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ABSTRACT 

The Carmel River runs 58 km from the Santa Lucia Mountains through 

the Carmel Valley, eventually stopping at a lagoon on Carmel River State Beach. 

During the winter months, the river breaches through the lagoon, allowing water to 

freely flow between the river and Carmel Bay. Sediment transport, in part owing to 

turbulent river discharge and in part owing to ocean forcing (tides and waves), 

contributes heavily to whether the lagoon is open or closed: when there are low flow 

conditions, waves and tides can decrease flow rates in the breach, allowing sediment 

to settle. The sediment budget is expected to be a closed system, owing to the rocky 

headlands and long-term stability (no yearly regression or transgression) of the 

shoreline. However, it is currently unknown 1) how velocity profiles evolve during 

breaching phases, and 2) how much sediment moves during such an event. The 

hypothesis is that the breach mouth can completely disappear and re-emerge over 

a single breach-closure cycle. This study uses the RiverSurveyor M9 acoustic 

Doppler profiler to measure outflow discharge and GPS surveys to quantify elevation 

changes. A velocity profile can be built that would estimate the sediment transport 

potential within the breach. The information obtained will help identify and better 

understand the velocity thresholds that contribute to breaching seasons as well as 

estimates of sediment transport rates during breaching, which are currently 

unknown. 
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I. MOTIVATION 

Beach evolution is constant. On any given beach there are numerous environmental 

factors that contribute to sediment accretion and erosion and develop berm crest elevation 

and steepness throughout the beach. For ephemeral rivers and estuaries, the factors are 

coming from both the river and ocean side, which eventually cause a breakdown of the 

beach head resulting in a breach of the river. During these morphological catastrophes, 

sediment is forcefully transported and redeposited, in some instances, mere meters from its 

original placement, in others 10s of meters away. An overall morph can happen in minutes 

to hours. Given a closed sediment budget, the same sediment migrates along the beach 

creating features that trigger potential dangers such as flooding or navigational hazards. 

Amphibious beach landings are heavily relied upon and widely utilized in Navy 

and Marine Corps mission sets. Knowing and understanding the dynamics of beach 

morphology and the possible rate of change is key to mission execution and allows a better 

understanding for equipment capabilities and limitations.  

This study focuses on developing an understanding of the morphological rate of 

change at Carmel River State Beach, a seasonal ephemeral in Central California. Having 

models available for beaches that mimic possible operational environments and that 

accurately predict how a beach will morph based on evolving environmental factors will 

allow operational flexibility and facilitate increased battle space awareness. 
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II. INTRODUCTION 

Coastal ephemeral rivers are lagoon systems (also called bar-built estuaries) that 

periodically open and close allowing an intermittent connection between the ocean and 

river, through a process called beach breaching. Breaching at a system could be a regularly 

occurring phenomenon, which transitions with the seasons, or it could be more irregular 

and relatively unpredictably linked to morphodynamical feedback effects (Davidson et al. 

2008, Behrens 2013). The morphological evolution of these rivers is driven by the infilling 

and backfilling of sediment as well as hydrodynamic forcing from the ocean and river (Rich 

and Keller 2013). Exact timing of breaching is challenging to predict, making observations 

of breach morphodynamics sparse.  

Forcing from the ocean side, wave energy can erode the face of the beach 

contributing to the destruction of the sand bar blocking the inlet river channel on the ocean 

side (Williams 2015). Waves also play a constructive role, however, through wave 

overtopping, where wave-carried sediment deposits on the beach crest and onto the back 

of the beach (Donnelly 2008, Laudier et al 2011, Williams, 2015).  Assuming berm height 

is solely dependent on the height at which waves can transport sediment, berm crests can 

be estimated using parametric berm heigh models such as the Swart 1974 to predict upper 

beach profile limits (Swart 1974, Booysen, 2017). 

Forcing from the land side, river discharge influences the system by increasing 

water levels within the lagoon and transporting sediment from upstream. When the system 

is closed, lagoon water levels can increase to the sand bar elevation, which starts a breach 

through lagoon overtopping and links the estuary and ocean (Pierce 1970, Orescanin and 

Scooler 2018). River discharge is the result of hydrological processes in a river system, 

which transport runoff from rainfall. Accumulation in the watershed leads to immense 

volumes of water flowing down the river during and after high precipitation events.  

Water flow in rivers is not uniform at all locations leading to differences in 

sediment movement. During low or moderate water discharge, sediment mobility is 

insignificant or not observed. The largest transport of sediment is seen during high velocity 
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water flow. The flow at a river outlet typically decreases relative to upstream flow enabling 

pooling downstream, which gives way to lagoon creation in the “backwater” segment of 

the river (Nittrouer et al. 2012). Increased watershed area along riverbanks positively 

affects river flow speeds. In the Carmel River, rainfall intensity and distribution, soil 

moisture conditions, and ground water storage at the Carmel Valley Alluvial Aquifer all 

factor into whether river flow will advance to the lagoon (James 2005). Increased upstream 

water demands throughout the years have contributed to the varying stream movement 

(Kraus and Munger 2008). This makes it harder to predict downstream behaviors as they 

pertain to downstream ephemerality factors. 

The pressure gradient between the ocean and river lagoon dictates constructive and 

destructive behavior of a bar-built estuary such as Carmel River Lagoon (Orescanin and 

Scooler 2018). Ocean-side wave overtopping and high tides builds the sand bar separating 

the ocean from the lagoon and also spills water into the lagoon (Laudier et all 2011). Based 

on the offshore pressure, the expected build up can be modeled and an approximate 

elevation can be predicted for the upper beach profile limits (Swart 1974, Booysen 2017). 

While lagoon water levels rise as river discharge increases, lagoon-side seepage 

and liquefaction give way to sediment mobility (Figure 1). On the California coast the 

lagoon-side openings occur after a rainy season increases river water levels and discharge 

rates (Kraus and Wamsley 2003). Thresholds outlined in a previous study by the Monterey 

Peninsula Water Management District (MPWMD) conclude that lagoon inflow rates of 

100–200 ft3/s will maintain an open lagoon and below 10 ft3/s the mouth will stay closed 

(James 2005). Lagoon water level thresholds vary with each breach as the gradient is 

largely dependent on the beach elevation (Orescanin and Scooler 2018). 
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Photographs were taking during various stages of a breach between the river lagoon and 
the Carmel Bay at Carmel River State Beach. The photograph at 1311was taken facing the 
lagoon while the photographs at 1329,1348, and 1717 were taken facing the Carmel Bay 
and Pacific Ocean. 

Figure 1. Carmel River Breach February 7, 2020 

When ocean forcing is stronger than lagoon forcing, the sediment becomes a part 

of the sandbar that blocks the river mouth (Orescanin and Scooler 2018). The morphology 

of the barrier beach area in part is determined by the pressure gradient created between the 

ocean wave forced sediment and the river transported sediment, the ocean wave 

constructive process and the river flow destructive process (FitzGerald 1996, Behrens et 

al. 2013, Orescanin and Scooler 2018). In northern California, ephemeral rivers tend to 

breach from the lagoon side owing to the increased water-head pressure and increased 

lagoon water levels (Kraus and Munger 2008). 

Long-term channel morphology can be predicted by examining the connection 

between backwater flow and sediment transport. The Empire survey conducted in the 

backwater lowermost Mississippi River shows sediment discharge increased by 100-fold 

with a four-fold water discharge (Nittrouer 2011). Since backwater flow is prevalent in all 

coastal river systems, seasonally varying river discharge, as seen in the Carmel River, gives 

rise to seasonally varying sediment movement and beach metamorphosis (Figure 2).  

Overall, the Carmel River breaching system has consistently maintained its 

physiognomies when observed over long periods, though breach locations occasionally 

migrate meridionally by hundreds of meters throughout the breaching season (James 2005). 

Despite expected beach erosion due to consistent offshore sediment transport (from 

breaching) and migration the morphological stability infers that studies analyzing small 
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temporal samples are acceptable and studies encompassing longer sample periods are not 

necessary when assessing sediment transport characteristics. The Rich and Keller 

geomorphic model used to better understand the hydrography of bar-built estuaries showed 

longer breaches are due to river discharge and streamflow (Rich and Keller 2013). 

Accretion and erosion of displaced sediment during breaching leads to unpredictable beach 

transformations and significant issues with transportation infrastructure and surrounding 

homes, despite the long-term beach stability.  

 
Winter Carmel River breach, occurring in February, outlined in red. These images were 
generated using Google Earth. 

Figure 2. Carmel River State Beach Aerial View 

This study examines velocity profiles of various locations in a breaching event at 

the Carmel River on March 5, 2020, and the berm elevations leading up to and immediately 

after the breach. Though there have been observed thresholds that, when met, typically lead 

to breaching or closing of the lagoon, the evolution of velocity profiles and rates/quantities 

of morphological evolution during a breach are unknown. In-situ water flow measurements 

collected by transecting the breached river can assist in building velocity profiles and 

quantify sediment transport potential in efforts to gain clarity of the long-term sediment 

transport. Water flow velocities should be proportional to sediment transport rates yielding 

the hypotheses that river discharge rates and momentum fluxes establish sediment transport 

rates and sediment accretion rates are larger on areas of underpredicted and unstable berm 

elevation.  
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III. METHODOLOGY 

In order to address the hypotheses that 1) river discharge rates compared to 

momentum fluxes establish discharge velocities during a breach, and 2) sediment accretion 

rates are larger on areas where the berm is unstable, observations of berm elevation and 

breach geometry, as well as discharge measurements, were made at Carmel River State 

Beach between February 14 and March 9, 2020. These observations spanned several breach 

events, while this study focused on morphological response around the March 5 breach. 

A. FIELDWORK AND DATA COLLECTION 

All breach flow and bathymetry data from this study were collected during the 

March 5, 2020, breach. To measure in-situ breach characteristics the SonTek 

RiverSurveyor M9 nine-beam, multi-frequency acoustic Doppler profiler (ADP) was used 

(Figure 3). Transecting the river, an ADP is capable of measuring evolving properties of 

the breach including mean water column velocity, water velocities throughout the water 

column, river discharge rates, and bathymetric measurements of the evolving riverbed.  

 
This is a photograph of the SonTek RiverSurveyor installed in the SonTek Hydroboard II 
along with the mobile real-time kinematic (RTK) GPS station in the Carmel River. The 
photograph in the top left corner is a photograph of the RTK GPS base station. The image 
in the top right corner is the ADP depicting placement of the transducers, echosounder, and 
temperature sensors (SonTek, a Xylem, brand RiverSurveyor S5/M9 System Manual).  

Figure 3. SonTek RiverSurveyor M9 Acoustic Doppler Profiler 
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With the ADP installed, the SonTek Hydroboard II was manually towed across the 

breached river at ten different locations (Figure 4). In order to observe adequate flow 

measurements, the locations were in areas where the water flow seemed to be the most 

turbulent, yet the Hydroboard was able to freely traverse the water with no obstructions 

and with adequate depth for accurate calculations. The first location was sampled twice, 

once at the beginning of surveying and once at the end of surveying, to show the 

transformation of the river from start to finish of the data collection period. A real-time 

kinematic (RTK) GPS base station was positioned on the beach in a direct line of sight of 

the RTK GPS station mounted on the ADP and provided precise position data during data 

collection.  

 
The image a was taken during the March 5, 2020 breach and depicts the orientation of a 
transect relative to the breached river. Shown in image b are the ten transect locations and 
total survey area plotted on a November 2018 satellite image, when the river was closed. 
This image was generated using Google Earth. 

Figure 4. ADP Transects 

All beach berm elevation data were collected on various dates between February 

14, 2020, and March 9, 2020, using the Spectra Geospatial SP60 Global Navigation 

Satellite System (GNSS) receiver (Figure 5). The SP60 receiver was attached to a mobile 

backpack apparatus allowing hands-free walking surveys to be completed traversing large 

parts of the beach based on the beach morphology and river placement that day.  
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The GNSS receiver and the GPS paths take during each survey. These images were 
generated using Google Earth. 

Figure 5. GNSS Receiver and GPS Walking Survey Paths  

B. DATA ANALYSIS 

1. River Surveyor 

The RiverSurveyor Live software is the measurement interface for the ADP. Owing 

to operating depth limitations and sediment caused data contamination, the software uses 

velocity profile extrapolation to estimate the transect start edge, end edge, top transect, and 

bottom transect. Velocity profile extrapolation uses a power law (Equation 1) to 

approximate velocities around measured velocities  

 

 𝑢𝑢
 𝑢𝑢∗

= 9.5 ∙ � 𝑧𝑧
𝑧𝑧0
�
𝑏𝑏

, (1) 

 
where u is velocity at height z measured at the river bottom, u* is bottom shear velocity, z0 

is bottom roughness height, and b is a constant (b=1/6), (Chin 1991). 
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The ADP measures the middle of the transect (Figure 6). Total discharge and 

velocities are the summation of the middle measurements, extrapolations, depth, and 

movement of the ADP as it transects (SonTek Manual).  

 
Figure 6. Cross Section of ADP Data Collection Transect Area. Adapted from 

SonTek, a Xylem, brand RiverSurveyor S5/M9 System Manual. 

SmartPulseHDTM feature allowed a wide range of conditions to be analyzed by  

the RiverSurveyor without preset inputs. Based on tracked water velocities and depths,  

the ADP selects optimum processing configuration by sending multiple pulse types  

and utilizing various processing techniques. The cell size adjusts with varying depths 

(Figure 7). 

 
Figure 7. RiverSurveyor SmarPulseTM adjustable cells. Source: SonTek, 

a Xylem, brand RiverSurveyor S5/M9 System Manual. 
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The ADP collects river characteristics with three frequencies: 0.5 MHz, 1 MHz, 

and 3 MHz. Precise velocity profiles are measured by the 1 and 3 MHz transducers, which 

deliver acoustic pulses and use the Doppler shift principle to measure water velocity in the 

water column. The speed of the ADP through the water is calculated using GGA GPS 

reference velocity protocol, applying the collected RTK GPS data, to reduce positional 

error. In conjunction with doppler shift from multiple acoustic pulses, the ADP is able to 

deduce vessel speed through the water as well as the speed of the water. The 0.5 MHz 

echosounder measures depth to illustrate bathymetric characteristics of the riverbed.  

2. GPS Surveys 

GPS location and elevation data were collected by the SP60 on February 14, 28, 

and 29, and March 2, 3, 5, 6, and 9 (Figure 5). Referencing UTM coordinates, the survey 

area was 100x170 meters and interpolated onto a mesh grid with 100 grid points in both x 

and y-directions, approximately one grid point per meter in the x-direction and 1.7 meters 

in the y-direction. Elevation data was corrected using measured antenna height above 

ground for each survey. The default system output for SP60 elevation utilizes the WGS84 

ellipsoid as a reference point. During data processing, it was corrected to reference the 

NAVD88 mean sea level datum utilizing the system’s GPS undulation calculation. The 

ADP system has both NAVD88 and WGS84 elevation outputs. For continuity, the WGS84 

ellipsoid ADP output was used and corrected with the same SP60 system undulation used 

for the SP60 elevation. Ultimately, both the SP60 elevation and the ADP bathymetry data 

referenced NAVD88 datum for z-direction calculations.  

For the berm elevation calculations, the SP60 used of all six GNSS systems for 

precise positioning: GPS, GLONASS, BeiDou, Galileo, QZSS and SBAS. This provides 

the flexibility for SP60 to operate in GPS-only, GLONASS-only or BeiDouonly, which 

makes the SP60 optimal for tracking and processing signals.  

During data assimilation from each survey, overall elevations changes were 

compared as well as cross-shore and longshore maximums and minimums. This sampling 

technique accurately depicted accretion and erosion extremes while creating an outline for 

calculation sediment mobility and fluxes. 
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IV. RESULTS 

A. BREACHING AND CLOSING EVENTS  

The river breached several times during morphological data collection, as 

evidenced by rapid drops in water levels (figure 8b). During this time, winter offshore 

waves were between 2-4m offshore (Figure 8a). Since it was not possible to directly 

observe each breach, it was necessary determine when the breaches occurred in order to 

evaluate resulting elevation affects. Using momentum balance estimates (Orescanin and 

Scooler, 2018), where dynamic pressure between river discharge and ocean waves and 

tides are evaluated, the temporal element of relative ocean and river momentum fluxes are 

able to be determined (Figure 8c). When water levels in the lagoon exceed the berm 

minimum elevation, a breach occurs, and the river remains open. When river discharge and 

ocean forcing processes are equal or ocean forcing dominates, the river will close (Figure 

8c). In contrast, if river discharge dominates (after March 15, Figure 8c), the river will 

remain open. Given, MPWMD river discharge measurements, lagoon water levels, and 

offshore tidal information it was possible to determine the Carmel River breach and closure 

cycles for this survey time (green areas, Figure 8b, Table 1). This was established by 

flagging times where the water level difference between the lagoon and the ocean was 

larger than one standard deviation above the mean ocean water level. Prior to February 20, 

the river went through nearly daily partial closures, when river discharge levels were low 

relative to ocean forcing (Figure 8c), similar to the effects seen at other systems with a 

well-established sediment sill (Williams and Stacey 2015). Between February 20, and 

March 13, the river had four periods of longer term (>tidal cycle) closures, including the 

breach on March 5th (the focus of this study), before finally opening on March 15th. Prior 

to the March 5th breach, the beach remained closed for five days, leading to beach berm 

growth and water level increases (Figure 8b-c)  
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a. Time series of offshore wave heights colored by wave direction. b. Water levels in the lagoon and tides. Breaches and closures for more than 
one tidal cycle are indicated by orange dotted lines. c. tides and waves, river discharge, and tidal activity.  

Figure 8. Carmel River State Beach Momentum Balance for Breach/Closure  
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Table 1. Carmel River Breach and Closure Dates   

River Open 
(Breached) 

River 
Closed 

February 10 February 15 
February 15  February 22 
February 25 February 28 

March 5 March 7 
March 10 March 13 

 
 

B. ELEVATION TRANSFORMATIONS  

The GPS surveys conducted with the SP60 show elevation variations relative to 

NAVD88 between February 14, 2020 and March 9, 2020 (Figure 9). During the February 

14 survey, the river was experiencing a breaching cycle where the river was connected to 

the bay. The breach opened on February 10 and closed on February 15 allowing only the 

north portion of the beach to be surveyed. The river briefly closed on the morning of the 

15th only to reopen later in the evening until the 22nd. A breach occurred on February 25 

as well, leaving the river open to the bay until February 28. Morphological observations 

were made with an overall accretion of sediment (~0.25-1.5m) between the February 14 

(Figure 9a) and February 28 (Figure 9b) surveys on the north side of the beach (Figure 

10a). Since there was no continuous build-up of sediment by waves between the 14 and 28 

surveys due to the breaching cycle (the river was intermittently open, and breached two 

times), the berm fluctuations are not as drastic as would have been expected because the 

beach berm had to rebuild twice during that time period. The survey on February 29th 

shows an overall gain of sediment from the February 28th survey (~0.25-0.5m) although 

the northern western portion of the survey appear to show significant erosion (~1.0-1.5m), 

likely owing to the survey on February 29 not fully mapping the northern extent (Figure 5 

Figure10b). The enduring accretion on surveys from February 29 to March 3 (Figure 10c 

and 10d) is especially evident on the beach face as well as the back-beach (~0.25-1.5m). 

Once the river breach occurs on March 5, sediment is displaced and eroded to the ocean, 
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minimizing elevations within the river, back-beach, and along the river's edge ( ~1.0-

1.5m)) though along the beach face sediment is building (~0.25-1.0m) (Figure 10e). The 

survey taken on March 6 shows the sediment build up beginning to occur as the river fights 

the pressure on the oceanside to stay open (~0.25-1.5) (Figure 10f). The river is overcome 

by the pressure gradient and the momentum balance is stabilized on March 7. The survey 

on March 9 shows the sediment accumulation especially within the river (~0.25-1.5m) 

leading up to the next breach on March 10 (Figure 10g).  
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a. February 14 b. February 28 c. February 29 d. March 2 e. March 3 f. March 5 g. March 6 h. March 9. Plots made with a combination of SP60 
GPS and ADP bathymetry data. Survey area 100 by 160 m (Figure 4). All elevations reference NAVD88.  

Figure 9. Elevation Plots of Carmel River State Beach Surveys 
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a. February 14 vs. February 28 b. February 28 vs. February 29 c. February 29 vs. March 2 d. March 2 vs. March 3 e. March 3 vs. March 5 f. 
March 5 vs. March 6 g. March 6 vs. March 9. Plots made with a combination of SP60 and ADP data. All elevations reference NAVD88.   

Figure 10. Elevation Difference Plots of Carmel River State Beach Survey 
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Quantifying longshore berm evolution, the beach was evaluated in three sections:  

front-beach (transect 1, Figure 11a), mid beach (transects 2 and 3, Figure 11a), and back-

beach (transect 4, Figure11a). Quantifying cross-shore berm evolution, beach surveys were 

evaluated in three sections: North (transect 1, Figure 11b), In-Channel (transects 2 and 3, 

Figure 11b), and South (transect 4, Figure 11b). Transects 2 and 3 for cross-shore profiles 

are combined to accommodate the location of the channel during the observed breach on 

March 5th.  

a. Longshore samples: sections 1 (94m) referred to as front-beach, sections 2 (126m) and 
3 (78m) are mid-beach, and section 4 is back-beach. b. Cross-shore samples with an 
estimated outline of the March 5 breached river: section 1 (46.5m) is North, sections 2 
(17.5m) and 3 (59m) are In-channel, and section 4 (43m) is south. Images provided by 
Google Earth. 

Figure 11. Longshore and Cross-Shore Sampling Schematic.   

1. Longshore 

The longshore transects show distinct elevation differences created by the 

breaching river (Figure 12a-d). The river channel outline is depicted in the surveys 

collected during breaching events (black lines, Figure12a-d). In general, the longshore 

surveys suggest higher elevations with less variance along the southern part (B locations, 

Figures 11a, 12a-d). In order to assess the required water level for overtopping at each 

longshore transect, the minimum elevations were extracted and compared between surveys 
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(Figure 13). Prior to the March 5 breach, the minimum elevations increase for all transects, 

suggesting net accretion, but increase most along the berm crest and behind (transects 2-4, 

red, yellow, and purple lines, Figure 13). After the March 5 breach, the recovery of the 

beach is immediate (within 1 day). 
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Cross-
Cross-shore and longshore elevations extracted from Figure 11. a. Longshore Section 1, b. Longshore Section 2 c. Longshore Section 3 d. 
Longshore Section 4 e. Cross-Shore Section 1 f. Cross-Shore Section 2 g. Cross-Shore Section 3 h. Cross-Shore Section 4. Swart model 
calculated using Swart 1974 Berm estimate model. All elevations are relative to NAVD88.  

Figure 12. Longshore and Cross-Shore Survey Samples 
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a. Front-Beach

During the active breaching, longshore transect 1 (black line, Figure 12a) shows 

channel edge elevations that are the lowest, compared to other regions of the breach 

channel (black line, Figures 12b-d and blue line, Figure 13), of the survey while the 

lowermost river channel elevation, i.e. the thalweg, is the highest suggesting the presence 

of a roughly 1m sill separating the upstream channel (transects 2-4) from the ocean. This 

is the closest survey sample in proximity to the Carmel Bay making it experience the most 

ocean wave (swash) and tidal energy, which promotes channel closure and sediment 

accumulation more than a back-beach location. It is therefore, not unexpected that there is 

no distinct trend in accretion or erosion along this transect throughout the other survey 

dates, as it is more likely to change owing to varying offshore wave heights.  

The minimum elevation measured each sampling day for longshore sections 1-4 from 
Figure 12a-12d 

Figure 13. Longshore Minimums 
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b. Mid-beach 

In longshore transects 2 and 3 the same steady accretion of sediment can be 

observed between the Feb 28 closure and March 5 breach by looking at the elevation 

differences. For both longshore transects 2 and 3, there is a net accretion in both locations 

leading up to the breach on March 5. The immediate erosion of roughly 4m in the channel 

thalweg occurs during the early stages of breaching, where the deepest part of the channel 

is along transect 2. After closure, there is again a recovery of the beach, with accretion 

approaching the pre-March 5 levels. As these locations represent possible minimum 

elevations required for overtopping, the minimum values of longshore transects 2 and 3 

suggest that after the February 29 survey, the berm begins to rebuild (Figure 13). On March 

2 and 3 upward sediment development continues until the river breaches on March 5. 

Beginning February 29, wave and tidal energy strongly oppose the river discharge (Figure 

8c) leading to berm accretion until energy exiting the channel surmounts energy entering 

the channel on March 5 causing the breach.  

c. Back-Beach   

Berm evolutions on longshore transect 4 are similar to the mid-beach berm 

evolutions (Figure 12d, Figure 13). This shows the influence of the ocean forcing energy 

signal during the February 14 to February 28 closure by the accretion levels of over a meter 

in the channel.  

2. Cross-Shore 

The north (cross-shore transect 1, Figure 11b), in-channel (cross-shore transects 2 

and 3, Figure 11b), and south (cross-shore transect 4, Figure 11b) transects show the 

evolution of the cross-shore beach faces and river channel, showing the development and 

deterioration of the river sill with breaching cycles.  

a. North 

As seen in the long shore samples, cross-shore section 1 (Figure 12e) elevations 

decay after the February 28 closure, with a net loss of approximately 0.5m from the face 

of the beach by the March 5 survey. During that survey sediment levels are higher than 
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levels measured just before the breach on March 2 and 3. March 6 and 9 surveys stay just 

below the March 5 levels. As for the back-beach measurements after the closure on the 

28th, the beach experiences a brief decline on the 29th then starts to rebuild beyond the 

breach until the closure on the March 7. Overall, there is not a significant profile change in 

the north cross-section 1, but small (<.25m) accretion or erosion offsets between surveys, 

especially on the beach face. 

b. In-Channel  

Owing to the shape of the channel, cross-shore transects are split into two sections, 

which, when combined, show the cross-shore profile of the channel thalweg (Figure 11b). 

Cross-shore section 2 (Figure 12f) shows the evolution of the river channel near the sill. 

After the February 28 closure, a well-defined sand sill begins to build and migrate up the 

beach as the oceanside energy overcomes the river discharge pressure. However, river 

discharge in the lagoon ultimately fills the water levels above this sill height, leading to the 

March 5 breach. After the breach, the March 6 sill develops and by March 9 migrates 

inward as the ocean energy overcomes the discharge forces again, bringing in sediment 

through wave overtopping processes (Figure 8c). When the river is closed and waves are 

able to overtop the sill, sediment builds and is able maintain the pressure gradient between 

the river and lagoon and ocean until a breach occurs (Figure 14). The ocean forced March 

6 sill migrates into the channel with the propagated ocean energy and subsiding river 

discharge, and partially blocks the channel from the lagoon. The sill protrusion is 

diminished on March 9 after the river has closed. 

When the sand sill at the breaching location is able to build elevation above the 

water level in the lagoon, the sill remains intact. However, if these water levels exceed the 

sill elevation, then breaching occurs by overtopping from the lagoon side (Compare 

red/yellow markers with blue elevation line). Visual observations made during the March 

3 survey indicated water levels were within ~20cm between the lagoon and max sill 

elevation (not shown). 
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Lagoon water levels reported by MPWMD. Swart 1974 model estimates berm crest 
elevation based on sediment transport by wave action. All elevations are in reference to 
NAVD88. 

Figure 14. Lagoon Water Levels, In-Channel Maximums, and Swart 
Model Berm Estimate 

c. South

Cross-shore section 3 is comparable the North beach survey. Leading-up to the 

March 5 breach, the beach front builds slightly (<0.1m) and maintains its shape. During 

the breach the beach face shows significant loss in elevation until the river is closed again. 

Recovery from the March 5 breach occurs by March 9 along this portion of the beach. It 

should be noted that the south side of the beach is flanked by rocky outcrops, limiting any 

possibility of wave overtopping.   

C. EMPIRICAL BERM HEIGHT ESTIMATES

A relationship between the maximum recorded berm and oceanside energy or wave

run-up can be established using the Swart 1974 model. 



26 

𝐵𝐵𝐵𝐵=𝐷𝐷50 (7644−7706𝑒𝑒−𝐴𝐴) 

where 

 A=0.000143 (𝐻𝐻0 0.488 𝑇𝑇𝑇𝑇 0.93)/( 𝐷𝐷50 0.786) 

and D50 is average grain size of sediment present in berm, 0.06m cobble and 0.002m 

sand, H0 is deep water significant wave height, 2m, and Tp is peak wave period, 13s. The 

values used for this estimation are from average values from the Point Sur NDBC buoy 

(wave heights shown in Figure 8a). Grain size samples were taken over several locations 

at various times throughout the season and yielded a highly variable sediment composition. 

However, while thin gravel to cobble sized layers existed, the majority of sediment 

available is classified as coarse sand, with D50= 0.65-2.0mm his model is based on the 

connection between the median sediment grain size and beach face slope (Swart 1974, 

Booysen, 2017). Swart's Model helps predict the berm elevation (Bc) prior to a breach given 

oceanside factors and sediment composition. Figure 12 compares the berm measurements 

surrounding the March 5 breach and quantifies the effects of the riverside forces.  

D. BREACH VELOCITY PROFILES

Of the ten transects made to measure water velocities, bathymetry, and river

discharge in the channel during the March 5 breach, three longshore samples were selected 

to represent the velocity data collected: transects 1, 4, and 6 (Figure 4). These three samples 

encompassed what was observed in their respective longshore locations: front-beach, mid-

beach, and back-beach (Figure 15). 

 For transects landward of the channel bend (transects 1-4), river velocity 

measurements taken on this part of the back-beach have an overall uniformed magnitude 

flow throughout the water column. Speeds at the surface are similar to the speeds at the 

bottom (~0.2-0.4 m/s). For all the transects, the fastest speeds are on the north side of the 

flow and slower speeds that appear to reverse back into the channel on the southside. Mid-

beach measurements are more of a uniformed flow throughout the channel (~0.2-0.5 m/s). 

Although there is a slight northerly increase (~0.1-0.2 m/s) on the northside of the flow. 

The front-beach velocity measurements are the most turbulent (Transect 6, Figure 15). 
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They have distinct depth variations with sporadic changes in northernly and easterly 

contributions. The highest velocities were observed in the front-beach measurements 

(~0.5-1 m/s). This is consistent with visual observations that this was where the channel 

abruptly changed orientation owing to bedrock constrictions along the south side of the 

channel. While the channel is relatively short, there is substantial horizontal flow structure, 

especially near the bedrock constriction at transect 6. The stronger velocity magnitudes 

along the northern side of Transect 6 are consistent with observations that the channel edge 

was actively eroding during data collection.  

 
a. Transect 1: Front-beach, b. Transect 4: Mid-beach, and c. Transect 6: Back-beach.  Reference Figure 4 
for transect locations.  The start of the transect is at the green dot and the end of the transect is at the red 
dot.  East and North vertical sections of velocities are measured from the top of the water to the river 
bottom (a1,a2,b1,b2,c1,and c2).  Vectors are mean velocity of the water column (a3,b3 and c3). 

Figure 15. ADP Velocity Measurements during the March 5 Breach 



28 

Total discharge rates at transects 1,4, and 6 average 1.95 m3/s (Table 2). Daily mean 

average discharge at the Highway 1 basin streamflow gaging station of Carmel River 

(Figure 16) on March 5 was 1.08 m3/s. This is consistent with the momentum balance 

formulation that owing to storage capacity within the lagoon, additional discharge may 

occur through the breach channel owing to the pressure gradient between the lagoon and 

ocean combined with the river discharge (adding river discharge to tidal forcing without 

waves, Figure 8c).  The discharge at and around transect 4 at the beginning of data 

collection was 2.02m3/s.  After all samples were collected it was 2.12 m3/s.  

 
Red circle around the Carmel River Highway 1 bridge streamflow gage operated by 
MPWMD approximately1km upstream. Image provide by Google Earth. 

Figure 16. Upstream Measurement of Carmel River 

Table 2. Carmel River Discharge March 5, 2020  

Measured 

Location 

Highway 1 Transect 

1 

Transect 

4 

Transect 

6 

Expected 
(momentum 

balance) 

Rate (m3/s) 1.08 2.23 2.02 1.95 1.85 

Transect rates measured during March 5 breach. Highway 1 measurement is from the Carmel River 
Highway 1 bridge daily mean average March 5, 2020 done by MPWMD. 
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V. DISCUSSION 

A. SEDIMENT MOVEMENT AND BERM STABILITY 

The progressive accretion and erosion of the beach sill during, leading up to, and 

immediately following numerous winter breaches at Carmel River State Beach are shown 

through repeated surveys of morphology. When oceanside energy is dominant, the river 

closes and when the river discharge is great, causing elevated water levels in the lagoon, a 

breach occurs (Rich and Keller 2013, Orescanin and Scooler 2018). During the sampling 

period the river closure signal, shown when tides and wave energy are equal and opposite 

the river discharge energy (Figure 8c), display a well-defined response exhibited where a 

low berm becomes a now distinct barrier. The location of the sediment as the wave energy 

continues to dominate and percolate up the river, is mimicked with the sill migration inland 

(Figure 12e and 12f). When wave energy is dominant, sediment elevation builds. This is 

consistent with findings of Rich and Keller (2013) and Behrens et. al (2013).  

The berm evolution is not exclusive to the river mouth location. There was 

noticeable berm fluctuation immediately to the north and south of the breach coinciding 

with the signal response seen upstream with increased oceanside energy. When the 

oceanside forces are dominant, the berm grows in these locations as well. The mobilized 

sediment in Figure 12e and 12h as well as the A and B (beginning and end) points in all of 

the longshore sections in figure 12a -12d show this build-up, though not at the rates seen 

in the river channel.  

The expected berm elevation of a barrier beach has been estimated previously based 

on offshore wave climate and sediment characteristics (Swart 1974, Booysen 2017). The 

Swart model can be used to predict berm growth based on observations during the data 

collection period. When the measured berm is comparable to the modeled height, the berm 

is displaying stable predictable morphology. When it is varying, the berm is showing signs 

that the sediment transport is more susceptible to effects of the momentum flux between 

ocean and river forces. The most instability is seen in the channel where the most 
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momentum flux is seen (Figure12 and 13). It is also seen in the areas in close proximity to 

the ocean (Figure12a).  

B. RIVER DISCHARGE VS. TIDAL AND WAVE ENERGY 

During the March 5 breach average measured river discharge was, 2.07 m3/s, 

whereas the river discharge was 1.08 m3/s at the Highway 1 bridge. The average daily 

discharge (Figure 8c) stayed consistent through the entire sampling period whereas ocean 

and tide discharge varied throughout the sample period (Figure 8c). That implies the river 

discharge driven sediment load stayed the same while the oceanside increased and 

decreased leading to closures and breaches. The ocean energy was the dominating 

contributing factor to the river breaching and closing cycles during the observation period. 

This is apparent in Figure 12 primarily during the cross-shore sediment transport instances. 

The sills can be seen moving with the wave energy up-river. When the wave energy 

subsides, the sediment moves with the river discharge causing a breach.  

ADP measured river velocities on March 5 at the mouth of the river are the highest 

and most turbulent. When comparing accretion and erosion March 3-6, the river opening 

to the ocean is where the most elevation difference and sediment movement was observed 

(Figure 10e and 10f). This shows a correlation between river flow velocities and sediment 

transport of the submerged sill, as seen in Orescanin and Scooler (2018) expected 

velocities. 

While the measured river discharge was 2.07m3/s, the expected flow rate on March 

5 based on river vs. ocean forces (momentum balance) was 1.85m3/s. In order to remain 

open, it has been shown that, with Carmel River's wave climate, discharge rates typically 

must exceed 5.5m3/s (James 2005). During the sampled period, the discharge rate was less 

than that during breaches. In these instances, oceanside activity contributes to the active 

breach time (Rich and Keller 2013, Orescanin and Scooler 2018).  
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VI. CONCLUSION 

Carmel River is an ephemeral river with a breaching and closing cycle dependent 

on the direct pressure gradient established between river (lagoon) discharge and ocean 

forced energy. These dynamic hydro-physical properties contribute to the evolving 

morphology and sediment displacement at the beach especially during the winter months. 

Examining evolving sediment elevations, momentum flux between the river and oceans, 

and in situ breached river velocities, this study was able to make inferences with regards 

to possible contributions to dynamic morphological characteristics.  

GPS walking surveys were conducted surrounding the March 5 breach between 

February 14 and March 9. Ocean wave and tidal data as well as velocity (discharge) 

measurements were analyzed to help explain morphological contributions at a breach and 

how quickly they can accrete and erode sediment. The study was able to observe the 

instability around a breaching channel. The stability of the morphology of the channel is 

heavily reliant upon hydraulic forces. Sediment accretion and erosion respond to the river 

and ocean signals. An Ocean driven sediment load can be seen when the ocean has the 

most dominant energy, this presents itself as an oceanside sediment build up or sill within 

the channel. Conversely, when the river energy is dominant, the river channel sediment 

erodes making way for the river to connect to the ocean. Where river velocities (discharge) 

were the greatest, the most erosion was observed. 

Follow-on work at Carmel River could include measuring actual sediment transport 

rates as they related to ocean wave overtopping vs. tidal activity. During this study, there 

were too many contributing factors between survey periods that would not allow an 

accurate rate calculation. In the assessment of future breaches, determining the effect of 

breach migrations on beach stability and overall morphology could be evaluated as well.  

 

 
 

 



32 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



33 

LIST OF REFERENCES 

Behrens, D. K., Bombardelli, F. A., Largier, J. L., and Twohy, E., 2013: Episodic closure 
of the tidal inlet at the mouth of the Russian River—A small bar-built estuary in 
California. Geomorphology, 189, 66–80.  

Booysen Z., 2017. Berm Height and Temporary Open/Close Estuaries in South Africa: 
Analysis and Predictive Methods. M.S. thesis, Department of Civil Engineering, 
Stellenbosch University, 200pp. 

Davidson, M. A., Morris, B. D., and Turner, I. L., 2008. A simple numerical model for 
inlet sedimentation at intermittently open-closed coastal lagoons. Cont. Shelf Res. 
29, 1975–1982.  

Donnelly, C., 2008. Coastal overwash: processes and modelling. Ph.D. thesis, 
 Department of Building and Environmental engineering.  Lund University, 
 Sweden, 61pp. 
 
FitzGerald, D. A., 1996: Geomorphic variability and morphologic and sedimentologic 

controls on tidal inlets. J. of Coast. Res., 23, 47–71.  

James, G. W., 2005. Surface water dynamics at the Carmel River Lagoon Water years 
1991 through 2005. Monterey Peninsula Water Management Agency, Monterey, 
Ca. 

Kraus, N. C. and Munger, S., 2008. Barrier beach breaching from the lagoon side, with 
reference to northern California. Shore & Beach 76, 33–43. 

Kraus, N. C., Militello, A., and Todoroff, G., 2002. Barrier breaching processes and 
barrier split breach, Stone Lagoon, California. Shore & Beach, 70. 

Kraus, N. C. and T. V. Wamsley, 2003. Coastal Barrier Breaching, Part 1: Overview of 
Breaching Processes, ERDC/CHL CHETN-IV-56, March 2003.  

Laudier, A. N.,Thornton, E.B., and MacMahan, J.,2011. Measured and modeled wave 
overtopping on a natural beach. Coast Engineering 58 (2001) 815-825. 

Lee, J. S. and Julien, P.Y., 2006. Downstream hydraulic geometry of alluvial channels. 
Journal of Hydraulic Engineering 132 (12), 1347–1352. 

Nittrouer, J. A., Mohrig, D., and Allison, M. A., 2011a, Punctuated transport of bed 
materials in the lowermost Mississippi River: Journal of Geophysical Research-
Earth Surface, 2011-12 Vol 116 F4. 



34 

Nittrouer, J. A., Shaw, J., Lamb, M. P., and Mohrig, D., 2012, Spatial and temporal 
trends for waterflow velocity and bed-material sediment transport in the lower 
Mississippi River: Geological Society of America Bulletin, March/April 2012. 

Orescanin, M. M. and J. Scooler, 2018: Observations of episodic breaching and closure at 
an ephemeral river. Continental Shelf Research, 166, 77–82.  

Pierce, J. W.,1970: Tidal inlets and washover fans. The J. of Geol., 78 (2), 230–234.  

Rich, A. and E. A. Keller, 2013: A hydrologic and geomorphic model of estuary 
breaching and closure. Geomorphology, 191, 64–74.  

Swart, D. H., 1974. Offshore sediment transport and equilibrium beach profiles, TU 
Delft, Delft University of Technology.  

Williams H. F. L., Contrasting styles of hurricane Irene washover sedimentation on three 
east coast barrier islands: Cape Lookout, North Carolina; Assateague Island, 
Virginia; and Fire Island, New York. Geomorphology, 231, 182-192. 



35 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 


	20Dec_McPherson_Tyonna_First8
	20Dec_McPherson_Tyonnax
	I. Motivation
	II. INTRODUCTION
	III. Methodology
	A. FIELDWORK and data collection
	B. Data analysis
	1. River Surveyor
	2. GPS Surveys


	IV. Results
	A. Breaching and closing events
	B. Elevation transformations
	1. Longshore
	a. Front-Beach
	b. Mid-beach
	c. Back-Beach

	2. Cross-Shore
	a. North
	b. In-Channel
	c. South


	C. Empirical berm height estimates
	D. Breach velocity profiles

	V. Discussion
	A. Sediment movement and berm stability
	B. River discharge vs. Tidal and wave energy

	VI. conclusion
	List of References
	initial distribution list




