physical system. The second system is a PID controller that is used for controlling the temperature

of a soldering Iron. This type of system could also be used to control the temperature in other

settings, such as a building or an industrial process, and thus is representative of a large class of

industrial CPS/IoT systems.

118

Approved for public release; Distribution is unlimited.

For the second set of experiments, we use five applications from an embedded benchmark

suite called MiBench [16] running on an IoT/embedded device, which are a representative of the

computation that is needed in that market (e.g., automotive, industrial systems, etc.)

Finally, for the third part of our evaluations, we chose a robotic arm (LewanSoul LeArm

6DOF) [31], which is a representative of commonly-used CPS existing in the market.

4.3.1 Experimental Setup

The measurement setup is shown in Fig. 45. Depending on the distance, either a hand-made

magnetic coil or a horn antenna is used to receive EM signals (no amplifier is used). For all

measurements, we use a cheap (<$30) software defined radio (SDR) receiver (RTL-SDRv3) to

record the signal. Using this radio, the entire cost for the near-field measurement setup (including

the radio and a hand-made coil) is only around $35, and for the far-field measurement setup is

around $100-200 (depending on the antenna). Further cost advantages can be gained if REMOTE

is used in settings where multiple similar devices (with similar vulnerabilities) are used, so a single

(or a few) devices can be monitored by REMOTE (especially in far-field scenario), with random

changes to which specific devices are monitored at any given time. Fig. 46 shows the entire setup

including the monitored device (Syringe-Pump in this figure) and REMOTE. Note that all of our

measurements were collected in the presence of other sources of the electromagnetic interface

(EMI) including an active LCD that was intentionally placed about 15 cm behind the board. A set

119

Approved for public release; Distribution is unlimited.

of TCL scripts are used to control the monitored system and the SDR (to record the signal). The

entire REMOTE algorithm is implemented on a PC using Matlab2017-b.

Figure 47 The near-field setup (left) consists of a small EM probe or a hand-made

magnetic probe (not shown) placed 5 cm above the system’s processor. A horn antenna

placed 1 m away from the board for far-field measurements (right)

 In all cases, a software-defined radio smaller and lighter than most portable USB

hard drives, is used to record the signal.

120

Approved for public release; Distribution is unlimited.

Figure 48 Syringe Pump (left) and REMOTE framework (right). In our setup, the signal

processing unit is implemented on a separate PC.

4.3.2 File-less Attacks on Cyber-Physical-Systems

the monitored device (Syringe-Pump in this figure) and REMOTE. Note that all of our

measurements were collected in the presence of other sources of the electromagnetic interface

(EMI) including an active LCD that was intentionally placed about 15 cm behind the board. A set

of TCL scripts are used to control the monitored system and the SDR (to record the signal). The

entire REMOTE algorithm is implemented on a PC using Matlab2017-b.

The first part of our evaluations presents the results for two real-world CPS which are

implemented on four different devices (shown in Table V). To attack these devices, we implement

two end-to-end file-less attacks namely a code-reuse attack and an APT attack (advanced-

persistent-threat). The first attack we implement in this paper is a Code Reuse [32], [33] attack on

a medical CPS called Syringe-Pump. Syringe-Pump is a medical device designed to dispense or

121

Approved for public release; Distribution is unlimited.

withdraw a precise amount of fluid, e.g., in hospitals for applying medication at frequent interval

[34]. The device typically consists of a syringe filled with medicine, an actuator (e.g., stepper

motor), and a control unit that takes commands (e.g., amount of fluid to dispense/withdraw) and

produces controls for the stepper motor. The systems must provide a high degree of reliability and

assurance (typically by using a simple MAC) since imprecise or unwanted dispensing of

medication, or failure to administer medication when needed can cause significant damage to the

patient’s health. In our evaluation, we use the Open Source Syringe-Pump from [35].

Our code-reuse attack involves overflowing the input buffer in reading the serial input

function, which normally reads the input, sets a flag to indicate that new input is available, and

returns. Exploiting this vulnerability, the return address in the stack is overwritten by a chain of

gadget’s addresses to launch an attack.

Since the security-critical part of this system is moving the syringe, a desirable goal for an

attacker is being able to call the MoveSyringe() function, which is responsible for syringe

movement, at an unwanted time while skipping the input checking part, Delay() function, which

is responsible to check the authenticity of the command (otherwise the attacker needs to hack into

the C&C server to send the commands which may not be a feasible task).

122

Approved for public release; Distribution is unlimited.

Table VII Boards used in this paper to evaluate REMOTE.

We use ROPGadget [36] for finding the proper chain of gadgets to put the address of

MoveSyringe() in a register and branching to that function (from the readInput() function to skip

the checking part). After branching to MoveSyringe() and executing it, PC jumps back to the main

function and resumes normal behaviour of the application.

Figure 48 shows a spectrogram of the Syringe-Pump application in (top) malware-free run,

and (bottom) when the CR attack happens. As seen in the figure, the Syringe-Pump application

has three distinct regions with clearly different EM signatures: printing debug info and reading

inputs, a delay/checker function which checks the message authenticity (using a simple MAC),

and an actual movement of the syringe. The major difference between these two figures is the

reverse order of “Delay” and MoveSyringe() parts in malicious run (bottom). In normal behaviour,

REMOTE expects to see readInput ! Delay! MoveSyirnge however, in CR attack, since the return

address of the readInput function is overwritten by the adversary, the code immediately jumpsto

MoveSyringe() and skips the “Delay” part, thus in the spectrogram, the third region

123

Approved for public release; Distribution is unlimited.

(MoveSyringe()) is seen before “Delay” (bottom), which violates the correct ordering of regions

and will be reported as “malicious” by REMOTE.

Our evaluation uses one attack per run in 25 runs with REMOTE successfully detecting

each of these attacks (see Table VI). We then performed 25 attack-free runs and found that

REMOTE produced no false positives (see Table VI). To further evaluate our system, we

performed 1000 malware-free runs and 1000 malicious run on one device (Arduino) for 24 hours.

For these 2000 runs, REMOTE successfully found all the 1000 instances of malicious run and

reported 997 out of 1000 malware-free runs as normal (i.e., only 3 out of 1000 false positive =

0.3%).

Figure 49 Spectrogram of the Syringe pump application in malware-free (left) and

malware-afflicted (right) runs. Note that the differences in colors between the two

spectrograms correspond to differences in signal magnitude which are caused by different

124

Approved for public release; Distribution is unlimited.

positioning of the antenna. Such variation is common in practice and has almost no effect

on REMOTE’s functionality because REMOTE was designed to be robust to such variation

Table VIII Accuracy of REMOTE for several different systems and attack scenarios
using various boards and applications

Note that, depending on the size of injection, the MoveSyringe() in Syringe-Pump could

be very brief in time (e.g., around 3 ms as can be seen in Fig. 4-left), and we found that without

correctly handling the interrupts on Olimex and TS platforms (which have an operating system),

we would either get very high false positives (due to interrupts), or high false negatives (by using

large N to ignore short-term activity). However, by adding training-time samples for interrupts,

we can use small N, while having 0% false positives.

Furthermore, we also repeated our measurement for Syringe-Pump for both 50 cm and 1

m distances (using a 9 dBi horn antenna [37] connected to the SDR) and in both cases, we also get

125

Approved for public release; Distribution is unlimited.

perfect accuracy. It is also important to mention that the detection latency (i.e., the time attack

starts until REMOTE detects it), for all four devices is <2 ms.

An alternative method for attacking Syringe-Pump is by changing the InjectionSize (i.e.,

Data-only attacks). This also can be done using a CR attack. REMOTE is able to protect Syringe-

pump against such attack since changing the InjectionSize will change the duration (i.e., the

number of SSs) of MoveSyringe(). Since REMOTE is checking the signal in the granularity of SS,

it can count the SSs which belong to MoveSyringe() activity and compare it to the expected number

of SSs. To check how well REMOTE can detect such an attack, we check the number of SSs for

MoveSyringe() for all the 25 attack-free runs and compare it to the actual InjectionSize. In all the

instances, REMOTE reports the correct number of SSs. Note that we are not detecting EM

emanations (RF) signal produced by the motor movement but the change in the code execution

when “data-only” attack is performed. i.e., we observe the signal at clock frequency of the board

and observe software changes, while motor movement signature occurs at much lower frequencies.

However, if the change is less than one SS or if the expected InjectionSize is unknown,

REMOTE is not able to detect the change. Overall, there is a trade-off between the size of SS and

REMOTE’s ability to detect small changes.

Thus to improve the effectiveness of the system, either a higher sampling-rate setup can be

used (smaller SS hence smaller detection granularity) or REMOTE can be combined with other

existing methods (e.g., Data Confidentiality and Integrity (DCI) methods [38]) to protect the

126

Approved for public release; Distribution is unlimited.

system against different types of data-only attacks. Finally, it is important to mention that

However, as shown in this work (for this attack and other attacks in this section), meaningful

attacks typically have much larger signature (i.e., order of milliseconds) than the current detection

limit in REMOTE (200 microseconds).

The second attack is an advanced-persistent-threat (APT) attack on an industrial CPS

(called Soldering-iron). A well-known example of such attack for CPS is Stuxnet. Soldering-iron

is an industrial CPS that allows users to specify a desired temperature for the iron and maintains it

at that temperature using a proportional-integral-derivative (PID) controller. This type of controller

could also be used to control the temperature in other settings, such as a building or an industrial

process, and thus is representative of a large class of industrial CPS. This application is

significantly larger than the Syringe-Pump - with 70,000 instructions in its code and 1,020 static

control-flow edges [35].

The application starts by initializing all the components (e.g., PID controller, Iron, etc.). It

then begins to control the Iron’s temperature: it checks all the inputs (e.g., knob, push buttons, etc.)

and then based on them decides to decrease or increase the temperature, prints new debug

information on its display, etc. and then repeats this ad infinitum. The security-critical function is

where the temperature of the iron is set keepTemp(). This function uses an iterative process (a PID

controller) to change or keep the temperature of the iron. The critical variable is temp hist – it

127

Approved for public release; Distribution is unlimited.

holds the last two temperatures of the iron and is used to calculate the difference between the

current temperature of the iron and these two last temperatures.

To implement a Stuxnet-like malware on this application, we assume that the attacker can

reprogram the device. The attacker’s goal is to change a critical value under some conditions,

which in turn can cause damage to the overall system. A possible modification to the code is shown

in Example 1 (lines 8-10), where based on one or several conditions (e.g., in our evaluation it

checks the model of the device that is stored in memory), the temperature history can be changed.

The key insight is that the added instructions will cause the spectral spikes during execution of the

main loop to be shifted to lower frequencies (more time per iteration) as shown in Fig. 48 for the

A13-OLinuXino device. To evaluate how well REMOTE can detect this type of attack, we use 7

runs in training, and use 25 runs without malware and 25 runs with malware to evaluate the

monitoring algorithm. Our results show REMOTE can successfully detect all the instances of the

attack (a 100% true positive rate) (see Table VI).

128

Approved for public release; Distribution is unlimited.

Figure 50 Adding malicious activity to the main loop of the Soldering-iron

application (red: without malware, blue: with malware)

129

Approved for public release; Distribution is unlimited.

4.3.3 Shellcode Attack on IoTs

Another popular class of attacks on CPS/IoTs are shellcode attacks where the adversary

executes a malicious application (payload) through exploiting a software vulnerability. It is called

“shellcode” because it typically starts a command shell (e.g., by executing (/bin/sh) binary) from

which the attacker can control the compromised machine, but any piece of code that performs a

similar task can be called shellcode.

Once the attacker takes the control, she can execute any injected code such as a Denial-of-

Service attack. In this section, we implement this attack by invoking a shell (/bin/sh) via a buffer

overflow exploit. We then run two malicious payloads on the invoked shell: a DDoS bot, and a

Ransomwmare. These attacks typically target devices with operating systems. In this work, we

implement them on an IoT device with an ARM core (A13-OLinuXino), which is a representative

of state-of-the-art IoTs.

The attacks are implemented on five representative programs from MiBench suite

(bitcount, basicmath, qsort, susan, and fft). We chose these applications among all the MiBench

applications (this benchmark is designed to represent typical behaviours of embedded system: e.g.,

Security, Telecomm., Network, etc.) mainly because bitcount is a good representative of the

applications that have several different distinct regions (our HDBSCAN clustering found 9 for this

application) and has lots of different activities including nested-loops, recursive functions,

interacting with memory, etc. basicmath is chosen because it is a good representative of

130

Approved for public release; Distribution is unlimited.

unstable/weak activities since the activities in each region are very dependent on values (it is

calculating different fundamental mathematics operations such as integration, square-root, etc.).

We also chose qsort because it has lots of memory accesses, and picked susan and fft since they

are good representatives of common and popular activities in embedded system domain (i.e.,

image processing and telecomm.). In all these application, first a buffer-overflow vulnerability is

exploited, and using a shellcode, a shell with same privileges as the original application is invoked.

A malicious payload (i.e., DDoS or Ransomware) is then executed in this shell. For the

DDoS, we port the C&C and the bots from the Mirai open source to run on our IoT. The DDoS

payload execution begins right after the shell is invoked and ends after sending 100 SYN packets.

The application then resumes its normal activity. We use a PC on the local network as the target

of the DDoS attack (SYN flood), and we verify on that PC that the attack is taking place. As

another payload, we also implement a simple Ransomware prototype payload that uses AES-128

with CBC mode to encrypt data. This encryption represents the bulk of the execution activity

created by Ransomware.

As in previous cases, we use 7 runs for training and then use 25 runs without malware and

25 runs with each malware (i.e., DDos and Ransomware) for all five applications.

Our results (see Table VI) show REMOTE can successfully detect all the instances of the

attack (a >99.9% true positive rate) while none of the malware-free runs incorrectly identified as

malware (0% false positive rate). We found that invoking a shell itself is visually detectable on

131

Approved for public release; Distribution is unlimited.

our IoT device since it takes around 8 ms (about 32 SSs) and sending 100 SYN packets adds about

4 ms to that (see Fig. 49 (left) for DDoS and (right) for Ransomware).

Figure 51 A run (left) where exploit, shellcode, and a 100-packet payload are injected into

the execution between the original loops. A run (right) where exploit, shellcode, and a

Ransomware payload are injected into the execution between the original loops.

4.3.4 APT Attack on Commercial CPS

The final system in our evaluation is a Robotic-arm. Robotic arm is often used for

manufacturing and, typically, a critical component of any modern factory. It usually receives

inputs/commands for a user and/or sensors and move objects based on these inputs. There is a

growing concern in security of these CPSs since they are typically connected to the network and

132

Approved for public release; Distribution is unlimited.

are exposed to cyber-threats [39]. In this work, we use a commercial robotic arm (LewanSoul

LeArm 6DOF [40]) which uses an Arduino board as a controller and a Bluetooth module to receive

command. For this system, we implement an APT attack (firmware modification), where we

assume that the reference libraries (e.g., library for Servo, Serial, etc.) are compromised (this can

be also considered as a zero-day vulnerability). Note that, we assume that REMOTE s training

contains the “unmodified” version of these library (baseline reference data). In this attack, we

modify a subroutine (writeMicroseconds()) in Arduinos Servo library [41] by adding an extra

if/else condition to change the speed of Servo motor randomly and reprogram the system with this

compromised library, assuming that the adversary is interested in causing a malfunction in arms

movement in real-time occasionally.

We use 7 runs for training and then use 1000 runs without and 1000 runs with the firmware

modification. Our results (see Table VI) show REMOTE can successfully detect the instances of

the attack with very high accuracy (>98.2% true positive rate) while only less than 0.2% of the

malware-free runs incorrectly identified as malware.

4.3.5 Further Evaluation of Robustness – Interrupts and System Activity

Among the platforms we tested, the longest-duration system activity “inserted” (via an

interrupt) into the application activity tends to take a few milliseconds, and it appears to be

associated with display management/update because disabling lightdm [42], the display manager,

eliminates these interrupts (but other kinds of interrupts still occur).

133

Approved for public release; Distribution is unlimited.

In contrast, in bare-metal devices interrupts (when there are any) tend to be around a

microsecond in duration. Figure 50 shows the (perfect) ROC curve (solid blue line) for

SyringePump on Olimex (and Debian Linux OS) when using REMOTE. We then prevented

REMOTE from forming interrupt-activity clusters during training, and used the EDDIE’s scheme,

and that has resulted in a severely degraded ROC curve (red dashed line) where many false

positives are detected when 4 consecutive clusters are found to be “unknown” (N = 4), and where

increasing N reduces the false positives but also the true positives. This confirms that our approach

of addressing system activity directly in REMOTE is significantly contributing to REMOTE’s

ability to detect malware while not reporting false positives due to system activity.

Figure 52 Accuracy of REMOTE with its mechanism for addressing interrupt

activity (solid blue line) and EDDIE [10] (red dashed line). The results are for the

SyringePump software running on the Olimex board

134

Approved for public release; Distribution is unlimited.

4.3.6 Further Evaluation of Robustness – Hardware Platforms and Distance

As mentioned in Section 2.3, packaging and other limitations may require the EM signal

to be received from some distance, which significantly weakens the signal. To evaluate the impact

of distance on REMOTE, we receive the signal from distances of 5 cm, 50 cm, and 1 m away from

each of the tested devices. To limit the amount of data that is recorded, we use only two

representative programs from MiBench suite (bitcount and basicmath), and only two

representative malware behaviours - one that adds a relatively small number of instructions inside

a loop (Stuxnet-like), and another where similar malicious activity is done all-at-once outside of

loops (DDoS-like).

For each device and each application, we use 25 malware-free runs and 25 runs for each of

the two malware activities (75x3 runs for each of the platforms) to obtain the false negative

(malware activity not reported in a malware affected run) and false-positive rates (malware

reported in a malware-free run) achieved by REMOTE. Our results show perfect accuracy (i.e.,

0% false negatives and 0% false positives) for all devices and all three distances. However, if we

prevent REMOTE from using total non-clock power when comparing SSs and use the scheme in

EDDIE and/or Syndrome, on the TS board (which has the weakest signal among the boards tested)

for 50 cm and 1 m distances we only observe 80% (at 50 cm) and 55% (at 1 m) true positive rates

once we adjust other parameters to achieve 0% false positives (see Figure 51). This confirms that

135

Approved for public release; Distribution is unlimited.

when signals are weak, comparisons based on spectral peaks alone are insufficient and other signal

features (such as non-clock power used in REMOTE) must also be considered.

Figure 53 True positive rate (with 0% false positives) of REMOTE with its non-

clock-power feature when comparing SSs (dark blue) and EDDIE /SYNDROME [10]

(light red). The results are for basicmath running on the TS board

4.3.7 Further Evaluation of Robustness – Manufacturing Variations

To study the effect of manufacturing variations on the EM signals and REMOTE accuracy,

i.e., to determine if training is needed for each type of device or for each physical instance of a

device, we use 30 physical instances of the Cyclone V DE0-CV Terrasic FPGA development board

(chosen primarily because we have 30 such boards), to train REMOTE on one board (randomly

136

Approved for public release; Distribution is unlimited.

selected) and use that training to monitor each of the other 30 instances, with 20 runs of bitcount

on each instance, both with and without malware.

Our results show that REMOTE’s accuracy remains at 100% true positives and 0% false

positives throughout this experiment. However, when we prevent REMOTE from frequency-

adjusting the SSs used in comparisons, we still find no degradation for 17 of the boards, but for 13

the false positive rate increases to nearly 100%. Further analysis shows that the clock frequencies

of the boards vary, with 17 of them (including the one trained-on) were within the frequency-

tolerance (parameter D) of the matching, whereas the other 13 were outside the tolerance, causing

none of their peaks to vote for the cluster the signal actually should belong to. If D is then adjusted

to avoid false positives, the true positive rate is severely degraded.

Figure 52 shows one such scenario where we trained on board number 3, and test on board

number 4. The figure shows the ROC curve for board number 4 when frequency-adjusting is active

and inactive. We also repeated this experiment for 10 Olimex boards (we do not have 30 of those),

with very similar results with and without REMOTE’s frequency adjustment.

These results confirm the need for frequency adjustment in REMOTE if training and

monitoring do not use the same physical instance of a device.

137

Approved for public release; Distribution is unlimited.

Figure 54 Accuracy for REMOTE with frequency-adjusting, vs. Eddie/Syndrome

for FPGA board running bitcount

4.3.8 Further Evaluation of Robustness – Variations Over Time

We record the signals at one-hour intervals, over a period of 24 hours, while keeping the

FPGA board and the receiver active throughout the experiment, to observe how the emanated

signals vary over time as device temperature (and room temperature) and external radio

interference such as WiFi and cellular signals change during the day and due to the day/night

transition. The set of measurements collected each hour consists of 60 bitcount runs, 20 without

malware and 20 times with each of the two types of malware. The training data for all REMOTE

analyses in this experiment was recorded just after the device (FPGA board) and the receiver

(SDR) were turned on.

138

Approved for public release; Distribution is unlimited.

We observed no deviation from REMOTE’s accuracy throughout this experiment (solid

blue line in Figure 53). We then prevent REMOTE from clock-adjusting the frequencies and repeat

the experiments (on the same signal recordings), and find that the detection accuracy is

dramatically degraded between hours 4 through 13 and hours 23 and 24 (dashed red in Figure 53).

Further analysis shows that the clock frequency has shifted during these hours, coinciding with

use of business-hours and off-hours thermostat setting for the room4, likely because temperature

affected the board’s crystal oscillator whose signal is the basis for generating the processor’s clock

frequency.

Figure 55 Performance of REMOTE with its clock-frequency adjustment feature vs.

Eddie/Syndrome

139

Approved for public release; Distribution is unlimited.

4.3.9 Further Evaluation of Robustness – Multi-tasking/Time-sharing

In our final set of experiments, we apply REMOTE in the runs where Ransomware is

executed as a separate process, without changing the application. The OLinuXino board only has

one core, so its Debian Linux OS context switches between the two processes until the

Ransomware payload completes. Figure 54 shows the spectrogram in one such execution. In the

first part of the spectrogram only the application is running. At some point (millisecond 812 in this

spectrogram), the Ransomware process is started, and the context-switching in (approximately) 10

ms time-slices can clearly be seen beyond this point in the spectrogram.

The spectrum of the malware process is clearly different from the spectrum produced by

the application at this point in its execution, so we expect REMOTE to detect this malware

execution scenario easily.

To evaluate REMOTE accuracy for this scenario, we use 25 runs, and in each run, start the

Ransomware process at a different point in the run. The results of this experiment are that

REMOTE successfully detects all these runs even with the tolerance threshold that produces no

false positives for malware-free executions. It should be noted here that in this set of runs,

according to our threat model, the IoT system is running only one valid application. To

successfully handle scenarios in which the system context-switches between multiple valid

applications, REMOTE must be extended to identify when context switches are occurring and to

keep track and validate spectral samples with the knowledge of which application(s) they might

140

Approved for public release; Distribution is unlimited.

belong and where the “current” point is in each of those applications. Although we believe such

an extension to REMOTE is possible, it will likely require significant effort to figure out,

implement, and evaluate, so we leave it for future work.

Figure 56 Spectrogram of context-switching between the unmodified Bitcount
application and the Ransomware process

4.4 Task 2.2 – Results for Multi-Core Spectral Profiling

In this section, we provide experimental setups and results for the proposed profiling

scheme. We perform experiments on 3 different devices with different number of cores. Table VII

141

Approved for public release; Distribution is unlimited.

demonstrates the name of the devices and the number of cores they have. The goal of this section

is to illustrate that the proposed methodology works for multiple devices, programs and cores.

4.4.1. Experimental Setup

The experimental setup for all devices are given in Figure 55. For the experiments, we used

a lab-made magnetic probe and a spectrum analyzer [43] to measure the emanated signals. We

first present our results when only a single core then multiple cores are active.

Table IX Devices and corresponding core frequencies and numbers

142

Approved for public release; Distribution is unlimited.

Figure 57 Experimental setups

4.4.2 Program Profiling When Only One of the Cores is Active

143

Approved for public release; Distribution is unlimited.

In this section, we provide experimental results for the proposed model when a single core

is active. We first collect training signals, and then train our neural network by utilizing Algorithm

1. This is followed by generating state transition diagrams by applying Algorithm 2. The profiling

results while Bit_count is executed in a single core for Alcatel phone are given in Figure 56. In

this figure, we consider two scenarios: when the system is benign and when the program has

malware. The decision stream for the benign system is given in Figure 56a. Please observe that the

plot also contains a state with the number “8” which does not comply with the Markov Model

given in Figure 17. We use this extra state to represent that the output of the CNN is not above

threshold and the Markov Model could not assign the current output to any possible states. Since

there exists only a single path for each state (which can be executed only if the execution of the

previous state is completed), we observe a stepwise structure which indicates the program is

running properly. However, if we consider Figure 56b, we observe an anomaly between State -2

and State-3. Since this anomaly lasts longer than tM second, we alert malware. Here, tM is set to 2

ms which represents the sensitivity of the program.

Please note that the proposed framework does not only work for state transitions which

have only a single direction as given in Figure 17, but also for any Markov Model that has more

branching operations. As an example, we consider a SAVAT program [9] which generates four

different states during its execution. Compared to Bit_count and Basicmath, the Markov model of

the program has more paths, as given in Figure 57. This program has infinitely many paths since

144

Approved for public release; Distribution is unlimited.

the state ‘4’ has a connection to the state ‘1’. The biggest advantage of the proposed methodology

is that we do not need to collect all possible training signals, which is impossible for this case.

The training signals are collected only from a few executions of the code, irrespective of

the path as long as the measurement has samples from each state. Since the states are chosen such

that they produce similar signals whenever they are executed, having a couple of execution is

enough to train our CNN model. After training the CNN model, the program can be monitored

applying Algorithm 2. An example of the state transitions of the program is given in Figure 58.

The actual state transitions for the experiment is “1-2-4-1-2-3-4”. We observe that the transitions

are perfectly followed by the proposed method. Therefore, the proposed methodology can monitor

systems even with a more complex Markov Model.

We have done experiments on all of the devices with these programs. We obtain 0% false

negative rate (claiming no malware although the program has malware) for all of

the devices. However, the false positive rate is 0.1%, 0.2% and 0.3% for OLinuXino-A13,

OLinuXino-A20 and Alcatel, respectively. These ratios are calculated by dividing inaccurate

“idle” samples to total number of samples (> 103). Please note that having a false positive only

increases the maintenance cost of the system. However, having a false negative can cause serious

problems since this inaccurate classification can cause information leakages or irreparable

damages on the system.

145

Approved for public release; Distribution is unlimited.

Figure 58 State transition diagrams while only a single core is active

146

Approved for public release; Distribution is unlimited.

Figure 59 Proof-of-concept implementation: State transitions of a program
written by combining SAVAT with different alternation frequencies

Figure 60 State transitions while profiling SAVAT based program

4.4.3 Program Profiling When Multiple Cores Are Active

147

Approved for public release; Distribution is unlimited.

In this section, we consider the scenario when multiple cores are active. For a better

explanation, we first provide examples when two cores are running Basicmath and Bit_count, but

provide results for other cases as well. We investigate 1) the results when both programs are benign

and 2) why the cooperation between the neural network and the Markov Model is important. In

that respect, we run Basicmath and Bit_count on the Alcatel phone such that these programs are

executed at different cores. The spectrogram of the received signal is already given in Figure 16.

We provide the values of the first parallel unit of the proposed neural network and corresponding

state-transition flow obtained by employing Algorithm 2. The measurement started before program

execution, and monitored until all program executions were done. In these “idle” regions, the

proposed model does not report any malware because it is aware that the cores are not executing

the programs. In other words, these “idle” states appear at the beginning and end of the program

no matter what, and in the middle of the program if there is malware. Considering Figure 59a, we

observe two main problems that can cause inaccurate monitoring of a program:

• Multiple neurons are fired at the same time.

• A neuron other than the expected one is fired.

These problems can cause confusion or increase in false negative/positive rate if the

Markov Model is disregarded. The Markov part of the proposed framework ensures that the

profiling methodology can overcome these problems. These inaccurate transitions are prevented

via the thresholds employed by Algorithm 2 and limitations on the transitions imposed by the

148

Approved for public release; Distribution is unlimited.

proposed Markov Model. In Figure 60, the same plots are drawn for Basicmath, i.e. the second

parallel unit of the neural network. Similarly, the same problems are observed with the Bit_count

experiment, yet perfect monitoring is obtained with the proposed model.

149

Approved for public release; Distribution is unlimited.

Figure 61 Profiling based on the CNN and Markov Model for Bit_count

150

Approved for public release; Distribution is unlimited.

Figure 62 Profiling based on the CNN and Markov Model for Basicmath

The main observations regarding the experiment can be listed as follows:

151

Approved for public release; Distribution is unlimited.

• Although the training is performed by utilizing single-core measurements, the

proposed methodology can track and profile the program when multiple cores are

active.

• The neural network realizes the components emanated due to other profiled

programs and does not cause false positives even tough multiple cores are active.

As the second step, we investigate the behaviour of the model when malware is injected to

one of the programs. In that respect, the spectrograms of the programs in Figure 61 are examples

of when Basicmath and Bit_count have malware, respectively. The regions corresponding to

malware are indicated with a dotted rectangular. For the experiment where Basicmath has

malware, we observe that there is frequency shift toward lower frequencies (toward the centre

frequency) due to injection of extra code lines. This causes inner-loops to last longer to execute

and some frequency components fade away. However, for the experiment where Bit_count has

malware, we observe a shift away from centre frequency (to higher frequencies) (see dotted region

of Figure 61b). This could be the result of inserting a new code which lasts less time, or the deletion

of some code lines, etc.

In Figure 62, we provide the output streams of the Algorithm 2 for both parallel units when

Basicmath has malware. In Figure 62a, the profiling results are given for the first parallel unit,

whereas Figure 62b provides the results for the second parallel unit of the proposed model. As

expected, the algorithm does not alert while profiling Bit_count as opposed to the other parallel

152

Approved for public release; Distribution is unlimited.

unit since the malware is injected into Basicmath benchmark. As another example, Figure 63

demonstrates the output stream of Algorithm 2 when Bit_count has malware. The same comments

as before can be applied for this example. This time, the first parallel unit alerts the malware while

the second parallel unit reports a benign program since the malware is injected to Bit_count.

Figure 63 Hot regions when one of the programs has a malware

153

Approved for public release; Distribution is unlimited.

Figure 64 Profiling based on the CNN and Markov Model when Basicmath has malware

154

Approved for public release; Distribution is unlimited.

Figure 65 Profiling based on the CNN and Markov Model when Bit_count
has malware

155

Approved for public release; Distribution is unlimited.

As the final example, we investigate the behaviour of the model when the same algorithm

is executed at both cores. This is the worst case scenario since both programs produce the same

frequency components. We observe that the proposed model can still detect the malware because

the distortion of the malware on the spectrum causes information loss for the CNN to extract

features, as shown in Figure 64. This time, we are not able to reveal which program has the

malware. However, after being aware of malware existence in one of the programs, we run these

programs individually by activating only a single core of the device. Based on the outcomes of the

single-core-experiments, we successfully identify which program has the malware. However, if

the malware does not distort the spectrum severely and if the initialization of the same program on

both cores is exactly same, it is possible for the framework to miss the malware. However, for the

paper, we assume these two conditions do not occur at the same time.

• Main observations about these profiling experiments can be listed as follows:

• As long as the malware does not affect the whole spectrum, the proposed methodology can

predict which of the programs has the malware. If it does affect the whole spectrum, it alerts

an anomaly.

• The system can keep monitoring even after the part related to malware is executed.

• Combining Markov and CNN Models enables accurate prediction of the location of

malware within the program.

156

Approved for public release; Distribution is unlimited.

After these results, we can provide examples of multi-core devices running different

programs. Table VIII contains false positive (FP) and false negative (FN) rates for different

number of active cores. Here, FP and FN represents false positive and negative rates, respectively.

We observe that false negative is 0% for all cases, and false positive rate is less than 2%. These

results show that the proposed methodology is a very powerful tool for monitoring multi-core

devices.

Figure 66 The states while profiling the system when two Bit counts are
running and one of them has a malware

Table X The performance of the framework for different devices when multiple cores are

active (%)

157

Approved for public release; Distribution is unlimited.

4.5 Tasks 3-5 – Results for Basic Block Tracking

We evaluate TESLA by monitoring two different devices executing three different

benchmark applications. The evaluation matrix, the benchmark applications, and the experimental

results are discussed in the following sections.

4.5.1. Evaluation Matrix

To evaluate TESLA, we compute the edit distance between the actual execution path and

the reconstructed execution path. Specifically, we use Levenshtein distance [44] that computes the

minimum number edits (insertions, deletions or substitutions) required to change reconstructed

marker sequence to the actual marker sequence. We then compute the path reconstruction accuracy

as using the following equation.

158

Approved for public release; Distribution is unlimited.

 (22)

We further compare the actual and the reconstructed timestamps. Specifically, we compute

and report the absolute timing difference between the actual and the reconstructed markers. Note

that, the edits are excluded from this comparison, as there are no timestamps for the edited (e.g.,

inserted or deleted) markers.

4.5.2 Benchmark Applications

We selected 3 benchmark applications (Print Tokens, Replace, and Schedule) from the SIR

repository [45]. These applications are commonly used to evaluate techniques that analyze

program execution. Table IX provides the size matrix for the benchmark applications.

159

Approved for public release; Distribution is unlimited.

Table XI Benchmark applications statistics

Moreover, these applications have many inputs, each taking a unique execution path through

the CFG. We used disjoint sets of inputs for training and testing. For each application, we randomly

selected 500 inputs for training, and 100 for testing. Table X summarizes training-testing split.

Table XII Training and testing executions

We evaluate TESLA by executing these applications on two different devices: 1) FPGA device

and 2) IoT device.

160

Approved for public release; Distribution is unlimited.

4.5.3 FPGA Device Monitoring

First, we monitored an Altera DE-1 prototype (Cyclone II FPGA) board. This device has a

50 MHz NIOS II soft processor. We placed a magnetic probe near the device to collect the EM

side-channel signal. We then used an Agilent MXA N9020A spectrum analyzer to observe and

demodulate the EM emanations. The demodulated signal is next passed through an anti-aliasing

filter with 5 MHz bandwidth. Finally, we sampled the filtered signal at 12.8 MHz sampling rate,

and analyzed the digitized signal using TESLA.

Table XI summarizes the mean accuracy. We observe that TESLA achieves excellent

accuracy for monitoring all three benchmark applications, with roughly 99% accuracy for Print

Tokens and Replace, and near-perfect accuracy for Schedule. We also report the mean timing

difference of the predicted timestamps in Table XII. For Print Tokens and Schedule the mean

timing difference is less than 1 sample. However, for Replace, the mean timing difference is

roughly 4 samples.

Note that, at the experimental sampling rate (12.8 MHz), 1 sample is equivalent to 78:125

ns. Thus, all timing estimations are very precise.

161

Approved for public release; Distribution is unlimited.

Table XIII Mean accuracy for FPGA

Table XIV Mean timing difference for FPGA

Monitoring from Distance: We further evaluate TESLA by monitoring the FPGA device

from 1 m distance using a panel antenna. Figure 65 shows the experimental setup. We summarize

the mean accuracy in Table V. TESLA achieves better than 95% accuracy on all three benchmarks.

In fact, for Print Tokens and Schedule, TESLA achieves roughly 99% accuracy.

162

Approved for public release; Distribution is unlimited.

Table XV Mean accuracy at 1 m

Figure 67 Experimental setup: monitoring from 1 m distance

163

Approved for public release; Distribution is unlimited.

Table XIV shows the mean timing difference for the predicted marker timestamps. While

the timing differences are slightly higher than that of with probe, predicted timestamps are still

very precise, and within a few samples.

While TESLA demonstrates excellent performance from 1 m distance, we notice slight

degradation in accuracy compared to that of with probe (i.e., at 1 cm distance). This degradation

is due to the lower SNR at distance, and can be improved by using high-gain antennas and/or low-

noise amplifiers.

Table XVI Mean timing difference at 1 m

4.5.4 IoT Device Monitoring

We demonstrate the robustness of TESLA by monitoring an A13-OLinuXino IoT

development board. This device has a 1 GHz Cortex A8 ARM processor [26]. Unlike the FPGA

device, A13-OLinuXino runs on a Debian Linux operating system. We collected the EM side-

channel signal by placing a magnetic probe near the microprocessor. The signal was recorded and

demodulated using a spectrum analyzer (Agilent MXA N9020A). We then digitized the signal by

164

Approved for public release; Distribution is unlimited.

passing it through an anti-aliasing filter with 20 MHz bandwidth, and sampling at 51.2 MHz

sampling rate.

Table XVII Mean accuracy for IoT device

Table XV shows the accuracy of TESLA for monitoring the IoT device. TESLA

demonstrates high accuracy on all three benchmark applications; 94.15% on Print Tokens, 96.85%

on Replace, and 95.91% on Schedule. Note that, TESLA achieves even higher accuracy (roughly

99%) for monitoring FPGA device. However, A13-OLinuXino has a much faster processor (1

GHz compared to FPGA’s 50 MHz), which makes fine-grained execution monitoring more

challenging. Furthermore, the operating system on A13-OLinuXino leads to more variations

between training and testing executions. This, in turn, can cause performance degradation. As

such, TESLA’s performance on monitoring the IoT device is impressive.

Furthermore, the timing differences reported in Table XVI demonstrate that TESLA

predicted timestamps are also quite precise. The mean timing difference for all three benchmark

165

Approved for public release; Distribution is unlimited.

applications is within 10 samples. Note that, in our experiments (at 51.2 MHz sampling rate), each

sample is equivalent to 19:5 ns.

Table XVIII Mean timing difference for IoT device

Monitoring from Distance: We also evaluate TESLA by monitoring the IoT device from

distance. For this, we placed a slot antenna at 1 m distance from the device.

Table XVII shows that TESLA achieves roughly 90% mean accuracy on all three

benchmarks. Furthermore, Table XVIII reports the mean timing difference. We also notice some

performance degradation at distance. This is due to lower SNR that affects the signal matching

adversely.

166

Approved for public release; Distribution is unlimited.

Table XIX Mean accuracy at 1 m

Table XX Mean timing difference at 1 m

4.6 Task6 – Results for Single Instruction Tracking

In this section, we explain our experimental setup and provide the results for instruction

type determination and permutation tracking of instruction types.

4.6.1 Experimental Setup

167

Approved for public release; Distribution is unlimited.

To demonstrate the feasibility of the proposed methodology, we experiment on two

devices. The first device is Intel’s DE1 Altera FPGA Board that has Altera NIOS-II (soft)

processor. This processor is a general purpose RISC (reduced instruction set computer) processor

that implements Nios-II architecture with 6 pipeline stages. The operating clock frequency is 50

MHz and this board does not have a present operating system. The second device is A13-

OLinuXino, which is a low-cost embedded Linux mini-computer that has ARM Cortex A8

processor that operates at 1 GHz clock frequency. The processor implements ARMv7-A

architecture and is an in-order, dual-issue, superscalar microprocessor with 13-stage main integer

pipeline. In the remainder of the text, we refer to the first and second devices as the DE1 device,

and the A13 device, respectively.

To record the EM emanations, we use Aaronia’s H3 nearfield magnetic probe for the DE1

device and H2 near-field magnetic probe for the A13 device. These probes are chosen so that the

resonance frequency of the probes are aligned with the operating clock frequencies of the devices.

We locate the probes on the pin edges of the processors as shown in Figure 66. Also note that two

GPIO pins of these devices are utilized to record the marker signal. Measurements are obtained

with Keysight’s DSOS804A high-definition oscilloscope at 10 GHz sampling rate.

168

Approved for public release; Distribution is unlimited.

Figure 68 Experimental setup used for EM emanation recordings

4.6.2 Instruction Type Determination Results

To record the EM emanations, we use Aaronia’s H3 nearfield magnetic probe for the DE1

device and H2 near-field magnetic probe for the A13 device. These probes are chosen so that the

resonance frequency of the probes are aligned with the operating clock frequencies of the devices.

We locate the probes on the pin edges of the processors as shown in Figure 66. Also note that two

GPIO pins of these devices are utilized to record the marker signal. Measurements are obtained

with Keysight’s DSOS804A high-definition oscilloscope at 10 GHz sampling rate.

After inspecting the instruction set for both devices, we select 17 instructions per each

device for investigation that are listed in Table XIX with their corresponding abbreviations. Note

169

Approved for public release; Distribution is unlimited.

that these are frequently used instructions including mathematical operations such as addition and

multiplication; logical operations such as AND, OR; and memory access instructions such as load

and store, etc.

After selecting the instructions, we generate micro benchmarks for each of them that

include N = 10 and N = 100 times repetitions for the DE1 and A13 devices, respectively. The

reason for the higher N value of the A13 device micro benchmarks is the higher operating clock

frequency of the device. Next, we record the EM emanations and obtain the EM signatures for

different instructions. Figures 67 and 68 present examples of the obtained EM signatures of

different instructions for the DE1 and A13 devices, respectively. Note that each subfigure plots

several EM emanation traces obtained for different executions of the given instruction. One can

easily observe that these traces are highly aligned indicating that the EM signatures of the

instruction sequences are relatively similar for successive executions.

In Figure 67, we observe that some instructions such as LDW and MULI have significantly

different EM signatures that differ both in length and shape, whereas some instructions such as

ADD and SUB have very similar EM signatures in both length and shape. Similar conclusions can

be obtained for Figure 68, as well. One should note that these conclusions validate our initial

assumption that some instructions have similar EM signatures while some have significantly

different EM signatures. Therefore, our methodology also provides the capability of decreasing

170

Approved for public release; Distribution is unlimited.

the entropy of the instructions. We also realize that the instructions with similar EM signatures are

those that have similar physical implementations such as addition and subtraction.

171

Approved for public release; Distribution is unlimited.

Table XXI Investigated instructions

172

Approved for public release; Distribution is unlimited.

Figure 69 Obtained EM signatures of several instructions for the DE1device

173

Approved for public release; Distribution is unlimited.

Figure 70 Obtained EM signatures of several instructions for the A13device

As can be seen in Figure 68, the EM signature of LDW is significantly different than MUL,

ADDI and SUBI. This difference reflects the significance of the additional memory system

174

Approved for public release; Distribution is unlimited.

pipeline present in the A13 device for memory access instructions. Although the EM signatures

are obtained by repeating the same instruction N times, we are not observing the repetition of the

same pattern N times in the EM signature. We note that the beginning and ending parts of the

signatures are significantly different than the middle parts, where we can observe the same kind of

pattern repetition. This observation emphasizes the significance of the pipeline effect caused by

the instructions that come before and after the instruction sequence. From these observations, we

conclude that the EM signatures are indicative of the pipeline structure. These observations also

prove that each stage of a pipeline emits EM signals while executing instructions.

After obtaining the EM signatures, we generate the correlation matrices for the DE1 and

A13 devices as shown in Figure 69. In Figure 69, brighter colors indicate higher correlation, hence

higher similarity. Then, we convert this correlation matrix to a distance matrix and cluster these

instructions with average-link hierarchical clustering. The resulting dendrograms are presented in

Figure 70. Note that the bottom part of the dendrograms start with all instructions, and as it goes

to the top, these instructions are merged pair-wise so that they are in the same cluster until all

instructions are merged at the top. By investigating the correlation matrices and dendrograms, we

set the number of clusters, K, to be 4 in both cases because for both cases when K is set to 4,

resulting clusters include instructions that are similar in operation such as MULI and MUL. The

clusters are indicated with different branch colors. Red, blue, green and black colors represent A,

B, C and D type clusters, respectively.

175

Approved for public release; Distribution is unlimited.

For the DE1 device, A-type instructions include memory-access operations (LDR, STR)

as well as the clock-cycle arithmetic and logic operations that use register sources (ADD, SUB,

AND, CMPEQ, MOV, OR), there are also two exceptions (MOVI, ORI) that use immediate

values. B-type instructions are the arithmetic and logic operations that use immediate values

(ADDI, SUBI and XORI). C-type instructions are the multiplication operations (MULI and MUL)

and D-type instructions are the division operation (DIV).

Figure 71 Correlation matrices for DE1 and A13 devices

176

Approved for public release; Distribution is unlimited.

Figure 72 Dendrogram of the instructions obtained with hierarchical clustering for DE1

and A13 devices. Different colors represent the clusters

For the A13 device, A-type instructions include all clock-cycle arithmetic and logic

operations that are either using register values or immediate values. One exception is the ADD

instruction that uses register values, which is clustered as a C-type instruction along with the store

instruction (STR). B-type instructions are the multiplication operations (MUL, SMULL,

UMULL), and D-type instructions are the load operation (LDR).

As it has been discussed earlier, the clusters reflect the structure of the pipeline. For

example, load and store operations include the memory address location calculations which are

addition and subtraction operations. Therefore, these instructions have the same type as addition

177

Approved for public release; Distribution is unlimited.

and subtraction for the DE1 device. However, A13 implements an external memory-access

pipeline, which results in separate clusters for load and store operations. Similarly, we note that

different variants of multiplication operations are clustered in the same group for both devices.

4.6.3 Permutation Tracking Results

After determining the instruction types, we pick one instruction from each type to represent

the entire type. These instructions are LDW, ADDI, MULI and DIV for the DE1 device, and ADD,

MUL, STR and LDR for the A13 device representing A, B, C and D in the given order. Using

these instructions, we generate micro benchmarks, record EM emanations and generate EM

signatures for different N values.

Figure 71 and Figure 72 present example EM signatures for different permutations and N

values obtained from the DE1 and A13 devices. For N = 1, the plotted EM signatures of the

permutations (ABCD)1 and (DCBA)1 are visually different from each other for both devices.

However, we note that, when N = 1, the EM signatures for the A13 device has a large variance

among different executions, whereas this variance is much smaller for N = 10 case of the same

device. In Figure 71, when N = 10, we can observe a pattern that is repeated 10 times, but this

repetition is not present in Figure 72 when N = 10. This difference can be explained by the

difference of the pipeline lengths: DE1’s pipeline length (6 stages) is shorter than A13’s pipeline

length (13 stages). Therefore, a permutation block of length 4 instructions is more capable

including the contributions from the pipeline stages of the DE1 device and get the EM signature

178

Approved for public release; Distribution is unlimited.

into a steady state, whereas the EM signature for A13 does not reach the steady state with 10

repetitions.

Figure 73 Sample EM signatures of permutations with different N values for the DE1

device

179

Approved for public release; Distribution is unlimited.

Figure 74 Sample EM signatures of permutations with different N values for the A13

device

180

Approved for public release; Distribution is unlimited.

Note that for both devices, we cannot visually identify the locations of the A, B, C, and D

instruction types from the EM signatures. As discussed earlier, this is because single execution of

the instruction does not create significant variation in the signature and due to the pipeline, the

variation generated by execution of single instruction is distributed to different stages of the

pipeline. To test this, while executing the permutation only once (N = 1), we repeat each instruction

within the block 10 and 100 times for the DE1 and A13 devices, respectively. The EM signatures

obtained with this repetition are shown in Figure 73 and Figure 74. In Figure 73, we see that the

instruction blocks A and B that appear in the beginning for ABCD permutation can be identified

at the end of DCAB permutation. Note that identifying C and D precisely is still not possible. In

Figure 74, we can identify all instruction type blocks clearly as indicated in the figure. These results

show that, although single execution of an instruction does not generate an identifiable waveform

pattern, several consecutive executions can result in distinct waveforms. Please note that this is

just an observation and cannot be directly used for testing purposes because enforcing the

repetition of the same instruction within the blocks is not very realistic for many programs and,

therefore, is not practically applicable.

We generate templates for each permutation using Measurement 1, and predict the

permutation order of the snippets obtained from Measurement 2. We use 50 snippets per each

permutation resulting in a total of 1200 testing snippets. To observe the impact of the utilized low-

pass filter bandwidth on the accuracy and find the optimum bandwidth, we report the accuracy for

different bandwidth values as shown in Figure 75. Note that the accuracy is calculated as the ratio

181

Approved for public release; Distribution is unlimited.

of number of the correctly classified permutations to the total number of testing traces. We note

that the highest accuracy is obtained at 20 MHz for the DE1 device and 400 MHz for the A13

device. These are the optimum bandwidths that coincide with 2fc=5 where fc is the clock frequency

that corresponds to 50 MHz for DE1, and 1 GHz for A13. This is an interesting observation that

the more bandwidth does not necessarily translate into more information and higher accuracy, and

the optimum bandwidth is scaled with the clock frequency. Apart from the increase in the noise

energy, the major reason behind the accuracy drop beyond the optimum bandwidth is the aliasing

effect coming from the neighbouring harmonics of the clock frequency.

Figure 75 Sample EM signatures when instruction types are repeated 10

times within the permutation block for the DE1 device

182

Approved for public release; Distribution is unlimited.

Figure 76 Sample EM signatures when instruction types are repeated 100
times within the permutation block for the A13 device

Figure 77 Impact of N value on accuracy

In Figure 75, we observe that the optimum accuracies when N = 1 are 92.8% and 62% for

DE1 and A13, respectively. For higher values of N, the accuracy significantly improves. For N =

183

Approved for public release; Distribution is unlimited.

2, accuracy gets as high as 100% for DE1 and 97.8% for A13. To investigate N = 1 case, we

provide the confusion matrices in Figure 76. Note that both matrices are mostly diagonally

dominant. When we investigate the correlation matrix for the A13 device, we observe that some

permutations are more vulnerable to misclassification such as ABCD and ABDC, whereas some

permutations are almost perfectly classified such as BDAC and CDAB. This shows that the

ordering of the instructions changes the strength of the EM signature variation.

To demonstrate the improvement with larger N, we provide the correlation matrix for the

A13 device when N = 2 in Figure 77. Note that a single increment in N significantly improves the

accuracy from 62% to 97.8%. Here we would like to emphasize the trade-off between the number

of repetitions and the accuracy. Including repeated versions of the permutation blocks is

significantly increasing the detection accuracy in the expense of limiting the applicability of the

proposed method. Therefore, if the system or program under investigation has repetitive nature,

this method can be modified for better performance.

184

Approved for public release; Distribution is unlimited.

Figure 78 Confusion charts for N=1

Figure 79 Confusion chart for N = 2, A13 Device

4.6.4 Further Evaluation of Robustness

185

Approved for public release; Distribution is unlimited.

In this section, we test our methodology’s robustness and extensions. Firstly, we evaluate

the performance for different SNR levels. Next, we extend the tracking ability to instructions rather

than instruction types. The results are explained in the following sections.

Performance for different SNR levels: To evaluate the performance for different SNR

levels, we assume that the measurement channel is corrupted by additive white Gaussian noise

(AWGN). The calculation of SNR requires the signal power without any noise. Since EM side-

channels are unintentionally generated, we cannot control or measure the signal power by isolating

the noise. Therefore, we obtain measurements at locations with strongest EM emanations and use

the power of the signals obtained from these measurements as the referenced signal power,

therefore assuming an SNR level of infinity. After obtaining these traces, we introduce additive

white Gaussian noise with different noise powers to the testing traces.

Let x be a vector representing a testing trace with a length of L samples, and xi be the

sample values of this trace such that . To add the noise, we

first calculate PS, the signal power of the vector, as

(23)

Then we add AWGN to each sample of x and obtain the new signal y that is corrupted by

AWGN. The elements of y, yi, are obtained as

186

Approved for public release; Distribution is unlimited.

 (24)

Where is independent and identically distributed realizations

of a random variable that has a zero mean Gaussian (normal) distribution with variance,

and SNRlin represents SNR in linear scale.

One should note that we add AWGN to all testing traces, but the EM templates are kept as

originals. Then, we perform the same testing procedure for different SNR values with the optimum

low-pass filter bandwidths. The results are shown in Figure 78, where we observe that the accuracy

decreases for low SNR levels, as expected. We note that the performance converges for SNR

values higher than 15 dB. Also, we observe that the permutations with larger N are generally more

resistant to AWGN.

187

Approved for public release; Distribution is unlimited.

Figure 80 Impact of SNR on accuracy for permutations of different instructions
for different N values

4.6.5 Permutations of Instructions from the Same Instruction Type

188

Approved for public release; Distribution is unlimited.

In this section, our objective is to extend the applicability of the permutation tracking from

tracking different instruction types to tracking instructions of the same instruction type. To do so,

we pick 4 instructions from instruction type A for both devices. For the DE1, we pick ADD, AND,

MOV and CMPEQ; for the A13, we pick ADD, AND, MOV and CMP. Note that these instructions

use the same destination registers, register sources and immediate values, therefore we minimize

the variation that might be caused by data values or register differences. Using these 4 instructions,

we repeat the experiments and report the accuracies in Figure 79. Note that, the accuracies for N

= 1 are very low because these instructions are from the same type and their permutations have

very similar shapes. This low accuracy verifies that the instructions are clustered correctly. On the

other hand, we note that if we can afford to repeat the permutation sequence for several times, in

other words as we increase N, the accuracy successively increases. In fact, for N = 100, accuracy

for the DE1 and A13 devices get as high as 92.4% and 98%, which are relatively high accuracies

considering the similarity of the instruction signatures. To be able to determine the differences

between the instructions from the same cluster, we need more observations.

This points to the trade-off between better instruction resolution and number of

observations. This also shows that higher frequency bandwidth does not necessarily provide more

information to increase the accuracy rate.

189

Approved for public release; Distribution is unlimited.

Figure 81 Impact of N value on accuracy for permutations of instructions

from the same instruction type.

190

Approved for public release; Distribution is unlimited.

In this report, we have described a system called CAMELIA that monitors computation in

an EMSD (or phone/laptop/server) device by leveraging the involuntary electromagnetic (EM)

emanations from the monitored device. CAMELIA does not require changes to the monitored

device or its software, and its monitoring ability remains intact even after a complete compromise

of the monitored system. CAMELIA collects signals using purpose-designed antennas, then pre-

processes the signals and separates them into sub-channels that carry information about different

aspects of the system’s state. CAMELIA uses models of valid software behavior and

software/system/hardware interactions to form hypothesis about the sequence of execution and

software/system/hardware events in the monitored system, then updates these hypotheses by

matching the expected signals for each hypothesis to the observed signals. This allows CAMELIA

to maintain high accuracy and fidelity even when monitoring large codes, and even in the presence

of interrupts, input/output activity, cache misses, branch miss-predictions, and other events that

change emanated EM signals significantly in a way that is seemingly random but that CAMELIA

can account for end even use to improve monitoring.

To manage the tradeoff between fidelity, computational cost of modeling, and timeliness

of reporting, CAMELIA operates at three levels of fidelity. More precisely, CAMELIA can (1)

discover loop/module-level anomalies immediately, (2) detect basic-block-level control flow

violations and anomalies at the granularity of several instructions very rapidly (after one or few

dynamic instances of the violation are observed) and (3) uncover anomalous execution/event

5.0 CONCLUSIONS

191

Approved for public release; Distribution is unlimited.

patterns and even “below noise level” problems (e.g., when a valid instruction is replaced by a

similar instructions) after enough dynamic instances are observed.

The system is divided into six tasks as shown in Figure 1. In Task 1.1, a high gain planar

slotted circular disc antenna, designed for receiving EM emanations modulated around processor

clock was presented. The antenna was designed around 1 GHz for a 70 MHz bandwidth, using

higher order mode 𝑇𝑇𝑇𝑇12 mode, which had a larger electrical size than the fundamental mode. This

was done to reduce the number of elements. The antenna was designed in stacked configuration

which permits the use of EM coupling as an excitation and hence feed lines were avoided. The

antenna was fabricated using aluminum circular slotted discs, which are suspended in air using

Teflon screws. It was shown that the electric field null property of 𝑇𝑇𝑇𝑇12 mode allows the use of

screws to suspend the discs above the ground plane. The signal detection at the distances greater

than 3 m were demonstrated by direct LoS SNR measurements from an IoT board. For each

distance, SNR was calculated by subtracting the detectable signal power, when board activity is

on, with the noise power when there is no activity. Finally, the antenna was used to collect EM

signals from an IoT board while being >3m away from the board. The results show that using this

antenna, an IoT board can be monitored from >3m with excellent accuracy. Furthermore, the

antenna is cost effective and can be treated as a sub array for larger array for going further distances

in EM emanations measurements.

192

Approved for public release; Distribution is unlimited.

In Task 1.2 An algorithm for finding carriers of frequency-modulated (FM) and amplitude-

modulated (AM) electromagnetic (EM) emanations from computer systems was described.

Computer systems create EM emanations across the RF spectrum making it difficult, error-prone,

and time-consuming to find the relatively few emanations that expose sensitive information. One

of the most common and simplest mechanisms for information leakage occurs when the amplitude

or a frequency of an existing strong signal (e.g. a processor or memory clock) is amplitude or

frequency modulated by a system activity. If the system activity can be linked to sensitive

information, this results in information leakage. We have presented an algorithm for automatically

finding these AM and FM modulated signals, demonstrated the algorithm’s performance on

several different types of processors and systems (desktop, laptop, and smart phone), and

compared the results to an exhaustive manual search. We have also verified that all signals

identified by the algorithm can be traced to plausible unintentional modulation mechanisms to

illustrate that these signals can potentially cause information leakage. This algorithm is an

important tool for system designers to quickly identify circuits that are leaking sensitive

information.

In Task 2.1, we have proposed (REMOTE), a new robust framework to detect malware by

externally observing EM signals emitted by an electronic device. REMOTE does not require any

resources or infrastructure on, or any modifications to, the monitored system itself, which makes

it especially suitable for malware detection on embedded and/or cyber-physical systems where

hardware resources may be limited and performance and energy overheads introduced by other

193

Approved for public release; Distribution is unlimited.

monitoring approaches may be unacceptable. REMOTE can identify malicious code injection into

a known application that is running on a device in real-time and with a low detection latency.

To develop a robust framework, we systematically explored practical concerns through

experiments and analysis. First, to demonstrate the usability of REMOTE in real-world scenarios,

we ported several real-world cyber-physical- systems each with a meaningful attack, to different

platforms. Our results showed that for all of the programs on each of the platforms, REMOTE

successfully detected the instances of attacks with high accuracy and almost no false positives. We

then systematically evaluated the robustness of REMOTE to interrupts and other system activity,

to signal variation among different physical instances of the same device, to changes in antenna

distance, and to changes over time. By selectively disabling the robustness-oriented features of

REMOTE, we also demonstrated that these features are indeed contributing to its robustness.

Using these measurements and analysis, we showed REMOTE has several advantages over

state-of-the-art external malware detection frameworks and it is a promising candidate for

protecting resource-constrained devices (e.g., CPS, IoT, PLC, etc.) when implementing an internal

malware detector is infeasible.

In Task 2.2, we have proposed a new scheme that combines CNN and Markov models to

monitor multi-core systems to detect anomalies and malware. In the proposed methodology, the

Markov Model describes the dependencies among hot paths of a given program whereas the neural

network estimates the likelihood of Markov states at a specific instance. The structure is designed

194

Approved for public release; Distribution is unlimited.

such that the training phase of the neural net does not consider the dependency among its inputs.

However, in the testing phase, both the CNN and the Markov models are combined to check

whether the transition between states are allowed. Here, states are considered as the hot spots of

the program and transitions are allowed only if the program has such a path. The inputs to the

neural network are the emanated EM signals that are unintentionally generated while executing a

program. Since there is no instrumentation planted to the monitored system, the proposed method

introduces no overhead, therefore, it is observer-effect-free.

We tested the proposed methodology on various devices with different numbers of active

cores. We obtained no false negative, in other words, the method always alerts users whenever an

anomaly exists in the system. Compared to other zero-overhead profiling methods, the proposed

framework can identify which program has anomalies while multi-cores are active. Therefore, the

proposed methodology can be used to secure systems or to monitor anomalies even on multi-core

devices since the deviations from the actual behavior of a program can be exposed with the

proposed scheme.

Tasks 3-5 describe TESLA – a new approach for program execution tracing via EM side-

channel signals. TESLA is completely non-invasive and does not impose any overhead on the

monitored system. TESLA is especially useful for monitoring resource-constrained embedded

devices for tasks such as program debugging and anomalous/malicious program activity detection.

195

Approved for public release; Distribution is unlimited.

Experimental evaluations reveal that TESLA can provide highly accurate program traces for

benchmark applications running on different embedded devices, even from 1 m away.

Finally, Task 6 describes PITEM, a new approach for instruction-level tracking using EM

side channel. PITEM is a tool that can be used for fine-grain malware detection with an ability to

locate the malware injection precisely. It first identifies groups of instructions, instruction types

that have similar EM signatures using hierarchical clustering. After identifying instruction types,

during training phase, it generates templates for all possible permutations of these instruction

types. In the testing phase, we obtain testing traces and predict the best matching template with a

correlation based, matched-filter-like predictor. The proposed methodology is tested using two

different devices, one FPGA-based processor and one ARM-based IoT device. The results are

reported for different repetitions of the permutation blocks. For single execution of the permutation

block, we obtain 92.8% and 62% accuracies for the two different testing devices. We observe that

with only two repetitions of the permutation blocks, these accuracies significantly increase to

100% and 97.8%. Then, we evaluate the performance of the detection system under AWGN. We

note that the performance of the system is stable for > 15 dB SNR and the performance gradually

decreases for lower values of SNR. We also note that repeated permutation blocks are more

resilient to AWGN. Finally, we perform detection of the permutations from the same instruction

type. Although the detection accuracy is low for single execution of the instructions within the

block, the accuracy increases significantly when the instructions are repeated.

196

Approved for public release; Distribution is unlimited.

6.0 REFERENCES

[1] Prateek Juyal, Sinan Adibelli, Alenka Zajic “A Directive Antenna Based on Conducting Disc
for Detecting Unintentional EM Emissions at Larger Distances,” IEEE Transactions on Antennas and
Propagation, vol.66, pp. 6751-6761, December 2018..

[2]
Jelena Dinkić, Dragan Olcan, Antonije Djordjević, and Alenka G. Zajic,” High-Gain Quad

Array of Nonuniform Helical Antennas,” International Journal of Antennas and Propagation, vol.
2019, Article ID 8421809, 12 pages, 2019..

[3] H. Legay and L. Shafai, “New stacked microstrip antenna with large bandwidth and high
gain,” Inst. Elect. Eng. Proc. Microw. Antennas Propagation, vol. 141, no. 3, pp. 199–204, Jun. 1994.

[4]
P. Juyal, L. Shafai, "Sidelobe Reduction of TM12 Mode of Circular Patch via Non-resonant Narrow
Slot", IEEE Trans. Antennas Propagation, vol. 64, pp. 3361-3369, 2016.

[5] A. Vosoogh and P.-S. Kildal, “Simple formula for aperture efficiency reduction due to grating
lobes in planar phased arrays,” IEEE Trans. Antennas Propagation, vol. 64, no. 6, pp. 2263–2269, Jun.
2016.

[6] K. C. Kerby and J. T. Bernhard, “Sidelobe level and wideband behavior of arrays of random
subarrays,” IEEE Trans. Antennas Propagation, vol. 54, no. 8, pp. 2253–2262, Aug. 2006.

[7] S. A. Razavi et al., "2x2-Slot Element for 60-GHz Planar Array Antenna Realized on Two
Doubled-Sided PCBs Using SIW Cavity and EBG-Type Soft Surface fed by Microstrip-Ridge Gap
Waveguide," in IEEE Transactions on Antennas and Propagation, Sept. 2014.

[8] M. Prvulovic, A. Zajić, R. Callan, and C. Wang, “A method for finding frequency-modulated
and amplitude-modulated electromagnetic emanations in computer systems,” IEEE Transactions on
Electromagnetic Compatibility, vol. 59, no 1, pp. 34-42, 2017.

197

Approved for public release; Distribution is unlimited.

[9] R. Callan, A. Zajic, M. Prvulovic, "A Practical Methodology for Measuring the Side-Channel
Signal Available to the Attacker for Instruction-Level Events", Microarchitecture (MICRO) 2014 , pp.
242-254, 2014.

[10] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “Eddie: Em-based detection
of deviations in program execution,” in Proceedings of the 44th Annual International Symposium on
Computer Architecture, 2017, pp. 333–346.

[11] N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral profiling: Observer-effect-
free profiling by monitoring em emanations,” in Microarchitecture, 2016 49th Annual IEEE/ACM
International Symposium on. IEEE, 2016, pp. 1–11.

[12] Nader Sehatbakhsh, Alireza Nazari, Monjur Alam, Frank Werner, Yuanda Zhu, Alenka Zajic,
and Milos Prvulovic, “REMOTE: Robust External Malware Detection Framework by Using
Electromagnetic Signals,” in IEEE Transactions on Comp., 69, no. 3, pp. 312-326,2020.

[13] B. Yilmaz, F. Werner, S. Park, E. Ugurlu, E.Jorgensen, M. Prvulovic, A. Zajic, “MarCNNet:
a markovian convolutional neural network for malware detection and monitoring multi-core systems,”
submitted to IEEE Trans. on Information Forensics and Security, 20.

[14] N. Sehatbakhsh, et. al, “A new sidechannel vulnerability on modern computers by exploiting
electromagnetic emanations from the power management unit,” IEEE International Symposium on
High-Performance Computer Architecture, 2020.

[15] B. B. Yilmaz, A. Zajic, and M. Prvulovic, “Modelling jitter in wireless channel created by
processor-memory activity,” in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2018, pp. 2037–2041..

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite,” in Proc. of the Fourth
Annual IEEE International Workshop on Workload Characterization.IEEE, 2001,.

[17] B. B. Yilmaz, N. Sehatbakhsh, M. Prvulovic, and A. Zajic, “Communication model and
capacity limits of covert channels created by software activities,” IEEE Trans. on Information
Forensics and Security, vol. 15, pp. 776–789, 2019..

198

Approved for public release; Distribution is unlimited.

[18] R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, “Zerooverhead profiling via em
emanations,” in Proceedings of the 25th International Symposium on Software Testing and Analysis.
2016,pp. 401–412.

[19] B. B. Yilmaz, E. M. Ugurlu, A. Zajic, and M. Prvulovic, “Instruction level program tracking
using electromagnetic emanations,” in SPIE, 2019.

[20] Haider Khan, Sunjae Park, Alenka Zajic, and Milos Prvulovic, "TESLA: program Tracing
through Electromagnetic Side-channeL Analysis" submitted IEEE Transactions on Computers, 2020.

[21] B. B. Yilmaz, A. Zajic, and M. Prvulovic, “Modelling jitter in wireless channel created by
processor-memory activity,” in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing IEEE, 2018, pp. 2037–2041..

[22] A. Zajic and M. Prvulovic, “Experimental demonstration of electromagnetic information
leakage from modern processor-memory systems,” IEEE Transactions on Electromagnetic
Compatibility, vol. 56, no. 4, pp. 885–893, 2014..

[23] M. Dey, A. Nazari, A. Zajic, and M. Prvulovic, “Emprof: Memory profiling via em-
emanation in iot and hand-held devices,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture IEEE, 2018, pp. 881–893..

[24] Elvan Mert Ugurlu, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic, "PITEM:
Permutations-based instruction tracking via electromagnetic side-channel signal analysis" submitted
to IEEE Trans. on Computers, 2020 .

[25] May 2019. [Online]. Available:
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/terasic-
inc-/board/altera-de1-board.html.

[26] OlinuXino A13, https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino/open-
source-hardware..

[27] M. Omran, A. Engelbrecht, and A. Salman, “An overview of clustering methods,” Intell. Data
Anal., vol. 11, pp. 583–605, 11 2007..

199

Approved for public release; Distribution is unlimited.

[28] Yee Leung, Jiang-She Zhang, and Zong-Ben Xu, “Clustering by scale-space filtering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1396–1410, 2000..

[29] S. van Dongen and A. J. Enright, “Metric distances derived from cosine similarity and
pearson and spearman correlations,” 2012..

[30] G. Mayhew-Ridgers et al., "Accuracy of the gain-transfer method for a standard gain antenna
and a test antenna with equal aperture dimensions," C COMSIG '98. Proceedings of the 1998 South
African Symposium on, Rondebosch, 1998.

[31] “Lewansoul learm 6dof full metal robotic arm,” retrieved on April 2019 from
https://www.amazon.com/LewanSoul-Controller-Wireless-Software-Tutorials/dp/B074T6DPKX..

[32] H. Shacham, “The geometry of innocent flesh on the bone: Return into-libc without function
calls (on the x86),” in Proceedings of the 14th ACM Conference on Computer and Communications
Security,ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 552–561..

[33] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump oriented programming: A new class
of code-reuse attack,”in Proceedings of the 6th ACM Symposium on Information,Computer and
Communications Security, ser. ASIACCS ’11..

[34] B. Wijnen, E. J. Hunt, G. C. Anzalone, and J. M. Pearce,“Open-source syringe pump library,”
PLOS ONE, vol. 9, no. 9,pp. 1–8, 09 2014..

[35] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,A.-R. Sadeghi, and G.
Tsudik, “C-flat: Control-flow attestation for embedded systems software,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,.

[36] J. Salwan and A. Wirth, “Ropgadget: Gadgets finder for multiple architectures,”
https://github.com/JonathanSalwan/ROPgadget, 2011 (accessed Feb. 1, 2018)..

[37] “Horn antenna datasheet,” https://www.com-power.com/ah118hornantenna.html, 2015
(accessed Nov. 5, 2017)..

200

Approved for public release; Distribution is unlimited.

[38] S. A. Carr and M. Payer, “Datashield: Configurable data confidentiality and integrity,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, ser.
ASIA CCS ’17. New York, NY, USA: ACM, 2017, pp. 193–204..

[39] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and S. Zanero, “An
experimental security analysis of an industrial robot controller,” in 2017 IEEE Symposium on Security
and Privacy (SP), May 2017, pp. 268–286..

[40] “Lewansoul learm 6dof full metal robotic arm,” retrieved on April 2019 from
https://www.amazon.com/LewanSoul-Controller-Wireless-Software-Tutorials/dp/B074T6DPKX..

[41] “Arduino servo library,” https://www.arduino.cc/en/Reference/Servo, accessed April 2019)..

[42] Ubuntu, “Lightdm,” https://wiki.ubuntu.com/LightDM, 2017 (accessed Feb. 1, 2018).

[43] Keysight Signal Analyzer, https://www.keysight.com/en/pdx-x202266-pn-N9020A/mxa-
signal-analyzer-10-hz-to-265-ghz?pm=spc&nid=-32508.1150426&cc=US&lc=eng..

[44] G. Navarro, “A guided tour to approximate string matching,” ACM computing surveys
(CSUR), vol. 33, no. 1, pp. 31–88, 2001..

[45] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do, “Software-artifact infrastructure
repository,” UR L http://sir. unl. edu/portal, 2006..

[46] (2019). Trusthub. [Online]. Available: http://www.trusthub.org/benchmarks/trojan.

201

Approved for public release; Distribution is unlimited.

APPENDIX A – PUBLICATIONS

Journal Papers

[1] B. Yilmaz, F. Werner, S. Park, E. Ugurlu, E.Jorgensen, M. Prvulovic, A. Zajic, “MarCNNet:
a markovian convolutional neural network for malware detection and monitoring multi-core
systems,” submitted to IEEE Trans. on Information Forensics and Security, 2020.

[2] B. Yilmaz, N. Sehatbakhsh, M. Dey, C.-L. Cheng, M. Prvulovic, and A. Zajic, “A generalized

approach to estimation of covert channel information leakage capacity,” submitted to IEEE
Trans. on Information Forensics and Security, 2020, under revision.

[3] F. T. Werner, J. Dinkić, D. Olćan, A. Djordjević, M. Prvulovic, and A. Zajić, “An efficient

method for localization of magnetic field sources that produce high-frequency side-channel
emanations,” submitted to IEEE Transactions on Electromagnetic Compatibility, 2020, under
revision.

[4] Elvan Mert Ugurlu, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic, "PITEM:

Permutations-based instruction tracking via electromagnetic side-channel signal analysis"
submitted to IEEE Transactions. on Computers, 2020, under revision.

[5] Haider Khan, Sunjae Park, Alenka Zajic, and Milos Prvulovic, "TESLA: program Tracing

through Electromagnetic Side-channeL Analysis" submitted IEEE Transactions on
Computers, 2020, under revision.

[6] F. T. Werner, B. B. Yilmaz, M. Prvulovic, and A. Zajić, “Leveraging EM side-channels for
recognizing components on a motherboard,” to appear in IEEE Transactions on
Electromagnetic Compatibility, 2020.

202

Approved for public release; Distribution is unlimited.

[7] S. Sangodoyin, F. Werner, B. B. Yilmaz, C-L Cheng, E. M. Ugurlu,, N. Sehatbakhsh, M.
Prvulovic, and A. Zajic, “Side-channel propagation measurements and modeling for hardware
security in IoT devices,” to appear in IEEE Transactions on Antennas and Propagation, 2020.

[8] L. Nguyen, C. Cheng, F. Werner, M. Prvulovic, and A. Zajic, “A comparison of backscattering,
EM, and power side-channels and their performance in detecting software and hardware
intrusions,” in Journal of Hardware and System Security, March 2020.

[9] B. Yilmaz, N. Sehatbakhsh, A. Zajić and M. Prvulovic, “Communication model and capacity
limits of covert channels created by software activities,” in IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1891-1904, 2020.

[10] B. Yilmaz, M. Prvulovic, and A. Zajic, “Electromagnetic side-channel information leakage
created by execution of series of instructions in a computer processor in IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 776-789, 2020.

[11] Nader Sehatbakhsh, Alireza Nazari, Monjur Alam, Frank Werner, Yuanda Zhu, Alenka
Zajic, and Milos Prvulovic, “REMOTE: Robust External Malware Detection Framework by
Using Electromagnetic Signals,” in IEEE Transactions on Computers, 69, no. 3, pp. 312-326,
1 March 2020.* – chosen for the Featured Paper

[12] H. Khan, N. Sehatbakhsh, L. Nguyen, Milos Prvulovic, and Alenka Zajic, “Malware
detection in embedded systems using neural network model for electromagnetic side-channel
signals,” Journal of Hardware and System Security, 305–318, August 2019.

[13] Haider A. Khan, Nader Sehatbakhsh, Luong N. Nguyen, Robert Callan, Arie Yeredor,
Milos Prvulovic, and Alenka Zajic, “IDEA: intrusion detection through electromagnetic-signal
analysis for critical embedded and cyber-physical systems,” in IEEE Transactions on
Dependable and Secure Computing, 2019.

203

Approved for public release; Distribution is unlimited.

[14] J. Dinkić, D. Olcan, A. Djordjević, and A. Zajic,” Design and Optimization of Nonuniform
helical antennas with linearly varying geometrical parameters,” IEEE Access 7, pp. 855-866,
2019.

[15] Sinan Adibelli, Prateek Juyal, Chia-Lin Cheng, and Alenka Zajic, “THz near field focusing
using a 3D printed Cassegrain configuration for backscattered side-channel detection,” IEEE
Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6627-6638, October 2019.

[16] M. Ruble, C. E. Hayes, M. Welborn, A. Zajić, M. Prvulovic and A. M. Pitruzzello,
“Hyperdimensional Bayesian Time Mapping (HyperBaT): A Probabilistic Approach to Time
Series Mapping of Non-Identical Sequences,” in IEEE Transactions on Signal Processing, vol.
67, no. 14, pp. 3719-3731, July, 2019.

[17] Jelena Dinkić, Dragan Olcan, Antonije Djordjević, and Alenka G. Zajic,” High-Gain Quad
Array of Nonuniform Helical Antennas,” International Journal of Antennas and Propagation,
vol. 2019, Article ID 8421809, 12 pages, 2019.

[18] Prateek Juyal, Sinan Adibelli, Alenka Zajic “A Directive Antenna Based on Conducting
Disc for Detecting Unintentional EM Emissions at Larger Distances,” IEEE Transactions on
Antennas and Propagation, vol.66, pp. 6751-6761, December 2018.

[19] Baki Berkay Yilmaz, Robert Callan, Milos Prvulovic, and Alenka Zajic, “Capacity of the
EM Covert/Side-Channel Created by the Execution of Instructions in a Processor,” IEEE
Transactions on Information Forensics and Security, vol. 13, pp. 605-620, June 2018.

[20] Frank Werner, Derrick Chu, Antonije R. Djordjevic, Dragan I. Olcan, Milos Prvulovic, and
Alenka Zajic, “A Method for Efficient Localization of Magnetic-field Sources Excited by the
Execution of Instructions in a Processor,” IEEE Transactions on Electromagnetic
Compatibility, vol. 60, pp. 613-622, June 2018.

204

Approved for public release; Distribution is unlimited.

[21] M. Prvulovic, A. Zajić, R. Callan, and C. Wang, “A method for finding frequency-
modulated and amplitude-modulated electromagnetic emanations in computer systems,” IEEE
Transactions on Electromagnetic Compatibility, vol. 59, no 1, pp. 34-42, 2017.

Conference Papers

[1] J. Dinkic, D. Olcan, A. Djordjevic, A. Zajic, “Comparison of the optimal uniform and

nonuniform lossy helical antennas,” IEEE Proceedings of AP-S/URSI, pp. 1-2, July

2020, Montreal, Canada.

[2] B. Yilmaz, E. Ugurlu, A. Zajic, and M. Prvulovic, “Cell-phone classification: a
convolutional neural network approach exploiting electromagnetic emanations,” in
Proceedings of ICASSP, pp. 1-5, May 2020, Barcelona, Spain.

[3] B. Yilmaz, E. Ugurlu, F. Werner, A. Zajic, and M. Prvulovic, “Program profiling based

on Markov models and EM emanations,” in Proceedings of SPIE, April 2020, Anaheim,
CA.

[4] L. Nguyen, B. Yilmaz, C. Cheng, M. Prvulovic, and A. Zajic, “A novel clustering
technique using backscattering side-channel for counterfeit IC detection,” in Proceedings
of SPIE, April 2020, Anaheim, CA.

[5] Sangodoyin, F. Werner, B. B. Yilmaz, C. Cheng, E. M. Ugurlu, N. Sehatbakhsh, M.
Prvulovic, and A. Zajic, “Remote monitoring and propagation modeling of EM side-
channel signals for IoT device security,” in Proceedings of 14th European Conference on
Antennas and Propagation (EuCAP), pp. 1-5., March 2020, Copenhagen, Denmark.

205

Approved for public release; Distribution is unlimited.

[6] Nader Sehatbakhsh, Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “A New Side-
Channel Vulnerability on Modern Computers by Exploiting Electromagnetic Emanations
from the Power Management Unit,” in Proceedings of the 26th IEEE International
Symposium on High-Performance Computer Architecture, 2020.

[7] Nader Sehatbakhsh, Baki Yilmaz, Alenka Zajic, Milos Prvulovic, “EMSim: A
Microarchitecture-Level Simulation Tool for Modeling Electromagnetic Side-Channel
Signals,” in Proceedings of the 26th IEEE International Symposium on High-
Performance Computer Architecture, 2020. – nominated for the best paper award

[8] Baki Yilmaz, Elvan Ugurlu, Alenka Zajic, and Milos Prvulovic, “Detecting Cellphone
Camera Status at Distance by Exploiting Electromagnetic Emanations,” in Proceedings
of IEEE MILCOM, November 2019, pp. 1-6, Norfolk, VA.

[9] Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “Capacity of EM Side Channel Created
by Instruction Executions in a Processor,” in Proceedings of IEEE IEMCON, October
2019, pp. 1-5, Vancouver, CA.

[10] Nader Sehatbakhsh, Alireza Nazari, Haider Khan, Alenka Zajic, and Milos
Prvulovic, “EMMA: Hardware/Software Attestation Framework for Embedded Systems
Using Electromagnetic Signals,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp.1-11, 12-15 October 2019,
Columbus, OH.

[11] Frank Werner, Antonije Djordjevic, and Alenka Zajic, “A compact probe for EM
side-channel attacks on cryptographic systems,” in Proceedings of IEEE International
Symposium on Antennas and Propagation, pp. 1-2, July 2019, Atlanta, GA.

[12] Richard Rutledge, Sunjae Park, Haider Khan, Alessandro Orso, Milos Prvulovic,
and Alenka Zajic, “Zero-overhead path prediction with progressive symbolic execution,”

206

Approved for public release; Distribution is unlimited.

In Proceedings of the IEEE 41st International Conference on Software Engineering
(ICSE ’19), pp. 234-245, May 2019, Montreal CA.

[13] Baki Yilmaz, Elvan Ugurlu, Alenka Zajic, Milos Prvulovic, “Instruction level
program tracking using electromagnetic emanations,” Proceedings of SPIE, pp.1-6, April
2019, Baltimore, MD.

[14] Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “Capacity of deliberate side-
channels created by software activities,” Proceedings of IEEE MILCOM, October 2018,
pp. 1-6, Los Angeles, CA.

[15] M. Dey, A. Nazari, A. Zajic and M. Prvulovic, “EMPROF: Memory Profiling Via
EM-Emanation in IoT and Hand-Held Devices,” 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Fukuoka, Japan, 2018, pp.
881-893.

[16] M. Alam, H. Khan, M. Day, R. Callan, N. Sinha, A. Zajic, and M. Prvulovic, “One
& done – A Single-Decryption EM-Based Attack on OpenSSL’s Constant-Time Blinded
RSA ,” USENIX Security, August 2018.

[17] J. Dinkić, D. Olćan, A. Zajić, A. Djordjević, “Comparison of optimization
approaches for designing nonuniform helical antennas,” Proceedings of 2018 IEEE AP-
S Symposium on Antennas and Propagation and URSI CNC/USNC, Boston, USA, July
8-13, 2018, pp. 1581-1582.

[18] F. Werner, A. R. Djordjevic, D. I. Olcan, M. Prvulovic, and A. Zajic, “Experimental
validation of localization method for finding magnetic sources on IoT devices,” IEEE
Proceedings of EMC Europe, pp. 1-5, Amsterdam, Netherlands, August 2018.

207

Approved for public release; Distribution is unlimited.

[19] N. Sehatbakhsh, A. Nazari, M. Alam, A. Zajić, and M. Prvulovic, “Syndrome:
spectral analysis for anomaly detection on medical IoT and embedded devices,” IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pp. 1-8,
May 2018, Washington DC.

[20] N. Sehatbakhsh, H. Hong, B. Lazar, B. Johnson-Smith, O. Yilmaz, M. Alam, A.
Nazari, A. Zajic, and M. Prvulovic” Spectral Analysis for Anomaly Detection on Medical
IoT and Embedded Devices- Experimental Demonstration,” IEEE International
Symposium on Hardware Oriented Security and Trust (HOST) Hardware Demo, pp.1,
May 2018, Washington DC.

[21] H. Khan, M. Alam, A. Zajic, and M. Prvulovic, “Detailed tracking of program
control flow using analog side-channel signals: A promise for IoT malware detection and
a threat for many cryptographic implementations,” Proceedings of SPIE, April 2018,
Orlando FL.

[22] B. Yilmaz, M. Prvulovic, and A. Zajic, “Wireless communication channel created
by processor memory activity,” IEEE Proceedings of ICASSP, pp. 1-5, April 2018,
Calgary, Canada.

[23] S. Adibelli, R. Golubović, A. Djordjević, D. Olćan, and A. Zajić, “Design and
fabrication of non-uniform helical antennas for detection of side-channel attacks in
computer systems,” IEEE Proceedings of 12th European Conference on Antennas and
Propagation (EuCAP), pp. 1-5, April 2018, London, UK.

[24] Baki Berkay Yilmaz, Robert Callan, Milos Prvulovic, and Alenka Zajic,
“Quantifying Information Leakage in a Processor Caused by the Execution of
Instructions,” Proceedings of IEEE MILCOM, October 2017

208

Approved for public release; Distribution is unlimited.

[25] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “EDDIE: EM-
Based Detection of Deviations in Program Execution,” Proceedings of the 44th
International Symposium on Computer Architecture (ISCA), June2017. (acceptance rate
17 %)

[26] N. Sehatbakshsh, R. Callan, M. Alam, M. Prvulovic, and A. Zajic, “Leveraging
Electromagnetic Emanations for IoT Security, ”Hardware Demo at IEEE International
Symposium on Hardware Oriented Security and Trust (HOST) May 1-5, 2017. –Best
Demo Award

[27] A. Zajic, Milos Prvulovic, and Derrick Chu, “Path Loss Prediction for
Electromagnetic Side-Channel Signals,” Proceedings of the 11th European Conference
on Antennas and Propagation EUCap11, pp.1-5, Paris, France, March 2017.

[28] N. Sehatbakhsh, A. Nazari, A. Zajić, and Milos Prvulovic, “Spectral Profiling:
Observer-Effect-Free Profiling by Monitoring EM Emanations,” IEEE MICRO 16, pp.1-
11, Taipei, Taiwan, October 2016. (acceptance rate 20 %) – The Best Paper Award

[29] R. Callan, F. Behrang, M. Prvulovic, A. Zajic, and A. Orso, “Zero-Overhead
Profiling via EM Emanations,” accepted to The International Symposium on Software
Testing and Analysis, 18-20 July 2016, Saarbrücken, Germany. (acceptance rate 25 %)

209

Approved for public release; Distribution is unlimited.

APPENDIX B –ABSTRACTS

[1] B. Yilmaz, F. Werner, S. Park, E. Ugurlu, E. Jorgensen, M. Prvulovic, A. Zajic, “MarCNNet:

a markovian convolutional neural network for malware detection and monitoring multi-core

systems,” submitted to IEEE Trans. on Information Forensics and Security, 2020.

Abstract: Leveraging side-channels enables zero-overhead detection of anomalies. These

channels offer a non-instrumented program profiling capability by processing unintentional signals

emitted while executing programs, codes, etc. In this paper, we propose a Markov based

monitoring for multi-core devices utilizing the features extracted by a convolutional neural

network (CNN). We refer to the proposed framework as MarCNNet. The input of the overall model

is the magnitude-averaged short-time- Fourier-transform (STFT) of the emanated electromagnatic

(EM) signals. To reduce the dimension of the signal fed to the model, the states of the Markov

Model are considered as the hot paths. Transitions between states are only possible if the program

can follow the path. In the framework, the CNN model generates features which are utilized by

the Markov Model to estimate the likelihood of the state transitions. If the estimated transitions do

not comply with the Markov Model, it alerts anomaly, otherwise, it keeps monitoring in real time.

The framework also simplifies the training process because dependency among states is only

crucial for the Markov Model, but not for the CNN. Therefore, the neural network is trained

210

Approved for public release; Distribution is unlimited.

assuming the signals generated by each hot paths are independent. However, for a test signal, both

the CNN and the Markov Models are considered for malware detection. We tested the proposed

model for various devices with different number of cores and programs, and demonstrated that the

framework can detect malware with no false negatives, and a false positive rate less than 2%.

211

Approved for public release; Distribution is unlimited.

[2] B. Yilmaz, N. Sehatbakhsh, M. Dey, C.-L. Cheng, M. Prvulovic, and A. Zajic, “A generalized

approach to estimation of covert channel information leakage capacity,” submitted to IEEE

Trans. on Information Forensics and Security, 2020, under revision.

Abstract: Foreseeing severity of leakages through covert channels is a necessity for

designers to minimize information leakage. Covert channels can be created due to digital and/or

analog characteristics of computer’s switching activities. Hence, a judicious approach has to be

followed to make these systems more resilient to any covert channel attacks. Having a method to

estimate the capacity of information leakage in design-state provides an opportunity for designers

to adjust their systems to minimize leakages of worst-case scenarios. In this paper, we propose a

methodology to estimate the worst-case information leakage through various covert channels

which can be adopted for both analog and digital covert channels. In that respect, we first model

the communication channel as a deletion-insertion channel to mimic the possible losses due to

software activities. Unlike conventional communication systems where the noise is assumed to be

Additive White Gaussian Noise (AWGN), covert channels also suffer from changes in signaling

time of transmitted bits. We show that the noise caused by signaling time variation can be

combined with AWGN to explain the overall effective noise on the covert channel communication

system. Secondly, based on the effective noise, we model the communication channel between the

receiver and the transmitter. Then, we define the channel capacity as the maximum leakage for a

212

Approved for public release; Distribution is unlimited.

given covert channel. Finally, we provide experimental results to show that the proposed model is

an effective and a general method to attain the resilience of a given system.

213

Approved for public release; Distribution is unlimited.

[3] F. T. Werner, J. Dinkić, D. Olćan, A. Djordjević, M. Prvulovic, and A. Zajić, “An efficient
method for localization of magnetic field sources that produce high-frequency side-channel
emanations,” submitted to IEEE Transactions on Electromagnetic Compatibility, 2020, under
revision.

Abstract: A new, low-cost system for locating sources of high frequency EM side-channel

emanations on a printed-circuit board (PCB) is presented. The challenges inherent in high

frequency measurements are addressed through careful design of the measurement and localization

system. The system is time efficient, requiring only measurements taken around the edge of the

device. The accuracy of the measurement setup was verified by comparing measurements with

simulated results. The setup was then used to locate the instruction-dependent sources at 1 GHz

on an FPGA and an IoT development board. The 1 GHz sources are compared to previously

identified sources on the same devices taken at significantly lower frequencies. The results

demonstrate that the sources of the EM side-channel can vary not only with the executed

instruction but also with the frequency at which the side-channels are observed.

214

Approved for public release; Distribution is unlimited.

[4] Elvan Mert Ugurlu, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic, "PITEM:

Permutations-based instruction tracking via electromagnetic side-channel signal analysis"
submitted to IEEE Transactions. on Computers, 2020, under revision.

Abstract: The emergence of cyber-physical systems (CPS) and internet of things (IoT)

devices impose significant security and privacy concerns that necessitate robust monitoring

and malware detection systems for protection. This paper proposes PITEM, a framework for

instruction-level monitoring and malware detection using electromagnetic (EM) side-channels.

PITEM identifies instruction types with similar EM emanations using hierarchical clustering.

To track all combinations of these instruction types, we generate EM signatures for all

permutations of them. In testing, we predict the permutation class of testing traces by a

matched-filter-like predictor. We test the performance on two devices (FPGA-based and

ARM-based) with 50 MHz and 1 GHz clock frequencies. We achieve 92.8% and 62%

accuracies for these devices for single execution of permutations. We note that the accuracy

increases to as high as 100% when permutation blocks are repeated. Furthermore, we test the

limits of the system by tracking permutations of instructions of the same type. The results show

that with sufficient bandwidth and number of repetitions, individual instructions can be

resolved with 92.4% and 98% accuracies for these devices. Finally, the performance is

evaluated for different signal-to-noise ratio (SNR) levels and performance is found to be stable

for SNR values higher than 15 dB.

215

Approved for public release; Distribution is unlimited.

[5] Haider Khan, Sunjae Park, Alenka Zajic, and Milos Prvulovic, "TESLA: program Tracing
through Electromagnetic Side-channeL Analysis" submitted IEEE Transactions on
Computers, 2020, under revision.

Abstract: We present TESLA, a novel framework for zerooverhead program execution
tracing. TESLA leverages device’s electromagnetic (EM) side-channel signals for basic-
blockgranularity execution tracing. TESLA is completely non-invasive and does not require
any resource or any modification of the monitored device. Thus, this approach is especially
suitable for monitoring resource-constrained devices such as embedded devices and Internet
of Things (IoT) devices. In the training phase, TESLA learns a signal emanation model that
associates code segments or program subpaths with corresponding signal snippets. In the
testing phase, TESLA uses signal matching to establish a correspondence between the test
signal and the training signal, and then exploits the learned signal emanation model to
reconstruct the program execution path. We evaluate TESLA by monitoring benchmark
applications on different embedded devices. TESLA achieves 99% path reconstruction
accuracy for monitoring an FPGA device (Altera DE1). We further evaluate TESLA by
monitoring an IoT device (A13- OLinuXino board with 1 GHz processor and Linux operating
system), for which TESLA achieves roughly 95% accuracy. Furthermore, experimental
evaluations reveal that TESLA can monitor these devices from 1 m distance.

216

Approved for public release; Distribution is unlimited.

[6] F. T. Werner, B. B. Yilmaz, M. Prvulovic, and A. Zajić, “Leveraging EM side-channels for
recognizing components on a motherboard,” to appear in IEEE Transactions on
Electromagnetic Compatibility, 2020.

Abstract: This paper proposes leveraging EM side-channels to recognize/authenticate

electronic components integrated onto a motherboard. By focusing on components on a

motherboard, our method provides an opportunity to authenticate devices assembled by third

parties. This method identifies components based on the modulated signals emanated while

they are excited in a controlled manner. When testing an unknown component, the spectrum

is compared to previously recorded training signatures. To improve efficiency, the size of the

spectrum is reduced by projecting it into a vector space generated from training signatures. The

identity of the tested component is then determined using a k-Nearest Neighbors algorithm.

This method successfully classified memory, processor, and Ethernet transceiver components

integrated on seven types of Internet-of-Things devices. Since manufacturers commonly use

the same components in multiple designs, cross-type testing of motherboards is conducted.

Collecting the training signatures on one motherboard and testing components from different

motherboards speeds up the process and decreases the cost. Using measurements taken while

exciting the components for 1 s, our method achieves a classification accuracy greater than

96% across all components tested. These results demonstrate that this method can recognize

217

Approved for public release; Distribution is unlimited.

components based on their emanations, even if the components are integrated onto completely

different motherboards.

218

Approved for public release; Distribution is unlimited.

[7] S. Sangodoyin, F. Werner, B. B. Yilmaz, C-L Cheng, E. M. Ugurlu,, N. Sehatbakhsh, M.
Prvulovic, and A. Zajic, “Side-channel propagation measurements and modeling for hardware
security in IoT devices,” to appear in IEEE Transactions on Antennas and Propagation, 2020.

Abstract: The ubiquitous inter-connectivity of electronic devices offered by Internet-

of-Things (IoT) networks has been increasingly embraced in a wide range of applications. In

IoT networks, threats to hardware security are often not perceived as serious, with the

assumption that an attack could only be carried out at close proximity. However, in this paper,

we show that through Electromagnetic (EM) side-channel signal leakage, operational

information and program activities of IoT devices and Field Programmable Gate Array

(FPGA) modules can be garnered from approximately 200 m away in an outdoor Line-of- Sight

(LOS) environment. We describe an extensive measurement campaign conducted to

investigate the aforementioned leakage and provide propagation models that can be used to

predict the power (and corresponding variation i.e., shadowing gain) of the EM side-channel

signal emanation at various distances, scenarios and environments. Our results show that the

received power of the emanated EM side-channel (carrier) signal varies from about -61.64

dBm at 1 m to about -112 dBm at 200 m in the outdoor LOS environment. Furthermore, a

received signal power of about -73.55 dBm was observed at 1 m and -88 dBm was recorded at

10 m in an indoor LOS environment. Power variation (shadowing gain) of about 3.6 dB and

2.0 dB were observed in the outdoor and indoor environments, respectively. This work is

relevant for EM side-channel leakage countermeasure development and

219

Approved for public release; Distribution is unlimited.

provides pertinent information to embedded systems and wireless network security

engineers.

220

Approved for public release; Distribution is unlimited.

[8] L. Nguyen, C. Cheng, F. Werner, M. Prvulovic, and A. Zajic, “A comparison of backscattering,
EM, and power side-channels and their performance in detecting software and hardware
intrusions,” in Journal of Hardware and System Security, March 2020.

Abstract: Side-channel analysis is a powerful tool from both an attacker's and defender's

perspective. Understanding similarities and differences among types of side-channels is a

necessary step in better utilization of side-channels. This paper addresses this problem by modeling

and quantitatively comparing backscattering, electromagnetic (EM), and power side-channels and

discusses the performance of these three side-channels for detecting software malware and

hardware Trojans (HT). The results show that for larger changes in the signals, such as those

caused by malware intrusions, all three side-channels perform similarly. However, when smaller

changes need to be observed, such as those caused by HTs, the backscattering side-channel

outperforms EM and power side channels.

221

Approved for public release; Distribution is unlimited.

[9] B. Yilmaz, N. Sehatbakhsh, A. Zajić and M. Prvulovic, “Communication model and capacity
limits of covert channels created by software activities,” in IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1891-1904, 2020.

Abstract: It has been shown that digital and/or analog characteristics of electronic

devices during executing programs can create a side-channel which an attacker can exploit to

extract sensitive information such as cryptographic keys. When the attacker modifies the

software application to exfiltrate sensitive information through a channel, this channel is called

a covert channel. In this paper, we model this covert channel as a communication channel and

derive upper and lower capacity bounds. Because the covert channels are not designed to

transmit information, they are exposed not only to the errors created by the transmission, but

also by varying the execution time of computer activities, and/or by insertions from other

activities such as interrupts, stalls, etc. Combining all of these effects, we propose to model the

covert channel as an insertion channel where the transmitted sequence is a pulse amplitude

modulated signal with random pulse positions. Utilizing this model, we derive capacity bounds

of the covert channel with random insertion and substitution due to the noise and jitter errors,

and propose a receiver design that can correctly detect the computer-activitycreated signals.

To illustrate the severity of leakages, we perform experiments with high clock speed devices

at some distance. Further, the theoretical derivations are compared to empirical results, and

show good agreement.

222

Approved for public release; Distribution is unlimited.

[10] B. Yilmaz, M. Prvulovic, and A. Zajic, “Electromagnetic side-channel information leakage
created by execution of series of instructions in a computer processor in IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 776-789, 2020.

Abstract: The side-channel leakage is a consequence of program execution in a

computer processor, and understanding relationship between code execution and information

leakage is a necessary step in estimating information leakage and its capacity limits. This paper

proposes a methodology to relate program execution to electromagnetic side-channel

emanations, and estimates side-channel information capacity created by execution of series of

instructions (e.g. a function, a procedure, or a program) in a processor. To model dependence

among program instructions in a code, we propose to use Markov Source model, which

includes the dependencies among sequence of instructions as well as dependencies among

instructions as they pass through a pipeline of the processor. The emitted EM signals during

instruction executions are natural choice for the inputs into the model. To obtain the channel

inputs for the proposed model, we derive a mathematical relationship between the emanated

instruction signal power (ESP) and total emanated signal power while running a program.

Then, we derive leakage capacity of electromagnetic (EM) side channels created by execution

of series of instructions in a processor. Finally, we provide experimental results to demonstrate

that leakages could be severe and that a dedicated attacker could obtain important information.

223

Approved for public release; Distribution is unlimited.

[11] Nader Sehatbakhsh, Alireza Nazari, Monjur Alam, Frank Werner, Yuanda Zhu, Alenka
Zajic, and Milos Prvulovic, “REMOTE: Robust External Malware Detection Framework by
Using Electromagnetic Signals,” in IEEE Transactions on Computers, 69, no. 3, pp. 312-326,
1 March 2020.* – chosen for the Featured Paper

Abstract: Cyber-physical systems (CPS) are controlling many critical and sensitive

aspects of our physical world while being continuously exposed to potential cyber-attacks.

These systems typically have limited performance, memory, and energy reserves, which limits

their ability to run existing advanced malware protection, and that, in turn, makes securing

them very challenging. To tackle these problems, this paper proposes, REMOTE, a new robust

framework to detect malware by externally observing Electromagnetic (EM) signals emitted

by an electronic computing device (e.g., a microprocessor) while running a known application,

in real-time and with a low detection latency, and without any a priori knowledge of the

malware. REMOTE does not require any resources or infrastructure on, or any modifications

to, the monitored system itself, which makes REMOTE especially suitable for malware

detection on resource-constrained devices such as embedded devices, CPSs, and Internet of

Things (IoT) devices where hardware and energy resources may be limited. To demonstrate

the usability of REMOTE in real-world scenarios, we port two real-world programs (an

embedded medical device and an industrial PID controller), each with a meaningful attack (a

code-reuse and a code-injection attack), to four different hardware platforms. We also port

shellcode-based DDoS and Ransomware attacks to five different standard applications on an

224

Approved for public release; Distribution is unlimited.

embedded system. To further demonstrate the applicability of REMOTE to commercial CPS,

we use REMOTE to monitor a Robotic Arm. Our results on all these different hardware

platforms show that, for all attacks on each of the platforms, REMOTE successfully detects

each instance of an attack and has < 0.1% false positives. We also systematically evaluate the

robustness of REMOTE to interrupts and other system activity, to signal variation among

different physical instances of the same device design, to changes over time, and to plastic

enclosures and nearby electronic devices. This evaluation includes hundreds of measurements

and shows that REMOTE achieves excellent accuracy (< 0.1% false positive and >99.9% true

positive rates) under all these conditions.

225

Approved for public release; Distribution is unlimited.

[12] H. Khan, N. Sehatbakhsh, L. Nguyen, Milos Prvulovic, and Alenka Zajic, “Malware
detection in embedded systems using neural network model for electromagnetic side-channel
signals,” Journal of Hardware and System Security, 305–318, August 2019.

Abstract: We propose a novel malware detection system for critical embedded and cyber-

physical systems (CPS). The system exploits electromagnetic (EM) side-channel signals from the

device to detect malicious activity. During training, the system models EM emanations from an

uncompromised device using a neural network. These EM patterns act as fingerprints for the

normal program activity. Next, we continuously monitor the target device's EM emanations. Any

deviation in the device's activity causes a variation in the EM fingerprint, which in turn violates

the trained model, and is reported as an anomalous activity. The system can monitor the target

device remotely (without any physical contact), and does not require any modification to the

monitored system. We evaluate the system with different malware behavior (DDoS, Ransomware

and Code Modification) on different applications using an Altera Nios-II soft-processor.

Experimental evaluation reveals that our framework can detect DDoS and Ransomware with 100%

accuracy (AUC = 1.0), and stealthier code modification (which is roughly a 5 µs long attack) with

an AUC = 0.99, from distances up to 3 m. In addition, we execute control- ow hijack, DDoS and

Ransomware on different applications using an A13-OLinuXino – a Cortex A8 ARM processor

single board computer with Debian Linux OS. Furthermore, we evaluate the practicality and the

robustness of our system on a medical CPS, implemented using two different devices (TS-7250

226

Approved for public release; Distribution is unlimited.

and A13-OLinuXino), while executing a control-ow hijack attack. Our evaluations show that our

framework can detect these attacks with 100% accuracy.

227

Approved for public release; Distribution is unlimited.

[13] Haider A. Khan, Nader Sehatbakhsh, Luong N. Nguyen, Robert Callan, Arie Yeredor,
Milos Prvulovic, and Alenka Zajic, “IDEA: intrusion detection through electromagnetic-signal
analysis for critical embedded and cyber-physical systems,” in IEEE Transactions on
Dependable and Secure Computing, 2019.

Abstract: We propose a novel framework called IDEA that exploits electromagnetic

(EM) side-channel signals to detect malicious activity on embedded and cyber-physical

systems (CPS). IDEA first records EM emanations from an uncompromised reference device

to establish a baseline of reference EM patterns. IDEA then monitors the target device’s EM

emanations. When the observed EM emanations deviate from the reference patterns, IDEA

reports this as an anomalous or malicious activity. IDEA does not require any resource or

infrastructure on, or any modification to, the monitored system itself. In fact, IDEA is isolated

from the target device, and monitors the device without any physical contact. We evaluate

IDEA by monitoring the target device while it is executing embedded applications with

malicious code injections such as DDoS, Ransomware and code modification. We further

implement a control-flow hijack attack, an advanced persistent threat, and a firmware

modification on three CPSs: an embedded medical device called SyringePump, an industrial

PID Controller, and a Robotic Arm, using a popular embedded system, Arduino UNO. The

results demonstrate that IDEA can detect different attacks with excellent accuracy (AUC >

99.5%, and 100% detection with less than 1% false positives) from distances up to 3 m.

228

Approved for public release; Distribution is unlimited.

[14] J. Dinkić, D. Olcan, A. Djordjević, and A. Zajic,” Design and Optimization of Nonuniform
helical antennas with linearly varying geometrical parameters,” IEEE Access 7, pp. 855-866,
2019.

ABSTRACT Nonuniform helical antennas have many degrees of freedom, which

makes the search space for the optimal design very challenging. The objective of this paper is

to systematically analyze nonuniform helical antennas with linearly varying geometrical

parameters and to provide analytical equations that approximate the optimal design and the

gain of the designed antennas. Using various optimization algorithms, we made a large

database of the optimal nonuniform helical antennas with linearly varying geometrical

parameters. Based on these results, we made analytical equations that approximate the optimal

design and the gain of the designed antennas. These equations allow for a fast design procedure

yielding all necessary parameters needed for the design and fabrication of nonuniform helical

antennas that meet specified characteristics. Special attention is devoted to antenna losses.

Antennas designed following the presented procedure achieve around 2.5 dB higher gain than

uniform helical antennas of the same axial length, while maintaining the bandwidth and axial

ratio. As a verification of the proposed design procedure, a helical antenna with the central

operating frequency of 1 GHz was designed, simulated, fabricated, and measured. The

229

Approved for public release; Distribution is unlimited.

comparison between measured and simulated results confirms the validity of the presented

design procedure.

230

Approved for public release; Distribution is unlimited.

[15] Sinan Adibelli, Prateek Juyal, Chia-Lin Cheng, and Alenka Zajic, “THz near field focusing
using a 3D printed Cassegrain configuration for backscattered side-channel detection,” IEEE
Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6627-6638, October 2019.

Abstract: This paper presents the use of THz near field focusing for backscatter side

channel detection. Near field focusing is done by using cassegranian reflector configuration.

The focuser is designed to produce the focused beam 28 cm away from the antenna aperture.

The focusing is done in the near field region by axially moving the sub-reflector from the focal

point. It is observed that the sub-reflector position has to shift approximately 11 wavelengths

along the axis to create the focus at the required location. The focused antenna gain is 46 dBi

while the 3 dB focus width and depth of the designed antenna is ~ 4 mm and 10 cm,

respectively. It is found that the focal plane position is sensitive to the sub-reflector shifts and

it is observed that 1 mm change in the sub-reflector position can shift the focal plane by ~ 2

cm. The simulations are compared with measurement results of a fabricated prototype and

good agreement is observed. The antenna is fabricated by using 3D printing technology, which

allows rapid prototyping. Finally, we have demonstrated the detection of backscatter side

channel from the board placed at 28 cm away from the designed antenna. The received power

level of the backscatter signal increases by 6 dB as compared to horn antenna.

231

Approved for public release; Distribution is unlimited.

[16] M. Ruble, C. E. Hayes, M. Welborn, A. Zajić, M. Prvulovic and A. M. Pitruzzello,
“Hyperdimensional Bayesian Time Mapping (HyperBaT): A Probabilistic Approach to Time
Series Mapping of Non-Identical Sequences,” in IEEE Transactions on Signal Processing, vol.
67, no. 14, pp. 3719-3731, July, 2019.

Abstract: A common problem in time series analysis is mapping the related elements

between two sequences as they progress in time. Methods such as dynamic time warping (DTW)

and hidden Markov models (HMM) have good performance in mapping time series signals with

repeated (warped) elements relative to a reference signal. However, there is not an adequate

method for mapping time series signals with inserted or deleted elements. This work introduces

hyper-dimensional Bayesian time-mapping (HyperBaT), a machine learning algorithm that maps

two time sequence signals that may contain inserted, deleted, or warped elements. Additionally,

HyperBaT estimates the common underlying signal shared between the two sequences. The

algorithm is presented in a general context so that it can be used in a variety of applications. There

are many relevant areas, including speech processing, genetic sequencing, electronic warfare,

communications, and radar processing, that process signals containing inserted or deleted

elements. As an example, HyperBaT is applied to side-channels where it maps radio frequency

(RF) side-channel signals emitted from a computing device processor, which can be used to track

control flow execution and monitor for malicious activity.

232

Approved for public release; Distribution is unlimited.

[17] Jelena Dinkić, Dragan Olcan, Antonije Djordjević, and Alenka G. Zajic,” High-Gain Quad
Array of Nonuniform Helical Antennas,” International Journal of Antennas and Propagation,
vol. 2019, Article ID 8421809, 12 pages, 2019.

Abstract: We present a design of a high-gain quad array of non-uniform helical antennas.

The design is obtained by optimization of a 3-D numerical model of four non-uniform helical

antennas placed above a ground plane, including a model of a feeding network, utilizing the

method of moments with higher-order basis functions. The gain of one optimal non-uniform

helical antenna can be for about 2.5 dB higher than the gain of a uniform helical antenna of the

same axial length. Creating a 2×2 array further increases the gain for up to about 6 dB. The

resulting quad array fits into a box of dimensions 2.5×3.3×3.3 wavelengths and the gain in the

main radiating direction is about 20.5 dBi in the frequency range from 0.9 GHz to 1.1 GHz. The

design is verified by measurements of a prototype of the quad array.

233

Approved for public release; Distribution is unlimited.

[18] Prateek Juyal, Sinan Adibelli, Alenka Zajic “A Directive Antenna Based on Conducting
Disc for Detecting Unintentional EM Emissions at Larger Distances,” IEEE Transactions on
Antennas and Propagation, vol.66, pp. 6751-6761, December 2018.

Abstract: This paper proposes a novel high gain planar antenna design that consists of

conducting metallic discs suspended on air and operates at 1 GHz. The antenna is designed for

receiving the unintentional EM emanations generated by one or multiple embedded, “smart”

electronic systems. The antenna consists of two layers of slotted conducting metal discs suspended

on air and placed above the ground plane using teflon screws. The circular discs are designed to

operate in higher order 𝑻𝑻𝑴𝑴𝑴𝑴𝑴𝑴 mode. The screws location are the electric field nulls along the disc

radius. The upper layer is 2×2 array of slotted circular discs electromagnetically coupled by lower

identical disc which is fed directly by a single coaxial feed. The complete fabrication of antenna

is done using aluminum metal sheets and involves no use of dielectric substrate. The antenna has

a peak gain of 19 dBi with impedance bandwidth (𝑺𝑺𝑴𝑴𝑴𝑴 ≤ −𝟔𝟔 dB) of 6.7%. The simple and cost

effective design can be easily scaled to higher frequencies.

[19] Baki Berkay Yilmaz, Robert Callan, Milos Prvulovic, and Alenka Zajic, “Capacity of the
EM Covert/Side-Channel Created by the Execution of Instructions in a Processor,” IEEE
Transactions on Information Forensics and Security, vol. 13, pp. 605-620, June 2018.

234

Approved for public release; Distribution is unlimited.

Abstract: The goal of this paper is to answer how much information is “transmitted”

by execution of particular sequence of instructions in a processor. Introducing such a measure

would provide quantitative guidance for designing programs and computer hardware that

minimizes inadvertent (side channel) information leakage, and would also help detect parts of

a program or hardware design that have unusually high leakage (i.e. were designed to function

as covert channel “transmitters”). To answer this question, we propose a new method to

estimate the maximum information leakage through EM signals generated by execution of

instructions in a processor. We start by deriving a mathematical relationship between

electromagnetic side-channel energy (ESE) of individual instructions and the measured

pairwise side-channel signal power. Then, we use this measure to calculate the transition

probabilities needed for estimating capacity. Finally, we propose a new method to estimate

side/covert channel capacity created by the execution of instructions in a processor and

illustrate our results in several computer systems.

[20] Frank Werner, Derrick Chu, Antonije R. Djordjevic, Dragan I. Olcan, Milos Prvulovic, and
Alenka Zajic, “A Method for Efficient Localization of Magnetic-field Sources Excited by the
Execution of Instructions in a Processor,” IEEE Transactions on Electromagnetic
Compatibility, vol. 60, pp. 613-622, June 2018.

Abstract: This paper proposes a method for efficient identification of instruction

dependent sources on a printed-circuit board (PCB) by localizing magnetic field sources from

235

Approved for public release; Distribution is unlimited.

a limited number of measurements around the PCB. We first excite the processor by generating

an artificial leakage signal at a specific frequency that is directly related to processor

instructions. Then, we collect all three components of the magnetic field, but only at locations

around the edge of the board. Furthermore, we model these magnetic field sources and then

solve a forward-backward optimization problem using the model and measured data to identify

the locations of the magnetic field sources, the magnitudes of the moments, and their

orientations. The localization results are first verified using simulations, then tested when noise

is added to the simulation results, and finally verified against measurements on FPGA and IoT

development boards. The results show that the number of strong magnetic field sources on a

board depends on the instructions used to excite the board. Furthermore, the results show that

the proposed localization algorithm can accurately identify those sources, regardless of the

frequency at which the measurements are conducted and the instruction pairs that are executed.

Finally, the proposed method can significantly reduce the number of measurement points and

the time needed to identify magnetic field sources on a PCB.

236

Approved for public release; Distribution is unlimited.

[21] M. Prvulovic, A. Zajić, R. Callan, and C. Wang, “A method for finding frequency-
modulated and amplitude-modulated electromagnetic emanations in computer systems,” IEEE
Transactions on Electromagnetic Compatibility, vol. 59, no 1, pp. 34-42, 2017.

Abstract: This paper presents an algorithm for finding carriers of frequency-modulated

(FM) and amplitude-modulated (AM) electromagnetic (EM) emanations from computer

systems. Computer systems create EM emanations across the RF spectrum making it difficult,

error-prone, and time-consuming to find the relatively few emanations that expose sensitive

information. One of the most common and simplest mechanisms for information leakage

occurs when an amplitude or a frequency of an existing strong signal (e.g., a processor or

memory clock) is amplitude or frequency modulated by a system activity. If the system activity

can be linked to sensitive information, this results in information leakage. We present an

algorithm for automatically finding these AM and FM modulated signals, demonstrate the

algorithm’s performance on several different types of processors and systems (desktop, laptop,

and smart phone), and compare the results to an exhaustive manual search. We also verify that

all signals identified by the algorithm can be traced to plausible unintentional modulation

mechanisms to illustrate that these signals can potentially cause information leakage. This

algorithm can be an important tool for system designers to quickly identify circuits that are

leaking sensitive information.

237

Approved for public release; Distribution is unlimited.

[22] J. Dinkic, D. Olcan, A. Djordjevic, A. Zajic, “Comparison of the optimal uniform and
nonuniform lossy helical antennas,” IEEE Proceedings of AP-S/URSI, pp. 1-2, July 2020,
Montreal, Canada.

Abstract: Various uniform and non-uniform helical antennas are used in practice. In

this paper we compare uniform and non-uniform helical antennas with respect to their losses.

Further, we present the ranges of wire conductivities for which the non-uniform antennas are

preferable choice and the conductivities where uniform antennas are recommended.

238

Approved for public release; Distribution is unlimited.

[23] B. Yilmaz, E. Ugurlu, A. Zajic, and M. Prvulovic, “Cell-phone classification: a
convolutional neural network approach exploiting electromagnetic emanations,” in
Proceedings of ICASSP, pp. 1-5, May 2020, Barcelona, Spain.

Abstract: In this paper, we propose a methodology to identify both the brand of a cell-

phone, and the status of its camera by exploiting electromagnetic (EM) emanations. The

method composes two parts: Feature extraction and Convolutional Neural Netwotk (CNN).

We first extract features by averaging magnitudes of short-time Fourier transform (STFT) of

the measured EM signal, which helps to reduce input dimension of the neural network, and to

filter spurious emissions. The extracted features are fed into the proposed CNN, which contains

two convolutional layers (followed by max-pooling layers), and four fully-connected layers.

Finally, we provide experimental results which exhibit more than 99% classification accuracy

for the test signals.

239

Approved for public release; Distribution is unlimited.

[24] B. Yilmaz, E. Ugurlu, F. Werner, A. Zajic, and M. Prvulovic, “Program profiling based on
Markov models and EM emanations,” in Proceedings of SPIE, April 2020, Anaheim, CA.

Abstract: As one of the fundamental approaches for code optimization and

performance analysis, profiling software activities can provide information on the existence of

malware, code execution problems, etc. In this paper, we propose a methodology to profile a

system with no overhead. The approach leverages electromagnetic (EM) emanations while

executing a program, and exploits its flow diagram by constructing a Markov model. The states

of the model are considered as the heavily executed blocks (called hot paths) of the program,

and the transition between any two states is possible only if there exists a branching operation

which enables execution of corresponding states without any intermediate state. To identify

the state of the program, we utilize a supervised learning method. To do so, we first collect

signals for each state, extract features, and generate a dictionary. The features are considered

as the activated frequencies when the program is executed. The assumption here is that there

exists at least one unique frequency component that is only active for one unique state.

Moreover, to degrade the effect of interruptions and other signals emanated from other parts

of the device, and to obtain signals with high Signal-to-Noise Ratio (SNR), we average the

output of Short-Time Fourier Transform (STFT). After extracting features, we apply Principle

Component Analysis (PCA) for dimension reduction which helps monitoring systems in real

240

Approved for public release; Distribution is unlimited.

time. Finally, we describe experimental setup and show results to demonstrate that the

proposed methodology can detect malware activity with high accuracy.

241

Approved for public release; Distribution is unlimited.

[25] L. Nguyen, B. Yilmaz, C. Cheng, M. Prvulovic, and A. Zajic, “A novel clustering
technique using backscattering side-channel for counterfeit IC detection,” in Proceedings of
SPIE, April 2020, Anaheim, CA.

Abstract: Over the past few years, globalization of the semiconductor supply chain

has led companies to outsource much of the production cycle for integrated circuits (ICs).

While outsourcing helps companies significantly reduce their cost and time-to-market, it also

introduces concerns about the trustworthiness of an IC. One of the most serious problems is

counterfeiting of ICs, which not only negatively impacts innovation and economic growth of

the IC industry, but also creates serious threats and risks for systems that incorporate those

counterfeit ICs. This paper proposes a novel method that uses the backscattering side-channel

to cluster ICs such that counterfeits are separated from legitimate ICs. The backscattering side-

channel, which has been introduced only recently, has been proven to outperform other side-

channels in detecting hardware Trojan horses (HTs), i.e. ICs where additional logic gates (and

connections to existing logic gates) have been added. In this work we use it to robustly separate

ICs into legitimate and counterfeit ones, even when only layout or placement of the IC has

changed, without any added logic or connections. We evalute our technique on a set of ten

boards over six different counterfeit IC designs, and find that our technique tolerates

manufacturing variations among different hardware instances, detecting counterfeit ICs with

100% accuracy and 0% false positives.

242

Approved for public release; Distribution is unlimited.

[26] Sangodoyin, F. Werner, B. B. Yilmaz, C. Cheng, E. M. Ugurlu, N. Sehatbakhsh, M.
Prvulovic, and A. Zajic, “Remote monitoring and propagation modeling of EM side-channel
signals for IoT device security,” in Proceedings of 14th European Conference on Antennas and
Propagation (EuCAP), pp. 1-5., March 2020, Copenhagen, Denmark.

Abstract: This paper presents results from an investigation into long-range detection

and monitoring of Electromagnetic (EM) side-channel signals leaked from Internet-of-Things

(IoT) and Field Programmable Gate Array (FPGA) devices. Our work shows that operational

information and program activities of the IoT and FPGA modules can be garnered at distances

excess of 25 m in an indoor Line-Of-Sight (LOS) environment, while at about 10 m in an

indoor (through wall) Non-Line-Of-Sight (NLOS) scenario. We provide a propagation model

that can be used to predict the received power (and corresponding variation i.e., shadowing

gain) of leaked EM side-channel signals at various distances and scenarios. Benchmark

program bitcount used in the performance evaluation of ARM-based microprocessors and a

microbenchmark SAVAT running on an IoT device were detected and monitored remotely in

our work.

243

Approved for public release; Distribution is unlimited.

[27] Nader Sehatbakhsh, Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “A New Side-
Channel Vulnerability on Modern Computers by Exploiting Electromagnetic Emanations from
the Power Management Unit,” in Proceedings of the 26th IEEE International Symposium on
High-Performance Computer Architecture, 2020.

Abstract: This paper presents a new micro-architectural vulnerability on the power

management units of modern computers which creates an electromagnetic-based side channel.

The key observations that enable us to discover this side-channel are 1) in an effort to manage

and minimize power consumption, modern microprocessors have a number of possible

operating modes (power states) in which various sub-systems of the processor are powered

down, 2) for some of the transitions between power states, the processor also changes the

operating mode of the voltage regulator module (VRM) that supplies power to the affected

sub-system, and 3) the electromagnetic (EM) emanations from the VRM are heavily dependent

on its operating mode. As a result, these state-dependent EM emanations create a side-channel

which can potentially reveal sensitive information about the current state of the processor and,

more importantly, the programs currently being executed. To demonstrate the feasibility of

exploiting this vulnerability, we create a covert channel by utilizing the changes in the

processor’s power states. We show how such a covert channel can be leveraged to exfiltrate

sensitive information from a secured and completely isolated (air-gapped) laptop system by

placing a compact, inexpensive receiver in close proximity to that system. To further show the

severity of this attack, we also demonstrate how such a covert channel can be established when

244

Approved for public release; Distribution is unlimited.

the target and the receiver are several meters away from each other, including scenarios where

the receiver and the target are separated by a wall. Compared to the state-of-the-art, the

proposed covert channel has >3x higher bit-rate. Finally, to demonstrate that this new

vulnerability is not limited to being used as a covert channel, we demonstrate how it can be

used for attacks such as keystroke logging.

245

Approved for public release; Distribution is unlimited.

[28] Nader Sehatbakhsh, Baki Yilmaz, Alenka Zajic, Milos Prvulovic, “EMSim: A
Microarchitecture-Level Simulation Tool for Modeling Electromagnetic Side-Channel
Signals,” in Proceedings of the 26th IEEE International Symposium on High-Performance
Computer Architecture, 2020. – nominated for the best paper award

Abstract: Side-channel attacks have become a serious security concern for computing

systems, especially for embedded devices, where the device is often located in, or in close

proximity to, a public place, and yet the system contains sensitive information. To design

systems that are highly resilient to such attacks, an accurate and efficient design stage

quantitative analysis of side-channel leakage is needed. For many system properties (e.g.,

performance, power, etc.), cycle-accurate simulation can provide such an efficient-yet-accurate

design-stage estimate. Unfortunately, for an important class of side-channels, electromagnetic

emanations, such a model does not exist, and there has not even been much quantitative

evidence about what level of modeling detail (e.g., hardware, microarchitecture, etc.) would

be needed for high accuracy. This paper presents EMSim, an approach that enables simulation

of the electromagnetic (EM) side-channel signals cycle-by-cycle using the detailed micro-

architectural model of the device. To evaluate EMSim, we compare the simulated signals

against actual EM signals emanated from real hardware (a RISC-V processor implemented on

an FPGA), and find that they match very closely. To gain further insights, we also

experimentally identify how the accuracy of the simulation degrades when key micro-

architectural features (e.g., pipeline stall, cache-miss, etc.) and other hardware behaviors (e.g.,

246

Approved for public release; Distribution is unlimited.

data-dependent switching activity) are omitted from the simulation model. We further evaluate

how robust the simulation-based results are, by comparing them to real signals collected in

different conditions (manufacturing, distance, etc.). Finally, to show the applicability of

EMSim, we demonstrate how it can be used to measure side-channel leakage through

simulation at design-stage.

247

Approved for public release; Distribution is unlimited.

[29] Baki Yilmaz, Elvan Ugurlu, Alenka Zajic, and Milos Prvulovic, “Detecting Cellphone
Camera Status at Distance by Exploiting Electromagnetic Emanations,” in Proceedings of
IEEE MILCOM, November 2019, pp. 1-6, Norfolk, VA.

Abstract: This paper investigates unintended radiated emissions from cellphones to

identify operational status of rear/front camera. We implement a supervised learning method

to achieve our goal. In the training phase, we collect data for possible combinations of phone

model and camera status. Then, we apply two-phase-dimension-reduction method for better

and effective classification. The first dimension-reduction phase is averaging magnitudes of

frequency components of a sliding window, which is followed by applying principle

component analysis (PCA) technique to reduce the dimension further. In testing phase, k

Nearest-Neighbors (k-NN) algorithm is utilized to classify test data. Finally, we provide

examples to show that emanated EM signals from cellphone cameras can exfiltrate useful

information.

248

Approved for public release; Distribution is unlimited.

[30] Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “Capacity of EM Side Channel Created
by Instruction Executions in a Processor,” in Proceedings of IEEE IEMCON, October 2019,
pp. 1-5, Vancouver, CA.

Abstract: This paper proposes a methodology to estimate leakage capacity of

electromagnetic (EM) side channels created by execution of instruction sequences (e.g. a

function, a procedure, or a program) in a processor. We propose to use Markov Source model

to include the dependencies that exist in instruction sequence since each program code is

written systematically to serve a specific task. The channel input sources are considered as the

emitted EM signals while executing an instruction. We derive a mathematical relationship

between the emanated instruction power (IP) and total emanated signal power while running a

microbenchmark to obtain the channel input powers. The results demonstrate that leakages

could be severe enough for a dedicated attacker to obtain some prominent information.

249

Approved for public release; Distribution is unlimited.

[31] Nader Sehatbakhsh, Alireza Nazari, Haider Khan, Alenka Zajic, and Milos Prvulovic,
“EMMA: Hardware/Software Attestation Framework for Embedded Systems Using
Electromagnetic Signals,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp.1-11, 12-15 October 2019, Columbus, OH.

Abstract: Establishing trust for an execution environment is an important problem, and

practical solutions for it rely on attestation, where an untrusted system (prover) computes a

response to a challenge sent by the trusted system (verifier). The response computation typically

involves calculating a checksum of the prover’s program, which the verifier checks against

expected values for a “clean” (trustworthy) system. The main challenge in attestation is that, in

addition to checking the response, the verifier also needs to verify the integrity of the response

computation itself, i.e., that response computation itself has not been tampered with to produce

expected values without measuring the verifier’s actual code and environment. On higher-end

processors, this integrity is verified cryptographically, using dedicated trusted hardware. On

embedded systems, however, constraints prevent the use of such hardware support. Instead, a

popular approach is to use the request-to-response time as a way to establish confidence. However,

the overall request-to-response time provides only one coarse-grained measurement from which

the integrity of the attestation is to be inferred, and even that is noisy because it includes the

network latency and/or variations due to micro-architectural events. Thus, the attestation is

vulnerable to attacks where the adversary has tampered with response computation, but the

resulting additional computation time is small relative to the overall request-to-response time. In

250

Approved for public release; Distribution is unlimited.

this paper, we make a key observation that the existing approach of execution-time measurement

for attestation is only one example of using externally measurable side-channel information and

that other side-channels, some of which can provide much finer-grain information about the

computation, can be used. As a proof of concept, we propose EMMA, a novel method for

attestation that leverages electromagnetic side-channel signals that are emanated by the system

during response computation, to confirm that the device has, upon receiving the challenge, actually

computed the response using the valid program code for that computation. This new approach

requires physical proximity, but imposes no overhead to the system, and provides accurate

monitoring during the attestation. We implement EMMA on a popular embedded system, Arduino

UNO, and evaluate our system with a wide range of attacks on attestation integrity. Our results

show that EMMA can successfully detect these attacks with high accuracy. We compare our

method with the existing methods and show how EMMA outperforms them in terms of security

guarantees, scalability, and robustness.

[32] Frank Werner, Antonije Djordjevic, and Alenka Zajic, “A compact probe for EM side-
channel attacks on cryptographic systems,” in Proceedings of IEEE International Symposium
on Antennas and Propagation, pp. 1-2, July 2019, Atlanta, GA.

Abstract: A shielded loop probe design for evaluating EM side-channels attacks on

cryptographic systems is described. This probe is compact and is sensitive enough to measure

extremely weak signals that usually comprise EM side-channels. Furthermore, this probe can

251

Approved for public release; Distribution is unlimited.

greatly suppress the influence of the electric field on its measurements. At its center frequency,

the probe has a sensor factor of -0.17 dB S/m and electric field suppression ratio of 30.18 dB.

252

Approved for public release; Distribution is unlimited.

[33] Richard Rutledge, Sunjae Park, Haider Khan, Alessandro Orso, Milos Prvulovic, and
Alenka Zajic, “Zero-overhead path prediction with progressive symbolic execution,” In
Proceedings of the IEEE 41st International Conference on Software Engineering (ICSE ’19),
pp. 234-245, May 2019, Montreal CA.

Abstract: In previous work, we introduced zero-overhead profiling (ZOP), a technique

that leverages the electromagnetic emissions generated by the computer hardware to profile a

program without instrumenting it. Although effective, ZOP has several shortcomings: it

requires test inputs that achieve extensive code coverage for its training phase; it predicts path

profiles instead of complete execution traces; and its predictions can suffer unrecoverable

accuracy losses. In this paper, we present zero-overhead path prediction (ZOP-2), an approach

that extends ZOP and addresses its limitations. First, ZOP-2 achieves high coverage during

training through progressive symbolic execution (PSE)—symbolic execution of increasingly

small program fragments. Second, ZOP-2 predicts complete execution traces, rather than path

profiles. Finally, ZOP-2 mitigates the problem of path mispredictions by using a stateless

approach that can recover from prediction errors. We evaluated our approach on a set of

benchmarks with promising results; for the cases considered, (1) ZOP-2 achieved over 90%

path prediction accuracy, and (2) PSE covered feasible paths missed by traditional symbolic

execution, thus boosting ZOP-2’s accuracy.

253

Approved for public release; Distribution is unlimited.

[34] Baki Yilmaz, Elvan Ugurlu, Alenka Zajic, Milos Prvulovic, “Instruction level program
tracking using electromagnetic emanations,” Proceedings of SPIE, pp.1-6, April 2019,
Baltimore, MD.

Abstract: Monitoring computer system activities on the instruction level provides

more resilience to malware attacks because these attacks can be analyzed better by observing

the changes on the instruction level. Assuming the source code is available, many training

signals can be collected to track the instruction sequence to detect whether a malware is

injected or the system works properly. However, training signals have to be collected with high

sampling rate to ensure that the significant features of these signals do not vanish. Since the

clock frequencies of the current computer systems are extremely high, we need to have a

commercial device with high sampling rate, i.e. 10GHz, which either costs remarkably high,

or does not exist. To eliminate the deficiencies regarding the insufficient sampling rate, we

propose a method to increase the sampling rate with the moderate commercial devices for

training symbols. In that respect, we first generate some random instruction sequences which

exist in the inspected source code. Then, these sequences are executed in a for-loop, and

emanated electromagnetic (EM) signals from the processor are collected by a commercially

available device with moderate sampling rate, i.e. sampling rate is much smaller than the clock

frequency. Lastly, we apply a mapping of the gathered samples by utilizing modulo of their

timings with respect to execution time of overall instruction sequence. As the final step, we

254

Approved for public release; Distribution is unlimited.

provide some experimental results to illustrate that we successfully track the instruction

sequence by applying the proposed approach.

255

Approved for public release; Distribution is unlimited.

[35] Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “Capacity of deliberate side-channels
created by software activities,” Proceedings of IEEE MILCOM, October 2018, pp. 1-6, Los
Angeles, CA.

Abstract: It has been shown that electromagnetic (EM) emanations that are result of

instruction executions in a computer system can create a wireless side-channel which attackers

can use to extract sensitive information such as a cryptography key. When an attacker modifies

the software application to exfiltrate sensitive information through a channel, this channel is

called a deliberate side-channel or a covert channel. Because deliberate side-channels are not

created for a conventional wireless communication to transmit information, these channels are

exposed not only to the errors created by the wireless transmission (the transmitted signal

propagates through a channel hindered by metal and plastic), but also by varying execution

time of computer activities, and by insertions from other computer activities such as interrupts.

Combining all of these effects, we propose to model deliberate side-channels as an insertion

channel where the transmitted sequence is a pulse amplitude modulated signal with varying

pulse width. Utilizing this model, we derive upper and lower bounds for the channel capacity

of the deliberate side-channels. The bounds demonstrate the severity of data leakage through

deliberate side channels by revealing the potential to transmit high data rates. Moreover, the

proposed bounds for the channel capacity can be employed by any noisy insertion channel and

provides more confidential results.

256

Approved for public release; Distribution is unlimited.

[36] M. Dey, A. Nazari, A. Zajic and M. Prvulovic, “EMPROF: Memory Profiling Via EM-
Emanation in IoT and Hand-Held Devices,” 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Fukuoka, Japan, 2018, pp. 881-893.

Abstract: This paper presents EMPROF, a new method for profiling the performance

impact of the memory subsystem without any support on, or interference with, the profiled

system. Rather than rely on hardware support and/or software instrumentation on the profiled

system, EMPROF analyzes the system’s EM emanations to identify processor stalls that are

associated with last-level cache (LLC) misses. This enables EMPROF to accurately pinpoint

LLC misses in the execution timeline and to measure the cost (stall time) of each miss. Since

EMPROF has zero “observer effect”, so it can be used to profile applications that adjust their

activity to their performance. It has no overhead on target machine, so it can be used for

profiling embedded, hand-held, and IoT devices which usually have limited support for

collecting, and limited resources for storing, the profiling data. Finally, since EMPROF can

profile the system as-is, its profiling of boot code and other hard-to-profile software

components is as accurate as its profiling of application code. To illustrate the effectiveness of

EMPROF, we first validate its results using microbenchmarks with known memory behavior,

and also on SPEC benchmarks running a cycle-accurate simulator that can provide detailed

ground-truth data about LLC misses and processor stalls. We then demonstrate the

257

Approved for public release; Distribution is unlimited.

effectiveness of EMPROF on real systems, including profiling of boot activity, show how its

results can be attributed to the specific parts of the application code when that code is available,

and provide additional insight on the statistics reported by EMPROF and how they are affected

by the EM signal bandwidth provided to EMPROF.

258

Approved for public release; Distribution is unlimited.

[37] M. Alam, H. Khan, M. Day, R. Callan, N. Sinha, A. Zajic, and M. Prvulovic, “One & done
– A Single-Decryption EM-Based Attack on OpenSSL’s Constant-Time Blinded RSA ,”
USENIX Security, August 2018.

Abstract: This paper presents the first side channel attack approach that, without

relying on the cache organization and/or timing, retrieves the secret exponent from a single

decryption on arbitrary ciphertext in a modern (current version of OpenSSL) fixed window

constant-time implementation of RSA. Specifically, the attack recovers the exponent’s bits

during modular exponentiation from analog signals that are unintentionally produced by the

processor as it executes the constant-time code that constructs the value of each “window” in

the exponent, rather than the signals that correspond to squaring/multiplication operations

and/or cache behavior during multiplicand table lookup operations. The approach is

demonstrated using electromagnetic (EM) emanations on two mobile phones and an embedded

system, and after only one decryption in a fixed-window RSA implementation it recovers

enough bits of the secret exponents to enable very efficient (within seconds) reconstruction of

the full private RSA key. Since the value of the ciphertext is irrelevant to our attack, the attack

succeeds even when the ciphertext is unknown and/or when message randomization (blinding)

is used. Our evaluation uses signals obtained by demodulating the signal from a relatively

narrow band (40 MHz) around the processor’s clock frequency (around 1GHz), which is within

the capabilities of compact sub-$1,000 software-defined radio (SDR) receivers. Finally, we

propose a mitigation where the bits of the exponent are only obtained from an exponent in

259

Approved for public release; Distribution is unlimited.

integersized groups (tens of bits) rather than obtaining them one bit at a time. This mitigation

is effective because it forces the attacker to attempt recovery of tens of bits from a single brief

snippet of signal, rather than having a separate signal snippet for each individual bit. This

mitigation has been submitted to OpenSSL and was merged into its master source code branch

prior to the publication of this paper.

260

Approved for public release; Distribution is unlimited.

[38] J. Dinkić, D. Olćan, A. Zajić, A. Djordjević, “Comparison of optimization approaches for
designing nonuniform helical antennas,” Proceedings of 2018 IEEE AP-S Symposium on
Antennas and Propagation and URSI CNC/USNC, Boston, USA, July 8-13, 2018, pp. 1581-
1582.

Abstract: Comparison of various optimization approaches for the design of

nonuniform helical antennas is presented. The considered helices have linearly varying radius

and pitch. Results show that this design has many similar (or suboptimal) solutions with

significant differences in geometry. Combination of particle swarm optimization and Nelder-

Mead simplex algorithm proved to be a robust and an efficient optimization approach.

261

Approved for public release; Distribution is unlimited.

[39] F. Werner, A. R. Djordjevic, D. I. Olcan, M. Prvulovic, and A. Zajic, “Experimental
validation of localization method for finding magnetic sources on IoT devices,” IEEE
Proceedings of EMC Europe, pp. 1-5, Amsterdam, Netherlands, August 2018.

Abstract: Recently, we proposed a method for accurately locating instruction-

dependent magnetic field sources on printed circuit boards (PCBs). This method first excites

the device’s processor by executing an alternating pair of two instructions at a specific

frequency. Using the measurements of the magnetic field taken around the edges of the PCB

and the simplex optimization algorithm, locations of the sources are evaluated. In this paper,

we present extensive experimental verification of this method on two devices, a field-

programmable gate array (FPGA) development board and an Internet of Things (IoT) device.

The results illustrate that sources of instruction-dependent emanations are confined to a small

area near the processor and that the positions of these sources are dependent on the specific

instructions being executed.

262

Approved for public release; Distribution is unlimited.

[40] N. Sehatbakhsh, A. Nazari, M. Alam, A. Zajić, and M. Prvulovic, “Syndrome: spectral
analysis for anomaly detection on medical IoT and embedded devices,” IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pp. 1-8, May 2018,
Washington DC.

Abstract: Recent advances in embedded and IoT (internet-ofthings) technologies are

rapidly transforming health-care solutions and we are headed to a future of smaller, smarter,

wearable and connected medical devices. IoT and advanced health sensors have provided more

convenience to patients and physicians where physicians can now wirelessly and automatically

monitor patient’s state. While these medical embedded devices provide a lot of new

opportunities to improve the health care system, they also introduce a new set of security risks

since they are connected to networks and run off-the-shelf operating systems. More

importantly, these devices are extremely hardware and power constrained, which in turn makes

securing these devices more complex. Implementing complex malware detectors or antivirus

on these devices is either very costly or infeasible due to these limitations on power and

resources. In this paper, we propose a new framework called SYNDROME for “externally"

monitoring medical embedded devices. Our malware detector uses electromagnetic (EM)

signals involuntary generated by the device as it executes a (medical) application in the absence

of malware, and analyzes them to build a reference model. It then monitors the EM signals

generated by the device during execution and reports an error if there is a statistically

significant deviation from the reference model. To evaluate SYNDROME, we use open-source

263

Approved for public release; Distribution is unlimited.

software to implement a real-world medical device, called a Syringe Pump, on a variety of

well-known embedded/IoT devices including Arduino Uno, FPGA Nios II soft-core, and two

Linux IoT mini-computers: OlimexA13 and TS-7250. We also implement a control-flow

hijack attack on SyringePump and use SYNDROME to detect and stop the attack. Our

experimental results show that using SYNDROME, we can detect the attack for all the four

devices with excellent accuracy (i.e. 0% false positive and 100% true positive) within few

milliseconds after the attack starts.

264

Approved for public release; Distribution is unlimited.

[41] N. Sehatbakhsh, H. Hong, B. Lazar, B. Johnson-Smith, O. Yilmaz, M. Alam, A. Nazari,
A. Zajic, and M. Prvulovic” Spectral Analysis for Anomaly Detection on Medical IoT and
Embedded Devices- Experimental Demonstration,” IEEE International Symposium on
Hardware Oriented Security and Trust (HOST) Hardware Demo, pp.1, May 2018, Washington
DC.

Abstract: This demo is the actual hardware implementation and live demonstration of

our recent work “Syndrome: Spectral Analysis for Anomaly Detection on Medical IoT and

Embedded Devices” that will appear in the Proceedings of HOST 2018. In this paper, we

proposed a new framework called Syndrome for “externally" monitoring medical embedded

devices. Our malware detector uses electromagnetic (EM) signals involuntary generated by the

device as it executes a (medical) application in the absence of malware, and analyzes them to

build a reference model. It then monitors the EM signals generated by the device during

execution and reports an error if there is a statistically significant deviation from the reference

model. To evaluate Syndrome, we use an open-source software to implement a real-world

medical device, called a Syringe Pump, on a wellknown embedded system Arduino Uno. We

also implement a control-flow hijack attack on SyringePump and use Syndrome to detect and

stop the attack.

[42] H. Khan, M. Alam, A. Zajic, and M. Prvulovic, “Detailed tracking of program control flow
using analog side-channel signals: A promise for IoT malware detection and a threat for many
cryptographic implementations,” Proceedings of SPIE, April 2018, Orlando FL.

265

Approved for public release; Distribution is unlimited.

Abstract: Side-channel signals have long been used in cryptanalysis, and recently they

have also been utilized as a way to monitor program execution without involving the monitored

system in its own monitoring. Both of these use-cases for side-channel analysis have seen

steady improvement, allowing ever-smaller deviations in program behavior to be monitored

(to track program behavior and/or identify anomalies) or exploited (to steal sensitive

information). However, there is still very little intuition about where the limits for this are, e.g.

whether a single-instruction or a single-bit difference can realistically be recovered from the

signal. In this paper, we use a popular open-source cryptographic software package as a test

subject to demonstrate that, with enough training data, enough signal bandwidth, and enough

signal-to-noise ratio, the decision of branch instructions that cause even single-instruction-

differences in program execution can be recovered from the electromagnetic (EM) emanations

of an IoT/embedded system. We additionally show that, in cryptographic implementations

where branch decisions contain information about the secret key, nearly all such information

can be extracted from the signal that corresponds to only a single cryptographic operation (e.g.

encryption). Finally, we analyze how the received signal bandwidth, the amount of training,

and the signal-to-noise ratio (SNR) affect the accuracy of side-channel-based reconstruction

of individual branch decisions that occur during program execution.

266

Approved for public release; Distribution is unlimited.

[43] B. Yilmaz, M. Prvulovic, and A. Zajic, “Wireless communication channel created by
processor memory activity,” IEEE Proceedings of ICASSP, pp. 1-5, April 2018, Calgary,
Canada.

Abstract: Electromagnetic (EM) emanations created by a software computer activity

can be exploited to create a wireless channel. However, software activity experiences lack of

precise synchronization and, therefore, jitter noise. In this paper, we model this type of wireless

communication channel considering the jitter noise, characterize the power spectral density

(PSD) of both jitter noise and signal, and analyze the performance of this channel in terms of

Bit-Error-Rate (BER). We provide examples to demonstrate the capability of the EM based

wireless channel.

267

Approved for public release; Distribution is unlimited.

[44] S. Adibelli, R. Golubović, A. Djordjević, D. Olćan, and A. Zajić, “Design and fabrication
of non-uniform helical antennas for detection of side-channel attacks in computer systems,”
IEEE Proceedings of 12th European Conference on Antennas and Propagation (EuCAP), pp.
1-5, April 2018, London, UK.

Abstract: This paper presents a design, fabrication and measurement results of a

helical antenna that has variable pitch angle and radius. These variations allow the nonuniform

helix to be for 2–3 dB more directive compared to the optimal uniform helix of the same length

(750 mm). A 3D printed support structure for the helix to be wound around is made out of ABS

plastic and a 400 mm by 400 mm metal sheet is used as the ground plane. The design frequency

is 2 GHz, the impedance bandwidth is 33% (1.8 GHz–2.5 GHz), and the axial ratio is less than

3.8 dB. The gain is 18.2 dBi and the two prototypes that are built match the simulation

performance.

268

Approved for public release; Distribution is unlimited.

[45] Baki Berkay Yilmaz, Robert Callan, Milos Prvulovic, and Alenka Zajic, “Quantifying
Information Leakage in a Processor Caused by the Execution of Instructions,” Proceedings of
IEEE MILCOM, October 2017.

Abstract: Covert/side channel attacks based on electromagnetic (EM) emanations are

difficult to detect because they are practiced wirelessly. Hence, quantifying information

leakage is crucial when designing secure hardware and software. To address this problem, this

paper establishes a connection between the signal energy available to an attacker in

electromagnetic side/covert channel and capacity of the covert/side channel. We first present

a mathematical relationship between electromagnetic side-channel energy (ESE) of individual

instructions and measured sidechannel signal power, assuming that all instructions have equal

execution time. Then, we use this measure to calculate the transition probabilities needed for

estimating capacity. Furthermore, we consider each instruction as a codeword and relate our

model to Shannon’s capacity. Finally, we provide practical examples to demonstrate the

severity of covert/side channel due to EM emanations.

269

Approved for public release; Distribution is unlimited.

[46] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “EDDIE: EM-Based
Detection of Deviations in Program Execution,” Proceedings of the 44th International
Symposium on Computer Architecture (ISCA), June2017. (acceptance rate 17 %)

Abstract: This paper describes EM-Based Detection of Deviations in Program

Execution (EDDIE), a new method for detecting anomalies in program execution, such as

malware and other code injections, without introducing any overheads, adding any hardware

support, changing any software, or using any resources on the monitored system itself.

Monitoring with EDDIE involves receiving electromagnetic (EM) emanations that are emitted

as a side effect of execution on the monitored system, and it relies on spikes in the EM spectrum

that are produced as a result of periodic (e.g. loop) activity in the monitored execution. During

training, EDDIE characterizes normal execution behavior in terms of peaks in the EM

spectrum that are observed at various points in the program execution, but it does not need any

characterization of the malware or other code that might later be injected. During monitoring,

EDDIE identifies peaks in the observed EM spectrum, and compares these peaks to those

learned during training. Since EDDIE requires no resources on the monitored machine and no

changes to the monitored software, it is especially well suited for security monitoring of

embedded and IoT devices. We evaluate EDDIE on a real IoT system and in a cycle-accurate

simulator, and find that even relatively brief injected bursts of activity (a few milliseconds) are

detected by EDDIE with high accuracy, and that it also accurately detects when even a few

instructions are injected into an existing loop within the application.

270

Approved for public release; Distribution is unlimited.

[47] N. Sehatbakshsh, R. Callan, M. Alam, M. Prvulovic, and A. Zajic, “Leveraging
Electromagnetic Emanations for IoT Security, ”Hardware Demo at IEEE International
Symposium on Hardware Oriented Security and Trust (HOST) May 1-5, 2017. –Best Demo
Award

Abstract: We will demonstrate a new method to detect malware by externally

observing Electromagnetic (EM) signals emitted by an IoT system. The proposed demo is an

extension of the work in [1] and does not require any resources or infrastructure on, or any

modifications to, the monitored system itself. Specifically, our method can identify malicious

code injection into a known application that is running on an IoT device with >95% accuracy

and with a detection latency <45 ms of executed code.

271

Approved for public release; Distribution is unlimited.

[48] A. Zajic, Milos Prvulovic, and Derrick Chu, “Path Loss Prediction for Electromagnetic
Side-Channel Signals,” Proceedings of the 11th European Conference on Antennas and
Propagation EUCap11, pp.1-5, Paris, France, March 2017.

Abstract: This paper investigates propagation mechanisms that EM side-channel

signals experience at different frequencies and proposes models for near-field and far-field

propagation of side-channel signals. The near-field propagation is modelled as a field created

by an electric monopole (Hertzian dipole) and a magnetic dipole, where the received power is

collected using only magnetic components of the EM field. This model resulted in excellent

match with measured data. Furthermore, this paper investigates unintentionally modulated

side-channel signals. The propagation of EM side-channel signals was modelled using

freespace propagation model which resulted in excellent match with measured data. In both

cases we have observed that signal can be received at several meters from the side-channel

source. The proposed models are the first step in understanding propagation mechanisms of

EM side-channel signals and how to predict the distance at which they can be received.

272

Approved for public release; Distribution is unlimited.

[49] N. Sehatbakhsh, A. Nazari, A. Zajić, and Milos Prvulovic, “Spectral Profiling: Observer-
Effect-Free Profiling by Monitoring EM Emanations,” IEEE MICRO 16, pp.1-11, Taipei,
Taiwan, October 2016. (acceptance rate 20 %) – The Best Paper Award

Abstract: This paper presents Spectral Profiling, a new method for profiling program

execution without instrumenting or otherwise affecting the profiled system. Spectral Profiling

monitors EM emanations unintentionally produced by the profiled system, looking for spectral

“spikes” produced by periodic program activity (e.g. loops). This allows Spectral Profiling to

determine which parts of the program have executed at what time. By analyzing the frequency

and shape of the spectral “spike”, Spectral Profiling can obtain additional information such as

the per-iteration execution time of a loop. The key advantage of Spectral Profiling is that it can

monitor a system as-is, without program instrumentation, system activity, etc. associated with

the profiling itself, i.e. it completely eliminates the “Observer’s Effect” and allows profiling of

programs whose execution is performance-dependent and/or programs that run on even the

simplest embedded systems that have no resources or support for profiling. We evaluate the

effectiveness of Spectral Profiling by applying it to several benchmarks from MiBench suite

on a real system, and also on a cycle-accurate simulator. Our results confirm that Spectral

Profiling yields useful information about the runtime behavior of a program, allowing Spectral

Profiling to be used for profiling in systems where profiling infrastructure is not available, or

where profiling overheads may perturb the results too much (“Observer’s Effect”).

273

Approved for public release; Distribution is unlimited.

[50] R. Callan, F. Behrang, M. Prvulovic, A. Zajic, and A. Orso, “Zero-Overhead Profiling via
EM Emanations,” accepted to The International Symposium on Software Testing and Analysis,
18-20 July 2016, Saarbrücken, Germany. (acceptance rate 25 %)

Abstract: This paper presents an approach for zero-overhead profiling (ZOP). ZOP

accomplishes accurate program profiling with no modification to the program or system during

profiling and no dedicated hardware features. To do so, ZOP records the electromagnetic (EM)

emanations generated by computing systems during program execution and analyzes the

recorded emanations to track a program’s execution path and generate profiling information.

Our approach consists of two main phases. In the training phase, ZOP instruments the program

and runs it against a set of inputs to collect path timing information while simultaneously

collecting waveforms for the EM emanations generated by the program. In the profiling phase,

ZOP runs the original (i.e., uninstrumented and unmodified) program against inputs whose

executions need to be profiled, records the waveforms produced by the program, and matches

these waveforms with those collected during training to predict which parts of the code were

exercised by the inputs and how often. We evaluated an implementation of ZOP on several

benchmarks and our results show that ZOP can predict path profiling information for these

benchmarks with greater than 94% accuracy on average.

274

Approved for public release; Distribution is unlimited.

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

ACRONYM DESCRIPTION
LoS Line of Sight

NLoS Non Line of Sight

CAMELIA Computational Activity Monitoring by Externally Leveraging
Involuntary Analog Signals

SW software

Sys system

HW hardware

SLL Side-Lobe Level

EM Electromagnetic

E Electric

H Magnetic

SNR Signal to noise ratio

𝜆𝜆0 wavelength

AM Amplitude Modulation

FM Frequency Modulation

SAVAT Signal Available to Attacker

RC Resistor-capacitor

CDF Cumulative distribution function

MCS Modulated Carrier Score

REMOTE Robust External Malware Detection Framework by Using
Electromagnetic Signals

STFT short-time Fourier transform

SS Spectral samples

FFT Fast Fourier Transform

CAPE Clock- Adjusted Energy and Peaks

275

Approved for public release; Distribution is unlimited.

ACRONYM DESCRIPTION
CPS Cyber-Physical Systems

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with
Noise

FSM Finite-State Machine

OS Operating System

CNN Convolutional neural network

MarCNNet Markov and convolutional neural network

ReLU Rectified Linear Unit

DC component Direct Current component

TESLA Tracing through Electromagnetic Side-channeL Analysis

CPU Computer processing unit

ID identification number

CFG control-flow-graph

TSC Time Stamp Counter

PITEM Permutations-based Instruction Tracking via Electromagnetic Side-
channel Signal Analysis

I/O input/output

IoT Internet-of-Things

DDoS Distributed Denial-of-Service

LDL2/LDL1 loads from the on-chip L2 and L1 caches

PoP Package on Package

SDR software defined radio

LCD Liquid-crystal display

AWGN Additive white Gaussian noise

	List of Figures
	List of Tables
	1.0 Summary
	2.0 Introduction
	3.0 Methods, Assumptions, and Procedures
	3.1 Task 1.1 - Purpose-Designed Antenna Arrays
	3.1.1. Planar Antenna Array Design for Long Range EM Side-channel Detection
	3.1.2. Design Procedure
	3.1.3. Element Spacing

	3.2 Task 1.2 – Automated Discovery of Sub-Channels
	1.1
	1.2
	3.2.1 Unintentional FM and AM Carriers in Computer Systems
	3.2.2 Creating System Activity at Controlled Frequencies
	3.2.3 Finding AM and FM Unintentional Carriers in Computer Systems

	3.3 Task 2.1 – Spectral Monitoring for Anomaly Detection
	3.3.1 Spectral Samples (SS)
	3.3.2 Distance Metric for Comparing Spectral Samples
	3.3.3 Black Box Training
	3.3.4 Monitoring

	3.4 Task 2.2 – Spectral Monitoring for Multi-core Anomaly Detection
	3.4.1 Emanated EM Signals During Program Execution
	3.4.2 Markov Model Based Program Profiling: MarCNNet
	3.4.3 Input Signal and Training Phase
	3.4.4 Testing While Multiple Cores Are Active

	3.5 Tasks 3-5 Basic Block Tracking
	3.5.1 Signal Pre-processing: Amplitude Demodulation
	3.5.2 Instrumented Training
	3.5.3 Uninstrumented Training
	3.5.4 Program Execution Monitoring

	3.6 Task 6 Single Instruction Tracking
	3.6.1 Determining Instruction Types by Using EM Side-Channels
	3.6.2 Generating List of Instructions Under Investigation
	3.6.3 Generating Micro-benchmarks for Instructions
	3.6.4 Implementing the Codes and Recording EM Emanations
	3.6.5 Data Processing to Obtain EM Signatures
	3.6.6 Generating Correlation Matrix
	3.6.7 Identifying Instruction Type
	3.6.8 Detecting Permutations of Instruction Types
	3.6.9 Picking an Instruction to Represent Each Instruction Type
	3.6.10 Generating Microbenchmarks for Permutations
	3.6.11 Implementing Code and Recording EM Emanations
	3.6.12 Training: Generating Templates for Each Permutation
	3.6.13 Testing: Predicting Instruction Sequences Using Templates

	4.0 Results and Discussion
	CHAPTER 1.
	CHAPTER 2.
	CHAPTER 3.
	CHAPTER 4.
	4.1 Task 1.1 - Results
	4.1.1 Antenna Fabrication and Measurements
	4.1.2 SNR Measurements and Malware Detection
	4.1.3 Line of Sight (LoS) Measurements
	4.1.4 Non-LoS Measurements
	4.1.5 Malware Detection

	4.2 Task 1.2 – Results for Automated Discovery of Sub-Channels
	4.2.1 Experimental Setup
	4.2.2 Experimental Results

	4.3 Task 2.1 – Results for Spectral Profiling
	4.3.1 Experimental Setup
	4.3.2 File-less Attacks on Cyber-Physical-Systems
	4.3.3 Shellcode Attack on IoTs
	4.3.4 APT Attack on Commercial CPS
	4.3.5 Further Evaluation of Robustness – Interrupts and System Activity
	4.3.6 Further Evaluation of Robustness – Hardware Platforms and Distance
	4.3.7 Further Evaluation of Robustness – Manufacturing Variations
	4.3.8 Further Evaluation of Robustness – Variations Over Time
	4.3.9 Further Evaluation of Robustness – Multi-tasking/Time-sharing

	4.4 Task 2.2 – Results for Multi-Core Spectral Profiling
	4.4.1. Experimental Setup
	4.4.2 Program Profiling When Only One of the Cores is Active
	4.4.3 Program Profiling When Multiple Cores Are Active

	4.5 Tasks 3-5 – Results for Basic Block Tracking
	4.5.1. Evaluation Matrix
	4.5.2 Benchmark Applications
	4.5.3 FPGA Device Monitoring
	4.5.4 IoT Device Monitoring

	4.6 Task6 – Results for Single Instruction Tracking
	4.6.1 Experimental Setup
	4.6.2 Instruction Type Determination Results
	4.6.3 Permutation Tracking Results
	4.6.4 Further Evaluation of Robustness
	4.6.5 Permutations of Instructions from the Same Instruction Type

	4.0
	5.0 Conclusions
	6.0 REFERENCES
	Appendix A – Publications
	Appendix B –Abstracts
	LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS
	CoverPage.pdf
	afrl-rY-wp-tR-2021-0038

	SF298.pdf
	REPORT DOCUMENTATION PAGE

