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1.0 SUMMARY 

Security monitoring of embedded and mission-specific devices (EMSDs) is challenging as 

many of these devices cannot support the memory and performance overheads of traditional 

security monitoring. In fact, monitoring activity may interfere with the primary function of 

EMSDs. Moreover, many important classes of threats allow attackers to compromise/subvert both 

the protected functionality and the monitoring functionality of the system. 

In this project, we have developed a system called CAMELIA that monitors computation 

in an EMSD (or phone/laptop/server) device by leveraging the involuntary electromagnetic (EM) 

emanations from the monitored device. CAMELIA does not require changes to the monitored 

device or its software, and its monitoring ability remains intact even after a complete compromise 

of the monitored system. CAMELIA collects signals using purpose-designed antennas, then pre-

processes the signals and separates them into sub-channels that carry information about different 

aspects of the system’s state. CAMELIA uses models of valid software behavior and 

software/system/hardware interactions to form hypothesis about the sequence of execution and 

software/system/hardware events in the monitored system, then updates these hypotheses by 

matching the expected signals for each hypothesis to the observed signals. This allows CAMELIA 

to maintain high accuracy and fidelity even when monitoring large codes, and even in the presence 

of interrupts, input/output activity, cache misses, branch miss-predictions, and other events that 



2 

Approved for public release; Distribution is unlimited. 

 

change emanated EM signals significantly in a way that is seemingly random but that CAMELIA 

can account for end even use to improve monitoring. 

To manage the tradeoff between fidelity, computational cost of modeling, and timeliness 

of reporting, CAMELIA operates at three levels of fidelity. More precisely, CAMELIA can (1) 

discover loop/module-level anomalies immediately, (2) detect basic-block-level control flow 

violations and anomalies at the granularity of several instructions very rapidly (after one or few 

dynamic instances of the violation are observed) and (3) uncover anomalous execution/event 

patterns and even “below noise level” problems (e.g., when a valid instruction is replaced by a 

similar instructions) after enough dynamic instances are observed.  

The accuracy and fidelity of CAMELIA has been assessed not only against the goals listed 

in the DARPA LADS solicitation, but also against information-theoretic limits that have been 

derived and refined concurrently with the CAMELIA design.  

CAMELIA has a potential to revolutionize security monitoring by eliminating the need for 

monitoring-related resources and mechanisms on the monitored device itself, and by preventing 

even a full compromise of the monitored device from compromising the monitoring functionality. 

We have evaluated CAMELIA at 1ft, 3ft, 10ft, and 600ft distance from the monitored systems for 

accuracy, fidelity, and reporting timeliness, relative to the targets specified in the DARPA LADS 

solicitation and also relative to the limits derived from the information-theoretic models. 

CAMELIA meets and exceeds all targets specified in DARPA LADS solicitation.  
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2.0 INTRODUCTION 

Figure 1 illustrates the overall CAMELIA approach that uses the inadvertent EM 

emanations of the target system to wirelessly monitor its security. The real-time monitoring parts 

of CAMELIA are shown in green and describe tasks T1 and T2. The signals are received using a 

sophisticated purpose-designed antenna/probe array. Signals from different antenna/probe 

elements are then amplified and processed to identify from which direction the signal is coming, 

and beamforming and interference cancellation are applied to enhance the signal from the target 

device while suppressing other signals. The enhanced signal is then demodulated and separated by 

frequency (and possibly other characteristics) into sub-channels that correspond to different 

aspects of monitored activity (processor, memory, etc.). The signal is then subjected to real-time 

“spectral monitoring”, where quick analyses are applied to the overall spectrum of the signal and 

to the most prominent features in the time-domain signal. The spectral monitoring relies on a 

coarse-grain (loop/module level) model of the monitored system's software to identify large 

deviations from the program's behavior (e.g., when the permissions control code executes right 

after string-copy code in a program where such a transition should not occur). The spectral 

monitoring also uses typical spectra (acquired during training) to identify deviations, e.g., when 

the time-per-iteration of a loop should be very consistent but the observed behavior contradicts 



4 

Approved for public release; Distribution is unlimited. 

 

that. Spectral monitoring immediately reports major anomalies that correspond to the 

“known/unknown code” level of fidelity described in the DARPA LADS BAA., i.e. when the 

observed signal is very unlikely to occur during correct execution in the monitored system. It also 

identifies potential anomalies and triggers high-fidelity analysis of the corresponding signal from 

the signal buffer. 

 

Figure 1 Camelia design 

Shown in blue is the high-fidelity verification that corresponds to tasks T3, T4, and T5: 

basic-block-level control flow and confirmation of execution of individual instructions. It is highly 

accurate and practically feasible because it does not track execution of instructions and basic 

blocks in isolation. Instead, it uses a model of the program and hardware characteristics (both 

obtained during training) to continuously maintain a probabilistic model of the software state and 

software/system/hardware (SW/Sys/HW) interactions. The model of the software state, for 

example, keeps track of the probably/likely recent path through the program, and identifies the 



5 

Approved for public release; Distribution is unlimited. 

 

possible/likely next-step execution, which allows the feature extraction and matching algorithm to 

limit its search space to only those that are possible, and the matching is performed in order of 

likelihood. For example, if the most probable “current” execution point is just before entering an 

if-then-else hammock, and the “else” side is more likely to be taken, the signal matching is first 

attempted against the signal template (from training) that corresponds to the “else” path through 

this hammock. The model of SW/sys/HW interactions allows the matching algorithms to recognize 

and account for significant events, such interrupts, I/O, cache misses, etc., that may significantly 

change the timing and signal shape. This eliminates the need to obtain training data for all possible 

combinations of events that may (but need not) occur in a particular part of the code. The 

interaction model is also informed by the software model, e.g., it allows the cache-miss-like part 

of the signal to be matched as a cache miss only if the program actually contains a memory access 

at that point in execution, and it monitors the occurrences of such events against expectations to 

allow detection anomalies, such as too many cache misses in the part of the code where cache 

misses should be rare. Like the spectral monitoring module, the high-fidelity verification module 

immediately reports anomalies for which it has enough confidence. But this module also forwards 

statistics of seemingly-normal and mildly-anomalous signal-to-execution matches to the multi-

observation verifier. 

This multi-observation verifier T6 (shown in pale red) maintains statistics across multiple 

dynamic occurrences for each point in the code and verifies that these statistics match expectations. 
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This allows it to detect small but persistent deviations from expected behavior, e.g., when a single 

instruction in the program has been replaced with a very similar one. 

In the Section 2, we detail tasks T1-T6 and how are the implemented, and in Section 3 we 

present results and discuss outcomes.    
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Task 1.1 - Purpose-Designed Antenna Arrays 

In this section, we describe a novel high gain antenna design specifically tailored for long 

range EM side-channel detection  [1]. Scalability was a key factor so that the detection range can 

be extended in a straightforward manner by increasing the number of elements cost effectively. 

We have also designed helical antenna array for long range EM side-channel detection which is 

described in [2], but is omitted here for brevity. 

3.1.1. Planar Antenna Array Design for Long Range EM Side-channel Detection 

The proposed antenna consists of two layers of slotted conducting metal discs suspended on 

air and placed above the ground plane using teflon screws [1]. The circular discs are designed to 

operate in the higher order 𝑇𝑇𝑇𝑇12 mode, this allows for each element to have higher directivity with 

a simpler feed network. The screws’ locations correspond to the electric field nulls along the disc 

radius. The upper layer is 2×2 array of slotted circular discs electromagnetically coupled by a 

lower identical disc which is fed directly by a single coaxial feed. The complete fabrication of the 

antenna is done using aluminum sheets and involves no of dielectric substrate. The antenna has a 

peak gain of 19 dBi with impedance bandwidth (𝑆𝑆11 ≤ −6 dB) of 6.7%. The antenna is tested for 

the application of receiving unintentional EM emanations generated by one or multiple embedded, 
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“smart” electronic systems. Finally, the antenna was used to characterize the complex SNR 

behavior of EM emanation detection at a distance. 

The antenna is a two layer stacked configuration as shown in Figure2  (a).  

 

 (a) (b) 

Figure 2 Antenna geometry (a) side view and (b) top view 

The upper layer is 2×2 array of slotted circular discs in 𝑇𝑇𝑇𝑇12 mode, shown in Figure 2 (b), 

fed by an identical disc in the lower layer, which is directly fed by coaxial probe. A similar feeding 

technique was proposed in [3] where a 2×2 array of rectangular patches was excited by a 

microstrip fed and centrally located patch in the lower layer. This technique removes dependency 

on feed lines. Here, to avoid feed lines, we use coaxial feed to excite the lower disc. All circular 

discs have identical geometrical dimensions. The individual circular disc is loaded with narrow 

rectangular slot at the center. Slot loading is used to reduce the high sidelobes in the E-plane 

radiation pattern of 𝑇𝑇𝑇𝑇12 mode, as explained and discussed in [4].  
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3.1.2. Design Procedure 

The design procedure is described as follows. Based on the peak directivity requirements, 

the single element is designed first as shown in Figure 3 (a). In the present case, the slot length is 

selected for maximum directivity, which is 13.4 dBi. The corresponding disc radius and slot length, 

l, are 20.5 and 11.3 cm respectively. Since it is a narrow slot, the slot width, w, is selected to be 1 

cm. The thickness, h, is chosen to be 5 mm. Higher thickness values will result in increase in Side-

Lobe Level (SLL) of the element as explained in [4]. The directivity pattern of the single element 

in the E and H-plane and its current distribution is shown in the Figure 3 (b) and Figure 3 (c) 

respectively. The current density is higher in the region adjacent to slots compared to the other 

parts of the patch as the narrow slot at the center intercepts the flow lines of current and gets 

excited. This produces the out of phase electric field at the slot aperture, which leads to sidelobe 

cancellation as explained in detail in [4]. The 2×2 array of identical elements is then placed at the 

height t above this layer as shown in Fgiure 3 (a). In this case, the t is selected to be 5 mm. The 

array spacing dx and dy is chosen to reduce E and H-plane sidelobe and to improve impedance 

match (S11≤ −6 dB). Additionally, the parameters of the center disc in the lower level can also be 

adjusted to improve the impedance match which also results in the reduced H-plane sidelobe. 
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          (a)    (b)                   (c) 

Figure 3 Element design at 1.03GHz: (a) Slot loaded disc, (b) directivity pattern in E and 
H-plane, (c) the current distribution of the patch 

To complete the design, we investigate the effect of array spacing and positioning of the 

center disc on the sidelobes in the radiation pattern. This is required since the element radius is ~ 

0.7𝜆𝜆0 and hence the minimum array spacing will be greater than 1.4𝜆𝜆0. For the spacing greater 

than 1.4𝜆𝜆0, array theory predicts that the sidelobe will be high in the radiation pattern, which 

reduces the aperture efficiency and the directivity [5]. In antenna arrays, several methods have 

been used in the past for sidelobe suppression [6], [7]. In this design, the side lobe in the E-plane 

is suppressed by the slot loaded in the disc. In the H-plane the sidelobe is suppressed by the center 

disc.  

3.1.3. Element Spacing 

To explain how element spacing impacts the sidelobe, we investigate E & H-plane 

radiation pattern of 2×1 array and 2×2 array of the element shown in Figure 4 (a), assuming 
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infinite ground plane configuration. Figure 4 (a) & (b) shows the geometry of 2×1 and 1×2 array. 

Simulations were performed for the various spacing between array elements for both the 

geometries. Current distribution for both array geometries are shown in Figure 4 (c) & (d). For 

both elements, the excitation amplitudes are equal with zero phase difference. Current density 

scaling is the same as used in Figure 3 (c). It is observed that 2X1 array compared to 1X2 array 

has strong current density around the slot edges. The reason for this is the aperture field vector of 

the slot, which is in the direction of x-axis, as explained in [14], and hence can have possible 

coupling effects in the 2X1 configuration.  

Figure 4  (a) & (b) shows the E & H-plane pattern for 2X1 array geometry with element 

spacing 𝑑𝑑𝑥𝑥 as parameter.  As 𝑑𝑑𝑥𝑥 increases from 1.5 to 2𝜆𝜆0, the first sidelobe in the E-plane 

increases. For 1.5𝜆𝜆0, there is one lobe in the visible region while for 1.75 and 2𝜆𝜆0, there are two 

lobes. In all cases the minor lobes are 10 dB below the main beam. Figure 5 (b) shows that element 

spacing has negligible effect on the H-plane pattern.  

Figure 4 (c) & (d) shows the E & H-plane pattern for 1X2 array geometry shown in Figure 

4 (b). Compared to Figure 4 (a), H-plane pattern shown in Figure 4 (d), has higher sidelobes since 

the sidelobe cancellation effect of slot is less dominant in the H-plane configuration. The first 

sidelobe is reduced by ~ 3dB in the E-plane of 2X1 array, due to cancellation effect by slot loading, 

as compared to the H-plane pattern of the 1X2 array. Based on this study of how the array spacing 

impacts radiation pattern, we chose the value of 1.75𝜆𝜆0. We have also observed in simulations that 
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the selected spacing has a good impedance match in the frequency band of interest. This is also 

shown in Figure 4 (a).  

               

      (a) (b) (c) (d) 

Figure 4 Array geometry (a) 2X1 array (b) 1X2 array (c) current distribution of 2X1 
array, (d) 1X2 array 

 

 

 

                       (a)           (b) (c) (d) 

Figure 5 Radiation pattern as a function of array spacing (a) & (b) E & H-plane pattern 
for geometry shown in Figure 4 (a), (c) & (d) for the geometry shown in Figure 4 (b) 

 



13 

Approved for public release; Distribution is unlimited. 

 

 

(a)                                              (b)                                           (c)                                               (d) 

 

(a) (b) (c) (d) 

Figure 6 Effect of the center disc on the radiation pattern in (a) 2X1 array E-plane, (b) 
2X1 H-plane, (c) 1X2 E-plane, (d) 1X2 H-plane, (e) 2X2 E-plane, (f) 2X2 H-plane, (g) 2X2 
array without lower center disc, E-plane, (h) 2X2 array without lower center disc, H-plane 

To excite the array, an identical disc is placed at the center of the ground plane, at smaller 

height than the upper four discs as shown in Figure  5 (a).  Figure 6 shows the effect of the lower 

layer center disc on the radiation pattern of the antenna. Effect of the center disc on the radiation 

pattern was studied in 2X1, 1X2 and 2X2 array configuration, for the selected element spacing of 

1.75𝜆𝜆0. Figure 6 (a) & (b) show the effect in the 2X1 array geometry. Compared to Figure 5 the 

sidelobes in the E-plane are reduced. In the H-plane, additional lobe is there in the visible region. 

Figure 6 (c) & (d) shows the radiation pattern when the 1X2 array geometry is loaded with center 

disc. Compared to Figure 5 (c) & (d), it is observed that sidelobes are suppressed in the H-plane 

and in the E-plane additional lobes are introduced with the distorted pattern. Figure 6 (e) & (f) 
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show the radiation pattern of 2X2 array, with center disc loading. For the comparison, the radiation 

pattern of unloaded 2X2 array is shown in Figure 6 (g) & (h). Compared to the 2×2 array without 

center disc, the presence of the center disc reduces the sidelobe in the H-plane by ~ 3 dB. In the 

E-plane, the pattern peak is off the boresight by 2°, but the sidelobes are still ~ 10 dB below the 

main lobe. 

To make the design practical, the simulations are performed with finite ground plane. We 

choose 1.04 m×1.04 m squared ground plane made of aluminum, which resembles the fabricated 

antenna in the next section. It was shown in [3] that stacked configuration has wideband 

characteristics and the impedance match depends on the overlapping area of the two layers. In the 

present design, the additional parameter that can affect the impedance is the lower disc slot length 

l. Figure 7 shows the effect of the array spacing and the lower disc slot length on the S11 and the 

impedance over the frequency band. Each case displays two coupled resonances which 

corresponds to the upper and the lower layer. Figure 7 (a) shows that for the array spacing of 

1.75𝜆𝜆0, the impedance match is obtained in the desired band. For closer spacing of 1.5𝜆𝜆0, due to 

resonance split around 1.045 GHz, there is a mismatch in the band. Hence the array spacing of 

1.75𝜆𝜆0was selected for the design. Once the upper 2×2 layer geometry is fixed, the amount of 

coupling depends on the lower disc slot length. For l = 100 mm, the impedance is inductive as 

shown in the Smith chart in Figure 7 (c). Increasing slot length to 110 mm results in impedance 

match for the whole band, shown in Figure 7 (b). Further increase to 120 mm reduces the input 

resistance which results in impedance mismatch. 
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(a)  (b)  (c) 

Figure 7 (a) Reflection coefficient vs frequency with array spacing as parameters (b) Reflection 
coefficient vs. frequency and (c) Impedance loci variation with lower slot length as parameter 

3.2 Task 1.2 – Automated Discovery of Sub-Channels 

In this section, we present a fully automated measurement and analysis method for finding 

AM and FM modulated EM emanations [8]. Note that the goal of this work is to develop a 

measurement technique that automatically identifies all frequencies at which at least some 

information about software activity will leak (the proof is the fact that software activity gets 

modulated onto the existing carriers), determine the type of modulation (so that it is easy to 

determine type of demodulation needed to extract the information) and determine quality of the 

modulated signals (SNR) which will determine if the information extraction will be successful or 

not. The proposed measurement method is an important tool for both those who want to 

demonstrate attacks or those who want to defend against the attacks because it allows them to 

identify mechanisms that lead to EM information leakage. 



16 

Approved for public release; Distribution is unlimited. 

 

To find carrier frequencies at which at least some information about software activity will 

leak we use our SAVAT benchmarks [9] to generate an artificial leakage signal at a specific 

“baseband” frequency and for a specific duty cycle and record several spectra, generating a 

different baseband signal in each spectrum. It is not surprising that the real alternation frequency 

differs from the one set in the benchmarks, because the execution time of a program varies from 

run to run and cannot be adjusted precisely. Hence, we first propose a method to estimate the real 

alternation frequency, before we can proceed in finding carrier frequencies. Next, we propose a 

probabilistic method for separating carrier frequencies from all measured frequencies, then 

propose a method for identifying if the carrier is AM or FM modulated. To verify the performance 

of our algorithm, we tested it on a laptop, desktop, and smartphone and found that the algorithm 

finds the spectral patterns caused by modulated carriers with an accuracy of 99%. 

3.2.1 Unintentional FM and AM Carriers in Computer Systems 

Amplitude modulations (AM) and frequency modulations (FM) are well-studied and are 

used in numerous communication systems. Traditional communications rely on carefully designed 

transmit and receive signaling (i.e., carrier and baseband signals) and thoroughly regulated 

allocation of the frequency spectrum to optimize communication. In contrast, unintentionally 

modulated signals in computer systems are generated by many possible “transmitters.” Note that 

many periodic carrier signals in computer systems are generated by digital circuits and clocks, and 

therefore have sharp transitions that are best approximated by rectangular pulses instead of the 
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sinusoidal waves used as carriers in communications systems. The spectrum of a pulse train with 

an arbitrary duty cycle is equivalent via Fourier analysis to a set of sinusoids with various 

amplitudes at fc and its multiples (harmonics). In other words, for each carrier signal generated by 

a digital circuit or clock, additional carrier signals will also be present at 2fc, 3fc, 4fc, 5fc, etc. As 

the duty cycle of a signal approaches 50%, the amplitudes of the odd-numbered harmonics (fc, 

3fc, 5fc, etc.) reach their maximum, while amplitudes of the even harmonics (2fc, 4fc, etc.) trend 

toward zero. For a small duty cycle (i.e., < 10%) the magnitudes of the first few harmonics (both 

even and odd) decay approximately linearly. Finally, note that these observations imply the 

amplitudes of all the harmonics are a function of the duty cycle. If program activity modulates the 

duty cycle of a periodic signal while keeping its period constant (i.e., causes pulse width 

modulation), all of the signal’s harmonics will be amplitude-modulated. Whether the signal is AM 

or FM modulated can be determined by tracking the carrier signal as the duty cycle of the baseband 

signal changes. For baseband signals with the highest frequency component much lower than the 

carrier frequency, the AM and FM spectra look very similar, but FM carrier shifts in frequency 

with different duty cycles, while AM carrier does not shift. 

The reception of unintentional modulation “signals” differs from traditional 

communication receivers in several ways. Since unintentional signals occur at the frequency of the 

unintentional carrier, they are mixed in with all the other noise generated by the computer system 

(other clocks and switching noise) and other communications signals. Unintentional signals are 

subject to electromagnetic compatibility restrictions which impose a maximum noise power (signal 
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power from our point of view). Therefore, unintentional signals are typically weaker, and may be 

diffused across the spectrum by spread spectrum clocking or by using clock sources with inherent 

variation such as RC oscillators. Also, since the carriers are typically generated by non-sinusoidal 

sources, the carrier signals may have harmonics. Finally, communication signals have direct and 

obvious control of the baseband (modulation) signal, while unintentionally modulated signals from 

computer systems do not. We may be interested in several different system activities (baseband 

signals). For example, a baseband signal may be caused by processor activity and another baseband 

signal may be caused by memory activity. In some cases, multiple baseband signals may even 

modulate the same carrier. These effects complicate the detection of unintentionally modulated 

signals. The presence of noise generated by the system makes it difficult to determine which 

signals are AM or FM carriers. Some of the unintentional AM or FM carriers are generated by 

spread spectrum clocked signals, making them harder to recognize. Existing methods to find AM 

and FM modulation based on its spectral properties (i.e., without knowing the baseband signals) 

are not designed to deal with these issues and are not able to identify which carriers are modulated 

by a specific system activity. 

3.2.2 Creating System Activity at Controlled Frequencies 

The first step to finding unintentionally generated signals is to create a simple identifiable 

baseband signal. These baseband signals are generated by system activity such as the execution of 

particular instructions, memory accesses, etc. While we do not know the exact effect a particular 
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activity will have on a particular carrier’s baseband signal, we can create low frequency falt 

variations in a particular activity, and then expect that in aggregate these variations will generate 

a low frequency component in the baseband signal at falt frequency. 

In [9], we have introduced such microbenchmarks for generating such periodic activity. 

Here, we just briefly summarize the approach. The loop beginning on line 2 of Figure 8 performs 

one activity (activity X), and the loop beginning on line 8 performs another activity (activity Y). 

The outer loop repeatedly alternates activities X and Y, creating periodically changing activity 

whose period equals the execution time for one iteration of the outer loop. This alternation period 

Talt is the inverse of the frequency falt =1/Talt.  

Note that prior uses of similar micro-benchmarks [9] used this alternation to generate a 

carrier signal at some chosen frequency fc, while we use this alternation at falt to measure FM- and 

AM-modulation of any potential carrier signals intrinsically generated (and emanated) by the 

system. 
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Figure 9 Pseudo-code to generate the X/Y alternation activity 

It is important to emphasize that while the effect of a single event (i.e. execution of a single 

memory access or processor instruction) on the baseband signal is unknown, as long as there is 

some difference between the X and Y activities, there will be a signal generated at the frequency 

falt and also at some of the harmonics of falt (2falt; 3falt; …). Furthermore, we can change the duty 

cycle of the benchmark activity (i.e. (i.e. the percentage of time spent in activity X vs. activity Y) 

by changing how long the activity X is executed versus activity Y. 

3.2.3 Finding AM and FM Unintentional Carriers in Computer Systems 

Here we use the benchmarks described in the previous section to create predictable spectral 

patterns in the sideband of any carrier modulated by the benchmark activity. The benchmarks are 

run at several different alternation frequencies falt1, falt2, …, faltN , for several duty cycles d1; d2; …; 

dm, and every combination of alternation frequencies and duty cycles is recorded K times. The 
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frequency spectrum for each run is recorded, the repeated runs are averaged, and the result we 

denote as S(f; falti ; dj), where f is the frequency range at which the spectrum is recorded, falti denotes 

the chosen alternation frequency, and dj denotes the chosen duty cycle. This is an important step 

to allow robust automated detection of both AM and FM modulations.  

To illustrate what measured S(f; falti ; dj) looks like, Figure 10 plots a part of one spectrum 

around a carrier frequency at 382 kHz. This spectrum was recorded with falt = 23 kHz, so it shows 

a lower and upper sideband around 359 kHz and 405 kHz, respectively. 

 

Figure 11 A measured spectrum S(f; falti ; dj ) at a carrier frequency at 382 kHz and a lower 

and upper sidebands around 359 kHz and 405 kHz, respectively 
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It is not surprising that the real alternation frequency differs from the one set in the 

benchmarks, because the execution time of a program varies from run to run and cannot be adjusted 

precisely. Hence, we need to estimate the real alternation frequency falt, before we can proceed in 

finding carrier frequencies. First, for every duty cycle, we average spectra with different 

alternation frequencies, i.e., 

  (1) 

and create new spectra as a difference between the original and averaged spectra, i.e., 

  (2) 

This attenuates most spectral features that are not related to modulated signals we are 

looking for, while preserving most of those that are activity-modulated. 

To find the true alternation frequency, we shift all points in the spectrum Snew(f; falti ; dj) by 

+/- falti , and take the pointwise minimum between two shifts i.e. we compute 

  (3) 
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Figure 10 plots the spectrum Snew(f; falti ; dj) shifted up by falti = 23 kHz (black square curve) 

and shifted down by falti = 23 kHz (red circle curve), their pointwise minimum M(f; falti ; dj) (blue 

triangle curve). Also shown (magenta diamond curve) is the pointwise minimum computed in the 

same way (shifting by 23 kHz) for another spectrum whose alternation frequency is different (e.g., 

29 kHz). We observe that, when the spectrum contains sidebands that correspond to falti, the shift 

in frequency aligns these sidebands at the frequency that corresponds, in the original spectrum, to 

the carrier that produced the sidebands (382 kHz in this case). 

At points that do not correspond to the modulated carrier or its sidebands, the pointwise 

minimum will only have a peak if two prominent spectral features (e.g. two radio unrelated signals) 

happen to be separated by exactly 2falti. Finally, when the spectrum is shifted by an amount that 

does not match the alternation frequency, the sidebands do not align and the pointwise minimum 

is unlikely to have a peak even at the carrier’s frequency. 
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Figure 12 A spectrum Snew(f; falti ; dj) shifted up and down for 23 kHz, the pointwise 

minimum between these two spectra, and the pointwise minimum between two spectra with shift 

different from falti = 23 kHz 

Instabilities in program execution can cause the actual alternation frequency to be different 

from the intended one. To find that actual alternation frequency, we compute this minimum-of-

shifted-spectra operation with all frequency shifts that are within 25% of the intended one, in 50 

Hz increments. For each of these M(f; falti ; dj) we compute the average across f, and the shift that 

produced the largest average it taken as the actual alternation frequency. The intuition behind this 

is that shifts that correspond to the true alternation frequency will produce the stronger peaks at 

frequencies that correspond to modulated carriers and will possibly have other peaks that come 

from aligning unrelated signals. In contrast, incorrect shifts will only have the peaks that come 
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from aligning unrelated signals, but their sideband-induced peaks will be attenuated (or completely 

eliminated). Thus the shift that corresponds to the actual alternation frequency tends to produce 

more (and stronger) peaks, which increases its average-over-f relative to other shifts. 

In our experiments we found that the actual alternation frequency is often 150 to 300 Hz 

away from the intended one. This difference may seem small, but some sidebands are sharply 

defined, e.g., the peak is only 100 to 200 Hz wide, so use of the intended rather than true alternation 

frequency may cause our approach to completely miss the actual sideband signals and thus not 

report the corresponding modulated carrier signals. 

To find the frequencies of carriers that are unintentionally modulated by program activity, 

we perform the following steps for each duty cycle dj. First, for every alternation frequency falti, 

where 0 < i < N, the spectrum S(f; falti ; dj) (that corresponds to that alternation frequency) is shifted 

by +/- falti to the left and by falti to the right. This creates 2N spectra that all correspond to the same 

duty cycle and whose sideband signals are shifted to the frequency of the carrier that produced that 

sideband signal. Then, the pointwise minimum among all these shifted spectra is found, i.e., 
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  (4) 

Intuitively, at a frequency that corresponds to a modulated carrier, the sidebands that 

correspond to different falt will all align, and the minimum will have a peak. At other frequencies, 

the minimum will have a peak only if other stronger-than-usual signals happen to be present in the 

original spectra at every one of the 2N positions, which becomes increasingly unlikely as we 

increase N. However, it is still possible that other signals happen to align and create peaks in 

Mtrue(f; dj). To suppress these peaks, for every alternation frequency, we also compute Mfalse(f; k; 

dj) by taking each spectrum (collected with falti) and shifting it by ±𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖+𝑘𝑘≠0 , then taking the point-

wise minimum among such spectra: 

  (5) 
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The key property of Mfalse(f; k; dj) is that it is computed in exactly the same way as Mtrue(f; 

dj), but the use of incorrect falt causes none of the sideband signals to be aligned with each other. 

This is repeated for different non-zero values of k and compute the permutations of falti+k , and we 

compute Mfalse(f; dj) as the point-wise average among Mfalse(f; k; dj) across all non-zero values of 

k. Figure 11 plots Mtrue(f; dj) and Mfalse(f; dj) for the experiment where there is an activity-

modulated carrier at 382 kHz. We can observe that the Mtrue(f; dj) has a distinctive peak at the 

carrier frequency, while Mfalse(f; dj) does not. However, accidental alignment of other (non-

sideband) signals would produce similar peaks in Mtrue(f; dj) and Mfalse(f; dj). Thus we compute a 

“modulated carrier score” MCS(f) as the point-wise ratio between Mtrue(f; dj) and Mfalse(f; dj): 

(6) 

 

Figure 13 Minimums of shifted spectra, i.e., Mtrue(f; dj) and Mfalse(f; dj), with the carrier 

frequency at 382 kHz and the alternation frequency of 23 kHz. 
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Intuitively, at each frequency the value of the MCS corresponds to how much stronger (in 

dB) is the signal that corresponds to the sidebands of that (potential) carrier, relative to the signal 

that would be computed for that frequency even if no sideband present. To illustrate this, Figure 

12 shows the MCS(f) that corresponds to Mtrue(f; dj) and Mfalse(f; dj) from Figure 11. 

The MCS(f) shown in Figure 12 has a strong peak that strongly suggests that a modulated 

carrier is present at 382 kHz, the MCS(f) varies and has many other, smaller, peaks, so it is not 

easy to determine what value of MCS should be treated as the threshold for reporting a modulated 

carrier. If the MCS threshold is set to some manually selected value, it will need to be adjusted for 

each evaluated computer system, environment in which the experiment is carried out, antenna 

position, etc. 

 

Figure 14 Modulated carrier score as a function of frequency for a spectrum with the 

carrier frequency at 382 kHz and the alternation frequency of 23 kHz 
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Instead, it is highly desirable to set a threshold in terms of the probability that a reported 

carrier is a false positive, and then automatically determine the corresponding threshold for MCS. 

To accomplish this, we note that Mtrue(f; dj) and Mfalse(f; dj) should be statistically equivalent for 

frequencies hat are not modulated carriers, so for those frequencies the values of MCS(f) should 

have a zero mean and a CDF that is symmetric around that mean. In contrast, for frequencies that 

correspond to modulated carriers, the MCS(f) will have a bias toward positive values, and the 

magnitude of that bias increases as the power of sideband signals increases. Thus, the problem of 

deciding how likely it is that a particular frequency has a modulated carrier becomes the problem 

of determining how likely it is that the MCS(f) value for that frequency belongs to the positive-

biased “modulated carrier” distribution rather than the symmetric “baseline” (no modulated 

carrier) distribution. 

Although empirical data for the baseline distribution is not available (the MCS(f) contains 

points from both distributions), the baseline distribution can be closely approximated by noting 

that 1) the baseline distribution is symmetric around zero and 2) negative values of MCS(f) are 

very likely to belong to that distribution. The negative-values part of the baseline distribution is 

thus approximated by simply using the negative-values part of the empirical joint distribution, 

while the positive side of the baseline distribution is approximated by using the “mirror image” of 

the empirical joint distribution. Figure 13 shows the empirical joint distribution and the 

approximated baseline distribution. 
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Figure 15 Empirical joint and baseline cumulative distribution functions for MCS score. 

It can be observed that the empirical joint distribution has more high-magnitude points than 

the approximated baseline distribution. Thus, we can now set the probability-of-false-positive 

threshold ( ) to a desired value, e.g., , look up the MCS value that corresponds to 

, and report carriers whose MCS is no less than that value. For reported MCSs, we than 

read the actual CDF value and report it as the confidence level. For example, for , we 

find all MCSs that have value larger than MSC that corresponds to CDF=0.98. Then, for each 

MCS that satisfies this criteria, we read their actual CDF value. All values should be larger than 

0.98. 

Section IV-B described how to identify modulated carrier frequencies for a given duty 

cycle dj. To identify if the carrier has AM or FM modulated signal, we observe how the carrier’s 

frequency and sideband power change as the duty cycle changes. Note that an amplitude-
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modulated carrier should have the same frequency for all duty cycles (although the magnitude of 

the carrier and baseband signals will vary as the duty cycle changes). For a frequency-modulated 

carrier, however, the change in the duty cycle changes the DC-value of the baseband signal, which 

results in shifting the frequency of the carrier and its sidebands in proportion to the duty cycle. 

Intuitively, if we plot the modulated carrier’s frequency on the Y-axis and the duty cycle 

on the X-axis, a horizontal line corresponds to AM, while a line with a non-zero slope corresponds 

to FM whose _f corresponds to the line’s slope. To reduce the number of spectra that must be 

collected, however, we only get discrete points on this line that correspond to duty cycles used in 

the experiments. Furthermore, the AM/FM identification (and the estimate of  for FM) relies 

on estimating the slope of the frequency-vs.-duty cycle line, so the duty cycles used in the 

experiments should not be too close to each other. Finally, the linear fit is imperfect – the actual 

duty cycle may differ from the intended one, the empirically determined frequency of the 

modulated carrier may contain some error, etc. Thus, the key problem in identifying modulation 

is how to group together likely-carrier points from different duty cycles, i.e., for a likely-

modulated-carrier point found for a given duty cycle, determining which likely-carrier points from 

other duty cycles belong to the same modulated carrier. Unfortunately, simply using the points that 

produce the best goodness-of-fit (e.g., squared-sum-or-errors) for the frequency-vs-duty-cycle 

produces poor results when several modulated carriers that do not have a very sharply defined 

central frequency are present in the same frequency range. To overcome this, we note that the 
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sideband power produced by a carrier is also a function of the duty cycle, i.e. the points that belong 

to the same carrier but with different duty cycles should all have the sideband power 

, so their Mtrue(f; dj) should also be proportional to . Thus our 

modulation-finding consists of finding, for each likely carrier point, the linear fit (that uses one 

point from each duty cycle) that produces the smallest product of the squared sum of error for the 

frequency fit and the squared sum of errors for the (Mtrue) fit. 

Because the slope of the linear fit is estimated, it is highly unlikely to be exactly zero. Thus 

we also determine the 95% confidence interval for the estimated slope, and report the carrier as 

AM if this confidence includes the zero value. Intuitively, we report a carrier as FM-modulated 

only if there is a high enough (95%) confidence that its frequency change is duty-cycle-induced 

rather than caused by other (duty-cycle unrelated) variation in estimated frequencies of modulated 

carriers.  

 

3.3 Task 2.1 – Spectral Monitoring for Anomaly Detection 

In this section, we describe our new framework, REMOTE (Robust External Malware 

Detection Framework by Using Electromagnetic Signals), that is designed to address practical 

issues for anomaly detection in resource-constrained devices (e.g., embedded devices, IoTs, CPS, 

etc.) [10], [11], [12]. We envision that REMOTE can be used in scenarios where the security of 
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the device is critical, e.g., devices that control critical infrastructures, military systems, hospital 

equipment, etc.  

3.3.1 Spectral Samples (SS)  

At a high level, REMOTE has two phases: training and monitoring. In both phases, the EM 

signal is first transformed into a sequence of spectral samples (SS) by using short-time Fourier 

transform (STFT), which divides the signal into equal-sized segments (windows), where 

consecutive segments overlap to some degree. STFT then applies the Fast Fourier Transform 

(FFT) to each window to obtain its spectrum. In our measurements, we use a 1ms window size 

with 75% overlap between consecutive windows, which provides a balance between the 

computation complexity and frequency/time resolution. The rest of the training and monitoring 

operates on this sequence of spectra, where each spectrum (i.e., the spectrum of one window) is 

referred to as a Spectral Sample (SS). 

3.3.2 Distance Metric for Comparing Spectral Samples  

In both training and monitoring, REMOTE will need to compare SSs to each other, and for 

that, it requires a distance metric – a way to measure the “distance” between SSs in a way that 

corresponds how likely/unlikely they are to have been produced by execution of the same code. 

This distance metric should be sensitive to the aspects of the signal that change when executing 

different code, but insensitive to aspects of the signal that change between physical instances of 
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the same device or over time on the same device instance. To achieve this, we create a new distance 

metric, Clock- Adjusted Energy and Peaks (CAPE). 

Based on the insights from our prior work [10], [11], the frequencies of the peaks in the 

signal around the clock frequency are an excellent foundation for constructing a distance metric 

that is sensitive to which region of code is executing. Unfortunately, our experiments have shown 

that the clock frequency can vary over time and among device instances, and a change in clock 

frequency also changes the frequencies of loop-related peaks around it. One difference is that, 

because the peaks’ frequencies are all relative to the carrier frequency, any shift in the clock 

frequency also shifts the frequencies of the loop-related peaks by the same amount. The second 

change is caused by the relationship between clock frequency and program performance. 

Specifically, as the clock frequency increases, the program executes faster, leading to a lower per-

iteration time T; higher frequency of the loop ( ), and thus moving the loop-related peaks 

away from the clock’s frequency. Similarly, lower clock frequency moves the loop-related peaks 

closer to the clock frequency. 

Thus, the first step in computing our CAPE distance metric is to, for each frequency f that 

is of interest in an SS, compute the corresponding normalized frequency as , 

where fclk is the clock frequency for that SS. This normalized frequency is expressed as an offset 

from the clock frequency so that a shift in clock frequency does not change fnorm with it and is 
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normalized to the clock, so it accounts for the clock frequency’s first-order effect on execution 

time. 

To make CAPE robust to weak signals and/or signals that have no well-defined peaks, we 

first consider the overall signal power (sum of magnitudes in the spectrum) of the signal outside 

the vicinity of the clock. The power of a poorly-defined peak is spread across a range of frequencies 

– visually it is a wide and not-very-tall “hump” rather than a narrow and tall “peak”. When 

comparing two SSs that are different but each contain only “humps” and no sharp peaks, if we 

only consider whether the SSs have power concentrations at the same (clock-adjusted) frequencies, 

the overlap among their “humps” causes these SSs to match much better than they otherwise 

should, and this can prevent detection of malware-induced changes in signals. 

Moreover, under poor signal-to-noise conditions (e.g., when the signal is received at a 

distance) sharp peaks are likely to still stand out of the noise, so due to random variation in noise, 

some “humps” end up below the noise level and some do not. For two SSs that should be the same 

(except for the noise), this causes poor matches, and this can lead to false positives. Thus, to make 

our CAPE distance metric more robust against weak/noisy signals, we use a new insight, called 

“non-clock-energy” test, that non-clock power varies very little among SSs that do belong to the 

same region, and that increases/decreases in a loop’s overall per iteration time concentrate 

less/more power toward the clock frequency in an SS. Therefore, SSs whose non-clock power 
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differs by more than 0.5 dB are considered dissimilar by CAPE, and no further comparison 

between them is needed. 

If the two SSs pass the “non-clock-energy” test, REMOTE compares them according to 

the (clock-adjusted) frequencies of their most prominent peaks. Specifically, we take N highest-

magnitude frequency bins from the spectral sample (SS) that are each (i) not part of the NoiseList, 

and (ii) not within D spectral bins of a higher-amplitude spectral bin. The number N is determined 

differently for training and monitoring, as will be described shortly. The NoiseList contains 

frequencies of signals that are present regardless of which specific region of the application is 

executing. 

For finding the NoiseList, we record the EM signal several times and average them while 

no program is being executed (the system is idle). We then choose 10 random SSs in the recorded 

signal, and then for each SS, sort it and find all the spikes that are at least 5 dB above the noise 

floor and put them in the NoiseList. We empirically find that choosing 10 points is sufficient to 

find all the strong peaks since it can accurately capture the transient behavior of the environmental 

noise. It is also important to point that, using this method, our detection algorithm is robust to 

interference from nearby devices (that are not identical to the monitored device), as their clock and 

other frequently-occurring peaks will end up on the NoiseList. The reason for ignoring D spectral 

bins that are too close to even-higher-magnitude ones is that a very prominent peak in the spectrum 

typically has “slopes” whose magnitude can exceed the magnitude of other peaks, and we found 
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that REMOTE is more robust when its decisions are based on separate peaks rather than just a few 

(possibly even one) very strong peaks and a number of frequency bins that belong to their “slopes”. 

Finally, REMOTE combines the information about the frequencies of the peaks in the two 

SSs into a single value that represents the distance among the SSs. For each peak in one SS, 

REMOTE finds the closest-frequency-peak the other. If the frequency difference is large enough, 

the peak votes for a mismatch, and the ratio of the mismatch votes to the number of all (mismatch 

and match) votes is used as the distance metric between the two SSs. 

3.3.3 Black Box Training  

To train REMOTE, signals are collected as the unmodified monitored device emanates 

them. However, care should be taken to achieve good coverage of the software behaviors, e.g., by 

using the same methods that are used to test program correctness. The problem of achieving good 

coverage tends to be easier for many applications in the CPS domain, especially those where 

correct operation is critical, because correctness concerns and the need for easy verification of 

correct operation motivates developers to produce code that has relatively few code regions, and 

with very stable patterns for how the execution transitions between them. In such cases, normal 

use of the device is likely to provide good coverage of the application’s code regions after a while. 

After signals are obtained and converted into SSs, a key part of training is to associate SSs 

with the code regions they correspond to. To achieve this without using instrumentation or other 
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on-the-monitored-device infrastructure, REMOTE relies on a general observation that a given 

region of code tends to produce EM signals whose SSs are similar to each other, while the SSs 

from different regions tend to differ from each other to various degrees. This observation allows 

us to group SSs according to similarity, and for that we use Hierarchical Density-Based Spatial 

Clustering of Applications with Noise (HDBSCAN), a technique that performs clustering without 

any a priory knowledge about which cluster (region) each sample (SS) corresponds to, and with 

no a priori knowledge about the number of clusters (regions). Like other clustering algorithms, 

HDBCASN needs a distance metric, and in REMOTE that distance metric is the new CAPE metric, 

using N = 10 peaks. Using this variation-robust metric allows training signals to be collected over 

time (e.g., over many hours), and/or on multiple device instances. 

Because HDBSCAN clustering is based solely on similarity among SSs, its result may not 

precisely correspond to actual regions of the code, e.g., one region may produce more than one 

cluster if there are several distinct ways in which the region can execute, or two regions may end 

up in the same cluster if their execution produces very similar signals. Neither of these possibilities 

is a problem for REMOTE, and in fact, they result in improved sensitivity and performance. If 

separate clusters for distinct behaviors were forced into a single cluster, the resulting unified cluster 

would allow a wide variety of SSs to match - all the valid SS options and also everything that lays 

in-between in the distance-space used for clustering. By creating a separate cluster for each distinct 

possibility, REMOTE will detect anomalies that produce SSs that are not valid but lay in between 

the valid ones. Conversely, when multiple regions are clustered together, they have very similar 



39 

Approved for public release; Distribution is unlimited. 

 

(practically indistinguishable) signals and it is more efficient and robust to treat them as one 

cluster. During monitoring, a Finite-State Machine (FSM) is used to keep track of the current 

region of the code. For each test, REMOTE compares the new SS to either the current region or 

any valid “next region” that has been seen during training. 

3.3.4 Monitoring  

During monitoring, REMOTE receives the signal and converts it to SSs in the same way it 

was done in training (same window size and overlap). After that, REMOTE can be viewed as a 

classifier that places each spectral sample (SS) into either one of the known categories (clusters 

identified during training) or into the “unknown” category that represents anomalous behavior, 

according to our CAPE distance metric (Fig. 14 shows the flow-chart of REMOTE’s monitoring 

algorithm). Specifically, a candidate region is rejected if its distance metric is above 50% (fewer 

than half of the peaks match). If all candidates are rejected, the observed SS is categorized as 

“unknown,” otherwise it is categorized into the candidate category with the lowest CAPE distance 

metric. The number of peaks used for each cluster is no longer fixed at 10 – instead, it is identified 

for each cluster during training. We start with ten peaks, but then remove those that occur in fewer 

than 10% of the SS in the cluster. If this results in removing all peaks, we still retain the two most 

frequently occurring (among SSs from that cluster) peaks. This helps matching accuracy when the 

SSs in a cluster have few prominent peaks and a number of very weak peaks – in such cases it is 

more robust to use only the overall non-clock energy and the prominent peaks for matching than 
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to use the peaks that may “disappear into the noise” due to changes in distance, antenna position, 

etc. 

 

Figure 16 Remote’s monitoring flow-chart 

 

However, if the overall decision to report malware is based on only one SS, brief 

occurrences of strong transient noise can result in false positives. To avoid that, REMOTE only 

reports an anomaly if N consecutive SSs are classified as “unknown.” The value of N should be 

chosen depending on the EM noise characteristics of the environment, but we found that N between 

3 and 5 tends to work well in all our experiments. We use N=5 because it biases REMOTE toward 

avoiding false positives, while still maintaining an excellent detection latency (N=5 corresponds 

to only 1.25 ms detection latency in our setup). An FSM is used to count N, report an anomaly, 
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and to keep track of current valid region of code to ensure that the program follow a correct 

ordering of regions. 

Finally, we found that in the presence of an OS, interrupts and other system activity that 

occurs during an SS can make that SS dissimilar to those from training. For example, an interrupt 

that lasts <1ms can affect four consecutive SSs (recall that we use 1ms windows with 75% 

overlap), so a naive solution would be to add 4 to N (number of consecutive “unknown” SSs that 

are needed to trigger anomaly reporting). Using N = 9 indeed eliminates interrupt-induced false 

positives, but also prevents detection of attacks that are brief. Unfortunately, real-world malware 

(e.g., the attack on Syringe-pump that will be described in Section 3) can introduce only a short 

burst of activity into the otherwise-normal activity of the application. Fortunately, our experiments 

indicate that spectral features of interrupt activity are similar to each other, so during training 

interrupt activity can be clustered. During monitoring, REMOTE includes these clusters as 

candidates, allowing it to tolerate interrupts without becoming tolerant of similar-duration 

deviations from expected execution. 

3.4 Task 2.2 – Spectral Monitoring for Multi-core Anomaly Detection 

In this section, we propose a mixture of Markov and convolutional neural network (CNN) 

models, called MarCNNet, to monitor multi-core systems to detect malware [13]. In this 

framework, the CNN provides the likelihood of executing any state of any program by exploiting 

the features that are learned during the training phase, and the Markov Model monitors programs 
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by investigating the possibility of state transitions. Compared to other CNN models that have the 

same procedure for training and testing, these phases follow different paths in MarCNNet to 

simplify collection of training signals and decrease complexity of the framework. We propose to 

use Markov Model to carry dependency information among paths. States of the model are assumed 

to be hot paths or loops, and transitions between any two states are only allowed if the program 

follows this path. Since the Markov Model is responsible for tracking execution order, neural 

network inputs are assumed to be independent of each other during training. The outputs of the 

CNN are used as an indicator of the current state. In the testing phase, based on the likelihood of 

states obtained from the CNN, the Markov Model tracks whether the estimate-stream of the CNN 

coheres with the allowed transitions. The methodology alerts users if the estimates and 

corresponding transitions do not adhere. In summary, the work makes the following contributions: 

• Proposes a zero-overhead methodology to profile multicore devices while multiple 

programs are executed at the same time. 

• Proposes a CNN model that extracts the features of program states and provides 

likelihood estimates of each state at a given time. 

• Defines a new structure that combines Markov and CNN models to simplify and 

decrease the complexity of the training phase of the network. 

• Defines procedures for generating training data to mimic multi-core systems by 

exploiting signals collected only when a single core is active. 
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• Provides a proof-of-concept implementation of the proposed method to demonstrate its 

practicality on various devices. 

3.4.1 Emanated EM Signals During Program Execution  

Program executions change states of transistors in a processor and yield radiation of EM 

signals. The correlation between the executions and transitions is the main underlying reason for 

these signals to convey sensitive information. It has been shown that these emanated signals are 

modulated by the clock frequency of a device [11], i.e., loop activities in a program generate peaks 

around the clock frequency. Therefore, with a proper choice of antenna and a clock harmonic that 

diminishes the effect of disruptive signals, it is possible to capture informative signals that are 

correlated with the program activities even from a considerable distance [14], [15]. 

Programs or applications are written to serve a specific task, thereby each task within the 

program shows some dependency to others. These tasks can be considered as the hot spots since 

execution run-time is mainly spent on these regions. Therefore, we can claim that programs are 

combinations of these hot spots, and the execution of each of these regions depends on previously 

executed ones. To illustrate the modulation of signals and the domination of hot regions, we 

consider the Bit_count benchmark from MiBench suit [16]. The spectrogram of the received EM 

signal is given in Fig. 15a when only one core of the device is active. To obtain the figure, we first 

demodulate the signal by the clock frequency of the device, then take STFT of the signal and plot 

in time. The lighter regions in the figure represent the frequency components that are relatively 
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strong. Here, the most powerful frequency component at the center corresponds to the clock 

frequency of the device, while the other strong frequency bins around the clock frequency 

represent the modulated frequency components due to looping operations that exist in the 

benchmark. The main observation is that the benchmark contains seven dominant regions which 

are executed in an order. The frequency components observed in the spectrogram are related to 

execution time of a single iteration of a loop. For example, if the iteration takes Talt seconds, we 

observe an RF signal component at the alternation frequency, falt = 1/Talt. However, if the iteration 

time varies in time due to program activities, we observe a smearing around the expected 

frequency, as seen in the first loop of Bit_count. 
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Figure 17 Hot regions for the profiled micro-benchmarks from MiBench [16] 
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Similarly, the spectrogram of the received signal when a single core is running Basicmath 

(another benchmark from MiBench) is given in Fig. 15b. This time, four different regions are 

observed with non-overlapping frequency components. We also observe that these regions follow 

a sequential order such that each hot region has only one path like in Bit_count.  

The question here is how emanated signals are composed when multi-cores are active. To 

investigate the mixtures of signals while multiple programs are executed at the same time, we 

perform an experiment while running Basicmath and Bit_count parallel on different cores of a 

device. The spectrogram of the received signal is given in Fig. 16. We observe that the received 

signal is the superimposed version of the signals when Bit_count and Basicmath are executed in a 

single core with lower signal-to-noise ratio (SNR). Therefore, it is possible to reconstruct the 

spectrogram of emanated signals when both cores are active if the relative initialization times of 

the programs are known. Note here that a perfect superposition of signals is not possible because 

whenever multi-cores are active, it draws extra power that causes a certain amount of decrease in 

SNR of the received signals. However, the received signal in Fig. 16 illustrates that it still preserves 

the characteristics of both programs. The same frequency components with single-core 

measurements are still active and relatively stronger. Therefore, the STFT magnitudes of the 

received signals for multi-core devices can be modeled as the summation of STFT outputs of single 

core measurements with some additive white noise that represents the extra power drawn by the 

device. As long as one core measurements are available for each program, any possible signal 

combination can be generated irrespective of the time that programs are initialized. Also, this 
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model simplifies training data collection phase since it does not require performing experiments 

by varying initialization times of programs. 

 

Figure 18 Hot regions when both micro-benchmarks running at different cores 

3.4.2 Markov Model Based Program Profiling: MarCNNet 

In this section, we introduce Markovian Convolutional Neural Network Model, called 

MarCNNet, to monitor systems with no overhead and detect malware when injected. In this 

section, for the simplicity of discussion, we consider a device with two cores and the following 

programs: Bit_count and Basicmath. 
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Remembering that execution of a program follows a path, we first investigate the 

spectrograms given in Fig. 15a and Fig. 15b. For both cases, hot paths dominate the run-time of 

the programs and demonstrate a similar pattern during a loop execution. These loops can be 

considered the states of a given program as they activate distinct frequency components which 

could be the first candidates to reveal the current state. Moreover, these distinct features follow an 

order/path that is defined by the program. To represent this dependency among hot regions, we 

propose utilizing Markov Models. The states of the model are considered as hot regions, and 

transitions among states are only allowed if there exists a branching operation that enables 

consecutive execution of corresponding hot regions. 

The state transition diagrams of Markov Models for both benchmarks are given in Fig. 18. 

As given in the figure, the states of each benchmark depend only on the previous hot region, 

meaning that there is only one path from each state for these benchmarks. Please note that these 

benchmarks are state-of-the-art and the proposed model can track a program with many branching 

operations hence more complicated Markov Models. 

 

Figure 19 Markov models representing the execution of benchmarks 
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The model is designed to have N parallel units under the assumption that the system is 

running N sets of programs. However, the question is how to combine the CNN with Markov 

Models. Although the CNN can classify the inputs by extracting the distinctive features, it does 

not consider the dependency among its seemingly-independent inputs. To address this dependency, 

we exploit Markov Models as the state monitoring machine. In other words, the CNN is considered 

as the likelihood estimator of the current state of a given program and the Markov Model behaves 

as the inspector of state transitions. The Markov Model is responsible for warning the system that 

there could be an anomaly. Therefore, the combination of these two models provides a tool for 

monitoring systems against malware. 

After having a model to represent the dependency of the execution paths, the question is 

how to identify the current execution point of a given program. Please remember that hot paths are 

generally a result of looping activities within a program. Assuming each iteration of the loop takes 

equal time to execute, we expect that the same frequencies are activated until the end of the loop. 

However, the execution times of software activities vary, which causes shifts in the frequency 

domain [17]. To be able to deal with problems that arise due to working on multi-core systems and 

the spread of the frequency components due to execution time variation, we use a convolutional 

neural network, which has better built-in invariance to local variations. Convolutional neural 

networks are generally used for image, speech and time series, and the structure of the overall 

model is important to achieve better true classification rates. 
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The proposed model, MarCNNet, is given in Figure 19. The model comprises N parallel 

units which correspond to the N different programs that are monitored. The detailed CNN model 

at each branch is given in Figure 19. Each of these branches contain: 

• 3 convolutional layers, 

• 3 dense layers, 

• 1 output layer whose size changes based on the number of states of the corresponding 

program. 

After the first and second convolutional layers, we apply max-pooling operations with a 

stride of 5 and a kernel size of 10. The kernel sizes of the convolutional layers are 55, 35, 15, 

respectively. We also utilize dropout layers before each convolutional layers with a dropout rate 

of 0.05. ReLU activation function is exploited at each layer except the output layer. We exploit 

cross entropy loss function which is defined as 

   (7) 

where class id is the state label of the considered training signal and o is a vector containing 

the outputs of the neurons at the output layer. We analyze the model with various hyperparameters, 

i.e. # of layers, stride, etc., and come up with the parameters given above. However, we do not 

claim that this model is the optimal model because there are infinitely many options for the model 

selection, yet the proposed CNN model extract features that are distinctive to profile a system. 
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Figure 120 Convolutional neural network model to track N different programs 

 

Figure 21 Detailed convolutional neural network model for the branches 

3.4.3 Input Signal and Training Phase 

In this section, we first describe the input signal that is fed to the neural network, and then 

explain the training phase of the overall framework that extracts and learns the distinctive features 

of “hot” paths of each program. These learned features of programs constitute the main structure 

of the profiling scheme by providing the matching probabilities of testing signals. 
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Monitoring devices in real-time with high sampling rates results in very large input data 

dimensions and requires preprocessing before getting fed to the neural network. In addition, the 

measured signal is corrupted by non-relevant activities and this corruption should be minimized 

for accurate program tracking. One straightforward approach is to use time series samples with a 

specified window. However, because of the high sampling rates of the measuring devices (which 

increases the dimension of the input layer), interrupts and corruption due to environmental signals, 

this method can return in lower accuracy rates, hence false malware alert [18]. Moreover, this 

approach gives a larger number of parameters to optimize. To reduce the size of the data and 

increase the SNR level, we utilize the first phase of the Two-Phase-Dimension-Reduction 

methodology proposed in [19]. This method first calculates the STFT of the signal and averages 

the magnitudes of STFT outputs. For a better explanation of the method, let  be the STFT 

window size,  be the number of non-overlapping samples at each STFT calculation,  be the 

number of STFT operations to average, and  be the extracted features that are inputs to the 

neural network. The features can be written as 

     (8) 

 

    (9) 
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where   is the measured raw signal. To generate  [k], the number of time series 

samples used in the framework is where  

Therefore, the size of the input vector for the neural network reduces to  from , which 

helps to: 

• Improve SNR by diminishing the power of unrelated activities, 

• Reduce the number of parameters of the neural network, hence decrease the 

complexity. 

However, we do not provide  to the neural network in linear domain because most of 

the power is dominated by the DC component and other frequency components have relatively 

small amplitude which can results in floating errors. These frequency components can be 

disregarded while training the network, hence a normalization operation is required to pay more 

attention on each individual frequency component. The normalization is done by converting the 

input vector into dB domain as  The normalization is generally done by 

dividing the signal by its mean and standard deviation or subtracting the mean from the input 

vector. However, converting the input into the dB domain introduces extra non-linearity to the 

problem, hence increases the accuracy of profiling. 

The proposed neural network has many parallel units that are independent of each other 

(there is no interconnection among different units). Therefore, in the training phase, the framework 

can be divided into N different CNN models, and treated as separate problems. However, the 
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question is how to obtain training signals to feed the neural network since the collected training 

signals correspond to single core measurements. The process to generate training signals with the 

available one-core measurements representing various scenarios is given in Algorithm 1. The 

possible scenarios and corresponding strategies can be listed as follows: 

STRATEGY - 1: The training signal is kept the same assuming that the test signal is 

collected when only a single core is active with the same noise figure. 

STRATEGY - 2: The training and testing data can be collected in different environments 

with different noise figures. To make the proposed model more resilient to noise due to 

environment, we add additive noise to the input of the CNN. 

STRATEGY - 3: This mimics the behavior of a multi-core signal that has the same noise 

figure with the collected training signals. It superimposes signals from different states of different 

programs by employing random weights to consider the destructive/constructive effect of multi-

core signals on each other. This approach decreases the time required to collect experimental data 

because it does not require performing experiments with random initialization of program 

combinations. Another benefit of such a combination is that when more than one program is 

running, the neural network can still be able to monitor the system by producing a more confident 

estimate. 

STRATEGY - 4: This strategy is considered to reflect the scenario that multiple cores are 

active, and the test signal is measured in an environment with a different noise figure. Therefore, 
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to consider such a scenario, we combine STRATEGY - 2 and STRATEGY - 3. Therefore, the 

generated input is the noisy version of the weighted sum of different training signals. 

After establishing such a training procedure, the CNN model needs to be trained to learn 

the weights of the layers by applying backpropagation algorithm. Please note that we do not 

consider the Markovian structure of the problem in the training phase of the CNN. In other words, 

the training is performed by ignoring the Markov part of the proposed framework. The Markov 

Model is exploited in the testing phase while we profile the system. 
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Table I Description of Algorithm 1  

 

3.4.4 Testing While Multiple Cores Are Active 
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In this section, we introduce our profiling procedure to detect malware. Although the goal 

is to alert malware, we can extend it further to identify the program which has the malware. In 

other words, the primary goal of the paper can be restated as malware detection irrespective of the 

program and the ultimate goal is as detecting which program contains malware irrespective of the 

number of active cores and programs. 

However, multi-core activity causes some drawbacks as opposed to single-core. These 

drawbacks can be listed as follows: 

• Some frequency components can be activated by several cores at the same time and 

this can result in misclassification and/or false malware alert. 

• Activating more than one core causes extra power consumption, thereby increasing 

white noise signal power. This decreases the SNR of the received signal. 

When the malware affects all spectrum, the proposed framework could not identify which 

program contains malware. However, it still alerts malware because the malware signal distorts 

the features that all parallel units of the CNN promote. Therefore, once malware is detected and 

the program with the malware could not be identified, these programs can be executed in a single 

core to reveal the program with malware. 

We summarize the profiling procedure in Algorithm 2. The main intuition behind the 

algorithm is that the program has to follow an order to execute the states (hot regions) of the 
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program. Therefore, even if some neurons rather than the expected neuron produce more powerful 

outputs, we still choose the expected one as long as the value of this neuron is larger than the given 

threshold. Note that we do not apply any operation to the output layer, i.e., softmax, etc. As an 

example, we provide output layer values for two states in Figure 20. We only demonstrate these 

two states for illustration purposes and a similar pattern is obtained for other states as well. 

Whenever a state is activated, the value peaks at the neuron for the corresponding state and the 

outcomes for the activated regions are above some threshold. Therefore, we can claim that the 

program is in a state at a given time if the transition complies with the Markov Model and the 

throughput is larger than a given threshold. The false firings can be a result of another unrelated 

activity distorting the actual signal. The switching occurs only if the current state cannot pass 

beyond the threshold, i.e. there is another state whose value is larger than the threshold and 

transition from the current state to this state is possible. 

 

Figure 22 The values of output layers for the states 3 and 5 
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Because of other computer activities that stall the execution of monitored programs, the 

CNN output cannot provide accurate estimates and the Markov Model can alert false positives. 

Although false positives are not as critical as false negatives, they still increase the maintenance 

cost of the system. Therefore, the algorithm defines two parameters: tM and tS. tM is the mimimum 

time that the Markov Model needs to report untrusted estimates before announcing the malware. 

tS is the minimum time that each state takes. Utilization of these parameters avoids inaccurate 

transition of states and a false alarm because they prevent inaccurate transitions due to misleading 

activation of neurons by other software activities. Note here that these parameters also define the 

sensitivity of the anomaly detection framework. Therefore, they have to be selected cautiously to 

prevent many false positives/negatives. 
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3.5 Tasks 3-5 Basic Block Tracking 

In this section we propose TESLA – program Tracing through Electromagnetic Side-

channeL Analysis [20]. TESLA exploits device’s electromagnetic (EM) emanations to reconstruct 

detailed (basic-block-level) execution path with high accuracy. For this, TESLA has to overcome 

the following challenges: 1) train a signal emanation model that associates signal patterns (or 

signatures) with code segments or sub-paths, and 2) represent the test signal using such signal 

patterns to reconstruct the program execution path. Specifically, we use a two-step training process 

that exploits instrumented training to annotate the un-instrumented training signals and identify 

which signal snippets correspond to which code segments. We also propose a novel signal 

matching technique that efficiently establishes correspondence between the test signal and the 

training signals, and exploit this signal correspondence to reconstruct execution path. 

The main contributions of this papers are: 

• TESLA - a novel framework for zero-overhead and noninvasive program tracing. 

• A training process that exploits instrumented executions to annotate un-instrumented 

training signals. 

• An efficient signal matching algorithm that establishes correspondence between the 

training and the test signals and reconstructs the execution path based on the signal 

correspondence. 

• Empirical evaluations that demonstrate that (1) TESLA achieves high accuracy, and the 

predicted timestamps are highly precise (2) TESLA can monitor devices with fast 
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processors and operating systems, and (3) TESLA is able to monitor devices from 1 m 

distance. 

 

Figure 23 Overview of the TESLA execution path reconstruction framework. 

TESLA provides non-intrusive and zero-overhead program tracing by monitoring the EM 

side-channel signal. A high-level overview of TESLA is demonstrated in Figure 21. In the training 

phase, TESLA first executes an instrumented version of the program, and records the 

corresponding EM emanations. The instrumented program also outputs a marker sequence and 

their execution timestamps that indicate the program execution path. TESLA, next executes an un-

instrumented (unaltered) program, and compares the un-instrumented EM signal with the 

instrumented EM signal to map (un-instrumented) signal fragments to the underlying program sub-

paths. We call this mapping Virtual Marker Annotation, as it mimics the markers, however, 

without any code instrumentation. This process also exploits instrumented markers and timestamps 
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for efficient and precise signal mapping. Next, in the testing phase, TESLA monitors the EM side-

channel signal caused by the execution of the vanilla (i.e., un-instrumented and unaltered) version 

of the program. TESLA then matches the test signal with the training signals and exploits virtual 

markers to reconstruct the program execution path. In the following sections, we explain the 

different steps of TESLA in detail. 

3.5.1 Signal Pre-processing: Amplitude Demodulation 

To monitor the program execution, TESLA first receives the emanated EM signal through 

an antenna, performs amplitude demodulation of the received signal, and then digitizes the 

demodulated analog signal using an analog-to-digital converter. The digitized signal is next scale 

normalized before any further signal analysis. These pre-processing steps are applied to both 

training and testing phases. 

We have demonstrated that embedded devices emanate amplitude modulated signals at the 

device’s clock frequency [8], [9]. At each processor cycle, the CPU executes instructions, and thus, 

changes the states of its internal digital circuits (i.e., switches on and off). This causes an 

instruction dependent current at the CPU clock frequency. Here, the CPU clock acts as the carrier, 

whose amplitude (i.e., the pulse shape) is modulated by the variations of the executed instructions 

[21]. As the current flows within the processor, and through the device’s printed circuit board 

(PCB), the device acts as an unintentional and inefficient antenna, and emanates amplitude 
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modulated EM signal [22]. Thus, to monitor program execution, we demodulate the received 

signal r(t) at CPU clock frequency fc. 

     (10) 

Here, xa(t) is the amplitude demodulated analog signal, and t denotes the time. The 

demodulated signal xa(t) is then passed through an anti-aliasing filter with bandwidth B, and 

sampled at a sampling period Ts.  

      (11) 

Here, xd(n) denotes the sampled signal at sample index n. The anti-aliasing filter cancels 

unwanted signals with frequencies beyond . Note that, the sampling period Ts is determined 

by the well-known Nyquist criterion . Next, we scale normalize xd(n). 

            (12) 

Scale normalization ensures that the system is robust against changes in amplitude of the 

EM signals (e.g., due to change in the antenna’s distance, position, etc.). The scale normalized 

signal x(n) is then used for further signal analysis by TESLA in the training and testing phases. 
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3.5.2 Instrumented Training 

TESLA is first trained with instrumented program executions and their corresponding EM 

emanations. We execute an instrumented version of the program, in which the source code is 

instrumented by inserting markers (i.e., special probe functions) at selected program locations. 

Each marker has a unique identification number (ID) that identifies its position in the program’s 

control-flow-graph (CFG). The marker function execution records the marker ID along with the 

execution timestamp. Thus, the markers perform as program execution checkpoints that partition 

the CFG into smaller code-segments which we refer to as marker-to-marker code-segments or sub-

paths. 

We insert these markers in strategic program locations. The marker insertion is dictated by 

the following criteria: (1) any program execution control-flow path must be uniquely and 

unambiguously represented by a sequence of marker-to-marker sub-paths, and (2) all marker-to-

marker sub-paths must be acyclic and intra-procedural. Based on these criteria, we inserted 

markers in the following code locations: entry and exit nodes of functions, loop heads, and target 

nodes of go-to statements. 

CFG partitioning helps to provide training coverage for program execution. Specifically, 

any practical program has a large number of feasible program execution paths. In fact, due to cyclic 

paths in CFG, programs can have infinite number of unique execution paths. Hence, it is neither 

practical nor possible to provide training for all unique execution paths for any practical program. 
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However, the markers enable us to represent any execution path as a concatenation of marker-to-

marker sub-paths. Thus, instead of providing training for all unique execution paths, we provide 

training that covers all marker-to-marker sub-paths. Note that the number of marker-to-marker 

sub-paths is limited and can be exercised using a relatively fewer number of strategic executions. 

The markers also enable us to annotate the monitored EM signal. The marker execution 

timestamps help to establish a correspondence between executed code segments (i.e., marker-to-

marker sub-paths) and the signal fragments they generate. It is important to emphasize that while 

the markers provide an abstract partitioning, the program execution (for both training and testing) 

follows a single contiguous trace (from program’s start to end) and generates a continuous EM 

signal. Consequently, it is not visually identifiable that which marker-to-marker sub-path 

generated which part of the emanated signal. So, we use the marker execution timestamps to 

annotate the start and the end of each marker-to-marker sub-path in the monitored EM signal. 

At the beginning of the program execution, we reset the processor’s Time Stamp Counter 

(TSC) to zero. The markers record the TSC values as timestamps, which then indicate the time-

interval (in clock-cycles) from the program’s start. We convert these timestamps to sample-index 

using the following equation. 

      (13) 
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Here, n indicates the sample-index corresponding to the timestamp t, fs is the sampling rate 

of the monitored signal, and fc is the clock frequency of the monitored CPU. The rounding 

operation ensures that the resultant n is an integer value. 

We also identify the program’s start (i.e., sample-index n = 0) in the signal. To facilitates 

the automatic detection of program’s start (shown in Figure 22), we insert a for-loop just before 

the beginning of the program execution. The for-loop executes a periodic activity (e.g., increments 

a loop counter variable) and generates a periodic and identifiable signal pattern. End of this 

periodic pattern indicates the end of the for-loop (i.e., the start of the program). Furthermore, at 

the beginning of the program execution, the program is loaded into the system memory. This leads 

to memory access, which in turn stalls the processor and causes a dip in the signal amplitude [23]. 

We identify this transition (from the end of for loop to the beginning of program execution) when 

the moving median of the signal drops below a predefined threshold (as shown in Figure 22). This 

acts as the reference point (i.e., sample-index n = 0). All markers are then annotated according to 

their sample-indices. 
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Figure 24 Automatic detection of program’s start: the end of the periodic pattern (for-loop) 

indicates the program’s start. We identify this when the moving average of the EM signal drops 

below the threshold 

Figure 24 shows an annotated instrumented signal with each marker represented by a 

vertical red line. Markers m0, m1, m2, and m3 are placed at sample-index n0, n1, n2, and n3 

respectively. The marker ID sequence (e.g., m0, m1, m2, . . .) indicates the program execution path, 

while execution timestamps or sample-index sequence (e.g., n0, n1, n2, . . .) identify the start/end 

of the marker-to-marker code-segments. Thus, marker annotation establishes a correspondence 

between code-segments and emanated EM signal snippets. For instance, in Figure 24, the signal 

snippet between sample-index n0 and n1 corresponds to the execution of the code-segment or 

subpath between marker m0 and m1. 
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Figure 25 Markers (vertical red lines) are placed on the signal according to their execution 

timestamps. The signal snippet between two consecutive markers corresponds to the EM 

emanation from the marker-to-marker code-segment 

While the instrumented training helps us to partition the CFG and to annotate the signal, 

the instrumentation alters the original signal emanation patterns. Thus, the instrumented training 

signals and corresponding signal emanation models cannot be used in the testing phase, in which 

the device executes a vanilla version (i.e., unaltered and un-instrumented) program. Specifically, 

the instrumentation adds overheads to the original program (i.e., function calls that record marker 

ID and execution timestamps). The execution of these overhead codes (i.e., marker functions) 
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requires additional computation (and computational time), and in turn, causes extraneous EM 

emanations that are irrelevant to the original program. 

To evaluate the impact of instrumentation, we investigate the EM signature of the marker 

functions. We identify the marker functions in the instrumented signal using their timestamps. We 

then crop out and compare these signal snippets. Figure 24 overlays 100 signal snippets 

corresponding to the marker function execution. We observe that the marker functions emanate 

very similar signal patterns. This is expected as the marker functions execute the same code 

segment. However, the beginning and the end of the marker signals demonstrate a marked 

variability. This is due to the microprocessor’s instruction pipeline architecture that overlaps 

multiple instructions during execution. Thus, the processor’s EM emanation at any instance 

depends on all instructions that are moving through different stages of the pipeline, rather than just 

one single instruction. Consequently, the execution of the same marker function may demonstrate 

signal variability towards the beginning and the end of the function call depending on the variations 

in the preceding and the following code segments (i.e., other instructions in the pipeline). 

Likewise, the marker functions themselves also affect the EM emanations of the adjacent 

code segments. In the instrumented execution, all marker-to-marker code-segments are separated 

by marker functions. As such, the EM emanation patterns from the code-segments are altered at 

the boundaries due to the “cross-over” effect from the marker functions. For larger code segments 

(e.g., consisting of a few hundred instructions), the duration of the emanated signal is much larger 
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compared to the altered boundaries. Thus, the impact of the instrumentation is trivial. However, 

for smaller code segments such as basic blocks consisting of only a few instructions, 

instrumentation can alter the overall signal emanation pattern significantly. Thus, cropping out the 

marker signal-snippets from the instrumented signals would not replicate the un-instrumented 

signals. Therefore, we exploit un-instrumented executions to create better signal emanation model. 

 

Figure 26 EM signals corresponding to marker function execution 

3.5.3 Uninstrumented Training 

TESLA is next trained with uninstrumented program executions. However, before we can 

use the uninstrumented training for program execution monitoring, we must first annotate the 

signal. Unlike the instrumented executions, the uninstrumented executions do not have markers or 
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timestamps. Thus, we cannot directly annotate or identify which signal snippet corresponds to 

which code segment. Instead, we compare uninstrumented execution with the instrumented 

execution to identify and demarcate the marker-to-marker code segments in the signal. We call 

these demarcations “virtual markers” as they play the same role as the marker functions, albeit, 

without adding any overhead code or altering the original program or its signal emanation patterns. 

Virtual Marker Annotation: In the instrumented execution, code segments are separated 

by marker functions. Each marker function execution records a pair of information m and t, where 

m represents the marker ID that indicates the execution point in the CFG, and t is the execution 

timestamp. We then convert the timestamp t to its equivalent sample-index n (using equation 13). 

If the program executes k marker-to- marker code-segments, the instrumented execution records a 

sequence of k + 1 markers (including the starting and the ending markers). Thus, instrumented 

execution outputs a maker ID sequence  and corresponding sample-

index sequence , with M uniquely identifying the program execution path, 

and N indicating which signal snippet corresponds to which code segment. Thus, the task of virtual 

marker annotation is to generate marker ID sequence  and sample-index sequence  for the 

uninsrumented training signal, without actually using instrumentation or marker functions. To 

annotate the virtual markers, we execute the instrumented and the uninstrumented programs with 

the same input. Thus, the executions follow identical paths through CFG (i.e., execute the same 

marker-to-marker code segments in exact same order). This ensures the marker ID sequence is 
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identical for instrumented and uninstrumented executions (i.e., ). However, due to the 

overhead computations (i.e., marker functions), the timestamps or sample-indices for the virtual 

markers are significantly different (i.e., ). 

To estimate the virtual marker sample-index sequence , we compare the uninstrumented 

and instrumented EM signals (Figure 25). We notice that the execution of the same code segment 

(e.g., m0-m1-m2) requires more computational time in the instrumented version due to the marker 

function overheads. Thus, we estimate the sample-indices for the virtual markers by adjusting for 

the overhead computational time using the following equation 

 (14) 

Here,  and  indicate the sample-indices for the (i-1)-th and i-th virtual marker in 

the uninstrumented signal,  and  indicate the sample-indices for the (i-1)-th and i-th 

marker in the instrumented signal, and noh is the overhead computational time (in samples) for the 

marker function execution. Thus, ( ) is the overheadsubtracted execution time 

for the i-th code segment. Note that, sample-index  (indicating the starting point of the 

program), and we iteratively estimate . 
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While Equation 14 gives a good initial estimation for the virtual marker annotation, it does 

not account for the execution-to-execution hardware variabilities such as cache hits or misses that 

may lead to variabilities in computational time. To mitigate this issue, we fine-tune the initial 

sample index estimations by matching uninstrumented signal with its instrumented counterpart. 

First, we identify the signal snippet corresponding to a given code segment in the 

instrumented signal using its timestamps. 

Let x(n) be the instrumented signal with n indicating its sample-index. Thus, the signal 

snippet between sample index  and  corresponds to the i-th code segment (i.e., 

the subpath between markers ). We then exclude or crop-out the first noh samples 

from this signal snippet as they correspond to the marker function not the original code segment. 

In Figure 25, the dotted lines indicate the correspondence between the uninstrumented and 

instrumented signals. Thus, this overhead-subtracted signal snippet acts as the EM signature 

or template for the code segment. We search for this signal template by sliding it across the 

uninstrumented signal . We limit our search within samples of the initial estimations 

(i.e., between sample-index ). This makes the search 

computationally efficient, and also helps to avoid false signal matches. At each search position, 

we compute the Euclidean distance between the template and the uninstrumented signal. We then 

choose least Euclidean distance match for updating the initial estimations 
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   (15) 

 

 

Figure 27 EM signals corresponding to the uninstrumented (top) and the instrumented 

(bottom) program executions. The dotted lines indicate the correspondence between the 

uninstrumented and the instrumented signal 
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Here,  is the Euclidean distance between the template  and the uninstrumented 

signal , and l indicates the shift from the initial estimated . Thus, l is the shift 

corresponding to the best match. Finally, we update initial estimated using the following 

equation 

      (16) 

This iterative process is depicted in Algorithm 1. 

 

3.5.4 Program Execution Monitoring 

To reconstruct the program execution path, TESLA compares the device’s EM emanation 

with the (uninstrumented) training signals and predicts the control-flow execution path. The path 

prediction involves two steps. In step 1, we match the monitored signal with the training signals 
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to establish a signal correspondence. In step 2, we exploit this signal correspondence to predict 

program execution path by using the training signal annotations (i.e., the virtual markers). We 

discuss these steps with further details in the following paragraphs. 

Signal Matching: To establish signal correspondence, we match fixed-length windows 

from the monitored signal against the training signals, and then adjust the window-size according 

to the signal similarities. The signal matching process is demonstrated in Figure 26. First, we 

extract a fixed-length initial window W of size L from the monitored signal. We then slide W 

across all training signals to find the best (i.e., the least Euclidean distance) match. This establishes 

a window-to-window signal correspondence (shown with a dashed arrow in Figure 26). Next, we 

compare the samples that follow these windows. In Figure 26, the initial window and its 

subsequent samples are overlaid on the matched window and its subsequent samples using red 

dots. We then iteratively extend the signal correspondence as long as the overlaid monitored signal 

is similar to the underlying training signal. Specifically, in each iteration, we compare the D 

subsequent samples and compute the sample-to-sample squared difference. If the mean squared 

difference is below a predefined threshold , we update the matched window size: L = L + D, 

and keep comparing the next D samples. Otherwise, we terminate the window extension process. 

We then again extract the next unmatched window from the monitored signal, match it across all 

training signals, and adjust the window-size. This process goes on until we establish signal 

correspondence for the entire monitored signal. 
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Figure 28 Signal matching process: dashed arrow indicates the correspondence between 

fixed-length windows in monitored and training signals. Window size is extended based on signal 

similarities, up to the point where the training signal (blue line) starts to deviate significantly from 

the monitored signal (overlaid red dots). 

This approach for signal matching is computationally more efficient than that of multiscale 

signal matching, in which multiple windows of different sizes are simultaneously matched against 

the training signals. In contrast, we initiate the search using a small fixed-sized window, and then 

gradually extend the window size. Furthermore, the time complexity for the window search is 

directly proportional to the window size L. Thus, smaller window leads to faster search. However, 

if the window is too small, the match becomes unreliable. Therefore, in our experiments, we 



79 

Approved for public release; Distribution is unlimited. 

 

choose L = 64. In addition, smaller values for D enable finer adjustment of the window size. 

However, too small a value for D may lead to early termination of the window extension due to a 

few noisy samples. In our experiments, we use D = 8. 

Path Reconstruction: We next exploit the correspondence between the monitored and the 

training signals to reconstruct the execution path. Figure 27 demonstrates the path reconstruction 

process with a simplified example. On the left (Figure 27a), we have the program CFG where the 

nodes represent the markers and the edges represent the marker-to-marker subpaths. The training 

signals and the monitored signal are shown on the right (Figure 27b). The (virtual) markers are 

annotated on the training signals with vertical black lines, and indicate that training signal 1 

corresponds the program path , while training signal 2 

corresponds to . Note that, for this simple CFG, these two training 

executions are sufficient to provide coverage for all marker-to-marker subpaths (i.e., edges on the 

graph). However, most applications often require a large number of executions (e.g., hundreds or 

even thousands) for high code coverage. 

Furthermore, we indicate the correspondence between the monitored and the training 

signals using color-matched windows and dashed arrows. For instance, the red windows in the 

training and the monitored signals demonstrate similar signal patterns, and so do the green 

windows. This signal correspondence enables us to reconstruct the monitored signal by 

concatenating matched-windows (e.g., red and green windows) from different training signals. 
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More importantly, the signal similarity or correspondence implies that the matched windows 

correspond to the same program subpath. Thus, we reconstruct the program execution path for the 

monitored signal by concatenating the program subpaths corresponding to the matched training 

windows. For instance, the red window (in training signal 1) corresponds to the program subpath 

, and the green window (in training signal 2) corresponds to the program 

subpath . Therefore, we concatenate these subpaths to reconstruct the execution 

path. In Figure 27, the reconstructed execution path ( ) is indicated 

with dashed vertical lines. 

 

 

Figure 29 Execution path reconstruction exploiting signal correspondence between training 

and test signals 
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3.6 Task 6 Single Instruction Tracking 

To enable instruction-level tracking when noise is present, we propose a new framework: 

PITEM (Permutations-based Instruction Tracking via Electromagnetic Side-channel Signal 

Analysis)  [24]. This framework consists of two major steps: 1) identifying groups of instructions 

that are referred to as instruction types that have similar EM signatures, 2) tracking all possible 

orderings, i.e. permutations, of these instruction types and therefore, monitoring program flow at 

instruction type granularity. By generating all possible permutations of the instruction types, we 

generate instruction sequences systematically and the EM signatures for the sequences address the 

pipeline effect to a great extend as they represent the overall EM emanations for longer periods of 

time. Also, this method is not limited to devices with lower clock frequencies. Therefore, this 

framework is applicable in program activity tracking applications even for devices with complex 

processor architectures and higher clock frequencies. 

Furthermore, this framework can be used in finer granularity malware detection 

applications. By using the permutations as reference signals, modifications that are made at 

instruction level can be resolved. In applications where the program is expected to execute one of 

the allowable instruction sequences, this technique can determine any unexpected instruction 

executions and resolve at what point the modification has been made. Note that, unlike EDDIE 

[10] and Remote [12], this method does not rely on per-iteration time of loops and it can detect the 

changes when the ordering of the instructions are changed. The malware detection performance of 
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PITEM is not tested on a real-life malware application, but the ability to resolve different orderings 

of instructions indicates its potential to finer-granularity malware detection application extension. 

To show the feasibility of the proposed method, we perform testing on two devices with 

different architectures and operating clock frequencies. These devices are Intel’s DE1 Altera 

FPGA Board with Altera NIOS-II (soft) processor [25], and A13-OLinuXino with ARM Cortex 

A8 processor [26], operating at 50 MHz and 1 GHz clock frequencies, respectively. The results 

are reported for different experimental setups. We note that single execution of the permutations 

of the instruction types can be detected with as high as 92.8% accuracy. As the number of 

successive executions of the permutations increase, the detection accuracy also increases to as high 

as 100%. We also test the performance of the proposed method with different signal-to-noise ratio 

(SNR) levels. We note that the system performance is stable for SNR levels higher than 15 dB. 

Finally, we test the limits of the system by tracking permutations of instructions from the same 

instruction type. As expected, the detection performance for single execution of the permutation 

is very low, but it increases significantly (to as high as 92.4% and 98%) when the permutation is 

repeated. 

3.6.1 Determining Instruction Types by Using EM Side-Channels 

The proposed methodology is based on analyzing EM side-channel signals. As mentioned 

earlier, EM side-channels are created as a by-product of fast switching currents flowing through 

transistors during program execution. Therefore, the execution of certain instructions generates 
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distinct EM signatures. In this section, we describe the procedure to identify these instructions and 

call them instruction types. Since different architectures are implemented differently on micro-

architecture level, these instruction types differ for different architectures. Fig. 28 presents an 

outline of the procedure step by step. These steps are explained in detail in the following sections. 

 

Figure 30 Flowchart of determining instruction types. 

3.6.2 Generating List of Instructions Under Investigation 

This step includes examining the available instruction set for the given processor and 

selecting the desired and applicable instructions to investigate. The applicability of the instructions 

is based on the micro-architecture of the processor. 
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3.6.3 Generating Micro-benchmarks for Instructions 

After instruction selection, we generate a microbenchmark for each instruction whose 

pseudo-code is given in Fig. 29. One should note that this work uses an instrumented measurement 

setup where an input/output (I/O) pin is set to high voltage before the code under observation and 

reset to low voltage after the code under observation finishes. Therefore, the input/output pin signal 

is used to find the starting and ending points of the region of interest.  

For most processors, the EM signature difference caused by a single instruction does not 

generate a distinct variation, therefore, the instruction under interest is repeated N times to magnify 

the EM signature. Note that this repetition is realistic because the pesudo-code structure is only 

used in determining instruction types step and it is not utilized in any testing scheme. The starting 

and ending markers are preceded and succeeded by two empty loops, respectively. This for-loop 

structure allows for a fair comparison since they make sure that the same instructions are pipelined 

before and after all instructions under interests. 
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Figure 31 Pseudo-code for instruction type detection setup 

3.6.4 Implementing the Codes and Recording EM Emanations 

After microbenchmark implementation, EM emanation measurements are performed. The 

measurement includes two synchronized channels: 1) EM emanation signal, 2) I/O pin signal. For 

better localization, a near-field antenna with proper antenna gain and size should be utilized. The 

choice of the antenna size is based on their ability to capture relevant EM emanations from the 

processor and reject the interference from other parts of the device. 

 

3.6.5 Data Processing to Obtain EM Signatures 
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In this step, the recorded EM emanation and I/O signals are processed to obtain EM 

signatures of each instruction. Fig. 30 presents an overview of data processing flow. First, the input 

I/O signal is filtered with a moving median filter to overcome overshooting. Then, the signal is 

normalized to account for possible DC offset. Next, the amplitude values are quantized to their 

binary representations by using a 3 dB threshold. The binary stream of data is smoothed by 

removing outliers and the starting and ending points are determined. 

The input EM signal contains unintentional EM emanations hat are amplitude modulated 

(AM) to the periodic signals present on the board [22]. Among these modulations, the one around 

the first harmonic of the operating clock frequency is the strongest and the most informative. 

Therefore, the input EM signal is firstly down-converted with clock frequency, and then, low-pass 

filtered to reject interference from other modulating periodic signals and reduce the measurement 

noise at higher frequencies. Since the modulation around the clock frequency is not necessarily 

conjugate symmetric in the frequency domain, the resulting signal can be complex-valued. The 

amplitude of this complex-valued signal contains the shape information whereas the phase carries 

relative time shift information. Since our objective is to determine the shape, we proceed the data 

processing by only keeping the magnitude. Finally, the processed EM signal is cropped into chunks 

by using the cropping points obtained from input I/O signal, and the EM signatures are generated. 

Note that these signatures represent the EM waveforms generated from the repetition of 

instructions N times. 
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Figure 32 Flowchart of data processing 

3.6.6 Generating Correlation Matrix 

In this part, we generate a correlation matrix that represents the similarity between the 

generated EM signatures. The degree of (dis)similarity between two time domain signals can be 

measured in several ways: L1 norm, L2 norm, and cross-correlation etc. The power consumed by 

the devices fluctuates during run-time and this creates a DC offset in the measured EM emanations. 

Since L1 norm and L2 norm measure the sum of point-wise distances, it is an error-prone measure 

in the presence of DC offsets. Therefore, these distance measures are not suitable without 

normalization. On the other hand, cross-correlation measures the similarity of the waveforms, 
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which is a suitable similarity metric for our purposes. Note that the execution of some instructions 

take longer than the others and the corresponding EM signatures are longer in length. To account 

for different EM signature lengths, while correlating two signals, the correlation is performed by 

sweeping the longer waveform with the shorter one and the highest correlation is denoted as the 

cross-correlation of these two waveforms. Cross-correlation is performed for all EM signature 

pairs to generate the correlation matrix. 

3.6.7 Identifying Instruction Type 

The objective of this step is to find the groups of instructions that have similar EM 

signatures. We refer to these distinct groups that have similar EM signatures as instruction types. 

The correlation matrix of the EM signatures shows how much the signatures are correlating with 

each other. A subjective method to find the instruction types from the correlation matrix is visual 

inspection. However, this approach is prone to misclassifications due to its subjective nature. As 

an objective method, we propose to utilize hierarchical (agglomerative) clustering. This clustering 

technique is a bottom-up algorithm that starts with treating each sample as a separate cluster and 

merges these clusters pair-wise until all samples are merged into a single cluster [27]. As the 

clusters are successively merged, a cluster tree (dendrogram), which is sequence of clusterings that 

partition the dataset, is generated [28]. Unlike other clustering algorithms such as K-means, this 

method does not require a random centroid initialization or a prior cluster number. This is 

especially useful in our application since we do not have an apriori knowledge on the number of 
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instruction types. We can decide for the number of clusters by observing the dendrogram. The 

main disadvantage of this algorithm is its large time complexity (O(N2 log(N))), and space 

complexity (O(N2)). Since the number of instructions under investigation is typically not a large 

number, the dataset size is relatively small, therefore, the time and space costs are affordable. The 

output of the correlation matrix presents the similarity measure between the signatures. However, 

hierarchical clustering is based on the (dis)similarities between samples. Therefore, by using [29], 

we convert the cross-correlation values, , to distance values, d, as follows, 

     (17) 

3.6.8 Detecting Permutations of Instruction Types 

This section explains a systematic way of tracking the execution of instruction types. In 

previous sections, instruction types are identified by repeating the same instruction for several 

times and clustering them based on the similarity of their EM signatures. Next step is to detect 

these instruction types in a testing scenario. The most straightforward way to do so is to find the 

EM signature of the instruction types when they are executed once instead of N times, and use 

these signatures as dictionary while testing. However, this approach has two major drawbacks: 

1. Most processors implement pipeline architecture where the execution of the instructions is 

divided into different stages. This allows for overlapping executions of consecutive 

instructions at different stages. Since all these stages utilize transistor switching activity 
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during their operation, all stages behave as an EM emanation source. Therefore, the measured 

EM emanation by the antenna is a combination of the EM waves radiated from different 

stages. Due to the lack of a complex model to decouple these combinations, it is not possible 

to isolate the EM signature of a given instruction. 

2. The variation created by the execution of a single instruction is generally not very strong. 

Hence, the EM signatures for different instructions are very similar to each other, which 

consequently leads to the inability of tracking these instructions. 

Previous work in literature suggests to generate EM signatures for instruction sequences 

rather than single instructions and reports high self-correlation and low cross-correlation values 

for several instruction sequences to show the applicability of the proposed system [19]. However, 

the instruction sequences used in this work are relatively long and the choice of these instruction 

sequences is not systematic. 

Instructions in a program appear in different orders. We propose to generate the sequences 

in a systematic way by generating all possible orderings of the instruction types. In other words, 

we propose to generate EM signatures for all permutations of the instruction types and track these 

permutations. Note that this approach addresses the aforementioned problems for the following 

reasons. 

1. By generating EM signatures for the permutations, we observe the overall effect of the 

permutation block. Certain interactions caused by different orderings of these 
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instructions and the impact of the pipeline are embedded into the EM signature. 

Although it is not possible to isolate the impact generated by each of these instructions, 

we obtain an EM signature that covers their aggregate impact. 

2. By using permutations instead of single instructions, the EM emanation variation 

becomes stronger and the length of the EM signature waveform gets larger. Hence, we 

obtain a more informative signal that enhances the testing accuracy. 

One should keep in mind that inclusion of permutations is very helpful to address the 

pipeline effect but there are a few issues that cannot be addressed with this scheme: 

• The EM signature still experiences the pipeline impact in the beginning and at the end 

due to the instructions that come before and after the permutation, respectively. 

• For some processors, the pipeline length might be longer than the length of the 

permutation, and this limits the capability of the permutation to represent the emanation 

coming from all pipeline stages. 

Finally, note that the number of the permutations is given by K!, where K is the number of 

clusters or instruction types that are obtained in Section 2.6.7. For large K, the number of 

permutations becomes a large number which leads to a costly measurement and large memory 

usage. Therefore, the choice of K from the cluster tree should be made carefully. 
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The steps of detecting permutations of instruction types are explained step-by-step as 

follows. 

3.6.9 Picking an Instruction to Represent Each Instruction Type 

Since the instructions from the same instruction type have similar EM signatures, one 

instruction from each type is chosen to represent their types. Instruction types are labelled with the 

first K capital letters of the alphabet. 

 

 

 

3.6.10 Generating Microbenchmarks for Permutations 

As mentioned earlier, with K clusters, we need to generate K! benchmarks that include all 

permutations. For example, if there are 4 identified instruction types (A, B, C and D), the 

permutations should include: ABCD, ABDC, …, DCBA.  

Execution of most programs and embedded systems go through loops during the operation. 

These loops include execution of the same instruction sequences several times. Furthermore, 

program spends most of the execution time in functions that are called many times successively. 

Considering this repetition-based nature of the most programs, we propose to investigate the 
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impact of repetition of instruction blocks on the tracking performance. In particular, we create EM 

signatures for different repetitions of the same instruction block. For ease of reference, we use the 

notation (ABCD)N, where (ABCD) is the investigated permutation block, and N is the number of 

permutation block repetition. Note that the ultimate goal is to track permutation blocks with N = 

1. However, due to the repetitive structure of code implementations, N could be different than 1.

For example, a certain permutation might appear within a loop that is repeated several times and 

this apriori knowledge can be used to improve tracking performance. The pseudo-code for the new 

microbenchmark structure is shown in Fig. 31. 

Figure 33 Pseudo-code for permutation detection setup. 

3.6.11 Implementing Code and Recording EM Emanations 
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After implementing the pseudo-codes, EM emanations from the device is measured. Two 

measurements are taken for each microbenchmark at different times. The waveforms obtained in 

the first measurement are used for training, whereas the second measurement waveforms are used 

for testing. 

3.6.12 Training: Generating Templates for Each Permutation 

In this part, we generate templates for each permutation and these templates are used in the 

testing phase for prediction. A general overview of training can be found in the left hand part of 

Fig. 32. Several EM signature traces are obtained for each permutation from Measurement 1 

recordings. These traces from the same permutation are aligned using cross-correlation. Then, they 

are cropped so that all of them have the same length. Finally, the EM template for the 

corresponding permutation is generated by using the point-wise average of the aligned and cropped 

EM signature traces. 
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3.6.13 Testing: Predicting Instruction Sequences Using Templates 

A general overview of testing can be found in the right hand part of Fig. 32. Testing traces 

are labeled with their permutation order. The prediction step implements a matched filter-like 

structure where the filters are the normalized versions of EM templates. We use such a structure 

because matched filter is the optimum receiver in terms of maximizing the signal-to-noise ratio 

(SNR) when the received signal is corrupted by additive random noise. Another advantage of such 

a structure is that the matched filter finds the best offset between the received signal and the 

templates on its own without requiring synchronization. After correlating the testing trace with all 

filters, the permutation of the trace is predicted as the template whose corresponding filter gives 

the highest correlation. 

 

Figure 34 Overview of training and testing  
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4.0 RESULTS AND DISCUSSION 

4.1 Task 1.1 - Results 

Figure 34 (a) shows the reflection coefficient vs. frequency with lower disc radius, a, as 

parameter. With an increase in radius, the resonances shift to lower values. Furthermore, Figure 

34 (b) shows less coupling between two resonances due to smaller loop sizes in the smith chart, 

which increases with the disc radius. When the disc radius is 205 mm, the impedance is matched 

for the band. Slot length, l, for this case is 113 mm, which is also the selected length for the 

fabrication.    

  

 (a)  (b) 

Figure 35 (a) Reflection coefficient vs. frequency and (b) Impedance loci variation with 
lower disc radius a as parameter 
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The simulated radiation patterns in the E & H-plane for four frequencies in the band of 

interest are shown in Figure 35 (a) and (b). The peak gain is above 18 dBi in the whole frequency 

band with a maximum value of 19.1 dBi at 1.03 GHz. The maximum cross polarization level in 

H-plane is ~ 20 dB below the main lobe in the entire frequency band. We observe in the 

simulations that with the increase in frequency, the H-plane sidelobe increases from -10.2 dB at 

1.01 GHz to -7.7 dB at 1.04 GHz. This is because at the higher frequencies of the band the array 

spacing becomes larger and hence results in increased SLL. In the E-plane, the beam is shifted 2° 

from the maximum at 1.03 GHz. 

The antenna geometry shown in the Figure 2 was designed, fabricated and tested. The 

center frequency of the designed antenna is 1.03 GHz. A square aluminum sheet of dimension 1.04 

m was used as a ground plane. The individual discs have the radius of 20.5 cm with the slot length 

and width of 11.3 cm and 1 cm respectively. Each of them is fabricated using aluminum sheet of 

thickness 2 mm. The center disc is suspended at 5 mm above the ground plane while the other four 

are at 10 mm above the ground plane. The center disc is directly fed by a 50 Ohm coaxial probe, 

which is placed at 50 mm away from the center. The fabricated antenna picture is shown in Figure 

36. 
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                                                     (a) (b) 

 

Figure 36 Radiation pattern over the band for the antenna geometry shown in Fig. 2 at (a) 
E-plane, (b) H-plane 

4.1.1 Antenna Fabrication and Measurements 

Each disc is suspended using four Teflon screws. Modal electric field distribution of the 

𝑇𝑇𝑇𝑇12 mode is used to determine the position of screws. To explain this, Figure 37 shows the 

simulated electric field |𝐸𝐸𝑧𝑧| inside the cavity vs. normalized radius, for a single unloaded and slot 

loaded disc. The |𝐸𝐸𝑧𝑧| of unloaded (UL) disc follows the first order Bessel function 𝐽𝐽1(𝑘𝑘𝑘𝑘). For UL 

case, the electric field null is at ~ 0.7a. We have observed that slot loading does not have significant 

effect on the position of electric field null as shown in Figure 37 (a). Compared to the fundamental 

mode, this property is an added advantage of  𝑇𝑇𝑇𝑇12 mode since nulls in electric field allow us to 

suspend the patch on the air and hence eliminate the need for the substrate.   

       1.01GHz          1.02GHz         1.03GHz        
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 (a)                                                   (b) 

Figure 37 Fabricated antenna (a) front view (b) side view 

  

 (a) (b) 

Figure 38 (a) Simulated cavity electric field vs normalized radius (𝝆𝝆/𝒂𝒂) for unloaded and 
slotted disc operating in TM12 mode (b) Comparison of simulated and measured S11 as a 

function of frequency 

Figure 37 (b) shows the simulated and measured reflection coefficient for the antenna 

shown. The difference between the measured and the simulated resonant frequencies is less than 

1%. The measured 𝑆𝑆11 ≤ −6 dB bandwidth is 6.7% or 70 MHz. It covers the required bandwidth 

for the side channel EM detection (shown later in section 3.5).  Figure 38 (a) & (b) shows the 
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mounted antenna picture and the measurement set up to measure the near field and far field patterns 

of the proposed antenna. The proposed antenna is used as a receiving antenna while the 

transmitting antenna is a standard broadband double ridge waveguide horn shown in the Figure 38 

(b). A digital protractor was used to measure the angle of rotation. The antenna patterns both near 

field and far field were measured at the roof top of Tech Square Research Building at Georgia 

Institute of Technology. The measurements were done for 3m, 5m (near field) and 15 m (far field) 

distance. The antennas were mounted at the height of 3.5 m above the ground. In the far field 

measurements, to reduce the specular ground reflections from the transmitting horn, the absorbers 

were used in the middle region of the measurement set up.  

 

                   

                                                              (a)                                                     (b) 

Figure 39 Pictures of antenna measurements (a) mounted antenna (b) measurement setup 
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Figure 40 Simulated and measured radiation patterns in E and H-plane (a) & (b) 
1.01GHz, (c) & (d) 1.02GHz, (e) & (f) 1.03GHz, (g) & (h) 1.04GHz (i) Comparison of simulated 

and measured realized gain as a function of frequency 

 

Figure 41 Comparison of simulated and measured realized gain as a function of 
frequency 



102 

Approved for public release; Distribution is unlimited. 

 

 

 

 

Figure 42 Near field relative power patterns at 3m and 5m distances from the antenna 
aperture, (a) & (b) 1.01GHz, (c) & (d) 1.02GHz, (e) & (f) 1.03GHz, (g) & (h) 1.04GHz 

Figure 39 (a) - (h) shows the measured E & H-plane radiation patterns of the antenna, for 

the various frequencies in the band. The measured radiation patterns match well with the simulated 

ones. In the measured E-plane pattern at 1.03 GHz, the beam is shifted by 3° as compared to 2° in 

the simulations. The measured cross-polarization is less than -21 dB and -19 dB, for the entire 

band in the E and H-plane respectively. In Fig. 38, the simulated cross-polarization in the E-plane 

are less than -40 dB also shown in Figure 34. Figure 40 shows the simulated and measured realized 

gain as a function of frequency for the fabricated antenna. For planar directive antennas, the peak 

gain and gain pattern measurements are conveniently conducted in the antenna measurement 

ranges. However, since we do not have access to antenna measurement ranges, we have verified 

the peak gain of the antenna by using the conventional gain transfer method [30], using standard 

horn. The measured gain matches well with the simulated one. Peak measured value is 19.2 dBi 
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as compared to 19.1dBi in the simulations. The measured value is higher due to the ripples in the 

gain measurements, which are ~ 1.2 dB and are caused by the standing wave patterns in front of 

the aperture due to reflections.   

Figure 41 shows the near field patterns of the antenna at 3 and 5m distances from the antenna 

aperture. Both the distances are in the radiating near field region of the antenna. The measured 

power pattern matches well with the simulated patterns. The measured maximum sidelobe level at 

3 and 5m are -6.1dB and -6.6 dB respectively. It is observed that between 1.01 to 1.04 GHz, the 

maximum sidelobe level changes by ~ 3 dB, for both 3 m and 5 m distances. The antenna is used 

to receive the fields from the board processor at those distances as presented in the next section.   

4.1.2 SNR Measurements and Malware Detection 

The proposed antenna was used to measure the radiated emissions from the various 

embedded systems and Internet-of-Things (IoT) boards, at various distances under two conditions: 

direct Line of Sight (LoS) and Non-Line of Sight (NLoS). These IoT boards typically consist of 

an ARM processor, a Flash memory, and a set of peripherals (e.g., WiFi modules, etc.). IoT boards 

are typically used for controlling a variety of tasks in factory lines, hospitals, critical 

infrastructures, etc. Recently, there have been a growing interest in attacking these devices since 

both the number and importance of them are growing rapidly. Monitoring these devices using the 

EM side channel signals generated by them is one of the ways to improve the security of IoTs 
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against cyber-attacks. Collecting stronger EM signals will improve the accuracy of the malware 

detector and that is the main goal of designing our proposed antenna.  

4.1.3 Line of Sight (LoS) Measurements  

Here, we will first describe the direct LoS measurements for the IoT board shown in Figure 

42 in detail. Figure 42 (a) shows a diagram of the measurement setup and Figure 42 (b) shows the 

photo of the measurement setup where the proposed antenna is measuring the EM signal from an 

IoT device named Olimex [26] which has an ARM processor and runs a Linux operating system. 

The signal power measurements, using a spectrum analyzer (Agilent N9020A), were conducted at 

various distances between 1-5 m from the device. For each distance, two measurements were 

collected and the corresponding Signal to Noise Ratio (SNR) was calculated. Since it is not 

straightforward to estimate SNR for emanations from the electronic devices, we have conducted 

additional experiments to estimate SNR as described below.   

In the first set of measurements the objective is to estimate total emanated power, S, 

received when the board is on and running the program activity of interest. In the second set of 

measurements, the objective is to estimate the noise spectral power, N, received when the board is 

on but there is no application running (idle mode). The noise power here includes thermal 

(𝑁𝑁𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎) noise as well as emanations coming from the board itself (𝑁𝑁𝑏𝑏𝑏𝑏𝑎𝑎𝑒𝑒𝑏𝑏) that are not related 

to the program activity. SNR is then calculated as:  
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 𝑆𝑆𝑁𝑁𝑆𝑆 (𝑑𝑑𝑑𝑑)  =  𝑆𝑆 (𝑑𝑑𝑑𝑑) –  𝑁𝑁 (𝑑𝑑𝑑𝑑)                 (18) 

 SNR =
𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑃𝑃𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒+𝑁𝑁𝑒𝑒ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑖𝑖
      (19) 

where, 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 ∝
𝑃𝑃𝑒𝑒
𝑒𝑒2

  is the power received when the processor is executing the code, 

while 𝑃𝑃𝑎𝑎  is the power at the input. 𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 is the power received when the processor is turned on but 

not executing a code. This part carries no useful information, and acts as a source of noise. 

𝑁𝑁𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎 is the thermal noise, independent of distance. 

  

 (a) (b) 

Figure 43 SNR Measurements for an IoT (Olimex) board: (a) Block diagram of set up (b) 
Set up picture that shows the antenna (on the right side) and the board (on the left side). 

The proposed antenna is used to receive electromagnetic radiation coming from the board’s 

processor. The objective is to find the possible malicious activities by analyzing the program 

execution through EM emanations. The main idea behind the malware detection method is that 

since there is a correlation between the program activities and the generated EM signals, executing 
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a certain application will generate unique and distinguishable signatures in the EM signal. Thus, 

by collecting these EM signals for each application and extracting the signatures, a reference model 

for each application can be built. Then during monitoring, if an attacker changes the application’s 

code, this will result in generating different EM signals that no longer match with the model and 

hence can be detected. Further details can be found in [10], [11]. 

The signature extraction is based on the premise that a program spends most of its time 

executing some repetitive code (e.g., loops) which results in prominent peaks appearing in the 

spectrum separated by Δ𝑓𝑓 = 1
𝑇𝑇� , where T is the duration of a single loop iteration. In addition of 

base-band signal where these loops can be observed, they can also be observed as a modulated 

signal around the processor clock frequency (in our case 1 GHz), which is the signal we are 

observing. Measured power spectrum at the distances of 3 m and 5 m are shown in Figure 43 (a) 

and (b) respectively.  From Figure 43 (a), we can observe that the strong spectral lines are 

amplitude modulated by a clock frequency (which acts as a carrier) of 1.008 GHz, which is 

significantly stronger than everything else. Each of the labeled harmonics are approximately 1.95 

MHz apart from one another, which indicates that each iteration of the loop in the code takes about 

514 𝑒𝑒𝑛𝑛. Since the board has many activities going on at once, it creates some other signals that are 

not related to the code that is being run on the processor. An example of this is marked as undesired 

signal in Figure 43 (a).  
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Figure 44 (a) shows the measured SNR for various distances in comparison with the SNR 

obtained by a theoretical model defined in (19). The theoretical fit agrees well with the measured 

SNR.      

                         

  

  

  (a)  (b) 

Figure 44 Measured signal power while code is executing at various distances (a) 3 m 
and (b) 5 m 

To explain the measured SNR, with the theoretical model, the noise observed in the 

measurements is assumed to be created by two sources: thermal noise and the noise generated by 

the board itself. Since the processor is not intended to function as a transmitter, only a part of the 

total radiation coming out of the board carries meaningful information. This undesired part of the 

radiation lowers the quality of the signal. Since this part of the signal is radiated from the board, it 

gets weaker by a factor of 𝑟𝑟2 , whereas the thermal noise is constant, as pointed out in (19). For 



108 

Approved for public release; Distribution is unlimited. 

 

this reason; at smaller distances 𝑃𝑃𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 is more significant, at larger distances 𝑁𝑁𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑎𝑎 is more 

significant, and at intermediate distances the SNR trend is neither constant nor 𝑟𝑟2. 

SNR fit is given as: 

                       𝑆𝑆𝑁𝑁𝑆𝑆𝑓𝑓𝑒𝑒𝑒𝑒 =
𝑒𝑒
𝑟𝑟2
𝑏𝑏
𝑟𝑟2+𝑒𝑒

                        (20)  

 

                          𝑆𝑆𝑁𝑁𝑆𝑆𝑓𝑓𝑓𝑓𝑎𝑎−1 = 𝑏𝑏
𝑎𝑎

+ 𝑐𝑐
𝑎𝑎
𝑟𝑟2                   (21) 

 

It can be seen that 𝑆𝑆𝑁𝑁𝑆𝑆𝑓𝑓𝑓𝑓𝑎𝑎−1 is a linear function of 𝑟𝑟2 and the data points were fitted using 

linear least squares method. The multiplicative inverse was taken of the resulting line, which fitted 

the data very well.  
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(a) (b) 

Figure 45 (a) Measured SNR vs. distance in comparison with the theoretical model fit (b) 
Measured normalized SNR vs offset distance from the LoS (SNR = 1 corresponds to LoS) 

4.1.4 Non-LoS Measurements 

As mentioned earlier, the proposed antenna is designed so that it can be hanged on the wall 

and received the EM signals from electronic devices that are active in a room. In this scenario, not 

all the monitored devices would be in the LoS but the antenna should still be able to monitor them. 

In order to use the EM signals for malware detection, the spectral peaks (as shown in Figure 43) 

should at least be 1 dB higher than the noise floor. In other words, in order to be able to monitor 

non-LoS devices, the receiving signal should have peaks with at least 1dB higher than the noise 

floor.   
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 To evaluate the effectiveness of our design, we repeat the measurement in Figure 

42 this time with moving the board toward up-down and/or left-right directions from the center of 

the antenna with the step of 10 cm. All measurements are done while the center of the board is 3 

m away from the center of the antenna. For each step (i.e., different distances from the center of 

antenna while being 3m away from it), we measure the SNR for the receiving EM signal. Figure 

43 (b) shows the results for the weakest peak in the test application.   

 As shown in the Figure 43 (b), the antenna can receive EM signals with only 30% 

decrease in SNR while being 1 m away from the center of the antenna. However, our measurements 

show that beyond 1m, the SNR decreases dramatically. This is due to directive beam in both E and 

H-plane.  

4.1.5 Malware Detection 

Finally, to illustrate how well the proposed antenna works in the system for malware 

detection, we use the antenna to receive EM signals while we are running several standard 

embedded systems applications such SHA, Djikstra’s path-finding algorithm, QSort, CRC32, and 

FFT from a standard benchmark called MiBench. We also implement two real attacks: one a 

Distributed Denial-of-Service (DDoS) attack, and the other a Ransomware attack. We run the 

applications first 25 times without having any attack on them (benign), and 25 times with the 

DDoS attack, and 25 times with the Ransomware attack. We then used an algorithm proposed in 

[10] to analyze the receiving EM signals and label each run as either “benign” or “malicious”. We 



111 

Approved for public release; Distribution is unlimited. 

then calculate False Positive Rate as the number of runs that were incorrectly labeled as 

“malicious” divided by the total number of runs. Similarly, True Positive is defined as the number 

of runs that are correctly labeled as “malicious”.  

Our results show that for all the applications while measuring from 3 m, 4 m, and 5 m 

distances, we can perfectly find all the instances of the malware while achieving 0% false positive 

rate which confirms that our designed antenna is suitable for receiving EM signals from such 

devices from >3 m distance. Note that the results in [10] were reported while measuring from 5 

cm distance from the board and collected by a probe. 

4.2 Task 1.2 – Results for Automated Discovery of Sub-Channels 

4.2.1 Experimental Setup 

We have evaluated the algorithm by testing it on spectra from a desktop, a laptop, and a 

smartphone system described in Table II. The signals are recorded using the spectrum analyzer 

(Agilent MXA N9020A). The desktop and laptop measurements are collected with a magnetic 

loop antenna (AOR LA400) at a distance of 30 cm as shown on the left of Figure 44. To receive 

weaker signals from smartphones, EM emanations were recorded using a small loop probe with 

20 turns and a 4 mm radius positioned on top of the cellphone as shown on the right of Figure 44. 

The spectra were measured from 0 to 4 MHz with a resolution bandwidth of 10 Hz. 
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Table III Description of measured devices 

 

 

Figure 46 Measurement setup for laptop or desktop (left) and measurement setup for cell-

phone (right) 

The benchmarks are run at several different alternation frequencies 

 Hz with duty cycles . The 

alternation frequencies were chosen to ensure sufficient separation between sidebands of 

modulated signals, i.e. separation between falt1, falt2, etc. and their harmonics has to be sufficient to 

prevent overlapping. For example, if falt1 = 23 kHz is chosen, frequencies in the vicinity of the 

harmonics of falt1 should be avoided. Aside from this consideration, the choice of falt is arbitrary. 
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We have found that four alternation frequencies are sufficient in the algorithm to identify carrier 

frequencies. To identify if the modulation is AM or FM, we need all five duty cycles. 

The benchmarks were run on the laptop and desktop systems single-threaded Windows 7 

32-bit user mode console applications, and as normal Android applications on the smartphone.

When possible all unrelated programs and activities were disabled, CPU frequency scaling was 

disabled, and screens were turned off. We measured two alternation activities. The first activity 

alternated between a load from DRAM memory and a load from the on-chip L1 cache, which we 

abbreviate as LDM/LDL1. This alternation is useful in exposing modulated carriers related to 

memory activity. The second activity alternated between loads from the on-chip L2 and L1 caches, 

which we abbreviate as LDL2/LDL1. This activity exposes carriers modulated by on-chip activity. 

We tried other instruction pairs (e.g., arithmetic, memory stores, etc.) and found that that all known 

modulated carriers could be found using just these two activities. 

4.2.2 Experimental Results 

We tested three devices described in Table I, with two measurements per device (one for 

LDM/LDL1 and one for LDL2/LDL1). Table II summarizes carrier frequencies found using our 

algorithm, type of modulation, signal to noise ratio (SNR) of the received carrier, and the 

confidence level that the found carrier is correctly identified from a laptop. Here, we define SNR 

as a difference in decibels between Mtrue(f; dj) and Mfalse(f; dj), as defined in equation (6). Our 

algorithm has found one FM carrier and it’s two harmonics with confidence level above 99%. We 



can also observe that SNR for all three FM modulated frequencies is above 10 dB which indicates 

that these carriers are strong and will carry signal to some distance away from the laptop. Our 

algorithm has also found one AM modulated carrier but the observed SNR is only 4 dB, which 

indicates that this is a weak carrier. Please note that our algorithm finds all carriers independently 

and then we check for possible harmonic relationship among found frequencies and if found, we 

report the harmonic order. 

Table IV Carrier frequencies found in laptop 

Table III summarizes carrier frequencies found using our algorithm, type of modulation, 

signal to noise ratio (SNR) of the received carrier, and the confidence level that the found carrier 

is correctly identified from a cell phone. Here, our algorithm has found one AM carrier and its 

second harmonic with confidence level above 99%. The SNR for these two frequencies is above 

20 dB, i.e., they are excellent candidates to carry signal outside of the cellphone. Our algorithm 

has also found two FM modulated carriers, but the observed SNR is only 1 dB, which indicates 

that these are weak carriers. 
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Finally, Table IV summarizes carrier frequencies found using our algorithm, type of 

modulation, signal to noise ratio (SNR) of the received carrier, and the confidence level that the 

found carrier is correctly identified from a desktop. Here, our algorithm has found one AM carrier 

and its 11 harmonics with confidence level above 99%. The SNR for first seven harmonics is above 

10 dB, while SNR for other five harmonics is above 5 dB. Furthermore, we have found one more 

AM carrier and its seven harmonics all with SNR above 10 dB. Finally, we have found one FM 

carrier with SNR of 5 dB. To verify the accuracy of the algorithm, we have visually inspected all 

spectra and confirmed that carriers found by the algorithm exist in the spectrum. From the results, 

it can be observed that there are only 2 or 3 fundamental frequencies and the rest are their 

harmonics. The fundamental frequencies that were reported are all attributable to voltage regulator 

and memory refresh activity on the measured system. For example, in Figure IV we can observe 

that the two strongest sources are voltage regulator (315 kHz) and memory refresh (software 

activity in the system at 511 kHz). The voltage regulator emanations can be reduced by better 

shielding of coils, and the memory refresh can be eliminated by creating different scheduling 

pattern for memory refresh. Alternatively, program code can be changed to avoid power-

fluctuations and memory activity that depends on sensitive information. Please note that carrier 

frequencies can be found at higher frequencies as well (here we have tested only up to 4 MHz). 

Table V Carrier frequencies found in a cell phone 
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They are typically above 500 MHz and belong to processor or memory clock. While our algorithm 

can find these frequencies as well, information about processor and memory clocks is readily 

available. Finding carrier frequencies at lower frequency range is more challenging because there 

is much more noise-like activity in the spectrum and it is difficult to identify information caring 

signals. 

Automatic identification of potential carriers in the system has several benefits. From the 

security prospective, it allows us to quickly identify frequencies of interest for observing RF 

emanations, it allows prediction of distances from which we can expect to receive good quality 

signal (based on observed SNR), and the type of demodulation needed to correctly receive signals. 

From the system designer prospective, finding carrier frequencies helps us identify leaky circuits. 

For example, the unintentional FM and AM carriers found for a desktop and laptop were caused 

by voltage regulators and memory refresh commands. For a cell phone, several carriers were found 

to be caused by voltage regulators. The remainder of the carriers found on the cell phone were 

traced to particular IC packages or modules and were likely caused by either voltage regulators or 

an unknown periodic memory activity. However, smartphones integrate many system components 

into System on Chip (SoC) modules and often use Package on Package (PoP) technology to 

integrate both the processor and memory into the same package and little information is publicly 

available describing these components. More information would be needed to definitively 

determine the circuits and mechanisms modulating these carriers. 
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Table VI Carrier frequencies found in a desktop 

 

4.3 Task 2.1 – Results for Spectral Profiling 

In this section, we evaluate our framework using three set of experiments to show the 

effectiveness of REMOTE to detect different types of attack on variety of devices. In the first set 

of experiments, we use two real-world cyber-physical system (CPS). The first CPS we use is an 

embedded medical device called Syringe-Pump which is a representative of a medical cyber-

physical system. The second system is a PID controller that is used for controlling the temperature 

of a soldering Iron. This type of system could also be used to control the temperature in other 

settings, such as a building or an industrial process, and thus is representative of a large class of 

industrial CPS/IoT systems. 
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For the second set of experiments, we use five applications from an embedded benchmark 

suite called MiBench [16] running on an IoT/embedded device, which are a representative of the 

computation that is needed in that market (e.g., automotive, industrial systems, etc.) 

Finally, for the third part of our evaluations, we chose a robotic arm (LewanSoul LeArm 

6DOF) [31], which is a representative of commonly-used CPS existing in the market. 

4.3.1 Experimental Setup 

The measurement setup is shown in Fig. 45. Depending on the distance, either a hand-made 

magnetic coil or a horn antenna is used to receive EM signals (no amplifier is used). For all 

measurements, we use a cheap (<$30) software defined radio (SDR) receiver (RTL-SDRv3) to 

record the signal. Using this radio, the entire cost for the near-field measurement setup (including 

the radio and a hand-made coil) is only around $35, and for the far-field measurement setup is 

around $100-200 (depending on the antenna). Further cost advantages can be gained if REMOTE 

is used in settings where multiple similar devices (with similar vulnerabilities) are used, so a single 

(or a few) devices can be monitored by REMOTE (especially in far-field scenario), with random 

changes to which specific devices are monitored at any given time. Fig. 46 shows the entire setup 

including the monitored device (Syringe-Pump in this figure) and REMOTE. Note that all of our 

measurements were collected in the presence of other sources of the electromagnetic interface 

(EMI) including an active LCD that was intentionally placed about 15 cm behind the board. A set 
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of TCL scripts are used to control the monitored system and the SDR (to record the signal). The 

entire REMOTE algorithm is implemented on a PC using Matlab2017-b. 

 

Figure 47 The near-field setup (left) consists of a small EM probe or a hand-made 

magnetic probe (not shown) placed 5 cm above the system’s processor. A horn antenna 

placed 1 m away from the board for far-field measurements (right) 

 In all cases, a software-defined radio smaller and lighter than most portable USB 

hard drives, is used to record the signal. 

 



120 

Approved for public release; Distribution is unlimited. 

 

 

Figure 48 Syringe Pump (left) and REMOTE framework (right). In our setup, the signal 

processing unit is implemented on a separate PC. 

4.3.2 File-less Attacks on Cyber-Physical-Systems 

the monitored device (Syringe-Pump in this figure) and REMOTE. Note that all of our 

measurements were collected in the presence of other sources of the electromagnetic interface 

(EMI) including an active LCD that was intentionally placed about 15 cm behind the board. A set 

of TCL scripts are used to control the monitored system and the SDR (to record the signal). The 

entire REMOTE algorithm is implemented on a PC using Matlab2017-b. 

The first part of our evaluations presents the results for two real-world CPS which are 

implemented on four different devices (shown in Table V). To attack these devices, we implement 

two end-to-end file-less attacks namely a code-reuse attack and an APT attack (advanced-

persistent-threat). The first attack we implement in this paper is a Code Reuse [32], [33] attack on 

a medical CPS called Syringe-Pump. Syringe-Pump is a medical device designed to dispense or 
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withdraw a precise amount of fluid, e.g., in hospitals for applying medication at frequent interval 

[34]. The device typically consists of a syringe filled with medicine, an actuator (e.g., stepper 

motor), and a control unit that takes commands (e.g., amount of fluid to dispense/withdraw) and 

produces controls for the stepper motor. The systems must provide a high degree of reliability and 

assurance (typically by using a simple MAC) since imprecise or unwanted dispensing of 

medication, or failure to administer medication when needed can cause significant damage to the 

patient’s health. In our evaluation, we use the Open Source Syringe-Pump from [35]. 

Our code-reuse attack involves overflowing the input buffer in reading the serial input 

function, which normally reads the input, sets a flag to indicate that new input is available, and 

returns. Exploiting this vulnerability, the return address in the stack is overwritten by a chain of 

gadget’s addresses to launch an attack. 

Since the security-critical part of this system is moving the syringe, a desirable goal for an 

attacker is being able to call the MoveSyringe() function, which is responsible for syringe 

movement, at an unwanted time while skipping the input checking part, Delay() function, which 

is responsible to check the authenticity of the command (otherwise the attacker needs to hack into 

the C&C server to send the commands which may not be a feasible task).  



122 

Approved for public release; Distribution is unlimited. 

 

 

Table VII Boards used in this paper to evaluate REMOTE. 

 

We use ROPGadget [36] for finding the proper chain of gadgets to put the address of 

MoveSyringe() in a register and branching to that function (from the readInput() function to skip 

the checking part). After branching to MoveSyringe() and executing it, PC jumps back to the main 

function and resumes normal behaviour of the application. 

Figure 48 shows a spectrogram of the Syringe-Pump application in (top) malware-free run, 

and (bottom) when the CR attack happens. As seen in the figure, the Syringe-Pump application 

has three distinct regions with clearly different EM signatures: printing debug info and reading 

inputs, a delay/checker function which checks the message authenticity (using a simple MAC), 

and an actual movement of the syringe. The major difference between these two figures is the 

reverse order of “Delay” and MoveSyringe() parts in malicious run (bottom). In normal behaviour, 

REMOTE expects to see readInput ! Delay! MoveSyirnge however, in CR attack, since the return 

address of the readInput function is overwritten by the adversary, the code immediately jumpsto 

MoveSyringe() and skips the “Delay” part, thus in the spectrogram, the third region 
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(MoveSyringe()) is seen before “Delay” (bottom), which violates the correct ordering of regions 

and will be reported as “malicious” by REMOTE. 

Our evaluation uses one attack per run in 25 runs with REMOTE successfully detecting 

each of these attacks (see Table VI). We then performed 25 attack-free runs and found that 

REMOTE produced no false positives (see Table VI). To further evaluate our system, we 

performed 1000 malware-free runs and 1000 malicious run on one device (Arduino) for 24 hours. 

For these 2000 runs, REMOTE successfully found all the 1000 instances of malicious run and 

reported 997 out of 1000 malware-free runs as normal (i.e., only 3 out of 1000 false positive = 

0.3%).  

 

Figure 49 Spectrogram of the Syringe pump application in malware-free (left) and 

malware-afflicted (right) runs. Note that the differences in colors between the two 

spectrograms correspond to differences in signal magnitude which are caused by different 
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positioning of the antenna. Such variation is common in practice and has almost no effect 

on REMOTE’s functionality because REMOTE was designed to be robust to such variation 

Table VIII Accuracy of REMOTE for several different systems and attack scenarios 
using various boards and applications 

 

Note that, depending on the size of injection, the MoveSyringe() in Syringe-Pump could 

be very brief in time (e.g., around 3 ms as can be seen in Fig. 4-left), and we found that without 

correctly handling the interrupts on Olimex and TS platforms (which have an operating system), 

we would either get very high false positives (due to interrupts), or high false negatives (by using 

large N to ignore short-term activity). However, by adding training-time samples for interrupts, 

we can use small N, while having 0% false positives. 

Furthermore, we also repeated our measurement for Syringe-Pump for both 50 cm and 1 

m distances (using a 9 dBi horn antenna [37] connected to the SDR) and in both cases, we also get 



125 

Approved for public release; Distribution is unlimited. 

 

perfect accuracy. It is also important to mention that the detection latency (i.e., the time attack 

starts until REMOTE detects it), for all four devices is <2 ms. 

An alternative method for attacking Syringe-Pump is by changing the InjectionSize (i.e., 

Data-only attacks). This also can be done using a CR attack. REMOTE is able to protect Syringe-

pump against such attack since changing the InjectionSize will change the duration (i.e., the 

number of SSs) of MoveSyringe(). Since REMOTE is checking the signal in the granularity of SS, 

it can count the SSs which belong to MoveSyringe() activity and compare it to the expected number 

of SSs. To check how well REMOTE can detect such an attack, we check the number of SSs for 

MoveSyringe() for all the 25 attack-free runs and compare it to the actual InjectionSize. In all the 

instances, REMOTE reports the correct number of SSs. Note that we are not detecting EM 

emanations (RF) signal produced by the motor movement but the change in the code execution 

when “data-only” attack is performed. i.e., we observe the signal at clock frequency of the board 

and observe software changes, while motor movement signature occurs at much lower frequencies. 

However, if the change is less than one SS or if the expected InjectionSize is unknown, 

REMOTE is not able to detect the change. Overall, there is a trade-off between the size of SS and 

REMOTE’s ability to detect small changes. 

Thus to improve the effectiveness of the system, either a higher sampling-rate setup can be 

used (smaller SS hence smaller detection granularity) or REMOTE can be combined with other 

existing methods (e.g., Data Confidentiality and Integrity (DCI) methods [38]) to protect the 
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system against different types of data-only attacks. Finally, it is important to mention that 

However, as shown in this work (for this attack and other attacks in this section), meaningful 

attacks typically have much larger signature (i.e., order of milliseconds) than the current detection 

limit in REMOTE (200 microseconds). 

The second attack is an advanced-persistent-threat (APT) attack on an industrial CPS 

(called Soldering-iron). A well-known example of such attack for CPS is Stuxnet. Soldering-iron 

is an industrial CPS that allows users to specify a desired temperature for the iron and maintains it 

at that temperature using a proportional-integral-derivative (PID) controller. This type of controller 

could also be used to control the temperature in other settings, such as a building or an industrial 

process, and thus is representative of a large class of industrial CPS. This application is 

significantly larger than the Syringe-Pump - with 70,000 instructions in its code and 1,020 static 

control-flow edges [35]. 

The application starts by initializing all the components (e.g., PID controller, Iron, etc.). It 

then begins to control the Iron’s temperature: it checks all the inputs (e.g., knob, push buttons, etc.) 

and then based on them decides to decrease or increase the temperature, prints new debug 

information on its display, etc. and then repeats this ad infinitum. The security-critical function is 

where the temperature of the iron is set keepTemp(). This function uses an iterative process (a PID 

controller) to change or keep the temperature of the iron. The critical variable is temp hist – it 
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holds the last two temperatures of the iron and is used to calculate the difference between the 

current temperature of the iron and these two last temperatures. 

To implement a Stuxnet-like malware on this application, we assume that the attacker can 

reprogram the device. The attacker’s goal is to change a critical value under some conditions, 

which in turn can cause damage to the overall system. A possible modification to the code is shown 

in Example 1 (lines 8-10), where based on one or several conditions (e.g., in our evaluation it 

checks the model of the device that is stored in memory), the temperature history can be changed. 

The key insight is that the added instructions will cause the spectral spikes during execution of the 

main loop to be shifted to lower frequencies (more time per iteration) as shown in Fig. 48 for the 

A13-OLinuXino device. To evaluate how well REMOTE can detect this type of attack, we use 7 

runs in training, and use 25 runs without malware and 25 runs with malware to evaluate the 

monitoring algorithm. Our results show REMOTE can successfully detect all the instances of the 

attack (a 100% true positive rate) (see Table VI). 
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Figure 50 Adding malicious activity to the main loop of the Soldering-iron 

application (red: without malware, blue: with malware) 
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4.3.3 Shellcode Attack on IoTs 

Another popular class of attacks on CPS/IoTs are shellcode attacks where the adversary 

executes a malicious application (payload) through exploiting a software vulnerability. It is called 

“shellcode” because it typically starts a command shell (e.g., by executing (/bin/sh) binary) from 

which the attacker can control the compromised machine, but any piece of code that performs a 

similar task can be called shellcode. 

Once the attacker takes the control, she can execute any injected code such as a Denial-of-

Service attack. In this section, we implement this attack by invoking a shell (/bin/sh) via a buffer 

overflow exploit. We then run two malicious payloads on the invoked shell: a DDoS bot, and a 

Ransomwmare. These attacks typically target devices with operating systems. In this work, we 

implement them on an IoT device with an ARM core (A13-OLinuXino), which is a representative 

of state-of-the-art IoTs. 

The attacks are implemented on five representative programs from MiBench suite 

(bitcount, basicmath, qsort, susan, and fft). We chose these applications among all the MiBench 

applications (this benchmark is designed to represent typical behaviours of embedded system: e.g., 

Security, Telecomm., Network, etc.) mainly because bitcount is a good representative of the 

applications that have several different distinct regions (our HDBSCAN clustering found 9 for this 

application) and has lots of different activities including nested-loops, recursive functions, 

interacting with memory, etc. basicmath is chosen because it is a good representative of 
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unstable/weak activities since the activities in each region are very dependent on values (it is 

calculating different fundamental mathematics operations such as integration, square-root, etc.). 

We also chose qsort because it has lots of memory accesses, and picked susan and fft since they 

are good representatives of common and popular activities in embedded system domain (i.e., 

image processing and telecomm.). In all these application, first a buffer-overflow vulnerability is 

exploited, and using a shellcode, a shell with same privileges as the original application is invoked. 

A malicious payload (i.e., DDoS or Ransomware) is then executed in this shell. For the 

DDoS, we port the C&C and the bots from the Mirai open source to run on our IoT. The DDoS 

payload execution begins right after the shell is invoked and ends after sending 100 SYN packets. 

The application then resumes its normal activity. We use a PC on the local network as the target 

of the DDoS attack (SYN flood), and we verify on that PC that the attack is taking place. As 

another payload, we also implement a simple Ransomware prototype payload that uses AES-128 

with CBC mode to encrypt data. This encryption represents the bulk of the execution activity 

created by Ransomware. 

As in previous cases, we use 7 runs for training and then use 25 runs without malware and 

25 runs with each malware (i.e., DDos and Ransomware) for all five applications. 

Our results (see Table VI) show REMOTE can successfully detect all the instances of the 

attack (a >99.9% true positive rate) while none of the malware-free runs incorrectly identified as 

malware (0% false positive rate). We found that invoking a shell itself is visually detectable on 
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our IoT device since it takes around 8 ms (about 32 SSs) and sending 100 SYN packets adds about 

4 ms to that (see Fig. 49 (left) for DDoS and (right) for Ransomware). 

 

Figure 51 A run (left) where exploit, shellcode, and a 100-packet payload are injected into 

the execution between the original loops. A run (right) where exploit, shellcode, and a 

Ransomware payload are injected into the execution between the original loops. 

4.3.4 APT Attack on Commercial CPS 

The final system in our evaluation is a Robotic-arm. Robotic arm is often used for 

manufacturing and, typically, a critical component of any modern factory. It usually receives 

inputs/commands for a user and/or sensors and move objects based on these inputs. There is a 

growing concern in security of these CPSs since they are typically connected to the network and 
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are exposed to cyber-threats [39]. In this work, we use a commercial robotic arm (LewanSoul 

LeArm 6DOF [40]) which uses an Arduino board as a controller and a Bluetooth module to receive 

command. For this system, we implement an APT attack (firmware modification), where we 

assume that the reference libraries (e.g., library for Servo, Serial, etc.) are compromised (this can 

be also considered as a zero-day vulnerability). Note that, we assume that REMOTE s training 

contains the “unmodified” version of these library (baseline reference data). In this attack, we 

modify a subroutine (writeMicroseconds()) in Arduinos Servo library [41] by adding an extra 

if/else condition to change the speed of Servo motor randomly and reprogram the system with this 

compromised library, assuming that the adversary is interested in causing a malfunction in arms 

movement in real-time occasionally. 

We use 7 runs for training and then use 1000 runs without and 1000 runs with the firmware 

modification. Our results (see Table VI) show REMOTE can successfully detect the instances of 

the attack with very high accuracy (>98.2% true positive rate) while only less than 0.2% of the 

malware-free runs incorrectly identified as malware. 

4.3.5 Further Evaluation of Robustness – Interrupts and System Activity 

Among the platforms we tested, the longest-duration system activity “inserted” (via an 

interrupt) into the application activity tends to take a few milliseconds, and it appears to be 

associated with display management/update because disabling lightdm [42], the display manager, 

eliminates these interrupts (but other kinds of interrupts still occur). 
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In contrast, in bare-metal devices interrupts (when there are any) tend to be around a 

microsecond in duration. Figure 50 shows the (perfect) ROC curve (solid blue line) for 

SyringePump on Olimex (and Debian Linux OS) when using REMOTE. We then prevented 

REMOTE from forming interrupt-activity clusters during training, and used the EDDIE’s scheme, 

and that has resulted in a severely degraded ROC curve (red dashed line) where many false 

positives are detected when 4 consecutive clusters are found to be “unknown” (N = 4), and where 

increasing N reduces the false positives but also the true positives. This confirms that our approach 

of addressing system activity directly in REMOTE is significantly contributing to REMOTE’s 

ability to detect malware while not reporting false positives due to system activity. 

 

Figure 52 Accuracy of REMOTE with its mechanism for addressing interrupt 

activity (solid blue line) and EDDIE [10] (red dashed line). The results are for the 

SyringePump software running on the Olimex board 
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4.3.6 Further Evaluation of Robustness – Hardware Platforms and Distance 

As mentioned in Section 2.3, packaging and other limitations may require the EM signal 

to be received from some distance, which significantly weakens the signal. To evaluate the impact 

of distance on REMOTE, we receive the signal from distances of 5 cm, 50 cm, and 1 m away from 

each of the tested devices. To limit the amount of data that is recorded, we use only two 

representative programs from MiBench suite (bitcount and basicmath), and only two 

representative malware behaviours - one that adds a relatively small number of instructions inside 

a loop (Stuxnet-like), and another where similar malicious activity is done all-at-once outside of 

loops (DDoS-like). 

For each device and each application, we use 25 malware-free runs and 25 runs for each of 

the two malware activities (75x3 runs for each of the platforms) to obtain the false negative 

(malware activity not reported in a malware affected run) and false-positive rates (malware 

reported in a malware-free run) achieved by REMOTE. Our results show perfect accuracy (i.e., 

0% false negatives and 0% false positives) for all devices and all three distances. However, if we 

prevent REMOTE from using total non-clock power when comparing SSs and use the scheme in 

EDDIE and/or Syndrome, on the TS board (which has the weakest signal among the boards tested) 

for 50 cm and 1 m distances we only observe 80% (at 50 cm) and 55% (at 1 m) true positive rates 

once we adjust other parameters to achieve 0% false positives (see Figure 51). This confirms that 
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when signals are weak, comparisons based on spectral peaks alone are insufficient and other signal 

features (such as non-clock power used in REMOTE) must also be considered. 

 

Figure 53 True positive rate (with 0% false positives) of REMOTE with its non-

clock-power feature when comparing SSs (dark blue) and EDDIE /SYNDROME [10] 

(light red). The results are for basicmath running on the TS board 

4.3.7 Further Evaluation of Robustness – Manufacturing Variations 

To study the effect of manufacturing variations on the EM signals and REMOTE accuracy, 

i.e., to determine if training is needed for each type of device or for each physical instance of a 

device, we use 30 physical instances of the Cyclone V DE0-CV Terrasic FPGA development board 

(chosen primarily because we have 30 such boards), to train REMOTE on one board (randomly 
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selected) and use that training to monitor each of the other 30 instances, with 20 runs of bitcount 

on each instance, both with and without malware. 

Our results show that REMOTE’s accuracy remains at 100% true positives and 0% false 

positives throughout this experiment. However, when we prevent REMOTE from frequency-

adjusting the SSs used in comparisons, we still find no degradation for 17 of the boards, but for 13 

the false positive rate increases to nearly 100%. Further analysis shows that the clock frequencies 

of the boards vary, with 17 of them (including the one trained-on) were within the frequency-

tolerance (parameter D) of the matching, whereas the other 13 were outside the tolerance, causing 

none of their peaks to vote for the cluster the signal actually should belong to. If D is then adjusted 

to avoid false positives, the true positive rate is severely degraded. 

Figure 52 shows one such scenario where we trained on board number 3, and test on board 

number 4. The figure shows the ROC curve for board number 4 when frequency-adjusting is active 

and inactive. We also repeated this experiment for 10 Olimex boards (we do not have 30 of those), 

with very similar results with and without REMOTE’s frequency adjustment. 

These results confirm the need for frequency adjustment in REMOTE if training and 

monitoring do not use the same physical instance of a device.  
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Figure 54 Accuracy for REMOTE with frequency-adjusting, vs. Eddie/Syndrome 

for FPGA board running bitcount 

4.3.8 Further Evaluation of Robustness – Variations Over Time 

We record the signals at one-hour intervals, over a period of 24 hours, while keeping the 

FPGA board and the receiver active throughout the experiment, to observe how the emanated 

signals vary over time as device temperature (and room temperature) and external radio 

interference such as WiFi and cellular signals change during the day and due to the day/night 

transition. The set of measurements collected each hour consists of 60 bitcount runs, 20 without 

malware and 20 times with each of the two types of malware. The training data for all REMOTE 

analyses in this experiment was recorded just after the device (FPGA board) and the receiver 

(SDR) were turned on. 
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We observed no deviation from REMOTE’s accuracy throughout this experiment (solid 

blue line in Figure 53). We then prevent REMOTE from clock-adjusting the frequencies and repeat 

the experiments (on the same signal recordings), and find that the detection accuracy is 

dramatically degraded between hours 4 through 13 and hours 23 and 24 (dashed red in Figure 53). 

Further analysis shows that the clock frequency has shifted during these hours, coinciding with 

use of business-hours and off-hours thermostat setting for the room4, likely because temperature 

affected the board’s crystal oscillator whose signal is the basis for generating the processor’s clock 

frequency. 

 

 

Figure 55 Performance of REMOTE with its clock-frequency adjustment feature vs. 

Eddie/Syndrome 
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4.3.9 Further Evaluation of Robustness – Multi-tasking/Time-sharing 

In our final set of experiments, we apply REMOTE in the runs where Ransomware is 

executed as a separate process, without changing the application. The OLinuXino board only has 

one core, so its Debian Linux OS context switches between the two processes until the 

Ransomware payload completes. Figure 54 shows the spectrogram in one such execution. In the 

first part of the spectrogram only the application is running. At some point (millisecond 812 in this 

spectrogram), the Ransomware process is started, and the context-switching in (approximately) 10 

ms time-slices can clearly be seen beyond this point in the spectrogram. 

The spectrum of the malware process is clearly different from the spectrum produced by 

the application at this point in its execution, so we expect REMOTE to detect this malware 

execution scenario easily. 

To evaluate REMOTE accuracy for this scenario, we use 25 runs, and in each run, start the 

Ransomware process at a different point in the run. The results of this experiment are that 

REMOTE successfully detects all these runs even with the tolerance threshold that produces no 

false positives for malware-free executions. It should be noted here that in this set of runs, 

according to our threat model, the IoT system is running only one valid application. To 

successfully handle scenarios in which the system context-switches between multiple valid 

applications, REMOTE must be extended to identify when context switches are occurring and to 

keep track and validate spectral samples with the knowledge of which application(s) they might 
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belong and where the “current” point is in each of those applications. Although we believe such 

an extension to REMOTE is possible, it will likely require significant effort to figure out, 

implement, and evaluate, so we leave it for future work. 

 

Figure 56 Spectrogram of context-switching between the unmodified Bitcount 
application and the Ransomware process 

 

4.4 Task 2.2 – Results for Multi-Core Spectral Profiling 

In this section, we provide experimental setups and results for the proposed profiling 

scheme. We perform experiments on 3 different devices with different number of cores. Table VII 
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demonstrates the name of the devices and the number of cores they have. The goal of this section 

is to illustrate that the proposed methodology works for multiple devices, programs and cores. 

 

4.4.1. Experimental Setup 

The experimental setup for all devices are given in Figure 55. For the experiments, we used 

a lab-made magnetic probe and a spectrum analyzer [43] to measure the emanated signals. We 

first present our results when only a single core then multiple cores are active. 

Table IX Devices and corresponding core frequencies and numbers 
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Figure 57 Experimental setups 

 

 

 

 

4.4.2 Program Profiling When Only One of the Cores is Active 
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In this section, we provide experimental results for the proposed model when a single core 

is active. We first collect training signals, and then train our neural network by utilizing Algorithm 

1. This is followed by generating state transition diagrams by applying Algorithm 2. The profiling 

results while Bit_count is executed in a single core for Alcatel phone are given in Figure 56. In 

this figure, we consider two scenarios: when the system is benign and when the program has 

malware. The decision stream for the benign system is given in Figure 56a. Please observe that the 

plot also contains a state with the number “8” which does not comply with the Markov Model 

given in Figure 17. We use this extra state to represent that the output of the CNN is not above 

threshold and the Markov Model could not assign the current output to any possible states. Since 

there exists only a single path for each state (which can be executed only if the execution of the 

previous state is completed), we observe a stepwise structure which indicates the program is 

running properly. However, if we consider Figure 56b, we observe an anomaly between State -2 

and State-3. Since this anomaly lasts longer than tM second, we alert malware. Here, tM is set to 2 

ms which represents the sensitivity of the program.  

Please note that the proposed framework does not only work for state transitions which 

have only a single direction as given in Figure 17, but also for any Markov Model that has more 

branching operations. As an example, we consider a SAVAT program [9] which generates four 

different states during its execution. Compared to Bit_count and Basicmath, the Markov model of 

the program has more paths, as given in Figure 57. This program has infinitely many paths since 



144 

Approved for public release; Distribution is unlimited. 

 

the state ‘4’ has a connection to the state ‘1’. The biggest advantage of the proposed methodology 

is that we do not need to collect all possible training signals, which is impossible for this case.  

The training signals are collected only from a few executions of the code, irrespective of 

the path as long as the measurement has samples from each state. Since the states are chosen such 

that they produce similar signals whenever they are executed, having a couple of execution is 

enough to train our CNN model. After training the CNN model, the program can be monitored 

applying Algorithm 2. An example of the state transitions of the program is given in Figure 58. 

The actual state transitions for the experiment is “1-2-4-1-2-3-4”.  We observe that the transitions 

are perfectly followed by the proposed method. Therefore, the proposed methodology can monitor 

systems even with a more complex Markov Model. 

We have done experiments on all of the devices with these programs. We obtain 0% false 

negative rate (claiming no malware although the program has malware) for all of 

the devices. However, the false positive rate is 0.1%, 0.2% and 0.3% for OLinuXino-A13, 

OLinuXino-A20 and Alcatel, respectively. These ratios are calculated by dividing inaccurate 

“idle” samples to total number of samples (> 103). Please note that having a false positive only 

increases the maintenance cost of the system. However, having a false negative can cause serious 

problems since this inaccurate classification can cause information leakages or irreparable 

damages on the system. 
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Figure 58 State transition diagrams while only a single core is active  
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Figure 59 Proof-of-concept implementation: State transitions of a program 
written by combining SAVAT with different alternation frequencies 

 

 

Figure 60 State transitions while profiling SAVAT based program 

 

4.4.3 Program Profiling When Multiple Cores Are Active 
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In this section, we consider the scenario when multiple cores are active. For a better 

explanation, we first provide examples when two cores are running Basicmath and Bit_count, but 

provide results for other cases as well. We investigate 1) the results when both programs are benign 

and 2) why the cooperation between the neural network and the Markov Model is important. In 

that respect, we run Basicmath and Bit_count on the Alcatel phone such that these programs are 

executed at different cores. The spectrogram of the received signal is already given in Figure 16. 

We provide the values of the first parallel unit of the proposed neural network and corresponding 

state-transition flow obtained by employing Algorithm 2. The measurement started before program 

execution, and monitored until all program executions were done. In these “idle” regions, the 

proposed model does not report any malware because it is aware that the cores are not executing 

the programs. In other words, these “idle” states appear at the beginning and end of the program 

no matter what, and in the middle of the program if there is malware. Considering Figure 59a, we 

observe two main problems that can cause inaccurate monitoring of a program: 

• Multiple neurons are fired at the same time. 

• A neuron other than the expected one is fired. 

These problems can cause confusion or increase in false negative/positive rate if the 

Markov Model is disregarded. The Markov part of the proposed framework ensures that the 

profiling methodology can overcome these problems. These inaccurate transitions are prevented 

via the thresholds employed by Algorithm 2 and limitations on the transitions imposed by the 
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proposed Markov Model. In Figure 60, the same plots are drawn for Basicmath, i.e. the second 

parallel unit of the neural network. Similarly, the same problems are observed with the Bit_count 

experiment, yet perfect monitoring is obtained with the proposed model. 
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Figure 61 Profiling based on the CNN and Markov Model for Bit_count 
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Figure 62 Profiling based on the CNN and Markov Model for Basicmath 

The main observations regarding the experiment can be listed as follows: 
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• Although the training is performed by utilizing single-core measurements, the 

proposed methodology can track and profile the program when multiple cores are 

active.  

• The neural network realizes the components emanated due to other profiled 

programs and does not cause false positives even tough multiple cores are active. 

As the second step, we investigate the behaviour of the model when malware is injected to 

one of the programs. In that respect, the spectrograms of the programs in Figure 61 are examples 

of when Basicmath and Bit_count have malware, respectively. The regions corresponding to 

malware are indicated with a dotted rectangular. For the experiment where Basicmath has 

malware, we observe that there is frequency shift toward lower frequencies (toward the centre 

frequency) due to injection of extra code lines. This causes inner-loops to last longer to execute 

and some frequency components fade away. However, for the experiment where Bit_count has 

malware, we observe a shift away from centre frequency (to higher frequencies) (see dotted region 

of Figure 61b). This could be the result of inserting a new code which lasts less time, or the deletion 

of some code lines, etc. 

In Figure 62, we provide the output streams of the Algorithm 2 for both parallel units when 

Basicmath has malware. In Figure 62a, the profiling results are given for the first parallel unit, 

whereas Figure 62b provides the results for the second parallel unit of the proposed model. As 

expected, the algorithm does not alert while profiling Bit_count as opposed to the other parallel 
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unit since the malware is injected into Basicmath benchmark. As another example, Figure 63 

demonstrates the output stream of Algorithm 2 when Bit_count has malware. The same comments 

as before can be applied for this example. This time, the first parallel unit alerts the malware while 

the second parallel unit reports a benign program since the malware is injected to Bit_count. 

 

Figure 63 Hot regions when one of the programs has a malware 
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Figure 64 Profiling based on the CNN and Markov Model when Basicmath has malware 
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Figure 65 Profiling based on the CNN and Markov Model when Bit_count 
has malware 

 



155 

Approved for public release; Distribution is unlimited. 

 

As the final example, we investigate the behaviour of the model when the same algorithm 

is executed at both cores. This is the worst case scenario since both programs produce the same 

frequency components. We observe that the proposed model can still detect the malware because 

the distortion of the malware on the spectrum causes information loss for the CNN to extract 

features, as shown in Figure 64. This time, we are not able to reveal which program has the 

malware. However, after being aware of malware existence in one of the programs, we run these 

programs individually by activating only a single core of the device. Based on the outcomes of the 

single-core-experiments, we successfully identify which program has the malware. However, if 

the malware does not distort the spectrum severely and if the initialization of the same program on 

both cores is exactly same, it is possible for the framework to miss the malware. However, for the 

paper, we assume these two conditions do not occur at the same time. 

• Main observations about these profiling experiments can be listed as follows: 

• As long as the malware does not affect the whole spectrum, the proposed methodology can 

predict which of the programs has the malware. If it does affect the whole spectrum, it alerts 

an anomaly. 

• The system can keep monitoring even after the part related to malware is executed. 

• Combining Markov and CNN Models enables accurate prediction of the location of 

malware within the program. 
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After these results, we can provide examples of multi-core devices running different 

programs. Table VIII contains false positive (FP) and false negative (FN) rates for different 

number of active cores. Here, FP and FN represents false positive and negative rates, respectively. 

We observe that false negative is 0% for all cases, and false positive rate is less than 2%. These 

results show that the proposed methodology is a very powerful tool for monitoring multi-core 

devices. 

 

Figure 66  The states while profiling the system when two Bit counts are 
running and one of them has a malware 

 
Table X The performance of the framework for different devices when multiple cores are 

active (%) 
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4.5 Tasks 3-5 – Results for Basic Block Tracking 

We evaluate TESLA by monitoring two different devices executing three different 

benchmark applications. The evaluation matrix, the benchmark applications, and the experimental 

results are discussed in the following sections. 

4.5.1. Evaluation Matrix 

To evaluate TESLA, we compute the edit distance between the actual execution path and 

the reconstructed execution path. Specifically, we use Levenshtein distance [44] that computes the 

minimum number edits (insertions, deletions or substitutions) required to change reconstructed 

marker sequence to the actual marker sequence. We then compute the path reconstruction accuracy 

as using the following equation. 
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  (22) 

We further compare the actual and the reconstructed timestamps. Specifically, we compute 

and report the absolute timing difference between the actual and the reconstructed markers. Note 

that, the edits are excluded from this comparison, as there are no timestamps for the edited (e.g., 

inserted or deleted) markers. 

4.5.2 Benchmark Applications 

We selected 3 benchmark applications (Print Tokens, Replace, and Schedule) from the SIR 

repository [45]. These applications are commonly used to evaluate techniques that analyze 

program execution. Table IX provides the size matrix for the benchmark applications. 
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Table XI Benchmark applications statistics 

 

Moreover, these applications have many inputs, each taking a unique execution path through 

the CFG. We used disjoint sets of inputs for training and testing. For each application, we randomly 

selected 500 inputs for training, and 100 for testing. Table X summarizes training-testing split. 

Table XII Training and testing executions 

 

We evaluate TESLA by executing these applications on two different devices: 1) FPGA device 

and 2) IoT device. 
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4.5.3 FPGA Device Monitoring 

First, we monitored an Altera DE-1 prototype (Cyclone II FPGA) board. This device has a 

50 MHz NIOS II soft processor. We placed a magnetic probe near the device to collect the EM 

side-channel signal. We then used an Agilent MXA N9020A spectrum analyzer to observe and 

demodulate the EM emanations. The demodulated signal is next passed through an anti-aliasing 

filter with 5 MHz bandwidth. Finally, we sampled the filtered signal at 12.8 MHz sampling rate, 

and analyzed the digitized signal using TESLA. 

Table XI summarizes the mean accuracy. We observe that TESLA achieves excellent 

accuracy for monitoring all three benchmark applications, with roughly 99% accuracy for Print 

Tokens and Replace, and near-perfect accuracy for Schedule. We also report the mean timing 

difference of the predicted timestamps in Table XII. For Print Tokens and Schedule the mean 

timing difference is less than 1 sample. However, for Replace, the mean timing difference is 

roughly 4 samples.  

Note that, at the experimental sampling rate (12.8 MHz), 1 sample is equivalent to 78:125 

ns. Thus, all timing estimations are very precise. 
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Table XIII Mean accuracy for FPGA 

 

Table XIV Mean timing difference for FPGA 

 

Monitoring from Distance: We further evaluate TESLA by monitoring the FPGA device 

from 1 m distance using a panel antenna. Figure 65 shows the experimental setup. We summarize 

the mean accuracy in Table V. TESLA achieves better than 95% accuracy on all three benchmarks. 

In fact, for Print Tokens and Schedule, TESLA achieves roughly 99% accuracy. 
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Table XV Mean accuracy at 1 m 

 

 

 

Figure 67  Experimental setup: monitoring from 1 m distance 
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Table XIV shows the mean timing difference for the predicted marker timestamps. While 

the timing differences are slightly higher than that of with probe, predicted timestamps are still 

very precise, and within a few samples. 

While TESLA demonstrates excellent performance from 1 m distance, we notice slight 

degradation in accuracy compared to that of with probe (i.e., at 1 cm distance). This degradation 

is due to the lower SNR at distance, and can be improved by using high-gain antennas and/or low-

noise amplifiers. 

Table XVI Mean timing difference at 1 m 

 

4.5.4 IoT Device Monitoring 

We demonstrate the robustness of TESLA by monitoring an A13-OLinuXino IoT 

development board. This device has a 1 GHz Cortex A8 ARM processor [26]. Unlike the FPGA 

device, A13-OLinuXino runs on a Debian Linux operating system. We collected the EM side-

channel signal by placing a magnetic probe near the microprocessor. The signal was recorded and 

demodulated using a spectrum analyzer (Agilent MXA N9020A). We then digitized the signal by 
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passing it through an anti-aliasing filter with 20 MHz bandwidth, and sampling at 51.2 MHz 

sampling rate. 

Table XVII Mean accuracy for IoT device 

 

Table XV shows the accuracy of TESLA for monitoring the IoT device. TESLA 

demonstrates high accuracy on all three benchmark applications; 94.15% on Print Tokens, 96.85% 

on Replace, and 95.91% on Schedule. Note that, TESLA achieves even higher accuracy (roughly 

99%) for monitoring FPGA device. However, A13-OLinuXino has a much faster processor (1 

GHz compared to FPGA’s 50 MHz), which makes fine-grained execution monitoring more 

challenging. Furthermore, the operating system on A13-OLinuXino leads to more variations 

between training and testing executions. This, in turn, can cause performance degradation. As 

such, TESLA’s performance on monitoring the IoT device is impressive. 

Furthermore, the timing differences reported in Table XVI demonstrate that TESLA 

predicted timestamps are also quite precise. The mean timing difference for all three benchmark 
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applications is within 10 samples. Note that, in our experiments (at 51.2 MHz sampling rate), each 

sample is equivalent to 19:5 ns. 

Table XVIII Mean timing difference for IoT device 

 

Monitoring from Distance: We also evaluate TESLA by monitoring the IoT device from 

distance. For this, we placed a slot antenna at 1 m distance from the device. 

 

Table XVII shows that TESLA achieves roughly 90% mean accuracy on all three 

benchmarks. Furthermore, Table XVIII reports the mean timing difference. We also notice some 

performance degradation at distance. This is due to lower SNR that affects the signal matching 

adversely. 
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Table XIX Mean accuracy at 1 m 

 

Table XX Mean timing difference at 1 m 

 

 

4.6 Task6 – Results for Single Instruction Tracking 

In this section, we explain our experimental setup and provide the results for instruction 

type determination and permutation tracking of instruction types. 

4.6.1 Experimental Setup 
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To demonstrate the feasibility of the proposed methodology, we experiment on two 

devices. The first device is Intel’s DE1 Altera FPGA Board that has Altera NIOS-II (soft) 

processor. This processor is a general purpose RISC (reduced instruction set computer) processor 

that implements Nios-II architecture with 6 pipeline stages. The operating clock frequency is 50 

MHz and this board does not have a present operating system. The second device is A13-

OLinuXino, which is a low-cost embedded Linux mini-computer that has ARM Cortex A8 

processor that operates at 1 GHz clock frequency. The processor implements ARMv7-A 

architecture and is an in-order, dual-issue, superscalar microprocessor with 13-stage main integer 

pipeline. In the remainder of the text, we refer to the first and second devices as the DE1 device, 

and the A13 device, respectively. 

To record the EM emanations, we use Aaronia’s H3 nearfield magnetic probe for the DE1 

device and H2 near-field magnetic probe for the A13 device. These probes are chosen so that the 

resonance frequency of the probes are aligned with the operating clock frequencies of the devices. 

We locate the probes on the pin edges of the processors as shown in Figure 66. Also note that two 

GPIO pins of these devices are utilized to record the marker signal. Measurements are obtained 

with Keysight’s DSOS804A high-definition oscilloscope at 10 GHz sampling rate. 
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Figure 68  Experimental setup used for EM emanation recordings 

4.6.2 Instruction Type Determination Results 

To record the EM emanations, we use Aaronia’s H3 nearfield magnetic probe for the DE1 

device and H2 near-field magnetic probe for the A13 device. These probes are chosen so that the 

resonance frequency of the probes are aligned with the operating clock frequencies of the devices. 

We locate the probes on the pin edges of the processors as shown in Figure 66. Also note that two 

GPIO pins of these devices are utilized to record the marker signal. Measurements are obtained 

with Keysight’s DSOS804A high-definition oscilloscope at 10 GHz sampling rate. 

After inspecting the instruction set for both devices, we select 17 instructions per each 

device for investigation that are listed in Table XIX with their corresponding abbreviations. Note 
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that these are frequently used instructions including mathematical operations such as addition and 

multiplication; logical operations such as AND, OR; and memory access instructions such as load 

and store, etc. 

After selecting the instructions, we generate micro benchmarks for each of them that 

include N = 10 and N = 100 times repetitions for the DE1 and A13 devices, respectively. The 

reason for the higher N value of the A13 device micro benchmarks is the higher operating clock 

frequency of the device. Next, we record the EM emanations and obtain the EM signatures for 

different instructions. Figures 67 and 68 present examples of the obtained EM signatures of 

different instructions for the DE1 and A13 devices, respectively. Note that each subfigure plots 

several EM emanation traces obtained for different executions of the given instruction. One can 

easily observe that these traces are highly aligned indicating that the EM signatures of the 

instruction sequences are relatively similar for successive executions. 

In Figure 67, we observe that some instructions such as LDW and MULI have significantly 

different EM signatures that differ both in length and shape, whereas some instructions such as 

ADD and SUB have very similar EM signatures in both length and shape. Similar conclusions can 

be obtained for Figure 68, as well. One should note that these conclusions validate our initial 

assumption that some instructions have similar EM signatures while some have significantly 

different EM signatures. Therefore, our methodology also provides the capability of decreasing 
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the entropy of the instructions. We also realize that the instructions with similar EM signatures are 

those that have similar physical implementations such as addition and subtraction. 
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Table XXI Investigated instructions 
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Figure 69  Obtained EM signatures of several instructions for the DE1device 
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Figure 70  Obtained EM signatures of several instructions for the A13device 

 

As can be seen in Figure 68, the EM signature of LDW is significantly different than MUL, 

ADDI and SUBI. This difference reflects the significance of the additional memory system 



174 

Approved for public release; Distribution is unlimited. 

 

pipeline present in the A13 device for memory access instructions. Although the EM signatures 

are obtained by repeating the same instruction N times, we are not observing the repetition of the 

same pattern N times in the EM signature. We note that the beginning and ending parts of the 

signatures are significantly different than the middle parts, where we can observe the same kind of 

pattern repetition. This observation emphasizes the significance of the pipeline effect caused by 

the instructions that come before and after the instruction sequence. From these observations, we 

conclude that the EM signatures are indicative of the pipeline structure. These observations also 

prove that each stage of a pipeline emits EM signals while executing instructions. 

After obtaining the EM signatures, we generate the correlation matrices for the DE1 and 

A13 devices as shown in Figure 69. In Figure 69, brighter colors indicate higher correlation, hence 

higher similarity. Then, we convert this correlation matrix to a distance matrix and cluster these 

instructions with average-link hierarchical clustering. The resulting dendrograms are presented in 

Figure 70. Note that the bottom part of the dendrograms start with all instructions, and as it goes 

to the top, these instructions are merged pair-wise so that they are in the same cluster until all 

instructions are merged at the top. By investigating the correlation matrices and dendrograms, we 

set the number of clusters, K, to be 4 in both cases because for both cases when K is set to 4, 

resulting clusters include instructions that are similar in operation such as MULI and MUL. The 

clusters are indicated with different branch colors. Red, blue, green and black colors represent A, 

B, C and D type clusters, respectively. 
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For the DE1 device, A-type instructions include memory-access operations (LDR, STR) 

as well as the clock-cycle arithmetic and logic operations that use register sources (ADD, SUB, 

AND, CMPEQ, MOV, OR), there are also two exceptions (MOVI, ORI) that use immediate 

values. B-type instructions are the arithmetic and logic operations that use immediate values 

(ADDI, SUBI and XORI). C-type instructions are the multiplication operations (MULI and MUL) 

and D-type instructions are the division operation (DIV). 

 

Figure 71  Correlation matrices for DE1 and A13 devices 
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Figure 72  Dendrogram of the instructions obtained with hierarchical clustering for DE1 

and A13 devices. Different colors represent the clusters 

 

For the A13 device, A-type instructions include all clock-cycle arithmetic and logic 

operations that are either using register values or immediate values. One exception is the ADD 

instruction that uses register values, which is clustered as a C-type instruction along with the store 

instruction (STR). B-type instructions are the multiplication operations (MUL, SMULL, 

UMULL), and D-type instructions are the load operation (LDR). 

As it has been discussed earlier, the clusters reflect the structure of the pipeline. For 

example, load and store operations include the memory address location calculations which are 

addition and subtraction operations. Therefore, these instructions have the same type as addition 
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and subtraction for the DE1 device. However, A13 implements an external memory-access 

pipeline, which results in separate clusters for load and store operations. Similarly, we note that 

different variants of multiplication operations are clustered in the same group for both devices.  

4.6.3 Permutation Tracking Results 

After determining the instruction types, we pick one instruction from each type to represent 

the entire type. These instructions are LDW, ADDI, MULI and DIV for the DE1 device, and ADD, 

MUL, STR and LDR for the A13 device representing A, B, C and D in the given order. Using 

these instructions, we generate micro benchmarks, record EM emanations and generate EM 

signatures for different N values. 

Figure 71 and Figure 72 present example EM signatures for different permutations and N 

values obtained from the DE1 and A13 devices. For N = 1, the plotted EM signatures of the 

permutations (ABCD)1 and (DCBA)1 are visually different from each other for both devices. 

However, we note that, when N = 1, the EM signatures for the A13 device has a large variance 

among different executions, whereas this variance is much smaller for N = 10 case of the same 

device. In Figure 71, when N = 10, we can observe a pattern that is repeated 10 times, but this 

repetition is not present in Figure 72 when N = 10. This difference can be explained by the 

difference of the pipeline lengths: DE1’s pipeline length (6 stages) is shorter than A13’s pipeline 

length (13 stages). Therefore, a permutation block of length 4 instructions is more capable 

including the contributions from the pipeline stages of the DE1 device and get the EM signature 
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into a steady state, whereas the EM signature for A13 does not reach the steady state with 10 

repetitions. 

 

Figure 73  Sample EM signatures of permutations with different N values for the DE1 

device 
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Figure 74  Sample EM signatures of permutations with different N values for the A13 

device 
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Note that for both devices, we cannot visually identify the locations of the A, B, C, and D 

instruction types from the EM signatures. As discussed earlier, this is because single execution of 

the instruction does not create significant variation in the signature and due to the pipeline, the 

variation generated by execution of single instruction is distributed to different stages of the 

pipeline. To test this, while executing the permutation only once (N = 1), we repeat each instruction 

within the block 10 and 100 times for the DE1 and A13 devices, respectively. The EM signatures 

obtained with this repetition are shown in Figure 73 and Figure 74. In Figure 73, we see that the 

instruction blocks A and B that appear in the beginning for ABCD permutation can be identified 

at the end of DCAB permutation. Note that identifying C and D precisely is still not possible. In 

Figure 74, we can identify all instruction type blocks clearly as indicated in the figure. These results 

show that, although single execution of an instruction does not generate an identifiable waveform 

pattern, several consecutive executions can result in distinct waveforms. Please note that this is 

just an observation and cannot be directly used for testing purposes because enforcing the 

repetition of the same instruction within the blocks is not very realistic for many programs and, 

therefore, is not practically applicable. 

We generate templates for each permutation using Measurement 1, and predict the 

permutation order of the snippets obtained from Measurement 2. We use 50 snippets per each 

permutation resulting in a total of 1200 testing snippets. To observe the impact of the utilized low-

pass filter bandwidth on the accuracy and find the optimum bandwidth, we report the accuracy for 

different bandwidth values as shown in Figure 75. Note that the accuracy is calculated as the ratio 
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of number of the correctly classified permutations to the total number of testing traces. We note 

that the highest accuracy is obtained at 20 MHz for the DE1 device and 400 MHz for the A13 

device. These are the optimum bandwidths that coincide with 2fc=5 where fc is the clock frequency 

that corresponds to 50 MHz for DE1, and 1 GHz for A13. This is an interesting observation that 

the more bandwidth does not necessarily translate into more information and higher accuracy, and 

the optimum bandwidth is scaled with the clock frequency. Apart from the increase in the noise 

energy, the major reason behind the accuracy drop beyond the optimum bandwidth is the aliasing 

effect coming from the neighbouring harmonics of the clock frequency. 

 

Figure 75  Sample EM signatures when instruction types are repeated 10 

times within the permutation block for the DE1 device 
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Figure 76  Sample EM signatures when instruction types are repeated 100 
times within the permutation block for the A13 device 

 

 

Figure 77  Impact of N value on accuracy  

In Figure 75, we observe that the optimum accuracies when N = 1 are 92.8% and 62% for 

DE1 and A13, respectively. For higher values of N, the accuracy significantly improves. For N = 
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2, accuracy gets as high as 100% for DE1 and 97.8% for A13. To investigate N = 1 case, we 

provide the confusion matrices in Figure 76. Note that both matrices are mostly diagonally 

dominant. When we investigate the correlation matrix for the A13 device, we observe that some 

permutations are more vulnerable to misclassification such as ABCD and ABDC, whereas some 

permutations are almost perfectly classified such as BDAC and CDAB. This shows that the 

ordering of the instructions changes the strength of the EM signature variation. 

To demonstrate the improvement with larger N, we provide the correlation matrix for the 

A13 device when N = 2 in Figure 77. Note that a single increment in N significantly improves the 

accuracy from 62% to 97.8%. Here we would like to emphasize the trade-off between the number 

of repetitions and the accuracy. Including repeated versions of the permutation blocks is 

significantly increasing the detection accuracy in the expense of limiting the applicability of the 

proposed method. Therefore, if the system or program under investigation has repetitive nature, 

this method can be modified for better performance. 
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Figure 78  Confusion charts for N=1 

 

Figure 79  Confusion chart for N = 2, A13 Device 

4.6.4 Further Evaluation of Robustness  
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In this section, we test our methodology’s robustness and extensions. Firstly, we evaluate 

the performance for different SNR levels. Next, we extend the tracking ability to instructions rather 

than instruction types. The results are explained in the following sections. 

Performance for different SNR levels:  To evaluate the performance for different SNR 

levels, we assume that the measurement channel is corrupted by additive white Gaussian noise 

(AWGN). The calculation of SNR requires the signal power without any noise. Since EM side-

channels are unintentionally generated, we cannot control or measure the signal power by isolating 

the noise. Therefore, we obtain measurements at locations with strongest EM emanations and use 

the power of the signals obtained from these measurements as the referenced signal power, 

therefore assuming an SNR level of infinity. After obtaining these traces, we introduce additive 

white Gaussian noise with different noise powers to the testing traces. 

Let x be a vector representing a testing trace with a length of L samples, and xi be the 

sample values of this trace such that . To add the noise, we 

first calculate PS, the signal power of the vector, as  

(23) 

Then we add AWGN to each sample of x and obtain the new signal y that is corrupted by 

AWGN. The elements of y, yi, are obtained as  



186 

Approved for public release; Distribution is unlimited. 

 

     (24) 

Where  is independent and identically distributed realizations 

of a random variable that has a zero mean Gaussian (normal) distribution with  variance, 

and SNRlin represents SNR in linear scale.  

One should note that we add AWGN to all testing traces, but the EM templates are kept as 

originals. Then, we perform the same testing procedure for different SNR values with the optimum 

low-pass filter bandwidths. The results are shown in Figure 78, where we observe that the accuracy 

decreases for low SNR levels, as expected. We note that the performance converges for SNR 

values higher than 15 dB. Also, we observe that the permutations with larger N are generally more 

resistant to AWGN. 
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Figure 80  Impact of SNR on accuracy for permutations of different instructions 
for different N values 

4.6.5 Permutations of Instructions from the Same Instruction Type 
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In this section, our objective is to extend the applicability of the permutation tracking from 

tracking different instruction types to tracking instructions of the same instruction type. To do so, 

we pick 4 instructions from instruction type A for both devices. For the DE1, we pick ADD, AND, 

MOV and CMPEQ; for the A13, we pick ADD, AND, MOV and CMP. Note that these instructions 

use the same destination registers, register sources and immediate values, therefore we minimize 

the variation that might be caused by data values or register differences. Using these 4 instructions, 

we repeat the experiments and report the accuracies in Figure 79. Note that, the accuracies for N 

= 1 are very low because these instructions are from the same type and their permutations have 

very similar shapes. This low accuracy verifies that the instructions are clustered correctly. On the 

other hand, we note that if we can afford to repeat the permutation sequence for several times, in 

other words as we increase N, the accuracy successively increases. In fact, for N = 100, accuracy 

for the DE1 and A13 devices get as high as 92.4% and 98%, which are relatively high accuracies 

considering the similarity of the instruction signatures. To be able to determine the differences 

between the instructions from the same cluster, we need more observations. 

This points to the trade-off between better instruction resolution and number of 

observations. This also shows that higher frequency bandwidth does not necessarily provide more 

information to increase the accuracy rate. 
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Figure 81  Impact of N value on accuracy for permutations of instructions 

from the same instruction type. 
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In this report, we have described a system called CAMELIA that monitors computation in 

an EMSD (or phone/laptop/server) device by leveraging the involuntary electromagnetic (EM) 

emanations from the monitored device. CAMELIA does not require changes to the monitored 

device or its software, and its monitoring ability remains intact even after a complete compromise 

of the monitored system. CAMELIA collects signals using purpose-designed antennas, then pre-

processes the signals and separates them into sub-channels that carry information about different 

aspects of the system’s state. CAMELIA uses models of valid software behavior and 

software/system/hardware interactions to form hypothesis about the sequence of execution and 

software/system/hardware events in the monitored system, then updates these hypotheses by 

matching the expected signals for each hypothesis to the observed signals. This allows CAMELIA 

to maintain high accuracy and fidelity even when monitoring large codes, and even in the presence 

of interrupts, input/output activity, cache misses, branch miss-predictions, and other events that 

change emanated EM signals significantly in a way that is seemingly random but that CAMELIA 

can account for end even use to improve monitoring. 

To manage the tradeoff between fidelity, computational cost of modeling, and timeliness 

of reporting, CAMELIA operates at three levels of fidelity. More precisely, CAMELIA can (1) 

discover loop/module-level anomalies immediately, (2) detect basic-block-level control flow 

violations and anomalies at the granularity of several instructions very rapidly (after one or few 

dynamic instances of the violation are observed) and (3) uncover anomalous execution/event 

5.0 CONCLUSIONS
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patterns and even “below noise level” problems (e.g., when a valid instruction is replaced by a 

similar instructions) after enough dynamic instances are observed.  

The system is divided into six tasks as shown in Figure 1. In Task 1.1, a high gain planar 

slotted circular disc antenna, designed for receiving EM emanations modulated around processor 

clock was presented. The antenna was designed around 1 GHz for a 70 MHz bandwidth, using 

higher order mode 𝑇𝑇𝑇𝑇12 mode, which had a larger electrical size than the fundamental mode. This 

was done to reduce the number of elements. The antenna was designed in stacked configuration 

which permits the use of EM coupling as an excitation and hence feed lines were avoided. The 

antenna was fabricated using aluminum circular slotted discs, which are suspended in air using 

Teflon screws. It was shown that the electric field null property of 𝑇𝑇𝑇𝑇12 mode allows the use of 

screws to suspend the discs above the ground plane. The signal detection at the distances greater 

than 3 m were demonstrated by direct LoS SNR measurements from an IoT board. For each 

distance, SNR was calculated by subtracting the detectable signal power, when board activity is 

on, with the noise power when there is no activity. Finally, the antenna was used to collect EM 

signals from an IoT board while being >3m away from the board. The results show that using this 

antenna, an IoT board can be monitored from >3m with excellent accuracy. Furthermore, the 

antenna is cost effective and can be treated as a sub array for larger array for going further distances 

in EM emanations measurements. 
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In Task 1.2 An algorithm for finding carriers of frequency-modulated (FM) and amplitude-

modulated (AM) electromagnetic (EM) emanations from computer systems was described. 

Computer systems create EM emanations across the RF spectrum making it difficult, error-prone, 

and time-consuming to find the relatively few emanations that expose sensitive information. One 

of the most common and simplest mechanisms for information leakage occurs when the amplitude 

or a frequency of an existing strong signal (e.g. a processor or memory clock) is amplitude or 

frequency modulated by a system activity. If the system activity can be linked to sensitive 

information, this results in information leakage. We have presented an algorithm for automatically 

finding these AM and FM modulated signals, demonstrated the algorithm’s performance on 

several different types of processors and systems (desktop, laptop, and smart phone), and 

compared the results to an exhaustive manual search. We have also verified that all signals 

identified by the algorithm can be traced to plausible unintentional modulation mechanisms to 

illustrate that these signals can potentially cause information leakage. This algorithm is an 

important tool for system designers to quickly identify circuits that are leaking sensitive 

information. 

In Task 2.1, we have proposed (REMOTE), a new robust framework to detect malware by 

externally observing EM signals emitted by an electronic device. REMOTE does not require any 

resources or infrastructure on, or any modifications to, the monitored system itself, which makes 

it especially suitable for malware detection on embedded and/or cyber-physical systems where 

hardware resources may be limited and performance and energy overheads introduced by other 
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monitoring approaches may be unacceptable. REMOTE can identify malicious code injection into 

a known application that is running on a device in real-time and with a low detection latency. 

To develop a robust framework, we systematically explored practical concerns through 

experiments and analysis. First, to demonstrate the usability of REMOTE in real-world scenarios, 

we ported several real-world cyber-physical- systems each with a meaningful attack, to different 

platforms. Our results showed that for all of the programs on each of the platforms, REMOTE 

successfully detected the instances of attacks with high accuracy and almost no false positives. We 

then systematically evaluated the robustness of REMOTE to interrupts and other system activity, 

to signal variation among different physical instances of the same device, to changes in antenna 

distance, and to changes over time. By selectively disabling the robustness-oriented features of 

REMOTE, we also demonstrated that these features are indeed contributing to its robustness. 

Using these measurements and analysis, we showed REMOTE has several advantages over 

state-of-the-art external malware detection frameworks and it is a promising candidate for 

protecting resource-constrained devices (e.g., CPS, IoT, PLC, etc.) when implementing an internal 

malware detector is infeasible. 

In Task 2.2, we have proposed a new scheme that combines CNN and Markov models to 

monitor multi-core systems to detect anomalies and malware. In the proposed methodology, the 

Markov Model describes the dependencies among hot paths of a given program whereas the neural 

network estimates the likelihood of Markov states at a specific instance. The structure is designed 
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such that the training phase of the neural net does not consider the dependency among its inputs. 

However, in the testing phase, both the CNN and the Markov models are combined to check 

whether the transition between states are allowed. Here, states are considered as the hot spots of 

the program and transitions are allowed only if the program has such a path. The inputs to the 

neural network are the emanated EM signals that are unintentionally generated while executing a 

program. Since there is no instrumentation planted to the monitored system, the proposed method 

introduces no overhead, therefore, it is observer-effect-free. 

We tested the proposed methodology on various devices with different numbers of active 

cores. We obtained no false negative, in other words, the method always alerts users whenever an 

anomaly exists in the system. Compared to other zero-overhead profiling methods, the proposed 

framework can identify which program has anomalies while multi-cores are active. Therefore, the 

proposed methodology can be used to secure systems or to monitor anomalies even on multi-core 

devices since the deviations from the actual behavior of a program can be exposed with the 

proposed scheme. 

Tasks 3-5 describe TESLA – a new approach for program execution tracing via EM side-

channel signals. TESLA is completely non-invasive and does not impose any overhead on the 

monitored system. TESLA is especially useful for monitoring resource-constrained embedded 

devices for tasks such as program debugging and anomalous/malicious program activity detection. 
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Experimental evaluations reveal that TESLA can provide highly accurate program traces for 

benchmark applications running on different embedded devices, even from 1 m away.  

Finally, Task 6 describes PITEM, a new approach for instruction-level tracking using EM 

side channel. PITEM is a tool that can be used for fine-grain malware detection with an ability to 

locate the malware injection precisely. It first identifies groups of instructions, instruction types 

that have similar EM signatures using hierarchical clustering. After identifying instruction types, 

during training phase, it generates templates for all possible permutations of these instruction 

types. In the testing phase, we obtain testing traces and predict the best matching template with a 

correlation based, matched-filter-like predictor. The proposed methodology is tested using two 

different devices, one FPGA-based processor and one ARM-based IoT device. The results are 

reported for different repetitions of the permutation blocks. For single execution of the permutation 

block, we obtain 92.8% and 62% accuracies for the two different testing devices. We observe that 

with only two repetitions of the permutation blocks, these accuracies significantly increase to 

100% and 97.8%. Then, we evaluate the performance of the detection system under AWGN. We 

note that the performance of the system is stable for > 15 dB SNR and the performance gradually 

decreases for lower values of SNR. We also note that repeated permutation blocks are more 

resilient to AWGN. Finally, we perform detection of the permutations from the same instruction 

type. Although the detection accuracy is low for single execution of the instructions within the 

block, the accuracy increases significantly when the instructions are repeated. 
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a markovian convolutional neural network for malware detection and monitoring multi-core 

systems,” submitted to IEEE Trans. on Information Forensics and Security, 2020. 

Abstract: Leveraging side-channels enables zero-overhead detection of anomalies. These 

channels offer a non-instrumented program profiling capability by processing unintentional signals 

emitted while executing programs, codes, etc. In this paper, we propose a Markov based 

monitoring for multi-core devices utilizing the features extracted by a convolutional neural 

network (CNN). We refer to the proposed framework as MarCNNet. The input of the overall model 

is the magnitude-averaged short-time- Fourier-transform (STFT) of the emanated electromagnatic 

(EM) signals. To reduce the dimension of the signal fed to the model, the states of the Markov 

Model are considered as the hot paths. Transitions between states are only possible if the program 

can follow the path. In the framework, the CNN model generates features which are utilized by 

the Markov Model to estimate the likelihood of the state transitions. If the estimated transitions do 

not comply with the Markov Model, it alerts anomaly, otherwise, it keeps monitoring in real time. 

The framework also simplifies the training process because dependency among states is only 

crucial for the Markov Model, but not for the CNN. Therefore, the neural network is trained 
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assuming the signals generated by each hot paths are independent. However, for a test signal, both 

the CNN and the Markov Models are considered for malware detection. We tested the proposed 

model for various devices with different number of cores and programs, and demonstrated that the 

framework can detect malware with no false negatives, and a false positive rate less than 2%. 
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[2] B. Yilmaz, N. Sehatbakhsh, M. Dey, C.-L. Cheng, M. Prvulovic, and A. Zajic, “A generalized

approach to estimation of covert channel information leakage capacity,” submitted to IEEE

Trans. on Information Forensics and Security, 2020, under revision.

Abstract: Foreseeing severity of leakages through covert channels is a necessity for 

designers to minimize information leakage. Covert channels can be created due to digital and/or 

analog characteristics of computer’s switching activities. Hence, a judicious approach has to be 

followed to make these systems more resilient to any covert channel attacks. Having a method to 

estimate the capacity of information leakage in design-state provides an opportunity for designers 

to adjust their systems to minimize leakages of worst-case scenarios. In this paper, we propose a 

methodology to estimate the worst-case information leakage through various covert channels 

which can be adopted for both analog and digital covert channels. In that respect, we first model 

the communication channel as a deletion-insertion channel to mimic the possible losses due to 

software activities. Unlike conventional communication systems where the noise is assumed to be 

Additive White Gaussian Noise (AWGN), covert channels also suffer from changes in signaling 

time of transmitted bits. We show that the noise caused by signaling time variation can be 

combined with AWGN to explain the overall effective noise on the covert channel communication 

system. Secondly, based on the effective noise, we model the communication channel between the 

receiver and the transmitter. Then, we define the channel capacity as the maximum leakage for a 
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given covert channel. Finally, we provide experimental results to show that the proposed model is 

an effective and a general method to attain the resilience of a given system. 
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[3] F. T. Werner, J. Dinkić, D. Olćan, A. Djordjević, M. Prvulovic, and A. Zajić, “An efficient
method for localization of magnetic field sources that produce high-frequency side-channel
emanations,” submitted to IEEE Transactions on Electromagnetic Compatibility, 2020, under
revision.

Abstract: A new, low-cost system for locating sources of high frequency EM side-channel 

emanations on a printed-circuit board (PCB) is presented. The challenges inherent in high 

frequency measurements are addressed through careful design of the measurement and localization 

system. The system is time efficient, requiring only measurements taken around the edge of the 

device. The accuracy of the measurement setup was verified by comparing measurements with 

simulated results. The setup was then used to locate the instruction-dependent sources at 1 GHz 

on an FPGA and an IoT development board. The 1 GHz sources are compared to previously 

identified sources on the same devices taken at significantly lower frequencies. The results 

demonstrate that the sources of the EM side-channel can vary not only with the executed 

instruction but also with the frequency at which the side-channels are observed. 
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[4] Elvan Mert Ugurlu, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic, "PITEM: 

Permutations-based instruction tracking via electromagnetic side-channel signal analysis" 
submitted to IEEE Transactions. on Computers, 2020, under revision. 

 
Abstract: The emergence of cyber-physical systems (CPS) and internet of things (IoT) 

devices impose significant security and privacy concerns that necessitate robust monitoring 

and malware detection systems for protection. This paper proposes PITEM, a framework for 

instruction-level monitoring and malware detection using electromagnetic (EM) side-channels. 

PITEM identifies instruction types with similar EM emanations using hierarchical clustering. 

To track all combinations of these instruction types, we generate EM signatures for all 

permutations of them. In testing, we predict the permutation class of testing traces by a 

matched-filter-like predictor. We test the performance on two devices (FPGA-based and 

ARM-based) with 50 MHz and 1 GHz clock frequencies. We achieve 92.8% and 62% 

accuracies for these devices for single execution of permutations. We note that the accuracy 

increases to as high as 100% when permutation blocks are repeated. Furthermore, we test the 

limits of the system by tracking permutations of instructions of the same type. The results show 

that with sufficient bandwidth and number of repetitions, individual instructions can be 

resolved with 92.4% and 98% accuracies for these devices. Finally, the performance is 

evaluated for different signal-to-noise ratio (SNR) levels and performance is found to be stable 

for SNR values higher than 15 dB. 
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[5] Haider Khan, Sunjae Park, Alenka Zajic, and Milos Prvulovic, "TESLA: program Tracing
through Electromagnetic Side-channeL Analysis" submitted IEEE Transactions on
Computers, 2020, under revision.

Abstract: We present TESLA, a novel framework for zerooverhead program execution 
tracing. TESLA leverages device’s electromagnetic (EM) side-channel signals for basic-
blockgranularity execution tracing. TESLA is completely non-invasive and does not require 
any resource or any modification of the monitored device. Thus, this approach is especially 
suitable for monitoring resource-constrained devices such as embedded devices and Internet 
of Things (IoT) devices. In the training phase, TESLA learns a signal emanation model that 
associates code segments or program subpaths with corresponding signal snippets. In the 
testing phase, TESLA uses signal matching to establish a correspondence between the test 
signal and the training signal, and then exploits the learned signal emanation model to 
reconstruct the program execution path. We evaluate TESLA by monitoring benchmark 
applications on different embedded devices. TESLA achieves 99% path reconstruction 
accuracy for monitoring an FPGA device (Altera DE1). We further evaluate TESLA by 
monitoring an IoT device (A13- OLinuXino board with 1 GHz processor and Linux operating 
system), for which TESLA achieves roughly 95% accuracy. Furthermore, experimental 
evaluations reveal that TESLA can monitor these devices from 1 m distance. 
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[6] F. T. Werner, B. B. Yilmaz, M. Prvulovic, and A. Zajić, “Leveraging EM side-channels for 
recognizing components on a motherboard,” to appear in IEEE Transactions on 
Electromagnetic Compatibility, 2020. 

 

Abstract: This paper proposes leveraging EM side-channels to recognize/authenticate 

electronic components integrated onto a motherboard. By focusing on components on a 

motherboard, our method provides an opportunity to authenticate devices assembled by third 

parties. This method identifies components based on the modulated signals emanated while 

they are excited in a controlled manner. When testing an unknown component, the spectrum 

is compared to previously recorded training signatures. To improve efficiency, the size of the 

spectrum is reduced by projecting it into a vector space generated from training signatures. The 

identity of the tested component is then determined using a k-Nearest Neighbors algorithm. 

This method successfully classified memory, processor, and Ethernet transceiver components 

integrated on seven types of Internet-of-Things devices. Since manufacturers commonly use 

the same components in multiple designs, cross-type testing of motherboards is conducted. 

Collecting the training signatures on one motherboard and testing components from different 

motherboards speeds up the process and decreases the cost. Using measurements taken while 

exciting the components for 1 s, our method achieves a classification accuracy greater than 

96% across all components tested. These results demonstrate that this method can recognize 
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components based on their emanations, even if the components are integrated onto completely 

different motherboards. 
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[7] S. Sangodoyin, F. Werner, B. B. Yilmaz, C-L Cheng, E. M. Ugurlu,, N. Sehatbakhsh, M. 
Prvulovic, and A. Zajic, “Side-channel propagation measurements and modeling for hardware 
security in IoT devices,” to appear in IEEE Transactions on Antennas and Propagation, 2020. 

 
Abstract: The ubiquitous inter-connectivity of electronic devices offered by Internet-

of-Things (IoT) networks has been increasingly embraced in a wide range of applications. In 

IoT networks, threats to hardware security are often not perceived as serious, with the 

assumption that an attack could only be carried out at close proximity. However, in this paper, 

we show that through Electromagnetic (EM) side-channel signal leakage, operational 

information and program activities of IoT devices and Field Programmable Gate Array 

(FPGA) modules can be garnered from approximately 200 m away in an outdoor Line-of- Sight 

(LOS) environment. We describe an extensive measurement campaign conducted to 

investigate the aforementioned leakage and provide propagation models that can be used to 

predict the power (and corresponding variation i.e., shadowing gain) of the EM side-channel 

signal emanation at various distances, scenarios and environments. Our results show that the 

received power of the emanated EM side-channel (carrier) signal varies from about -61.64 

dBm at 1 m to about -112 dBm at 200 m in the outdoor LOS environment. Furthermore, a 

received signal power of about -73.55 dBm was observed at 1 m and -88 dBm was recorded at 

10 m in an indoor LOS environment. Power variation (shadowing gain) of about 3.6 dB and 

2.0 dB were observed in the outdoor and indoor environments, respectively. This work is 

relevant for EM side-channel leakage countermeasure development and 
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provides pertinent information to embedded systems and wireless network security 

engineers. 
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[8] L. Nguyen, C. Cheng, F. Werner, M. Prvulovic, and A. Zajic, “A comparison of backscattering, 
EM, and power side-channels and their performance in detecting software and hardware 
intrusions,” in Journal of Hardware and System Security, March 2020.  

 

Abstract: Side-channel analysis is a powerful tool from both an attacker's and defender's 

perspective. Understanding similarities and differences among types of side-channels is a 

necessary step in better utilization of side-channels. This paper addresses this problem by modeling 

and quantitatively comparing backscattering, electromagnetic (EM), and power side-channels and 

discusses the performance of these three side-channels for detecting software malware and 

hardware Trojans (HT). The results show that for larger changes in the signals, such as those 

caused by malware intrusions, all three side-channels perform similarly. However, when smaller 

changes need to be observed, such as those caused by HTs, the backscattering side-channel 

outperforms EM and power side channels. 
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[9] B. Yilmaz, N. Sehatbakhsh, A. Zajić and M. Prvulovic, “Communication model and capacity
limits of covert channels created by software activities,” in IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1891-1904, 2020.

Abstract: It has been shown that digital and/or analog characteristics of electronic 

devices during executing programs can create a side-channel which an attacker can exploit to 

extract sensitive information such as cryptographic keys. When the attacker modifies the 

software application to exfiltrate sensitive information through a channel, this channel is called 

a covert channel. In this paper, we model this covert channel as a communication channel and 

derive upper and lower capacity bounds. Because the covert channels are not designed to 

transmit information, they are exposed not only to the errors created by the transmission, but 

also by varying the execution time of computer activities, and/or by insertions from other 

activities such as interrupts, stalls, etc. Combining all of these effects, we propose to model the 

covert channel as an insertion channel where the transmitted sequence is a pulse amplitude 

modulated signal with random pulse positions. Utilizing this model, we derive capacity bounds 

of the covert channel with random insertion and substitution due to the noise and jitter errors, 

and propose a receiver design that can correctly detect the computer-activitycreated signals. 

To illustrate the severity of leakages, we perform experiments with high clock speed devices 

at some distance. Further, the theoretical derivations are compared to empirical results, and 

show good agreement. 
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[10] B. Yilmaz, M. Prvulovic, and A. Zajic, “Electromagnetic side-channel information leakage 
created by execution of series of instructions in a computer processor in IEEE Transactions on 
Information Forensics and Security, vol. 15, pp. 776-789, 2020.  

 
Abstract: The side-channel leakage is a consequence of program execution in a 

computer processor, and understanding relationship between code execution and information 

leakage is a necessary step in estimating information leakage and its capacity limits. This paper 

proposes a methodology to relate program execution to electromagnetic side-channel 

emanations, and estimates side-channel information capacity created by execution of series of 

instructions (e.g. a function, a procedure, or a program) in a processor. To model dependence 

among program instructions in a code, we propose to use Markov Source model, which 

includes the dependencies among sequence of instructions as well as dependencies among 

instructions as they pass through a pipeline of the processor. The emitted EM signals during 

instruction executions are natural choice for the inputs into the model. To obtain the channel 

inputs for the proposed model, we derive a mathematical relationship between the emanated 

instruction signal power (ESP) and total emanated signal power while running a program. 

Then, we derive leakage capacity of electromagnetic (EM) side channels created by execution 

of series of instructions in a processor. Finally, we provide experimental results to demonstrate 

that leakages could be severe and that a dedicated attacker could obtain important information. 
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[11] Nader Sehatbakhsh, Alireza Nazari, Monjur Alam, Frank Werner, Yuanda Zhu, Alenka
Zajic, and Milos Prvulovic, “REMOTE: Robust External Malware Detection Framework by
Using Electromagnetic Signals,” in IEEE Transactions on Computers, 69, no. 3, pp. 312-326,
1 March 2020.* – chosen for the Featured Paper

Abstract: Cyber-physical systems (CPS) are controlling many critical and sensitive 

aspects of our physical world while being continuously exposed to potential cyber-attacks. 

These systems typically have limited performance, memory, and energy reserves, which limits 

their ability to run existing advanced malware protection, and that, in turn, makes securing 

them very challenging. To tackle these problems, this paper proposes, REMOTE, a new robust 

framework to detect malware by externally observing Electromagnetic (EM) signals emitted 

by an electronic computing device (e.g., a microprocessor) while running a known application, 

in real-time and with a low detection latency, and without any a priori knowledge of the 

malware. REMOTE does not require any resources or infrastructure on, or any modifications 

to, the monitored system itself, which makes REMOTE especially suitable for malware 

detection on resource-constrained devices such as embedded devices, CPSs, and Internet of 

Things (IoT) devices where hardware and energy resources may be limited. To demonstrate 

the usability of REMOTE in real-world scenarios, we port two real-world programs (an 

embedded medical device and an industrial PID controller), each with a meaningful attack (a 

code-reuse and a code-injection attack), to four different hardware platforms. We also port 

shellcode-based DDoS and Ransomware attacks to five different standard applications on an 
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embedded system. To further demonstrate the applicability of REMOTE to commercial CPS, 

we use REMOTE to monitor a Robotic Arm. Our results on all these different hardware 

platforms show that, for all attacks on each of the platforms, REMOTE successfully detects 

each instance of an attack and has < 0.1% false positives. We also systematically evaluate the 

robustness of REMOTE to interrupts and other system activity, to signal variation among 

different physical instances of the same device design, to changes over time, and to plastic 

enclosures and nearby electronic devices. This evaluation includes hundreds of measurements 

and shows that REMOTE achieves excellent accuracy (< 0.1% false positive and >99.9% true 

positive rates) under all these conditions.  
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[12] H.  Khan, N. Sehatbakhsh, L. Nguyen, Milos Prvulovic, and Alenka Zajic, “Malware
detection in embedded systems using neural network model for electromagnetic side-channel
signals,” Journal of Hardware and System Security, 305–318, August 2019.

Abstract: We propose a novel malware detection system for critical embedded and cyber-

physical systems (CPS). The system exploits electromagnetic (EM) side-channel signals from the 

device to detect malicious activity. During training, the system models EM emanations from an 

uncompromised device using a neural network. These EM patterns act as fingerprints for the 

normal program activity. Next, we continuously monitor the target device's EM emanations. Any 

deviation in the device's activity causes a variation in the EM fingerprint, which in turn violates 

the trained model, and is reported as an anomalous activity. The system can monitor the target 

device remotely (without any physical contact), and does not require any modification to the 

monitored system. We evaluate the system with different malware behavior (DDoS, Ransomware 

and Code Modification) on different applications using an Altera Nios-II soft-processor. 

Experimental evaluation reveals that our framework can detect DDoS and Ransomware with 100% 

accuracy (AUC = 1.0), and stealthier code modification (which is roughly a 5 µs long attack) with 

an AUC = 0.99, from distances up to 3 m. In addition, we execute control- ow hijack, DDoS and 

Ransomware on different applications using an A13-OLinuXino – a Cortex A8 ARM processor 

single board computer with Debian Linux OS. Furthermore, we evaluate the practicality and the 

robustness of our system on a medical CPS, implemented using two different devices (TS-7250 
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and A13-OLinuXino), while executing a control-ow hijack attack. Our evaluations show that our 

framework can detect these attacks with 100% accuracy. 
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[13] Haider A. Khan, Nader Sehatbakhsh, Luong N. Nguyen, Robert Callan, Arie Yeredor, 
Milos Prvulovic, and Alenka Zajic, “IDEA: intrusion detection through electromagnetic-signal 
analysis for critical embedded and cyber-physical systems,” in IEEE Transactions on 
Dependable and Secure Computing, 2019.  

 
Abstract: We propose a novel framework called IDEA that exploits electromagnetic 

(EM) side-channel signals to detect malicious activity on embedded and cyber-physical 

systems (CPS). IDEA first records EM emanations from an uncompromised reference device 

to establish a baseline of reference EM patterns. IDEA then monitors the target device’s EM 

emanations. When the observed EM emanations deviate from the reference patterns, IDEA 

reports this as an anomalous or malicious activity. IDEA does not require any resource or 

infrastructure on, or any modification to, the monitored system itself. In fact, IDEA is isolated 

from the target device, and monitors the device without any physical contact. We evaluate 

IDEA by monitoring the target device while it is executing embedded applications with 

malicious code injections such as DDoS, Ransomware and code modification. We further 

implement a control-flow hijack attack, an advanced persistent threat, and a firmware 

modification on three CPSs: an embedded medical device called SyringePump, an industrial 

PID Controller, and a Robotic Arm, using a popular embedded system, Arduino UNO. The 

results demonstrate that IDEA can detect different attacks with excellent accuracy (AUC > 

99.5%, and 100% detection with less than 1% false positives) from distances up to 3 m. 
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[14] J. Dinkić, D. Olcan, A. Djordjević, and A. Zajic,” Design and Optimization of Nonuniform 
helical antennas with linearly varying geometrical parameters,” IEEE Access 7, pp. 855-866, 
2019.  

 
ABSTRACT Nonuniform helical antennas have many degrees of freedom, which 

makes the search space for the optimal design very challenging. The objective of this paper is 

to systematically analyze nonuniform helical antennas with linearly varying geometrical 

parameters and to provide analytical equations that approximate the optimal design and the 

gain of the designed antennas. Using various optimization algorithms, we made a large 

database of the optimal nonuniform helical antennas with linearly varying geometrical 

parameters. Based on these results, we made analytical equations that approximate the optimal 

design and the gain of the designed antennas. These equations allow for a fast design procedure 

yielding all necessary parameters needed for the design and fabrication of nonuniform helical 

antennas that meet specified characteristics. Special attention is devoted to antenna losses. 

Antennas designed following the presented procedure achieve around 2.5 dB higher gain than 

uniform helical antennas of the same axial length, while maintaining the bandwidth and axial 

ratio. As a verification of the proposed design procedure, a helical antenna with the central 

operating frequency of 1 GHz was designed, simulated, fabricated, and measured. The 
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comparison between measured and simulated results confirms the validity of the presented 

design procedure. 
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[15] Sinan Adibelli, Prateek Juyal, Chia-Lin Cheng, and Alenka Zajic, “THz near field focusing 
using a 3D printed Cassegrain configuration for backscattered side-channel detection,” IEEE 
Transactions on Antennas and Propagation, vol. 67, no. 10, pp. 6627-6638, October 2019.  

 

Abstract: This paper presents the use of THz near field focusing for backscatter side 

channel detection. Near field focusing is done by using cassegranian reflector configuration. 

The focuser is designed to produce the focused beam 28 cm away from the antenna aperture. 

The focusing is done in the near field region by axially moving the sub-reflector from the focal 

point. It is observed that the sub-reflector position has to shift approximately 11 wavelengths 

along the axis to create the focus at the required location. The focused antenna gain is 46 dBi 

while the 3 dB focus width and depth of the designed antenna is ~ 4 mm and 10 cm, 

respectively. It is found that the focal plane position is sensitive to the sub-reflector shifts and 

it is observed that 1 mm change in the sub-reflector position can shift the focal plane by ~ 2 

cm. The simulations are compared with measurement results of a fabricated prototype and 

good agreement is observed. The antenna is fabricated by using 3D printing technology, which 

allows rapid prototyping. Finally, we have demonstrated the detection of backscatter side 

channel from the board placed at 28 cm away from the designed antenna. The received power 

level of the backscatter signal increases by 6 dB as compared to horn antenna. 
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[16] M. Ruble, C. E. Hayes, M. Welborn, A. Zajić, M. Prvulovic and A. M. Pitruzzello,
“Hyperdimensional Bayesian Time Mapping (HyperBaT): A Probabilistic Approach to Time
Series Mapping of Non-Identical Sequences,” in IEEE Transactions on Signal Processing, vol.
67, no. 14, pp. 3719-3731, July, 2019.

Abstract: A common problem in time series analysis is mapping the related elements 

between two sequences as they progress in time. Methods such as dynamic time warping (DTW) 

and hidden Markov models (HMM) have good performance in mapping time series signals with 

repeated (warped) elements relative to a reference signal. However, there is not an adequate 

method for mapping time series signals with inserted or deleted elements. This work introduces 

hyper-dimensional Bayesian time-mapping (HyperBaT), a machine learning algorithm that maps 

two time sequence signals that may contain inserted, deleted, or warped elements. Additionally, 

HyperBaT estimates the common underlying signal shared between the two sequences. The 

algorithm is presented in a general context so that it can be used in a variety of applications. There 

are many relevant areas, including speech processing, genetic sequencing, electronic warfare, 

communications, and radar processing, that process signals containing inserted or deleted 

elements. As an example, HyperBaT is applied to side-channels where it maps radio frequency 

(RF) side-channel signals emitted from a computing device processor, which can be used to track 

control flow execution and monitor for malicious activity. 
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[17] Jelena Dinkić, Dragan Olcan, Antonije Djordjević, and Alenka G. Zajic,” High-Gain Quad 
Array of Nonuniform Helical Antennas,” International Journal of Antennas and Propagation, 
vol. 2019, Article ID 8421809, 12 pages, 2019.  

 

Abstract: We present a design of a high-gain quad array of non-uniform helical antennas. 

The design is obtained by optimization of a 3-D numerical model of four non-uniform helical 

antennas placed above a ground plane, including a model of a feeding network, utilizing the 

method of moments with higher-order basis functions. The gain of one optimal non-uniform 

helical antenna can be for about 2.5 dB higher than the gain of a uniform helical antenna of the 

same axial length. Creating a 2×2 array further increases the gain for up to about 6 dB. The 

resulting quad array fits into a box of dimensions 2.5×3.3×3.3 wavelengths and the gain in the 

main radiating direction is about 20.5 dBi in the frequency range from 0.9 GHz to 1.1 GHz. The 

design is verified by measurements of a prototype of the quad array. 
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[18] Prateek Juyal, Sinan Adibelli, Alenka Zajic “A Directive Antenna Based on Conducting 
Disc for Detecting Unintentional EM Emissions at Larger Distances,” IEEE Transactions on 
Antennas and Propagation, vol.66, pp. 6751-6761, December 2018.  

 

Abstract: This paper proposes a novel high gain planar antenna design that consists of 

conducting metallic discs suspended on air and operates at 1 GHz. The antenna is designed for 

receiving the unintentional EM emanations generated by one or multiple embedded, “smart” 

electronic systems. The antenna consists of two layers of slotted conducting metal discs suspended 

on air and placed above the ground plane using teflon screws. The circular discs are designed to 

operate in higher order 𝑻𝑻𝑴𝑴𝑴𝑴𝑴𝑴 mode. The screws location are the electric field nulls along the disc 

radius. The upper layer is 2×2 array of slotted circular discs electromagnetically coupled by lower 

identical disc which is fed directly by a single coaxial feed. The complete fabrication of antenna 

is done using aluminum metal sheets and involves no use of dielectric substrate. The antenna has 

a peak gain of 19 dBi with impedance bandwidth (𝑺𝑺𝑴𝑴𝑴𝑴 ≤ −𝟔𝟔 dB) of 6.7%. The simple and cost 

effective design can be easily scaled to higher frequencies. 

 

 

[19] Baki Berkay Yilmaz, Robert Callan, Milos Prvulovic, and Alenka Zajic, “Capacity of the 
EM Covert/Side-Channel Created by the Execution of Instructions in a Processor,” IEEE 
Transactions on Information Forensics and Security, vol. 13, pp. 605-620, June 2018. 
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Abstract: The goal of this paper is to answer how much information is “transmitted” 

by execution of particular sequence of instructions in a processor. Introducing such a measure 

would provide quantitative guidance for designing programs and computer hardware that 

minimizes inadvertent (side channel) information leakage, and would also help detect parts of 

a program or hardware design that have unusually high leakage (i.e. were designed to function 

as covert channel “transmitters”). To answer this question, we propose a new method to 

estimate the maximum information leakage through EM signals generated by execution of 

instructions in a processor. We start by deriving a mathematical relationship between 

electromagnetic side-channel energy (ESE) of individual instructions and the measured 

pairwise side-channel signal power. Then, we use this measure to calculate the transition 

probabilities needed for estimating capacity. Finally, we propose a new method to estimate 

side/covert channel capacity created by the execution of instructions in a processor and 

illustrate our results in several computer systems. 

 

 

[20] Frank Werner, Derrick Chu, Antonije R. Djordjevic, Dragan I. Olcan, Milos Prvulovic, and 
Alenka Zajic, “A Method for Efficient Localization of Magnetic-field Sources Excited by the 
Execution of Instructions in a Processor,” IEEE Transactions on Electromagnetic 
Compatibility, vol. 60, pp. 613-622, June 2018. 

 
Abstract: This paper proposes a method for efficient identification of instruction 

dependent sources on a printed-circuit board (PCB) by localizing magnetic field sources from 
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a limited number of measurements around the PCB. We first excite the processor by generating 

an artificial leakage signal at a specific frequency that is directly related to processor 

instructions. Then, we collect all three components of the magnetic field, but only at locations 

around the edge of the board. Furthermore, we model these magnetic field sources and then 

solve a forward-backward optimization problem using the model and measured data to identify 

the locations of the magnetic field sources, the magnitudes of the moments, and their 

orientations. The localization results are first verified using simulations, then tested when noise 

is added to the simulation results, and finally verified against measurements on FPGA and IoT 

development boards. The results show that the number of strong magnetic field sources on a 

board depends on the instructions used to excite the board. Furthermore, the results show that 

the proposed localization algorithm can accurately identify those sources, regardless of the 

frequency at which the measurements are conducted and the instruction pairs that are executed. 

Finally, the proposed method can significantly reduce the number of measurement points and 

the time needed to identify magnetic field sources on a PCB. 
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[21] M. Prvulovic, A. Zajić, R. Callan, and C. Wang, “A method for finding frequency-
modulated and amplitude-modulated electromagnetic emanations in computer systems,” IEEE 
Transactions on Electromagnetic Compatibility, vol. 59, no 1, pp. 34-42, 2017. 

Abstract: This paper presents an algorithm for finding carriers of frequency-modulated 

(FM) and amplitude-modulated (AM) electromagnetic (EM) emanations from computer 

systems. Computer systems create EM emanations across the RF spectrum making it difficult, 

error-prone, and time-consuming to find the relatively few emanations that expose sensitive 

information. One of the most common and simplest mechanisms for information leakage 

occurs when an amplitude or a frequency of an existing strong signal (e.g., a processor or 

memory clock) is amplitude or frequency modulated by a system activity. If the system activity 

can be linked to sensitive information, this results in information leakage. We present an 

algorithm for automatically finding these AM and FM modulated signals, demonstrate the 

algorithm’s performance on several different types of processors and systems (desktop, laptop, 

and smart phone), and compare the results to an exhaustive manual search. We also verify that 

all signals identified by the algorithm can be traced to plausible unintentional modulation 

mechanisms to illustrate that these signals can potentially cause information leakage. This 

algorithm can be an important tool for system designers to quickly identify circuits that are 

leaking sensitive information. 
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[22] J. Dinkic, D.  Olcan, A. Djordjevic, A. Zajic, “Comparison of the optimal uniform and 
nonuniform lossy helical antennas,” IEEE Proceedings of AP-S/URSI, pp. 1-2, July 2020, 
Montreal, Canada.  

 
Abstract: Various uniform and non-uniform helical antennas are used in practice. In 

this paper we compare uniform and non-uniform helical antennas with respect to their losses. 

Further, we present the ranges of wire conductivities for which the non-uniform antennas are 

preferable choice and the conductivities where uniform antennas are recommended. 
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[23] B. Yilmaz, E. Ugurlu, A. Zajic, and M. Prvulovic, “Cell-phone classification: a 
convolutional neural network approach exploiting electromagnetic emanations,” in 
Proceedings of ICASSP, pp. 1-5, May 2020, Barcelona, Spain.  

 

Abstract: In this paper, we propose a methodology to identify both the brand of a cell-

phone, and the status of its camera by exploiting electromagnetic (EM) emanations. The 

method composes two parts: Feature extraction and Convolutional Neural Netwotk (CNN). 

We first extract features by averaging magnitudes of short-time Fourier transform (STFT) of 

the measured EM signal, which helps to reduce input dimension of the neural network, and to 

filter spurious emissions. The extracted features are fed into the proposed CNN, which contains 

two convolutional layers (followed by max-pooling layers), and four fully-connected layers. 

Finally, we provide experimental results which exhibit more than 99% classification accuracy 

for the test signals. 
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[24] B. Yilmaz, E. Ugurlu, F. Werner, A. Zajic, and M. Prvulovic, “Program profiling based on
Markov models and EM emanations,” in Proceedings of SPIE, April 2020, Anaheim, CA.

Abstract: As one of the fundamental approaches for code optimization and 

performance analysis, profiling software activities can provide information on the existence of 

malware, code execution problems, etc. In this paper, we propose a methodology to profile a 

system with no overhead. The approach leverages electromagnetic (EM) emanations while 

executing a program, and exploits its flow diagram by constructing a Markov model. The states 

of the model are considered as the heavily executed blocks (called hot paths) of the program, 

and the transition between any two states is possible only if there exists a branching operation 

which enables execution of corresponding states without any intermediate state. To identify 

the state of the program, we utilize a supervised learning method. To do so, we first collect 

signals for each state, extract features, and generate a dictionary. The features are considered 

as the activated frequencies when the program is executed. The assumption here is that there 

exists at least one unique frequency component that is only active for one unique state. 

Moreover, to degrade the effect of interruptions and other signals emanated from other parts 

of the device, and to obtain signals with high Signal-to-Noise Ratio (SNR), we average the 

output of Short-Time Fourier Transform (STFT). After extracting features, we apply Principle 

Component Analysis (PCA) for dimension reduction which helps monitoring systems in real 
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time. Finally, we describe experimental setup and show results to demonstrate that the 

proposed methodology can detect malware activity with high accuracy. 
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[25] L. Nguyen, B. Yilmaz, C. Cheng, M. Prvulovic, and A. Zajic, “A novel clustering
technique using backscattering side-channel for counterfeit IC detection,” in Proceedings of
SPIE, April 2020, Anaheim, CA.

Abstract: Over the past few years, globalization of the semiconductor supply chain 

has led companies to outsource much of the production cycle for integrated circuits (ICs). 

While outsourcing helps companies significantly reduce their cost and time-to-market, it also 

introduces concerns about the trustworthiness of an IC. One of the most serious problems is 

counterfeiting of ICs, which not only negatively impacts innovation and economic growth of 

the IC industry, but also creates serious threats and risks for systems that incorporate those 

counterfeit ICs. This paper proposes a novel method that uses the backscattering side-channel 

to cluster ICs such that counterfeits are separated from legitimate ICs. The backscattering side-

channel, which has been introduced only recently, has been proven to outperform other side-

channels in detecting hardware Trojan horses (HTs), i.e. ICs where additional logic gates (and 

connections to existing logic gates) have been added. In this work we use it to robustly separate 

ICs into legitimate and counterfeit ones, even when only layout or placement of the IC has 

changed, without any added logic or connections. We evalute our technique on a set of ten 

boards over six different counterfeit IC designs, and find that our technique tolerates 

manufacturing variations among different hardware instances, detecting counterfeit ICs with 

100% accuracy and 0% false positives. 
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[26] Sangodoyin, F. Werner, B. B. Yilmaz, C. Cheng, E. M. Ugurlu, N. Sehatbakhsh, M. 
Prvulovic, and A. Zajic, “Remote monitoring and propagation modeling of EM side-channel 
signals for IoT device security,” in Proceedings of 14th European Conference on Antennas and 
Propagation (EuCAP), pp. 1-5., March 2020, Copenhagen, Denmark.  

 
Abstract: This paper presents results from an investigation into long-range detection 

and monitoring of Electromagnetic (EM) side-channel signals leaked from Internet-of-Things 

(IoT) and Field Programmable Gate Array (FPGA) devices. Our work shows that operational 

information and program activities of the IoT and FPGA modules can be garnered at distances 

excess of 25 m in an indoor Line-Of-Sight (LOS) environment, while at about 10 m in an 

indoor (through wall) Non-Line-Of-Sight (NLOS) scenario. We provide a propagation model 

that can be used to predict the received power (and corresponding variation i.e., shadowing 

gain) of leaked EM side-channel signals at various distances and scenarios. Benchmark 

program bitcount used in the performance evaluation of ARM-based microprocessors and a 

microbenchmark SAVAT running on an IoT device were detected and monitored remotely in 

our work. 
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[27] Nader Sehatbakhsh, Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “A New Side-
Channel Vulnerability on Modern Computers by Exploiting Electromagnetic Emanations from 
the Power Management Unit,” in Proceedings of the 26th IEEE International Symposium on 
High-Performance Computer Architecture, 2020.  
 

Abstract: This paper presents a new micro-architectural vulnerability on the power 

management units of modern computers which creates an electromagnetic-based side channel. 

The key observations that enable us to discover this side-channel are 1) in an effort to manage 

and minimize power consumption, modern microprocessors have a number of possible 

operating modes (power states) in which various sub-systems of the processor are powered 

down, 2) for some of the transitions between power states, the processor also changes the 

operating mode of the voltage regulator module (VRM) that supplies power to the affected 

sub-system, and 3) the electromagnetic (EM) emanations from the VRM are heavily dependent 

on its operating mode. As a result, these state-dependent EM emanations create a side-channel 

which can potentially reveal sensitive information about the current state of the processor and, 

more importantly, the programs currently being executed. To demonstrate the feasibility of 

exploiting this vulnerability, we create a covert channel by utilizing the changes in the 

processor’s power states. We show how such a covert channel can be leveraged to exfiltrate 

sensitive information from a secured and completely isolated (air-gapped) laptop system by 

placing a compact, inexpensive receiver in close proximity to that system. To further show the 

severity of this attack, we also demonstrate how such a covert channel can be established when 
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the target and the receiver are several meters away from each other, including scenarios where 

the receiver and the target are separated by a wall. Compared to the state-of-the-art, the 

proposed covert channel has >3x higher bit-rate. Finally, to demonstrate that this new 

vulnerability is not limited to being used as a covert channel, we demonstrate how it can be 

used for attacks such as keystroke logging. 
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[28] Nader Sehatbakhsh, Baki Yilmaz, Alenka Zajic, Milos Prvulovic, “EMSim: A
Microarchitecture-Level Simulation Tool for Modeling Electromagnetic Side-Channel
Signals,” in Proceedings of the 26th IEEE International Symposium on High-Performance
Computer Architecture, 2020. – nominated for the best paper award

Abstract: Side-channel attacks have become a serious security concern for computing 

systems, especially for embedded devices, where the device is often located in, or in close 

proximity to, a public place, and yet the system contains sensitive information. To design 

systems that are highly resilient to such attacks, an accurate and efficient design stage 

quantitative analysis of side-channel leakage is needed. For many system properties (e.g., 

performance, power, etc.), cycle-accurate simulation can provide such an efficient-yet-accurate 

design-stage estimate. Unfortunately, for an important class of side-channels, electromagnetic 

emanations, such a model does not exist, and there has not even been much quantitative 

evidence about what level of modeling detail (e.g., hardware, microarchitecture, etc.) would 

be needed for high accuracy. This paper presents EMSim, an approach that enables simulation 

of the electromagnetic (EM) side-channel signals cycle-by-cycle using the detailed micro-

architectural model of the device. To evaluate EMSim, we compare the simulated signals 

against actual EM signals emanated from real hardware (a RISC-V processor implemented on 

an FPGA), and find that they match very closely. To gain further insights, we also 

experimentally identify how the accuracy of the simulation degrades when key micro-

architectural features (e.g., pipeline stall, cache-miss, etc.) and other hardware behaviors (e.g., 
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data-dependent switching activity) are omitted from the simulation model. We further evaluate 

how robust the simulation-based results are, by comparing them to real signals collected in 

different conditions (manufacturing, distance, etc.). Finally, to show the applicability of 

EMSim, we demonstrate how it can be used to measure side-channel leakage through 

simulation at design-stage. 

 

  



247 

Approved for public release; Distribution is unlimited. 

 

 

[29] Baki Yilmaz, Elvan Ugurlu, Alenka Zajic, and Milos Prvulovic, “Detecting Cellphone 
Camera Status at Distance by Exploiting Electromagnetic Emanations,” in Proceedings of 
IEEE MILCOM, November 2019, pp. 1-6, Norfolk, VA.  

 
Abstract: This paper investigates unintended radiated emissions from cellphones to 

identify operational status of rear/front camera. We implement a supervised learning method 

to achieve our goal. In the training phase, we collect data for possible combinations of phone 

model and camera status. Then, we apply two-phase-dimension-reduction method for better 

and effective classification. The first dimension-reduction phase is averaging magnitudes of 

frequency components of a sliding window, which is followed by applying principle 

component analysis (PCA) technique to reduce the dimension further. In testing phase, k 

Nearest-Neighbors (k-NN) algorithm is utilized to classify test data. Finally, we provide 

examples to show that emanated EM signals from cellphone cameras can exfiltrate useful 

information. 
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[30] Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “Capacity of EM Side Channel Created 
by Instruction Executions in a Processor,” in Proceedings of IEEE IEMCON, October 2019, 
pp. 1-5, Vancouver, CA.  

 
Abstract: This paper proposes a methodology to estimate leakage capacity of 

electromagnetic (EM) side channels created by execution of instruction sequences (e.g. a 

function, a procedure, or a program) in a processor. We propose to use Markov Source model 

to include the dependencies that exist in instruction sequence since each program code is 

written systematically to serve a specific task. The channel input sources are considered as the 

emitted EM signals while executing an instruction. We derive a mathematical relationship 

between the emanated instruction power (IP) and total emanated signal power while running a 

microbenchmark to obtain the channel input powers. The results demonstrate that leakages 

could be severe enough for a dedicated attacker to obtain some prominent information. 
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[31] Nader Sehatbakhsh, Alireza Nazari, Haider Khan, Alenka Zajic, and Milos Prvulovic,
“EMMA: Hardware/Software Attestation Framework for Embedded Systems Using
Electromagnetic Signals,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp.1-11, 12-15 October 2019, Columbus, OH.

Abstract: Establishing trust for an execution environment is an important problem, and 

practical solutions for it rely on attestation, where an untrusted system (prover) computes a 

response to a challenge sent by the trusted system (verifier). The response computation typically 

involves calculating a checksum of the prover’s program, which the verifier checks against 

expected values for a “clean” (trustworthy) system. The main challenge in attestation is that, in 

addition to checking the response, the verifier also needs to verify the integrity of the response 

computation itself, i.e., that response computation itself has not been tampered with to produce 

expected values without measuring the verifier’s actual code and environment. On higher-end 

processors, this integrity is verified cryptographically, using dedicated trusted hardware. On 

embedded systems, however, constraints prevent the use of such hardware support. Instead, a 

popular approach is to use the request-to-response time as a way to establish confidence. However, 

the overall request-to-response time provides only one coarse-grained measurement from which 

the integrity of the attestation is to be inferred, and even that is noisy because it includes the 

network latency and/or variations due to micro-architectural events. Thus, the attestation is 

vulnerable to attacks where the adversary has tampered with response computation, but the 

resulting additional computation time is small relative to the overall request-to-response time. In 
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this paper, we make a key observation that the existing approach of execution-time measurement 

for attestation is only one example of using externally measurable side-channel information and 

that other side-channels, some of which can provide much finer-grain information about the 

computation, can be used. As a proof of concept, we propose EMMA, a novel method for 

attestation that leverages electromagnetic side-channel signals that are emanated by the system 

during response computation, to confirm that the device has, upon receiving the challenge, actually 

computed the response using the valid program code for that computation. This new approach 

requires physical proximity, but imposes no overhead to the system, and provides accurate 

monitoring during the attestation. We implement EMMA on a popular embedded system, Arduino 

UNO, and evaluate our system with a wide range of attacks on attestation integrity. Our results 

show that EMMA can successfully detect these attacks with high accuracy. We compare our 

method with the existing methods and show how EMMA outperforms them in terms of security 

guarantees, scalability, and robustness. 

  

[32] Frank Werner, Antonije Djordjevic, and Alenka Zajic, “A compact probe for EM side-
channel attacks on cryptographic systems,” in Proceedings of IEEE International Symposium 
on Antennas and Propagation, pp. 1-2, July 2019, Atlanta, GA.  

 
Abstract: A shielded loop probe design for evaluating EM side-channels attacks on 

cryptographic systems is described. This probe is compact and is sensitive enough to measure 

extremely weak signals that usually comprise EM side-channels. Furthermore, this probe can 
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greatly suppress the influence of the electric field on its measurements. At its center frequency, 

the probe has a sensor factor of -0.17 dB S/m and electric field suppression ratio of 30.18 dB. 
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[33] Richard Rutledge, Sunjae Park, Haider Khan, Alessandro Orso, Milos Prvulovic, and 
Alenka Zajic, “Zero-overhead path prediction with progressive symbolic execution,” In 
Proceedings of the IEEE 41st International Conference on Software Engineering (ICSE ’19), 
pp. 234-245, May 2019, Montreal CA.  

 
Abstract: In previous work, we introduced zero-overhead profiling (ZOP), a technique 

that leverages the electromagnetic emissions generated by the computer hardware to profile a 

program without instrumenting it. Although effective, ZOP has several shortcomings: it 

requires test inputs that achieve extensive code coverage for its training phase; it predicts path 

profiles instead of complete execution traces; and its predictions can suffer unrecoverable 

accuracy losses. In this paper, we present zero-overhead path prediction (ZOP-2), an approach 

that extends ZOP and addresses its limitations. First, ZOP-2 achieves high coverage during 

training through progressive symbolic execution (PSE)—symbolic execution of increasingly 

small program fragments. Second, ZOP-2 predicts complete execution traces, rather than path 

profiles. Finally, ZOP-2 mitigates the problem of path mispredictions by using a stateless 

approach that can recover from prediction errors. We evaluated our approach on a set of 

benchmarks with promising results; for the cases considered, (1) ZOP-2 achieved over 90% 

path prediction accuracy, and (2) PSE covered feasible paths missed by traditional symbolic 

execution, thus boosting ZOP-2’s accuracy. 
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[34] Baki Yilmaz, Elvan Ugurlu, Alenka Zajic, Milos Prvulovic, “Instruction level program
tracking using electromagnetic emanations,” Proceedings of SPIE, pp.1-6, April 2019,
Baltimore, MD.

Abstract: Monitoring computer system activities on the instruction level provides 

more resilience to malware attacks because these attacks can be analyzed better by observing 

the changes on the instruction level. Assuming the source code is available, many training 

signals can be collected to track the instruction sequence to detect whether a malware is 

injected or the system works properly. However, training signals have to be collected with high 

sampling rate to ensure that the significant features of these signals do not vanish. Since the 

clock frequencies of the current computer systems are extremely high, we need to have a 

commercial device with high sampling rate, i.e. 10GHz, which either costs remarkably high, 

or does not exist. To eliminate the deficiencies regarding the insufficient sampling rate, we 

propose a method to increase the sampling rate with the moderate commercial devices for 

training symbols. In that respect, we first generate some random instruction sequences which 

exist in the inspected source code. Then, these sequences are executed in a for-loop, and 

emanated electromagnetic (EM) signals from the processor are collected by a commercially 

available device with moderate sampling rate, i.e. sampling rate is much smaller than the clock 

frequency. Lastly, we apply a mapping of the gathered samples by utilizing modulo of their 

timings with respect to execution time of overall instruction sequence. As the final step, we 
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provide some experimental results to illustrate that we successfully track the instruction 

sequence by applying the proposed approach. 
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[35] Baki Yilmaz, Alenka Zajic, and Milos Prvulovic, “Capacity of deliberate side-channels 
created by software activities,” Proceedings of IEEE MILCOM, October 2018, pp. 1-6, Los 
Angeles, CA. 

 
Abstract: It has been shown that electromagnetic (EM) emanations that are result of 

instruction executions in a computer system can create a wireless side-channel which attackers 

can use to extract sensitive information such as a cryptography key. When an attacker modifies 

the software application to exfiltrate sensitive information through a channel, this channel is 

called a deliberate side-channel or a covert channel. Because deliberate side-channels are not 

created for a conventional wireless communication to transmit information, these channels are 

exposed not only to the errors created by the wireless transmission (the transmitted signal 

propagates through a channel hindered by metal and plastic), but also by varying execution 

time of computer activities, and by insertions from other computer activities such as interrupts. 

Combining all of these effects, we propose to model deliberate side-channels as an insertion 

channel where the transmitted sequence is a pulse amplitude modulated signal with varying 

pulse width. Utilizing this model, we derive upper and lower bounds for the channel capacity 

of the deliberate side-channels. The bounds demonstrate the severity of data leakage through 

deliberate side channels by revealing the potential to transmit high data rates. Moreover, the 

proposed bounds for the channel capacity can be employed by any noisy insertion channel and 

provides more confidential results. 
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[36] M. Dey, A. Nazari, A. Zajic and M. Prvulovic, “EMPROF: Memory Profiling Via EM-
Emanation in IoT and Hand-Held Devices,” 2018 51st Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO), Fukuoka, Japan, 2018, pp. 881-893.  

 

Abstract: This paper presents EMPROF, a new method for profiling the performance 

impact of the memory subsystem without any support on, or interference with, the profiled 

system. Rather than rely on hardware support and/or software instrumentation on the profiled 

system, EMPROF analyzes the system’s EM emanations to identify processor stalls that are 

associated with last-level cache (LLC) misses. This enables EMPROF to accurately pinpoint 

LLC misses in the execution timeline and to measure the cost (stall time) of each miss. Since 

EMPROF has zero “observer effect”, so it can be used to profile applications that adjust their 

activity to their performance. It has no overhead on target machine, so it can be used for 

profiling embedded, hand-held, and IoT devices which usually have limited support for 

collecting, and limited resources for storing, the profiling data. Finally, since EMPROF can 

profile the system as-is, its profiling of boot code and other hard-to-profile software 

components is as accurate as its profiling of application code. To illustrate the effectiveness of 

EMPROF, we first validate its results using microbenchmarks with known memory behavior, 

and also on SPEC benchmarks running a cycle-accurate simulator that can provide detailed 

ground-truth data about LLC misses and processor stalls. We then demonstrate the 
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effectiveness of EMPROF on real systems, including profiling of boot activity, show how its 

results can be attributed to the specific parts of the application code when that code is available, 

and provide additional insight on the statistics reported by EMPROF and how they are affected 

by the EM signal bandwidth provided to EMPROF. 
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[37] M. Alam, H. Khan, M. Day, R. Callan, N. Sinha, A. Zajic, and M. Prvulovic, “One & done 
– A Single-Decryption EM-Based Attack on OpenSSL’s Constant-Time Blinded RSA ,” 
USENIX Security, August 2018.  

 
Abstract: This paper presents the first side channel attack approach that, without 

relying on the cache organization and/or timing, retrieves the secret exponent from a single 

decryption on arbitrary ciphertext in a modern (current version of OpenSSL) fixed window 

constant-time implementation of RSA. Specifically, the attack recovers the exponent’s bits 

during modular exponentiation from analog signals that are unintentionally produced by the 

processor as it executes the constant-time code that constructs the value of each “window” in 

the exponent, rather than the signals that correspond to squaring/multiplication operations 

and/or cache behavior during multiplicand table lookup operations. The approach is 

demonstrated using electromagnetic (EM) emanations on two mobile phones and an embedded 

system, and after only one decryption in a fixed-window RSA implementation it recovers 

enough bits of the secret exponents to enable very efficient (within seconds) reconstruction of 

the full private RSA key. Since the value of the ciphertext is irrelevant to our attack, the attack 

succeeds even when the ciphertext is unknown and/or when message randomization (blinding) 

is used. Our evaluation uses signals obtained by demodulating the signal from a relatively 

narrow band (40 MHz) around the processor’s clock frequency (around 1GHz), which is within 

the capabilities of compact sub-$1,000 software-defined radio (SDR) receivers. Finally, we 

propose a mitigation where the bits of the exponent are only obtained from an exponent in 
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integersized groups (tens of bits) rather than obtaining them one bit at a time. This mitigation 

is effective because it forces the attacker to attempt recovery of tens of bits from a single brief 

snippet of signal, rather than having a separate signal snippet for each individual bit. This 

mitigation has been submitted to OpenSSL and was merged into its master source code branch 

prior to the publication of this paper. 
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[38] J. Dinkić, D. Olćan, A. Zajić, A. Djordjević, “Comparison of optimization approaches for 
designing nonuniform helical antennas,” Proceedings of 2018 IEEE AP-S Symposium on 
Antennas and Propagation and URSI CNC/USNC, Boston, USA, July 8-13, 2018, pp. 1581-
1582. 

 
Abstract: Comparison of various optimization approaches for the design of 

nonuniform helical antennas is presented. The considered helices have linearly varying radius 

and pitch. Results show that this design has many similar (or suboptimal) solutions with 

significant differences in geometry. Combination of particle swarm optimization and Nelder-

Mead simplex algorithm proved to be a robust and an efficient optimization approach. 
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[39] F. Werner, A. R. Djordjevic, D. I. Olcan, M. Prvulovic, and A. Zajic, “Experimental 
validation of localization method for finding magnetic sources on IoT devices,” IEEE 
Proceedings of EMC Europe, pp. 1-5, Amsterdam, Netherlands, August 2018.  

 
Abstract: Recently, we proposed a method for accurately locating instruction-

dependent magnetic field sources on printed circuit boards (PCBs). This method first excites 

the device’s processor by executing an alternating pair of two instructions at a specific 

frequency. Using the measurements of the magnetic field taken around the edges of the PCB 

and the simplex optimization algorithm, locations of the sources are evaluated. In this paper, 

we present extensive experimental verification of this method on two devices, a field-

programmable gate array (FPGA) development board and an Internet of Things (IoT) device. 

The results illustrate that sources of instruction-dependent emanations are confined to a small 

area near the processor and that the positions of these sources are dependent on the specific 

instructions being executed. 
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[40] N. Sehatbakhsh, A. Nazari, M. Alam, A. Zajić, and M. Prvulovic, “Syndrome: spectral 
analysis for anomaly detection on medical IoT and embedded devices,” IEEE International 
Symposium on Hardware Oriented Security and Trust (HOST), pp. 1-8, May 2018, 
Washington DC. 

 

Abstract: Recent advances in embedded and IoT (internet-ofthings) technologies are 

rapidly transforming health-care solutions and we are headed to a future of smaller, smarter, 

wearable and connected medical devices. IoT and advanced health sensors have provided more 

convenience to patients and physicians where physicians can now wirelessly and automatically 

monitor patient’s state. While these medical embedded devices provide a lot of new 

opportunities to improve the health care system, they also introduce a new set of security risks 

since they are connected to networks and run off-the-shelf operating systems. More 

importantly, these devices are extremely hardware and power constrained, which in turn makes 

securing these devices more complex. Implementing complex malware detectors or antivirus 

on these devices is either very costly or infeasible due to these limitations on power and 

resources. In this paper, we propose a new framework called SYNDROME for “externally" 

monitoring medical embedded devices. Our malware detector uses electromagnetic (EM) 

signals involuntary generated by the device as it executes a (medical) application in the absence 

of malware, and analyzes them to build a reference model. It then monitors the EM signals 

generated by the device during execution and reports an error if there is a statistically 

significant deviation from the reference model. To evaluate SYNDROME, we use open-source 
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software to implement a real-world medical device, called a Syringe Pump, on a variety of 

well-known embedded/IoT devices including Arduino Uno, FPGA Nios II soft-core, and two 

Linux IoT mini-computers: OlimexA13 and TS-7250. We also implement a control-flow 

hijack attack on SyringePump and use SYNDROME to detect and stop the attack. Our 

experimental results show that using SYNDROME, we can detect the attack for all the four 

devices with excellent accuracy (i.e. 0% false positive and 100% true positive) within few 

milliseconds after the attack starts. 
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[41] N. Sehatbakhsh, H. Hong, B. Lazar, B. Johnson-Smith, O. Yilmaz, M. Alam, A. Nazari, 
A. Zajic, and M. Prvulovic” Spectral Analysis for Anomaly Detection on Medical IoT and 
Embedded Devices- Experimental Demonstration,” IEEE International Symposium on 
Hardware Oriented Security and Trust (HOST) Hardware Demo, pp.1, May 2018, Washington 
DC. 

 
Abstract: This demo is the actual hardware implementation and live demonstration of 

our recent work “Syndrome: Spectral Analysis for Anomaly Detection on Medical IoT and 

Embedded Devices” that will appear in the Proceedings of HOST 2018. In this paper, we 

proposed a new framework called Syndrome for “externally" monitoring medical embedded 

devices. Our malware detector uses electromagnetic (EM) signals involuntary generated by the 

device as it executes a (medical) application in the absence of malware, and analyzes them to 

build a reference model. It then monitors the EM signals generated by the device during 

execution and reports an error if there is a statistically significant deviation from the reference 

model. To evaluate Syndrome, we use an open-source software to implement a real-world 

medical device, called a Syringe Pump, on a wellknown embedded system Arduino Uno. We 

also implement a control-flow hijack attack on SyringePump and use Syndrome to detect and 

stop the attack. 

 

[42] H. Khan, M. Alam, A. Zajic, and M. Prvulovic, “Detailed tracking of program control flow 
using analog side-channel signals: A promise for IoT malware detection and a threat for many 
cryptographic implementations,” Proceedings of SPIE, April 2018, Orlando FL.  
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Abstract: Side-channel signals have long been used in cryptanalysis, and recently they 

have also been utilized as a way to monitor program execution without involving the monitored 

system in its own monitoring. Both of these use-cases for side-channel analysis have seen 

steady improvement, allowing ever-smaller deviations in program behavior to be monitored 

(to track program behavior and/or identify anomalies) or exploited (to steal sensitive 

information). However, there is still very little intuition about where the limits for this are, e.g. 

whether a single-instruction or a single-bit difference can realistically be recovered from the 

signal. In this paper, we use a popular open-source cryptographic software package as a test 

subject to demonstrate that, with enough training data, enough signal bandwidth, and enough 

signal-to-noise ratio, the decision of branch instructions that cause even single-instruction-

differences in program execution can be recovered from the electromagnetic (EM) emanations 

of an IoT/embedded system. We additionally show that, in cryptographic implementations 

where branch decisions contain information about the secret key, nearly all such information 

can be extracted from the signal that corresponds to only a single cryptographic operation (e.g. 

encryption). Finally, we analyze how the received signal bandwidth, the amount of training, 

and the signal-to-noise ratio (SNR) affect the accuracy of side-channel-based reconstruction 

of individual branch decisions that occur during program execution. 

  



266 

Approved for public release; Distribution is unlimited. 

 

 

[43]  B. Yilmaz, M. Prvulovic, and A. Zajic, “Wireless communication channel created by 
processor memory activity,” IEEE Proceedings of ICASSP, pp. 1-5, April 2018, Calgary, 
Canada.  

 
Abstract: Electromagnetic (EM) emanations created by a software computer activity 

can be exploited to create a wireless channel. However, software activity experiences lack of 

precise synchronization and, therefore, jitter noise. In this paper, we model this type of wireless 

communication channel considering the jitter noise, characterize the power spectral density 

(PSD) of both jitter noise and signal, and analyze the performance of this channel in terms of 

Bit-Error-Rate (BER). We provide examples to demonstrate the capability of the EM based 

wireless channel. 
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[44] S. Adibelli, R. Golubović, A. Djordjević, D. Olćan, and A. Zajić, “Design and fabrication
of non-uniform helical antennas for detection of side-channel attacks in computer systems,”
IEEE Proceedings of 12th European Conference on Antennas and Propagation (EuCAP), pp.
1-5, April 2018, London, UK.

Abstract: This paper presents a design, fabrication and measurement results of a 

helical antenna that has variable pitch angle and radius. These variations allow the nonuniform 

helix to be for 2–3 dB more directive compared to the optimal uniform helix of the same length 

(750 mm). A 3D printed support structure for the helix to be wound around is made out of ABS 

plastic and a 400 mm by 400 mm metal sheet is used as the ground plane. The design frequency 

is 2 GHz, the impedance bandwidth is 33% (1.8 GHz–2.5 GHz), and the axial ratio is less than 

3.8 dB. The gain is 18.2 dBi and the two prototypes that are built match the simulation 

performance. 
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[45] Baki Berkay Yilmaz, Robert Callan, Milos Prvulovic, and Alenka Zajic, “Quantifying 
Information Leakage in a Processor Caused by the Execution of Instructions,” Proceedings of 
IEEE MILCOM, October 2017. 

 
Abstract: Covert/side channel attacks based on electromagnetic (EM) emanations are 

difficult to detect because they are practiced wirelessly. Hence, quantifying information 

leakage is crucial when designing secure hardware and software. To address this problem, this 

paper establishes a connection between the signal energy available to an attacker in 

electromagnetic side/covert channel and capacity of the covert/side channel. We first present 

a mathematical relationship between electromagnetic side-channel energy (ESE) of individual 

instructions and measured sidechannel signal power, assuming that all instructions have equal 

execution time. Then, we use this measure to calculate the transition probabilities needed for 

estimating capacity. Furthermore, we consider each instruction as a codeword and relate our 

model to Shannon’s capacity. Finally, we provide practical examples to demonstrate the 

severity of covert/side channel due to EM emanations.  
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[46] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic, “EDDIE: EM-Based 
Detection of Deviations in Program Execution,” Proceedings of the 44th International 
Symposium on Computer Architecture (ISCA), June2017. (acceptance rate 17 %)  

 
Abstract: This paper describes EM-Based Detection of Deviations in Program 

Execution (EDDIE), a new method for detecting anomalies in program execution, such as 

malware and other code injections, without introducing any overheads, adding any hardware 

support, changing any software, or using any resources on the monitored system itself. 

Monitoring with EDDIE involves receiving electromagnetic (EM) emanations that are emitted 

as a side effect of execution on the monitored system, and it relies on spikes in the EM spectrum 

that are produced as a result of periodic (e.g. loop) activity in the monitored execution. During 

training, EDDIE characterizes normal execution behavior in terms of peaks in the EM 

spectrum that are observed at various points in the program execution, but it does not need any 

characterization of the malware or other code that might later be injected. During monitoring, 

EDDIE identifies peaks in the observed EM spectrum, and compares these peaks to those 

learned during training. Since EDDIE requires no resources on the monitored machine and no 

changes to the monitored software, it is especially well suited for security monitoring of 

embedded and IoT devices. We evaluate EDDIE on a real IoT system and in a cycle-accurate 

simulator, and find that even relatively brief injected bursts of activity (a few milliseconds) are 

detected by EDDIE with high accuracy, and that it also accurately detects when even a few 

instructions are injected into an existing loop within the application. 
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[47] N. Sehatbakshsh, R. Callan, M. Alam, M. Prvulovic, and A. Zajic, “Leveraging 
Electromagnetic Emanations for IoT Security, ”Hardware Demo at IEEE International 
Symposium on Hardware Oriented Security and Trust (HOST) May 1-5, 2017.  –Best Demo 
Award 

 
Abstract: We will demonstrate a new method to detect malware by externally 

observing Electromagnetic (EM) signals emitted by an IoT system. The proposed demo is an 

extension of the work in [1] and does not require any resources or infrastructure on, or any 

modifications to, the monitored system itself. Specifically, our method can identify malicious 

code injection into a known application that is running on an IoT device with >95% accuracy 

and with a detection latency <45 ms of executed code.  
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[48] A. Zajic, Milos Prvulovic, and Derrick Chu, “Path Loss Prediction for Electromagnetic
Side-Channel Signals,” Proceedings of the 11th European Conference on Antennas and
Propagation EUCap11, pp.1-5, Paris, France, March 2017.

Abstract: This paper investigates propagation mechanisms that EM side-channel 

signals experience at different frequencies and proposes models for near-field and far-field 

propagation of side-channel signals. The near-field propagation is modelled as a field created 

by an electric monopole (Hertzian dipole) and a magnetic dipole, where the received power is 

collected using only magnetic components of the EM field. This model resulted in excellent 

match with measured data. Furthermore, this paper investigates unintentionally modulated 

side-channel signals. The propagation of EM side-channel signals was modelled using 

freespace propagation model which resulted in excellent match with measured data. In both 

cases we have observed that signal can be received at several meters from the side-channel 

source. The proposed models are the first step in understanding propagation mechanisms of 

EM side-channel signals and how to predict the distance at which they can be received. 
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[49] N. Sehatbakhsh, A. Nazari, A. Zajić, and Milos Prvulovic, “Spectral Profiling: Observer-
Effect-Free Profiling by Monitoring EM Emanations,”  IEEE MICRO 16, pp.1-11, Taipei, 
Taiwan, October 2016. (acceptance rate 20 %) – The Best Paper Award 

 

Abstract: This paper presents Spectral Profiling, a new method for profiling program 

execution without instrumenting or otherwise affecting the profiled system. Spectral Profiling 

monitors EM emanations unintentionally produced by the profiled system, looking for spectral 

“spikes” produced by periodic program activity (e.g. loops). This allows Spectral Profiling to 

determine which parts of the program have executed at what time. By analyzing the frequency 

and shape of the spectral “spike”, Spectral Profiling can obtain additional information such as 

the per-iteration execution time of a loop. The key advantage of Spectral Profiling is that it can 

monitor a system as-is, without program instrumentation, system activity, etc. associated with 

the profiling itself, i.e. it completely eliminates the “Observer’s Effect” and allows profiling of 

programs whose execution is performance-dependent and/or programs that run on even the 

simplest embedded systems that have no resources or support for profiling. We evaluate the 

effectiveness of Spectral Profiling by applying it to several benchmarks from MiBench suite 

on a real system, and also on a cycle-accurate simulator. Our results confirm that Spectral 

Profiling yields useful information about the runtime behavior of a program, allowing Spectral 

Profiling to be used for profiling in systems where profiling infrastructure is not available, or 

where profiling overheads may perturb the results too much (“Observer’s Effect”). 
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[50] R. Callan, F. Behrang, M. Prvulovic, A. Zajic, and A. Orso, “Zero-Overhead Profiling via 
EM Emanations,” accepted to The International Symposium on Software Testing and Analysis, 
18-20 July 2016, Saarbrücken, Germany. (acceptance rate 25 %) 

 
Abstract: This paper presents an approach for zero-overhead profiling (ZOP). ZOP 

accomplishes accurate program profiling with no modification to the program or system during 

profiling and no dedicated hardware features. To do so, ZOP records the electromagnetic (EM) 

emanations generated by computing systems during program execution and analyzes the 

recorded emanations to track a program’s execution path and generate profiling information. 

Our approach consists of two main phases. In the training phase, ZOP instruments the program 

and runs it against a set of inputs to collect path timing information while simultaneously 

collecting waveforms for the EM emanations generated by the program. In the profiling phase, 

ZOP runs the original (i.e., uninstrumented and unmodified) program against inputs whose 

executions need to be profiled, records the waveforms produced by the program, and matches 

these waveforms with those collected during training to predict which parts of the code were 

exercised by the inputs and how often. We evaluated an implementation of ZOP on several 

benchmarks and our results show that ZOP can predict path profiling information for these 

benchmarks with greater than 94% accuracy on average. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACRONYM DESCRIPTION 
LoS Line of Sight 

NLoS Non Line of Sight 

CAMELIA Computational Activity Monitoring by Externally Leveraging 
Involuntary Analog Signals 

SW software 

Sys system 

HW hardware 

SLL Side-Lobe Level 

EM Electromagnetic 

E Electric 

H Magnetic 

SNR Signal to noise ratio 

𝜆𝜆0 wavelength 

AM Amplitude Modulation 

FM Frequency Modulation 

SAVAT Signal Available to Attacker 

RC Resistor-capacitor 

CDF Cumulative distribution function 

MCS Modulated Carrier Score 

REMOTE Robust External Malware Detection Framework by Using 
Electromagnetic Signals 

STFT short-time Fourier transform 

SS Spectral samples 

FFT Fast Fourier Transform 

CAPE Clock- Adjusted Energy and Peaks 
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Approved for public release; Distribution is unlimited. 

ACRONYM DESCRIPTION 
CPS Cyber-Physical Systems 

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with 
Noise 

FSM Finite-State Machine 

OS Operating System 

CNN Convolutional neural network 

MarCNNet Markov and convolutional neural network 

ReLU Rectified Linear Unit 

DC component Direct Current component 

TESLA Tracing through Electromagnetic Side-channeL Analysis 

CPU Computer processing unit 

ID identification number 

CFG control-flow-graph 

TSC Time Stamp Counter 

PITEM Permutations-based Instruction Tracking via Electromagnetic Side-
channel Signal Analysis 

I/O input/output 

IoT Internet-of-Things 

DDoS Distributed Denial-of-Service 

LDL2/LDL1 loads from the on-chip L2 and L1 caches 

PoP Package on Package 

SDR software defined radio 

LCD Liquid-crystal display 

AWGN Additive white Gaussian noise 
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