
 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

DEFENSE ANALYSIS 
CAPSTONE REPORT 

 

ROBOTIC AUTONOMOUS SYSTEMS: 
MANNED / UNMANNED TEAMING (RAS-MUM-T) 

by 

Dustin L. Tharrett, Anthony E. Pittaluga, Jon K. Decker, 
and Joseph P. Snelgrove 

December 2020 

Thesis Advisor: Leo J. Blanken 
Second Reader: Justin P. Davis 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188 

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503. 
 1. AGENCY USE ONLY 
(Leave blank)  2. REPORT DATE 

 December 2020  3. REPORT TYPE AND DATES COVERED 
 Defense Analysis Capstone Report 

 4. TITLE AND SUBTITLE 
ROBOTIC AUTONOMOUS SYSTEMS: MANNED / UNMANNED TEAMING 
(RAS-MUM-T) 

 5. FUNDING NUMBERS 
 
  

 6. AUTHOR(S) Dustin L. Tharrett, Anthony E. Pittaluga, Jon K. Decker, 
and Joseph P. Snelgrove 
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA 93943-5000 

 8. PERFORMING 
ORGANIZATION REPORT 
NUMBER 

 9. SPONSORING / MONITORING AGENCY NAME(S) AND 
ADDRESS(ES) 
N/A 

 10. SPONSORING / 
MONITORING AGENCY 
REPORT NUMBER 

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government. 
 12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.  12b. DISTRIBUTION CODE 

 A 
13. ABSTRACT (maximum 200 words)     
 Rapidly changing technology and near-peer adversaries in the Great Power Competition are 
dramatically changing the battlefield of the future with artificial intelligence and autonomous systems 
emerging as major components in small unit maneuvers. The Hyper-Enabled Operator System (HEO) is 
designed to allow operators to interface with autonomous systems without increasing users' cognitive load in 
order to achieve successful manned-unmanned interactions that increase survivability and lethality of 
operators. For HEO to succeed, however, it is essential that all technical components coalesce around a 
strong human machine interface (HMI) and that architecture for sensors, weapons, computing, and radio 
systems are designed for human operators in actual use cases. The goal of this capstone project is to 
emphasize the importance of HMI-centered design as a key pillar of the HEO system and to caution against 
implementing technology without thoroughly considering how it will be used by operators in actual 
war-fighting situations. Too much focus on developing HEO technology without sufficient attention to how 
such innovative technology will be adopted by the end-user creates a gap in technical capacity and human 
capabilities that can lead to cognitive overload for users and wasted development and procurement 
resources. 

 14. SUBJECT TERMS 
cognitive loading, human systems integration, robotic autonomous systems, socio-technical 
system, common control station, Hyper-Enabled Operator System, HEO, human machine 
interface, HMI  

 15. NUMBER OF 
PAGES 
 107 
 16. PRICE CODE 

 17. SECURITY 
CLASSIFICATION OF 
REPORT 
Unclassified 

 18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 
Unclassified 

 19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 
Unclassified 

 20. LIMITATION OF 
ABSTRACT 
 
 UU 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

ROBOTIC AUTONOMOUS SYSTEMS: 
MANNED / UNMANNED TEAMING (RAS-MUM-T) 

Dustin L. Tharrett 
Major, United States Air Force 

BS, Embry-Riddle Aeronautical University, 2006 
MBA, Trident University International, 2010 

 
Anthony E. Pittaluga 

Lieutenant Junior Grade, United States Navy 
BS, West Chester University, 2002 

 
Jon K. Decker 

Chief Petty Officer, United States Navy 
BS, Texas Tech University, 2003 

 
Joseph P. Snelgrove 

Commander, United States Navy 
BS, U.S. Naval Academy, 2005 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN DEFENSE ANALYSIS  
(IRREGULAR WARFARE) 

from the 

NAVAL POSTGRADUATE SCHOOL 
December 2020 

Approved by: Leo J. Blanken 
 Advisor 

 Justin P. Davis 
 Second Reader 

 Douglas A. Borer 
 Chair, Department of Defense Analysis 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 Rapidly changing technology and near-peer adversaries in the Great Power 

Competition are dramatically changing the battlefield of the future with artificial 

intelligence and autonomous systems emerging as major components in small unit 

maneuvers. The Hyper-Enabled Operator System (HEO) is designed to allow operators to 

interface with autonomous systems without increasing users' cognitive load in order to 

achieve successful manned-unmanned interactions that increase survivability and 

lethality of operators. For HEO to succeed, however, it is essential that all technical 

components coalesce around a strong human machine interface (HMI) and that 

architecture for sensors, weapons, computing, and radio systems are designed for human 

operators in actual use cases. The goal of this capstone project is to emphasize the 

importance of HMI-centered design as a key pillar of the HEO system and to caution 

against implementing technology without thoroughly considering how it will be used by 

operators in actual war-fighting situations. Too much focus on developing HEO 

technology without sufficient attention to how such innovative technology will be 

adopted by the end-user creates a gap in technical capacity and human capabilities that 

can lead to cognitive overload for users and wasted development and procurement 

resources. 
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I. THE BATTLEFIELD OF THE FUTURE 

The operator’s role on the battlefield of the future will be profoundly different than 

it is today. Rapidly changing, powerful technology means more unmanned systems under 

operator control will be the first through a breach, and sensors will translate radio traffic 

into 3D audio headphone feeds to provide precise positional data.1 Near-peer adversaries 

in the Great Power Competition will also have similar technologies and the training to 

leverage them effectively. The U.S. military advantage will rely on its doctrinal and 

organizational integration of Artificial Intelligence and automated systems technology into 

the wider conventional and allied forces and across multiple domains to capitalize on the 

vast networks of collected information.2 To prevent cognitive overload from burdening the 

end user, the military must ensure that the data is understandable, visible and most 

importantly linked in a reliable and intuitive human machine interface (HMI). Adopting 

early integration with artificial intelligence and autonomous systems, tailoring user 

interface design, and conducting appropriate training will build operators’ trust in the 

salience of information the systems provide.3 

A. THE HYPER-ENABLED OPERATOR 

The Hyper-Enabled Operator (HEO) system is designed to allow operators to 

interface with autonomous systems without increasing the user’s cognitive load in order to 

achieve successful manned-unmanned interactions to increase survivability and lethality 

of operators.4 The goal of the HEO is to ensure the right information is given to the right 

                                                 
1 Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash, 

“Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE 
Communications Surveys & Tutorials 17, no. 4 (2015): 2347–2376. 

2 Scott Flanick, Andrew Davidson, Ashley Yoo, John David Mote, and Vikram Mittal, “Expanding the 
Hyper-Enabled Operator Technology across the Special Forces Enterprise,” Industrial and Systems 
Engineering Review 7, no. 1 (May 2019): 2–8. 

3 Alvin Toffler, Future Shock (New York: Bantam Books, 1971),181. 

4 Flanick et al., “Expanding the Hyper-Enabled Operator,” 2–8. 
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person at the right time in order to ensure they can be more effective.5 The HEO concept 

evolved from the now discontinued Tactical Assault Light Operator Suit (TALOS) 

project—a powered-armored exoskeleton suit that uses augmented reality situational 

awareness for the operator.6 HEO abandoned the exoskeleton concept and instead 

integrated robust sensing, processing, and augmented reality technology that empowers 

operators across an array of mission types from counter-terrorism to mobility operations.7  

B. PROJECT GOAL 

The goal of this capstone is to highlight the importance of Human Machine 

Interface-centered design as a key pillar of the HEO system and to ensure organizational 

changes allow for operators proper training to build trust and proficiency with artificial 

intelligence (AI) and unmanned autonomous systems (UASs). For the hyper-enabled 

operator concept to succeed, it is essential that all technical components coalesce around a 

strong human machine interface (HMI) architecture which links all sensor inputs, weapons, 

and radio systems with seamless computing to provide the human operator maximum 

situational awareness while reducing their cognitive overload. Additionally, identifying 

cognitive overload through performance and neuro-physiological data to raise the 

operators’ cognitive advantage, and then individually adjusting training, is the beginning 

to creating organizational changes which will optimize the individual’s impact on the 

battlefield.  

C. PROBLEM STATEMENT  

The HEO systems are not properly designed to consider the human cognitive 

limitations and the optimal design features to optimize the human’s tasks and decision-

making abilities.8 This creates a gap in technical capacity and human capabilities that can 

                                                 
5 Flanick et al., 2–8. 

6 Flanick et al., 2–8. 

7 Flanick et al., 2–8. 

8 Julie Adams, “Cognitive Task Analysis for Unmanned Aerial System Design,”  Handbook of 
Unmanned Aerial Vehicles, edited by Kimon P. Valavanis and George J. Vachtsevanos, 2425–41. 
Dordrecht: Springer Netherlands, 2015. 
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lead to cognitive overload for users and wasted development and procurement resources. 

This N aims to fill this gap by focusing on the unique needs of Artificial Intelligence for 

Small Unit Maneuvers (AISUM) and the challenges of innovation adoption.  

D. AREAS OF RESEARCH 

This report examines the importance of Human Machine Interface-centered design 

through six critical lenses: 

• The major elements that define HEO 

• The specific needs of AISUM 

• The nature of Cognitive Load in Neuroscience  

• The crucial elements of good User Experience and User Interface (UX/UI) 

• The analysis of human behavior and interaction through Sociotechnical 

Systems (STS) 

• The challenges and opportunities of Innovation Adoption  
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Figure 1. Project Visualization 

E. KEY TAKEAWAYS 

HEO leverages HMI to provide operators with actionable intelligence and precise 

information by integrating sensing technology, algorithm and processing technology, 

communications technology, and system level technology.9 These technical requirements 

in turn drive enabling technologies—applied innovations that foster rapid and radical 

change in user capabilities.10 

As AI SUM conducts more robust tasking, the human’s ability to control the 

machines must become increasingly more reliant on robust autonomy and artificial 

intelligence to reduce the cognitive burden and the team size required to operate the 

machines.11 

                                                 
9 Al-Fuqaha et al., “Internet of Things: A Survey on Enabling Technologies, Protocols, and 

Applications,” 2347–2376. 

10 Mick Ryan, Man-machine Teaming for Future Ground Forces (Washington, DC: Center for 
Strategic and Budgetary Assessments, 2018), 26. 

11 Adams, “Cognitive Task Analysis for Unmanned Aerial System Design,” 2426. 
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Managing cognitive load through proper training with artificial intelligence-

enabled automated systems will help operators gain trust in their systems. Additionally, 

cognitive measurement tools should be used during training to identify and then remedy 

situations which cognitively overload an individual. Training to each specific situation 

should be individualized based on the operator’s strengths and weaknesses identified 

during this advanced method of instruction. For example, the importance of the data 

provided to the operator can be adjusted through auditory, visual, tactile, and kinesthetic 

methods to prevent cognitively overloading the individual. And finally, improving the 

Human Machine Interface design through tailored systems based on individual cognitive 

assessments will help each individual perceive and receive information scaled to their 

innate strengths and weaknesses.12  

UX/UI Design is a crucial lynchpin in a Human-Machine Team; cumbersome 

user interface removes the operator from the battlefield while reducing the drone swarm 

utility. To improve innovation adoption, user interface/user experience must be highlighted 

and emphasized throughout development. 

Sociotechnical System Thinking finds that effective jobs and workflows are those 

that consider this interaction of technical and human needs by balancing the operator’s 

intrinsic needs with the operation’s need for technical efficiency.13  

Innovation adoption involves independent variables on the individual and 

collective levels, including the characteristics of leaders in the organization, characteristics 

of the internal structure, and external characteristics of the organization.14 The size and 

complexity of the DOD’s mission and systems creates friction and latency into decision-

                                                 
12 JJ Walcutt, Cort Horton, Dhiraj Jeyanandarajan, Walt Yates. “Neuro-Optimization for Accelerated 

Learning Pace and Elevated Comprehension: Military Applications,” 2020, 14. 

13 Richard Daft, Organization Theory and Design,12th ed. (Boston: Cengage Learning, 2016), 462. 

14 Ismail Sahin, “Detailed Review of Rogers’ Diffusion of Innovations Theory and Educational 
Technology-Related Studies Based on Rogers’ Theory,” Turkish Online Journal of Educational 
Technology-TOJET 5, no. 2 (2006): 14–23 
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making, adding additional layers of required coordination, rules, regulations and other 

mechanisms that inherently hinder the pace innovation.15 

F. CONCLUSIONS AND RECOMMENDATIONS 

• USSOCOM’s concept of the HEO and NSW’s AISUM must optimize the 

UX/UI in order to mitigate cognitive and information overload.  

• This requires not just developing the technology to completion but 

ensuring SOCOM and its subordinate commands implement the right 

innovation adoption and sociotechnical approach in order to successfully 

realize the concept of the HEO. 

• Failure to account for human user in major weapon systems programs 

leads to serious issues impacting operator survivability not to mention 

unnecessary redesigns, delays, and additional financial cost. 

• The Special Operations Forces Community must prioritize early training 

with Artificial Intelligence and automated systems to build the operators’ 

trust in the salience of information provided so the operators can decrease 

the cognitive effort required to monitor the unmanned systems.16  

• The military should invest in neuro-physiologic measuring devices which 

can identify and quantify real-time cognitive overload in a dynamic, Full 

Mission Profile (FMP) scenario to mitigate the detrimental effects of 

cognitive overload on operators in combat.  

• Refocus the Preservation of the Force and Families (POTFF) to emphasize 

the importance of wearable technology to achieve individual Neural 

                                                 
15 U.S. House Armed Services Committee on U.S. Pacific Command Posture, 115th Cong. (2017) 

(Statement of Dr. Eric Schmidt), 1. 

16 Mica R. Endsley, “From Here to Autonomy: Lessons Learned From Human–Automation 
Research,” Human Factors: The Journal of the Human Factors and Ergonomics Society 59, no. 1 
(February 2017): 8, https://doi.org/10.1177/0018720816681350. 
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Fitness—or the balance of cognitive, emotional, and physical fitness.17 As 

the Preservation of the Force and Families initiative in the military 

continues, continuous physical and mental health monitoring using data 

collected from emerging wearable devices should be invested in and 

become a daily part of the individual health and neural fitness.  

  

                                                 
17 Andrew Huberman and Sam Golden, “Biomechanical Acoustic Devices and Measuring Biologic 

Signals,” (Zoom lecture, Stanford University, CA and Northwestern University, MI, August 5, 2020). 
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APPENDIX A. HYPER ENABLED OPERATOR 

Ten years from now, if the first thing going through the door after a breach 
is not an unmanned system, then shame on us. And if there are not more 
unmanned systems than U.S. Army and Marine Corps ground units, shame 
on us. 

—Robert Work, U.S. Deputy Secretary of Defense 
 

A. BACKGROUND 

The 2017 National Security Strategy (NSS) clearly states that a primary task for the 

military is to seek new capabilities that create clear advantages for our service members. 

This includes eliminating bureaucratic impediments to innovation while embracing less 

expensive and time-sensitive commercial off-the-shelf solutions to field enhanced 

capabilities that can be easily upgraded as new technologies come online.18 Throughout 

the current battlefield Naval Special Warfare (NSW) has successfully utilized unmanned 

aircraft systems (UAS) to conduct intelligence, surveillance, and reconnaissance (ISR) in 

support of combat operations. In support of the guidance put forth by the president NSW 

has made it a top priority to develop and improve AI-enabled robotics in support of Small 

Unit Maneuver (SUM) in order to enhance combat effectiveness and situational awareness.  

In 2010, the Department of Defense restated autonomy as the single greatest theme 

for today’s unmanned systems. Barry Scott defines autonomous warfare as, “an operational 

concept that exploits the advantages of unmanned, autonomous, and robotic systems to 

increase autonomy and freedom for the human warfighter.” 19 Paul Scharre reiterates this 

point in his article, “Robotics on the Battlefield Part II: The Coming Swarm,” when he 

explains that emerging robotic technologies such as uninhabited systems will enable future 

special operators to fight as a swarm, with increased combat power, highly coordinated 

                                                 
18 White House, National Security Strategy  (Washington, DC: White House, 2017),  

https://www.whitehouse.gov/wp-content/uploads/2017/12/NSS-Final-12-18-2017-0905.pdf, 28. 

19 Barry S. Scott, “Strategy in the Robotic Age: A Case for Autonomous Warfare” (master’s thesis, 
Naval Postgraduate School, 2014), 3. 



   
 

10 

networking, and the ability to speed up the decision making loop on the battlefield.20 The 

introduction of this swarm technology is the first step in the human-machine teaming that 

will change the way wars are fought in the future. 

As of 2015, the Naval Postgraduate School (NPS) was leading autonomous drone 

swarm technology implementation. NPS’s Advanced Robotic Systems Engineering 

Laboratory (ARSENL) set a record by flying 50 commercial off-the-shelf (COTS) 

autonomous drones simultaneously.21 In 2000, John Arquilla and David Ronfeldt co-wrote 

a revolutionary publication, Swarming & the Future of Conflict, which originated the 

concept of swarming in the 21st century. The underlying theme of this publication identifies 

the fourth basic form of warfare, “swarming.”22 Scharre describes swarming as a network 

of uninhabited vehicles that autonomously coordinated their actions to accomplish a task 

under some degree of mission-level human direction.23 There has never been a better time 

for institutions like NPS and war colleges across the country to take the lead on research 

and development of emerging technology in the field of Robotic Autonomous Systems 

(RAS). 

The application of this style of warfare requires, as noted by Arquilla and Ronfeldt, 

“building a fully integrated surveillance and communication system in support of swarm 

forces, a highly sophisticated command-and-control structure, and doctrinal innovation.” 
24 The concept of Artificial Intelligence for Small Unit Maneuver (AISUM) is Naval 

Special Warfare’s vision for the future of tactical maneuver elements teamed with 

intelligent adaptive systems. In the future multi-domain environment, the adversary will 

attempt to contest all domains through cutting off key communications and navigation 

                                                 
20 Paul Scharre, Robotics on the Battlefield Part II: The Coming Swarm (Washington, DC: Center for 

a New American Security, 2014), https://www.jstor.org/stable/resrep06405. 
21 Timothy H. Chung et al., “Live-Fly, Large-Scale Field Experimentation for Large Numbers of 

Fixed-Wing UAVs,” in 2016 IEEE International Conference on Robotics and Automation (ICRA) 
(Washington, DC: IEEE,  2016), 1255–62, https://doi.org/10.1109/ICRA.2016.7487257. 

22 John Arquilla and David F. Ronfeldt, Swarming & the Future of Conflict (Santa Monica, CA: 
RAND, 2000). 

23 Scharre, Robotics on the Battlefield, 11–12. 

24 Arquilla and Ronfeldt, “Swarming & the Future,” 46. 
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bands of the electromagnetic spectrum (EMS). The adversary’s ability to leverage complex 

and congested terrain will lead to a decrease in joint force capabilities and reduce 

effectiveness of SOF maneuver elements. It is essential that Naval Special Warfare 

leverage the advancements in Artificial Intelligence (AI) and Machine Learning (ML) to 

revolutionize human-machine teaming. The continued experimentation and research in 

theory and technology that supports robotic autonomous systems (RAS), miniaturized 

sensors, and secure autonomous communications networks will decrease the cognitive load 

on the operators and will prove to be a force multiplier in small unit maneuver warfare; 

however, if we don’t begin to foster a culture of innovation within the SOF organization 

while teaming up with private industry we will quickly fall behind our adversaries in this 

era of Great Power Competition. 

In 2019, a capstone team from the Naval Postgraduate School recognized the 

DOD’s inability to innovate was related to a lack of education and identified the need for 

a curriculum that can bring together stakeholders, students, and private industry to create 

innovative solutions. This became the driving force behind 697’s Applied Design for 

Innovation. The goal of the 697 curriculum is to provide solutions to real world problems 

and deliver leaders with a comprehensive understanding of the innovation process back to 

the force.25  

This appendix will highlight how hands-on work with stakeholders, cross-campus 

collaboration, external partnership, and deliverable products are the four pillars in which 

future capstone teams will use to advance their lines of effort. Fostering relationships with 

private industry to advance capabilities and integrate Robotic Autonomous System’s will 

prove vital to developing the AISUM concept and moving one step closer to the hyper-

enabled operator. 

                                                 
25 Leo Blanken, “Solving Wicked Problems: 697 Applied Design for Innovation.” (Class lecture, 

Naval Postgraduate School, April 14, 2020) 
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B. HYPER-ENABLED OPERATOR SYSTEM  

Human-machine interaction (HMI) is an interdisciplinary design science that 

combines knowledge and methods from professional fields including psychology, 

sociology, computer science, instruction and graphic design, human factors and 

ergonomics.26 HMI is at the heart of our experiences with the technology that facilitates 

routine processes that range from checking our account balance to operating heavy 

machinery, providing decision support in everything from professional fields to driving 

directions, delivering education and training, and providing a platform and content 

structure for leisure, culture, and community interaction. The goal of HMI is to improve 

the quality of life for users on both the individual and community level, and to this end its 

central concern is usability.  

The U.S. Military Standard for Human Engineering Design Criteria defines four 

high level goals for usability that relate to HMI:  

1. Achieve required performance by operator, control and maintenance.  

2. Minimize skill and personnel requirements and training time.  

3. Achieve required reliability of personnel-equipment combinations.  

4. Foster design standardization within and among systems.27  

Each goal is predicated on limiting cognitive load for operators, load which has 

always been the limiting factor in such interactions and remains the North Star for 

designing autonomous systems for defense capabilities.  

The hyper-enabled operator system, or HEO, is, at a high level, a system designed 

to allow operators to interface with autonomous systems without increasing the user’s 

cognitive load in order to achieve successful manned-unmanned interactions to increase 

                                                 
26 Ben Shneiderman, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas Elmqvist, and 

Nicholas Diakopoulos, Designing the User Interface: Strategies for Effective Human-Computer 
Interaction, 6th ed. (London: Pearson Education Limited, 2016), 37–38. 

27 Human Engineering Design Criteria for Military Systems, Equipment and Facilities, Document 
MIL-STD-1472D, Notice 3 (Washington, DC: United States Department of Defense, 1989), 11. 
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survivability and lethality of operators.28 Originally designed to protect operators who are 

the first through a door in a rescue mission or hostage situation, the scale and expense of 

the system requires it to be expanded to support a range of missions across United States 

Special Operations Command (USSOCOM) ranging from transport to combat to medical. 

In essence, the goal of the HEO is to ensure the right information is given to the right 

person at the right time in order to ensure they can be more effective.29 By managing task 

load across units, the HEO manages cognitive load for each individual. To achieve this, 

the HEO leverages HMI to provide operators with actionable intelligence and precise 

information by integrating sensing technology, algorithm and processing technology, 

communications technology, and system level technology. These technical requirements 

in turn drive enabling technologies –applied innovations that foster rapid and radical 

change in user capabilities.30 

C. HUMAN MACHINE INTERFACES (HMI) 

The interfaces operators engage with to receive information and mission critical 

support must be intuitive in that they deliver data in a way humans naturally receive and 

process it; they must also be highly flexible such that they can be modified in accordance 

to evolving human needs and contexts. The presentation of information to users must not 

interfere with their critical perceptual tasks or battlefield operations.31  

The quality and usability of human machine interfaces is a key pillar in the HEO 

system and the operator’s ability to interact and control smart autonomous systems in the 

HEO context.32 Innovative technology and design principles are being applied to make 

                                                 
28 Flanick et al., “Expanding the Hyper-Enabled Operator,” 2–8. 

29 Ryan, “Man-machine Teaming for Future Ground Forces,” 21. 

30 Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa Ayyash, 
“Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE 
Communications Surveys & Tutorials 17, no. 4 (2015): 2347–2376. 

31 Alex MacCalman et al., “The Hyper-Enabled Operator | Small Wars Journal,” Small Wars Journal, 
June 6, 2019, https://smallwarsjournal.com/jrnl/art/hyper-enabled-operator, 7. 

32 Walcutt et al., “Neuro-Optimization for Accelerated Learning Pace and Elevated Comprehension: 
Military Applications,” 2020, 14. 
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interfaces more natural and usable. These include using 3D audio systems rather than 

traditional non-directional headphone audio so that different actors and radio traffic 

elements can be delivered from identifiable positions in a 3D landscape; haptic feedback 

can be used to deliver spatially significant alerts and data, reducing cognitive load while 

maintaining situational awareness.33 

Control mechanisms are also evolving beyond the typical tactile, button or pixel-

based interface with voice and gesture control taking a more prominent role that allows 

operators to keep hands free for other tasks. Augmented reality enables maps and data feeds 

to be arbitrarily displayed in the operator’s field of view whether in a headset or spatial 

projection; intelligence, surveillance, and reconnaissance feeds can be displayed in ways 

that are customizable and can be activated and deactivate on demand with voice and gesture 

controls.34  

Human-Machine Interface is nested within the HEO System Boundary which 

further categorizes the system features into necessary and enabling elements, such as 

foundational infrastructure like data management and analytics, and related capability 

areas, such as biotechnologies like human performance optimization (Figure 2).35  

                                                 
33 Walcutt et al., “Neuro-Optimization for Accelerated Learning Pace and Elevated Comprehension: 

Military Applications,”14. 

34 Walcutt et al., 14. 

35 Al-Fuqaha et al., “Internet of Things: A Survey on Enabling Technologies, Protocols, and 
Applications,” 2347–2376. 
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Figure 2. HEO System Boundary 

D. SENSORS 

Sensing technologies focus on collecting threat information using sensory data 

processing tools such cameras for both visible and non-visible spectrum imaging, 

microphones, antennae, and cyber signature detection. Sensing leverages a range of 

enabling technologies, including MEMS, distributed sensing, adaptive / flexible sensors, 

and underwater sensors.  

Microelectromechanical Systems, or MEMS, combine electrical and mechanical 

components on an integrated microchip in order to perform a broad range of sensory tasks 

such as motion detection and sound detection using gyroscopes, accelerometers, and other 

technology.36 MEMS technology is a fundamental part of military navigation, 

communication, and optical systems, integrating with other core technologies like Lidar.37 

MEMS bio-sensing capabilities expand into water toxicity testing6 and other novel field 

applications.  

Distributed sensing is a network-centric approach to sensory processing and 

situation assessment that leverages a hierarchy of capabilities, information, and control 

                                                 
36 Paul B Ruffin and Sherrie J. Burgett, “Recent Progress in MEMS Technology Development for 

Military Applications,” Proc. SPIE 4334 In Smart Structures and Materials 2001: Smart Electronics and 
MEMS: (August 2001), 1–2. 

37 Xiaobao Lee, Chunhui Wang, Zhaoxu Luo, and Shengqing Li, “Optical Design of A New Folding 
Scanning System in MEMS-Based Lidar.” Optics & Laser Technology 125 (2020): 106013, 1. 
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nodes.38 Distributed sensing can collect higher quality information by combining different 

spatial perspectives, different sensing modalities, and higher density deployment to create 

a fuller picture of the available data.  

Flexible sensors are lightweight, wearable, and often designed for biological 

integration, or so-called electronic skin; constructed of deformable substrates like 

polycarbonate (PC) or polyethylene terephthalate (PET), polydimethylsiloxane (PDMS) or 

silicone rubbers, they are designed for pliancy, stretchability, and transparency.39 These 

sensors use electrical properties such as triboelectricity, capacitance, or piezoelectricity of 

solid nanomaterials or metallic liquids to detect pressure, temperature, torsion, strain, 

humidity and other physical data.40 

Using the lowest power wireless communication and networking capability 

available, piezo-acoustic backscatter (PAB) technology allows for battery-free or 

extremely low power underwater sensing of data such as temperature, acidity, or toxicity.41 

Similarly, by leveraging the piezoelectric electric effect, underwater sensors detect the 

vibrations of waves and reflect signals back to receivers in a binary system alternating 

between wave and no wave to transmit data and harvest energy.42 

E. ENABLING TECHNOLOGIES 

The HEO system uses a blend of enabling technologies to collect and analyze data 

in order to generate actionable intelligence. Artificial intelligence is leveraged to increase 

system autonomy and situational awareness and reduce operator requirements, while 

                                                 
38 Henry Leung, Sandeep Chandana, and Shuang Wei, “Distributed Sensing Based on Intelligent 

Sensor Networks,” IEEE Circuits and Systems Magazine 8, no. 2 (2008): 38–52. 

39 Joo Chuan Yeo and Chwee Teck Lim, “Emerging Flexible and Wearable Physical Sensing 
Platforms for Healthcare and Biomedical Applications.” Microsystems & Nanoengineering 2, no. 1 (2016): 
1–19. 

40 Leung et al., “Distributed Sensing,” 38–52.  

41 Junsu Jang and Fadel Adib, “Underwater Backscatter Networking,” In Proceedings of the ACM 
Special Interest Group on Data Communication, (2019): 187–199.  

42 Rob Matheson, “A Battery-Free Sensor for Underwater Exploration,” MIT News, Massachusetts 
Institute of Technology, accessed September 7, 2020, https://news.mit.edu/2019/battery-free-sensor-
underwater-exploration-0820. 
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machine learning allows the system to communicate equipment or navigational issues or 

errors for operator action. Computer vision applies artificial intelligence and deep learning 

technology for image identification and classification, with applications for threat 

assessment and situational awareness that enhances decision making, removes blind spots, 

and provides navigational guidance.  

Computational processing technology serves to reduce the Observe-Orient-Decide-

Act (OODA) loop timing interval by leveraging distributing processing and edge 

computing so that data and computation functions are as close to the decision point as 

possible, saving bandwidth and improving response times.43 The flow and integrity of 

information between stages in the OODA loop is essential, and the system incorporates 

non-standard encryption technology and novel frequencies.44 This paradigm extends to the 

overall communication system that incorporates adaptive/resilient networks focused on 

expanded autonomous networking in order to transform static networks into dynamic 

ones.45 

On a procedural level, the HEO uses algorithms for key functions that include 

change detection, behavioral modeling, tracking, 3D mapping, GPS-denied navigation, 

biometrics, and image fusion.46 On a system level, HEO technologies provide tactical 

weaponry for air, naval, and land and protection with lightweight armor and signature 

management.  

F. APPLICATIONS 

HMI allows for new display and visualization paradigms such as augmented reality, 

transparent displays to provide useful data that improves situational awareness while 

                                                 
43Mahadev Satyanarayanan, “The Emergence of Edge Computing.” Computer 50, no. 1 (2017): 30–

39. 

44 Kennedy Harrison, Josh White, Paul Rivera, Tyler Giovinco, Jaritzel Jurado, and Vikram Mittal, 
“Aligning Needs, Technologies, and Resources for Special Operations,” In The Proceedings of the Annual 
General Donald R. Keith Memorial Conference, (Department of Systems Engineering United States 
Military Academy, 2019), 113–118. 

45 Matheson, “A Battery-Free Sensor for Underwater Exploration.” 

46 Flanick et al., “Expanding the Hyper-Enabled Operator,” 2–8. 
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reducing cognitive load.47 HMI also enables new automation and operating concepts that 

can be realized with the HEO, such as swarm optimization with the operator controlling 

self-organizing robot swarms and remotely controlled fully autonomous robot platforms in 

conflict situations.48 Medics can use the technology to combine bio sensing with 

augmented reality for proximally contextualized guidance and remote communications for 

telemedicine support from surgical experts.49 Air controllers can leverage transparent and 

augmented reality displays to manage information such as proximity of supporting 

resources that are currently only tracked by radio communication; this would significantly 

reduce cognitive loads and improve operator lethality.50 

G. CONCLUSION 

Successful HMI centers on translating human goals into explicit instructions 

computers can follow while translating the machine’s decision space into a context the 

operator can understand and control through visual, aural and tactile feedback.51 As a 

system, the HEO needs to increase operator survivability and lethality across a variety of 

functions and roles, including joint terminal air controllers, intelligence officers, vehicle 

drivers and mission sets as diverse as counterterrorism, foreign internal defense, covert 

operations, and direct action. Solving the HMI challenge while serving all stakeholders, 

requires clear conceptual planning, innovative thinking, and partnering with private 

industry to develop cutting edge technology. The Autonodyne project has focused on 

establishing a process which can serve as a model for future capstone endeavors and a 

foundation for further research towards the actualization of AISUM in an HEO system.  

                                                 
47 Flanick et al., 2–8 

48 Ryan, “Man-machine Teaming for Future Ground Forces.”  

49 Flanick et al., “Expanding the Hyper-Enabled Operator,” 2–8  

50 Flanick et al., 2–8 

51 Andrew Ilachinski, “AI, Robots, and Swarms: Issues, Questions, and Recommended Studies,” CNA 
Corporation, (2017), 106. 
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H. AUTONODYNE SUMMARY REPORT 

1. Purpose  

There is a need for RAS’s C2 and HMT Interface to allow a single operator or a 

team of operators to control multiple dissimilar platforms without Cognitive Overload. 

NSW currently operates a multitude of unmanned systems that all have completely 

different ground control stations, operating functions, displays and User Interfaces (UI). 

Non-intuitive and complex user interfaces are a common problem when incorporating new 

systems. This adds additional complexity for operators who must be trained on multiple 

systems but may not be a subject matter expert in unmanned systems. This adds training 

requirements and learning time for operators that is already limited.  

2. Key Stakeholders 

• Air Force Special Operations Command (AFSOC) has performed its own 

experimentation and development work integrating the DJI Mavic and 

linking ATAK with the Autonodyne CCS. AFSOC has supplied the 

endorsement Memorandum of Understanding (MOU) supporting this 

Phase II SBIR. 

• Separately, Naval Special Warfare (NSW) has partnered with Autonodyne 

since FY18 to develop a Common Control Station (CSS) for small 

Unmanned Vehicles (UxV), sponsored by DOD’s Rapid Reaction 

Technology Office (RRTO). 

• Naval Postgraduate School in coordination with NSW. SOCOM EOTACS 

is currently evaluating for sUAS Program of Record 

3. Autonodyne LLC 

Autonodyne is a 2014 spinoff from commercial avionics company Avidyne, a 

provider of full-suite aviation technology. The initial efforts involved adapting Avidyne’s 

manned avionics systems and software for high-performance DOD unmanned combat 

aerial systems (UCAS), and optionally piloted (OPV) civil aircraft. The Autonodyne 
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CEO/Co-founder had been leading the engineering efforts at Avidyne and was able to 

leverage his experience and contacts as an Air Force attack/test pilot to optimize the 

technology for DOD use cases. 

Autonomy is at the core of all systems developed with the mindset of utilizing 

multiple Robotic Autonomous Systems (RAS) to accomplish missions in a complex and 

contested environment. In the current Period of Performance (PoP) the company is 

leveraging and enhancing existing capabilities to allow for full-mission swarming. 

Autonodyne makes it a priority to use open-system architecture which allows for 

modularity. The use of open standards for data ingest, storage as well as for training, and 

transfer of AI models such as neural networks is a key component to working with the 

Department of Defense (DOD).  

4. History 

By 2017, Autonodyne began optimizing this technology suite for sUAS platforms, 

emphasizing the synergy between advanced human-machine interfaces (HMI) and 

autonomy behaviors and applying that to multi-vehicle, multi-domain operations with the 

goal of using on-board semantic reasoning to develop contextual awareness so the group 

of UxS platforms serve as a human force multiplier.  

In 2018 and 2019, Autonodyne was able to secure a range of customers/partners to 

help fund development of this technology to include state and federal law enforcement, 

state and federal emergency response organizations, and DOD with focus on drone package 

delivery, humanitarian assistance and disaster relief (HADR) and intelligence, 

surveillance, and reconnaissance (ISR) applications. 

DOD’s Rapid Reaction Technology Office (RRTO) and JSOC-X funded 9 months 

of development in late 2018 and first half of 2019 that resulted in a baseline sUAS control 

application capable of simultaneously controlling up to 9 UxS devices and became the 

basis of the current development efforts. 

An AFWERX Phase I SBIR with a period of performance (PoP) from Dec 2019 to 

Mar 2020 served as a transition from the 2019 RRTO/NSW baseline CCS to the current 
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Phase II PoP running July 2020 to July 2021. The principal deliverables in the Phase II 

include 8 additional autonomy behaviors, adding support for 4 SOCOM-directed UxS, and 

studying secure communications methodologies as they can be applied to these platforms 

and C2 systems. 

5. Human-Machine Interface and Autonomy 

On the HMI side of development, Autonodyne has created a Common Control 

Station (CCS) application that intentionally does not require adding any hardware or 

software to the UxS platform. Instead, the company creates “software wrappers” that act 

as behind-the-scenes translators and command/control interfaces to the existing UxS 

platforms. One powerful legacy of both Avidyne and now Autonodyne is significant effort 

and success in designing highly intuitive interfaces designed to reduce operator cognitive 

burdens/workload while at the same time increasing functionality. 

On the autonomy side of development, Autonodyne has been executing a strategy 

of creating a library of autonomy behavior building blocks. Behaviors such as “Fly Over 

That,” “Hold Over There,” autonomous detection and avoidance of static and dynamic 

2D/3D obstacles/threats interwoven into autonomous path planning algorithms, were part 

of the baseline system by 2019 and actively used in programs and applications spanning 

the sUAS space to UCAS. 

6. Why a Common Control Station (CCS)? 

First and foremost, what this project is driving at is communicating the need for 

high levels of integration between components taking part in future battlefields. One must 

envision planes talking to ground forces who are talking to robot enablers both on the 

ground and in the air. All of this vertically integrated sharing C2, information streams, back 

calls, forward and backwards communications. 

As RAS’s begin to become established in the formations the CCS is the forward-

edge of the C2 infrastructure. The Joint Force CCS is required to capitalize on the 

employment of RAS and small unit maneuvering. As a force we need to educate ourselves 

as to what a CCS looks like NOW, so we can create and plan new Tactics, Techniques and 
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Procedures (TTPs) with these new systems. Cognitive overload can lead to confusion when 

working with the systems resulting in risk to performance and may ultimately hinder the 

development of future concepts like AISUM and the HEO.  

Finally, the Joint Force will need to streamline the C4ISR for these concepts to 

really work. There needs to be a robust, defensible, highly integrated intelligent system of 

autonomy instead of the heterogeneous systems of handsets and C2 currently on the 

shelves. The system will need to be fully integrated both vertically and horizontally across 

the battlefield and across component commands in order to maneuver the RAS’s across 

multiple domains in a way that takes full advantage of the emerging technology. This is 

not just Autonomy Within Systems, but also Computer Vision (CV) and Artificial 

Intelligence (AI).  

7. WHAT: RCU-1000 Common Control Station Application/Software 

a. Common Control Station Approach 

• Autonodyne is utilizing human centered design to meet requirements by 

teaming with Subject Matter Experts (SMEs) from the Military and the 

private sector.  

• Multi-Input: Supports multi-touch (e.g., pinch zoom), traditional 

keyboard/mouse, commercial gaming controls (e.g. Xbox), and 

voice/gesture inputs from augmented reality devices (e.g. Meta2, Pison). 

• Hardware Agnostic: CS runs on most Windows 7 or later devices (PCs, 

laptops, tablets) as well as iOS and Linux and Android. Runs on Block 30 

F-16 center display unit & one of the 12 cores of F-35 mission computers 

• Link Agnostic: 8 links implemented, 5+ in work, working on cyber-

resiliency 

• Advanced Natural User Interface: Use advanced NUI designs running 

on mobile devices including use of augmented reality and UI elements 

from first-person shooter gaming system. 
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• RCU-1000 app: Designed to be a common user interface (UI) Common 

Control Station to allow a single operator to control and interact with 

several different UAS types and quantities.  

 
Figure 3. Dissimilar Platforms (sUAS) controlled by RCU-1000 

• RCU-1000 app is primarily a task-based control mechanism but also 

provides full manual control of an unmanned platform 

 
Figure 4. RCU-1000 CCS on Android End User Device 
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I. PRE-AIR FORCE SMALL BUSINESS INNOVATION RESEARCH (SBIR) 
PHASE II (CURRENT AS OF 14JUL2020) 

1. Baseline Functionality 

a. Multi-vehicle, multi-domain demonstration at the November JIFX event. 
The vehicles above were controlled simultaneously via a single RCU-1000 
app. 

(1) Up to 8 simultaneous platforms demonstrated 

(2) Fixed wing, VTOL, Ground Rover 

b. Several high-level tasks/autonomous behaviors (“additive autonomy”) 

(1) Fly over that 

(2) Loiter 

(3) Hover 

c. 7 Datalinks supported 

(1) MPU 3/4/5, 

(2) Link 16 

(3) 9XX MHz DDLs 

(4) WiFi 

(5) 4/5G LTE 

a. TTNT 

b. Iridium SATCOM 
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d. ATAK and CoT Integration w/ up to 18 makes/models 

e. API exists for 3rd party use (e.g., add new vehicles or payloads)  

J. AIR FORCE SBIR PHASE II 

1. (1st 4 months) NPS Collaboration with Autonodyne  

a. Autonomous behaviors requirements 

(1) Capstone Team coordinated with JSOC-X, AFSOC, and Autonodyne to 
down-select from 25 candidate autonomy behaviors to the final 8 (Inspect, 
Observe, Follow Me, Stack, Surveil, Track, Impact, Morphing Swarm) 

b. Autonomous behavior storyboards 

(1) Capstone Team collaborated with Autonodyne to ensure Operational 
requirements were met when developing Storyboards. 

c. NPS Capstone Team has secured three loaner SRR platforms to support 
the CCS integration. 

d. Autonodyne has prototyped initial secure comm techniques (e.g. “Go 
Dark”) and is actively flight testing the capability. 

2. (2nd 6 months) Future Capstone Team  

a. NPS Capstone Team and JSOC-X operator feedback on the first four 
autonomy behaviors in an operationally representative environment 
followed by iterative updates as required. 

b. Collaborate with NSW sponsored NPS Professor on Effectiveness of 
Human-Machine Teams in UAV operations Experiment to find the 
optimal operator to platform ratio. 

c. Completing functional prototypes of next four autonomy behaviors. 

d. Integrating with SRR and other customer selected UxS platforms and 
demonstrating that integration in lab and field environments. 

e. MESH network integration and continued development and study in the 
area of secure communications. 
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APPENDIX B. AUTONOMOUS SYSTEMS / USER INTERFACE / 
TRUST IN SYSTEMS 

As the Hyper Enabled Operator concept continues to evolve and humans become 

increasingly more reliant on autonomous systems to maintain battlefield supremacy, the 

human’s ability to control them while minimizing cognitive burden will be increasingly 

more important.52 Autonomous systems and Artificial Intelligence has the potential to 

improve the military’s effectiveness by providing timely and accurate intelligence to 

decision makers and operators on the ground. However, Neuroscientists widely agree that 

in order to prevent cognitive overload when controlling human-centered automated 

machines, the functionality and the interface must be prioritized.53 Individuals must be 

provided with the appropriate methods and time to train with the automation and artificial 

intelligence to ensure they trust the autonomous systems in order to decrease the cognitive 

effort required to monitor the unmanned systems.54  

When designing a human-centered automated machine, neuroscientists widely 

agree that the two main components which should be considered are the functionality and 

the interface.55 An effective automation interface design will directly improve the 

automated system’s situational awareness and also improve and calibrate the human’s trust 

in that automated system.56 The user interface and system functionality must provide a 

clear mapping for the operator so that the individual can create an interface which is 

compatible with their goals and mental models.57 To improve human interaction with 

                                                 
52 Adams, “Cognitive Task Analysis for Unmanned Aerial System Design,” 2426. 

53 Raja Parasuraman, Thomas B. Sheridan, and Christopher D. Wickens, “Situation Awareness, 
Mental Workload, and Trust in Automation: Viable, Empirically Supported Cognitive Engineering 
Constructs,” Journal of Cognitive Engineering and Decision Making 2, no. 2 (June 2008): 154, 
https://doi.org/10.1518/155534308X284417. 

54 Endsley, “From Here to Autonomy,” 8. 

55 Parasuraman, Sheridan, and Wickens, “Situation Awareness, Mental Workload, and Trust in 
Automation,” 154. 

56 Endsley, “From Here to Autonomy,” 10. 

57 Endsley, 11. 
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autonomous systems, design interventions include human–automation interface features 

and central automation interaction paradigms comprising levels of automation, adaptive 

automation, and granularity of control approaches. 

Computer Science professor from Vanderbilt University, Dr. Julie Adams, PhD, 

writes in Handbook of Unmanned Aerial Vehicles, in her chapter “Cognitive Task Analysis 

for Unmanned Aerial System Design,” that humans are factored into the unmanned systems 

platform and payload design after the systems have been built. She expounds that, “such 

system design approaches do not properly consider the human cognitive limitations and do 

not design the system to support the human’s tasks and decision-making.”58 With military 

Special Operations Forces and others operating in dynamic environments, the integration 

of the humans cognitive ability to control the systems to minimize overload and maximize 

effectiveness must be considered in the initial design phase. 

Prioritizing training with Artificial Intelligence and automated systems to build the 

operators’ trust in the salience of information the systems provide will decrease the 

cognitive effort required to monitor the unmanned systems.59 In 1983, cognitive 

psychologist Lisanne Bainbridge wrote a research paper titled, “Ironies of Automation,” in 

which she states that, “when workload is the highest, it is often of the least assistance.”60 

Sporadic implementation of future technology in training will prevent the individual from 

valuing the timely information being provided.  

In his 2017 journal article, From Here to Autonomy, Mica Endsley highlights that, 

while automation is designed to relieve complexity, a lack of trust in the system may have 

the opposite effect if the operator must maintain situational awareness and inject 

corrections to ensure that it is performing correctly.61 Endsley points out that “increasing 

automation reliability and robustness will act to decrease attention allocation to 

                                                 
58 Adams, “Cognitive Task Analysis for Unmanned Aerial System Design,” 2425. 

59 Endsley, “From Here to Autonomy,” 8. 

60 Endsley, 12.  

61 Endsley, 9. 



   
 

29 

automation performance, as moderated through operator trust.” Endsley highlights that 

when dealing with humans and machines, the complexity to the situational awareness, the 

monitoring of autonomous systems, and building trust in the systems is called the Human-

Autonomy System Oversight (HASO). Endsley suggests that in order to gain the trust of 

the systems, thorough training and drilling with the systems will reduce cognitive burden. 

As is outlined in the Department of Defense (DOD) Data Strategy, if the data is not 

trustworthy and operators lack confidence in the systems, then this may impede the 

decision maker’s judgment and prevent the optimal choice from being made.62 

The data management and presentation of unmanned systems information to the 

operator are the most vital aspects of an effective user interface and user experience. In the 

DOD’s 2020 Data Strategy, Deputy Secretary of Defense David Norquist highlights that 

data is a strategic asset that can significantly improve the military’s effectiveness by 

providing timely and accurate intelligence to decision makers and operators on the ground. 

Maintaining the strategic, operational, and tactical advantage will require coordinating the 

combined collection of a variety of data sources to provide accurate situational awareness 

to the decision maker in a usable manner.63 Under the DOD Data Strategy, the DOD 

identifies seven Goals to become a data-centric DOD. These seven principles apply not 

only to the leaders in Joint Operations Centers to make strategic decisions but also to the 

tactical leader or individual soldier as they reduce military footprint but increase available 

information. Alvin Toffler in his 1970 book Future Shock writes that, “Overstimulation 

can occur on at least three different levels: the sensory, the cognitive, and the decisional.”64 

As it relates to the user interface and information flow of data, making the data 

understandable, visible and most importantly linked are of critical significance to the 

success of the end user.  

                                                 
62 Department of Defense, Executive Summary: DOD Data Strategy - Unleashing Data to Advance 

the National Defense Strategy (Washington, DC: DOD, 2020), 8. 

63 Department of Defense, 1, 7. 

64 Toffler, Future Shock, 348. 
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As the UAS systems gain autonomy to conduct more robust tasking, the human’s 

ability to control the machines must become increasingly more reliant on robust autonomy 

and artificial intelligence to reduce the cognitive burden and the team size required to 

operate the machines.65 The Man and Unmanned Machine Teaming (MUM-T) interaction 

is directly proportional to the expectations humans place on systems. Due to the complexity 

of full automation, Endsley states that, “the development of autonomous systems that can 

support (man and unmanned teaming), should be based on a detailed foundation of research 

on human automation interaction.”66 As a result of the complexity of automated systems, 

the combination of what Endsley states is “cognitive complexity, display complexity, and 

task complexity of the system created by the automation interface,” the interaction between 

the human and machine teaming will be increasingly important as more systems become 

semi-autonomous.  

Situational awareness for disaggregated teams in a dynamic environment creates 

an inherently complex position. In their book, Designing for Situation Awareness, An 

Approach to User-Centered Design, Endsley, Bolte and Jones discuss the Goal Directed 

Task Analysis (GDTA) as a type of cognitive task analysis which emphasizes situational 

awareness in a dynamic environment.67 Taking Endsley’s work into an even more military 

appropriate domain, Humphrey and Adams expound upon the GDTA principle in a journal 

article titled, “Analysis of Complex Team-Based Systems,” in which they linked basic 

goals and decision questions that the individual operating the drones must complete in 

order to integrate properly with the UAS.68 Adams then applied her studies on GDTA to 

an existing project which uses UASs for wilderness search and rescue called WiSAR. The 

results of the integration between the GDTA and the WiSAR was that it highlighted to the 
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Search and Rescue (SAR) leadership what situational awareness information the UAS can 

collect to help the searches on the ground. It additionally identified cognitive tasks that 

burdened the drone operator, helped to find better searching methods, and improve overall 

communications between element leaders.69  

12/4/2020 3:47:00 PMIn Alvin Toffler’s 1970 book Future Shock he states, 

“communications systems designer Sol Cornberg, a radical prophet in the field of library 

technology, declared that reading would soon cease to be a primary form of information 

intake.”70 Toffler’s intent with this statement is to symbolize the rapid expansion of 

information available to each individual and the many methods which they can perceive 

and process that information. He breaks down the reception of information into uncoded 

and coded messages. Uncoded signals are how someone perceives what they hear, see, or 

feel through their sensory apparatus and in what way they form a mental image of that 

sensory signal referred to as a message. Humans also receive coded messages, or messages 

conveyed by means of a language, dance step, pictograph or other arrangement. While both 

coded and uncoded forms of communication are relevant to the military operator, “more of 

our imagery derives from man-made messages than from personal observations of raw, 

“uncoded” events.”  

With the improvement of technology and the artfully crafted and carefully spread 

messages from mass media by communications experts, humans receive and read massive 

quantities of meticulously crafted messages daily. As a result, Toffler states that the 

information perceived is “highly purposive, preprocessed to eliminate unnecessary 

repetition, consciously designed to maximize information content. It is, as communications 

theorists say, ‘information-rich.’”71 In 1970, Toffler reported that the average American is 

exposed to an average of 560 advertising messages per day – of which they only notice 76 

in order to “preserve their attention for other matters.” To ensure that their advertisement 

                                                 
69 Adams, “Cognitive Task Analysis for Unmanned Aerial System Design,” 2428. 

70 Alvin Toffler, Future Shock, A Bantam Book (New York Toronto London: Bantam Books, 1990), 
161–65. 

71 Toffler, 165, 167. 



   
 

32 

will be one of the 76 memorable ones, Toffler states that advertisers will use symbolic art 

techniques combined with “verbal and visual to accelerate image-flow… to communicate 

maximum imagery in minimum time.”72 In a similar way as advertisers capture the 

individual’s attention, options should be provided to the individual in the battlefield to 

capture their attention when required to highlight imminent threats, but also be able to 

provide access to less important information at the individuals inquiries rather than 

flooding them with information.  

A. COGNITIVE TASK ANALYSIS 

To identify the optimal human centric system, the focus can be narrowed down to 

three specific functions – cognitive task analysis, cognitive work analysis, and information 

flow analysis.73 From a cognitive capabilities perspective, Dr. Adams states that 

“Cognitive task analysis seeks to understand the cognition required by the human user to 

complete tasks and how to turn that understanding into tools that assist the human.”74 The 

methods which people receive and transmit information varies widely based on their 

backgrounds, genetics and physical human performance. As a result, Dr. Adam’s states 

that machine systems which will be controlled should provide adjustable control modalities 

to match the cognitive demands of the operator based on their specific learning 

requirements and adjust them to meet the increased stress caused in a dynamic 

environment.  

Cognitive task analysis is the focus on the individual’s cognitive requirements to 

conduct a task, how to train the human to control the system, and ultimately to design a 

system so that it best serves the human. When controlling a UAS, Dr. Adam’s shows that 

the individual is responsible for supervising the automated system, commanding it to 

conduct the task required, and also must interact with the UAS through a control station.75 
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The burden of each requirement is significant and is compounded when the requirement is 

to operate in a dynamic environment and to then react to changes by notifying other 

personnel in the group of imminent threats, calling in an air strike on the target, or 

maneuvering troops against the enemy. In these scenarios, it will become increasing 

important for the Ground Force Commander to maintain situational awareness while 

managing unmanned assets. 

Another critical component when designing the Common Control Station for 

controlling multiple UASs is the cognitive work analysis.76 Dr. Adams describes that the 

work analysis aspect measures the human’s workload on a specific device, separate from 

the individual operator’s capabilities. More directly, she supports that the work analysis 

attempts to find different ways that the tasks can be completed, such as optimizing the 

social and technical factors, to improve the overall operating function of the systems. 

Adams refines the definition of the work analysis by writing that its function is “to better 

integrate cognitive analysis and the design and development of revolutionary systems.”77 

In the end, the cognitive work analysis function is designed to identify the problem the 

system is attempting to monitor or fix, and to optimize how that information is present to 

the operator. This function leads in well to the last function, which is the information 

analysis. 

The cognitive information flow analysis intent is to highlight methods to improve 

the flow of information, identify when too much information is overloading the human 

user, and then to sort out where that information should go so that it is presented to the 

right people at the right time.78 In a writing Adams did with Humphrey in 2010 titled, 

“Cognitive information flow analysis,” in Cognition, Technology, and Work, they merge 

together the cognitive tasks with cognitive work analysis to understand the optimal flow 
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and analysis of information.79 The flow analysis method helps the designers to understand 

the method which the information is being created, processed, and then disseminated into 

the system, and who is using and benefiting from that information.80 The information 

production is all of the data that is input into the system whether by sensors, humans or 

artificial intelligence. The consumption of information is when the systems or the human 

uses it to complete a function. And the transformation is when the consumption of the 

information by a process results in new information.81  

In the end, the combination of cognitive task analysis, cognitive work analysis, and 

information flow analysis can provide a very valuable method to design the UAS 

controlling and information dissemination systems. While there is no definitive method to 

conduct this in a dynamic environment where contingency management is the most critical 

aspect, the combination of the man and machine can be optimized to relieve workload 

whenever possible to allow the human operator the mental bandwidth to make decisions 

when the computer becomes overwhelmed.  

In their writing, Situation Awareness, Mental Workload, and Trust in Automation: 

Viable, Empirically Supported Cognitive Engineering Constructs, authors Parasuraman, 

Sheridan and Wickens conclude that, “Situational awareness, mental workload, and trust 

are viable constructs that are valuable in understanding and predicting human-system 

performance in complex systems.”82 The basis behind their research states that Human 

Factors/ Ergonomics (HF/E) must have a human performance baseline from which to 

design complex human-machine systems. Automated systems can alleviate workload and 

enhance operator situational awareness. They can also provide opportunities for operators 

to build too much trust in the system, which, when it ultimately breaks down, can increase 
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the cognitive burden on the individual. Ultimately, trust in the systems is paramount to 

creating a successful socio-technical system. 

B. RECOMMENDATIONS / CONCLUSION 

When designing autonomous systems using artificial intelligence, the functionality 

and the user interface must be a priority for technology designers to alleviate cognitive load 

on the military operator.83 Significant amounts of data and information can be available to 

the operators which, under optimal conditions and with the proper training, can provide 

them with significantly more battlefield situational awareness than is available today. The 

Special Operations Forces Community must prioritize early, and consistent training with 

Artificial Intelligence and automated systems to build the operators’ trust in the salience of 

information provided so the operators can decrease the cognitive effort required to monitor 

the unmanned systems.84 Trust in the autonomy systems and Artificial Intelligence is 

critical to creating a successful socio-technical system in which the human operator trusts 

the autonomous systems which surround them. 
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APPENDIX C. COGNITIVE LOAD 

The overstimulated soldier in combat finds themselves flooded with uncertainty 

and ambiguity, or as 19th century Prussian military philosopher Carl von Clausewitz termed 

it, the fog of war.85 The British coined this overstimulation Long Range Penetration Strain, 

described as when a soldier became, “incapable of doing the simplest thing for himself and 

seemed to have the mind of a child.”86 Regardless of the terminology, psychologists 

unanimously agree on two cognitive load principles: first, that humans have a limited 

cognitive capacity; and second, that cognitively overloading one’s system leads to a 

significant decrease in performance.87 These experiences significantly degrade the 

human’s ability to receive information and causes their minds to be more closely related to 

a schizophrenic mind than a normally functioning individual.88 Identifying cognitive 

overload in stressful situations, and then adjusting individual training to mitigate its 

impacts on the operator, is the beginning to creating organizational changes which will 

optimize the individual’s impact on the battlefield. It will become increasingly important 

for Special Forces organizations to train and drill with existing and innovative technology 

which can identify and remedy individual’s cognitive overload, and to adapt the technology 

so those operators can comprehend greater information in order to prevent decision 

paralysis. New advances in wearable technology, and algorithms to identify physiological 

changes to identify cognitive load, are being developed that will improve the ability to 

identify, and then theoretically reduce, cognitive load.89  

Cognitively overloading the mind with excess data has been shown to create the 

fog of war in soldiers, culture shock in travelers, or disaster shock in victims of traumatic 
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experiences. The psychological effects of overstimulation in combat has nearly identical 

cognitive and physiological symptoms as culture shock and disaster shock. Alvin Toffler, 

prominent futurist and best-selling author on technologic impacts on humans, states that 

the person who experiences a disaster will often show “confusion, anxiety, irritability and 

withdrawal into apathy.”90 He continues in his book Future Shock that the traveler who 

immerses themselves into a foreign culture, albeit devoid of war or chaos and in a benign 

and peaceful environment, can become overwhelmed by the enormity of the novel 

experiences which prevents them from grasping and cognitively processing the new 

objects, sights, sounds and events. A common symptom of culture shock on the traveler is, 

as psychologist Sven Lundstedt describes it, a “feeling of loss, and a sense of isolation and 

loneliness,” such that he or she becomes “anxious, confused and often appears apathetic.”91 

According to Toffler, the linkage between combat stress, disaster and culture shock all 

share three basic similarities: confusion and disorientation, fatigue and extreme irritability, 

and a point of no return upon which apathy and emotional withdrawal set in.  

Information studies psychologist Dr. James Miller, former director of the Mental 

Health Research Institute at the University of Michigan, also found that very similar 

performance characteristics were identified between those of cognitively overloaded 

individuals and people with mental illness – specifically schizophrenics.92 According to 

Dr. Miller, one of the main features of a schizophrenic is that their minds produce words 

and phrases in an “incorrect associative response,” or they categorize words or situations 

in “arbitrary or highly personalized categories.” For example, when presented with a series 

of similar physical objects such as Legos or marbles, the healthy person will categorize 

them in geometric shapes. According to Dr. Miller, a schizophrenic, on the other hand, may 

categorize them subjectively or as a group of feelings. To describe his findings more 

specifically, in his book Disorders of Communication, Miller tested two groups of mentally 

healthy individuals. One group was provided with words or concepts and was allowed to 
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work at their own pace, while the other group was provided the same information but under 

a time constraint. The results showed that those under the conditions of greater time 

constraints and higher information input generated responses with “errors more like those 

of schizophrenics than of self-paced normals.” Or to put it more directly, normal humans 

under excessive cognitive load produce similar results as schizophrenics under normal 

conditions.  

A significant number of scientific studies show that humans have a very narrow 

limit of working memory, and the Cognitive Load Theory supports that the design of 

education must respect those limitations.93 Psychologist George A. Miller of Rockefeller 

University states that, “there are severe limitations on the amount of information that we 

are able to receive, process, and remember.”94 While the military operator must consider 

a wide spectrum of problems in their pursuit of preventing cognitive overload, the 

requirement is also a heuristic one which will employ a practical solution to a problem that 

may not be optimal, but is sufficient for achieving the tactical or operational solution. 

Improving cognitive load capability to prevent decision paralysis can be thought of 

similarly to training for a physical sporting event. There is a cost-risk-benefit analysis for 

cognitive loading when considering what information is presented to the individual and 

how that information is disseminated.  

Identical to the human body succumbing to overstimulation when being immersed 

into a disaster scenario, the cognitive decision making processes behave unpredictably 

when overloaded.95 While the limits to cognitive learning are yet unknown, the energy 

demand placed on learning is significant, and it opens the environment for a potentially 

disastrous social situation – or as Alvin Toffler calls it, “Future shock.”96 Toffler finds that 

at the neurological level, there are limits on the speed and quantity of images that any 
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individual is capable of processing. In a similar vein, placing significant amounts of 

technology on an individual in a dynamic and novel situation greatly increases the risk for 

information overload, and relieving that cognitive burden through trustworthy artificial 

intelligence, appropriate training, and tailored design will create better decision makers.  

When an individual is immersed into a new, rapidly changing and dynamic 

situation, Toffler highlights that, “predictive accuracy plummets… (and they) can no 

longer make the reasonably correct assessments on which rational behavior is 

dependent.”97 He goes on to suggest that for an individual to react “normally” and make 

effective, rational decisions, they must be able to process more information than ever 

before, at an extremely high rate of speed. In combat, the Special Operations Forces 

operators will experience dynamic and changing environments. To prevent information 

overload from mentally paralyzing the individual, they must be able to think faster and 

process higher volumes of information. Identifying the existing technology to help provide 

the training, drills, and mental stimulation to help individuals process greater information 

loads will create better leaders by preventing decision paralysis. 

A. TRAINING TO REDUCE COGNITIVE LOAD 

A variety of training, drilling, and readiness measures can alleviate cognitive load 

and prepare the individual for complex situations. Maintaining the optimum physical 

performance directly relates to the mind’s ability to cognitively process information, 

drilling correctly to build trust in the equipment, and data management. Although some 

human reactions to novel and dynamic experiences result in involuntary responses by the 

individual, most human reactions are preceded by conscious thought, a reaction that is a 

result of the individual’s ability to absorb information, process, react and retain 

information.98 According to Toffler, every individual’s ability to handle sensory input is a 

result of their physiological makeup. He goes on to explain that the individual’s physical 

organs and how quickly their body sends impulses throughout its neural system creates 
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biological limitations to the speed and amount of data that can be transmitted. This 

highlights the importance of selecting future Special Operations Forces who are cognitively 

capable, and can train to and rapidly process scenarios, which should inherently decrease 

the overstimulation in combat and improve their performance under stress.  

In his short story “Superiority,” Arthur C. Clarke laments on the cause of the failure 

of a militaries far superior forces to defeat the enemy – defeated “by the inferior science of 

our enemies. I repeat – by the inferior science of our enemies.”99 Despite the initial 

advantage of technologically advanced weaponry, and the military calls to improve their 

existing weapon, he points out that the “existing weapons have practically reached 

finality… that there has been no basic change in armaments for over a century.”100 With 

many similarities, while the tactics, techniques, and procedures, and the technology which 

the United States has used to conduct warfare since World War II has advanced in many 

ways, the method which the United States trains has adapted very incrementally.  

Cognitively burdening individuals has proven to lead to reduced information intake 

and increased stress with negative outcomes. Relieving the mind of problem-solving during 

training scenarios will speed up the learning processes. Limiting problem solving 

techniques to selection and assessment scenarios or select testing situations where the goal 

is to identify individual strengths and weaknesses will enhance learning with degrading the 

long-term objective – better operators. Neuroscience experts from Qneuro, a leading neuro-

optimization for an accelerated learning company, projects that, “personalized learning 

informed by both performance and neuro-physiological data” can now be used to “not only 

optimize the way the military designs training but also raise the cognitive advantage across 

the force.”101 To measure cognitive load, nascent wearable technology is becoming 

available which will allow operators in a dynamic environment to be measured in real time 

to assess the cognitive burdens they are operating under. The other key aspect which 
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remains in its infancy, however, is the real time data processing to analyze the information 

as it is being collected to build algorithms to quickly assess the readings.102  

To help identify when an individual is being overloaded, scientists can measure 

cognitive load (CL) through the Electroencephalography (EEG) to provide real-time 

analysis.103 While there are more complex methods to measure CL and a few which are 

less burdensome, the EEG and new wearable technology is emerging and becoming more 

accessible for scientists and engineers to study and analyze the individuals collected data, 

according to Dr. Walcutt. With real time neuromonitoring, professionals can provide 

personalized content for enhanced learning, or provide immediate feedback on the user’s 

mental capacity. While at the end of the year 2020 the wearable devices and the human 

studies are still prototypes which require engineers to conduct data analysis on each 

experiment, algorithm generation is ongoing and within a couple of years, the algorithm 

creation should rapidly decrease the cost, time and effort of identifying physiological signs 

of cognitive overload.104 

Technology is currently available in a static environment which can measure 

physiological symptoms such as eye tracking software, heart rate, breathing, pupil size, 

and a variety of other factors to identify performance parameters while conducting realistic 

operations in Augmented Reality headsets.105 In a laboratory setting, this data is then 

analyzed by data engineers and electronic gamers to identify immediate action, goal 

directed behaviors to identify time-lock actions to know when people are performing better 

or worse. For a more dynamic environment, Northwestern University has partnered with a 

company called Neurolux to develop a wearable Bio-Mechanical Acoustic Device 

(BMAD) the size of a human thumb which can monitor up to 30 different dynamic 

responses to identify immediate human responses to situations. While the technology to 
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collect the raw data is currently available, it can only be done in a static environment and 

requires data engineers to process and analyze the information. 

According to Andrew Huberman, neuroscientist and professor from Stanford 

University, the key to optimal performance is optimizing nervous system function – or 

neural fitness.106 He describes Neural fitness as the balance between physical, emotional 

and cognitive fitness. Just as physical conditioning revolves around endurance, strength, 

mobility and flexibility, emotional fitness revolves around positive feelings and reflections. 

Likewise, cognitive fitness is described as maintaining creativity, memory, focus and task 

switching. Further research into the physical and mental health has been done by Naval 

Postgraduate School (NPS) student, Major Scott Cook, and can be found in the NPS thesis 

library for further reading. 

Dr. Jimmie Leppink, psychologist and senior lecturer in medical education, has 

identified through corroborating research three guidelines for the design of educational 

instruction and assessment. To optimize learning in the cognitive load theory requires, as 

he states, the “development and automation of cognitive schemas,” under three types of 

cognitive load: intrinsic cognitive load (ICL), extraneous cognitive load (ECL), and 

germane cognitive load (GCL).107 According to Leppink, intrinsic cognitive load is when 

an individual is confronted with information that is about to be learned and the mind has 

not yet created schemas for this information – or it is not yet mentally automated in their 

way of thinking. Extraneous cognitive load is a result of cognitive processes that exist but 

do not contribute to cognitive learning. And finally, germane cognitive load is the cognitive 

load that is directly related to and beneficial to learning, to include asking appropriate 

questions about the topic, being able to accurately explain it to others and following up the 

learning with more education. 

Two simple models exist to explain the improvement of learning – one which seeks 

to minimize ECL, or cognitive learning that does not contribute to learning, and one with 
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a direct relationship between ICL and GCL.108 Leppink explains that first method to 

reduce the ECL and point new learners in the right direction is to provide them with an 

example of successfully completed problem first to help them identify a successful method 

to complete the task. The learner should attempt to eliminate distractions from learning 

such as emotions from previous mistakes, confusing instructions from peers or instructors, 

or extreme complexities beyond the student’s capacity. Leppink explains that the second 

method to improving ICL and reducing ECL is to have specific and realistic goals for what 

the objective is that they students are trying to learn.109 For example, a military operator 

who has never faced realistic challenges may focus on the wrong details of a contingency 

in an operation which would increase their ECL (cognitive distractions) and decrease their 

ICL (cognitive learning abilities). The conclusion for the ICL/GCL (stimulate learning/ 

create long-term schema) relationship while minimizing the ECL (mental distractions) is 

to set realistic goals for the learning objectives which do not over complicate the learners’ 

capabilities. Leppink explains that the instruction should be presented simply and clearly, 

attempts should be made to reduce external student complications and provide realistic 

examples which clearly show what the expectations are for the exercise.  

In his 1988 journal article titled “Cognitive Load during Problem Solving: Effects 

on Learning,” John Sweller describes how domain specific knowledge, known as schemas, 

are the primary aspect which delineates novices from experts in problem-solving.110 

Sweller describes a schema as the mind’s ability to recognize that a problem exists in a 

particular category, and then to apply the particular moves to solve that problem from 

existing experiences. He postulates that problem solving in the means-ends method is an 

ineffective learning device because the cognitive process required to problem solve does 

not overlap the cognitive processes of learning. Additionally, the problem solving requires 
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such a large cognitive workload that the mind is then unavailable to create schemas.111 

One example Sweller uses is a chess master versus a novice chess player. A master chess 

player, he explains, will have multiple schemas planned from the start, whereas a novice 

player will begin with the end goal and apply a series of means to achieve that goal – not 

choosing a known or very likely solution to their problem. Applying this theory to the 

military, ground force commanders and their artificial intelligence systems can work 

together to help achieve the expert level despite having less experience than an expert.  

According to Dr. Sweller, conventional problem solving is not an effective learning 

method.112 During a complex problem-solving scenario, Sweller teaches that the cognitive 

load imposed during a means-ends analysis may significantly degrade the learning during 

problem solving, and “leads to problem-solution, not to schema acquisition.” While it 

would be assumed that to build more schemas, or patterns to solve problems, would be to 

practice on a large number of problems to build problem-solving skills, Sweller concludes 

through many years of studies that this method is ineffective. As a result, regardless of the 

outcome, a very little amount of long-term memory creation has actually taken place.  

Excessive reliance on these actions, without preformed schema, may lead to 

excessive cognitive load.113 Furthermore, while large cognitive load during problem 

solving hinders learning, scientists assume three things: 1) that each human has a fixed 

cognitive capacity; 2) that both problem solving and learning will take up that cognitive 

capacity; and 3) that problem solving and learning are different cognitive functions.114 The 

resulting outcome, according to Sweller, is that any increased mental bandwidth absorbed 

by the mind during problem solving will have a direct decrease on the minds ability to 

learn. The importance here for the military can be directly applied to not only the common, 

“crawl, walk, run,” method of instruction, but also the importance of Artificial Intelligence 
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to apply historic lessons learned into future military technology to absorb the added strain 

of problem solving on future operators.  

In Information, Power, and Grand Strategy: In Athena’s Camp, Dr. John Arquilla 

and David Ronfeldt highlight the increasing importance in the relationship between 

information and power, proposing that the trends between them may provide implications 

on the “theory and practice of warfare and for grand strategy in times ahead.”115 In 

Athena’s Camp breaks down information into three different views: 1) Information as the 

inherent message; 2) information as the medium of production, storage, transmission, and 

reception; and 3) information as a physical property.116 While much is written on the 

theory of power, Athena’s Camp breaks power into three areas: 1) material; 2) 

organizational (or systemic), and 3) immaterial in nature. Arquilla and Ronfeldt apply these 

powers across the political, military and economic fields.117 The merging of the two 

theories of information and power are inversely related. The traditional view will propose 

that information is historically important and valuable and will continue to become more 

important. Arquilla and Ronfeldt, however, argue “a new Athena-like view” that states 

information is a much larger, more complex problem than originally postulated and should 

be viewed “as a basic, underlying and overarching dynamic of all theory and practice about 

warfare in the information-age.”118 

In the view of Athena, the Greek goddess of warrior wisdom, the future merging of 

information and power happens where information becomes physical and power becomes 

immaterial.119 In a step into the future, and a concept which is in line with the historic war 

theorist Carl von Clausewitz’s theories, the Athenan future warfare concept minimizes 

internal disorganization and maximizes disruption against the enemy. The optimal 
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information and power merging will be a system which can provide data and systems 

information in a model that maintains robust power and resistance from disruption. 

Athena’s Camp says that maximum information matter must be processed and provided to 

the individual, organization, or nation which it is serving in a manner that it can be used to 

achieve victory. The data processing and transmission of that information to the individual 

in the information-age will be increasingly difficult in communications denied 

environment, but also increasingly important as the information processing requirements 

grow and the mind’s ability to process it remains mostly static. 

B. CONCLUSION/ RECOMMENDATIONS 

1. Recommendation A 

To mitigate the detrimental effects of cognitive overload on operators, the military 

must first invest in technology to identify and quantify real-time cognitive overload in a 

dynamic, Full Mission Profile (FMP) scenario. Using the Virtual and Augment Reality 

headsets, human systems integration and tests should be  conducted using the Ground 

Force Commander simulation trainers to measure an operator’s physiological symptoms to 

identify cognitive load. The available  systems use off-the-shelf eye tracking 

software, heart rate monitoring, breathing rates, pupil size and a variety of other factors, 

and once analyzed by data engineers, instructors can identify areas of learning 

improvement.120 As the Bio-Mechanical Acoustic Device wearable technology becomes 

more mainstream, and the data algorithms have been robustly developed, military operators 

and leaders can use these devices to monitor the cognitive load on their forces. The neuro-

physiologic measuring devices can be used during training to identify specific weaknesses 

and build individualized training plans. They can also during combat operations to 

highlight combat stress and to improve the military team’s effectiveness.  

2. Recommendation B 

Refocus the Preservation of the Force and Families (POTFF) to emphasize the importance 

of wearable technology to achieve individual Neural Fitness – or  the balance of 

                                                 
120 Huberman and Golden, “Biomechanical Acoustic Devices and Measuring Biologic Signals.” 
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cognitive, emotional, and physical fitness.121 As the Preservation of the Force and Families 

initiative in the military continues, continuous physical and  mental health monitoring 

using data collected from emerging wearable devices should be invested in and become a 

daily part of the individual health and neural fitness. These impacts may reach beyond 

military training and have an impact on post-traumatic stress disorders and suicide 

prevention, by identifying individual  cognitive load.  

3. Recommendation C 

Operators should take cognitive assessments on their ability to perceive and receive 

information, then have professionals assist them with setting up the information they 

receive toward their strengths and weaknesses. For example, if someone is an auditory 

learner, more important information may be provided audibly. If they perceive information 

more efficiently visually, then more can be  placed in an Augmented Reality heads up 

display.  

Identifying cognitive overload in stressful situations, and then adjusting individual 

training to mitigate its impacts on the operator, is the beginning to creating organizational 

changes which will optimize the individual’s impact on the battlefield. It will become 

increasingly important for Special Forces organizations to train and drill with existing and 

innovative technology which can identify and remedy individual’s cognitive overload, and 

to adapt the technology so those operators can comprehend greater information in order to 

prevent decision paralysis. 

                                                 
121 Huberman and Golden, “Biomechanical Acoustic Devices and Measuring Biologic Signals..” 
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APPENDIX D. USER EXPERIENCE AND USER 
INTERFACE DESIGN 

How will wars be fought in the next 10, 20, or 50 years? Rapidly improving 

technology, has the potential to leave the human behind and overwhelmed without 

thoughtful development of user experience/user interface (UX/UI) to ensure true “human-

machine teaming.” This appendix will not only show the importance of user design but 

establish a common framework and terminology, and then illustrate how industry design 

practices in the technology field can be incorporated into AISUM. Interface design is the 

linchpin between the technology and the end user, it is the bridge between AI and SU, in 

AISUM. For the program to be successful not only does the technology have to work, but 

the end user needs to adopt, incorporate, and embrace the capability. Unfortunately, the 

United States military has countless examples of failure to focus on the end users at the 

beginning and during the entire acquisition process. At its core this capstone’s goal is to 

ensure innovation adoption at the tactical level, by not just focusing on the technology, but 

instead, the user. When we look closer at User Experience (UX) and User Interface (UI) 

specifically related to Artificial Intelligence for Small Unit Maneuver (AISUM) and the 

common control station (CCS) that Autonodyne is creating for SOCOM, it is clear there is 

a critical need for purposeful UX/UI design influenced by operational subject matter 

experts (SME) to ensure true human-machine teaming. As technology improves and drones 

become more prevalent and necessary on the battlefield, human operators must still be able 

to maintain situational awareness in the context of human-machine teaming without being 

overtasked or cognitively overloaded.  

In order to examine specific details of UI and UX systems, we must first establish 

a taxonomy of fundamental principles and definitions since terms vary among differing 

industries, academia, and within the Department of Defense (DOD) itself. We use SAE 

International’s definition of Human Systems Integration (HSI) as “the management and 

technical discipline of planning, enabling, coordinating, and optimizing all human-related 

considerations during system design, development, test, production, use and disposal of 
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systems, subsystems, equipment, and facilities.”122 The key part of the definition is the 

optimization of human-related considerations throughout the life cycle of a product. Failing 

to consider the human element leads to constant redesigns resulting in delays and additional 

costs.  

HSI originated with the DOD as part of the total systems approach to acquisitions 

directed by DOD 5000.02 with the goal of “optimizing total system performance among 

hardware, software, and human assets, operational effectiveness, suitability, survivability, 

safety, and affordability.”123 This emphasis on optimizing the total system and specifically 

including human resources is an important principle that considers the context in which 

hardware and software are intended to be used. Accepting that system performance requires 

maximizing human capabilities, it becomes apparent that the principles of HSI need to be 

incorporated throughout the DOD’s acquisition process (illustrated below). 

 

                                                 
122 G-45 Human Systems Integration, Standard Practice for Human Systems Integration (United 

States: SAE International, 2019), 45, https://www.sae.org/content/sae6906. 

123 Department of Defense, Operation of the Defense Acquisition System, DOD Instruction 5000.02 
(Washington, DC: Department of Defense, 2017), 52. 
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Figure 5. Model 1: Hardware Intensive Program124 

The DOD’s acquisition process is phase-based with each phase culminating in a 

milestone at which point it is determined if the process should proceed to the next phase 

(indicated by the A, B, and C above). Milestone approval is contingent on the fulfillment 

of certain criteria that is defined in relation to the project’s goals. HSI, specifically with 

operational SME’s involvement, cannot begin during Operational Test & Evaluation 

(OT&E) at which point the product has already been designed, engineered, and 

manufactured and when addressing problems requires redesign that delays final operational 

capability and delivery of an often-critical product to the warfighter. This is why DOD 

Instruction 5000.02 specifically requires Program Managers to take steps through “contract 

deliverables, government and contractor integrated product teams, and other mechanisms 

to ensure ergonomics, human factors engineering, and cognitive engineering is employed 

throughout the systems engineering process and over the life of the program in order to 

ensure effective human-machine interfaces and fulfillment of all HSI requirements.”125 

Instruction 5000.02 goes on to specify, “system designs will minimize or eliminate system 

characteristics that require excessive cognitive, physical, or sensory skills; entail extensive 

                                                 
124Source: Department of Defense, 8. 

125 Department of Defense, 79. 
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training or workload-intensive tasks; result in mission-critical errors; or produce safety or 

health hazards.”126 Unfortunately, this is not always the case, and every member of this 

capstone team has experienced, during the course of their career, HSI not being properly 

considered during the development of a product or device intended for the warfighter to 

utilize in combat.  

A simple example that illustrates this occurred during OT&E of the AC-130J. A 

particular piece of equipment was installed across all C-130Js that Air Force Special 

Operations Command (AFSOC) had in its inventory. To make the installation simple, it 

was decided at the program level to install the new equipment in the same place on each 

variant of C-130J. However, on the AC-130J there was a piece of communications 

equipment in the way of the new install, which engineers moved to accommodate the new 

device. It was not until a flyer saw the modification already completed that anyone realized 

a big problem. The operator did not need to directly interact with the new piece of 

equipment that had been installed in a location that is ergonomically and proximally 

optimal for operators to reach. The communications equipment that was previously in that 

location, however, is used by operators on every flight and must be physically touched to 

function. To accommodate the new install, the communications device was moved to the 

top of the aircraft making it unreachable during flight. The failure to understand what was 

being moved and how it was utilized by operators led to serious issues that had to be 

resolved. There are a lot of factors that play into where to install something in an aircraft, 

such as weight, access to power, heat, utility, and size; however, in this instance there was 

a failure in HSI. This happened because the human element was not taken into 

consideration, resulting in unnecessary redesigns, delays, and additional cost. The effects 

of these deficiencies in execution have been costly and time-consuming, ballooning 

program budgets and delaying timelines. A 2005 U.S. Government Accountability Office 

(GAO) report concluded that “major weapon systems programs experience early cost 

increases by an average of 42% over original estimates and schedule slips by an average 

of almost 20%; of the identified overrun causes.” GAO analysts determined that “most 

                                                 
126 Department of Defense, 79. 
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were the result of problems that could have been discovered early in the design process.”127 

By properly applying HSI earlier in the process these issues can be identified prior to design 

and manufacturing, thus saving time and money.  

As previously mentioned, terminology can get confusing since, according to the 

DOD, HSI is required to be implemented with the goal “to optimize total system 

performance and total ownership costs, while ensuring that the system is designed, 

operated, and maintained to effectively provide the user with the ability to complete their 

mission.”128 The instruction, however, does not spell out a specific definition for HSI. The 

HSI Requirements Pocket Guide refers to Air Force Instruction 63–1201—“Life Cycle 

Systems Engineering,” which defines “Human Systems Integration as a disciplined, 

unified, and interactive systems engineering approach to integrate human considerations 

into system development, design, and life cycle management to improve total system 

performance and reduce costs of ownership.”129  

HSI can be broken down into nine domains illustrated below in Figure 6. 

 

                                                 
127 GAO, Assessments of Selected Major Weapon Programs (Washington, D.C.: U.S. Government 

Accountability Office, 2005), www.gao.gov/cgi-bin/getrpt?GAO-05-301. 

128 Department of Defense, Operation of the Defense Acquisition System, 79. 

129 Bridget Simpkiss, Human Systems Integration Requirements Pocket Guide, AFHSIO-001 (Air 
Force Human Systems Integration Office, 2009), 4, 
https://ww3.safaq.hq.af.mil/LinkClick.aspx?fileticket=a-SJ8pDnkSE%3d&portalid=63. 
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Figure 6. HSI Domains130 

This project focuses on the domain of Human Factors (HF) as the central concern 

of the team’s work with Autonodyne on their CCS for multiple Small Unmanned Aerial 

Vehicles (sUAV). According to the INCOSE Handbook, the Human Factors domain 

addresses how to incorporate human characteristics and limitations into systems design for 

optimal usability. Hardman spells out how the HF domain is commonly divided into four 

sections: 

• Cognitive— e.g., response times, level of autonomy, cognitive workload 

limitations 

• Physical—e.g., ergonomic control design, anthropomorphic 

accommodation, workload limitations 

                                                 
130Source: Nicholas S. Hardman, “An Empirical Methodology for Engineering Human Systems 

Integration” (PhD diss., Air Force Institute of Technology, 2009), 176, https://scholar.afit.edu/etd/2102/. 
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• Sensory— e.g., perceptual capabilities, such as sight, hearing or touch 

• Team dynamic—e.g., communication and delegation, task sharing, crew 

resource management131 

Overall, HF is centered around the creation of effective human/machine 

interactions. The four sections classify how the human user relates to, and is able to 

effectively utilize, the machine. Considering technological developments in artificial 

intelligence (AI) and machine learning that are core to sUAV, as well as improved 

automation and ever-increasing payload capabilities, it is critical to recognize the immense 

significance of the interaction of operators and sUAV. According to Hardman in his 

doctoral dissertation, “formal study of this has matured and expanded in perspective over 

the last three decades, and is now generally referred to as human-computer interaction 

(HCI).”132 Hardman goes on to offer a functional definition of HCI as “a field of study 

that seeks to improve the relations between users and computers by making computers 

more usable, intuitive, and accommodating of human capabilities and limitations.”133 

Properly accounting for the limitations and capabilities of a single operator, specifically at 

the tactical level where that individual is in a dynamic, foreign, and dangerous environment 

will reduce cognitive overload and, perhaps more importantly, improve adaptation and 

acceptance of the technology. Hardman asserts that the central emphasis of HCI is the 

“design of effective user interfaces (UIs); that is, the multi-modal exchanges between a 

human being and hardware; these interfaces facilitate interaction between human cognition 

and software logic.”134 Figure 7 is a pictorial depiction of human factors, HCI, and UI 

design and how they relate and build upon each other. 

 

                                                 
131 Hardman, 177. 

132 Hardman, 206. 

133 Hardman, 206. 

134 Hardman, 207. 
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Figure 7. Human Factors Domain Components135 

To understand the importance of HCI, consider for argument’s sake that an operator 

can easily manage four sUAV in a static environment or even out on a mission that is 

relatively benign. What happens, however, when things become more dynamic from either 

a troops-in-contact situation, the deployment of an improvised explosive device (IED), or 

any number of potential dangers troops face during combat? If the operator cannot maintain 

situational awareness regarding the unfolding situation, simultaneously manage the sUAV, 

and becomes cognitively overloaded, a critical point is reached when training kicks in and 

tasks are prioritized in order of danger and/or criticalness. In aviation, the phrase used is 

“aviate – navigate – communicate.” This means when things start to go wrong an operator 

must focus on keeping the aircraft in the air, avoid flying into a mountain, and start 

communicating to support channels outside the aircraft. Thus, the operator would have to 

focus their attention on the task at hand while ignoring the management and control of the 

sUAV, rendering the devices useless. If an operator can’t control, manage, task, and receive 

critical information from the sUAV in a dynamic environment, then once the fog and 

                                                 
135Source: Hardman, 207. 
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friction of war appear they are no longer in the fight. Therefore, UX and UI design that 

reduces cognitive load and lets the user maintain situational awareness is absolutely critical 

in the development of a CCS for sUAV.  

Having established principles and operational understanding of HSI, the HF 

domain, and HCI, we must now consider the specifics of User Experience (UX) and User 

Interface (UI). Maier argues the importance of both by stating, “The greatest leverage in 

system architecting is at the interfaces, and the greatest dangers are also at the 

interfaces.”136 The success of this critical node is often linked to the overall success or 

failure of the product and/or company, specifically in the private sector. There are lots of 

examples of this in the internet/technology sector such as BlackBerry failing to adapt to 

the competition by not developing touchscreen capability, MySpace overestimating user 

desire for full customization, and even Microsoft and the dreaded Windows 8 debacle of 

removing the “Start” button. Nicolas Hardman points out that while the impact of such 

fiascos in the commercial sector are on market share or profits, in the military they impact 

tactical advantage and could result in the loss of life, and the “Defense Acquisition 

Guidebook affirms this, identifying interface management, including the user interface, as 

a critical process that systems engineers must focus on.”137 Previous cost studies 

conducted by the DOD have concluded that the majority of total life-cycle costs are related 

to manpower, personnel and training.138 In The Importance of Designing Usable Systems, 

Susan Dray suggests a direct trade-off between manpower, personnel, and training costs 

and investment in the user interface; She cites a company project in which an “improved 

user interface on a large-scale internal application resulted in a 32% overall rate of return 

                                                 
136 Mark W Maier, “Architecting Principles for Systems‐of‐systems,” Systems Engineering 1–460 

(1998): 32, https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D. 

137 Hardman, “An Empirical Methodology for Engineering Human Systems Integration,” 161. 

138 Cecilia Haskins, International Council on Systems Engineering, and Systems Engineering 
Handbook Working Group, Systems Engineering Handbook: A Guide for System Life Cycle Processes and 
Activities (San Diego, Calif.: International Council of Systems Engineering, 2011), 45. 
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stemming from a 35% reduction in training and a 30% reduction in supervisory time.”139 

This result dramatically illustrates the profound impact of user interfaces.  

The terms UX and UI are often used interchangeably, which can lead to some 

confusion, so it is important to define each concept independently and describe the manner 

in which they interact. Don Norman, a cognitive scientist, is credited with coining the term 

“user experience” in the late 1990s, which he describes as “encompassing all aspects of the 

end-user’s interaction with the company, its services, and its products.”140 UX, on the 

other hand, is a combination of the complete user experience while UI refers specifically 

to the actual product’s interface – in other words, what the user actually sees when they 

interact with the product. User Interface, put simply, is the point of human-computer 

interaction and communication on a device, webpage, app, or, in our specific application, 

Autonodyne’s graphical user interface (GUI) for their common control station. A simple, 

if crude, analogy would be that UI could be considered a person’s Tinder dating profile 

while the UX would be how the date they have with someone they connect with through 

the app goes. UI is often centered around functionality, while UX is much more of a 

psychological idea. For instance, the functionality might be just fine for a product, but if 

the UX is awful then it will be difficult to get the core users to adopt the product and 

continually utilize it.  

In the journal article Human–Systems Integration Verification Principles for 

Commercial Space Transportation, Guy André Boy states that, “User experience is linked 

to human factor issues and cognitive functions involved in the use of a system for executing 

a prescribed task in specific situations and environments.”141 Boy went on to explain that 

“human factors mainly include training (expertise), trust, risk of confusion, lack of 

knowledge (ease of forgetting what to do), workload, adhesion, and culture, while 

                                                 
139 Susan Dray, “The Importance of Designing Usable Systems,” Interactions 2, no. 1 (January 2, 

1995): 18, https://doi.org/10.1145/208143.208152. 

140 Don Norman, Jakob Nielsen, “The Definition of User Experience (UX),” Nielsen Norman Group, 
accessed September 8, 2020, https://www.nngroup.com/articles/definition-user-experience/. 

141 Guy André Boy et al., “Human–Systems Integration Verification Principles for Commercial Space 
Transportation,” New Space 6, no. 1 (March 1, 2018): 53–64, https://doi.org/10.1089/space.2017.0040. 
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cognitive functions include learning, situation awareness (that involves understanding, 

short-term memory, and anticipation), decision-making, and action (that involves 

anticipation and cross-checking).”142 This illustrates the importance of a holistic and 

comprehensive approach to user experience from training and documentation to 

complexity and ease of use for the intended user. For military technology designed to be 

utilized on the battlefield this means specifically the user experience under those conditions 

and not, for instance, when casually using the system on a test range.  

In the next section we will examine ten guidelines for user interface design and 

provide examples of how they can be applied specifically to Autonodyne’s CCS in a 

military context. Jakob Nielsen, a renowned web usability consultant, established a list of 

ten user interface design guidelines in the 1990s; these guidelines are referred to as 

heuristics because they are broad rules of thumb and not specific usability 

recommendations.143The ten heuristics were first presented by Nielsen at the Special 

Interest Group on Computer–Human Interaction (SIGCHI) Conference on human factors 

in 1994. Nielsen’s heuristics are listed below and after each heuristic exactly how they can 

be applied in the context of sUAV are: 

• Visibility of system status: The system should always keep users 

informed about what is going on through appropriate feedback within 

reasonable time. 

As drone swarms increase in complexity, system status reports should be limited to 

addressing only catastrophic failures. Also, multi-modal responses should be  explored to 

enable greater flexibility and prevent the user from having to see a  visual of a system 

status update.  

• Match between system and the real world: Designers should endeavor 

to mirror the language and concepts users would find in the real world 

                                                 
142 Boy et al., 55. 

143 Jakob Nielsen, “10 Heuristics for User Interface Design,” Nielsen Norman Group, accessed 
September 8, 2020, https://www.nngroup.com/articles/ten-usability-heuristics/. 



   
 

60 

based on who their target users are. Presenting information in logical order 

and piggybacking on a user’s expectations derived from their real-world 

experiences will reduce cognitive strain and make systems easier to use.  

Maintaining normal military jargon, brevity, and code words can reduce cognitive 

strain and training. Terms made up by engineers to describe functions are often different 

than how troops are trained, which can lead to confusion.  

• User control and freedom: Offer users a digital space where backward 

steps are possible, including undoing and redoing previous actions.  

Mistakes happen, and during the fog and friction of war it is imperative to have an 

ability to abort a command even if it is not related to a kinetic strike.  

• Consistency and standards: Interface designers should ensure that both 

the graphical elements and terminology are maintained across similar 

platforms. For example, an icon that represents one category or concept 

should not represent a different concept when used on a different screen.  

This is extremely important since the CCS will be able to control several different 

types of drones from different manufacturers. Icons and commands should be the  same, 

and the software should be intelligent enough to not display commands that a particular 

drone with its given payload is not capable of executing.  

• Error prevention: Even better than good error messages, a careful design 

which prevents a problem from occurring in the first place is tantamount 

to ease of operation. Either eliminate error-prone conditions or check for 

them and present users with a confirmation option before they commit to 

the action. 

Intuitive user interface and smart software can help prevent user errors from 

occurring. In a dynamic environment on the battlefield troubleshooting error messages will 

be extremely difficult for an operator to manage. 
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• Recognition rather than recall: Minimize the user’s memory load by 

making objects, actions, and options visible. The user should not have to 

remember information from one part of the dialogue to another. Due to the 

limitations of short-term memory, designers should ensure users can 

simply employ recognition instead of recalling information across parts of 

the dialogue. Recognizing something is always easier than recall because 

recognition involves perceiving cues that help us reach into our deep 

memory and retrieve relevant information.  

During combat, often the operator will be juggling multiple tasks at once making 

recognition a critical component to limit cognitive overload. For example, using common 

military color schemes to indicate friendly or enemy positions and using  normal 

military symbols for different units help with operator recognition.  

• Flexibility and efficiency of use: With increased use comes the demand 

for fewer interactions to allow for faster navigation. This can be achieved 

by using abbreviations, function keys, hidden commands, and macro 

facilities. Users should be able to customize or tailor the interface to suit 

their needs so that frequent actions can be achieved through more 

convenient means.  

This can aid in two ways: allowing system setup and display based on user 

expertise, and providing an ability to scale the complexity of displays when a user starts to 

become over-tasked. In the future, a responsive UI based on biometric  monitoring 

could make these adjustments automatically based on predetermined biometric data points. 

For example, as a user becomes more stressed as determined  through active 

biometric monitoring, the UI automatically declutters the heads-up  display (HUD) to 

remove distractions from the operator. 

• Aesthetic and minimalist design. Dialogues should not contain 

information which is irrelevant or rarely needed. Every extra unit of 

information in a dialogue competes with the relevant units of information 

and diminishes their relative visibility. 
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Combat removes the luxury of the unnecessary. Only the relevant or critical is 

 required. 

• Help users recognize, diagnose, and recover from errors. Error 

messages should be expressed in plain language (no codes), precisely 

indicate the problem, and constructively suggest a solution. 

Operators will have little time, or ability, to troubleshoot error messages in combat. 

 Therefore, the manner in which error messages are categorized and ultimately 

 displayed to the operator is critical. If an error can’t be fixed and degrades the sUAV 

 to the point it has lost its utility, then a simple notification of a loss is sufficient. 

 However, details on what happened are an example of unnecessary communication 

 to the operator. 

• Help and documentation: Even though it is better if the system can be 

used without documentation, it may be necessary to provide help and 

documentation. Any such information should be easy to search for, 

focused on the user’s task, list concrete steps to be carried out, and not be 

too large.144 

The majority of the time this will only be used in training or during a static, 

 relatively safe position, however, it should still be simple and easy to reference. 

Future program development can benefit from utilizing Jakob Nielsen’s ten 

heuristics for user interfaces. These will ultimately ensure great UI for a dynamic 

environment and a UX that enables organizational adoption of the technology. The 

performance of the humans in the system is built on the foundation of human systems 

integration in system development as portrayed in Figure 8.145 
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Figure 8. The Domains of Human Systems Integration146 

As illustrated above the domains of Human Systems Integrations ultimately build 

the foundation of human performance. All the building blocks of the pyramid are related. 

For example, the field of human–computer interaction has the potential to increase the trade 

space for the total system requirements –meaning that increased interface reduces demand 

on manpower, personnel, and training requirements, while a lower error rate improves 

efficiency, which reduces task execution times.147 As this analysis has shown, it is critical 

that HSI be initiated at the beginning of development and involves subject matter experts 

(SMEs) throughout the development process in order to realize the maximum benefits to 

the final product and reduce life cycle cost by avoiding continual refinement due to poor 

human integration. As the DOD looks to innovate and bring advanced technology to the 

battlefield, the adoption and incorporation for the warfighter will rely heavily on successful 

user experience design. 

  

                                                 
146 Hardman, 160. 
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APPENDIX E. SOCIOTECHNICAL SYSTEM 

Jon R. Lindsay of the Munk School of Global Affairs & Public Policy defines 

military organizations as systems of interdependent people, practices, and machines.148 

The relation between these elements is dependent on systems and processes that are defined 

and refined over time in reaction to advancements in technology. From moving troops on 

horseback to enabling operators to manage autonomous swarms, technical capacity is 

consistently informing the manner in which people and practices are utilized and 

empowered. As a fundamental element of the military, it is helpful to examine in detail 

how the nature of sociotechnical systems impacts the HEO system and USSOCOM’s 

progress toward autonomous systems.  

A. INTRODUCTION 

When Lord Wilfred Banks Duncan Brown became managing director of London’s 

Glacier Metal Company in 1939, the company was in a precarious financial position. 

Glacier had been fabricating plain bearings for engines since the turn of century, but in 

1938 it was embroiled in a patent infringement lawsuit that nearly put the company out of 

business, only being granted a brief reprieve during World War II to keep infringing on the 

patent in the name of national security.149 Perhaps understanding he had nothing to lose, 

Brown was emboldened to reshape the company’s operational approach based on a theory 

he described as “the necessity of encouraging everybody to accept the maximum amount 

of personal responsibility, and allowing them to have a say in every problem in which they 

can help”.150 In practice, this meant joint consultation between workers and management, 

                                                 
148 Jon R Lindsay, “Reinventing the Revolution: Technological Visions, Counterinsurgent Criticism, 

and the Rise of Special Operations,” Journal of Strategic Studies 36, no. 3 (June 2013): 422–53, 
https://doi.org/10.1080/01402390.2012.734252. 

149 Bill Wilson, “Glacier Plain Bearings: A Materials and Production Engineering Success Story,” 
Industrial Lubrication and Tribology 48, no. 5 (January 1, 1996): 7–13, 
https://doi.org/10.1108/00368799610129036. 

150 “Here Comes the Boss Programme 2: Keep Talking: An Experiment in Industrial Democracy in 
the 1940s and 1950s,” BBC Education, accessed September 4, 
http:/www.bbc.co.uk/education/boss/trans2.html.  
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bringing employees into the decision-making processes to build trust, and encouraging 

employee responsibility.151  

B. RESEARCH ORIGINS 

Once the war ended, Parliament commissioned a panel to study the Glacier process, 

enlisting the Tavistock Institute of Human Relations led by the Canadian psychologist Dr. 

Elliott Jaques. He went on to publish his findings in a series of books starting with The 

Changing Culture of a Factory in 1951 which examined the workplace as a social system 

focused on technical functions, leading Jaques to postulate the relation between these 

elements required a new field of inquiry.152  

Another landmark study involving coal miners identified how social technical 

systems find workers who organize into autonomous teams and develop group-based 

strategies to overcome technical challenges and the differentiation and interdependence of 

tasks.153 Over the next 20 years, the Tavistock Institute was at the forefront of research 

into socio-technical systems, with co-founder Eric Trist establishing the first graduate 

program in sociotechnical theory at UCLA in 1966.154 Sociotechnical system theory 

proposes that people, as the constituent components of an organization, generate products 

or provide services using technology, with people impacting the function and 

appropriateness of the technology that is used, and technology influencing the actions and 

attitudes of the people using it.155 Sociotechnical theory finds that effective jobs and 

workflows are those that consider this interaction of technical and human needs by 

                                                 
151 “How Glacier Broke the Ice on Worker Participation,” Industrial Management 75, no. 9 (January 
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153 “How Glacier Broke the Ice on Worker Participation,” 12–14. 
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balancing the people’s intrinsic needs with the organization’s need for technical 

efficiency.156  

C. TECHNOLOGY AND BEHAVIORS 

The design of an organization constrains the social systems functioning within it by 

defining the types and quality of behaviors needed for the organization to operate; the level 

of control, challenge, or feedback available to people, for example, results from the 

ordering and design of the technology.157 Based on a review of 134 sociotechnical 

experiments conduct during the 1970s, Pasmore, Francis, Haldeman, and Shani identified 

four orders of effects technology has upon organizations. Starting with the most direct 

effects on productivity, place, motions, and behaviors in the center, the model they created 

(Figure 9)158 moves outwards towards orders that emerge from the preceding layer with 

second order effects such as roles and relationships developing in order to coordinate 

actions and goals related to the direct effects. Adaptability, learning and other growth and 

sustaining skills emerge in the third order in relation to how people feel they are treated or 

valued by the organization, and in the final order, the technological patterns that define the 

organization impact its relationship with other organizations and society at large.159 

D. EVOLUTION OF SOCIOTECHNICAL SYSTEMS  

As human-computer interaction has become a pervasive aspect of work and life, 

the sociotechnical approach has provided a lens through which to view the intersection of 

technology and people in information systems and cognitive systems; it also has provided 

insight into the ways computers shape and define daily life and influence the manner in 
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which computer systems are used.160 The importance of understanding the human 

behavior and interaction models with sociotechnical systems spawned ergonomics and 

human factors research, research which aims to apply this understanding to interaction 

design in real-world settings.161  

In considering real-world sociotechnical interactions, there is an effort to establish 

a taxonomy of these interactions in order to limit unintended consequences and to develop  

Figure 9. The Impact of Technology on Behavior 

new approaches to human and computer interaction in a host of contexts.162 For instance, 

applying this approach to a simple interaction with an ATM, we find taxonomic categories 
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like output nature, which defines the acceptable precision of the machine reading the card; 

if the machine fails to read the card the first time it is inserted, it can lead to a state change 

in the user, such as memory lapses when typing in their PIN, a situation which occurs 

frequently.163 Even in this discreet element of a common activity, we can see the direct 

effects on human behavior and the nature of complexity in sociotechnical systems. 

E. SYSTEM PRINCIPLES 

The sociotechnical systems approach builds on general systems theory that is 

common to each scientific discipline, specifically the nature of interdependency and 

interrelation in cohesive, connected structures. Early on, Trist organized the system into 

three levels: the primary work system level, whole organization systems level, and 

macrosocial level.164 On the primary work level Trist defined seven principles of work 

design: 1) optimum variety of tasks, 2) meaningful pattern of tasks, 3) optimum length of 

work cycle, 4) scope for setting quality and quantity standards and feedback of knowledge 

of results, 5) inclusion of auxiliary and preparatory tasks, 6) inclusion of care, skill, 

knowledge or effort worthy of respect in the community, and 7) contribution to the utility 

of the product to the customer.165 Trist also developed new paradigms for a whole 

organization system which called for: joint optimization, workers as complimentary to the 

machine, workers as resources to be developed, optimum task grouping, internal controls, 

and a flat organization chart that allows for broad participation, collaboration, commitment, 

and innovation.  

Trist set the table for sociotechnical system to evolve into a broader societal 

context. Observing the rise of computing in business and anticipating its ability to impact 

society, he formulated a macrosocial approach that recognized systems larger than the 

single organization and proposed looking at sociotechnical systems on a domain level that 
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cut across whole industries.166 Trist also identified community-based sociotechnical 

endeavors, such as labor and management working together to reverse economic decline 

in communities.  

F. HISTORY AND USES 

From its inception, sociotechnical research has combined methods and subject 

matter expertise in psychology, sociology, and anthropology with engineering, 

mathematics, and business. Increasingly, sociotechnical system thinking involves 

computer science, human factors engineering, user experience design and similar 

disciplines. This pattern follows its evolution from an initial focus on production and 

manufacturing, where the goal was to humanize industries like coal, petrochemicals, and 

textiles, to its peak in the 1970s and 1980s, when it became increasing focused on the 

integration of computers into industry and business processes.  

By the beginning of the 21st century, principles of sociotechnical system theory had 

permeated design methodologies such as participatory design, design which often places 

users into system developer roles and empathic and contextual design which has developers 

adopting the user’s perspective.167 

G. JOINT OPTIMIZATION 

In order for work systems to operate effectively, the products or services they 

provide and the social and psychological impacts on people must generate positive 

outcomes and effects. When a sociotechnical system reaches this point of output 

equilibrium, it is said to be jointly optimized. Joint optimization recognizes the essential 

interrelatedness of the social, technical, and environmental components to the point that 

they cannot be separated; if these system components are addressed in isolation, each other 
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component is affected, leading to potential unforeseen consequences from performance 

degradation to complete system failure.168  

Figure 10 conceptualizes this relationship to illustrate that if any of the three 

components is moved independent of the others, the center zone of the Venn diagram is 

reduced. The dynamic nature of these relationships makes systemic adjusts complex, so 

core principles of joint optimization, informed by Trist’s principles, should be considered 

at all times. First, individual stakeholders need to have responsible autonomy; second, 

tasks, schedules, and processes should be adaptable, such that they can be adjusted by team 

members for optimization; third, tasks must be meaningful throughout the cycle of 

operations; and finally, there must be feedback loops based on recursive interactions.169  

H. JOINT OPTIMIZATION TAXONOMY  

Rhodes and Ross proposed a five-aspect taxonomy to analyze system performance 

for optimization and for classification of research: “structural related to the form of system 

components and interrelationships, behavioral related to performance, operations, and 

reactions, contextual related to the circumstances the system exists within, temporal related 

to the properties and dimensions of systems over time, perceptual related to stakeholder 

preferences, perceptions, and biases.” 170 Structural and behavioral aspects are further 

clarified as fundamental to the state of research practice, which is widely applied to systems 

architecture and design and systems engineering. Contextual, temporal, and perceptual 

aspects are more cutting-edge aspects of optimization that are being applied to new 

methods for modeling system relations such as epoch modeling and analysis in neural 
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networks, and Deep AI, multi-stakeholder negotiations, and complex data set 

visualizations.171  

 

Figure 10. Joint Optimization Diagram 

Applying the five aspect taxonomy to the optimization components reveals 

correspondence in each domain and provides a model for examination of granular aspects 

of the system for optimization. In the People/Social component, structural aspects are 

adaptable roles and self-managing teams, behavior aspects include ethics and 

collaboration, contextual aspects are politics, history, and culture, temporal aspects might 

be evolution of social norms, while perceptual aspects might be human cognition and 

biases.172 In the Technical / Environmental domain, structural aspects include modular 

design of technical systems and sustainable design practices, behavioral aspects 
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interoperability and sustainable practices, contextual aspects include technical platforms 

and industry or market paradigms, temporal aspects include requirement changes and 

resource depletion, and perceptual aspects include cognitive systems.173  

I. RISK ASSESSMENT 

Critical industrial, technical, and public health and safety functions require 

sociotechnical systems, so evaluating the reliability of such systems is crucial.174 Problem 

analysis and risk assessment of sociotechnical systems focuses on human error as related 

to human-machine interactions as well as interactions between humans; human error is the 

main cause of accidents, the implications of which can often be catastrophic and lead to 

system failure.175 Theories for understanding and evaluating the causes and consequences 

of accidents have evolved from Heinrich’s domino theory, that asserts accidents result from 

chains of events,176 and James Reason’s Swiss Cheese Model, which posits that barriers 

in systems intended to prevent errors all have weaknesses or holes.177 Other systems 

thinking-based theories assert that accidents are the result of interactions between multiple 

human and technical elements such as functional resonance method (FRAM) and systems-

theoretic accident model and process.178  
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J. BROKEN LINKS APPROACH 

More recently, case studies involving the British Royal Navy have tested an 

approach known as Event Analysis of Systemic Teamwork (EAST) to capture risk 

throughout the entire system, rather that examine constituent parts.179 The EAST approach 

examines systems in relation to social, task, and information networks with sociometric 

data used to identify key nodes, each of which has complex safety management roles and 

behaviors; a holistic social-task-information diagram is created and the relations between 

nodes are described as links.180 Broken links indicate communication breakdowns and 

information transfer failures and are used to predict possible risks in sociotechnical 

systems. Research also indicates that cultural differences, such as conflict avoidance or 

conflict resolution or collectivist or individualistic cultures, can lead to team errors in 

sociotechnical systems, especially in high pressure situations.181  

K. FUTURE TRENDS 

The technology-saturated state of the world finds cities transformed into smart 

urban ecosystems and the Internet of Things powering so much of daily life. These two 

examples reveal the complexity and reach of sociotechnical systems and reveal new 

opportunities and challenges that require a sociotechnical design approach. Three 

fundamental properties must be articulated in the context of these systems: the mutual 

constitution of people and technologies, the contextual embeddedness of this mutuality, 

and the importance of collective action.182The system must be examined from each of 
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these perspectives to identify the design problems as well as the roles, responsibilities, and 

requirements of all stakeholders. Ultimately, a collaborative design process is required that 

balances the needs of the community and the power of the technology, which is the essence 

of the sociotechnical system approach.  

L. CONCLUSION 

As sociotechnical systems, the AISUM concept and HEO can be better 

implemented by understanding the nature of such systems, the challenges they face, and 

the opportunities for optimization. By applying the principles of joint optimization that 

recognize that the social aspects of the operator, the specific powers of the technology, and 

the interaction with environment and context are intricately linked, we establish a rationale 

for design that considers how each aspect is affected by changes to the others. By 

emphasizing the impact of human factors we ensure that technical changes are not made 

without closely examining how they impact the end users. Sociotechnical system thinking 

provides logical structure to leverage the advancements in Artificial Intelligence and 

Machine Learning required for revolutionizing human-machine teaming while ensuring 

that usability in social context of military operations and individual operational capacities 

are central to our definition of success. 
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APPENDIX F. INNOVATION ADOPTION  

In his testimony before the House Armed Services Committee in April, 2017, 

Defense Innovation Board (DIB) chairman Dr. Eric Schmidt stated, “DOD does not have 

an innovation problem; it has an innovation adoption problem.” 183 Citing the size and 

complexity of the DOD’s mission and systems, Schmidt noted that friction and latency has 

been built into the Department’s decision-making process, adding additional layers of 

required coordination, rules, regulations and other mechanisms that inherently hinder the 

pace of change and growth.184 This resistance to innovation is not unique to the DOD and 

is it indicative of structural patterns that can be observed throughout culture and commerce. 

To better understand these challenges in the context of the HEO and AISUM writ large, it 

is instructive to examine the socio-technical concepts that underpin the adoption of 

innovation.  

A. INTRODUCTION 

Popular opinion holds that 19th century American essayist Ralph Waldo Emerson 

said, “Build a better mousetrap, and the world will beat a path to your door,” evincing the 

notion that innovation improves the quality of life and is rewarded with success. True to 

form, this very quote appears to be an innovation on what Emerson actually wrote in his 

journal in 1855, the more verbose statement being, “I trust a good deal to common fame, 

as we all must. If a man has good corn, or wood, or boards, or pigs, to sell, or can make 

better chairs or knives, crucibles, or church organs, than anybody else, you will find a 

broad, hard-beaten road to his house, though it be in the woods.”185 In addition to making 

it pithier and easier to remember, the innovated version of the Emerson quote actually 
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mentions a mousetrap, a widely used cliché that captures a common sentiment. The quote 

is a successful example of innovation adoption. 

B. INNOVATION DIFFUSION 

In his book Diffusion of Innovations, Rogers defines an innovation as “an idea, 

practice, or project that is perceived as new by an individual or other unit of adoptions” 

and explains that adoption occurs when full use of the innovation is “the best course of 

action available;” he goes on to posit that the idea spreads through diffusion, which is “the 

process in which an innovation is communicated thorough certain channels over time 

among the members of a social system.”186  

Diffusion of innovations requires four main components: the innovation, 

communication channels, time, and a social system. An innovation need not be new, in 

fact, it can be something that was invented a long time, but if people perceive that it is new, 

it is innovative to them.187 The newness might be expressed in knowledge, persuasion, or 

the user’s decision to adopt the innovation.188 Communication channels are the means by 

which a message is transmitted from individual to the next; time has multiple roles in 

diffusion, but one of the most important is the relative earliness or lateness of adoption 

with a social system or a set of interrelated units engaged in joint problem solving towards 

a common goal.189  

C. LEVELS OF USE 

To better understand individual variation in adoption of an innovation, Gene Hall 

and colleagues defined eight levels of use of an innovation, or distinct states characterized 
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by different user behavior, as part of the Concerns-Based Adoption Model (CBAM).190 

Hall et al. claimed each level is defined by seven categories of behavior --knowledge, 

acquiring information, sharing, assessing, planning, status reporting, and performing—that 

reveal the user’s trajectory from having a simple awareness of the innovation to collecting 

data, disseminating information to others, determining potential use, and performing.191 

The eight levels of innovation use are: non-use, orientation, preparation, mechanical use, 

routine, refinement, integration, and renewal with a key decision made by the user that 

triggers progression from one stage to the next.  

D. CONCEPTUAL MODELS 

A range of models have been developed to better understand technological and 

process innovation in different sectors including organizational management, consumer 

goods, and social groups.  

E. ORGANIZATIONAL MODELS 

Innovativeness within organizations is related to independent variables on the 

individual and collective levels, including the characteristics of leaders in the organization, 

characteristics of the internal structure, and external characteristics of the organization192 

In Roger’s Diffusion of Innovation model, the leader’s attitudes towards change is more 

significant than in other approaches; internal characteristics of the organization structure 

factor highly, such as centralization, complexity, formalization, interconnectedness, 

organizational slack, and size while external characteristics of the organization are 

expressed in terms of system openness.193 Roger’s model as applied to information 
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technology adoption has been used to study software acquisition, intranet, website 

implementation, and e-business. Other models consider the organization’s financial health 

as a key influencer on adoption, with greater financial health positively impacting 

adoption.194 

F. CONSUMER MODELS 

Consumer adoption of new technology is a major economic driver, with nearly half 

of all commercialized products failing in the marketplace, and a history of technical 

superior products losing out to competing ones.195 Historically, managers have relied on 

market research of consumer attitudes toward an innovation, and their intention to 

purchase, but research has found consumer attitudes toward adoption don’t correspond to 

actual adoption; consumers indicate the intention to adopt more complex innovations that 

better match their needs, however, consumers actually adopt innovations that are less 

complex but have higher relative advantages.7  

G. SOCIAL MODELS  

Innovation adoption in social and political contexts tends to manifest as campaigns 

to change public behavior, such as antismoking initiatives or campaigns to stop drunk 

driving. Some interesting factors determine which social innovations are adopted and 

which fail. Researchers examined an elementary school program to provide students with 

a fluoride-based dental rinse in an effort to reduce cavities, but districts, by and large, failed 

to adopt it. This was not because they had the carefully weighed the pros (reduced cavities) 

and cons (potential health impacts of fluoride), but because they made no decision at all.196 
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H. COGNITION 

Another approach to determining the intentions behind user behavior is a cognitive 

learning model. While behavioral models consider observable behaviors in response to 

external stimuli, cognitive learning models look at the degree of problem solving a user 

undertakes in response to stimuli.197 Cognitive models factor in six internal beliefs that 

shape user attitudes towards adoption: perceived difficulty, adoptive experiences, 

perceived commitment, perceived benefits, compatibility, and enhanced value.198 One 

example is the Technology Acceptance Model, which holds that computer technology 

acceptance is informed by perceptions of usefulness and ease of use, as well as individual 

affects.199 

I. SOCIAL DIFFUSION  

Social cognitive theory is based on an agentic perspective 200 asserting that people 

are proactive, self-organizing, self-regulating, and self-reflecting and not just reactive 

parties , and that our self-development and adaptation are rooted in social systems.201 The 

Social Cognitive Theory of Mass Communication emphasizes modelling’s effects on the 

adoption of innovation; modelling behaviors use the power of demonstration and 

description to instruct people on new ways of behaving and thinking.202 Modelling the 

benefits of an innovation enhances individual self-efficacy and motivates as it informs, 
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accelerating the diffusion of innovation through social channels by weakening the restraints 

of more cautious potential users once they see the how the innovation benefits early 

adopters.203  

Much of the theoretical discussion on adoption models suggests a pro-change bias 

that makes the assumption that consumers are fundamentally open to change and therefore 

more interested in adopting new products.204 Increasingly though, research reveals that 

consumers often reject innovations out of hand before considering their potential benefits. 

To overcome this pro-change bias, some theorist differentiate passive resistance to 

innovation from active resistance to innovation, with the former based on consumers being 

generally predisposed to resist change or be skeptical of innovative claims, and the latter 

reflecting a hardening of attitudes in reaction to negative reviews or evaluations of an 

innovation.205  

User resistance to change and bias towards the status quo has been found to be the 

leading barrier to large scale information technology innovation adoption in 

organizations.206 Similarly, certain consumers continued to resist using Internet banking 

well past the point that it became established and a successful innovation; reasons for 

resistance included security and privacy concerns, but some customers also perceived that 

online banking had not demonstrated enough advantages over using the ATM which more 

customers were familiar with.207 
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This begs the question: why is it a problem if some users prefer ATMs over online 

banking, since there is still a unique need for both? The points of resistance can themselves 

be drivers of new innovation. For instance, consumers who once resisted online banking 

using their PC at home might more readily adapt to using a banking app on their mobile 

phone, perhaps because they perceive it as more secure or simply that it actually 

demonstrates the appropriate advantages they need from a banking innovation, and they 

finally found the better mousetrap they were looking for.  

In the context of HEO and AISUM, the ability to leverage the technology across 

the broader USSOCOM enterprise increases value and necessity of adopting the 

innovation. As Dr. Schmidt points out in his House testimony, “in an organization as large 

as DOD, good ideas that cannot scale would seem to have limited utility.” 208 This echoes 

Davidson and colleagues’ findings that design of the HEO system has been informed by 

the need to provide logistics, sustainment, and transportation support missions sets ranging 

from counter-terrorism, covert operations, and direct action to hostage rescue, high-value 

target hunting, intelligence operations, and unconventional warfare across the entire 

combatant command.209 This versatility also presents new opportunities for support from 

leaders in a variety of competencies, and in keeping with Roger’s model, strong leadership 

around an innovation can drive adoption. It is the goal of this capstone project to provide 

the data and applied findings that leaders in USSOCOM can use to champion HEO system 

development while emphasizing strong human machine interfaces and robust operator 

support in order to achieve broad adoption. 
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