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Executive Summary 

The Department of Defense (DoD) has invested significant effort over the past decade 
considering the role of artificial intelligence and autonomy in national security (e.g., Defense 
Science Board, 2012, 2016; Deputy Secretary of Defense, 2012; Endsley, 2015; Executive Order 
No. 13859, 2019; US Department of Defense, 2011, 2019; Zacharias, 2019a).  However, these 
efforts were broadly scoped and only partially touched on how DoD will certify the safety and 
performance of these systems.  More recent work has done this big-picture thinking for the test 
and evaluation (T&E) community (e.g., Ahner & Parson, 2016; Haugh, Sparrow, & Tate, 2018; 
Porter et al., 2018; Sparrow, Tate, Biddle, Kaminski, & Madhavan, 2018; Zacharias, 2019b).  In 
parallel, individual programs have been generating their own working-level solutions for their own 
particular use cases and challenges.  The framework proposed in the current work bridges the gap 
between the big picture policy recommendations already made and individual program needs.  It 
is meant to serve as a framework that the T&E community can follow in order to provide evidence 
that artificial intelligence (AI)-enabled and autonomous systems function as intended.  At times 
we echo broad policy recommendations made by others as they will also enable T&E activities.  
In other places we make more specific recommendations relating to test planning and analysis.   

In this document, we present part one of our two-part roadmap.  We discuss the challenges 
and possible solutions to assessing system effectiveness.  A future part two will deal with test 
efficiency, simulation, and infrastructure. 

The recommendations below are summarized for an executive level.  The body of the text 
goes into significantly more detail.  Due to the scope of this project, even the main body only 
provides a survey of the challenges and our proposed solutions.  However, this roadmap serves as 
an outline to a future series of technical papers covering these topics in detail for working-level 
testers and analysts.  

Recommendations 
• Testers need to identify the features of autonomous systems that will (and will not) 

cause traditional test methods to misinform decision-makers about risk.  We need 
to identify when, why, and how testing will need to be different for AI-enabled systems.  
Overarching definitions of AI or autonomy often exclude some systems that would be 
difficult to test, and programs are not self-identifying as involving such risks.  Other 
definitions suffer from disagreement over the meaning of words.   In this paper, we 
define AI and autonomy as anything that makes decisions based on environmental 
information within the constraints of a specific task.  We identify three types of 
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decisions—setting goals or constraints, defining the current situation, and choosing the 
next action—to help identify what does and does not change about testing.  To avoid 
ambiguity, these definitions are grounded in a technical theory of decision-making.   

• Testers need more transparency in decision-making systems.  Transparency is 
important for end-users, but also for testers.  Black-box systems prevent testers from 
making inferences about untested scenarios.  Before we can confidently test system 
performance, we must understand how the system makes its decisions.  This 
transparency can be built-in at the drawing board, or, as a less desirable option, the lack 
of transparency in design can be mitigated during early testing.  We make 
recommendations for how to obtain, verify, and validate models of what causally drives 
system decision-making. 

• Testers need rights to system decision-making and learning processes and data 
generated by these systems.  In addition to benefits such as enabling modularity and 
reusability across systems, gaining ownership rights to the decision software is critical 
to testing.  Proprietary concerns can cause an otherwise transparent system to be a black 
box to testers, as has already happened with several systems.     

• The DoD should consider adopting common, modular cognitive architectures to 
enable testing.  Many have discussed how modular cognitive architectures benefit 
system development, performance, and sustainment.  Here we discuss how they 
facilitate efficient and effective T&E as well. 

• Research into and dissemination of methods for evaluating decision-making are 
needed.  These include metrics to quantify intermediate mission success, methods to 
qualitatively evaluate overall decision processes, novel calculations of classification 
accuracy for multi-categorical fuzzy groups, and ways to quantify a system’s ability to 
learn. 

• Decision-making systems that have a built-in infrastructure for recording data 
(BIRD) become easier to certify.  We recommend a BIRD to enable testing, but it 
would serve many different needs.  By having systems record data about themselves, by 
themselves, and by providing an infrastructural pipeline to securely collate, store, and 
disseminate these data, stakeholders can harvest data from a variety of previously 
inaccessible venues such as exercises and operational missions.  These harvests can 
support many activities like T&E, operator and commander decision-making, and post-
fielding fleet-wide learning.   

• Testers should use a strategy of Graded Autonomy with Limited Capability 
Fielding for difficult-to-certify systems.  Some systems are too dangerous to test live, 
but too difficult to simulate credibly.  These systems should be tested like we do with 
medical residents.  Train all skills, and then certify and field their least risky capability 
for use under supervision.  While acting in realistic situations in the field or exercises, 
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have systems evaluate what they would have done with more risky capabilities.  Use 
these data to spiral upward through risk and down through supervision levels as systems 
demonstrate safe competence.   

• Testers should characterize system flexibility as well as system performance.  
Decision systems can achieve greater performance on a specific task by over-
optimizing, which can create downstream costs and consequences when trying to 
upgrade, change, learn, or transfer to a related task.  Testing should evaluate to what 
extent programs have made this tradeoff. 

• Testers need environments where different autonomous agents, including humans, 
can be tested together for emergent behavior.  When autonomous agents interact, 
you can get emergent behavior (EB).  EB can be expected or unexpected, and it can be 
desirable or undesirable.  Testers need to confirm that expected, desirable EB (such as 
teaming or synergy) functions correctly, while minimizing the probability of 
unexpected, undesirable EB.  This must be tested under live as well as simulated 
environments.  Centralizing test responsibility for EB can overcome a number of 
simulation challenges, while having a regular joint exercise would provide such a live 
test venue for validation while also helping troop readiness for existing and emerging 
technology employment.   

• Testers still need to emphasize human-system interaction for autonomous systems.  
Even in fully autonomous systems, a human will be involved in some part of their 
decision-making chain, even if it is just issuing initial orders.  These interactions must 
be fluid and minimize error to ensure responsible employment, and testers must 
evaluate this.  Additionally, the acquisition community should assess whether 
warfighters will have appropriately calibrated trust of their systems. 

• Testers should adapt existing methods for evaluating human teams for the T&E of 
human-machine teams.  Though not all AI-human system relationships will truly 
involve teaming, systems that do will require a different approach to testing.  The 
starting point for these evaluations should be the methods already created by the 
behavioral sciences and sports statisticians.   

• Testers should assess adversarial exploitation generational cycles.  Cyber and 
tactical exploitation is a never-ending, constantly evolving battle in learning systems.  
This may require a cultural shift away from testing against static, well-defined 
exploitation requirements.  Testers should attempt to quantify how quickly adversaries 
can develop exploitations of our decision systems versus the speed at which we can re-
counter them.  Having a faster friendly than adversary cycle will likely be critical to 
meaningfully field these systems.  At first this will be a test of industrial agility, though 
in time in may be a metric of systems’ live behavioral flexibility. 
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1. Introduction 

The world is witnessing a proliferation of systems that act independently from humans.  
These systems are beginning to permeate every aspect of our lives, aiding us with tasks as mundane 
as household chores or as consequential as nuclear power regulation (e.g., Wood, Upadhyaya, & 
Floyd, 2017).  Whether they tangibly interact with the physical world or exist purely in cyberspace, 
these systems promise to revolutionize the way we live.  However, this promise comes with a host 
of hazards.  As machines take over decisions traditionally made by humans, and as these decisions 
become more meaningful, the potential for catastrophic consequences only expands.  Nowhere is 
this truer than in national security applications of artificial intelligence (AI) and autonomy 
(Defense Science Board, 2012, 2016; Executive Order No. 13859, 2019; US Department of 
Defense, 2019).  Testers must understand how these systems make decisions across different 
operating conditions if they are to provide stakeholders with appropriate levels of trust in 
autonomous or AI-enabled capabilities (Wojton, Porter, & Lane, 2020).  In this paper, we propose 
a framework to facilitate the test and evaluation (T&E) of military systems enabled by AI or 
autonomy.   

Achieving assurance for autonomous systems requires solving a number of challenges.  For 
example, we need methods for generalizing our findings from test and training environments to 
conditions that have not been explicitly tested (e.g., Micskei, Szatmári, Oláh, & Majzik, 2012).  
We need better techniques to assess and ensure 
realism in our training data, simulations, and test 
environments (e.g., Ahner & Parson, 2016).  We 
need better metrics to describe the effectiveness 
of decision-making and methods to differentiate 
brilliance from blunders, especially as systems 
become more sophisticated (e.g., Ilachinski, 
2017).  We must structure tests to allow 
assessment of appropriately calibrated trust in the 
systems (e.g., Culley & Madhavan, 2013).  
Cutting across all of this, we need methods to 
conduct more efficient tests, as the public, law, 
and warfighters themselves likely will hold autonomous systems to higher standards and require a 
greater burden of evidence (e.g., Defense Science Board, 2016).  Any framework addressing the 
T&E of autonomous systems must grapple with these and other challenges to achieve success. 

Previous work on the challenges of designing, developing, and testing autonomy formed the 
starting point for this framework (e.g, Defense Science Board, 2012; Defense Science Board, 2016; 
Endsley, 2015; Roske, Kohlberg, & Wagner, 2012).  These efforts were invaluable for setting the 

The heart of our framework is 
identifying where and why our 
standard test processes are likely 
to fail, how to mitigate those 
failures, and how the lifecycle of 
testing needs to be structured to 
implement the new approach. 
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stage.  However, they were often scoped for a broader picture than just T&E, and primarily made 
high-level recommendations for testing, calling for the relevant authorities to develop more 
specific methods (Defense Science Board, 2016; Deputy Secretary of Defense, 2012).  Other work 
has begun to make high-level recommendations for the T&E community (e.g., Ahner & Parson, 
2016; Haugh et al., 2018; Porter et al., 2018; Tate & Sparrow, 2015; Zacharias, 2019b) or is 
focusing on more immediate needs for individual programs that may not apply to other systems 
(e.g., Kwashnak, 2019; Lowrance, Herman, Schneider, & Kasemer, 2019).  Our framework 
grounds itself in high-level recommendations and attempts to bridge the gap to working-level 
solutions that can be executed across the world of testing.   

We advocate that the community maintain a solution-oriented mindset.  Many discussions 
about the T&E of AI-enabled technology end up focusing on why a proposal will not work without 
offering solutions to those challenges or providing an alternative, and as a result are unproductive.  
With many autonomous or AI-enabled systems already fielded, and even more on the horizon, we 
cannot wait for perfect solutions.  As a community, we must recognize that acquisition is not 
slowing down despite the lack of test methods, and to meet this challenge we must provide 
solutions alongside our critiques.  Criticism alone will not solve the problem. 

Testers of these systems should have at least a basic grounding in the world of AI, autonomy, 
and machine learning.  While it is common to see these terms used interchangeably, testers should 
be aware of both the overlap and differences between them.  A complete discussion of these topics 
is beyond the scope of this framework, and a number of good references already exist (e.g., Russell 
& Norvig, 2009; Zacharias, 2019a).  We assume that readers already have this grounding and 
understand basic taxonomic distinctions in the field such as narrow/weak vs.  strong/general 
approaches to AI; symbolic vs. sub-symbolic approaches to information representation or learning, 
and supervised, unsupervised, or reinforcement machine learning techniques.   

At the highest level, our framework does not change the essence of testing.  As with our 
standard systems, the goal of testing is to provide assurance that a system works as advertised, and 
to do so, testers must identify (1) the system’s use-case tasks, (2) measurable outcomes for those 
tasks, (3) conditions expected to affect those outcomes, and (4) test points that enable inferences 
about performance across those conditions (e.g., Montgomery, 2019).  AI and autonomy do not 
change these basic steps; they change the effectiveness of the standard techniques we use to plan 
and execute each step.   

In the rest of this paper, we (1) discuss how to identify system features of concern, and (2) 
describe the fundamental challenges of and proposed solutions to performance evaluation for these 
systems.  This document is part one of two in our roadmap, and notably it does not address test 
efficiency—especially the challenges to and enablers of using simulation or test automation for 
AI-enabled technologies—or the infrastructural demands of test.  Furthermore, as the topics under 
consideration are nuanced, the following discussions will be more specific than the previously 
mentioned studies on T&E of autonomous systems, but less detailed than the subsequent technical 
papers to come.
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2. The Systems That Challenge Us 

A. Identifying Systems of Concern 

 
 

The past few decades have seen a robust discussion on what it means for a military system to 
involve AI or to be autonomous (e.g., Deputy Secretary of Defense, 2012; Roske et al., 2012; 
Zacharias, 2019a).  While this conversation has been fruitful for some fields, there is not yet 
consensus on the definitions of these terms.  For example, a recent call by the Joint Artificial 
Intelligence Center (JAIC) for acquisition programs to identify if they involved AI yielded zero 
responses; the JAIC’s own count is several hundred (Trent, 2019).  Although budgetary or political 
concerns may have influenced this result, there is a real need for testers to be able to identify 
systems of interest. 

Overarching definitions of AI or autonomy often exclude some systems that would be 
difficult to test, and programs are not self-identifying as involving such risks.  Other definitions 
suffer from disagreement over the meaning of words.   In this paper, we define AI and autonomy 
as anything that makes decisions based on environmental information within the constraints of a 
specific task.  We identify three types of decision—setting goals or constraints, defining the current 
situation, and choosing the next action—to help identify what does and does not change about 
testing.  To avoid ambiguity, these definitions are grounded in a technical theory of decision-
making.   

The goal of our definitions is not to be proscriptive but to provide common language to 
discuss these systems.  At every stage of the acquisition pipeline, we have observed systems of 
concern where the DoD’s normal approach to testing would likely mischaracterize both 
performance and risk across the range of operating conditions.  Others have proposed definitions 

RECOMMENDATION 

Testers need to identify the features of autonomous 
systems that will (and will not) cause traditional test 
methods to misinform decision-makers about risk.  We 
need to identify when, why, and how testing will need to 
be different for AI-enabled systems. 
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of autonomy and artificial intelligence that would exclude many of these systems of concern (e.g., 
AFRL's definition; Overholt & Kearns, 2013).  There is a legitimate debate to be had over what it 
means for something to be truly autonomous or be a ‘real’ AI, but we are not here to contribute to 
that discussion.  Rather, we seek a definition that will identify the systems of concern for T&E 
regardless of how those systems are categorized elsewhere.  We propose a definition of these 
systems that we will use throughout our paper.  However, if the DoD chooses the pursue another 
definition, we recommend that it at least meet a few key requirements. 

B. Requirements of a Definition 
Definitions should serve a purpose; our purpose is to enable T&E activities.  We are not 

proposing a complete, holistic definition of autonomy or AI, and there will be characteristics 
important to other domains that we do not address.  In the context of T&E, any definition should 
provide programs, as well as oversight, with clear ways of assessing whether aspects of a system 
require different test methods and a mechanism by which to identify optimal test strategies.  For 
our definition, we provide both detailed and intuitive definitions of these types of systems, and we 
recommend alternative definitions do the same. 

Many proposed definitions of 
autonomy are useful in some ways, but for 
testing purposes create ambiguous 
categories.  For example, DoD Directive 
3000.09 on Autonomy in Weapon Systems1 
differentiates between autonomous and 
semi-autonomous systems based on the 
degree of human supervision.  Meaningful 
human control is an important concept for 
AI&A (e.g., Cook, 2019; Horowitz & 
Scharre, 2015; Santoni de Sio & van den 
Hoven, 2018), and the DoD directive could be useful for system employment.  However, DoDD 
3000.09 makes distinctions based on a Concept of Operations (CONOPS) for intended use rather 
than a system’s capabilities, making the definition less helpful for testing purposes.  Under the 
DoD policy, whether the system is deemed autonomous or semi-autonomous depends on its 
current operating state.  For our systems of concern especially, the CONOPS will not be known in 
advance (e.g., Haugh et al., 2018; Zacharias, 2019a); whether a system should be allowed to 
operate independently depends on how much it should be trusted under different conditions.  This 
is not information we know before testing, and it is essential, because human-supervised and 

                                                 
1  Dated November 21, 2012, updated  

T&E AI definitions should: 
 Enable T&E activities 
 ID T&E-hindering features 
 Be agnostic to labels 
 Describe continuous dimensions 
 Leverage formal theories 
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independently operating systems require differently structured tests.2 Any T&E definition of these 
systems of concern should base itself on capabilities (can do) and not CONOPS (should do). 

Definitions should avoid ambiguous words and consider avoiding contested terminology.  
For example, many definitions rely on the word ‘intelligent’ to differentiate autonomy and 
automation (Overholt & Kearns, 2013).  However, intelligence is itself an ambiguous and hotly 
contested definition, making it difficult to use for reliably identifying systems of concern.  
Furthermore, despite years of effort, consensus on at least the need for common terminology, and 
a myriad of proposals by authors in many different camps, there is no agreement on what truly 
constitutes AI or autonomy.  These camps can be territorial regarding what kinds of systems 
receive certain labels, and this debate can derail otherwise productive conversations.  Whether our 
systems of concern are ‘truly’ AI or autonomous is irrelevant to T&E, and authors and policy 
makers should consider avoiding these terms if they are similarly unnecessary for their own 
purposes.  However, because the T&E community commonly references the systems of concern 
as involving AI or autonomy, in this paper we will be referring to them collectively as AI&A.  We 
make no claim that they are ‘truly’ AI or autonomous though, and we could just as easily label 
them as Artificially Implemented Decision Engines (AIDEs) or Artificial Cognition Enabled 
Systems (ACES). 

We recommend that definitions move away from a holistic categorical approach and toward 
a continuous, dimensional approach to defining AI&A (Defense Science Board, 2012), and that 
definitions should focus on identifying features rather than holistic categories.  These features 
should identify both what does and does not need to be tested differently in autonomous systems.  
In some cases, the poorly delineated categories used by other frameworks are the result of binning 
along what are really continuous information dimensions.  We recommend that any T&E definition 
of AI&A should avoid ambiguous words and base itself on capabilities (can do) and not CONOPS 
(should do).   We propose language and definitions that allow us to identify aspects or features of 
systems that require different approaches to testing. 

Furthermore, DoD should create specific, technical definitions of these dimensions and 
features to minimize confusion.  We have experienced and read a large amount of unnecessary 
debate because some people feel a certain word implies something that someone else does not.  
Using technical definitions instead of implied or assumed ones can reduce this part of the debate.  
However, in order to incorporate specific, technical definitions in test framework, DoD would 
need to adopt a specific technical theory that describes the processes of problem solving or decision 
making.   

                                                 
2  For example, tests with a human intervening will not inform us about the system’s capability without an 

operator, and tests without a human will not inform us about the operator’s ability to intervene.    



2-4 

C. An Enabling Theory of Problem Solving 
While we provide colloquial definitions of AI&A alongside our technical ones, ambiguous, 

idiosyncratic, or field-specific usage of common words often leads to disagreement about whether, 
to what extent, or in what way a system involves autonomy.  By defining autonomy in the context 
of a particular theory, we can avoid these confusions.  To this end, we have adopted Allen Newell 
and Herbert Simon’s (1972) problem space hypothesis (PSH) as our principal guiding theory.  To 
understand the technical distinctions we are making in our definitions, readers must have at least 
a basic grounding in the PSH.  Here we have simplified it to those aspects relevant to our 
definitions.   

 

While other theories of problem solving or decision making exist, we chose the PSH because 
of several beneficial features.  In particular, it (a) discretely represents the critical steps of decision 
making, (b) allows tunable granularity in scoping a problem or task, (c) is useful for differentiating 
ground truth and perception, and (d) explicitly represents where in the task an agent is at any given 
moment.  While Colonel John Boyd’s Observe-Orient-Decide-Act (OODA) Loop is fantastic at 
emphasizing decision-making’s temporal component, we argue it is less helpful with the (b) and 
(d) advantages of the PSH.   

In the PSH, problems or tasks are represented by a problem space composed of problem 
states and procedures3 (Newell & Simon, 1972).  We use these words throughout the framework 
and assume the reader understands them.  A problem state could be considered a description or 
representation of the environment, while a procedure is something that causes a transition between 
states.  For a given problem, a decision agent begins in an initial state and is attempting to get to 
some goal state.  The problem space for a task is composed of all the states and procedures that 
could potentially be reached or used.  However, while all continuous variations of states and 
procedures could comprise the space, almost invariably an agent will compress functionally 
identical information into a single representation and eliminate what is believed to be irrelevant 
                                                 
3  In the actual PSH, procedures are called operators.  However, operators is already a term of art in the military.  

To avoid confusing our intended audience, we have replaced this word, but readers should note that this usage is 
unique to our framework.   

Tasks are represented by a problem space, which is composed of 
problem states and procedures. A problem state could be considered a 
description or representation of the environment, while a procedure is 
something that causes a transition between states. The problem space 
for a task is composed of all the states and procedures that could 
potentially be reached or used.   
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information, resulting in a much reduced informational representation of the problem space (Abel 
et al., 2019; Barlow, 1961).  This compression can occur to different degrees depending on context 
and capability (Howes, Lewis, & Vera, 2009). 

For a problem state, a set of variables 
describes the entire environment, and the 
agent is trying to represent the values of 
the task-relevant subset of such variables 
in a way that it can process.  The problem 
state representation of real-world 
problems will almost necessarily be 
imperfect, either because of ignored 
variables or because of error in the value 
assignment process.  For example, an 
airline pilot might represent the problem 
state using information like pressure-
altitude, airspeed, and angle-of-attack but 
not the earth’s rotational speed.  In games like chess or Go, an AI’s state representation might 
include just the configuration of pieces on the board; humans, however, might include information 
like the strategy they believe their opponent is pursuing.   

To move between problem states, agents must apply a procedure. The agent will represent 
only a subset of possible procedures, either due to ignorance, irrelevance, or parsimony.  These 
procedures can be represented at varying levels of abstraction, and prototypically these will be 
actions the agent can take: pull back on the yoke, do a barrel roll, or invade Russia during winter.  
A procedure does not require direct action.  For example, “waiting” transitions the state to a new 
time value and allows other agents or environmental effects to alter the problem state.  Whatever 
their nature, the agent must select procedures for non-random reasons related to the attempt to 
solve a problem or complete a task. 

To solve a problem, the agent must be trying to satisfy some goal or goals.4 In the PSH, the 
agent is attempting to reach a goal state.  Complex problems might require the sequential 
achievement of multiple sub-goals, and the assignment of these sub-goals is one way to describe 
planning (Laird, 2012).5  Agents might also have goals to avoid certain states, thus constraining 
the path they could take to the goal.  When choosing between different procedures, the agent must 
evaluate which one best achieves its goals. 

                                                 
4  For simplicity, we refer to a goal state, its sub-goals, and any path constraints from the PSH interchangeably as 

goals. 
5  There are many different ways that an agent can create and/or represent these goal sets, and the specific 

implementation used is less relevant than its existence. 

Autonomy for a task has three aspects: 
(1) Executive autonomy: setting a 
goal (including any sub-goals and path 
constraints)  
(2) Perceptual autonomy: defining 
the current problem state  
(3) Procedural autonomy: selecting 
the next procedure or sequence of 
procedures to move toward the goal 
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In order to navigate through a problem space, the agent must loop through several steps: (1) 
have goals, (2) represent the current problem state, and (3) select a procedure or sequence of 
procedures to move toward the goal.  As we move into our definitions of autonomy, these three 
steps are relevant for differentiating subtypes of autonomy. 

D. A Definition of Autonomy for Test 
In the T&E context, the authors define autonomy for a task as making the following decisions: 

(1) setting a goal (including any sub-goals and path constraints), a decision we refer to as 
‘executive autonomy’; (2) defining the current problem state, which we term ‘perceptual 
autonomy’; and (3) selecting the next procedure or sequence of procedures to move toward the 
goal, or ‘procedural autonomy’.6 More colloquially, AI&A make decisions based on 
environmental information, and while in some contexts a decision could imply agency or 
awareness, in this framework it simply refers to the selection among alternatives.  AI&A that 
possess all three subtypes of autonomy for a task would be described as fully autonomous for that 
task.  Some systems might make only some of these types of decisions, but rather than labeling 
them broadly as “partially autonomous,” testers should identify specifically which types of 
decisions the system makes.   

Furthermore, we define autonomy within the constraints of a specific task rather than as a 
system attribute (Scharre & Horowitz, 2015), and we recommend that testers should evaluate 
AI&A at the task level.  Any mission or task can be decomposed into a set of smaller tasks.  The 
agent might not have autonomy at a higher level but might have it for some subtasks.  For example, 
a mission could be to clear a minefield, and for this an agent would need to (a) pick a path to clear, 
(b) identify whether individual objects are mines or not, and (c) disarm those mines.  After a 
human’s order initiates the mine-clearing mission, the system could be free to make decisions 
about tasks (a) and (b), but not have freedom to decide (c), whether to remove the mines.7 It is 
more useful for designing tests to discuss for which tasks the system has what kinds of autonomy, 
rather than whether the whole system is autonomous. 

In the technical PSH context, a system has executive autonomy if it assigns itself goals or can 
alter how intermediate problem states are valued.  Colloquially, one can think of this as making 
“should” decisions.  For example, “I should turn left at the next street” is a goal statement, as is “I 
should avoid hitting pedestrians.” The first provides a goal state that the agent can evaluate having 
reached, and the latter provides constraints on all states that the agent should visit.  This is the type 

                                                 
6  These distinctions and labels are a variation of a basic distinction between processes in cognitive psychology 

(e.g., Newell, 1990), and others have proposed related breakdowns for autonomy (e.g., Parasuraman, Sheridan, 
& Wickens, 2000; Roske et al., 2012).  We make these distinctions because systems might perform some of 
these decisions while humans make the other ones, and which of these steps a system performs has implications 
for how it should be tested. 

7  For example, if the system cannot make collateral damage risk assessments, the CONOPS might call for a 
human to make that judgment. 
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of autonomy that often rightly concerns people the most (e.g., “I should shoot this person”).  For 
the foreseeable future, it is very likely that people will design systems so that humans provide 
higher-level goals to the system and executive autonomy is implemented as sub-goaling within a 
well-defined mission (Trent, 2019).  In fact, most machine learning today has none of this at all: 
the goals are chosen by designers and the system is only trained to select procedures to meet those 
pre-defined goals.   

With perceptual autonomy, a system makes decisions (i.e., has alternatives or degrees of 
freedom) in how it represents the current problem state.  Colloquially, these are “is” or “are” 
decisions.  Most machine learning classifiers are captured in this type of autonomy, and it is likely 
that virtually all autonomous systems in the physical world possess some degree of perceptual 
autonomy.  For example, a machine might be given the gaze angle and pupil dilation of a person 
as direct input, but it might use this information to decide “Is this person looking at me: Yes/No?” 
and represent the state only with the inferred variable.  For sophisticated systems, there may be 
many layers of this perceptual autonomy between raw sensor feeds and the representation of the 
problem state on which procedural decisions are made. 

Procedural autonomy simply means that the system can select its next procedure.  
Colloquially, these might be “how” or “what next” decisions.  Systems such as autopilot have 
procedural autonomy, and processes which oversee action execution would similarly count.  We 
have successfully tested many systems that have procedural autonomy, and by and large we know 
how to test these kinds of systems.  If procedural autonomy works well, then the system will 
accomplish its goals.  Procedural performance metrics are often the same as those we collect for 
systems anyway (e.g., probability of hit), and the way we currently structure tests is adequate to 
characterize decision quality for a system with only procedural autonomy.  Developing high-
quality procedural autonomy usually involves solving more challenges than demonstrating that it 
works.  There are not many intellectual challenges to testing whether an autopilot maintains a 
certain airspeed and altitude—building a system that can do that might not be as easy.  Where 
testing procedural autonomy becomes unwieldy is when large problem spaces are solved only with 
moment-to-moment procedural decisions, but this is primarily a quantity-of-testing challenge.  
Because these systems generally do not compress their problem spaces, they must be trained 
through extensive problem space exploration (e.g., OpenAI or AlphaGo), and so they also must be 
tested roughly as extensively.  However, what should be measured is typically clear (e.g., games 
won or lost).  For these reasons, our framework only minimally discusses testing this kind of 
autonomy. 

Testers should avoid the heuristic that executive, perceptual, and procedural autonomy are 
organized hierarchically by complexity or risk.  While these may be correlated in the systems we 
design, conceptually they are distinct.  For example, one could try to solve a complex task just 
through procedural autonomy, and many current machine-learning efforts take this approach 
(Bathaee, 2018).  A system might be trained to complete a complex task (e.g., OpenAI Five in 
Dota 2; (OpenAI, 2018)), but if it is trained only on a single signal (e.g., win the game) then this 
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system may make only moment-to-moment procedural decisions.  If the entire problem space is 
explored well enough, a complex task can be solved without executive autonomy, choosing sub-
goals along the way.8 However, executive autonomy can simplify the training and analysis of a 
problem space.  For example, an AI&A system might make the executive decision to set a sub-
goal “to take the north-side outpost.” From there, its procedural decisions are made by how well 
they accomplish that goal.9 There are differences in how one tests a system that sets goals versus 
one that just makes procedural decisions.  For example, a goal-setting system can be evaluated in 
smaller discrete chunks, whereas a pure procedural one would need more exhaustive end-to-end 
testing (see Section 3 for more details).  Furthermore, although executive autonomy with military 
tasks typically carries significant risk, military problems involving perceptual autonomy (e.g., 
misidentifying a target) may carry as much or more risk.   

These definitions intentionally capture systems ranging from the ridiculously unsophisticated 
to the futuristically complex.  A landmine meets our definition of an autonomous system (it has 
perceptual autonomy), but we are not suggesting that revolutionary methods are needed for a 
simple pressure-based mine.  The type of decisions a system makes—executive, perceptual, and 
procedural—are one feature of AI&A that influences what we would try to quantify and how we 
would structure our tests to do it.   

The more transparent the system’s decision-making is, the smaller the amount of explicit 
testing we need.  When systems make limited decisions in simple ways, it is much easier to achieve 
this transparency, and evaluating their performance might not require quantitatively measuring 
their performance.  For a victim-activated device, the concern is its ability to discriminate a valid 
target.  A simple pressure-based sensor and a complex multi-spectral data fusion landmine are both 
making the same decision, and what we need to measure to quantify that performance is the same.  
That they make the decision without an operator is what makes them autonomous.  The difference 
is where we need to measure it.  We understand very well what causes the pressure mine to make 
its decision, and that understanding lets us make inferences about performance across a range of 
conditions without directly measuring it.   

Testing is about providing assurance, and sometimes assurance does not require exhaustive 
direct measurement.  The better we understand a system, the more inferences we can make, and 
the fewer measurements we require.  As we climb the sophistication gradient however, we begin 
to encounter more challenges to achieving this assurance.  This feature of autonomy—the type of 
decision the system makes—affects what we measure.  In the next section we discuss how decision 
type can affect testing, and we identify further features of autonomous systems that generate 
challenges when evaluating decision-making systems.

                                                 
8  E.g., Markov Decision Processes 
9  Humans and systems can have multiple goals, sub-goals, and path constraints active at any time. 
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3. Evaluating Performance for AI&A 

A fundamental goal of testing is to provide assurance that a system works as intended (US 
Department of Defense, 2015).  However, the purpose of this assurance is not to provide an across-
the-board, binary “adequate/inadequate” evaluation.  The purpose is to evaluate conditionally: to 
understand where the system performs better and where it performs worse.  Depending on the 
stakeholder, this conditional understanding serves different purposes.  For developers, this helps 
locate flaws to be fixed.  For leadership (and ultimately the public), it informs whether there is 
enough overlap between where the system is good and where it should be good to spend taxpayer 
treasure on it.  For the actual users, understanding where the system is effective and ineffective 
may be most important: it informs them how to appropriately and safely employ their system. 

In general, tests to achieve this conditional assurance are designed by identifying (1) the 
system’s use cases, (2) relevant outcomes, and (3) the conditions of those use cases which might 
influence outcomes, and then (4) selecting test points across these conditions that allow us to make 
inferences about system performance.  The processes the DoD uses for these steps need to be 
adapted to work with AI&A, and even after a functional test design is identified, a number of 
challenges remain.   

We have scoped this section around our proposed solutions to a set of previously-identified 
core challenges to providing assurance to different stakeholders for an AI&A system (e.g., Ahner 
& Parson, 2016; Defense Science Board, 2012, 2016; Endsley, 2015).  In some cases, these general 
challenges are not unique to, but may be exacerbated in AI&A.  In no strong order, the challenges 
are: 

 Challenge #1: Standard test designs assume that varied test factors are causal and that 
valid inferences can be made across the test dimensions, but black-box systems cannot 
guarantee this causality, thus limiting interpolating between or extrapolating beyond our 
test cases. 

 Challenge #2: Measuring effectiveness of AI&A requires assessing the appropriateness 
of its decisions, and DoD standard metrics will be insufficient alone. 

 Challenge #3: Diagnosing the causes of a decision requires data about, at minimum, the 
inputs received, and ideally about the intermediate processing the system performs. 

 Challenge #4: The best assurance comes from realistic testing, and the DoD will need 
new practices to ensure safe but operationally relevant tests.   

 Challenge #5: Battlespaces are integrated, and a system’s effectiveness is co-
determined by its ability to work with others and others’ ability to work with it, and 
unexpected behaviors can emerge from these interactions. 
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 Challenge #6: Evaluations of AI&A effectiveness must be tempered by evaluations of 
adversaries’ ability to exploit the system both tactically and virtually.   

We have not provided an exhaustive treatment of these issues here.  Our solutions may spawn 
challenges of their own, to which yet further solutions exist, which could pose further challenges, 
and so on ad infinitum.   We have delved into these issues enough to create a roadmap for a series 
of papers that describe in more detail the implementable technical methods.  How to politically or 
organizationally achieve these solutions is beyond the scope of this roadmap.  Furthermore, this 
paper focuses on acquiring effective assurance.  A second roadmap, currently under development, 
examines the policies and procedures related to test efficiency. 

Finally, we do not wish to imply by making a recommendation that no one is doing it that 
way.  In some cases, these recommendations are standard practice for certain groups.  However, 
we have noted that adoption is not universal, and so we include these good practices for the 
awareness of the entire community. 

A. Designing a Test of AI&A, Broadly 
The broad strokes of designing a test for AI&A systems will be familiar.  We believe it is 

worth explicitly discussing where processes will overlap, because it provides a common starting 
point for T&E, reinforces the attitude that these problems are solvable, and clarifies where 
differences do exist. 

As described in Section 2, the core of AI&A is decision-making, and tests of these systems 
should revolve around decision-making as well.  Many of these systems will involve physical 
effectors or actuators which must be tested too (e.g., an AI&A aircraft still needs its flight 
performance tested), but how to select missions, factors, and levels of those factors, and then 
distribute test points in the physical-domain is understood relatively well in the DoD.  What is 
needed are a priori and post-hoc methods to identify the missions, factors, and levels relevant to 
decision-making. 

The first stage of decision-centric test design should be identifying, for each of its missions, 
what decisions the system makes.  We recommend testers use task decomposition techniques such 
as hierarchical task analysis to break down missions into their component tasks and sub-tasks.  The 
level of detail needed in this breakdown will likely depend on the maturity of the system under 
test, with earlier testing requiring more granular task analysis.  Testers should then take these tasks 

Tests are still designed by identifying (1) the system’s use cases, (2) 
relevant outcomes, and (3) the conditions of those use cases which 
might influence outcomes, and then (4) selecting test points across 
these conditions that enable inferences about system performance. 
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and identify for which tasks the system has autonomy, and what type of autonomy (executive, 
perceptual, and/or procedural) it has on those tasks.  Those autonomous tasks should be the primary 
focus of testing the AI&A components of a system.10 

The goal of the decision-centric test is to evaluate whether the system is making appropriate 
decisions, and so the next stage of test design should be to define, for each task, what an appropriate 
decision is and select metrics.  These metrics will differ by the type of autonomy even within a 
task.  Procedural autonomy selects the next action to take to achieve a goal, and so it can generally 
be assessed by how well it accomplishes that goal.  For example, for an autonomous system that 
is simply meant to eliminate human specified targets, like our current missiles or some concepts 
for UAVs, applying traditional metrics like probability of hit or kill will likely be sufficient.  The 
same cannot necessarily be said for executive or perceptual autonomy however, and we discuss 
those challenges in more detail later in the section. 

Testers also must identify the space across which these metrics should be collected—the 
factors we expect would change the outcomes.  For decision-making, these are both the 
information dimensions that change what the correct decision is and the conditions that make that 
decision difficult for the system to make.  At minimum, the former demands subject matter experts 
(SMEs) of the task and the latter SMEs of the system.  Ideally, cross-functional teams involving 
both SMEs and technical analysts would select the test factors.  Though we advocate that this 
identification should at least happen partly during system design and early test conception, 
empirical data will be needed to identify some factors.  Due to the nature of AI-enabled systems, 
these factors may not be known in advance and might require experimentation to discover (e.g., 
Ahner, Parson, Thompson, & Rowell, 2018; Defense Science Board, 2012; Sparrow et al., 2018). 

Traditionally, testers would take the identified factors, select levels across those dimensions 
that will be varied in test, and then use formal or informal techniques to select combinations of 
factors and levels as the test points.  These points can be spread sparsely, because analysts can 
make inferences between the measured performance points while quantifying their uncertainty in 
the result.  In these traditional test designs, however, risk is driven by uncertainty in measurement, 
not uncertainty in the causality of test factors.  For example, aerospace engineers are very confident 
that the factors varied in testing are what causally drive an aircraft’s flight performance.  
Uncertainty comes from potential imprecision in data collection, test execution, or factors not 
recorded, but this is not the sole source of uncertainty in a decision-space for AI&A.  The 
information dimensions that define a good choice are often confounded with other irrelevant 
information.  We lack confidence that the important information dimensions which were varied in 
test are what actually causally drive decision-making for a given system.  Traditional methods of 
test design and uncertainty quantification do not account for this possibility, and so how to explore 
the operational space becomes the first major break with tradition when testing AI&A.  However, 

                                                 
10  In OT the focus should still be brought out to the overall mission, but the test should be designed to evaluate the 

impact of the AI&A decisions on that mission. 
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the goal is to alter test strategies ways that allow us make valid inferences, so that the T&E 
community can leverage existing uncertainty quantification techniques like statistical analysis and 
design of experiments, rather than abandon them entirely.  In the next section, we will discuss how 
to enable inference in AI&A. 

B. Core Challenge #1: Generalizing Understanding 

 

 
If the national security community wants operators to make informed decisions about system 

employment in environments in which they were not literally trained and tested, then those 
operators need to understand how the factors in their environment are likely to affect the system’s 
behavior—they need to have a mental model of its decision-making. However, they need to have 
the right model, and they are not the only ones who need one: testers also need to ensure that the 
test factors they vary are the ones that actually matter to the system. To enable these activities, 
testers first have to obtain a decision model, and then put in work to verify, validate, and accredit 
that model. This is easier for some types of systems than others. 

1. The Challenge  

To provide assurance across the operational space,11 there are two basic options: exhaustively 
test all of the scenarios across this space, or test some of them and generalize those results to the 
rest (Fisher, 1935; Montgomery, 2019).  Decision spaces can grow astronomically large, making 
exhaustive testing infeasible (e.g., Clarke, Klieber, Nováček, & Zuliani, 2012; Haugh et al., 2018).  

                                                 
11  The range of situations a system is expected to encounter. 

RECOMMENDATION 

Testers need more transparency in decision-making 
systems.  Before we can confidently test system 
performance, we must understand how the system 
makes its decisions.  Black-box systems prevent testers 
from making inferences about untested scenarios.   

Testers must obtain, verify, and validate models of what 
causally drives system decision-making. 
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However, the quality of assurance we can provide through generalization depends fundamentally 
on the quality of our understanding of how the system works, or what causes its behavior to change 
across points in the operational space (Sparrow et al., 2018).  The less one understands, the shorter 
the inferential jumps one can validly make, and the more data one needs to achieve a desired 
confidence level.  This tension sets up generalization—making informed inferences about 
performance in situations we have not explicitly tested—as one of the critical challenges of testing 
AI&A. 

Whenever we make inferences, we are making predictions based on a model—our 
understanding of the underlying factors that affect outcomes.  Models do not have to be completely 
true to be useful; they just have to enable useful predictions (Box, 1976, 1979).  Whether 
instantiated as formal statistical or computational processes, or as informal mental shorthand, when 
one generalizes, one is asserting that one understands how a change to the conditions would alter 
the outcome.  Valid generalization is not possible without a model. 

When it comes to many physical processes, 
we have a robust and sophisticated understanding 
of the factors that influence outcomes.  These 
strong models enable us to run efficient tests of our 
standard systems.  Traditional tests are structured 
to examine performance under some set of 
conditions and then interpolate between and 
extrapolate beyond them (Montgomery, 2019).  
For example, our model of aerodynamics allows us 
to predict where the edges of an aircraft’s flight 
envelope would be.  This lets us test near the edges of the operational space and make inference 
of safety between them and failure beyond, rather than needing to test every point of the space up 
to and including failure (Federal Aviation Administration, 2018). 

When it comes to decision making, the models we need are similar: we need to understand 
the factors that causally influence outcomes.  However, rather than physical processes, the factors 
of concern for decision models will be the dimensions of information that influence decisions.  In 
the world of the PSH, this model would be understanding how the system arrives at and represents 
problem states (perceptual autonomy); what its goals are, how it selects new ones, and how it 
represents the problem space (executive autonomy); and the process it uses to identify procedures 
that best meet those goals (procedural autonomy).  We even have fairly strong models of human 
decision making, though we rarely think of them in this way.  “Common sense” is really just the 
set of mental models we assume humans use to navigate and interact with the world (Fletcher, 
1986).  Yet while we can assume the aerodynamics model will extend from one aircraft to another, 
the analogous statement cannot be made for decision models.  The “physics of decision making” 
can be totally different between systems, and we assume at our own risk that human decision 
models (“common sense”) hold true for AI&A (Defense Science Board, 2016; Gunning, 2018).   

To understand how a system 
will behave in a new situation, 
we need to understand what 
causally drives its behavior. We 
cannot do that for black-box 
systems. 
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The systems where we have these models—where we understand the information dimensions 
that drive decisions—are the systems that do not concern us as much in test.  A sentinel robot 
designed to shoot any enemies that come too close is not performing a fundamentally different 
task than a landmine.  We are not concerned with how to test the landmine or developing 
techniques, tactics, and procedures (TTPs) for its employment because we have an extremely 
strong understanding of its decision model.  We can easily infer that its model would be incapable 
of discriminating valid from invalid targets.  How does the sentinel robot discriminate targets, 
though? What criteria does it use? How does it detect their proximity? The answers to these 
questions are a part of its model, and when we know them, we can make better inferences about 
its performance under different conditions.  These inferences let us certify performance and 
develop TTPs. 

A commonly voiced concern about generalization in AI&A is that systems could demonstrate 
“discontinuities” or large changes in behavior where we have not tested them (Haugh et al., 2018; 
Sparrow et al., 2018); we advocate that testers use these unpredicted behaviors to test and 
understand the system’s decision model.  It is functionally guaranteed that systems will 
demonstrate behaviors that are divergent from our past experience with them, and we agree that 

testers should try to find these.  Some have 
advocated that failure modes are a good way to find 
discontinuities (e.g., Deonandan, Valerdi, Lane, & 
Macias, 2010; Giampapa, 2013; Luna, Lopes, Tao, 
Zapata, & Pineda, 2013), and others that behavioral 
consistency would be efficient (e.g., Harikumar & 
Chan, 2019; Zhou & Sun, 2019).  However, based 
on our conversations12 about this topic, the DoD 
community appears to interpret the search for 
discontinuities as a performance description 

process: a search for undesirable behavior—discontinuities in space where performance goes from 
good to bad.  The assumption seems to be that in earlier situations, information was affecting 
decision-making appropriately, whereas at the discontinuity, it is not.  While this is possible, 
especially in specific, rule-based symbolic processing, in sub-symbolic systems, which are 
commonly universal function approximators (Funahashi, 1989), it is more likely that the system 
processed all of the situations in the same way.  We argue that rather than looking for undesirable 
behavior, we should be looking for unpredictable behavior—discontinuities in space where 
predictions go from accurate to inaccurate.  This will happen when our assumptions about the 
system’s decision model are wrong—either because we are modeling insufficient dimensions or 
interactions, or because we are assuming the wrong function across that space.  From the 
standpoint of inference, good performance we could not predict hurts our confidence in our 

                                                 
12  E.g., At the Army Test & Evaluation Center’s workshop series on AI T&E, the DoD Human Factors Engineering 

Technical Advisory Group discussion, and various personal conversations. 

The inability to predict behavior 
may be more problematic for 
operations in the long term 
than merely observing bad but 
explainable behavior.   
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generalizations just as much as bad performance.  Furthermore, CONOPS can be developed around 
behavior that is bad but predictable.  When testers observe a discontinuity in a system’s behavior 
along a dimension or dimensions, they should use it to test their assumptions about the decision 
model. 

When testing decision models, it is critical to differentiate whether the discontinuity arose 
from the system using the right information in the wrong way, or by using a different information 
dimension altogether.  In the real world, signals of causal factors are often confounded with 
irrelevant noise.  Our testing may make it appear that the system bases its decisions on this causal 
signal, when in reality it uses the noise.  If you move to a part of the problem space where that 
noise is absent, behavior will change in a way that the causal-signal model would not have 
predicted.  This is not a discontinuity in its behavior;13 it is evidence invalidating the decision 
model we believe is in use.  For example, in many parts of the world, the edge of the road is 
correlated with a rise in elevation.14 If an autonomous car is trained and tested in that environment, 
it may learn to use this rise and appear to detect the edge of the road perfectly well.  Yet when 
confronted with a cliff, it would detect no rise in elevation and happily drive itself off.  This is not 
a discontinuity—this is consistent with how the system processes the world.  We advocate that 
testers frame using “discontinuities” to invalidate the understood decision model, rather than 
describing where they exist. 

Unlike with humans, in most cases we do not have models of AI&A decision processes.  The 
problem is compounded by a growing trend in AI&A development to use black box machine 
learning to solve complex problems (Bathaee, 2018).  These systems are too complex to test 
exhaustively (Defense Science Board, 2016), but we also have virtually no understanding of how 
they work (Bathaee, 2018; Gunning, 2017).  However, some methods of creating white-box 
systems do not necessarily solve the problem either.  Testers must evaluate whether these specific 
rules encompass the entirety of the operational space, which quickly outstrips humans’ ability to 
evaluate as complexity rises.  Without a general model that can be used to draw inferences, the 
entire space needs to be covered, and the system’s decision processes still may not be intuitive to 
humans.  If defense developers design systems in 
these ways, the T&E community must either 
provide an honest assessment of the level of 
assurance we can obtain for a given cost, or 
generate a way to overcome this challenge.  

If a primary challenge to providing assurance is that we lack models that allow us to 
generalize our findings, then the obvious solution is that we should have them.  The problem spaces 
in which AI&A operate grow rapidly as complexity rises, and the starting point for testing these 
systems cannot be the type of deterministic testing to which many engineers are accustomed 

                                                 
13  This is a continuous response in the correct, noise-based model. 
14  E.g., from a curb, sidewalk, or berm. 

We will need to obtain models 
of system decision-making. 
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(Haugh et al., 2018).  Testing these systems cannot be about performance alone; it must also be 
about process.  A key goal of testing must be providing assurance that the way the system processes 
information is reasonable and likely to succeed across its employment domains. 

To provide the assurance we need, testing must have a model of decision making so that we 
can generalize, and testing must also provide confidence that the model we have is sufficiently 
correct—through both systematic and realistic examination—so that we can minimize the 
likelihood of “discontinuities.” We must obtain, verify, validate, and accredit (OVVA) models of 
system decision-making.  Ultimately, we argue that the road to assurance is not through just testing 
more, but through process-based assurance—testing to understand.   

2. OVVA Part One: Obtain a Model 

How to obtain a model depends fundamentally 
on how the system is designed.  Testers must 
identify where along two dimensions an AI&A 
system lies: the extent to which information 
processing or representation is symbolic (that is, 
processing content is meaningful, e.g., some 
traditional computer languages) vs.  sub-symbolic 
(human-non-meaningful processing such as through 
parallel distributed activation, e.g., neural 
networks), and the extent to which input-output relationships are monolithic (all inputs occur in 
parallel, all possible outputs in a parallel layer) vs.  modular (outputs of one process act as inputs 
to another).  In practice, these are not orthogonal dimensions, where monolithic systems are more 
likely to be sub-symbolic (e.g., deep neural networks) and symbolic systems tend to be more 
modular (e.g., cognitive or software architectures; branching logic).  Furthermore, these are 
dimensions, not binary descriptors, and a system can take a hybrid approach such as having smaller 
neural network modules take symbolic input and transform it to different symbolic information 
that will act as input to other neural network modules (Simen & Polk, 2010).  As a trend, more 
modular and/or symbolic systems are easier to test, whereas more sub-symbolic and/or monolithic 
systems can be easier for developers to optimize. 

In general, when an AI&A system is more symbolic and/or modular, models can be obtained 
by examining designers’ choices, whereas more sub-symbolic and/or monolithic systems demand 
data-driven methods to uncover the decision model (see Figure 1).  The ease and quality of the 
current state-of-the-art for these approaches vary significantly.  The next sections discuss how to 
obtain decision models through data-driven, design-driven, and hybrid methods. 

Testers can use data-driven 
methods to obtain sub-symbolic 
decision models, and more 
design-oriented evaluation for 
more symbolic systems. 
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Figure 1.  Design choices affect OVVA methods. 

a. Obtaining Through Data 

A black box is black because we do not understand its causal processes—how inputs are 
transformed into outputs—but it is possible to demystify those processes (Google, 2019; Gunning, 
2017; Mueller, Hoffman, Clancey, Emrey, & Klein, 2019).  This is easier said than done, however, 
and while some methods already exist that aid this endeavor, there are a number of more specific 
hurdles that must be overcome to find success. 

When demystifying a black box, one option is to pick techniques from under the umbrella of 
what the Defense Advanced Research Projects Agency’s (DARPA) Explainable AI (XAI) program 
are calling “model induction” (Gunning, 2017).  Generally in model induction, the goal is to use 
systematic testing to create a map of inputs15 to outputs.  For example, salience mapping in vision 
attempts to break down components or super-components of the stimulus to provide a value for 
how influential each component was for the ultimate categorization made (Erhan, Bengio, 
Courville, & Vincent, 2009; Simonyan, Vedaldi, & Zisserman, 2014).  This input-to-output 
mapping gives us the beginnings of a model that might let us predict future behavior (and therefore 
generalize).  Extensions of this basic input-output map start to integrate intermediate processing 
to achieve an input-to-node/layer-to-output map.  For example, adding labeled sub-features to 
images and statistically linking those to activation of intermediate layers or nodes in a neural 

                                                 
15  Or combinations of inputs, or sub-aspects of inputs 
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network can allow you to try to better understand what environmental features matter to that part 
of the network (Gunning, 2019).16 

However, model induction as a test strategy creates another problem: obtaining data to obtain 
the model.  While there is a good deal of important technical distinction between different 
techniques under the model induction umbrella, one assumption they currently share is that testers 
have large quantities of valid, operationally relevant inputs to feed the system.  For any sub-
symbolic system, there is already tension between using data for training versus testing, and model 
induction will only exacerbate this problem by introducing new testing demands.  Failing to keep 
data for performance validation has well-documented issues (Raschka, 2018), but to what extent 
model induction can or cannot reuse training data is a matter of speculation currently.  Based on 
the current model induction methods, we speculate that if it can be reused, it will at least require 
huge efforts to relabel. 

 

While data quantities are a major hurdle, testers must also contend with ensuring that the data 
are valid and operationally representative, which will be particularly challenging for systems with 
full autonomy17 that are embedded in real-world physical systems.  Right now, the main solutions 
to this problem are either using real pre-recorded mission data (Pinelis, 2019) or simulating 
environments with high fidelity (Kwashnak, 2019).  
When systems only possess passive perception (e.g., 
machine-learning classifiers), feeding pre-recorded 
data is perfectly reasonable—it is literally 
operationally representative because it comes from 
real operations.  However, even sensors of the same 
class can have proprietary or idiosyncratic data 
formats, or different qualities and resolutions.  Sub-
symbolic networks can be sensitive to these 
differences (Hazan, Papandreou, & Tarlow, 2016), and responses to these stimuli may be different 
from responses to the real environment from a system’s own sensors.  Common or universal 
formats could help mitigate some problems (e.g., Defense Science Board, 2016; Endsley, 2015), 
but whenever possible, if the system is being fed pre-recorded input, testers should do their best to 
match the data source to the system’s sensor.  However, even sensor-matched pre-recorded data 
can be problematic in fully autonomous embedded systems because these systems can change the 
information they acquire—a drone that is having trouble recognizing an ambiguous object could 
move to get a better angle or train a different active sensor on it.  That decision cannot be made in 
pre-recorded data, preventing us from obtaining that part of the decision model that way.   

                                                 
16  This work is still early in development.  At the moment, it is extremely labor intensive and results in mixed 

success. 
17  Systems that can make executive, perceptual, and procedural decisions within a task. 

It is not clear how testers will – 
or if they even can – safely and 
efficiently obtain the inputs for 
data-driven methods when 
systems are fully autonomous. 



3-11 

To obtain models of fully autonomous systems, they must be tested in an environment where 
they can make all of their decisions; that requires either a behavioral simulation environment or 
live testing.  This is not problematic for purely virtual systems like video game bots or cyber-
operations AIs, because their valid live testing can be computer simulated.  However, for real-
world embedded systems, this creates a catch-22 under current technological limitations.  
Simulations of the physical world do not represent all aspects of reality, and in order to VV&A 
them, we must determine whether they sufficiently represent the important factors for the topic at 
hand (Wojton et al., 2019).  With a black box system, however, the reason we need to obtain a 
model is that we do not know what these important factors are yet, and thus we are prevented from 
legitimately verifying the simulation.  One could try to collect these data via live, real-world 
testing, but this is prohibitively expensive and begs the question of how we will certify these 
systems as safe for testing on the range.  The current consensus is that testers will use behavioral 
simulations in order to get limited safety releases for live testing (e.g., Ahner et al., 2018; 
Kwashnak, 2019).   

The workarounds to getting valid data are extremely resource intensive.  Some are using very 
high-fidelity simulations built from real locations (e.g., LIDAR mapping an entire range or course; 
Kwashnak, 2019), ensuring all environmental features at that location are represented.  However, 
this takes a great deal of effort to set up, and sim runs may be slower-than-real-time under realistic 
computational constraints (Kwashnak, 2019).  Furthermore, although a location may have high 
fidelity, our ranges only cover a limited set of the environmental variability that exists in the world, 
limiting test representativeness.  Alternatively, one can accept some risk and proceed through live 
testing at a slower rate,18 but this is likely impractical given the competition that already exists for 
budgets and range times. 

Finally, though the XAI program is making promising progress developing model induction 
techniques, if DoD intends to pursue these harder-to-certify black-box decision-making systems, 
then we recommend that investment in this area be significantly increased.  There remain many 
open questions for both basic and applied research (Gunning & Aha, 2019; Mueller et al., 2019), 
and our workforce does not have sufficient expertise, tools, or training to successfully execute 
what can be highly technical analysis across the ever-growing body of systems with autonomy 
(Ahner et al., 2018; Gil & Selman, 2019; Zacharias, 2019b).  Model induction can help testers 
demystify a black box and continue on to the next stage of testing; however, developers, program 
managers, testers, and evaluators should all be aware that this process can be extremely time- and 
resource-intensive, and may be outside of their workforce’s capability. 

                                                 
18  Civilian applications have taken this approach, but mitigate the problem through massively parallel 

testing/training in real environments, e.g., autonomous car fleets driving on the highway (Templeton, 2019).  
This is not really an option for military systems. 



3-12 

b. Obtaining Through Design 

At the other end of the spectrum, one can obtain a decision-model by examining the choices 
the designer made.  When systems are more symbolic, the cause-and-effect relationship between 
information and behavior is more explicit.  When systems are more modular, how information 
moves and is transformed is clearer.  Looking at these choices describes how the system makes 
decisions.  This does not imply that the overall evaluation task is trivial—white-box symbolic 
systems can still be highly complex and it can be difficult to intuit how they will behave across the 
entire operational envelope—but the point is that we do not need testing to uncover the causal 
factors that drive behavior.  These are explicitly represented and obtainable by looking.   

However, fully symbolic architectures are difficult to optimize and typically fail to achieve 
the same level of performance seen in sub-symbolic systems—at least when it comes to the more 
task-specific AI&A that are developed today (Hernández-Orallo, 2016).  Though symbolic 
systems are far easier to obtain models for, the current trend is to adopt at least some level of sub-
symbolic processing.  If this trend continues, testers may rarely have the ability to obtain models 
through design examination alone. 

c. Obtaining Through Hybrid Methods 

Because the sub-symbolic/symbolic and monolithic/modular are dimensional distinctions,  
designers can adopt a hybrid approach between these endpoints, which also enables a hybrid 
approach to obtaining decision models.  In a hybrid 
architecture, modules might take in symbolic 
information and transform out different symbolic 
content, but do this transformation through sub-
symbolic processing (Simen & Polk, 2010).  What 
inputs it processes and outputs it produces are 
known, though exactly how it does so is not.  They 
might also mix module types, e.g., use a monolithic 
neural network for perceptual decisions and a fully 
symbolic system for goal setting.  Though tradeoffs 
of different hybrid approaches are a robust 
conversation in the field of AI (Laird, 2012), we 
make no recommendations regarding how or what 
level of detail at which to specify these architectures.  However, developers might choose a hybrid 
approach when they want more control of the overall processing strategy while still enabling the 
use of optimizable sub-symbolic processing within a module.  For example, a notional computer 
vision system meant to perform viewpoint-invariant recognition of 3D manmade objects might be 
designed as a series of modules that transform information into increasingly abstract components.19 

                                                 
19  This is a simplified illustrative example, not a design recommendation.   

Hybrid architecture models can 
be obtained by examining the 
flow of information, and then 
initially verified by injecting 
synthetic input first into 
individual modules and then 
into successively longer 
cascades of sequential modules. 
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The first module might be a neural network trained to take symbolic content in the form of RGB 
pixel values and output the endpoints of continuous edges.  The next module might take those 
symbolic edges and build vertices, pass vertices to a module that builds shapes out of them, then 
pass those shapes to a module that associates shapes to a single object.  The final module might 
try to recognize objects as spatial arrangements of shapes, while an entirely separate module 
identifies how far away it is.   

 
Figure 2.  A toy example of a hybrid architecture.  Black boxes take and transform symbolic 
content into more abstracted, compressed information before passing it to the next module. 

Hybrid architecture decision models can be obtained through what we are calling cascading 
compositional verification.  A design-driven evaluation examines the flow of symbolic 
information to understand which information dimensions drive the system’s behavior, while a 
data-driven evaluation examines whether the information transformations happen in the intended 
way.  As needed, testers might use model induction to learn more about specific modules.  Because 
we know the symbolic content that modules take, it is much easier to supply the necessary data to 
obtain the model: the information dimension is known, so values can be synthetically injected from 
across the range of possibilities.  If testers know what the output should be, the individual module’s 
performance can be assessed.  In standard compositional verification, each of the component 
modules would be tested separately, and if they function, the whole integration is assumed to 
function. 

Because AI&A decision processes will likely rely on emergent properties (e.g., the whole is 
greater than the sum of its parts—see Challenge #5 for an in-depth discussion), may involve 
feedback or recursive processes, and may be non-deterministic, we do not recommend pure 
compositional verification.  Instead, after individual modules are verified, testers can start adding 
modules by cascading through the processing chain from both the top down and the bottom up.  
The top-down method works by starting at the final module and sequentially adding modules 
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backwards, while the bottom-up method adds modules to the processing chain in a feed-forward 
manner.   

How exhaustive the cascading portion of testing needs to be will likely be a program-specific 
call based on acceptable risk, but it can be aided by analytic tools.  Because modular architectures 
will operate on garbage-in, garbage-out (GIGO) principles, errors in one module can propagate 
and compound as you proceed through the processing stream.  Compositional verification would 
let you estimate the performance of a module with some amount of uncertainty;20 however, if 
analysts could propagate that statistical uncertainty from earlier modules to the evaluations of 
downstream ones, it could help estimate uncertainty across larger segments even all of the entire 
architecture, and help scope testing.  The details of how to execute this analysis are an example of 
the type of content IDA is looking to address in the technical papers that will follow from this 
framework, and though this is not a fully solved problem, the statisticians on IDA’s Test Science 
team have developed a method that can enable this kind of evaluation across individually tested 
modules.   

d. Proprietary Hurdles  

 
 

Obtaining models through either data- or design-driven techniques can be hindered by 
proprietary concerns, and it may be necessary for DoD to own rights to the decision systems 
themselves and data they produce.  Programs the authors have encountered to date have refused to 

                                                 
20  I.e., statistical error 

RECOMMENDATION 

Testers need rights to system decision-making and 
learning processes and data generated by these 
systems.  In addition to benefits such as enabling 
modularity and reusability across systems, gaining 
ownership rights to the decision software is critical to 
testing.  Proprietary concerns can cause an otherwise 
transparent system to be a black box to testers, as has 
already happened with several systems.     
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share information with testers about the system’s decision making.  What may be a white box to a 
developer might be a total black box to the T&E community, and this would still prevent evaluators 
from making valid inferences across test dimensions.  Without rights to the decision processes, 
design-driven methods for obtaining a model cannot work.  These same programs also prevented 
the use of data-driven techniques by refusing to allow their systems to be instrumented in order to 
protect their algorithms.  The authors fully acknowledge it will be a fight to get developers to 
provide rights to their systems and/or data.  It is against their self-interest, and DoD has historically 
failed at this battle.  How to muster the political capital and will for this fight is beyond the scope 
of this framework.  However, we argue this fight is absolutely critical in a way that has not been 
true before.   

Having a decision model for AI&A is critical for providing feasible assurance for them.  The 
only alternatives are to test exhaustively or to blindly accept unknown amounts of risk.  The former 
is functionally impossible.  The latter will result in warfighter deaths if adopted as practice at the 
enterprise level.  The authors find policies that essentially give up on the idea of independent test 
and evaluation unacceptable and cannot recommend them. 

3. OVVA Part 2: Initial Model Evaluation 

After obtaining a model, testers will still need to put in more work to show, through both 
systematic and realistic testing, that this is actually a sufficiently correct model—they must verify, 
validate, and accredit (VV&A) it.  However, these stages take time and resources, and a 
preliminary evaluation of the system’s decision-making might obviate the need for these 
expenditures.  When discussing the ‘quality’ of a 
decision model, testers could be referring to two 
distinct things: the correctness or adequacy of the 
model’s prediction of the system’s behavior (what 
we need to VV&A), or whether the method of 
decision-making described by the model is useful 
for the problem (what we ultimately want to 
evaluate).  It requires much less evidence to show that something obviously will fail to meet high 
performance standards than it does to show that it meets them, and so prior to VV&A, there should 
be an early evaluation of whether the way the system appears to make decisions is likely to succeed 
across the system’s expected operations.   

Regardless of the methods used to obtain it, understanding a system’s decision model does 
not guarantee that way of making decisions is actually effective for its task.  With our discovered 
model, we can start to generalize our findings, but the generalization might be that it would fail in 
most of the scenarios outside of its training data.  For example, the XAI model induction 
community reported that some of the strategies they uncovered in their game playing AIs 
obviously will not transfer beyond the training set (Gunning, 2019), and computer vision systems 
often fail to transfer to more complex environments (e.g., Kheradpisheh, Ghodrati, Ganjtabesh, & 

After obtaining a model, there 
should be an initial evaluation 
of it to filter obvious failures. 
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Masquelier, 2016; Kosiorek, Sabour, Teh, & Hinton, 2019; Owens, 2020).  We predict that 
preliminary evaluations of decision models will reveal many failing strategies, especially as we 
move farther from narrow/soft/weak AI that operates in relatively constrained and better defined 
tasks.   

When evaluating a model, analysts should assess whether what the system has learned (or 
been programmed to do) is a useful abstraction that is likely to succeed across most of the situations 
it will encounter.  This evaluation might involve SME judgment (Goerger, 2004), comparison to 
systems that have already demonstrated robust performance (Caseley, 2018), or explicit 
examination of model predictions under different conditions.  Which of these strategies or 
combinations thereof are necessary will be a case-by-case decision and depend to some extent on 
system design choices.  In some cases, an SME might be all one needs.  For example, if testers 
obtained a model of autonomous car perception that showed it defines the edge of the road using 
painted lines on the road, it is not hard to infer that this will fail on a dirt or gravel road.  If the 
system were meant to operate extensively in those situations, it would be fair to say that the system 
is not going to be effective and needs to be redesigned before further testing.   

To define the operational space against which the model will be evaluated, we reiterate our 
earlier recommendation that testers deconstruct the system’s intended tasks into the information 
dimensions relevant to decision making.  These information dimensions also form the critical 
factors that must be varied in test, and for some systems are the processing stream designers built 
the system around.  This is not to say that every last dimension must be human specified—there is 
value in allowing the system to learn stochastic regularities in the environment of which humans 
are at least not consciously aware.21 From the standpoint of assurance, the purpose of 
decomposition is to consider what the safety, ethical, and performance-critical information 
dimensions are, so that we can gain not only some surety that they are processed at all, but 
moreover that they are processed in a strategy that should work across most of the system’s 
operational conditions. 

a. Symbolic Challenges 

When white-box, symbolic rule-based system development struggles, it is often because 
designers created large sets of domain- or scenario-specific rules that do not generalize to other 
situations, and it is exceptionally difficult to create rules for all situations the system might 
encounter.  Preliminary evaluation of these specific rulesets might focus on the extent to which 
they cover (and at first blush perform across) the likely operational space.  Throughout the history 
of AI, there have been attempts to manually craft rules and knowledge sets, derived from experts, 
into a computer (e.g., MYCIN, Shortliffe & Buchanan, 1975).  While this approach can and has 
worked in well-defined problems,22 most of DoD’s imagined use-cases do not meet the 

                                                 
21  Or simply forgot to specify. 
22  In the formal definition of well-defined, e.g., Newell & Simon, 1972. 
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requirements of a well-defined problem (Defense Science Board, 2016; US Department of 
Defense, 2019).  Humans fundamentally do not have access to all of the information that goes into 
their decision-making (Nisbett & Wilson, 1977), and attempts to extract and apply expert rules to 
ill-structured problems have typically met with more limited success (Zacharias, 2019b).  Early 
space-covering exploration, using automated tools, of how these rulesets perform can catch 
problems when it is still early enough to fix them (Haugh et al., 2018). 

b. Sub-symbolic Challenges 

When black-box, sub-symbolic systems fail, often it is because they have been trained on 
unrepresentative data (Haugh et al., 2018).  This unrepresentativeness usually comes—broadly 
speaking—in two non-exclusive forms: training on tasks or signals that are not the actual desired 
use case, or using data that do not represent the true distribution of possibilities. 

The necessity of clean, representative data for 
machine learning is by now a commonly accepted 
requirement (Jafferjee, 2019), yet the difficulty of 
achieving this goal results in regular reports of 
failures in real-world systems (e.g., Dastin, 2018; 
Narla, Kuprel, Sarin, Novoa, & Ko, 2018).  For real 
world tasks, it is impossible to have training data 
that comprises the entire spectrum of possibilities.  
In machine learning, we expose a system to a 

sample of data from the operational space and hope what it learns can be generalized to the rest of 
the space.  However, if there are biases in that sample, the system will learn them.  Furthermore, 
systems can over-fit themselves to training data, achieving higher performance there at the cost of 
transferability (Roelofs, 2019).  Because environments (and data sets selected from them) are 
stochastic, there are many strategies that would work in a single sample of that environment but 
are bound to fail on average across samples. 

Some are advocating that training data should therefore itself undergo V&V (Haugh et al., 
2018).  While we agree in principle, there are a number of gaps that must be addressed before 
testers can achieve this in practice: chief among them, scalability.  DoD is already wrestling with 
the question of how its workforce will initially label data for training, and civilian solutions like 
crowdsourcing are not options for sensitive or classified material23 and open up the potential for 
data poisoning (Owens, 2020).   Adding a V&V requirement to this already stretched workforce 
seems unlikely to succeed.  Some are suggesting that this V&V process could be automated 
(Micskei et al., 2012), but that creates a “quis custodiet”24 problem of its own: who will validate 

                                                 
23  E.g., Will SIPRNet now have a classified intelligence community CAPTCHA to log in? 
24  “Quis custodiet ipsos custodes? — Who will guard the guards? 

Training data validation is highly 
desirable, even necessary, but 
there is no clear path forward 
for DoD to scale this activity in 
the way civilian enterprises do. 
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the validator? Furthermore, if we already had a system we trusted to categorize these data, it begs 
the question why we do not just use that instead.  In some cases, the automated validator may be 
more computationally demanding than is feasible for an embedded system,25 and this is a way to 
validate less demanding ones, but at this point we are edging towards describing a process for 
achieving AI singularity.  While the creation and validation of such a system would involve 
significant investment, given the importance of having clean, valid data, we recommend that DoD 
investigate the feasibility and potential return on investment of such an automated data validation 
system. 

At a minimum for training validation, 
however, analysts can at least evaluate whether the 
task a sub-symbolic AI&A system was trained on 
was of real operational complexity.  It is important 
to train and evaluate systems on the task one 
actually wants performed, rather than a simpler abstraction of it.26 Strategies learned on simpler 
problems are less likely to transfer to more complex ones than the reverse.  For example, the 
computer vision community continues to relearn that systems that are trained on and work well for 
the perception of static, 2D images often fail at viewpoint invariant recognition, whereas systems 
trained to do dynamic 3D perception do not suffer from the same transfer challenge (e.g., Kosiorek 
et al., 2019).  The 2D-trained systems that do not suffer at viewpoint invariant recognition appear 
to mimic a 3D-trained decision model anyway, such as that of a human (Kheradpisheh et al., 2016). 
It is not impossible for simpler training to transfer upward, just unlikely, and so part of the reason 
to obtain a decision model is to assess whether this transfer is plausible. 

c. Evaluating Adequacy

Part of the evidence for whether a decision model will 
work robustly across the operational space can be the extent 
to which it matches another decision model that is known to 
work robustly across that same operational space.  When this 
argument is advanced, typically proponents are referring to 
reusing modules that have already undergone extensive 
testing (e.g., Caseley, 2018; Zacharias, 2019b), and 
therefore reusing the evidence that the capability works. 
While we support the pursuit of common, reusable modules 
(e.g., it’s preferable not to create and validate 20 different 

passive video perceptual systems), and the reuse of evidence, at the moment we do not have this 
historical body of evidence for AI systems.  Instead, the only robust decision models we possess 

25  E.g., creating Size, Weight, and Power (SWaP) problems (Sparrow et al., 2018).
26  Simple abstractions can be popular because it is easier to collect data and/or create simulations for these tasks.

Initial model evaluations 
can include comparisons 
to certified systems, SME 
judgment, and low 
fidelity simulations. 

Evaluators can at least examine 
training signal or task adequacy. 
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are those for biological organisms.  Over the past century-and-a-half, scientists have made great 
strides toward uncovering the underlying structure of the human27 mind (Newell, 1990).  Low-
level structures are relatively common across species and evolutionarily tested for robust 
performance in common environments (Dunbar & Shultz, 2007; Heyes, 2012; Singh, Lewis, Barto, 
& Sorg, 2010).  By taking advantage of this knowledge, we not only become more likely to develop 
good systems (Defense Science Board, 2016; Krichmar, 2012; Krichmar, Severa, Khan, & Olds, 
2019; Kurup & Lebiere, 2012; Neema, 2019; Zacharias, 2019a),28 such as with dynamic 3D 
perception (Kheradpisheh et al., 2016; Kosiorek et al., 2019), we also gain a head start on assurance 
by providing evidence that the system’s decision model matches one we know works well for this 
task.  As we move forward and begin to find and validate robust, non-biological information 
processing strategies, we can add these strategies to our comparison library. 

A major part of the evaluating whether a decision model will generalize is assessing how the 
problem is represented—what problem state perceptual autonomy creates upon which procedural 
decisions are made.  Having a representation that matches the procedural algorithm is critical for 
problem solving (Pretz, Naples, & Sternberg, 2003).  In spatial navigation for example, a strategy 
that should mostly work across all environments would be to make procedural decisions based on 
a four-dimensional representation of where objects are and will be in space.  Perceptual autonomy 
built around that process could feed procedural autonomy that chooses where to move to minimize 
collisions.29 Evaluating the adequacy of the problem state representation can be either holistic 
SME judgment or a more quantitative comparison of the task decomposition dimensions to those 
represented by the system.   

Often the adequacy of a decision model will be ambiguous and demand more than SME 
judgment; however, higher-fidelity examinations move away from the resource-saving purpose of 
the preliminary evaluation.  We recommend the use of lower-fidelity space exploring tools to 
perform this early assessment.  For rule-based systems, tools such as the Range Adversarial 
Planning Tool (RAPT) or the Autonomous Systems Test Capability (ASTC) can help to efficiently 
explore this space without massive computational overhead (Kwashnak, 2019; H. Miller, 2019).  
However, these systems are not necessarily intended for sub-symbolic AI&A, and different 

                                                 
27  And non-human 
28  Many of the major breakthroughs in AI research have been finding ways to implement biological processing 

strategies in our technology.  Whether it was the first artificial neural networks, or AlexNet implementing visual-
cortex-inspired processing on a GPU, many leaps forward are biomimetic.   

29  For an illustrative description of a simplified toy perceptual model: the perceptual basis of knowing where 
objects are located is (1) the capability to distinguish distinct objects in the environment.  If we have distinct 
objects, we can (2) infer where they are relative to each other.  If we know where distinct objects are, we can 
now (3) track them over time with memory.  If we can track over time, we can (4) infer velocity.  If we have 
distinct objects’ location and velocity, we can (5) integrate information to construct the 4D map.  From that 4D 
map, we can (6) train to make procedural decisions that meet the goal of minimizing collisions.  Just one of 
many ways to implement this in a hybrid architecture would be to use supervised learning mechanisms 
separately at each of those processing stages, instead of just at the end of the task for successful navigation. 
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techniques are needed there.  If the decision model obtained comes in the form of a mathematical 
equation predicting how values of information alter behavioral probabilities, one can compute and 
evaluate these (Hernández-Orallo, 2016).  Other times, one might need to simulate the system in 
an environment to check its behavior.  Agent-based modeling (ABM) is a useful tool for lower-
fidelity descriptions of cognitive agent decision-making (Greer, 2013; Ilachinski, 2017), but these 
also require some VV&A, even if it is a lower burden. 

Early in system development, there will probably be many of these obtain-evaluate cycles 
before an apparently useful solution is found, especially if developers rely on sub-symbolic 
machine learning processes.  However, it is highly likely that some of these design failures will 
not be found until later in what would traditionally be development or operational test.  The entire 
acquisition community should be prepared for iterative development30 and test (Ahner et al., 2018; 
Defense Science Board, 2016; Gunning & Aha, 2019; McLean, Bertram, Hoke, Rediger, & 
Skarphol, 2016; Trent, 2019), and the likelihood of failure; but by integrating these T&E processes 
early in the cycle with lower threshold fidelity, we are more likely to catch duds before they 
become too big to fail. 

4. OVVA Part 3: Verifying, Validating, & Accrediting a Decision Model 

We cannot rest on our laurels after the 
preliminary evaluation of our obtained 
model—we must verify that this model 
adequately explains system behavior, and 
validate that the model meets these 
expectations in realistic conditions.  Failing to 
do so invites the “discontinuities” that worry 
many testers.  The purpose of the model is to 
know how information changes behavior.  This 

allows us to manipulate these dimensions in test and have confidence when generalizing our 
results.  In the first step, testers should generate predictions from the decision model about how 
the system will behave31 or respond under certain conditions.  From there, the goal is to hunt for 
discontinuities and use them to falsify our believed decision model: we test the model’s predictions 
against the system’s actual behavior in increasingly realistic scenarios.  This requires testing the 
system’s actual decision processes (e.g., symbolic branching logic; deep neural network) in either 
a simulated environment or live testing.  As the behavioral simulation itself will need to undergo 
VV&A, we recommend that model testing spiral through risk—use the simulation both to test the 

                                                 
30  And we do not just mean fake agile (Defense Innovation Board, 2018). 
31  Though colloquially behavior is assumed to be an overt physical action, in this paper we use the term broadly to 

cover the result of a decision.  An intelligence, surveillance, and reconnaissance (ISR) image classifying system 
might not have any physical actions, but the act of labeling an object and forwarding that information 
somewhere would be its behavior. 

Decision model VV&A will need to 
try to invalidate the obtained 
model based on system behavior. 
This will need to be an iterative 
process before traditional T&E. 
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model and to obtain limited safety releases for live testing.  These live test points can be used both 
to validate the decision model and the behavioral simulation environment (see Figure 3).  As with 
the preliminary model evaluation, the acquisition community should be prepared for iterative and 
adaptive testing.  The model VV&A should not be a single shot demonstration.  We should expect 
to find behaviors that invalidate our decision model and require us to refine it—either because the 
information dimensions are wrong or the model is insufficiently complex to adequately describe 
the system. 

 
Figure 3.  Overview of the OVVA Process 

Ultimately, having a decision model serves two purposes: having confidence in the 
dimensions across which we are making inferences, and also providing a lower-fidelity—but 
critically, still adequate—method to make those inferences.  As discussed here and elsewhere (e.g., 
Defense Science Board, 2016; Sparrow et al., 2018; Wegener & Bühler, 2004), we cannot cover 
all of the possibilities in AI&A systems.  Our general recommendation for testing is to use lower-
fidelity methods to try to cover more 
operational space and higher-fidelity testing to 
verify and validate those simpler techniques 
(e.g., Harikumar & Chan, 2019; Laverghetta, 
Leathrum, & Gonda, 2018; Visnevski & 
Castillo-Effen, 2010).  For this purpose, the 
decision model is one way to let testers cover a 
large amount of space with fewer resources.  Behavioral simulations can let testers systematically 
though not exhaustively visit a large part of the operational space, while live testing can be used 
to validate the simulation.  The idea is to test efficiently cover the space while still reducing risk. 

VV&A may need to cycle through 
levels of test fidelity and realism in 
order to manage risk.  
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There may not be a single unified decision model for a system for all time.  The type, fidelity, 
complexity, and predictive precision one wants for a model depends on its purpose and the level 
of error one is willing to tolerate.  Different stakeholders are going to have different needs and 
make different choices for the model.  A tester who needs to be confident when interpolating or 
extrapolating test results requires a different model than a warfighter deployed to a conflict zone 
who needs to make broadly safe real-time decisions to employ the system or not.  Early testing 
may call for more granular models than capstone testing before a full-rate production decision.  In 
this section, we focus on the decision model that leads to system behavior—how executive, 
perceptual, and procedural decisions interact to produce operationally relevant actions.  However, 
the OVVA process is not limited to this, and readers should be aware that they may need to have 
more detailed models of individual decision types for their systems.   

Testers should keep in mind a fundamental tenet of testing: we cannot prove, only falsify.  
As a result, we should try to maximize the value of our test points in terms of how informative 
they are about our model.  Exhaustively retesting the centroid of the performance envelope may 
be less valuable than looking for brittle edges or discontinuities, and testing points that do not 
allow us to differentiate between two competing decision models may not be particularly helpful.  
Alternative Design of Experiments (DOE) techniques can be of use here.  DOE attempts to 
optimize the value of test points to some criteria (Montgomery, 2019).  DoD is familiar with DOE 
techniques that optimize to statistical uncertainty (error) and our ability to detect effects (Director 
Operational Test & Evaluation, 2009), but these are not the only criteria testers can use.  For 
example, some fields use Shannon entropy to optimize their DOE, while others might use the 
Akaike Information Criterion (AIC) to optimize for model selection (Nowak & Guthke, 2016).  
Which DOE techniques are best for the OVVA process is another candidate for a technical paper 
to emerge from this framework. 

Furthermore, because OVVA testing will involve a large amount of exploratory testing, 
testers will need tools that help them adaptively plan test points over time, rather than 
monolithically designing large test events years in advance, as is often the case now.  Here, 
sequential DOE is a tool that can help testers adaptively, efficiently, and effectively execute the 
OVVA process.  However, though sequential DOE has been used by industry for decades, there 
remain methodological challenges to adapting it to DoD AI&A T&E (Ahner & Parson, 2016; Hess 
& Valerdi, 2010), such as how to meaningfully perform factor screening on categorical variables.  
IDA’s Test Science statisticians are also working on solutions to this problem.   

Testers will need to be able to diagnose the causes of unexpected behavior in order to 
invalidate the decision model.  If for instance we get unexpected behavior because a sensor or 
actuator failed, this does not really constitute evidence against the decision model.  Furthermore, 
GIGO problems can make it difficult to assess the decision model overall: our understanding of 
the executive and procedural systems may be correct, but because we do not adequately understand 
the perceptual system, we could have difficulty predicting the system’s behavior.  However, 
diagnosis as a challenge is not limited to OVVA (Greer, 2013; Sparrow et al., 2018), and is a 
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complex enough topic that we devote Challenge #3 in this paper to the problems and our proposed 
solutions.   

This diagnosis problem leads to a need to describe whether our model or models are adequate 
in a more continuous and conditional way.  An across-the-board, thumbs-up/thumbs-down 
evaluation will not help testers identify how the model can be improved.  One—though not the 
only—method of doing this is to use what we are calling “Bayesian discrepancy modeling” as a 
method for simulation validation.  In this paradigm, we use a Bayesian framework to try to 
estimate, based on our live test data, the continuous probability32 that the simulation results would 
acceptably33 match reality.  A further advantage of this method is that it gives different continuous 
probabilities across the different test conditions. 

5. Summary of OVVA 

To make valid inferences, testers will need to obtain, verify, validate, and accredit a model 
of the system’s decision making process.  To identify what test methods are appropriate for 
obtaining the model, testers should identify whether the system is designed to be more modular or 
monolithic, and whether its processing is more symbolic or sub-symbolic.  After a model is 
obtained, testers should perform an initial evaluation to weed out obviously bad systems.  From 
there, testers should examine the system’s actual behavior against the model’s predictions to see 
whether the model sufficiently explains the system.  Testers can use a spiral of simulation and live 
testing to perform this step. 

The model is a key part of assurance, but though we may believe when choosing it that the 
strategy is effective, belief is not proof.  It may be the case that the designer’s choice of decision 
strategy was wrong, that the architectural implementation of the strategy was incorrect, or that the 
system failed to optimize the processing steps sufficiently.  Any of these could lead the system to 
still be ineffective despite possessing the system’s decision model.  The beginnings of assurance 
come from the decision model representing a reasonable, robust strategy across the operational 
space—the rest must come from test. 

While testers might be tempted simply to evaluate the accuracy of perception or the 
appropriateness of behavior as outcomes alone, some argue this will not be sufficient (Sparrow et 
al., 2018), and this high-level approach misses the point of model-based assurance.  Classification 
accuracy in computer vision, for example, does not confirm the system would work outside of our 
test cases—the goal of the test procedures described is to try to falsify that assertion that the factors 
we believe the system uses to make decisions are the factors the system actually uses.34 By stepping 
systematically through the processing stages, we test whether those stages actually do what we 
believe, and we quantify their performance.  Having a verified and validated model of the 
                                                 
32  0-100 percent 
33  As defined by the level of risk a stakeholder is willing to accept and/or by operational significance. 
34  The model does not need to be complete or comprehensive, just sufficiently useful and correct. 
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information dimensions the system uses to make decisions allows us to vary those dimensions 
during performance or certification testing and have confidence when we make inferences between 
and beyond our test points.   

Having a model of system decision-making and being able to generalize our test findings is 
a major step on the road to assurance.  This allows us to use the basic test philosophy of identifying 
factors and testing across some operational space without being exhaustive.  However, it is not the 
only step.  As we proceed through the other challenges to assurance for AI&A, we will refer back 
to many of the ideas discussed here, and in some cases expand upon them.  We frequently 
referenced assessing “decision appropriateness” as a part of validating a system’s model without 
providing information on what that would mean.  In the next section, we discuss what it means for 
AI&A to be effective and the challenges of demonstrating that effectiveness therein. 

C. Challenge #2: Measuring AI&A Effectiveness 

 

 In order to systematically evaluate decision-making systems, we need ways to measure the 
appropriateness of the systems’ decisions. This needs to include both what to measure and how to 
go about measuring it. Quantifying decision-making will be a critical step on the path to writing 
testable and verifiable, but operationally relevant, requirements specification, which many have 
identified as a major hurdle to T&E. For executive decisions, this requires evaluating whether 
goals chosen were useful to the mission. Having intermediate outcome metrics for missions will 
make this easier, and examining the reasons underlying goal decisions will allow more holistic 
assessment. For perceptual systems, testers will need better methods for defining error and 
accuracy, but also better training in these more complex analytic techniques. Procedural autonomy 

RECOMMENDATION 

Research into and dissemination of methods for 
evaluating decision-making are needed.  These 
include metrics to quantify intermediate mission success, 
methods to qualitatively evaluate overall decision 
processes, novel calculations of classification accuracy 
for multi-categorical fuzzy groups, and ways to quantify 
a system’s ability to learn. 
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will likely be the easiest to measure simply through the achievement of the goals those decisions 
are supposed to support. Finally, systems will be expected to adapt to changing battlefield 
expectations, either over the long term or in real time, and testers need to develop methods for 
measuring the capacity of systems to learn. This would enable system comparison for 
benchmarking or source selection. 

1. Basic Test Designs 

The T&E community and public at large is 
experiencing great consternation over how we will 
certify AI&A.  These concerns are a mix of 
legitimate challenges and ill-informed doom-
saying.  Many authors’ work on the former 
contributed to the development of this roadmap 
(e.g., Defense Science Board, 2016; Endsley, 2015; 
Helle, Schamai, & Strobel, 2016; Macias, 2008; 
Roske et al., 2012), but this document is as much as anything a response to the latter pessimism.  
While it is absolutely true that failing to develop the new test processes will limit the credibility of 
assurance provided for an AI&A system (Defense Science Board, 2016), those who claim we have 
no idea how to test these systems are mistaken.  The fundamental difference in AI&A is that these 
systems make decisions, and the appropriateness of these decisions is a critical factor in their 
effectiveness.  When decisions are appropriate, regardless of whether they are executive, 
perceptual, or procedural, they advance the full set of goals35 relevant to the mission.  However, 
how to certify the appropriateness of decision-making is not a problem that originated in AI&A. 

The starting point for developing methods to certify artificial decisions should be our methods 
for certifying human decisions (Defense Science Board, 2016).  Many of the certification 
challenges are not unique to AI&A, but are issues that we have already mitigated or solved with 
humans.  Testers should start by clearly defining what decisions the system makes, and then look 
at how we gain trust that a human would make those decisions appropriately.  In some cases, there 
may be literal analogues of certifying the decision made.  For example, there are common missions 
that have many sub-tasks drawing on very different skills, that occur in environments that are too 
complex and varied to simulate reliably (so must be tested in real life), but pose significant risk to 
life if the task fails.  How then would we safely test these systems? We note, though, that this is 
the exact same challenge we face in training and certifying human doctors.  Using the graded 
autonomy process developed for medical residents (Halpern & Detsky, 2014) as a starting point 

                                                 
35  Often when people theorize about inappropriate AI&A decisions, they end up describing programmers failing to 

explicitly define the full set of ‘common sense’ goals people intuitively assume.   

Human decision-making 
certification methods should be 
the starting-point, but not end-
point, of AI&A certification. 
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for testing a robot surgeon would be beneficial.36 These processes and metrics can form the basis, 
though not end-point, of our test strategies.   

We do not advocate that testers blindly adopt human-certification techniques.  Testers should 
use the general shape of testing as the starting point, not the amount or exact execution of it.  These 
techniques take shortcuts because we can assume that—in humans—this evaluation of decision-
making is just the next step in a long chain of implicit and explicit testing.  We can have relatively 
anemic certification testing because these tests do not exist in a vacuum.  A sixteen-year-old 
arriving for his or her driving test does not need a full shakedown of all cognitive abilities.  Low-
level perceptual and motor processes are common amongst humans and evolutionarily selected to 
be robust across domains (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth, 2012; Smith, 
Zakrzewski, Johnson, Valleau, & Church, 2016), so we are confident they are using perceptual 
and motor processes that should work for driving.  Life itself has also acted as operational testing 
of these capabilities: surviving to that age helps assure those processes are functioning.  Explicit 
tests of other skills (e.g., school) have also examined those abilities.  We do not need rigorous 
testing there—a brief confirmatory eye-exam will suffice, and the skills portion of the test becomes 
more about whether they have successfully translated their domain-general motor control37 to the 
specific domain of driving.  We have less, but still some confidence in a human’s executive 
autonomy at that age (Best & Miller, 2010).  We assume they probably are pursuing reasonable 
high-level goals (e.g., “Don’t die.”), but a major part of the evaluation is whether their risk-taking 
behaviors appear well-matched to that goal (e.g., not making turns into oncoming traffic).  These 
are assumptions we can make about human drivers that we cannot make about self-driving cars.  
We do not know that the AI&A car’s perceptual autonomy uses robust strategies; we do not know 
that its effectors are capable, and we do not know what goals it is pursuing and whether these are 
reasonable.  These must be tested. 

Even when we cannot adopt the certification techniques we already use, examining them for 
what we assume does not need testing in humans strongly informs the capabilities we must 
explicitly test in AI&A.  Techniques like hierarchical task analysis or decomposition can aid in 
this breakdown (Stanton, 2006).  Testers should still use human techniques as the starting point, 
identify which gaps our assumptions about human skills create, and then explicitly test the 
system’s performance on those skills. 

2. Metrics for Effectiveness 

Testers will need to measure AI&A performance using metrics that are rarely employed by 
the DoD T&E community.  What makes a decision appropriate depends heavily on the type of 
decision being made and the context of that decision.  There will not be a one-size-fits-all solution, 
and the metrics for executive, perceptual, and procedural autonomy may be very different from 

                                                 
36  We will expand on this certification strategy later in the document. 
37  I.e., part of their procedural autonomy 
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each other.  However, metrics within those broader categories will likely share a number of 
features, and T&E will benefit from developing common processes for the development and 
selection of metrics. 

a. Executive Autonomy 

Evaluating executive autonomy requires assessing whether the system set goals for itself that 
enabled its success.  There are a number of challenges to this: it is not obvious how to connect 
goal-setting to mission outcomes; we lack reliable, objective metrics to quantify goal 
appropriateness; goals have auto-correlated effects—future option-availability depends to some 
extent on earlier decisions made; and goals not pursued may be as important as what was chosen.   

There are two basic options for testing executive decisions: try to quantitatively tie individual 
decisions made to task outcomes, or qualitatively assess the process by which decisions are made 
(as we do in humans).  However, as we will expand on in this section, each of these options requires 
work before they are implementable.  We make two recommendations to overcome their problems:  

 T&E should develop standard processes for programs to use to select or create 
intermediate mission-outcome metrics.   

 In parallel, making AI&A at least transparent, and ideally explainable, can aid 
evaluation by enabling SMEs to evaluate the system’s overall goal-selection process.   

1) Intermediate outcome metrics  

Ultimate mission outcomes are multiply 
determined, and having multiple causal factors 
makes it difficult to evaluate the effect of 
individual executive goal decisions at that level.  
A mission might fail not because the goal 
chosen was wrong, but because the system 
failed to execute pursuit of that goal effectively.  
Additionally, executive decisions might still be 
optimal under the situation’s constraints or 
available information even if they ultimately 
fail.  Trying to disentangle the relationship 
between goal decisions and ultimate mission 
outcomes will be difficult for both 
interpretability and statistical reasons. 

The more indirect a relationship is, the harder it is to detect, and the distance between goal 
decisions and ultimate outcomes makes them difficult to model statistically.  This distance could 
be defined many ways, such as the number of decisions that occur between two states, the degrees 
of freedom or number of possible options, or simply elapsed time.  Though the goal choices closest 

Quantitative intermediate outcome 
metrics can help evaluate executive 
decisions. For example, tracking 
yards gained and points instead of 
just winning or losing the game in 
American football makes it easier 
to evaluate individual play calls. 
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to the ultimate outcome have the most direct (and therefore statistically detectable) connection to 
it, they might not have had the strongest influence.  Early choices can open up or restrict the goals 
that can be pursued down the line, and those first choices can end up being the most important.38 
However, the problem space between those early goals and final results may be huge (and therefore 
hard to detect statistically).  There are many degrees of freedom between most goal decisions and 
final outcomes, and the large number of degrees of freedom require larger and larger tests to detect 
relationships quantitatively.39 Reducing the distance between decisions and outcomes they predict 
is desirable, but testers must do so in a way that preserves operational relevance.   

To assess the effect of individual goal decisions, we recommend that testers not just track 
final outcomes, but also record intermediate progress along the way.  This intermediate progress 
provides a metric closer to individual decisions, reducing the degrees of freedom so that their 
impact can be evaluated more easily.  From a statistical standpoint, these metrics would ideally be 
continuous rather than binary, as this increases sensitivity (Altman & Royston, 2006).  These 
metrics are not just for evaluation, however—they also provide signals on which the system can 
be trained.40 Though more critical for AI&A, these metrics would help with operationally testing 
standard systems as well. 

We recommend that intermediate mission success metrics become an area of systematic 
research effort.  Creating observable metrics for ultimate and intermediate mission success would 
help develop and evaluate AI&A executive autonomy, but to the authors’ knowledge at the time 
of writing there is no concerted effort to create these metrics in DoD.  Industry and competition 
teams have intermittently pursued them (e.g., Silver et al., 2016; Wegener & Bühler, 2004), but 
the attempts have usually been one-off for specific purposes.  Given the importance of this to 
virtually all AI&A development and testing, as well as the potential benefit to the operational 
testing of standard systems, and the need for resourcing, DoD should consider investing in this 
capability as soon as possible.   

                                                 
38  For example, the play call in a third-and-long situation in American football is an executive decision that 

strongly determines whether the team will get a first down.  However, one might only be in that situation 
because of attempting low probability passes on the first two downs. 

39  The degrees of freedom also make it more difficult to train the system in the first place, not just to evaluate it.   
40  One of the AlphaGo team’s great insights was developing a way for the system to assign value to intermediate 

board states (Silver et al., 2016). 
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However, we recommend that at this time the first 
step be development of standard processes for creating 
or selecting metrics, rather than specific intermediate 
outcomes.  We foresee three potential pitfalls in leaving 
metric development to occur organically for individual 
programs.  First, the skillsets needed to work effectively 
in the AI world are both diverse and in short-supply 
within DoD (Zacharias, 2019a).  Given the problem’s 
difficulty and the expertise shortage, without guidance 
programs will likely develop low-quality metrics.  
Secondly, programs are incentivized primarily for their 

own success, and metrics may be developed that are usable for their own specific needs, but are 
not re-usable and are less advantageous at an enterprise level.  Finally, the stovepiped nature of 
acquisition may hinder programs from discovering quality, reusable metrics that others have 
already developed.  By initially focusing expertise on developing a process for metric creation, the 
T&E community can mitigate quality control problems and encourage development of metrics 
usable across a mission area, not just for individual systems.  Furthermore, by providing a central 
knowledge-sharing mechanism (e.g., a repository in the JAIC), DoD can alleviate the problem of 
stovepiping. 

We recommend that this metric-creation process be a multi-disciplinary collaboration 
between industry, academia, and the military.  AI&A lives at the intersection of many disciplines 
(Endsley, 2015; Laird, 2012; Zacharias, 2019a), and these metrics must also be operationally 
relevant.  A process developed only by one field may ignore the necessary insights from another 
(T. Miller, Howe, & Sonenberg, 2017).  This is a brave new world, and we do not yet know what 
the right process looks like.  Many proposals will need to be solicited and tried, and these proposals 
should be created from all the relevant AI&A fields.  Historically however, these fields fail to 
interact (Steinberg, 2019; Zacharias, 2019a), and so some incentivization may be necessary.  For 
example, one method that has succeeded in the academic world to foster collaboration between 
traditionally separate fields is to require that grant applications demonstrate they have 
representatives from all (or most) relevant fields (e.g., "MCubed Program Requirements", n.d.).  
These fields should include, at a minimum, the computer, cognitive or psychological, and 
statistical sciences; engineering; and operations research.  Military SMEs will be indispensable for 
this research, and so whoever leads this systematic research effort should also work to foster 
increased partnerships between academic and military worlds.  When these metrics deal with legal, 
moral, or ethical (LME) outcomes (e.g., fratricide, collateral damage, escalation) we recommend 
lawyers and philosophers be included as well. 

Leveraging interdisciplinary 
teams to develop processes 
for creating metrics, rather 
than specific measures, may 
provide more enterprise-
level value at this time.  
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2) Transparent or explainable AI&A  

The reason we do not already have these 
intermediate metrics appears to be that our methods 
for certifying human executive decision-making rely 
on SMEs qualitatively evaluating the decision 
process rather than the individual decisions (Simpson, 
2019).  For military tactics certification, for example, 
those SME evaluations look very similar to the type 
of model-based assurance discussed in the 
generalization challenge—examining how students 
represent the problem and the soundness of the reasoning (Simpson, 2019).  While SME 
evaluations may include directly observable criteria, those criteria are not sufficiently diagnostic 
to be reliable on their own (Simpson, 2019).  If a questionable decision is made by a student, 
evaluators ask that the decision be explained.  The reasons underlying the decision are more useful 
for deciding whether that student will be able to generalize their performance to other situations. 

Among the reasons for DoD to pursue explainable AI (XAI) is that it can help evaluate 
executive autonomy.  There are some who treat XAI as a bonus, an extra thing to be pursued, but 
there is evidence that explainability is fundamental to human problem solving, not an additional 
capability.  Research suggests that problem solving is not a separate module in humans, but is an 
ability scaffolded on top of our natural language processes (Polk & Newell, 1995).  Although it is 
extremely unlikely that the only way to achieve artificial flexible reasoning is to use language or 
semantic networks as the underpinning, these approaches may be a desirable path to pursue over 
others.  Systems that are explainable—that can themselves explain their decisions to others—are 
desirable in and of themselves for end-users; explainability also strongly enables T&E of executive 
autonomy, and it may be the most-likely-to-succeed path forward to flexible problem-solving 
anyway.  However, while explainability is desirable, transparency in system decision-making—
knowing the causal relationship between information and behavior, i.e., having a decision model—
could theoretically be sufficient for evaluation.  If testers have a model of how the system sets 
goals, they can additionally provide that model to SMEs to attempt a subjective evaluation.  This 
would be a mitigation at best, however—we still recommend that DoD pursue explainability in its 
systems. 

SMEs can evaluate the process 
or reasons behind executive 
decisions. This requires 
transparency or explainability 
in our AI&A systems. 
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b. Perceptual Autonomy 

The goal when testing perceptual autonomy is to 
evaluate whether the system’s representation of the problem 
state accurately reflects reality.  For autonomous systems, 
perception is the basis of action, and so it becomes especially 
critical to demonstrate that systems sufficiently represent the 
situation currently facing them.  In this section, we focus on 
the topic of categorization.  Although perceptual autonomy is 
not limited to this, the potential for high regret through 
improper categorization and the number of fruitful research 
avenues make this a worthwhile topic. 

In general, assessing accuracy requires asserting a ground truth and defining error in relation 
to that ground truth.  This creates a few core problems when evaluating AI&A perceptual accuracy: 
ground truth is not always known, the dominant approach of using binary error terms will not 
always be appropriate, and context can change what accuracy means.  We make three 
recommendations relating to these problems: 

 Testers should invest more resources in accurately capturing ground truth during testing 
and proceed with extreme caution in situations where ground truth is subjective and/or 
lacks consensus. 

 Testers should pursue the development and dissemination of non-binary accuracy 
metrics. 

 Testers should use perceptual accuracy metrics that account for how context can change 
the correct categorization. 

3) Establishing ground truth  

Before we can assess accuracy, we must have ground truth.  Accuracy is not absolute—it is 
an outcome relative to a target.  If we do not have confidence in what we are asserting is the target, 
we cannot have confidence in our evaluation of the system’s responses.  If a system says there is 
a tank in those trees at 1309 local time, and if we cannot see that location ourselves, we would 
have to know the location of all tanks on the range at 1309 to evaluate whether it was correct.  
Although it is not universally true, testers often fail to sufficiently capture ground truth during their 
events to make these assessments, particularly during operational tests that might last for days at 
a time.  This may be only minimally disruptive for certifying our standard systems, but greater 
care may be needed with AI&A.  This will take more resources than we often currently expend, 
but if ground truth can be asserted objectively, then for AI&A it should be asserted from precise 
recorded data. 

However, in many cases ground truth might not be objective or may lack consensus.  There 
might be objective, measurable criteria that predict people’s responses, but there is not universal 

Evaluating perceptual 
autonomy will require 
non-standard methods 
for defining error and 
evaluating accuracy. 
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consensus on what those criteria should be.  More operationally relevant and most moral or ethical 
categorizations will fall under this subjective umbrella, and assertions by developers or testers can 
have significant LME consequences.  We recommend that everyone proceed with extreme caution 
when asserting a subjective ground truth such as acceptable collateral damage or fratricide risk 
from which system perceptual accuracy will be assessed. 

4) Defining error  

Once ground truth is defined, testers must choose how to define errors, and there are multiple 
ways to do so.  This decision can change what the estimate of a system’s accuracy is, making the 
error definition possibly the most important one for perceptual autonomy.  To pick an appropriate 
error term, testers should start by identifying whether the perceptual decision is best described as 
binary or fuzzy (is or is not versus a matter of degree), and discrete or multi-categorical. 

Formal perception test methods have typically fallen under the rubric of Signal Detection 
Theory (SDT: Marcum, 1947; Peterson, Birdsall, & Fox, 1954; Tanner & Swets, 1954).  In the 
dominant SDT approach, both ground truth and perception are assumed to be discrete-binary—
e.g., the thing is either present or absent, and the system represents it as either present or absent 
(Green & Swets, 1966).  For example, the aircraft is actually there (or not), and the radar either 
tracks it (or does not).  This results in two basic flavors of error in a confusion matrix: the system 
believes the thing is present when it is in fact absent (a false alarm), or the system believes the 
thing is absent when it is actually present (a miss).  Establishing ground truth to make this 
assessment might not be trivial or free of error, but it is clear at least what must be compared.  
While standard SDT will continue to be relevant for AI&A, it may require adaptation for certain 
perceptual decisions. 

In the real world, not all errors are discrete-binary.  Things can belong to multiple 
simultaneous categories (they are non-binary: Ashby & Townsend, 1986), and membership in 
those categories may be a matter of degree (they are fuzzy, not discrete: Parasuraman, Masalonis, 
& Hancock, 2000), and it may be both of these together (O'Connell, 2015).  Categories can have 
different structures that influence error: they might be single-label non-binary, uniformly 
distributed or not (e.g., variants A, B, C); they might be hierarchical (e.g., taxonomies—a Persian41 
is a type of cat is a type of mammal is a type of animal); they might be orthogonal or correlated 
multi-label groups (e.g., male/female sex is largely unrelated to nationality), or have other 
structures.  Standard SDT error terms are not fully applicable to fuzzy, multidimensional categories 
(O'Connell, 2015). 

Some work42 has examined how to process accuracy in fuzzy, multidimensional, or 
multidimensional-fuzzy categories (e.g., Ashby, 2000; O'Connell, 2015; Parasuraman et al., 2000), 
and some fields apply them, but the techniques are not as well-researched, widely known, or 
                                                 
41  Categories can also be homographic or homophonic.  Persian is both a cat breed and human ethnicity.   
42  For example, General Recognition Theory (GRT) is a multidimensional extension of SDT.   



3-33 

frequently applied.  Binary SDT errors could be used here, but this can lose important information.  
Given that these metrics will be relevant for huge numbers of programs, leaving the development 
to individual teams will likely result in redundant parallel efforts.  Bringing these efforts under a 
single roof that will invest in further research in extending SDT, workforce education in these 
techniques, and the development of standard procedures to define necessary precision and cost-
function can help avoid these problems. 

5) Context affects accuracy  

The context in which decisions are made can change what the accurate categorization is, and 
the context in which decisions are tested can change how we compute that accuracy.  Testers must 
account for these possibilities when evaluating perceptual autonomy. 

The development and T&E communities should create a guide for defining necessary 
precision in perceptual decisions.  What is correct or good enough in one situation might not be 
elsewhere.  In a hierarchical taxonomy, one can be technically correct without having the necessary 
level of precision.  For example, categorizing the Persian cat as a mammal is technically correct, 
but might be less precise than is operationally required.  In orthogonal categories, one could be 
correct in one dimension but wrong in another, and these dimensions might not be weighted 
equivalently (Pinelis, 2019).  For example, incorrectly labeling an ally as an enemy is worse on 
most missions than incorrectly labeling their sex.  Fuzzy categories further complicate each of 
these problems.  However, what precision or weighting is appropriate might not be stable across 
all missions: some factors may become more important as situations evolve.  Most programs must 
grapple with these issues to have adequate testing, but currently it is left to individuals to recognize 
this challenge and develop their own solution to it.  A common process could save resources and 
promote quality across program portfolios.   

Furthermore, even using the appropriate techniques above will only correctly estimate 
accuracy if the test event had operationally representative event rates.  We recommend that the 
entire acquisition community, including requirements writers, use Bayesian probability—not just 
traditional accuracy calculations—when evaluating system accuracy.  In a standard confusion 
matrix, accuracy is calculated as the number of hits43 plus the number of correct rejections44 
compared to the total number of observations (Green & Swets, 1966).  However, this computed 
accuracy value will only be representative of the system’s operational accuracy if the ratio of 
present to absent trials reflects the real world (Bayes & Price, 1763).  Bayesian probabilities take 
this ratio into account, however, and should be used instead.45 Tests do not have to be designed 

                                                 
43  Actually Present : Represented Present 
44  Actually Absent : Represented Absent  
45  Take as an example a system whose mission is to move ahead of advancing warfighters and declare whether the 

route is free of mines.  One might design a test with 100 test points where mines are actually present, and 100 
when there are no mines at all.  If the test showed the system correctly identified mines 99 times (99percent 
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around operationally realistic event ratios as long as analysts can use the base rates in their 
evaluations.46 If base rates are unknown or volatile, then analysts can calculate the Bayesian 
probabilities across a range of possibilities.   

c. Procedural Autonomy 

We will only spend limited time discussing the evaluation of procedural autonomy.  Though 
it is by no means necessarily easy to design, it is much less intellectually demanding to test.  
Evaluating procedural autonomy just requires evaluating how well goals are accomplished.  
Procedural autonomy selects the next action in pursuit of a goal.  If provided an accurate and useful 
problem state by perceptual systems, a system with good procedural autonomy will have good 
outcomes for that goal and a system with bad procedural autonomy would have bad outcomes.  
Assessing procedural autonomy becomes more about ruling out the other autonomy types as the 
causes of a bad outcome, the process for which is described in more detail under Challenge #3.  
However, systems that solve complex problems through procedural autonomy alone will be time- 
and resource-intensive to test.  Test efficiency is the challenge in those systems, not planning what 
data to collect.   

1) Metrics in Requirements 

The DoD acquisition system has struggled to write requirements that are both testable, 
verifiable hypotheses and translate to operational success (Ahner et al., 2018; Durst & Gray, 2014; 
Micskei et al., 2012).  AI&A systems will pose even greater challenges.  In line with Goodhart’s 
Law (Goodhart, 1981),47 history is replete with examples of AI-competition winners struggling or 
failing to transfer their victory to other domains or metrics (Kheradpisheh et al., 2016; Marcus, 
2018).  Current popular machine learning techniques are fundamentally about optimization, and 
when problems are well-defined, this optimization works well (Marcus, 2018; Soni, 2019).  
However, most of the applications of AI&A that DoD has indicated it wants to pursue are not well-
structured,48 and humans have historically been bad at selecting sets of metrics that actually define 

                                                 
sensitivity), and correctly rejected that there were no mines 95 times (95percent specificity), then a naïve analyst 
might declare that the system is (99+95/200) = 97percent accurate.  However, in the real world, half of all 
existing routes are not mined, and these rates should not be weighted equally—they should be weighted by their 
probability of occurring.  Every stakeholder would want to know what the probability is that a mine is actually 
there when the system says it is there.  One can use Bayes’ Theorem to calculate a system’s accuracy under 
different assumptions about base rates: if one in ten routes are mined, the system’s accuracy is only 69percent; if 
one in a hundred are, it drops to just 17percent. 

46  However, system designers should carefully consider base rates when choosing training data.  Signals that are 
diagnostic in certain data mixes (e.g., 50percent mines instead of 1percent) may become useless in the real 
world, and designers should consider using operationally representative ratios. 

47  E.g., “When a measure becomes a target, it ceases to be a good measure.” (Strathern, 1997) 
48  Well-structured problems have clearly defined initial states, goal states, and path constraints.  When does an 

automated base defense system’s task start? Do you know at the start what a battlefield’s final desired state looks 
like exactly or only vaguely?   
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rather than just indicate success (Gray, 2015; Johnson, 1984).  If a set of quantitative metrics are 
chosen, developers will be able to optimize performance to them, but there is a strong risk that the 
best performer at those metrics will not necessarily be the best performer of the mission.  As a 
result, we recommend that quantitative metrics should be both redundant and blind, assessments 
of those metrics should happen robustly and under varied conditions; and holistic, mission-oriented 
requirements should be employed as well.  Whatever the ultimate solution is, testers need methods 
to minimize the possibility that systems have “gamed” the evaluation.   

Metrics should be redundant.  Rather than selecting single indicators of performance, testers 
should break performance down into multiple aspects.  For example, kill-chain analysis breaks the 
task of destroying a target into serial steps like detect, identify, track, locate, engage, and destroy.  
Then, for each aspect, testers should define multiple quantitative metrics that access that aspect in 
different ways.  For example, one might want to select multiple categorization metrics (as 
described earlier) for the ‘identify’ stage of the kill-chain.  This mitigates but does not eliminate 
the possibility that systems will be optimized to a bad representation of the mission.   

Metrics should be blind.  The tasks or missions, as well as the holistic mission criteria, should 
be very well defined, but to limit a competitor’s ability to over-optimize, developers should not 
know the exact quantitative criteria used to judge performance.   

Competitions should be robust and varied.  Even if metrics are blind, it is possible that the 
best performer at a competition randomly selected the same set of criteria on which to train their 
system.  Redundant metrics help with this, and testers could consider using a random subset of 
these metrics across source-selection competitions at multiple locations and environments.  
Furthermore, developers should not have access to test locations for training data.  That is another 
way (in addition to metric optimization) where systems can perform well in test but fail to deliver 
good operational performance.   

Requirements should also include holistic, mission-oriented evaluations.  The call for this 
kind of requirement is not new, but the need for it in AI&A is stronger (e.g., Ahner et al., 2018).  
For traditional human-operated systems, it is not that this kind of holistic evaluation does not 
happen, but that it is not performed by the T&E community or contractually required.  This 
evaluation traditionally happens in human training where there is no cultural phobia of holistic 
evaluation.  It is the authors’ opinion that since this holistic assurance is obtained outside of T&E, 
there has not been a forcing function to get holistic requirements in contracts.  DoD will not have 

DoD will need testable, verifiable requirements. Metrics defining these 
requirements should be redundant, blind to contractors, and tested 
under varied conditions.  Requirements should also include holistic, 
mission-level evaluations. 
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that luxury for AI&A, and though the problem is not any easier to solve, the defense community 
must find a way to write these requirements that mitigates risk to the military while being 
acceptable to contractors.  The alternative is to break precedent in another way by getting very 
good at selecting quantitative metrics, which we believe is unlikely.    

3. Learning as an Outcome 

One of the great unrealized promises of military 
AI&A is to have systems that can dynamically respond 
to novel tactics and technologies (e.g., US Department 
of Defense, 2011, 2019).  While we are nowhere close 
to achieving the dream of real-time flexibility, systems 
will still need to adapt to the evolving nature of war over 
time.  Adversaries will develop new strategies or assets, 
and systems cannot remain behaviorally static to these 
changes.  Systems that can adjust49 to these changes with 
less time, data, and resources than their competitors are desirable.  We recommend that the speed 
at which systems can adapt to new situations become a metric in and of itself.  In the future, this 
speed might be measured as real-time learning, but for the time being this will almost certainly be 
a measure of industrial rather than system agility.  

We recommend that a formal part of AI&A evaluation be measuring how much time, money, 
and data it requires to acquire new adaptive behavior, as well as demonstrating that this new 
capability has not regressed original skills.  Realistically, the DoD will have less data on emerging 
adversary capabilities compared to legacy systems.  There might be strong operational need to 
react swiftly to adversary developments, so timelines may be compressed, and there may be many 
programs which must be updated, creating competition for budgets.  However, a system can be 
made to appear to learn quickly by throwing more data, compute cycles, and money than is 
operationally realistic.  One option for testing would be to give developers a specified amount of 
data with a limited timeline and budget and measure the system’s capability at the new task by the 
end of it.  If this process becomes standardized, it may even allow for benchmarking between 
systems.  The capability under test could be a holdout tactic or behavior category that was planned 
to be developed at some point anyway (though this allows developers to prepare outside of the 
test, potentially skewing results), it could be something developed by a TTP red team (Zacharias, 
2019b), or it could be a nonsense situation.  The point of the test is simply to quantify, in an 
interpretable way, how well the system learns.  Restricting the different resources (e.g., data, time, 
money) allows for a comparison beyond the resources a given developer was willing to apply to 
the problem at that time, and is more operationally representative of the types of challenges we 
will likely face in the future. 

                                                 
49  Or be adjusted 

Testers should find a way to 
measure a system’s ability 
to learn and adapt to new 
situations as a performance 
indicator in and of itself. 
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4. Continuous Learning Systems 

We recommend that DoD not pursue systems that update or change their decision processes 
in real time in response to situations or data they encounter during operations—otherwise known 
as continuous learning systems—at this time.   In short, the above challenges in measuring and 

testing AI&A will be amplified in continuous 
learning systems that demand continuous 
testing, and the results are unlikely to achieve 
the actual intent of the capability.  While 
continuous learning sounds like a positive 
quality, this is a misnomer.  What these systems 

do is continuously change, and that change could be for the better, for no effect, or for the worse.  
This demands continuous testing to confirm that the change is for the better as well as continuous 
regression testing to make sure performance on original requirements is not degraded.   Finally, 
there is little guarantee that continuous learning will result in the desired capabilities.  Current 
machine learning methods can be extremely inefficient compare to human learning.  For example, 
to achieve a level of skill that would typically take 10,000 hours for a human, the OpenAI bots 
took 10,000 years of gameplay (OpenAI, 2018).50 Though the OpenAI system was able to acquire 
those data much faster than real-time, real-time learning by definition does not acquire data faster 
than real-time (see Figure 4).  

Continuous learning is often mentioned in response to a desire for tactical flexibility or to 
respond to new threats.  We recommend, rather than using continuous learning systems, that new 
or novel experiences be recorded and saved for data validation.  Such situations that actually do 
show a new tactic or threat can be used in periodic retraining or update training.  This provides the 
adaptive capability desired in continuous learning, enables that learning to be shared throughout 
the fleet, and allows for appropriate human oversight and discrete test events to ensure the desired 
traits are learned and other capabilities are not degraded. 

                                                 
50  OpenAI intentionally did not use the most efficient learning methods; the state-of-the-art would have offered 

improvement by a factor of two or three.  Even this is eight to 10 orders of magnitude away from real-time 
relevance.   

DoD should not pursue continuous 
learning systems at this time.  
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Figure 4. The amount of operational data individual systems will collect is orders of magnitude 
less than needed to see meaningful tactical learning in sub-symbolic systems. Achievements in 
cooperative video games, while impressive, require massive amounts of training to improve or 

update while still remaining relatively tactically brittle. 

 

However, testers do not get to decide what systems get developed, and if someone does insist 
that continuous learning systems will happen, then this capability does still need to be tested.  In 
this case, we must try to at least mitigate the problem, and we would recommend adopting a similar 
tiered skill recertification as we have for our human operators.  Programs would need to create 
different diagnostic tests that can be executed at different levels of expertise.  A unit-level 
recertification would need to be relatively unsophisticated, and would check to make sure certain 
critical behaviors are operating within some set of defined parameters.  These diagnostics could 
be run regularly by the units themselves.  At a less frequent but regular interval, a battalion-level 
expert could be recertifying the decision systems with more detailed diagnostics.  If history is any 
judge, this expert will probably be a field service representative (FSR).  Finally, at rates driven by 
the program, all units can be realigned via formally tested capability upgrades.   
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D. Challenge #3: Diagnosing Decision Causes 

 

Even if the acquisition community makes every effort to design predictable systems, AI&A 
will almost inevitably produce unexpected behavior, and it is critical that developers and testers 
be able to diagnose the underlying causes (e.g., Haugh et al., 2018).  This holds true regardless of 
whether the behavior met or missed its goal.  As a rule51 there is no decision strategy that will 
universally succeed or fail.  Good, robust policies52 are bound to come up short on occasion, and 
systems can occasionally find success despite bad solutions.  In unexpected failures, testers must 
be able to tease apart whether this was an edge case for a good policy, or the predictable result of 
a bad one.  If developers cannot identify why something went wrong, they cannot differentiate 
those possibilities.  If failure is attributed to a bad policy, not having the underlying reason prevents 
identifying what needs to be fixed.  One could throw more training data at the system, but this has 
little guarantee of solving the issue, or that it will not disrupt previously stable desirable behavior 
because data were not representative.  Unexpected does not always imply undesirable though 
(Ferreira, Faezipour, & Corley, 2013): one of the dreams 
of AI is to have systems that find viable solutions that 
humans did not consider (US Department of Defense, 
2011, 2019).  Just because a human would not have 
made that decision does not mean it was a bad choice.  

                                                 
51  There are always exceptions to rules. 
52  In the reinforcement learning sense. 

RECOMMENDATION 

Decision-making systems that have a built-in 
infrastructure for recording data (BIRD) become 
easier to certify. By having systems record data about 
themselves, by themselves, and by providing an 
infrastructural pipeline to securely collate, store, and 
disseminate these data, stakeholders can harvest data 
from a variety of previously inaccessible venues such as 
exercises and operational missions.   

Testers need insight into 
systems’ internal processing. 



3-40 

Testers also need to be able to diagnose successful decisions to assess whether it was brilliance or 
randomly successful blunder (Ilachinski, 2017).  Until XAI is realized however, testers will need 
to explain the decisions on their own, and to do so they will need data. 

The barest minimum data needed to diagnose a decision are the inputs the system received 
and the behavioral output produced (e.g., Zacharias, 2019b).  Testers need to know what the 
environmental conditions were so that they can attempt to replicate the behavior and/or to examine 

the relationships in other data statistically.  
However, the decision space from environmental 
factors to output behavior is enormous even for 
relatively modest AI&A (Clarke et al., 2012), and 
as discussed earlier, detecting those relationships 
quantitatively requires a massive amount of data.   

Having testers record these data is not a viable option.  At a practical level, having humans 
write down the environmental conditions and system responses at every test point would break our 
workforce’s capacity (Trent, 2019).  Indeed, having humans record the data is a bad idea even on 
a small scale.  Human-level descriptions of the environment collapse or fuzz many input variables.  
Though systems might be deterministic with exact input matches, what humans would consider to 
be isomorphic situations are not what the system would consider to be equivalent.  Behavior across 
the human-level description of the environment is better modeled as stochastic, making it even 
harder to replicate effects and assess relationships. 

Furthermore, though these input-output pairs are the bare minimum, the desired level of detail 
includes information on intermediate processing (Haugh et al., 2018; Zacharias, 2019a).  It would 
be better to localize where in the processing stream errors originate rather than just indicate that 
certain environmental conditions might lead to certain outcomes.  If we have data from the 
intermediate processing steps, we can help isolate source versus propagation as discussed in 
Challenge #1 and Challenge #2.  However, this intermediate data is fundamentally unobservable 
to human senses. 

Systems need to be recording these data about themselves, by themselves (Haugh et al., 
2018).  Even if a system records no more than the inputs it received and the output it produced, 
having automatic data collection allows test and training data to be harvested from a variety of 
environments.  Moreover, automated data collection opens up the ability to record internal system 
states, to implement what some are calling ‘cognitive instrumentation’ (Haugh et al., 2018). 

For any cognitive instrumentation to be useful, the data to be recorded must be specified and 
intelligible, and specifying the processing flow when designing a hybrid cognitive architecture 
provides this scaffolding.  In sub-symbolic systems, it is not clear what should be recorded beyond 
the initial inputs and ultimate output.  A neural net is transforming information as it moves toward 
the final layer, but unless serious effort has gone into model induction, it is definitionally unclear 
in a black box what channels, layers, or nodes are important for the final output, or in what way.  

Systems need to record data 
about themselves, by themselves.  
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However, when systems’ processing streams are designed around intermediate symbolic 
production, the hooks for cognitive instrumentation are built right into the system.  For example, 
supervised learning channels have clearly interpretable input and output, and unsupervised 
channels in an architecture at least have clear points to include hooks.53 

In modular systems, testers can use the outcomes of individual processing stages to diagnose 
where problems seem to occur.  If these stages produce intelligible output, this could even be 
assessed directly.  Otherwise, as discussed in Challenge #1, testers can step backward through 
processing stages while systematically varying components of the recorded data to explore where 
in the decision process the error occurs. 

The cognitive instrumentation should be scalable.  In even relatively benign cases, there will 
be many variables fluctuating at high frequency over long periods that could be recorded.  Early 
in testing, there will be limited understanding of which of these are most influential, and it is 
possible that testers will need to capture all of them.  As our understanding grows more 
sophisticated however, we may be able to downscope the process, and eventually after fielding we 
may have a core set of channels that are recorded.  However, as updates are pushed or mishaps are 
investigated, new or different variables may need to be recorded.  This instrumentation should be 
designed from the beginning to enable this flexibility.   

Cognitive instrumentation also serves as a scaffold for other system capabilities like live 
behavioral health monitoring, training modes, and explainability (Haugh et al., 2018; Trent, 2019).  
AI&A will need their own independent internal processes that can identify whether their primary 
processing is outside of safe bounds or is producing errors.  Cognitive instrumentation does not 
just serve test purposes, but also would provide the data that could inform middleware meta-
cognitive systems that assess whether the primary system is in a situation that exceeds its 
processing capability, or is under cyberattack.  The instrumentation could also be reversed, 
injecting input instead of recording it, allowing these systems to safely but realistically participate 
in live, virtual, and constructive (LVC) training activities.54 In addition, the data provided by the 
cognitive instrumentation for testers to identify the ‘why’ of a decision could also serve systems 
that would diagnose that ‘why’ themselves.  This could serve as the basis for XAI of complex 
systems. 

                                                 
53  More research and study is required to determine what and where to record in a system trained under a 

reinforcement learning paradigm.   
54  We acknowledge that this produces a potential adversarial attack vector.  Whether the capabilities provided 

outweigh the potential risks will need to be assessed on a case-by-case basis.    
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The massive flows of information these systems 
can produce means we need built-in infrastructures for 
recording data (BIRDs).  The first part of this 
infrastructure is the internal cognitive instrumentation to 
record system states and behaviors, but it must be much 
more than this.  These data must be collected, recorded, 
collated, transmitted, and stored; and each of these 
processes must be done securely.  Read access to these 
data could allow an adversary to at least partially reverse 
engineer our systems, and write access could allow them 
to poison training and/or evaluation (Casola & Ali, 
2019).  AI&A have the potential to generate enormous quantities of data, and every program will 
need end-to-end pipelines that can be maintained and scaled across the lifetime of the system.  
Non-AI software-intensive systems have already shown the acquisition community that leaving 
this as an ad-hoc process or waiting until system maturity to develop the pipeline courts chaos (see 
existence of Defense Innovation Board, 2018).  The infrastructure for end-to-end data recording 
and management needs to be built into a program from the start.   

A BIRD would support not just T&E, but would be critical for using post-fielding data to 
improve system functioning.  Unless DoD wants each AI&A unit to have idiosyncratic capabilities 
and weaknesses, system learning updates should be batched.  The expanded pool of training data 
must come from somewhere, and a BIRD would serve as that pipeline.  Systems could use their 
cognitive instrumentation to record their fielded experiences, while the rest of the BIRD serves as 
the pipeline to get that data to developers and evaluators. 

We recommend that both the BIRD’s overarching structure and its individual components be 
made a fundamental requirement of virtually all AI&A systems.  This instrumentation and pipeline 
is a critical enabler of diagnosing system behavior, the functions described above, and some of our 
proposals for testing certain kinds of systems.  It is ultimately in developers’ best interest to have 
a BIRD, but beyond that we argue it is in DoD’s interest to ensure it is implemented as early as 
feasible in development, and that the easiest way to accomplish that is by including it in the formal 
requirements process.   

Programs need end-to-end 
secure data pipelines to 
collect, record, collate, 
transmit, and store 
information generated by 
cognitive instrumentation. 
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E. Challenge #4: Safe, Secure Realism 

 

While realistic testing provides the most operationally applicable assurance, in many cases 
realism is not possible.  Whether driven by safety concerns or a literal lack of realistic assets, there 
are many situations where test-isms trump realism.  Many of the points that are most important to 
real operations are the ones we do not have the ability to test realistically.  It is critical that we have 
methods to explore these scenarios for our AI&A systems. 

1. Extremely Unsafe, Realism Required 

Though virtually all military systems have operating modes that are unsafe to test 
realistically, we predict this will be much more frequent for AI&A.  Furthermore, many of these 
systems may perform tasks that are unsuitable for heavy reliance on simulation.  In particular, we 
are concerned about systems (a) that perform a variety of different tasks relying on different skills, 
(b) where failure has a high risk of real harm to humans, (c) where simulation would not provide 
enough assurance, and (d) which have not sufficiently demonstrated their capabilities in the real 
world to be trusted with humans.  We will refer to these types of systems as Varied, Safety Critical, 
Autonomous Robotic Intelligences (Vari-SCARI) systems. 

An AI&A system meant to fully replace a neurosurgeon would be a good example of a Vari-
SCARI system.  A neurosurgeon robot would have to diagnose its patients, develop a treatment or 

RECOMMENDATION 

Testers can use a strategy of Graded Autonomy 
with Limited Capability Fielding for difficult-to-
certify systems.  High-consequence, difficult to certify 
systems should be tested like we do with medical 
residents.  Train all skills, and then certify and field 
their least risky capability for use under supervision.  
While acting in realistic situations, have systems record 
what they would have done with more risky 
capabilities, and use these data to decide to decrease 
supervision and/or increase task risk.   
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surgery plan, and then execute that plan.  Failure at any of these steps poses grave risk to the 
patient.  However, though there are large similarities across human brains, there is a good deal of 
idiosyncrasy in the structure, vasculature, and functional topology of individuals.  Furthermore, 
pathologies can manifest in very different ways between patients.  These plus the high-fidelity 
physics needed55 combine to make a sufficient simulation of brain surgery extremely difficult to 
VV&A as a full substitute for live testing.  How then could we ever certify a Vari-SCARI system 
for safe fielding? Some might answer that we should not even bother pursuing such systems, but 
this and other Vari-SCARI systems are often some of the most desirable use cases for complex 
autonomy.  For example, having a robotic surgeon that can have its skills quickly replicated across 
hospitals could improve quality and consistency of care across the system and reduce the costs 
associated with continually training and certifying new individual doctors.  We do not advocate 
for abandoning these systems at conception.  Instead, we point out that this is a very similar 
challenge we face with the human residents who will one day become neurosurgeons. 

We recommend that testers certify Vari-SCARI systems by using a graded autonomy 
paradigm as we do when training medical residents (Halpern & Detsky, 2014).  In the human 
analog for these high risk, complex tasks, people are initially certified, but not immediately 
released into the wild with full independence.  
Typically, they begin to perform lower risk 
tasks by themselves, but under the watch of an 
experienced supervisor who is ready to 
intervene.  They are not allowed to perform the 
higher risk tasks, but their supervisors may ask 
them what their decisions or actions would be 
in the current live situation.56 As these novices 
demonstrate competence, they are authorized 
to act more autonomously.  They are allowed 
to perform the lower risk tasks with less 
supervision, and start to perform the higher risk 
tasks under supervision.  In this way, their 
decision-making and skills are tested under 
realistic scenarios while mitigating the risks of novices operating.  Though graded autonomy in 
humans involves real-time learning, and this could be the case for AI&A as well, it is not a 
necessary feature in order to execute graded autonomy.  Systems could have their decision-making 
software frozen and merely evaluate the responses that the static system chooses but does not 
execute.  However, testers should be aware of the potential for certified decision processes to need 

                                                 
55 Millimeters matter in neurosurgery.  Minor failures of collision physics or material interactions in a simulation 

could be the difference between life and death.   
56 Tesla is implementing something partially akin to this with their “shadow testing” (Templeton, 2019). 

Systems that need to be tested in 
real-world scenarios can be 
certified the same way we certify 
medical residents: after an initial 
test, field it under close supervision 
on lower risk tasks, and over time, 
progressively decrease supervision 
and increase task-risk.  



3-45 

regression testing if decision processes which impact them are changed.  We recommend that 
graded autonomy be adopted more or less wholesale for Vari-SCARI systems. 

In order to expose military systems to these realistic scenarios, it may be necessary to 
combine graded autonomy with limited capability fielding (GALCF).  Instead of trying to certify 
the entire system suite of capabilities and tasks at once, we recommend that testers begin with the 
operationally useful capability that carries the lowest risk, and formally test the system for this 
capability.  The system would then be approved for fielding for that capability only.  This can get 
at least some capability into the hands of the warfighter without needing to wait decades.  For 
example, an autonomous multi-role fighter might be tested and certified for reconnaissance only.  
As it is performing these approved capabilities in operations or training exercises, it is 
simultaneously evaluating what it would have done with its higher risk capabilities.  For example, 
if the next step of graded autonomy were electronic attack against materiel targets,57 it would use 
its cognitive instrumentation to record what decisions it would have made with each capability in 
the situations it encounters in the field.  Those data can then be evaluated much as the human 
resident’s hypothetical answers are—to see if it is competent enough at the next risk level to be 
trusted under supervision.  In the multi-role aircraft example, evaluators could examine the field 
data to initially approve the system to electronically attack targets, but require that a human must 
first approve each engagement for this first certification.  This then spirals upward through the 
process of graded autonomy.  However, this is different (though not exclusively) from incremental 
capability fielding.  GALCF assumes that the next capability already exists in production-
representative form, but simply has not been approved for use.  This typically is not the case with 
incremental capability fielding. 

                                                 
57  As permitted by DoD Directive 3000.09 
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Figure 5. After initial operational testing (OT) on a useful, but less risk sub-capability (SC), systems 
can be fielded and allowed to make “shadow” decisions—record what they would have done with 
other capabilities in the current real, operational situation without being allowed to execute it. These 
data can be used to evaluate the adequacy of these riskier capabilities. 

Finally, readers should note that GALCF is critically enabled by a BIRD, and BIRDs are in 
turn enabled by having a system architecture that has undergone OVVA, which in turn is facilitated 
by modular and at least hybrid sub/symbolic system design.  In order to use field data, the system 
must—by itself—record its decisions and the conditions under which it made those decisions.  
There is no other feasible solution.  If the system is monolithic, the hooks for cognitive 
instrumentation are much harder to discern.  Without each of these, GALCF becomes much harder, 
and Vari-SCARI systems become much harder to certify.   

a. Maintaining Safety During Test 

Many systems will not perform the fundamentally unsafe tasks associated with Vari-SCARI 
systems, but may have uncertainty with respect to their safety.  We recommend that developers 
and testers follow the example of the United States Air Force (USAF) and DARPA in this area.  

The USAF is developing middleware to safely test 
some of their autonomous systems with what they 
are calling Testing Autonomy in a Complex 
Environment (TACE; Thuloweit, 2019).  The goal 
of any middleware like TACE will be to provide 
assurance in the form of a safety net during T&E or 
operation (Neema, 2019).  If, for example, a UAV 

Safety middleware systems can 
mitigate the risks of unverified 
autonomous capabilities.  
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enters conditions forbidden by the safety middleware,58 the UAV control will revert from the 
UAV’s less tested control software to the safety middleware.  A challenge in testing with safety 
middleware is that early generation systems may not have the middleware available.  Instead, the 
system could be tested with a biological middleware in the form of an operator on- or in-the-loop 
using a supervised remote capability.  However, this will only work for systems and tasks that are 
actually amenable to meaningful human oversight (Arnold & Scheutz, 2018), as we discuss more 
in Challenge #5.  When systems are designed in more modular ways, as described in Challenge 
#1, these safety overlays are much easier to implement. 

2. Lack of Assets 

In the process of testing AI&A, the T&E community will inevitably run into the problem of 
a lack of realistic assets to test the system against.  This problem is not wholly unique to AI&A.  
Traditional weapons systems are regularly tested against stand-ins rather than true threats.  For 
example, our 4th- and 5th-generation fighters can expect to fly against enemy stealth fighters if we 
fight a near-peer competitor.  However, we are not going to have a squadron of Chinese J-30s and 
the pilots to fly them for use as red air during tests.  Instead, we use the best facsimile available by 
employing F-22 or F-35 squadrons to pretend to be 
these enemy aircraft.  However, where a human 
pilot can pretend easily, monolithic sub-symbolic 
AI&A cannot.  Our understanding of how a concept 
like “F-35” is represented in the pattern of activation 
of nodes will be fuzzy at best after model induction, 
and it will be functionally impossible to reliably 
inject that activation into the middle of processing.  
If an autonomous multi-role fighter went up against 
an F-35 squadron during test and took no offensive action, or ignored a Smokey SAM59 fired at it, 
it is hard to determine if these were malfunctions or operationally problematic.  It may have 
identified correctly that F-35s are friendly assets or that the smoky SAM was not a real threat, for 
example.  What we need are surrogates in test that are “good enough,” but it is typically unclear 
what “good enough” is for an AI&A system, and even if we know, we might not possess those 
assets. 

If we are going to use stand-in assets during test, we have to teach robots how to pretend.  
When a system is based on a hybrid architecture with intermediate symbolic output, pretending 
becomes much easier—one can change the label of what is passed up from the perceptual 
processes.  An F-35 can be relabeled as a J-30 and passed to executive and procedural processes, 
a shipping container can be a T-72, or a mannequin can be a real live human being.  Pretending—

                                                 
58  For example, using geo-fencing to keep a system in an area, or secondary control laws governing speed. 
59  A test asset meant to mimic the smoke plume of a surface-to-air missile (SAM).   

Hybrid or symbolic systems can 
be taught to “pretend” so that 
the lack of realistic assets is less 
of a problem for testing.  
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whether done by artificial or biological agents—is not a perfect solution to realism, but it is much 
better than none at all.  Plus the capability to pretend does not just benefit testing, it allows the 
system to participate in training activities believably.   

F. Challenge #5: AI&A Emergence 

 

A critical challenge in AI&A is that of interoperability writ large.  Modern American doctrine 
emphasizes joint employment across services, domains, and systems to accomplish our military 
and geopolitical objectives (Joint Chiefs of Staff, 2018).  This warfighting philosophy revolves 
centrally around the idea of emergence, synergy, or gestalt, of the whole being more than the sum 
of its parts.60 Testing must therefore show that a new part contributes to and does not disrupt that 
whole.  The need to show that systems can interact effectively on the battlefield is hardly unique 
to AI&A—our standard systems do not exist in a vacuum either—but the challenges of 
interoperability will be exacerbated in AI&A (e.g., Ahner et al., 2018).  Autonomous systems 
respond to the environment, and when other systems can change that environment, behaviors can 
emerge from their interaction that would not have been expected from one system alone.  As 
merely a part of a larger multi-domain battlefield, AI&A will have to work with other systems and 
agents (autonomous or not, and of artificial or biological origin) to successfully achieve the 

                                                 
60  While often used broadly or imprecisely, emergence is formally defined as what happens when the interaction of 

parts produces effects that the individual components do not have on their own; emergence can be described as 
strong or weak.   

RECOMMENDATION 

Testers need environments where different 
autonomous agents, including humans, can be tested 
together for emergent behavior (EB).  Centralizing test 
responsibility for EB can overcome a number of 
simulation challenges, while having a regular joint 
exercise would provide such a live test venue for 
validation while also helping troop readiness for 
existing and emerging technology employment.  
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commander’s intent.  Ensuring common formats and processes for communication will not be 
enough to ensure interoperability for AI&A—systems can and will mutually alter their behaviors 
(Defense Science Board, 2016).  The system’s effectiveness at contributing to a mission depends 
on its ability to work with those other systems, and those other systems’ ability to work with it.  
Because AI&A will be behaviorally inflexible for the foreseeable future, system-to-system, 
human-to-system, and system-to-human interoperability will have to be explicitly tested (Defense 
Science Board, 2016). 

Because there are competing formal 
definitions of emergence (for a history of 
emergence see O'Connor & Wong, 2012), and 
some conversations about emergent behavior 
define it imprecisely at best, with little 
connection to any formal definition, it is 
necessary to be clear about what we mean by 
emergent behavior.  When used in this paper, 
emergence is when the interaction of parts 
produces effects the individual components do 
not have on their own (Ferreira et al., 2013; O'Connor & Wong, 2012).  Emergent should not be 
used as a synonym for unexpected or undesirable61—emergent properties and behaviors can be 
any combination of expected/unexpected and desirable/undesirable (Ferreira et al., 2013).  Finally, 
emergent behavior should be assessed by the extent to which it has an impact, rather than an 
absolute binary yes or no to its existence.  The main goals of emergence testing in DoD should be 
to confirm that expected, desirable emergent properties or behaviors are functioning and to 
mitigate the probability that unexpected, undesirable emergence will occur.62 In some cases there 
may be expected, undesirable properties addressed through CONOPS, and testers should assess 
the effectiveness of any procedures aimed at minimizing operational impact.   

1. Intra-system Emergence 

Autonomous systems often have emergent properties even internally.  Behaviors arise not 
from a simple summary output of subsystems, but come about from interactions across the system 
of systems (SOS; e.g., Zacharias, 2019a).  It becomes very difficult to predict how adding or 
removing pieces of that SOS will alter behavior.  A new capability might be modularized to 

                                                 
61  Emergent behavior is also imprecisely used to describe unexpected effects that in retrospect were fully 

predictable from its base elements alone.  It would not technically be emergence if a self-driving car that does 
not distinguish between valid and invalid driving surfaces took a “shortcut” through a cornfield.  Failing to 
consider a part of the operational space during design or testing does not constitute emergence. 

62  Though unexpected but desirable emergent behaviors are possible (Baker et al., 2019; OpenAI, 2018), they can 
be rare and difficult to achieve.  Development strategies predicated on using these to accomplish a task will 
likely encounter difficulties, and it is not an efficient use of test resources to try to hunt these down. 

Behaviors that would not have 
been expected from the individual 
elements alone will emerge when 
entities interact. These behaviors 
can be expected or unexpected, 
and desirable or undesirable.  
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directly interact with only one other component of the network, but might indirectly affect 
everything downstream from that connection.  Recursive processes further complicate the issue.  
Emergence can be delicate, and even small perturbations may eliminate a behavior we desire.  
Because we predict these interactive properties will be critical to the functioning of many 
systems,63 we argue that testers will need to assess the extent to which behavior relies on intra-
system emergence for a given system. 

 

Testers should quantify the robustness of a system’s decision-making.  Systems will 
encounter situations where their subsystems are degraded for any number of reasons such as cyber-
attack, battle damage, file corruption, or normal reliability problems.  Decision-making resilience 
in the face of these conditions is important, and testing should inform stakeholders to what extent 
this is true.  For example, it is a common practice for neural network developers to examine 
performance degradation by knocking out nodes or injecting fuzzed data as inputs (Meyes, Lu, 
Puiseau, & Meisen, 2019; Zhou & Sun, 2019).  Testers should ensure that test plans include these 
practices and extend them to the entire architecture.  Part of system simulation should be 
performance examination when entire modules are degraded (node knockout and/or input fuzzing) 
or removed.   

Testers should also evaluate AI&A plasticity.  There is a basic tradeoff in artificial and 
biological neural networks between flexibility and optimization (e.g., Huttenlocher, 1979; 

                                                 
63  There is good evidence that human intelligence is not a complex module to itself, but is an emergent property of 

many different simpler modules (Friston, 2011).  The capability of some of these modules is unmatched in other 
species (Smith et al., 2016), but even those unique levels of performance do not explain human intelligence 
alone. 

RECOMMENDATION 

Testers should characterize system flexibility as well as 
system performance.  Decision systems can achieve 
greater performance on a specific task by over-
optimizing, which can create downstream costs and 
consequences when trying to upgrade, change, learn, or 
transfer to a related task.  Testing should evaluate to 
what extent programs have made this tradeoff. 
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Sternberg, 1996), sometimes referred to as plasticity versus crystallization.  For example, 
biological sensory processing is exceptionally well tuned to the specific sensory organs of that 
individual organism.  When those sensory networks are optimized (e.g., in adults), they can be 
retrained over time with small, incremental changes, but may never adapt to large sudden changes 
(Linkenhoker & Knudsen, 2002).  This is acceptable for biological organisms because barring 

catastrophic problems, any changes to wiring in sensory organs will usually be gradual—they will 
not wake up one day with a totally new set of eyes.64 We know this will not be true for AI&A, 
however; sensor upgrades or changes happen all the time, and what is acceptable crystallization 
for organisms may be over-tuned in AI&A.  Tuning the entire network or architecture to a specific 
sensor will likely increase performance, but this may come at a cost if it is ever swapped out.  Since 
this swapping or capability module additions are certain to occur during the system’s lifecycle, 
testing should quantify the extent to which the AI&A’s network is crystal or plastic.  During 
testing, sensors could be swapped out to simulate a sensor upgrade, and performance changes 
tested.  Furthermore, retraining time should also be evaluated.  For example, the time, data 
quantity, and processing power required to retune the network back to its original performance 
levels could be quantified.65 This evaluation matters because in a source down-selection, one 
system may demonstrate superior performance to the others, but it may have achieved this 
performance at a cost to plasticity.  The better performer might not even be meaningfully different 
than the others—two systems may just exist at different points on the same tradeoff curve between 
performance and plasticity.  Superior systems have better tradeoff curves, not just superior 
performance.  Quantifying plasticity would provide more information for the source selection and 
help make informed decisions about whether performance increases are worth later upgrade costs 
and difficulties.  Furthermore, having plasticity as an explicit part of evaluation incentivizes 
contractors to emphasize it in their systems. 

Just like in all software, AI&A will need regression testing (Deputy Secretary of Defense, 
2012).  We cannot assume that new capability modules will not disrupt existing functions, 
especially if system functioning relies on emergent properties of the network.  However, systems 
will vary in the fragility or robustness of these emergent properties.  This is an area where we see 

                                                 
64  Though glasses can improve vision, they do not change retinotopy.   
65  We cannot assume there will be as much data on which to train future capabilities as was available initially, and 

pre-existing data may not be appropriate for training the new module.   

Learning systems can overfit themselves to specific data, environments, 
or hardware, trading global for local performance. Testers should 
assess the extent to which systems have made this tradeoff.  
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no clear path forward to accomplish this regression testing process robustly, cheaply, and 
quickly.66 As is already the case in software-intensive systems (Director Operational Test & 
Evaluation, 2010), the amount of regression testing required for AI&A should be based on a risk 
assessment.  However, incorporated into this risk assessment should be the fragility or robustness 
of the system’s emergent properties.   

2. System-System Interaction 

Emergence is a concern not just within systems, but also between them (e.g., Ahner et al., 
2018; Defense Science Board, 2016; Zacharias, 2019a), and though our doctrine is joint, our 
testing is not.  Realistically, standard systems will be interoperating on the battlefield with a host 

of other systems, but for good reasons, formal test 
events rarely employ them all together.  Requiring a 
full-scale joint exercise to test every non-AI&A 
system separately is prohibitively expensive, but also 
currently unnecessary.  Systems are usually designed 
to serve a specific function on the battlefield, with 

humans dealing with the less tractable battlespace integration issues.  Systems are evaluated on 
their specific functions, while humans are trained to execute our joint doctrine, and formal 
evaluation of each occurs separately.  This T&E formulation breaks down when humans are 
removed from the loop. 

Humans have historically served as the lubricant to mitigate poor interoperability in our 
system-of-systems, but as we move from operator-in-the-loop to having them merely on-the-loop 
or out of it entirely, this lubricant will disappear (Endsley, 2015).  The flexibility that humans 
provide will be replaced by the rigidity of early AI, and our testing must adapt to assess the effect 
of this loss.  Testing will need to reveal to what extent AI&A is capable of integrating its behavior 
with other battlefield systems. 

The potential for emergent behavior is of particular concern when AI&A take over more of 
the battlespace.  The essential goal of DoD’s joint doctrine is emergence: using synergistic 
interactions and coordination to act as force multipliers—the whole being greater than the sum of 
its parts.  However, critical pieces of this emergent capability are abilities which humans have but 
AI&A do not (yet).  When there are relatively few autonomous systems, they are less likely to 
interact directly, and the rest of the human-controlled systems may be able to flex to fit their 
behavior.  In essence, humans add plasticity to the warfighting collective.  However, as AI&A 
becomes more common, the systems may begin interacting not with humans, but other autonomous 
systems.  A major concern here is of course the standard interoperability issues (formats, channels, 
etc.), but now without the facilitating effect of human cognition to smooth the rough edges.  

                                                 
66  Even a “pick two” situation may be difficult to achieve.    

Emergent behavior is possible 
when AI&A systems interact.  
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Standard interoperability testing will not disappear—if anything it must receive even greater 
emphasis.   

AI&A introduce the concern that these systems will alter each other’s behavior.  This does 
not require or imply that these systems communicate or are aware of each other—as one example, 
it could be as simple as the goals and procedures selected by System A creating problem states 
that were never explored when System B was trained, leading to unusual behavior in System B.  If 
other inflexible systems rely on System B, emergent behavior (or failures) may cascade.  
Inflexibility is not the only concern though; flexible AI&A interactions will also produce 
unpredictable behaviors, possibly even more unusual.67 In either case though, AI&A-to-AI&A 
interactions have the potential to disrupt emergent capabilities from joint warfighting, and the 
ability of these systems to interact with each other cannot be assumed and must be tested.  If 
systems must be tested together, then the obvious questions become what, where, when, and how 
to test. 

a. Efficient Coverage 

The entire space of all system combinations across all conditions is intractable (Clarke et al., 
2012).  We need methods for efficiently covering as much of the space as we can, while delving 

into important conditions in more detail.  At a general 
level, we recommend that testers use a strategy of lower-
fidelity methods like agent-based modeling to cover 
space, and higher-fidelity methods like LVC 
simulations and operational tests or exercises to validate 
the adequacy of the lower-fidelity methods or to 
diagnose problematic system interactions.  However, 
before this happens, it is necessary to identify the subset 
of systems that must be tested together (e.g., all of the 

AI&A systems that would participate in a Close Air Support mission).  Optimal test designs should 
account for the probability that interactions will occur, how critical they are to the mission, and 
their flexibility (e.g., if they are mediated by a human or a brittle AI).  We recommend that testers 
identify the relevant simplex or complex of systems to test through sequential use of multiple 
technical methods. 

We predict it will not be sufficient to test the pairwise combinations of systems 
independently—the entire system-of-systems that would interact on an operational mission should 
be tested together.  Emergence can cascade—emergent behavior as a result of one pair of systems 
interacting can then go on to affect other systems’ behavior too.  Emergence may also be the result 
of higher-order interaction.  Along with operational realism, these factors are why we predict a 
need to test many systems in their broader operational context. 

                                                 
67  This may not always be bad—again, one of the desires for AI is to discover solutions previously unconsidered. 

There are too many possible 
combinations to test; the set 
of test points needs to be 
intelligently narrowed down.  
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A first technical method step could be to use 
statistical network analysis (Chiesi, 2015).  The 
warfighting collective could be described as a sparse 
network of nodes, with each node representing a system, 
and labeled connections representing different kinds of 
interactions.  Network analysis provides a method for 
assessing network structure and the influence nodes have 
on each other.  If these connections are labeled with their 
probability of occurring, their criticality to operations, and the brittleness68 of their interactions, 
then testers can use network analysis to prioritize system interactions.  To give a simplistic 
example, the analysis might show that a second-degree connection is unimportant because it has a 
low probability to occur and is mediated by a human (so more flexible), while an entire fifth-
degree connection chain may be very important because of the combination of criticality and 
inflexibility.  Note that this analysis does rely on the network being accurately described.  One 
could initialize the connection labels with SME knowledge and later update them as testers collect 
empirical data, and this network would be a cross-program test asset.  However, compared to other 
formal statistical techniques, network analysis is relatively young.  DoD has already successfully 
used network analysis for some operational tasks, but there remain many open statistical questions 
and predictive validation experiments that researchers need to address.  We recommend that 
network analysis become an area of importance for method development efforts. 

Once the set of relevant systems is identified, testers can begin to test scenarios using lower 
resolution simulation—but what is a sufficient level of resolution is currently unknown and likely 
to change over time.  The goal of this resolution reduction is to get more runs for a given amount 
of computing power, trying to achieve faster-than-real time runs while still having credible 

results.69 Moore’s Law predicts computing power 
will grow, but simultaneously, a growing portfolio of 
AI&A systems will put increasing demand on those 
resources.  Testers will need to strike a balance 
between the competing demands of simulation 
accuracy and resourcing. 

To achieve this lower resolution, testers can 
sacrifice either the fidelity of the system and its decision processes, of the level of detail in the 
environment, or of both.  Currently there is only speculation on which of these will work better for 
covering large amounts of the state-space when testing emergent behavior between systems.  If the 

                                                 
68  In the simplest case, whether it is human-human, human-machine, machine-machine, though there are many 

ways to improve the usefulness and accuracy of these labels. 
69  At the time of writing, a reasonably high-priority acquisition program, which requested that we not attribute 

them, informed us that high-fidelity simulations currently run slower than real time given their available 
computing power. 

Testers can use network 
analysis to help determine 
system combinations for 
emergence testing.  

LoFi simulation can cover large 
numbers of test points to find 
areas of greater interest.  
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OVVA process is followed as recommended, it may be easiest to maintain the system’s actual 
tactical software while abstracting the environment, as what is a sufficient environmental 
representation for the system will have already undergone some level of VV&A.  The T&E 
community should continue to monitor ongoing AI&A acquisition programs to start building a 
better understanding of the tradeoffs made between these choices. 

Testers can use the network analysis to pare down the system combinations that will be 
primarily examined.  Next, testers can visit a larger part of the operational space of those 
combinations through lower resolution simulation to look for interesting cases, following up on 
those with higher fidelity simulation.  Finally, testers can use the simulation results to choose the 
most important test points to collect during more expensive live testing (e.g., Robbins & Steffen, 
2018).  While this is one process to identify what should be tested, we still must describe the where 
and how. 

b. Validating, Investigating, & Diagnosing in Higher Resolution 

All of our emergence simulations need to undergo VV&A at some point, which will require 
live data from somewhere.  This first means that the modules for the individual system’s behavior 
need to be validated.  If good data governance 
practices are maintained, it might be possible to 
reuse historical data for this part of the VV&A 
process.  However, because we are trying to test 
behavior when systems are together, we also need 
data on the systems’ behavior when together in a 
live setting.  It is unlikely that programs will 
already have this data from earlier testing.  Testers need a venue where these data can be harvested, 
but getting these assets together can be challenging, especially when they belong to different 
services.   

To compromise between the need for live joint testing and the practical constraints, we 
recommend that the DoD create a regularly scheduled joint exercise where AI&A past certain 
milestones of maturity—including those already fielded—are invited to participate.  There will not 

be a unique joint event for every system, which helps 
bring down costs, while still giving a venue for these 
systems to interact.  As a regularly occurring event, it also 
affords the opportunity to continue testing emergent 
behavior in what will eventually be our legacy AI&A.  
New systems may not themselves behave oddly in the 

collective, but introducing them may create emergent behaviors in our old ones.  The T&E 
community will need to keep up with this possibility across the system lifespan.   

Additionally, while we are proposing this joint exercise for the T&E community, it would be 
a combined venture for the COCOMs and P&R as well.  We must evaluate how the systems 

HiFi simulations can investigate 
areas identified by LoFi methods. 

A joint live exercise would 
help VV&A the simulations. 
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interact with each other, but in order for the human element of our warfighting collective to flex 
to the new behaviors of AI&A, our warfighters must train with those systems.  This venue would 
enable this too. 

However, this test event would be much more observational than is traditional in DoD testing.  
Test points would not be planned in advance—there are too many systems participating for that to 
be realistic.  Interactions would occur organically, and the T&E goal would be to validate, post-
hoc, whether the simulations produce the same behavior from the observed interactions as the 
behavior that actually occurred. 

The viability of this observational joint test/training event depends critically on all of our 
AI&A systems having a BIRD.  It is completely impractical to have humans attempt to record all 
of the AI&A system interactions that occur as well as the conditions when they happen.  Systems 
need to be recording those data about themselves, by themselves, and there needs to be a pipeline 
established to pull data from the individual units, collate it, and provide it to developers, program 
offices, analysts, and modelers.  If the systems do have a BIRD, any exercise or fielded activity 
where AI&A interact can become potential evaluation data, not just the planned joint exercise.   

The downside of finding unexpected behaviors in uncontrolled live exercises is that it 
becomes nearly impossible diagnose the exact causes of individual system behaviors—there are 
just too many degrees of freedom.  However, the primary use we are suggesting for this event is 
to continue to validate the emergence simulations and look for aberrant behaviors that can be 
diagnosed by more detailed testing.  More controlled joint system testing can occur as needed.  
Testers can use the network analysis, simulation results, and SME judgment to inform which 
system combinations and conditions would provide the most valuable test points for live testing. 

c. Ensuring Extensibility 

As new autonomous programs are added to the SOS that will interact on a mission, they can 
create emergent behavior in our legacy systems, necessitating that the whole set be retested 
together.  If each environment or set of modules is a unique solution to that particular combination, 
we would need to redevelop and re-VV&A the set to incorporate this novel system.  While this 
may not be an immediate problem on the two- to five-year horizon, this approach makes the 
number of simulations developed accelerate over time. 
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Developers and testers will need standards to ensure that simulations are extensible and 
connectible without needing to rebuild the full set each time.  However, it is an open question 
whether existing standards like the Test and Training Enabling Architecture (TENA) are sufficient 
for the challenge of emergence.  At this juncture, AI&A involve many unknown unknowns.  A 
possible path to developing these new standards (or reaffirming existing ones) is to let programs 
develop their own simulations for the time being, while in parallel convening a working group or 
other organization to work with the programs to find cross-cutting lessons-learned that can inform 
the standards that are needed. 

These standards would need to also provide integration for human-controlled avatars.  For 
the foreseeable future, humans will remain a part of the warfighting collective, and the simulation 
environment needs to include unpredictable human actions.  This is especially true for systems 
intended to have a human supervisor.  If we had a verified, validated, and accredited simulation of 
human decision making—a system we believed could make the same decisions a human would—
we would have already solved the AI challenge.  Until then, actual humans must provide that input 
to the simulation.  Though they might not participate in every simulation, the environment would 
need this capability.  Fortunately, this is another capability that serves multiple roles and is not 
simply for test: an environment with these hooks can also be used to support training and readiness 
for the services if planned correctly. 

d. Responsibility for Emergence Testing 

Emergence testing inherently involves multi-domain and inter-service interactions, raising 
two related critical questions: who is responsible for emergent behaviors and who is responsible 
for testing them? If, for example, an Air Force system causes an unexpected, undesirable emergent 
behavior in an Army system, each service is going to want the other to be the one to have to fix it.  
Further, do each of those programs execute their own emergence testing independently, or is there 
a centralized, joint organization responsible for testing emergence? 

The DoD should evaluate whether the current process 
for establishing interoperability requirements for 
deterministic, relatively static traditional systems is 
applicable to stochastic, behaviorally dynamic, and rapidly 
evolving AI&A technology.  Current practice is to put the 
onus of interoperability on new systems being backwards 
compatible with a specified list of legacy systems.  This is 

The number of AI&A systems, and therefore the combinations needed 
to test for emergence, will grow over time. Testers should make some 
effort to ensure the extensibility of emergence M&S to future systems. 

A centralized authority for 
emergence testing could 
reduce redundancy and 
help ensure extensibility.  
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hard enough with traditional software development, but we predict it will become functionally 
impossible to develop systems that both learn their own desired behavior and cause no undesired 
emergence in legacy systems.  In some cases, it will be easier to fix the legacy system than alter 
the new one, especially if the triggering behavior in the new system is critical to its own operation.  
DoD should assess whether more forward-looking interoperability requirements are necessary and 
feasible, and at the very least, establish a mechanism or policy for determining who is responsible 
for fixing emergent behavior. 

1) Challenges of individual program responsibility  

If DoD decides that individual programs are each responsible for conducting their own 
emergence testing, then solutions are needed to a number of problems.  The authors are concerned 
about problems related to accelerating growth of resourcing requirements and redundancy, getting 
access to assets for all programs that need them, achieving sufficient competency and capacity for 
emergence testing in our workforce, exacerbating the extensibility and integration challenges 
above, and negotiating conflicting results. 

If each program is responsible for testing emergence on their own, and especially if they need 
to develop their own simulations, the resources needed across the board to test emergence will 
become unmanageable.  The test requirements for emergence are inherently reciprocal between 
systems.  Emergence needs to be tested wherever System A and System B overlap.  That overlap 
is the same regardless of whether A or B is executing the testing.  If systems are responsible for 
their own testing, this results in what are essentially completely redundant tests.  Furthermore, 
what is needed in the simulation to get adequately representative behavior from a system for a 
mission domain (e.g., Close Air Support, Mine Countermeasures) should be the same regardless 
of who is doing the testing.  If systems also need to develop their own simulations, this balloons 
the effort required to VV&A all of the variations of the all the different simulations.  If they are 
not doing this, and are using common simulations, and also need to test the same points, one must 
ask why emergence testing is left to the individual programs in the first place.  This resourcing 
competition and redundancy is an even worse problem for asset management in live testing than 
for the simulations. 

It is also unclear whether our workforce has the capacity to support high-quality AI M&S for 
all of the programs that need it.  Both the AI and M&S skillsets are in high demand and low supply 
already, and the overlap between them will be even rarer.  If the T&E community dilutes this 
capability across the entire family of AI&A programs, it raises concerns about whether any 
program will be able to execute emergence testing well.  Secondarily, AI-enabled programs are 
likely to be Special Access Programs (SAP), and anyone involved in emergence testing would 
need clearances for all of the programs involved.  Though this is a lower hurdle for an individual-
program approach compared to other problems, it is further weight on the scales against it. 
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2) Benefits of Centralizing Test Responsibility  

A centralized, joint organization responsible for testing emergent behavior along the lines of 
the Joint Interoperability Test Center (JITC) could mitigate many of these problems.  A central 
organization limits the amount of overlapping effort, mitigating the problem of rampant growth 
and redundancy.  Such an organization could create environments for common mission domains 
and more easily adopt standards to ensure compatibility and extensibility.  Centralizing 
responsibility also makes it easier to concentrate our AI and M&S talent, and gather a group of 
people with the necessary clearances.  It also provides advantages when it comes to coordinating 
systems that would participate in the JLE and using those data to validate simulations. 

Creating a centralized focus for test responsibility does not require nor does it imply that it is 
the only place where emergence testing will occur.  Programs will likely need to conduct more 
detailed combined testing, especially for high-fidelity LVC or live events with actual operators.  
However, it is worth at least considering a solution that could reduce redundancy by getting a 90 
percent solution for 90 percent70 of cases. 

3) Getting to centralization  

Centralized emergence testing would be a possible goal, but it will not be a day one capability.  
Though the problems with emergence testing probably are not on our five-year horizon, we predict 
the solutions to these problems will require significant lead time.  There is little underlying theory 
or understanding on what makes emergent behavior more or less likely, and there are tools along 
the lines of the Range Adversarial Planning Tool (RAPT) or the Autonomous System Test 
Capability (ASTC) that need to be extended to help identify valuable test points during our low-
resolution space exploration (Haugh et al., 2018).  In the meantime, there are basic and applied 
research questions that working groups or organizations such as the JAIC can begin to address.  
Most immediate is the need for standards.  We recommend that this be done through collaborations 
with current programs that attempt to co-develop the standards, rather than through a top-down 
imposition.   

                                                 
70  Or whatever percentages are achievable and valuable 
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3. Human-System Interaction 

 

Despite the promise of independence in AI&A, humans will still interact with these systems, 
and the effectiveness of these interactions will partially determine system effectiveness.  
Evaluating this human-system interaction (HSI) also requires evaluating emergent properties, but 
in this case the methods are relatively well developed—if inconsistently applied—in DoD.  These 
techniques provide a solid foundation for examining HSI in AI&A. 

We recommend that the DoD prioritize HSI when writing requirements for AI&A (Defense 
Science Board, 2016).  Historically, the emphasis of HSI has followed a cyclic pattern counter-
phase to major safety disasters.  When HSI quality is a priority, systems are easy to use, and 
consequently safer in demanding environments (Federal Aviation Administration, 2000), but it is 
an axiom in the field that usability is like oxygen: you do not notice it until it is gone.  Creating 
systems with good HSI is not easy, but people take it for granted.  As safety accidents become 
rarer, organizations become complacent and begin to scale back their budgets and workforce for 
HSI.  This decreases the quality of HSI in new technologies, increases the risk of accidents, and 
can ultimately culminate in a string of disasters that renews the demand for HSI experts.  A recent 
string of major disasters71 rooted in poor HSI is renewing this demand now (Josephs, 2019; 
National Transportation Safety Board, 2019a).  While it is not clear that this cycle can be 
realistically avoided, starting AI&A development with an emphasis on HSI may mitigate 
problems.  The public has displayed strong distrust of AI&A, especially for military applications 
(Defense Science Board, 2016; US Department of Defense, 2019), and public response to 

                                                 
71  E.g., the Pacific fleet destroyer crashes, the Boeing Max 8 accidents, and the Hawaii missile warning system. 

RECOMMENDATION 
Testers still need to emphasize human-system interaction 
for autonomous systems.  Even in fully autonomous 
systems, a human will be involved in some part of their 
decision-making chain.  To ensure responsible 
employment, these interactions must be fluid and minimize 
error, and warfighters must have appropriately calibrated 
trust of the system. The properties must be tested. 
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accidents involving AI&A has been much stronger than reactions to human-equivalent incidents 
(Bernstein, 2018).  The potential human cost of AI&A disasters should not be understated, but 
problems early in the history of AI&A could also set the field back by years due to public outcry.  
Emphasizing HSI from the start is one way to mitigate that potential.   

HSI will be relevant to all systems, but the 
level of human control and type of interaction 
will vary within and between systems.  Tasks 
where the human chooses and performs actions 
with the aid of AI&A still have an operator-in-
the-loop (OITL).  Other systems may possess 
all types of autonomy and be capable of fully 
independent action on a task, yet their 
CONOPS calls for and the system is designed 
to have a human to monitor its behavior and 

potentially intervene—to have an operator-on-the-loop instead (OOTL).72 In other cases, a human 
may order the system to perform a task but thereafter pay no attention to it—that system has an 
operator-initiated-loop (OIL).73 Humans may have no interaction with the task at all—an operator 
out-of-the-loop (OOFTL) task.  Finally, there will be (and already are) human-machine 
interactions where the relationship is system-on-the-loop (SOTL): the system monitors the task 
and takes over when certain conditions are met.74 

As was the case when defining autonomy, testers should establish the type of operator-loop 
relationship at the task level.  There might even be multiple types within a single system: one task 
might be manually controlled (OITL), another merely monitored (OOTL), and yet another 
performed fully independently by the system (OOFTL).  Tasks are hierarchically organized, and 
the type of interaction may depend on the frame of reference.  Testers should define systems’ 
autonomous, operationally relevant tasks for that mission and assess the operator-loop relationship 
for those tasks. 

At a minimum, the HSI concepts of usability, 
workload, and trust will be relevant to most AI&A (e.g., 
Endsley, 2015).  At its core, usability is the facility with 
which an operator can employ a system to accomplish an 
intent.  This requires both that the system has the necessary 
capabilities  (Utility) and that getting the system to execute 
the desired capability requires little effort (Ease of Use; 
Venkatesh & Bala, 2008).  Workload is the personal resources (bio-mechanical, cognitive, 

                                                 
72  A semi-autonomous system in DoD Directive 3000.09 terms.   
73  E.g., Fire-and-forget or OOTL systems with inattentive supervisors. 
74  E.g., Systems like the Automatic Ground Collision Avoidance System (Auto-GCAS) 

Testers should identify the type of 
human control that exists: whether 
operators are in, on, initiate, or 
out-of the task loop, or whether 
the system is on the loop instead. 

Testers should measure, 
at minimum, usability, 
workload, and trust. 
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temporal, etc.) demanded by a task relative to those available to an individual (Kahneman, 1973; 
Wickens, 2008).  Workload and performance have a non-linear relationship, where very low and 
very high workloads result in poor performance (for different reasons), with a relatively stable 
plateau between steep drop-offs (Hancock & Warm, 1989).  Finally, trust is a person’s belief that 
something can be depended on in vulnerable situations (Wojton et al., 2020).  Trust will have 
proximate causes (e.g., quality of system performance and the operator’s understanding of the 
system) leading to distal effects (e.g., relying on the system in real situations).  Testers should 
incorporate at least these three HSI concepts into their AI&A test plans. 

However, the type of operator-loop relationship affects the details of HSI testing.  The tools 
for measuring most HSI concepts will not likely change substantially in AI&A and are well 
explained in a variety of manuals (e.g., Gawron, 2008), and so we do not describe them here.  
However, depending on whether the task of concern has an OITL, OOTL, OIL, or SOTL 
relationship, how and where these tools are applied may change.  In the follow sections, we 
describe these differences.  Testers should see these differences as guidelines or topics for focus, 
rather than exclusive rules.   

a. Usability 

For OITL and OOTL systems, a key usability concern is how well the AI&A conveys 
information to the operator (Endsley, 2015; Endsley & Kaber, 1999).  This conveyance cuts in two 
directions: providing key information while omitting extraneous bits.  When the system performs 
perceptual tasks or acts as a decision-aid (has executive but no procedural autonomy), system 
effectiveness will be governed by how well the human can utilize the processing done by the 
AI&A.  For OOTL systems, knowing whether to intervene requires knowledge of both system and 
environmental states.  Testers should include both what information is given and the manner in 
which it is provided as facets of usability testing for these systems.  OOTL systems should also 
undergo standard HSI testing for when tasks are reverted to human control.   

For OITL systems with only procedural autonomy, the usability concern is how well the 
procedures selected by the system match user intent.  For example, an operator may input a 
waypoint destination with the intent that the system take a certain route or action, but the automatic 
pathing does something different.  This will lead to frustration and potentially ineffectiveness.  
Testing this kind of interaction will be most similar to the usability testing that already occurs with 
standard systems, and it will likely be obvious to operators when interfaces are poorly 
implemented.   

For OIL systems, the initial goal-providing interaction is critical, and testers should examine 
the extent to which this process is fluid and error-free.  We recommend that data should be 
harvested from, at minimum, three points: (1) the operator’s perception of the Utility and Ease of 
Use of the order-giving process, (2) the probability that the system initiates a different task than 
intended, and (3) the operator’s ability to understand what task the system is pursuing.   
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Although humans are by definition not involved once SOTL AI&A takes over, this takeover 
can affect HSI for normal operations and should be examined.  Calibrating these systems to 
intervene at the right moments without being too frequent is designing for HSI (Endsley, 2019), 
and testers should examine how well these thresholds are aligned with operational and safety 
needs.   

b. Workload 

The primary workload concern for OITL systems is whether workload is too high for the 
human.  Once workload exceeds capacity, sub-tasks are shed to bring it back under control (e.g., 
Schulte & Donath, 2011).  If those are important sub-tasks, performance will decline.  One of the 
purposes of bringing autonomy to sub-tasks is to free up operator workload for more critical 
functions; however, though this is the intent, some have noted that incorporating autonomy can 
instead just shift workload from task performance to managing the AI&A (Endsley, 2015).  In 
these systems, designers meant for the task to go from OITL to OIL or OOFTL, but instead it is 
just OOTL.  Testing whether AI&A actually reduces operator workload will likely require A/B 
testing with and without the system to provide defensible evidence.   

While reducing workload during standard operations is still of interest and should be tested, 
it may be more important to preserve overall task performance during high-stress, task shedding 
situations.  It may be the case that workload is not reduced during standard operations—the human 
is still monitoring the system when able—but that in high workload environments, the monitoring 
task is shed.  Because the system autonomously performs its sub-task though, overall task 
performance may be preserved.75 Testers should ensure that this performance preservation can be 
tested. 

In OOTL systems, the operator tasking is explicitly about management, but the areas of 
concern become both overly high and overly low workloads.  In these systems, the usual purpose 
of the overseer is to provide meaningful human control over the autonomous process (Deputy 
Secretary of Defense, 2012).  At high workloads, operators may either shed some of the monitoring 
tasks or loop through them at an insufficient refresh rate; though there is technically a human 

                                                 
75  In a non-AI&A situation, shedding the task means the task is not performed.  AI&A performs that task even if it 

is not being monitored.   

Meaningful human control relies on appropriate workload levels. If 
workload is too high, operators may shed oversight tasks, and if 
workload is too low, inattention, boredom, or complacency may prevent 
it instead. Testers must assess workload under realistic conditions. 
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present, there is not meaningful human control over those systems.  To explore the operator’s true 
monitoring limits, testers should ensure that test conditions are not limited to relatively low-
intensity scenarios.76  

For OOTL systems, testers must also consider low workload problems.  When workload is 
low, people become bored, disengaged, and/or complacent (Hancock & Warm, 1989).  This in turn 
hurts performance when intervention is actually necessary, as they are not ready to take appropriate 
action (Endsley, 2015; Endsley & Kaber, 1999; National Transportation Safety Board, 2019b).  
Humans are notoriously bad at long-term vigilance tasks, especially when events are rare (Jerison 
& Pickett, 1964).  In these cases again, though there is technically a human present, there is not 
meaningful human control.  When a human monitor is part of the CONOPS from the start, testers 
should plan for an operational test that occurs over a long period with the goal of understanding 
operator complacency.  At a minimum, we recommend that units who will be tested with these 
systems should have a long burn-in period before formal testing77 so that the test is actually 
operationally realistic.  In most cases, complacency does not develop overnight, and a short 
operational test with new operators is unlikely to reveal that behavior.   

When human oversight is proposed as a post-hoc mitigation to system deficiencies, we 
recommend that the acquisition treat these suggestions with extreme skepticism.  Human oversight 
should not be assumed to serve its desired purpose—the rarity and time-sensitivity of interventions 
are likely to dramatically affect success, and we recommend that the T&E community make it a 
policy that programs which need meaningful human control demonstrate that their CONOPS 
actually provides it. 

c. Trust 

For all AI&A, the goal of design and education should not be to foster trust, but to 
appropriately calibrate user trust (e.g., Defense Science Board, 2016; Endsley, 2015; Wojton et 
al., 2020).  Both over- and under-trusting a system can lead to regrettable outcomes (Culley & 
Madhavan, 2013).  Too much trust can endanger users who lean too heavily on the system or 
employ it in conditions where it performs poorly.  Conversely, too little trust may lead users to 
abandon the system, defeating the point of acquiring it.  Test events must be structured to evaluate 
the level of trust operators have in their systems (Director Operational Test & Evaluation, 2019), 
how much they should trust the systems, and to what extent operators are likely to rely on the 
systems once fielded.   

Trust should be measured conditionally, not holistically.  A common response to the question, 
“Do you trust the system?” is “It depends.” Whether someone trusts a system depends on the nature 
of the task, consequences, and conditions (Lee & See, 2004).  When trust is appropriately 
calibrated, the level of trust across combinations of these factors matches the system’s capabilities 
                                                 
76  This limit is often the case in current operational testing. 
77  BIRDs can allow data to be harvested from burn-in periods so that it is not wasted. 
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under those conditions.  Trust is situational, and testers’ evaluation of trust should be as well.  We 
recommend trust be measured at the task and condition level—not at the system level—so that 
analysts can assess the situational calibration of operator trust. 

The critical outcome of trust is reliance (Lee & See, 2004).  Ultimately, we are concerned not 
about trust itself, but the behaviors trust is likely to produce.  We want to know whether the 
operator would use the system when failure 
could lead to meaningful consequences; 
trust is an important predictor of those 
behaviors.  We recommend that test plans 
be structured both to measure trust as well 
as assess what real operator reliance in the 
field would be. 

Using test events to evaluate reliance 
in the field may mean that system use must 
be optional in that test event.  Current 
standard practice is to require, implicitly or 
explicitly, that the system under test be 
employed for the task given to the test 
players.  While this allows planned test conditions to be evaluated, it also prevents assessment of 
whether those operators would have actually used the equipment in that situation.  When that is 
the case, evaluators cannot examine whether trust and reliance are appropriately calibrated.  This 
creates a tension between the need for structured test points and free-flowing organic system 
interactions.  We recommend that test plans describe a mix of the typical quasi-experimental 
designs currently employed, as well as more observational designs.  Readers should note that these 
observational, organic events are not just for trust, but can also serve to help evaluate other 
emergent effects, and with a BIRD, those observational events may fill in parts of the formal test 
matrix. 

Some might argue that because warfighters are required to use certain equipment in specified 
ways, measuring trust is irrelevant because reliance is mandatory.  Testers should be skeptical of 
this argument.  The reality is that many pieces of fielded equipment are left behind, turned off, or 
ignored despite CONOPS that require otherwise.78 Even if a system is physically integrated, cannot 
be shut off, and performs a task that the operator fundamentally cannot perform manually in 
parallel, trust will likely still be relevant to measure.   

                                                 
78  Communicated with an expectation of non-attribution. 

Too much or little trust can both be 
problematic. Ultimately, testers need 
to provide results that help operators 
appropriately calibrate their trust of 
the system so that they can make 
informed choices about when and 
where to rely on the system. 
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4. Agent-Agent Interaction: True Teaming 

 

Although emergent behaviors can surface accidently, some systems will be designed to 
produce them.  The real challenge of testing emergence will come from true teaming: systems 
which are intended to alter their decisions based on the actions of other agents pursuing a common 
goal.  These agents might be biological, as in human-machine teaming (HMT), or they might be 
other AI&A systems.  Though nature of the other teammates will change the details of test 
strategies, each option shares a set of common challenges for evaluating system effectiveness.  In 
particular, teaming systems make it difficult to assign credit or blame for outcomes to individual 
agents versus emergent properties of the team.   

However, many systems which currently 
claim to involve HMT might be better 
described as tools than as teammates.  
Teammates pursue common higher level 
goals—autonomous tools are assigned tasks in 
service of higher goals, but themselves are only pursuing the lower level goal.  As with our 
definitions of autonomy, the goal of our definition of teammates is to identify the features of the 
category of systems that require different test methods.   

Most AI&A systems are better 
described as tools than teammates. 

RECOMMENDATION 

Testers should adapt existing methods for evaluating 
human teams for the T&E of human-machine teams.  
Though not all AI-human system relationships will truly 
involve teaming, systems that do will require a different 
approach to testing.  The starting point for these 
evaluations should be the methods already created by 
the behavioral sciences and sports statisticians. 
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For the purposes of testing, we recommend true teammates be identified by three properties: 
each agent must (1) be able to influence each other’s problem state; (2) be working toward a 
common higher-level goal, and (3) coordinate actions or decisions.  Agents that influence each 
other’s problem states but do not share goals only risk the type of accidental emergence described 
earlier in this section and require those test strategies.  Two agents might work toward the same 
goal (e.g., win the war), but if they do not influence the other’s problem state, there is no real 
potential for emergent behavior.79 Finally, even with common goals and the ability to affect each 
other’s problem states, if agents do not alter their behavior based on teammates’ behaviors—i.e., 
if they do not coordinate—there is also no need for special test methods.  Though coordination 
colloquially implies explicit shared planning, and though this is beneficial for effective teaming, 
it is not required to trigger the challenges of teaming.  An agent representing the other agent’s 
actions as part of its problem state is sufficient, even without conscious awareness of the other 
agent.80 

When scoping what needs to be tested in teaming, testers should look at the unit appropriate 
to the functional level of a task.  The most basic type of teaming will be between a dyad of two 
agents, but higher level goals might occur between teams of teams.  For example, individuals on a 
team might coordinate with each other to clear a room, and the individual members would be the 
correct level of analysis for that teaming task, whereas inter-squad coordination might be the 
appropriate level of teaming to examine for clearing a building or securing a site.   

Our definition of teaming does not preclude teammate specialization—in fact the division of 
labor is often essential to effective teaming (e.g., Murciano & Millán, 1996)—but teammates still 
have common goals.  For example, a football guard has a specialized task, but is ultimately 
pursuing the same high-level goal as the other teammates.  If circumstances demanded, they would 
alter their decisions or take over someone else’s task to pursue that higher-level goal (e.g., picking 
up a fumbled ball and running, rather than blocking).  Similarly, co-pilots might employ some 
division of labor while still pursuing the same higher-level goals and constraints.   

However, designing a system to take over a person’s division of labor tasks does not 
automatically make it a teammate—it still must be pursuing a common higher goal.  Take as an 

                                                 
79  And thus no need for special test methods 
80  For example, OpenAI Five demonstrated emergent coordination even though they were not explicitly trained to 

do so (OpenAI, 2018).  Because the systems represented the other agents and their actions, and because they 
were trained extensively, they were able to learn coordination.   

Systems that are working toward shared outcomes with another agent 
and alter their decisions based on the actions of the other agent will 
add additional challenges beyond those of regular AI&A. 
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example a notional AI&A aircraft meant to act as a wingman for a human pilot.  A human wingman 
might maintain formation with the lead, engage targets the lead specifies, and alert their partner if 
the lead is under threat.  In performing those specialized tasks, the human wingman is working to 
accomplish the same larger goal as their teammate, and changes in circumstance could alter that 
tasking.  However, one could design an AI&A aircraft that maintains formation, engages specifies 
targets, and alerts about threats, but does so without reference to the pursuit of higher level goals: 
that system would not be a true teammate.  It would be no easy job to develop that system, but 
testing it would not involve anything that has not been described in the rest of this paper.  In fact, 
there is little task-level difference between this notional system and a tethered glider that provides 
additional hardpoints for the pilot to use.  The AI&A controlling flight is a much fancier, more 
flexible stochastic tether, but all that needs to be tested is how well the tether maintains the desired 
formation.81 Having the human select targets for the system to engage is just one extra step beyond 
selecting targets with a fire-and-forget missile.82 The threat alert is similar to (or may just be) a 
missile warning system.  In this example, though the system has autonomy within its assigned 
tasks, the human pilot is using the system to pursue their mission level goals, not actually teaming 
with it.  System effectiveness at those might alter human behavior, and this possibility should be 
tested, but this change would happen even with a completely ‘dumb’ system.83 Other than 
maintaining formation, the system is not changing its decisions based on its partner’s choices—it 
is just performing its tasks, and that is where testing can focus.  If the system were a true teammate, 
the scope of testing would have to grow from just its effectiveness at its own assigned tasks to its 
effectiveness at all mission tasks and its ability to decide which tasks to pursue, and to do so across 
the context of its teammates’ decisions. 

As the level of structure in the division of labor decreases, the difficulty of T&E increases.  
So far, we have described teammates with relatively well understood tasking.  Unexpected 
emergent decision-making is a real possibility, but 
structuring the team is meant to make that the 
exception rather than the rule.  This lets the focus of 
testing be on the assigned tasks while examining some 
of the edge-cases.  When task assignments cannot be 
planned in advance, true teammates must effectively 
divide sub-tasks on the fly.  This makes executive 
autonomy harder to assess.  When task assignment is 
unstructured and/or occurs dynamically, the same outcome metric may apply to multiple agents.  
When outcome metrics are shared, statistical and interpretation issues arise.   

                                                 
81  This is procedural autonomy. 
82  Most of which also have partial autonomy under our definitions and 3000.09. 
83  E.g., if a hammer had an oddly shaped handle, the human would use it differently than a normal hammer.  That 

does not make the weird hammer more than a tool.    

Flexible retasking in response 
to teammate behaviors adds 
additional development and 
testing challenges. 
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Teammates will compound the difficulty of evaluating whether executive decisions are 
correct.  Even with a single agent, it will be difficult to analyze how goal choices influence 
effectiveness.  The link between an early decision and an outcome is already indirect.  Teammates 
introduce further degrees of freedom to these executive decisions, and consequently more 
difficulty when evaluating them.  As just one example, testers might observe that an AI&A tool 
does not pursue a necessary task.  This could be because the system made a bad decision; 
alternatively an AI&A teammate might not have pursued the task because they assumed their 
partner would perform that action.  That is not necessarily a bad decision.  Differentiating these 
options will require designed-in explainability and/or an incredible amount of post-hoc analysis.    

It will be difficult but necessary to 
disentangle the extent to which individual team 
members contributed to the outcome of a task; 
techniques developed by sports statisticians and 
behavioral science can help.  One would make 
very different recommendations if an HMT 
succeeded in spite of the system than if it only 
failed because of the human, for example.  Low 

metric achievement by one team member cannot be directly interpreted as failure on that 
individual’s part.  A point guard in basketball may score few points directly, or a wingman may 
achieve few kills, but each may be the critical enabler of their other teammates.  Alternatively, one 
teammate may be dead weight and carried to victory only by the excellence of their partner, or be 
such a drag that their mere presence leads to failure.  A team’s success or failure at the overall task 
cannot be interpreted as success or failure of individual members at teaming.   

The added variable of trust further compounds this problem.  Trust is the glue and grease of 
an effective team: it holds them together and allows them to work together without friction.  Not 
only is it especially critical to assess whether trust is appropriately calibrated in an HMT, as 
compared to standard autonomous systems, but the need to factor in trust increases the difficulty 
of evaluating system decisions.  Teammates change their behavior depending on the behavior of 
the team; the decisions the human makes will be affected by their level of trust in the system.  The 
human’s decisions will in turn affect the decisions the system makes.  This feedback-loop will 
make it even harder to evaluate executive decision effectiveness. 

The challenge of interoperability is writ large when it comes to HMT: testing must 
demonstrate that systems can partner effectively not just with different systems but also different 
types of people.  It is difficult enough getting deterministic systems to interact effectively even 

Sports statistics and behavioral 
sciences can provide a starting 
point for disentangling individual 
contributions to group outcomes. 
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within a single service, let alone designing for 
joint interoperability.  Getting effective human-
human interactions across these populations is no 
easy feat either.  When it comes to HMT, this 
challenge grows exponentially.  Systems must not 
only deal with tradition-entrenched 
communication differences and cultures between 
services, they must navigate the idiosyncrasies of 
each member of the population of potential 
teammates.  Complex cooperative behavior is 
relatively rare, and humanity’s ability to do this is one of our key evolutionary advantages over 
other social organisms (Mafessoni & Lachmann, 2019).  We have not yet cracked the design 
challenges to accomplish this in an artificial system.  Yet even if we had a system that could 
successfully partner with different individuals, it would be another challenge to actually 
demonstrate that capability.  Only a subset of individual differences or traits will influence the 
decisions the human makes within a task, but it is unlikely that we will know the mapping of these 
in advance.  We will have to learn which traits are task relevant before we can even begin tackling 
the challenge of how to test whether the system can successfully navigate those traits.   

Teaming is strongly enhanced by operating off of a shared understanding of the problem state 
(Mathieu, Heffner, Goodwin, Salas, & Cannon-Bowers, 2000), and testing should examine to what 
extent agents have a common operating picture.  If agents have different understandings of the 
current situation, they will make poorly coordinated decisions.  The greater the problem state 
discrepancy, the greater the problem.  Testers should examine the extent to which problem state 
representations match between agents at given time-points.  When systems are designed such that 
the problem state is accessible (e.g., in a hybrid cognitive architecture), testers can retrieve it 
directly.  To obtain it from humans, testers can consider using working memory probe techniques 
in some cases (e.g., Awh, Jonides, & Reuter-Lorenz, 1998; Endsley, 2000).  However, testers 
should note that humans do not actually have access to all of their own problem states (Nisbett & 
Wilson, 1977).  The decision criteria of which humans are consciously aware are not always 
aligned with what was actually used by the decision process (e.g., Festinger & Carlsmith, 1959).  
In these cases, psychologists treat the human as a black box and have developed a variety of 
experimentation techniques to make inferences about mental states.84 Once these problem states 
are obtained from each agent, analysts can compare the states for differences.  We recommend that 
state comparison be a weighted estimate, rather than a simple average.  Some information 
dimensions are more critical to decision making that others, and analysis should account for this.   

Understanding a teammate’s current representation of the problem state can improve teaming 
effectiveness (e.g., Cooke, Gorman, Myers, & Duran, 2013; Falk & Johnson, 1977), and systems 
                                                 
84  These techniques may not be universally feasible across all stages of contractor, developmental, and operational 

testing. 
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systems are able to effectively 
team with partners varying 
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social, and emotional human 
traits in the operator population. 
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with this capability should have it tested.  For example, if a teammate believes their partner is 
unaware of important information, they may attempt to communicate it.  If they believe the partner 
already knows about it, communication is wasteful and should be avoided.  Knowing other 
teammates’ states also enables better predictions about their future decisions, allowing one’s own 
decisions to be better coordinated with theirs.  In this case, testers should compare the agent’s 
representation of their partner’s state with the partner’s actual state.  Eliciting these state 
descriptions can occur using similar working memory probes as above.  Though not all systems 
will have this capability, humans will, and so part of all HMT testing should be the usability of the 
components that convey the system’s current state to the human operator.   

Creating and sharing common problem states for each teammate usually requires effective 
communication across both explicit and implicit channels (e.g., Easton & Martinoli, 2002; 
Espinosa, Lerch, & Kraut, 2002), and testers should evaluate this.  Like trust, communication 
should be appropriately calibrated.  However, what defines ‘appropriate’ changes as teammates 
gain experience with each other.  In human teams, the pattern of how the amount of communication 
and its relationship to effectiveness changes over time has been studied (e.g., Butchibabu, Sparano-
Huiban, Sonenberg, & Shah, 2016).  For human-machine teams, the trajectory of this 
communication-effectiveness relationship with experience may be worth quantifying as well, 
especially if a down-selection between systems is planned.  Systems that are able to adapt to their 
human partners (and vice-versa) faster are superior to slower ones, and this adaptation speed can 
help differentiate otherwise equivalent systems.   

The world of sports statistics has developed some methods for evaluating individual 
teammate contributions to overall gestalt effectiveness (e.g., Duch, Waitzman, & Amaral, 2010), 
and these techniques may provide a starting point for evaluating AI&A teammates.  However, 
these statistics are often reliant on well-defined intermediate outcomes, which while prevalent in 
sports, are currently ill-defined in military contexts. 

For systems which involve true HMT, we 
recommend that testers employ a variant of matched-
pairs designs.  Here we provide a very brief overview 
of this concept.  This topic is complex enough to 
require its own discussion and will be explored in detail 
as one of the future papers in this series.  The design’s 
goal is to evaluate how well this system is able to team 
with different members of its user population, who will 
vary along some number of individual traits, including 
but not limited to demographics, personality, and physical characteristics.  This means that these 
traits must be an explicit part of the experimental design, and effort should be taken to prevent 
aliasing of these factor levels both by the trait level itself and the individual sampled to represent 

Testers may need to consider 
human partner as an explicit 
factor for test design and 
replicate test points with 
different types of partners. 
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that trait level.  First, testers should identify the traits that are likely to affect teaming.85 This will 
require a mix of SME assessment and experimentation—for example, system designers might tell 
testers that how assertive the system thinks their partner is will affect its behavior, but testing might 
reveal that their height also affects the teaming task.  Unlike with typical testing, where operators 
are captured through convenience sampling, testers will need to make an effort to procure partners 
who vary along the identified trait dimensions.  This allows inference of how well this system will 
team across its user population.  However, to make comparisons fair and interpretable, these 
different operator types cannot be confounded with the other operating conditions.  Current test 
practice is to make little to no effort to control which operators are used in which test points with 
little to no replication across operators.  This will not be acceptable for HMT AI&A.  Operator 
traits, at least, must be treated as an explicit factor in test design.  Most likely it will require testing 
different human-machine combinations (in pairs or larger groups as operationally relevant) on as 
close to the same scenario conditions as is feasible.  Finally, more sophisticated analysis techniques 
will be required than those DoD typically employs.  These techniques may have their roots in 
statistics from psychology (e.g., dyadic data analysis; Kenny, Kashy, & Cook, 2006), game theory 
(e.g., Shapley values; Shapley, 1953), or sports statistics, but it is likely that they will require 
further research to adapt to the specific needs of testing military AI&A teaming.   

Fortunately for those tasked with developing test methods, but unfortunately for DoD, we 
predict effective true teaming is a far horizon for AI&A.  The cognitive abilities86 supporting 
cooperation and coordination are arguably one of humanity’s greatest evolutionary advantages 
over other species (Decety, Norman, Berntson, & Cacioppo, 2012), yet even between humans 
teaming often fails.  Bad teammates are a universal human experience, and good teaming relies on 
predicting teammates’ behavior.  This requires either sufficient representations of others’ states 
and decision models to be able to predict what they will do, or truly massive exploration of the 
shared problem space so each member knows what the others will do.  In most cases, the latter is 
not possible for HMT (especially military HMT), and DoD is not currently pursuing systems 
capable of the former.   

If DoD wants to pursue true teaming, AI&A that have explicit state representations87 and 
models—and that are also designed to be similar to human decision models—will make this easier 
(T. Miller et al., 2017).  If one’s decision model is similar to another’s, simply knowing how the 
other represents the problem state allows one to use one’s own model to simulate one’s own 
decision in that situation, and therefore predict others’ behavior (e.g., Mafessoni & Lachmann, 
2019).  The more similar models are, the easier and more accurate the predictions (Preston & de 
Waal, 2002).  If systems are designed around these explicit representations (as we advocate with 

                                                 
85  In the context of our broader framework, personality types and other traits are decision-relevant information 

dimensions that should be varied in test.   
86  For example, cognitive and affective empathy 
87  I.e., the problem state (the system’s belief about the status of the current situation) is something that can be 

examined explicitly, for example a vector of quantified variables. 
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hybrid cognitive architectures), it is a much shorter step from making decisions for oneself to 
predicting those made by others.  If they are designed to be similar to human models, these 
behavior predictions become more accurate for both the system predicting human teammates and 
human teammates predicting the system (e.g., Endsley, 2015; Zacharias, 2019a).  These explicit 
representations not only make high-quality teaming more likely, they also make the systems easier 
to test by providing state representations on which the system’s theory of mind can be tested.   

G. Challenge #6: Exploitability  

 

Evaluators must keep in mind the reasons why an estimate of effectiveness obtained in test 
might be wrong in real operations, and this final section focuses on an external cause: the enemy 
gets a vote.  Whether in the form of cyberattack, physical damage, or behavioral exploitation, 
adversary actions will be able to diminish the performance of our autonomous systems (e.g., 
Zacharias, 2019b).  When AI&A are discussed in policy, variations of the words ‘resilient’ and 
‘robust’ almost always appear, but are rarely defined.  In this section, we try to discuss some things 
testers might measure to evaluate AI&A robustness.   

1. Cybersecurity 

AI&A will be the pinnacle of software-intensive systems, and bring with them cyber 
vulnerabilities both old and new (Sawers, 2019).  In this section, we only address a small portion 
of these issues.  Many of the issues in AI&A will be the same we encounter for any software-

RECOMMENDATION 

Testers should assess adversarial exploitation 
generational cycles.  Evaluating the constantly evolving 
possibilities of cyber and tactical exploitation may 
require a cultural shift away from static, well-defined 
exploitation requirements.  Testers should attempt to 
quantify how quickly adversaries can develop 
exploitations of our decision systems versus the speed 
at which we can re-counter them. 
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intensive system (Marshall, Rojas, Stokes, & Brinkman, 2018), and so we do not discuss those 
here.  We also do not speculate about how to test cybersecurity for systems that do not yet exist.  
Doing so would require us to speculate first on what problems will exist—which will depend on 
how AI&A are instantiated both in their software and hardware (currently unknown).  We would 
then have to speculate on how these unknown problems would be solved in order to speculate on 
how these unknown solutions should be tested.  Instead, we focus on one novel component of 
AI&A cybersecurity that is likely to be an issue for most current systems: adversarial machine 
learning (AML).88  

In ordinary ML, one trains the system by finding 
the changes to the intervening model that increase the 
probability that inputs are transformed into desired 
outputs: the inputs are held constant, and the model 
changes.  In AML, the idea is somewhat reversed: one 
uses an existing model to find changes to inputs that 
maximally perturb the output (Karpathy, 2015).  For 

example, in computer vision, one can find which pixels can be changed to alter how an image is 
categorized (Goodfellow et al., 2014; Goodfellow, Shlens, & Szegedy, 2015).  In cybersecurity, 
one can use AML to train both offensive, protective, and identifying models.   

A highly active area of AML in cybersecurity uses Generative Adversarial Networks (GANs; 
Goodfellow et al., 2014).  GANs use deep learning neural networks as both the generative and 
discriminator models.  At a base level, the generator will create an input that is passed to the 
discriminator alongside a stream of training data.  The discriminator then classifies the inputs from 
the training data and the generator based on its algorithm.  The generator then learns how its initial 
input was classified, adjusts its algorithm as necessary to optimize some goal, then re-engages the 
classification loop with the discriminator.  This process can be iterated until the discriminator 
satisfies some goal, like classifying a panda as a gibbon (Goodfellow et al., 2014) or a 3D printed 
turtle as a gun (Athalye, Engstrom, Ilyas, & Kwok, 2018).  These efforts can then be used to alter 
the original architecture in the discriminator.   

Though some advocate for continuing a philosophy of day-zero assumed breach for AI&A 
cybersecurity, this philosophy may need to evolve.  Under the old thinking, we must assume that 
our adversaries have access to our model and will devote sufficient processing power to finding 
an exploitative input that will have a worst-case scenario effect, and then they will deploy that 
input.  Followed to its logical conclusion, assumed breach implies we should not field fully 
autonomous systems when things go kinetic, as the adversary will have already discovered how to 
defeat them.  Though we do advocate that planners should consider what would happen if we lost 
all of our autonomous capability, we argue that developers and testers are better off trying to 
                                                 
88  We do not imply this is the only new cyber challenge for current AI&A.  Problems like data poisoning are 

possible in ML, and we concur with recommendations others have made such as doing VV&A of training data 
(Haugh et al., 2018).  Unresolved test efficiency challenges like scalability remain, however.   

Adversarial Machine Learning 
(AML) represents a novel 
vulnerability for AI&A systems. 
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minimize and mitigate day-zero probabilities through design choices reflective of adversarial 
training. 

Similarly, we do not believe that it will be a worthwhile use of resources in mature systems 
to describe and then patch the AML attacks that are possible against the system’s current version.  
This would be a never-ending battle.  Models that are well-structured enough to produce coherent 
behavior will essentially always have some pattern of input that will lead to undesirable output or 
just simple disruption (Goodfellow et al., 2015).  
One should assume that if the adversary has the 
model and is willing to spend the resources, they 
will be able to use AML to achieve their desired 
effect.  Updating one’s network might make that 
attack no longer viable (though this is not even 
guaranteed; Karpathy, 2015), and it might 
theoretically make the network more difficult to 
disrupt, but patching will not immunize the network 
from perturbations as a whole (Laugros, Caplier, & 
Ospici, 2019).  Furthermore, changing the network enough to stop an AML-created attack can also 
degrade the system’s performance of its primary function (Qiu, Liu, Zhou, & Wu, 2019; Xie et al., 
2019).  Any patches to a decision network to defeat an AML exploitation would have to be 
regression tested to assess its core functioning, and this could end up being an endless and costly 
cycle that is unlikely to decrease overall vulnerability. 

Instead, we recommend that AML cybersecurity (and testing thereof) should be focused on 
attack detection, attack and defense shelf-life, and minimization of the probability that on any 
given day, the adversary’s day-zero attack is ready.  We should assume that eventually, the 
adversary will get a copy of a system’s network and train an exploiting attack against it.  Though 
we cannot make the network immune to AML as a whole, some networks are harder to train against 
than others.  We recommend that robustness against AML be defined as the computational and/or 
data resources needed to train an adversarial model against our system.   

a. Run Time Monitors  

It will always take more resources to develop and certify a behaviorally functional system 
than it will to develop an adversarial attack capable of disrupting that network.  There are a core 
set of functions that the decision network must maintain, and any changes to the network can 
threaten those functions.  Regression testing will be necessary when core decision networks are 
changed.  Adversarial attack networks do not suffer from this problem.  In evolutionary terms, the 
generation time for adversary networks is faster, and so they will adapt faster.  Like organisms 
need an immune system that can adapt at the same speed as viruses without hurting core genetic 
functioning, AI&A will need a system that can at least detect, and preferably mitigate or defeat 
adversarial attacks without altering the certified behavioral model. 

It is not possible to immunize 
against AML as a class of attack. 
Instead, the focus of T&E 
should be on the speed of 
mitigation and recovery. 
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We recommend that all AI&A systems have a 
middleware adversarial attack “immune system” (Lin, 
Shi, & Xue, 2019), and that the focus of cybersecurity 
testing against adversarial networks should be on this 
immune system.  AML still trains models, and these 
are also vulnerable to having a model trained against 
them.  The best way use AML is to have access to the 
model one wants to disrupt (Qiu et al., 2019).  As we have access to our own decision models, we 
can train a system or systems to disrupt that model, for example using GANs.  We can then in turn 
train an immune system to at minimum detect (Lin et al., 2019), and potentially mitigate or disrupt 
adversarial attacks from the first generation GANs we created.  A system’s cognitive 
instrumentation can feed the data that enables this detection by a defending GAN (Haugh et al., 
2018).  As this immune network is also vulnerable to exploitation, and thus the competition is 
never done, we recommend that testers focus less on the existence or description of vulnerabilities 
and more on quality and timelines for the immune network.  We recommend cyber testing examine 
at least a few key attributes: (1) the viability of AML attacks trained against old versions of a 
decision model to disrupt later versions, (2) the immune system’s ability to detect/mitigate/disrupt 
known adversarial attacks, and (3) the estimated generation times of our networks compared to 

adversary models.  The cycle time is important, because in order to generate an AML attack, one 
needs either the network itself or massive quantities of input/output data from that network 
(Athalye et al., 2018; Ilyas, Engstrom, Athalye, & Lin, 2018), meaning it may take time for 
adversaries to acquire the decision and immune networks.  It will also take resources to create an 
AML model that can both disrupt the decision network and escape the immune network.  This 
essentially defines the adversary’s generation cycle.  This should be compared to our generation 
cycle, which includes the rate at which decision network updates are released, the estimated 
viability of old AML attacks against new decision models, and our ability to update and certify 
new immune systems.  Part of the continuum of cyber vulnerability to adversary attacks will be 
whether we have a faster generation time than our adversaries.   

While this is not the only type of cyber testing that will be needed, it is one form that it could 
take.  Cybersecurity is an area where we particularly invite the thoughts of the community on how 
to ensure reliability in AI&A in the face of adversarial action. 

AML is also vulnerable to AML. 
We can theoretically use AML 
to detect AML attacks. 

Testers can assess the time and resources required to create an AML 
attack on a system vs. the time and resources required for blue forces to 
render that attack unviable (i.e., the adversarial generation cycle time). 
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2. Anti-Tamper Mechanisms / Program Protection 

Because of the importance of protecting our systems’ decision software and the inability of 
AI&A to resist interrogation if captured, it will be important for systems to have anti-tamper 
mechanisms.  T&E will need to demonstrate both that these anti-tamper mechanisms are effective 
and that they themselves are not vulnerable to exploitation.  If an adversary captures the physical 
asset where our system’s decision software is embedded, they have passed one of the first hurdles 
to employing AML or reverse engineering.  Even if the software is itself somehow encrypted or 
protected from direct inspection, enough input-output queries can allow someone to recreate the 
decision system (Qiu et al., 2019).  Systems will therefore need anti-tamper mechanisms to protect 
themselves from capture, and T&E must show that these mechanisms work.  Because a system 
would likely be captured by near peer adversaries, these mechanisms would need to be tested under 
denied, degraded, and operationally realistic conditions.  Furthermore, because these mechanisms 
provide a potential avenue for destroying or disabling our systems, the security of the anti-tamper 
mechanism must undergo exploitation testing of its own. 

3. Traditional Adversarial Interference 

Adversaries will also be able to disrupt these systems using traditional kinetic or electronic 
attacks, and testing must evaluate the robustness of decision making while subject to this kind of 
interference.  In particular, we recommend that testing both systematically and realistically explore 
system effectiveness when sensors and effectors are degraded or destroyed.  As discussed in the 
section on learning, crystalized networks may perform well under ideal conditions, but worse 
under degraded ones.  Networks are sensitive not just to planned changes, but also to hardware 
losses during combat.  Testers should ensure this type of evaluation is included in test plans.    

4. Behavioral Exploitation 

Testers should examine an adversary’s ability to 
develop tactics that reliably defeat our AI&A.  A system 
that reliably defeated the human agents we tested it 
against could still be behaviorally brittle (e.g., Defense 
Science Board, 2012; Zacharias, 2019a).  The ability to 
predict adversary actions is a key component to 
defeating an opponent (Sun Tzu, c. 450 BCE).  Whether 
based on hard-coded rules, reinforcement learning policies, or other mechanisms, systems make 
systematic decisions.  When a counter-strategy has been discovered for an AI&A’s policy, the 
more brittle the AI&A’s decision-making, the more consistently the counter-strategy will defeat 
it.   

We recommend that testers attempt to quantify where AI&A decision-making lies on the 
continuum between brittleness and flexibility.  One method might be to examine generation time, 
as we recommended for adversarial networks.  Testers can quantify how long it takes an adversary 

Adversarial generation cycle 
times will also be relevant 
for tactical exploitation. 
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to discover the system’s policy and how long it takes to develop a counter policy.  One could use 
the number of exposures, real elapsed time, resources, or any number of metrics to do so.  This 
adversary generation time could be compared to the system’s generation time.  For early systems, 
this would probably be a measure of industrial agility.  For example, in OpenAI Five’s first game 
against professional Dota 289 players, it performed well early on, but within the space of a single 
game, the human players were able to identify its policy and develop a counter-strategy that 
consistently beat the AI (Vincent, 2018).  The next year, a retrained, more sophisticated system 
beat the professional world champions 2-0 (Statt, 2019), but when released into the wild for a few 
days, some human opponents were eventually able to figure out its policy and begin winning 
consistently (Wiggers, 2019).  We recommend that part of system development and testing be this 
kind of behavioral red teaming (Defense Science Board, 2016; Zacharias, 2019a), and these cycle 
times can be tracked to help measure system progress, much like we do now for system reliability 
growth.  As systems become more advanced, this behavioral adaptation speed may even move into 
real time, with policy shifts and counter-strategy cycles occurring multiple times within a single 
engagement.  Even if this becomes the case, the quantified cycle speed is still a relevant metric. 

 

  

                                                 
89  Dota 2, is a multiplayer online video game pitting two teams of five players trying to destroy the other’s base.  

Players, each of whom possesses unique skills and abilities, work as a team but also fight as individuals.  See 
https://openai.com/blog/openai-five/ for a description of the AI challenges in Dota 2 relative to those in other 
games such as Go or chess.    
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4. Conclusions

AI-enabled or autonomous systems are not magic.  The fundamentals of testing will not 
change: we still need to observe tasks, record outcomes, and do those things across a systematic 
set of conditions.  What separates AI&A from our standard systems is that they make decisions on 
their own—they operate without an operator.  To assess these systems, we have to assess their 
decision-making.  Fortunately, the study of decision-making is not new.  A variety of the 
behavioral sciences have developed methods to study this topic in humans.  Though some 
adaptation may be necessary, the lessons learned by these other fields can help jump start T&E of 
AI&A within DoD. 

However, AI-enabled or autonomous systems are not a homogenous category, and 
differences among these systems will drive choices about test strategies.  In our framework, we 
identify a few broad characteristics that will affect how we test these systems.  The attributes that 
separate decision-making systems from each other are (1) the kinds of decisions they make, (2) 
design choices regarding modular vs.  monolithic architecture and symbolic vs.  sub-symbolic 
processing, (3) the extent to which testers understand how the system makes its decisions, (4) the 
risk involved in those decisions, (5) how amendable to simulation they are, and (6) how these 
systems will interact with other decision-making agents.  All of these factors have implications for 
how to test these systems. 

We identified three types of decision—executive, perceptual, and procedural—that can affect 
what we test.  Testers should evaluate whether the system makes decision types within a given 
task, not whether they make them at all as some kind of system property.  Executive decisions are 
colloquially “should” decisions; more technically, systems with this kind of autonomy make 
decisions about their goals and constraints.  Perceptual decisions are colloquially “what is” 
decisions—formally they define problem states.  Procedural decisions are colloquially “how” 
decisions; formally they select the immediate next procedure90 in pursuit of a goal.  The biggest 
(though not the only) effect these different decision types have on testing is on the types of metrics 
that need to be collected. 

Perhaps the most important attribute for testing, however, is the extent to which we 
understand what causally drives systems to make one decision over another.  If we do not 
understand the system’s decision model, we cannot make inferences about performance under 
conditions that have not been explicitly tested.  Furthermore, we cannot validate that a simulation 
adequately represents reality if we do not understand which aspects of reality drive system 
decisions.  Both of these have massive implications for the amount of testing that would be needed, 
to the extent that proceeding without a model of the system’s decision-making will be impossible 
as a practical matter. 

90  Called an “operator” in the formal parlance of the problem space hypothesis
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When systems make decisions that are hugely consequential under conditions that are 
difficult to simulate reliably, a new approach to testing will be necessary.  These systems must be 
exposed to live, realistic conditions to credibly believe that the decisions observed in testing are 
what it will do when fielded, but it would not be safe to allow them to actually operate.  In these 
cases, testers should certify low-risk capabilities, and then monitor them after they are fielded for 
those capabilities under human supervision.  As they are exposed to realistic scenarios, have the 
systems evaluate what they would have decided regarding their riskier capabilities, and use these 
data to eventually certify further capabilities. 

Finally, though AI&A notionally make their own decisions, they will do so in the context of 
other decision-making agents, human and artificial.  AI&A systems must be tested in these 
interactive contexts to correctly understand their fielded behavior.  The exact nature of these 
relationships (e.g., operator-on-the-loop, two artificial agents, or true teammates) will inform 
testers about which methods they need to use.    

There are a several interdependent policy and design choices that will critically enable our 
test strategies.  First, it is much easier to obtain and initially evaluate decision models for systems 
that are designed using at least hybrid symbolic and sub-symbolic approaches in a modular 
architecture.  Second, systems need a built-in infrastructure for recording data (BIRD)—an end-
to-end pipeline starting with internal cognitive instrumentation and extending to securely collate, 
transmit, and store these system internal data.  The modules in a hybrid architecture can act as the 
hooks for the cognitive instrumentation.   

This document is only Part One of a long endeavor.  Though many might consider this 
document to be too long already, ironically it is neither comprehensive nor detailed enough for test 
execution.  This framework is meant to identify what needs to be tested in these systems; it is not 
a how-to guide for test planning and execution.  We have covered those topics to some degree, but 
more work remains to create a practitioner’s guidebook.  In many cases, entire fields and complex 
procedures have been boiled down to a single sentence.  A series of future documents will try to 
delve into these topics in sufficient detail for working-level testers to follow.  Also, while we have 
discussed performance evaluation, we have not touched on the topic of test efficiency.  This is the 
other half of our framework, and it is complex enough to require its own roadmap and product 
series.  In sum, our work is far from done, but we hope this paper takes an important step forward 
in the quest to provide assurance for AI-enabled and autonomous systems.   
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5. Recommendations 

 Testers need to identify the features of autonomous systems that will (and will not) 
cause traditional test methods to misinform decision-makers about risk.  We need 
to identify when, why, and how testing will need to be different for AI-enabled systems.  
Overarching definitions of AI or autonomy often exclude some systems that would be 
difficult to test, and programs are not self-identifying as involving such risks.  Other 
definitions suffer from disagreement over the meaning of words.   In this paper, we 
define AI and autonomy as anything that makes decisions based on environmental 
information within the constraints of a specific task.  We identify three types of 
decision—setting goals or constraints, defining the current situation, and choosing the 
next action—to help identify what does and does not change about testing.  To avoid 
ambiguity, these definitions are grounded in a technical theory of decision-making.   

 Testers need more transparency in decision-making systems.  Transparency is 
important for end-users, but also for testers.  Black-box systems prevent testers from 
making inferences about untested scenarios.  Before we can confidently test system 
performance, we must understand how the system makes its decisions.  This 
transparency can be built-in at the drawing board, or, as a less desirable option, the lack 
of transparency in design can be mitigated during early testing.  We make 
recommendations for how to obtain, verify, and validate models of what causally drives 
system decision-making. 

 Testers need rights to system decision-making and learning processes and data 
generated by these systems.  In addition to benefits such as enabling modularity and 
reusability across systems, gaining ownership rights to the decision software is critical 
to testing.  Proprietary concerns can cause an otherwise transparent system to be a black 
box to testers, as has already happened with several systems.     

 Common, modular cognitive architectures enable testing.  Many have discussed 
how modular cognitive architectures benefit system development, performance, and 
sustainment.  Here we discuss how they facilitate efficient and effective T&E as well. 

 Research into and dissemination of methods for evaluating decision-making are 
needed.  These include metrics to quantify intermediate mission success, methods to 
qualitatively evaluate overall decision processes, novel calculations of classification 
accuracy for multi-categorical fuzzy groups, and ways to quantify a system’s ability to 
learn. 

 Decision-making systems that have a built-in infrastructure for recording data 
(BIRD) become easier to certify.  We recommend a BIRD to enable testing, but it 
would serve many different needs.  By having systems record data about themselves, by 
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themselves, and by providing an infrastructural pipeline to securely collate, store, and 
disseminate these data, stakeholders can harvest data from a variety of previously 
inaccessible venues such as exercises and operational missions.  These harvests can 
support many activities like T&E, operator and commander decision making, and post-
fielding fleet-wide learning.   

 Testers can use a strategy of Graded Autonomy with Limited Capability Fielding 
for difficult-to-certify systems.  Some systems are too dangerous to test live, but too 
difficult to simulate credibly.  These systems should be tested like we do with medical 
residents.  Train all skills, and then certify and field their least risky capability for use 
under supervision.  While acting in realistic situations in the field or exercises, have 
systems evaluate what they would have done with more risky capabilities.  Use these 
data to spiral upward through risk and down through supervision levels as systems 
demonstrate safe competence.   

 Testers should characterize system flexibility as well as system performance.  
Decision systems can achieve greater performance on a specific task by over-
optimizing, which can create downstream costs and consequences when trying to 
upgrade, change, learn, or transfer to a related task.  Testing should evaluate to what 
extent programs have made this tradeoff. 

 Testers need environments where different autonomous agents, including humans, 
can be tested together for emergent behavior.  When autonomous agents interact, 
you can get emergent behavior (EB).  EB can be expected or unexpected, and it can be 
desirable or undesirable.  Testers need to confirm that expected, desirable EB (such as 
teaming or synergy) functions correctly, while minimizing the probability of 
unexpected, undesirable EB.  This must be tested under live as well as simulated 
environments.  Centralizing test responsibility for EB can overcome a number of 
simulation challenges, while having a regular joint exercise would provide such a live 
test venue for validation while also helping troop readiness for existing and emerging 
technology employment.   

 Testers still need to emphasize human-system interaction for autonomous systems.  
Even in fully autonomous systems, a human will be involved in some part of their 
decision-making chain, even if it is just issuing initial orders.  These interactions must 
be fluid and minimize error to ensure responsible employment, and testers must 
evaluate this.  Additionally, the acquisition community should assess whether 
warfighters will have appropriately calibrated trust of their systems. 

 Testers should adapt existing methods for evaluating human teams for the T&E of 
human-machine teams.  Though not all AI-human system relationships will truly 
involve teaming, systems that do will require a different approach to testing.  The 
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starting point for these evaluations should be the methods already created by the 
behavioral sciences and sports statisticians.   

 Testers should assess adversarial exploitation generational cycles.  Cyber and 
tactical exploitation is a never-ending, constantly evolving battle in learning systems.  
This may require a cultural shift away from testing against static, well-defined 
exploitation requirements.  Testers should attempt to quantify how quickly adversaries 
can develop exploitations of our decision systems versus the speed at which we can re-
counter them.  Having a faster friendly than adversary cycle will likely be critical to 
meaningfully field these systems.  At first this will be a test of industrial agility, though 
in time in may be a metric of systems’ live behavioral flexibility. 
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