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1 Summary 
The report herein details the overall accomplishments and lessons learned of the Infrasonic 
Cyber-Physical MASINT for Environmental Characterization and Classification.  The project 
explored Artificial Intelligence/Machine Learning (AI/L) techniques to classify acoustic signals, 
independently from collected or other relevant datasets.  Formulated as a feature learning and 
discrimination problem, we draw comparative conclusions between techniques that consider 
unique features for classification.  Finally, we offer recommendations based on the techniques' 
strengths and weaknesses and the approaches taken to arrive at our conclusions. 

Consider that land and air vehicles (e.g., tanks, trucks, helicopters, and UAVs) exhibit acoustic 
power spectrum from several hundredths of one Hertz (Hz) to a few hundred Hz.  Acoustic 
sources with impulsive characteristics such as artillery and UAVs have broadband spectral 
energy, often overlapping ranges.  With these targets of interest generating spectral content in 
harmonious frequency bands, acoustic sensors are concomitantly suited for event classification 
and identification. 

At the heart of Measurement and Signatures Intelligence Exploitation (MASINT-X) is the desire 
to locate, track, identify, or characterize sensor observations of high-value targets and 
surroundings.  Ideally, signatures exhibiting a high signal-to-noise ratio (SNR) are collected via 
high-fidelity sensors.  Observations align with reliable physical models of how the waveforms 
are generated and propagated in the environment.  These ideal conditions are rarely met, and 
system specifications (and associated cost) can substantially exceed collected signal quality. 
Although the traditional MASINT process has yielded invaluable intelligence, the mission 
planning and resource allocation needed for these larger sensor platforms often introduce 
untimely delays in the race to predict and prevent adversarial tactics.  The emerging sub-
discipline of cyber-physical MASINT adopts a non-traditional approach to signal intelligence.  It 
seeks to exploit the cyber domain-the realm of connected devices-to obtain signatures from the 
slew of sensors typically integrated into modern-day technological devices.  However, what we 
gain in terms of immediate accessibility and crowd-sourced intelligence can be degraded by 
lower sensor sensitivities and unpredictable system responses that cause high levels of 
uncertainty in event detection, identification, and characterization. 
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2 Introduction 

This work aims to develop advanced machine learning (ML) techniques that are uniquely capable 
of exploiting heterogeneous and potentially lower-fidelity, cyber-physical signatures. Our highly 
qualified team is composed of RedVox, Inc.'s for signal collection via a mobile device, and both 
the Florida Institute of Technology, FIT ([1]–[7]), and the University of Florida, UoF ([8]–[10]) 
for algorithm development.  

Figure 1, Deep Discriminative Dictionaries for Infrasound Classification (D3IC) system provides 
an end-to-end cyber-physical infrasonic processing framework: starting from infrasound signal 
acquisition through mobile devices (Android and iOS), calibration and network processing for 
localization and SNR improvement, a novel time-frequency dictionary learning method 
denoising and compressed representations, feature extraction through deep learning, and an 
integrated discrimination engine that is feedback to the dictionary and deep learners for 
improved classification in the presence of low fidelity cyber-physical signals. 

Acoustic-based analyses possess many desirable properties, such as long-distance wave 
propagation and attributable spectral characteristics.  However, for the past 20 plus years, it has 
been, by large, relegated to capturing massive explosions, earthquakes, bolides, and space-bound 
rocket launches.  These collections have been captured by traditional sensor networks, like the 
International Monitoring Systems (IMS).  In this effort, we move beyond traditional collection 
and analysis of these signatures, instead proposing mobile devices to capture infrasonic 
signatures.  These distributed mobile devices can collect the previously mentioned sources that 
can be used to classify localized sources, small to medium UAVs, artillery, and other related 
tactical threats.  Also, mobile device infrasonic observations can be correlated (even fused under 
certain scenarios) with the traditional collections for unprecedented signature analysis.  However, 
what we gain in ubiquitous monitoring, is not without challenges like signal quality. 

Traditional sensor array data exhibits more uniformity in the waveform amplitudes and spectral 
characteristics.  This readily allows the data to be processed by traditional algorithmic techniques 
to improve SNR, perform detection, characterize physical phenomenology, and provide event 
classification via standard ML approaches.  On the other hand, the mobile sensors' data exhibit 
many irregularities due to effects such as diffraction, dispersion scattering, and non-linear shocks 

Figure 1 Deep Discriminative Dictionaries for Infrasound Classification (D3IC). 
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that are compounded in the cyber-physical domain (as expected since the multipurpose device is 
not optimized to capture infrasound).  The same event observed in the traditional domain will 
appear considerably different from a cyber-physical device.  Difficult problems such as these are 
ideally suited for the algorithmic approaches grounded in machine learning, whose primary 
purpose is to extract latent patterns and distinguish attributes that often appear obfuscated.  Our 
novel deep discriminative dictionaries for infrasound classification (D3IC) system employs ML 
in service of signal processing to yield an integrated system supporting the following state-of-the-
art capabilities: 

• Developed a cross-platform calibration for mobile device infrasound captures. 
• Demonstrated single device, array, and distributed network signal processing localization 

and SNR enhancement. 
• We created time-frequency dictionary learning for denoising and discriminating 

compressed signal representation. 
• We researched deep learning for robust feature extraction from infrasonic cyber-physical 

signatures. 
• We designed a modular ML framework with the flexibility to train and deploy algorithms 

independently or integrate them for richer classification power. 
• We have validated a robust and repeatable ML model development, deployment, and 

validation process. 
Figure 1 illustrates the D3IC system and its major subcomponents that operate in concert to 
provide these functionalities.  Given that we acquire acoustic signals from various mobile 
devices, it is critically important that the signals are appropriately normalized before further 
processing the D3IC system.  This requirement is addressed by the INFERNO subsystem, which 
employs a Gabor octave filter to standardize the signals.  This approach was pioneered by team 
member Garcés (RedVox CEO), who has demonstrated its success on traditional sensor arrays 
[1], and more recently, on Android and iOS devices.  The Sensor Network Processor (SNP) 
contains a suite of array and distributed network signal processing algorithms for event 
localization and SNR improvement [e.g., F-K analysis, subspace methods, network processing 
([2]–[5])].  If correlations cannot be established across sensors, the SNP serves as a pass-through 
so that signals can be processed individually.  The Time-Frequency Dictionary Learner (TFDL) 
and Deep Feature Learner (DFL) subsystems both employ (similar-in-spirit) hierarchical network 
structures to produce highly compressed sparse representations and rich feature descriptors.  The 
TFDL utilizes well-known Gabor wavelet frontends and proceeds with learning denoised 
representations using discriminative dictionaries.  The DFL performs feature extraction using an 
efficient deep learning pipeline that employs convolutional and standard neural layers.  The 
processing chain culminates in the Classification Engine (CE), where we use a support vector 
machine (or equivalent) for state-of-the-art classification.  We have significantly enhanced the 
utility of these three methods by mathematically formalizing a loss objective that connects the 
TFDL and DFL through feedback from the CE.  This tight integration is optional; the flexibility 
exists to evaluate the effectiveness of coupling or decoupling these components empirically.   

As constructed, D3IC is a modular system that supports various functional threads on how the 
subsystems are interconnected to form an end-to-end processing chain.  For example, it is 
possible to employ only INFERNO, SNP, TFDL, and the CE to produce an event classification 
framework.  Later in the development cycle, DFL can be substituted for TFDL, or even used in 
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conjunction, as alluded to earlier.  From our extensive ML experience, we have found that such a 
"plug-n-play approach" is ideally suited for ML models, which are constantly updated and often 
evaluated among a set of alternatives.  The modular approach also enables us to define interfaces 
easily and begin rapid prototyping without too many cumbersome interdependencies.   

3 Tasks 
Task #1: Program Management and Oversight 
The FIT was the primary for the management and technical oversight of the efforts described in 
this technical report. 

Task #2:  Data Collection, Standardization, and Dissemination 
RedVox, in collaboration with FIT, worked to identify targets of interest and perform a controlled 
collection of infrasound signals with a supported mobile device. 

• Subtask: Identify customer targets of interest. 
• Subtask: Define collection requirements (equipment, location, etc.) 
• Subtask: Collect multiple target infrasound signals on iOS and Android platform 

devices. 
• Subtask: Signal processing for calibration and standardization. 
• Subtask: Establish secure, controlled access and storage of collected data samples. 
• Subtask: Expert analysis for signal collection and dissemination. 
• Subtask: Maintain and update RedVox app and cloud server. 

Deliverable(s):  Collection of signals of interest.  Cloud-based app and environment for data 
collection.  

Task #3:  Signal denoising and wavelet dictionary learning 
The UoF, in collaboration with FIT, investigated and developed processing techniques for signal 
enhancement(s).  We accomplished infrasound data signal processing using a set of time-
frequency-scale Gabor filter wavelets, which together represent the infrasound signal. 

• Subtask: Gabor-wavelet signal representation. 
• Subtask: Examine and identify a set of scales and frequencies to match the infrasound 

domain. 
• Subtask:  Denoise and discriminative dictionary learning.  Gabor coefficients extracted 

from the signal using over-complete dictionary representation. 
• Subtask:  Explore standard methods such as K-SVD and LASSO for sparse signal 

representation in an over-complete basis. 
Deliverable(s):  Time-frequency dictionary for denoising and discriminatively compressed 
infrasound signal representations. 

Task #4:  Analysis of robust feature extraction 
In collaboration with the UoF, FIT employed techniques for robust feature extraction from 
infrasonic cyber-physical signatures that will enable class discrimination. 

• Subtask: Analysis of Gabor coefficients as ideal features. 
• Subtask: Analysis of dictionary projections as robust features. 
• Subtask: Explore deep convolutional networks for feature extraction. 

Deliverables:  A robust feature set, ideal for signal class discrimination. 
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Task #5:  Machine learning and Deep Networks for classification 
In collaboration with the UoF, FIT performed a classification of infrasound signals utilizing a 
standalone Support Vector Machine (SVM), deep neural network, or a mixed classification 
approach. 

• Subtask: Deep network modeling to perform classification. 
• Subtask: Explore the viability of a majorized support vector machine hinge loss 

classifier. 
• Subtask:  Mixed classifier approach with deep network and SVM. 

Deliverables:  Classification model for class discrimination. 

Task#6:  Integrated prototype capability for processing mobile device infrasound signals 
FIT developed a prototype modular ML framework with the flexibility to train and deploy 
algorithms independently or integrate them for richer classification power.  Robust and repeatable 
ML model development, deployment, and validation process. 

• Subtask:  Design a prototype system for deployment. 
• Subtask:  Develop a prototype system for end-to-end processing. 
• Subtask:  Develop and perform test cases to demonstrate capability.  
• Subtask:  Provide system design documents and technical instructions for operation. 

Deliverables:  A prototype system was delivered to demonstrate infrasound class discrimination.  
We employed a modular approach since there are many ways in which the above modules can be 
configured. Furthermore, at each stage, there is potential for improvement via feedback to an 
earlier module. After testing and delivering the individual modules, we tested various feedback 
system configurations incorporating the above modules. 
 

Table 1 Summary of task and deliverables. 
Task # Description Deliverable 

#2 Data collection, standardization, 
and dissemination. 

Collection of signals of interest.  Cloud-based 
app and environment for data collection. 

#3 
Signal denoising and wavelet 
dictionary learning. 

Time-frequency dictionary learning for 
denoising and discriminatively compressed 
signal representation. 

#4 Analysis of robust feature 
extraction. 

A robust feature set, ideal for signal class 
discrimination. 

#5 Machine learning and deep 
networks for classification. 

Classification model for class discrimination. 

#6 
Integrated prototype capability for 
processing cyber-physical 
infrasound signals. 

A prototype system to demonstrate infrasound 
class discrimination. 
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4 Methods, Assumptions, and Procedures 
4.1 INFERNO Signal Calibration and Standardization 
We integrated the strengths of two platforms: INFERNO (Infrasonic Nth Octave multiresolution 
energy estimator) software platform for infrasound signal normalization and its close relationships 
with the Gabor wavelet machine learning frontend.  

Infrasound signals can span the spectrum from 0.001Hz to 20Hz.  This is a spread of four orders 
of magnitude and is, therefore, a decade broader than the audio range (typically 20Hz to 20 kHz). 
While we do not discuss the sensor spread here (since the sensor array processing network is 
discussed in the next section), their spatial distribution can range from meters to kilometers. 
Furthermore, the energy spectra of infrasonic signals can vary by twelve orders of magnitude. 
When the diverse ranges of the spatial, spectral, temporal, and amplitude scales are considered, 
the challenges facing a unified approach to infrasound processing become more apparent. 
Finally, the collection process for infrasound signals is fraught with data gaps, noise clipping, 
distortion, transience, etc. There is, therefore, a clear and present need for infrasound signal 
normalization—a task addressed by Co-PI Garcés previous work [11] that introduced the 
INFERNO approach. 

The INFERNO platform has mainly been concerned with 24-bit digital pressure waveforms that 
correspond to pressure waves traveling outward from a source (at the speed of sound) with 
recorded pressure fluctuations.  While these infrasound signals have been popular in remote 
sensing, only recently has cellphone devices and other 21st century digital collection 
technologies stepped forefront.  This, in turn, has widened the scope of infrasound signal 
processing, making it more necessary to study signal collection, processing, normalization, 
denoising, classification, and characterization in this domain. INFERNO provides a one-of-a-
kind platform for signal normalization and characterization of energy-based signatures, ideally 
suited to the present-day twin demands of decentralized data collection and cloud-based signal 
processing and machine learning. 

INFERNO addresses the orders of magnitude scaling of infrasound frequencies by performing 
fractional octave processing.  Frequency octaves are typically divided into 1/3 bands with these 
fractional octave schemas resulting in overlapping, narrow frequency processing filter banks. 
Since time-frequency analysis entails corresponding time domain filter representations, the 
temporal scales are also carefully worked out, with the multiple scales dovetailing one another as 
expected.  Note that this logarithmic frequency processing has a clear counterpart in the Gabor 
wavelet processing downstream.  Therefore there is a clear synergy between the two 
frameworks, which can be exploited by twin processing of denoising and normalization instead 
of the more conservative pipelined option.  INFERNO performs its own Gabor filter-based 
processing of signals via its carefully constructed set of filter banks and temporal windows.  
Amplitude normalization is adorned with basic denoising capabilities since the fractional wavelet 
bin schema includes signal integration within narrow frequency bins.  Further, the signals' 
spectral energies are also computed (with attempts to separate the noise energy components) – an 
energy signature-based characteristic of the signals.  This last feature has a lot in common with 
the projections of signals onto Gabor wavelet bases (contemplated as the first stage in 
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denoising), strongly suggestive that normalization, energy signature-based characterization, and 
denoising should proceed in lockstep. 

When considered within the larger landscape of signal processing and machine learning, 
INFERNO's capabilities suggest a set of deliverables aimed first at prosaic modular components 
followed by a more ambitious synthesis, especially of normalization and denoising.  The initial 
phase of the project included the development of and execution of INFERNO and the Gabor 
wavelet processing frontends in pipelined mode. Subsequently, after becoming more familiar 
with  how these algorithms affected our results we then integrated INFERNO and Gabor wavelet 
denoising at a more fundamental level to benefit both methods. 
4.2 Sensor Network Processor 
The system is designed to collect and classify signals acquired from multiple mobile devices.  
When multiple devices are spatially located within a desirable distance, we can then employ 
techniques from directional arrival (DOA) estimation [12] to provide additional characterization 
information regarding the location of the source event and possibly enhance the SNR of the 
captured signals.  The Sensor Network Processor (SNP) subsystem is designed to address signal-
processing needs associated with array and network processing.  Strictly speaking, array 
processing techniques like digital beamforming [13] require certain physical requirement be 
satisfied, e.g., spatial separation 𝑑𝑑 between the array elements must be 𝑑𝑑 ≤ 𝜆𝜆

2
, where 𝜆𝜆 is the is 

the wavelength associated with the carrier frequency.  Though it is possible to construct such an 
array with mobile devices, we cannot rely on non-cooperative mobile users to synchronize in the 
required array geometry.  If by chance they do, we can certainly take advantage of such scenarios 
to invoke coherent processing.  However, most of the time, we anticipate users will be within 
sufficient proximity of an event of interest, given that infrasound wavelengths support 
propagation for fairly long distances (depending on the source event's strength).  The SNP will 
support several coherent ([14], [15]) and non-coherent ([16], [17]) “array” processing methods.  
Since the mobile devices provide timestamp and geo-location information for the devices, the 
infrasound signal capture from various devices can be intelligently fused to provide both event 
localization information and improve the SNR.  If meaningful meta-data is lacking or not 
provided by the device user, the SNP simply serves as a pass-through to the ML subsystems of 
our D3IC system.       
4.3 Deep Discriminative Dictionaries for Infrasound Classification (D3IC) 
Infrasound signals have special characteristics.  The frequency range begins at much lower 
frequencies than encountered in other typical time series applications.  The data are much noisier 
and more diverse than their standard time series counterparts.  The paucity of data translates to 
severely curtailed availability of pre-trained deep learning layers.  For these reasons, we cannot 
expect to make significant progress in infrasound data processing by simple-minded reliance on 
deep networks operating directly on the original signals. 

The onerous denoising and feature extraction requirements in infrasound signal processing 
prompt us to (a) begin with time-frequency analysis of the signals using short-time Fourier 
transforms or Gabor wavelets operating at multiple frequencies and scales and (b) incorporate 
discriminative dictionary learning on the estimated time-frequency-scale parameters to perform 
denoising, (c) feature extraction simultaneously, and (d) classification. Consequently, we 
envisage a hierarchical network structure that begins with well-known Gabor wavelet frontends.  
Then proceeds with learning a denoised representations using discriminative dictionaries.  Next, 
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performs feature extraction using an efficient deep learning pipeline that culminates in a support 
vector machine (or equivalent) state of the art classification.  This unique blend of parametric 
signal processing, non-parametric deep learning, and convex optimization-driven support vector 
classification is ideal for the infrasound domain. 

Time-frequency analysis of signals has a long history ([18], [19]). After the Fast Fourier Transform 
(FFT) advent, the benefits of applying short time Fourier Transforms (STFT) to signals became 
clear, especially in non-stationary situations. This line of research continued with wavelets (which 
incorporated multi-resolution processing) and Gabor wavelets.  The combination of scale and short 
time-frequency analysis afforded by Gabor wavelets make them well suited to this domain [20]. 
We are using the scales and frequencies discussed in [11] to obtain detailed time-frequency-scale 
characteristics of infrasound signals. The frequency range of the Gabor wavelets can be tuned to 
the infrasound range, and the scale parameters can be set based on the signal lengths.  While the 
above description of the scale and time-frequency processing using Gabor wavelets is necessarily 
(because it is introductory) biased toward signal filtering, we envisage the Gabor wavelets used in 
dictionary learning mode.  That is, we unpack a training set of infrasound signals using a Gabor 
wavelet dictionary where the "atoms" are individual wavelets centered at time points and focused 
on one scale and frequency.  If a signature is well characterized, such as explosive blasts, it is also 
possible to follow a similar approach with customized wavelets tuned to the signal of interest as 
demonstrated in [21]. 

While dictionary learning is now considerably more standardized with readily available [22] 
suites of algorithms and software, our needs force us into a more unique and specialized 
dictionary learning aspect.  The first point of departure is the need for dictionary learning in 
infrasound signal space rather than in the more standard vector space of features.  The second 
point of departure is the need for dictionary learning to be discriminative.  In other words, it is 
imperative that the learned dictionary be maximally influenced by feedback from downstream 
processing of features.  Finally, we seek to learn discriminative dictionaries comprising Gabor 
wavelet atoms as described above.   For all these reasons, the D3IC approach is unique but well 
suited to the infrasound domain.  Below, we give an introductory treatment of the dictionary 
learning component with the caveat that the payoff depends on feedback from downstream deep 
learning. 

The past decade has seen a lot of development in dictionary learning. The initial work with 
principal component analysis quickly evolved into learning how to estimate overcomplete 
dictionaries.  The K-SVD algorithm [22] and orthogonal matching pursuits (OMP) [23] etc., are 
popular algorithms in this space. In the most general setting, dictionary learning results in 
estimating a set of vectors, which constitute an over-complete basis for a training set.  Each 
vector in the training set has multiple exact representations in the dictionary. The learned 
dictionaries have several applications - denoising and discrimination being popular choices as 
well as efficient coding.  In the denoising application, noisy incoming vectors are projected on to 
a set of principal or leading components using variance thresholding.  Noisy components 
correspond to subspaces that occur less frequently in the training set.  When discrimination or 
classification is the target application, the learned dictionaries are used to perform (rudimentary) 
feature extraction prior to classification.  A dictionary is deemed discriminative [24] if the prior 
dictionary learning is the misclassification error (or convex approximations thereof).  In this 
case, the projection onto the basis vectors leads to better class discrimination (instead of just 
denoising). 
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The preceding discussion should be clear that discriminative dictionary learning as standardly 
conceived lacks a deep learning component for obtaining improved features.  To this end, we 
implemented a coupled discriminative dictionary learning [24] with deep learning ([25], [26]). 
The hierarchical deep learning stages are interjected in between the dictionary learning and 
classification steps.  In this way, dictionary learning leads to a rudimentary set of features 
amplified by deep learning prior to classification (using a state-of-the-art classifier like the 
SVM). Consequently, the dictionary's discriminative aspect does not have to bear the whole 
burden of feature extraction since the deep learning stages can pick up the slack.  This permits 
the learned dictionary to focus on denoising and the extraction of rudimentary features, thereby 
avoiding an unnecessary compromise between denoising and discrimination.  Or in other words, 
dictionary learning results in denoising and the extraction of a basic set of features amplified by 
the deep learning component into composite features more ideally suited for classification.  
There does not exist much previous work coupling denoising and dictionary learning with the 
deep learning stack. 

The integration of deep learning ([25], [26]) (sans the convolutional layers and the final 
classifier) with dictionary learning primarily involves a marriage of disparate software stacks:  
TensorFlow [27] and its relatives give us simple APIs for deep learning which must be integrated 
with dictionary learning.  The result is a backpropagation of the first stage derivatives of deep 
learning on to the backend of the dictionary learning software stack: the basis coefficients are 
modulated by downstream changes fed back from the minimization of the misclassification error 
(or convex approximations thereof) ([28], [29]). 

The final aspect of infrasound processing concerns the classifier. Rather than use the simpler 
classifiers in the deep learning stack, we elect to use the best of breed support vector machine 
(SVM) classifier in the form of the convex hinge loss function (and its multi-class extensions) 
[30]. The backstop of the deep learning stages is the SVM, with the hinge loss function 
approximating the misclassification error.  We eschew kernel SVMs since the deep learning 
stages effectively give us composite features that are well-tuned toward discrimination rendering 
the "kernel trick" unnecessary. 

We have given a brief description of the entire system: from Gabor wavelet preprocessing to 
dictionary-driven denoising and basic feature extraction, continuing with composite feature 
extraction via deep learning and culminating with an SVM backend.  The result is a deep 
discriminative dictionary-driven processing and classification system – well-tuned to infrasound 
signals. 
4.4 Time-Frequency Denoising:  Gabor Wavelet Dictionary 
As previously mentioned, time-frequency analysis using Gabor filters and wavelets has become a 
popular approach due to many factors.  Below, we detail an approach to dictionary learning 
using Gabor wavelet atoms.  This is developed in standalone mode to forestall potential 
confusion without reference to downstream products such as deep learning layers or SVMs.  The 
advantage of standalone development of Gabor dictionaries is a modular payoff.  Furthermore, 
this aspect of our work is driven entirely by the need for denoising.  The goal is to provide a 
denoising module based on Gabor wavelet dictionary thresholding. 
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𝜙𝜙(𝑡𝑡; 𝜈𝜈, 𝑠𝑠) ≡ exp(−
𝑡𝑡2

2𝑠𝑠2
) exp(2𝜋𝜋𝜋𝜋𝜈𝜈𝑡𝑡)   Equation 1 

The Gabor "atoms" used in dictionary learning are denoted as where 𝑠𝑠 is a scale parameter and 𝜈𝜈 
the frequency.  This Gabor atom is centered at the origin but can easily be shifted to any 
temporal location.  The central goal of dictionary learning is to represent any infrasound signal 
𝑓𝑓𝑖𝑖(𝑡𝑡), 𝜋𝜋 ∈ {1, … ,𝑁𝑁} via an expansion 

𝑓𝑓𝑖𝑖(𝑡𝑡) ≈ ∑ ∑ 𝑐𝑐𝑘𝑘𝑘𝑘
(𝑖𝑖)𝜙𝜙(𝑡𝑡 − 𝑡𝑡𝑘𝑘; 𝑠𝑠𝑘𝑘𝑘𝑘 , 𝜈𝜈𝑘𝑘𝑘𝑘)𝑛𝑛

𝑘𝑘=1
𝑀𝑀
𝑘𝑘=1 . Equation 2 

 
This relationship reflects the fact that multiple (𝑛𝑛) scales and frequencies are deployed at every 
location 𝑡𝑡𝑘𝑘 resulting in a total of 𝑀𝑀𝑛𝑛 atoms used for signal representation.  The approximate nature 
of the above relationship is meant to suggest a least-squares error principle for estimation of the 
set of unknown coefficients �𝑐𝑐𝑘𝑘𝑘𝑘

(𝑖𝑖)�:  

𝐸𝐸Gabor ��𝑐𝑐𝑘𝑘𝑘𝑘
(𝑖𝑖)�; {𝑠𝑠𝑘𝑘𝑘𝑘 , 𝜈𝜈𝑘𝑘𝑘𝑘}�

= � �𝑓𝑓𝑖𝑖(𝑡𝑡) −��𝑐𝑐𝑘𝑘𝑘𝑘
(𝑖𝑖)𝜙𝜙(𝑡𝑡 − 𝑡𝑡𝑘𝑘; 𝑠𝑠𝑘𝑘𝑘𝑘 , 𝜈𝜈𝑘𝑘𝑘𝑘)

𝑛𝑛

𝑘𝑘=1

𝑀𝑀

𝑘𝑘=1

�

2

𝑑𝑑𝑡𝑡 + 𝜅𝜅��𝑐𝑐𝑘𝑘𝑘𝑘
(𝑖𝑖)�

𝑖𝑖𝑘𝑘𝑘𝑘

𝑇𝑇

0
 

Equation 3 

 

The above objective function contains an ℓ1 regularization with regularization parameter 𝜅𝜅 on 
the Gabor coefficients (which will necessitate LASSO-based optimization) ([31]–[33]).  Other 
norms can, of course, be considered. In the above least-squares problem, it should be understood 
that the set of scales and frequencies are given or fixed (by the domain).  For example, the 
infrasound domain will dictate the range of frequencies, and the temporal length of the signals 
(in seconds) will dictate the range of scales.  We have taken some liberties in notation here; the 
Gabor wavelet is complex, whereas the signal is not, which implies that the complex atoms will 
be used in conjugate pairs etc.  The signals are not usually available at all time points but only at 
discrete locations, whereas an integral symbol is used.  In practice, the integration will be carried 
out numerically when required (though we reserve the right to evaluate some integrals using 
infinite extensions of the interval analytically) ([34], [35]).  Denoising via wavelet thresholding 
works by thresholding wavelet coefficients; Gabor wavelets are not an exception despite being 
non-orthogonal. 

In previous work on image denoising [36] (which has been well received so far with over 150 
citations in 4 years), we estimated complete HOSVD dictionaries from color image patches, which 
were first chosen based on a ℓ2 similarity measure.  Here, we let the dictionary learning algorithm 
implicitly do the same with the coefficients performing a similar role. 
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A simple and direct way to get to the heart of Gabor dictionary learning is to consider the 
learning process in a pipelined fashion. Given a set of infrasound signals, we first estimate Gabor 
coefficients �𝑐𝑐𝑘𝑘𝑘𝑘

(𝑖𝑖)� , using regularized versions of the least-squares objective function above.  
This allows us to transition from the original set of (continuous-time) signals to a set of time-
frequency-scale coefficients.  The advantage inherent in this transition is that the coefficient set 
can now be modeled as living in a vector space, thereby allowing standard dictionary learning to 
be performed.  Therefore, we can model Gabor dictionary learning's overall process as 
encompassing a two-stage process: first, we estimate Gabor coefficients from the original 
signals, and next, we estimate (possibly over-complete) dictionaries from the coefficient set.  We 
reserve the right to consider feedback in this process, which would entail that stages 1 and 2 
above would be coupled.  However, a decoupling allows for a more straightforward exposition. 

There are different approaches to dictionary learning to consider ([22], [37]).  We explored the 
well-known K-SVD algorithm, which alternates between dictionary updates and projections onto 
the dictionary bases.  Subsequently, we can revisit these choices – including our award-winning 
previous work in this area ([38], [39]) - based on the empirical results.  Since the dictionary is 
over-complete, the computational problem is a very difficult one; therefore, we initialized the 
dictionary using principal components.  The result is a set of bases that serve as generators of 
Gabor coefficients and, therefore, infrasound signals. 

Denoising can be performed within this framework using basis thresholding.  In the simplest 
approach, PCA-based denoising can be performed.  Using over-complete bases for denoising is 
more complex but now has a reasonable track record over the past decade.  Note that, for the 
sake of exposition, we stick to the pipeline described above.  After extraction of Gabor 
coefficients, dictionary learning is performed.  Basis thresholds on the dictionary vectors lead to 
filtering and elimination of noisy coefficients.  The new set of coefficients can be used to obtain 
new, denoised, infrasound signals.  Note, no contact has yet been made to the world of 
classification. 

This process can be continued. Sticking with the pipeline motif, we can perform deep learning on 
the denoised projections of Gabor coefficient sets on to the dictionary bases (which being over-
complete requires the use of LASSO or equivalent).  It is natural to ask why dictionary learning 
could not have been performed directly on the infrasound signals instead of on the Gabor 
coefficients. Since the signals are 1-D functions, dictionary learning in the space of continuous 
(and perhaps band-limited) functions is quite difficult (since function norms and inner products 
have to be used as opposed to finite vector space ones).  Suppose the functions are discretized 
and fed into a dictionary learning procedure. In that case, we encounter a permutation problem: 
usual versions of dictionary learning are invariant to permutation of the discretized values 
(provided all function discretization’s are permuted in the same manner). 

In contrast, invariance to permutation of Gabor coefficients is not a problem since they lack 
temporal ordering.  For these reasons, it is reasonable first to extract Gabor coefficients followed 
by dictionary learning in coefficient space.  (The issue of pipelined versus parallel learning is 
orthogonal to the issue of using discretized infrasound signal values directly in dictionary 
learning.)  Finally, we could have elected to perform denoising directly in the Gabor coefficient 
space without bringing in dictionary learning. If denoising were the sole goal, this could 
conceivably be good enough (from a pragmatic perspective), but since we need to denoise and 
discriminate, we have elected to combine Gabor coefficient extraction with over-complete 
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dictionary learning since this combination facilitates the joint needs of denoising and 
discrimination. 

𝐸𝐸TFDL�𝐷𝐷, �𝒗𝒗(𝑖𝑖)�; �𝒄𝒄(𝑖𝑖)�� = ��𝒄𝒄(𝑖𝑖) − 𝐷𝐷𝒗𝒗(𝑖𝑖)�
2
2

+ 𝜆𝜆��𝑣𝑣𝑗𝑗
(𝑖𝑖)�

𝑖𝑖𝑖𝑖

 Equation 4 

The TFDL over-complete dictionary learning objective function is where 𝐷𝐷 is the dictionary 
containing a set of bases, �𝒗𝒗(𝑖𝑖)� a set of projections onto the bases and �𝒄𝒄(𝑖𝑖)� , the set notation for 
the input Gabor coefficients (on which the dictionary is being constructed). The regularization 
parameter 𝜆𝜆 precedes an ℓ1 norm term on the projections since the over-complete bases can lead 
to several unnecessary projections (and therefore set to zero).  This is the standard LASSO 
sparsity term [31].  Consequently, we can use standard packages such as LASSO and K-SVD 
[22] to accomplish dictionary learning on the Gabor coefficients. Once again, despite this being a 
standalone dictionary learning objective function (in the pipelined setting), we can dovetail it 
with the previous Gabor coefficient extraction step indicating a dictionary learning-driven 
regularization on the input coefficients. 

The past decade has seen huge improvements in dictionary learning algorithms and attendant 
software suites ([37], [33]).  While K-SVD remains popular (and therefore a first-choice 
approach), the integration of LASSO (convex algorithms) with over-complete basis pursuit can 
lead down myriad algorithmic pathways.  It is extremely rare to see dictionaries constructed on 
Gabor coefficients [32] (which will be turned into reals using symmetrically placed complex 
exponentials), and even more rare to see this performed in the infrasound domain.  
Consequently, this approach is rich with potential empirical discoveries in denoising (over and 
beyond simple wavelet thresholding).  Once the dictionary has been constructed, denoising 
commences by examining different projections and lossy reconstructions (which eliminate 
noise).  Once again, note that no contact has been made with the world of classification.  At this 
juncture, we are focused on building dictionaries and obtaining infrasound signal reconstructions 
which are cleaner versions of the original.  We expect to perform many statistical tests on the 
residuals and pick reconstructions based on residual bias and variance. (We have ample 
experience in this domain from previous work in image denoising.)  Finally, despite eschewing 
NL-means style approaches in denoising, the dictionary effectively does pull in remote 
infrasound patches similar to each other.  With this description of dictionary-based denoising in 
place, we incorporate deep learning on the projections next. 

4.5 Deep Feature Learning 
Thus far, we have introduced Gabor wavelet infrasound representations and time-frequency 
dictionaries.  We now detail the deep learning component whose main task is to amplify the 
intrinsic differences between the incoming Gabor coefficients and/or dictionary representations 
using labeled data.  The centerpiece of this strategy is how we leveraged software suites and 
libraries to perform this task and, in addition, perform a circular feedback to earlier stages (like 
time-frequency dictionary learning). Instead, we removed the top classification layer and replace 
it with a hinge loss support vector machine (SVM).  This change is driven by the fact that the 
SVM is usually a better classifier than the simpler ones used in deep learning. 
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A standard two-layer deep learning neural network ([25], [26]) minimizes the following 
objective function during training with respect to the unknown weights 𝑊𝑊.  Note the presence of 
the nonlinearity 𝜙𝜙 separating the upper layer from the lower one.  The label training information 
is present in the set 𝑍𝑍 = �𝑧𝑧(𝑖𝑖)�. In standard deep learning, these would be the output labels.  We 
reserve the right to have an output layer corresponding to an SVM connected to the deep learning 
network: 

𝐸𝐸DFL�𝑊𝑊; �𝒛𝒛(𝑖𝑖)�, �𝒗𝒗(𝑖𝑖)�� = ��𝑧𝑧𝑘𝑘
(𝑖𝑖) − 𝜙𝜙��𝑤𝑤𝑘𝑘𝑘𝑘𝜙𝜙��𝑤𝑤𝑘𝑘𝑗𝑗𝑣𝑣𝑗𝑗

(𝑖𝑖)

𝑗𝑗

�
𝑘𝑘

��

2

+ 𝜆𝜆2 ��‖𝑤𝑤𝑘𝑘𝑘𝑘‖2 + ��𝑤𝑤𝑘𝑘𝑗𝑗�
2

𝑘𝑘𝑗𝑗𝑘𝑘𝑘𝑘

�
𝑖𝑖𝑘𝑘

 . Equation 5 

The squared error between the labels and the feedforward outputs can be replaced by other more 
suitable measures (logistic regression etc.).  Present-day deep learning architectures have 20+ 
layers instead of the two depicted above.  Note that from a mathematical point of view, this 
presents a straightforward extension.  However, the number of layers is often critical to 
performance and underlies the difference between under-fitting and over-fitting.  The squared 
norm regularization terms are also standard (gated by a parameter 𝜆𝜆2) with other forms available 
as well. 

The software suites available at the present time (TensorFlow etc.) largely automate the process 
of setting up the number of layers and choice of error measures.  We applied these libraries in a 
standalone mode to deliver a deep network module and in feedback mode wherein the weights 
above are tuned within a larger objective function (containing the dictionary learning and Gabor 
wavelet terms).  

We used a majorized version ([40], [41]) of the linear support vector machine in the output layer. 
We have considerable experience with training/testing majorized SVMs [Yan17, Yan17b] with 
and without wavelet preprocessors.  In addition, we have enormous experience with over-complete 
representations and convex approximation algorithms for classification ([42], [43]) in general.  The 
majorized SVM objective function is wherein auxiliary variables 𝒔𝒔 have been used to transform  

𝐸𝐸SVM(𝒘𝒘, 𝒔𝒔)  =
1
2
‖𝒘𝒘‖22 + 𝐶𝐶�

�1 − 𝑦𝑦(𝑖𝑖)�𝒘𝒘𝑇𝑇𝒙𝒙(𝑖𝑖) + 𝑏𝑏� + 𝑠𝑠(𝑖𝑖)�
2

4𝑠𝑠(𝑖𝑖)
𝑖𝑖

 Equation 6 

 
the standard hinge loss objective function into a majorized version.  The weight vector 𝑤𝑤 and 
bias 𝑏𝑏 are standard, as are the class labels 𝑦𝑦(𝑖𝑖).  (We have used a different notation for the labels 
here to differentiate this module from its deep learning counterpart.)  The notation 𝑥𝑥(𝑖𝑖) denotes 
the input patterns, which may be deep network outputs instead.  This linear SVM can be readily 
extended to multiple classes using one-versus-all training.  The parameter 𝐶𝐶, which expresses a 
trade-off between margin maximization and classification, will be set using cross-validation. 
4.6 Deep Discriminative Classification 
Machine learning methodologies for infrasound processing can be expected to result in 
classification algorithms ([44], [45]) that extract features from a variety of wireless infrasound 
signal sources.  Assuming signal fusion is in place via adaptive beamforming and related 
approaches, this suite of methods proceeds with feature extraction (using convolutional networks 
and deep learning) [45] followed by efficient classification (using support vector machines, etc.) 
[44]. We have expertise in all of the above ([5]–[7]).  However, machine learning is not 
sufficient for signal characterization: to discover transient signal signatures that are characteristic 
of the domain (103 − 109 kg TNT equivalent yields), we turn to deformable fragment templates. 
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When signals pertinent to a domain are collected, they are fused using dynamic time warping and 
related methods to remove non-stationary and local shifts [46].  Consequently, the fusion process 
has information regarding the temporal correspondences across the signal stack.  Machine 
learning methods can (in their lower layers) yield features that are important to a particular 
domain [47]. The main difference between standard machine learning and infrasound processing 
is that we are dealing with low-frequency signals.  We can convert the low-level features into 
temporal functions representing a particular domain (airborne blasts, for example).  The lower 
layers (mainly convolutional) give us linear operators which transform the signals into feature 
signals.  And since we have correspondence information from signal fusion, these new feature 
signals can be brought into the register using fusion information (following similar approaches in 
2D and 3D) [48]. 

We have developed a processing, denoising, discrimination, and classification pipeline 
comprising Gabor wavelet signal representation, over-complete dictionary learning, deep 
networks, and culminating in a SVM classifier. 
4.7 Data Collection 
The ability to acquire and efficiently disseminate cyber-physical data is critical to the success of 
any research project targeting this domain.  Due to high diversity and heterogeneity in the 
characteristics of smartphone sensors, exploitation techniques need to be more adaptive and 
flexible to transition seamlessly to the cyber-physical realm.  With this consideration in mind, we 
worked directly with infrasound data collected via mobile device.  Our team member RedVox, 
Inc., has unrivaled capabilities in this regard built on decades of experience interpreting 
infrasound signatures through the chain of signal capture, detection, association, localization, and 
identification.  RedVox has an iOS and Android infrasound application that can leverage the 
ubiquity of mobile device microphones.  RedVox has demonstrated ([49]–[51]) the suitability of 
on-board mobile device microphones and barometers to record down to the infrasound range of 
interest for tactical and explosion monitoring applications.  RedVox also has successfully crowd-
sourced data collections from various SpaceX launches out of Cape Canaveral, FL. RedVox also 
develops, tests, and implements cloud architectures for data centers. 
 
The foundation for transient signal detection and characterization is a refined version of the [11] 
multiresolution gridding method to standardize spatiotemporal observations and feature sets into 
fractal logarithmic spaces for comparisons amongst different sensor modalities (INFERO).  We 
recast the signature identification problem [52] in terms of the reproducibility and 
transportability of robust signature metrics and their variability.  Even simple signatures, such as 
those produced by controlled explosions [21], can have substantial diversity in their defining 
features. The association and localization procedure depends on the selected target and the 
topology of the sensor network.  RedVox has access to traditional sensor and array data 
methodologies incorporated with the emerging ubiquitous sensing systems to associate and 
locate sources based on shared signature features and probabilistic variability.  We concentrate 
on migrating, updating, and implementing traditional and emerging sensor systems and methods 
into Big Data architectures. 
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4.7.1 Data and Metadata Quality Gates 
The distinction between data and metadata can be blurred once the processing chain is initiated 
and additional information layers are added (metadata).  In this discussion, data refers to the 
binary data payload, usually corresponding to time-series data points, and metadata corresponds 
to information stored either on RedVox headers, CSS tables, or dataless volumes.  It is assumed 
that concurrent data packets are streaming continuously from different heterogeneous sensor 
systems. For the purposes of this discussion, the existence of the data becomes relevant for a 
specified time duration and region of interest.  In other words, we are most interested in 
ensembles of data packets at a prescribed nexus of space and time.  The highest value is placed 
on data packets corresponding to the expected arrival time of a signal at a given range from the 
source with a specified minimum signal to noise (SNR) ratio within a frequency band of interest.  
The first constraint (expected travel time) is an assertion of causality.  The second constraint 
(SNR) is a requirement for a modicum of usable information above the noise.  Adaptively 
defining noise relative to a specific signal of interest was a key RedVox task. 

The metadata provides some measure of the stability, stationarity, and timeliness of the data.  Of 
particular interest is the location of the measurements and their variability.  This parameter is 
very important in the case of a moving observer.  Furthermore, the causality constraint cannot be 
enforced without location information.  Although in principle, it is possible to scan all data for 
specific feature sets, the return on computational investment may not be worthwhile.  The 
metadata also has key information on timeliness and the precision that can be associated with 
arrival times.  Thus, the position and timing metadata information should be handled with 
exceptional care in the case of spatiotemporal data sets. 

Data had various defects during a prescribed time interval. These include: 
• Non-varying values (constants), such as zeros. 
• Data gaps, either from sensor malfunction or dropped packets. 
• Not-a-number (𝑛𝑛𝑛𝑛𝑛𝑛) or infinity (𝜋𝜋𝑛𝑛𝑓𝑓) data points. 
• Clipped values (maximum dynamic range) may include legitimate transients. 
• Spikes (unclipped) may include legitimate transients 
• Harmonics, instrumental, or environmental. It may contain calibration tones. 
For some types of data, such as temperature or barometric pressure, constant values may be 
acceptable.  However, in these instances, it is worth reducing the dimensionality of the data 
payload so that it can be represented simply and concisely.  The effects of each of these possible 
defects in the data and metadata need to be measured and tracked, as well as the cumulative 
effect of these defects in a measure of conformance to specifications. 

If the data is unusable, a trace of its presence should be stored with a record of the rejection 
criteria.  These unusable data should not move forwards to the processing chain.  Acceptable 
data should also have relative figures of merits, as only the best should be selected for ML 
training sets.  Questionable but usable data can potentially yield arrival times, signal bandwidth, 
transmission loss, and other usable parameters.  Of importance is to quantify what proportion of 
all the available data within a prescribed time interval and region of interest is usable.  The 
expected network attrition rate is important to be able to estimate or forecast how many devices 
would be needed to provide a high probability of detection.  The stage for initiating the 
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processing chain with the subset of usable data, with causality and SNRs as primary signal 
arrival discriminants and data quality metrics for usable channels. 
4.7.2 Selecting the Best Data 
The problem of selecting 'good quality' data within the subset of 'usable' and 'acceptable' data has 
similarities with detecting domains with trustworthy content where one must discriminate 
between credible and spam sources. 

Conformance will depend on the specifications of the intended processing chain.  For example, 
timeliness and position stability would be a requirement for source localization.  The sensor 
location should be the 'best’ estimate over the period of inspection.  For a selected analysis time 
segment, the mean, median, max, min, and standard deviation of the location should be returned, 
as well as some measure of the timeliness of a data packet.  For the RedVox packets, this 
information is contained in the statistics of the metadata header information.  Basic network 
source localization to provide seed locations can be performed without ML.  However, high-
confidence source localization should incorporate some level of signal classification to reduce 
false associations.  Once high-conformance data are selected for signals of interest, we can move 
towards feature engineering for ML. 

5 Results and Discussion 
5.1 ML Model Development, Deployment, and Validation 

 
Figure 2 Machine learning process. 

Our team has proven and demonstrable expertise in implementing, deploying, and effectively 
assessing the performance of machine learning (ML) systems.  Transitioning research, proof-of-
concept pilots to the production scale analysis required by the MASINT-X program requires a 
vetted process and fluency with modern big data processing frameworks.  The ML 
implementation and deployment process is designed to support the exploratory and iterative 
characteristics needed to develop robust models.  It dovetails with our production process that 
ensures on-the-wire prediction with consistent performance and sustainable management.  The 
two processes are illustrated in Figure 2.  Our ML models are subjected to rigorous performance 
assessments through a variety of evaluation metrics (e.g., precision, recall, ROC curves, etc.) 
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([53], [54]), ensuring repeatable scoring accuracies critical to operational mission systems.  In 
what follows, we detail aspects of our ML system development, production, and performance 
evaluation processes. 
5.2 ML Implementation and Deployment Process 
The implementation and deployment process begins by creating the necessary preprocessing 
operators needed to make the development data ready for data mining.  This includes actions 
such as cleaning, imputation (filling missing data), deletion, and normalization (e.g., controlling 
dynamic ranges of attributes).  In addition, resampling strategies (ensuring proper class 
stratification) are used to alleviate class imbalance issues [55].  After scrubbing the data, we 
commonly enter a three-step iterative process to determine the most suitable ML model for the 
application domain of interest.  The steps involve model selection1, feature extraction, and model 
training.  During model selection, system stakeholders and ML experts took a variety of decision 
parameters into consideration to select the most suitable ML algorithm.  Decision considerations 
include the unique characteristic of development and production domains, data type(s) of 
interest, computational loads, the use of ensemble versus individual models, fusion strategies, 
etc.  Next, the feature extraction step transforms the preprocessed data to a format best suited for 
the data and chosen model.  This may involve conversion to numerical representation (e.g., text 
to term-frequency), transformations (e.g., Fourier transform for signal data), augmenting or 
reducing features (e.g., principal component analysis), or perhaps not modifying the data 
(identity transformation).  With the proper feature representation in place, the next step fits a 
model—commonly referred to as model training. 

Model training has several critical processes that strengthen our ability to produce quality 
predictions: train/test splitting, cross-validation for hyperparameter tuning, and evaluation of the 
model’s generalization capability [56].  The train/test split partitions our development data into a 
training and test set.  Typically, 60/40, 70/30, or 80/20 training to test ratios are used.  We ensure 
that the split retains any stratification properties to ensure proper class balance.  The training data 
is typically further partitioned into a 𝑘𝑘-fold cross-validation set to support hyperparameter 
tuning.  Hyperparameters are any free parameters selected prior to fitting the model, e.g., the 
number of trees in a random forest classifier.  The cross-validation set is used to select the 
optimal set of hyperparameters.  During the fitting of the model, i.e., the parameter estimation, it 
is imperative the proper mathematical optimization technique is selected to achieve the most 
optimal set of learning weights (e.g., use of convex optimization, proper regularization, etc.). 
Once the tuning and fitting are complete, the model is evaluated on the unseen test data to gauge 
a final overall measure of performance.  We use a variety of modern performance metrics 
(precision/recall, sensitivity/specificity, ROC curves, etc.) that go beyond simple accuracy to 
obtain a model with robust prediction characteristics (see Section 2.6 for more details). 

Once the model is fit, it is ready for deployment to the production system.  There are a variety of 
deployment frameworks, and making the choice of the best-suited one must take into account 
factors such as the model itself, software frameworks employed (backend, caching, web service), 
latency, etc.  Our team’s collective expertise extends across many of the most popular solutions 
like predictive modeling mark-up language (PMML [57]) and serialized access through custom 
web services (e.g., pickling in conjunction with RESTful APIs [58]).  When considering an 
                                                            
1 Our use of the term ‘model selection’ in this context to simply refer to the choice of ML algorithm should not be 
confused with how it can also be used to refer to the hyperparameter tuning process involved in the model training 
step. 
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operational environment with high-throughput demands (like the present mission), our 
deployment solutions consider the use of dedicated clusters for ML model processing, supporting 
frameworks to handled load balancing and caching, and proper updating of existing models, 
taking into account pitfalls like library inconsistencies. 
5.3 ML Production Process 
In the production environment, the unseen live data passes through the same preprocessing and 
feature extraction steps settled on during the machine learning model development phase.  It is 
then ready to be scored by the deployed prediction engine (model).  Depending on the model, the 
predictions may provide associated confidences—a desirable output for compliance justification.  
The prediction model is continuously monitored through the calculation of performance metrics 
by the evaluation step.  These performance characteristics are inputs to model management.  The 
management suite handles decisions that may result in the model requiring an update or total 
model replacement.  A model update requires returning to the development testbed.  However, 
the update process circumvents the need to perform the iterative cycle used during development.  
We only employ the model-training step to re-train a new version of the current model, 
augmented with additional data obtained since the last update.  Then, the deployment step is used 
to send the model to production.  If a total replacement of the model is necessary, we may need 
to return the full development cycle, augmented with additional data.  However, this process is 
usually more streamlined, given the experience gained during operations.  The production 
process ensures that the overall system minimizes downtime, ensuring fault tolerance, and 
uninterrupted update-replacement procedures. 
5.4 ML Model Validation 
The ability of ML models to achieve the desired levels of operational performance is a function 
of the performance measures (evaluation metrics) used to assess their effectiveness during 
training and trial production runs.  Often, casual users of pre-packaged ML libraries make the 
false assumption that the use of a particular evaluation metric is equivalent to any other.  With 
years of building and deploying ML models, our team is aware of the pitfalls associated with the 
various classification performance measures.  Here we detail several of these metrics and provide 
insight as to how well they predict the performance of ML models.  We will discuss the 
performance measures within the context of a simple two-category classification problem, with 
the understanding that all discussions readily extend to multi-class scenarios.  These measures 
are well known in the ML community; however, their misuse and underutilization when 
developing practical, mission-critical systems have often led to suboptimal ML models and, 
consequently, overall poor system performance.     

The confusion matrix (contingency table) is an organized way of capturing the labeling prowess 
of the ML model.  It reflects correct and incorrect classification across both classes of interest, as 
shown below. 

Table 2 Confusion matrix definition. 

 Prediction Label: Class I Prediction Label: Class II 
True Label: Class I 
(Positive) True Positives (TP) False Negative (FN) 

True Label: Class II 
(Negative) False Positive (FP) True Negative (TN) 
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From the confusion matrix, we can derive the following popular evaluation metrics (not 
exhaustive): 

• True Positive Rate (Sensitivity) = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹

 

• True Negative Rate (Specificity) = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑃𝑃

 

• Accuracy (1-misclassifcation error) = 𝑇𝑇𝑃𝑃+𝑇𝑇𝐹𝐹
𝑇𝑇𝑃𝑃+𝑇𝑇𝐹𝐹+𝐹𝐹𝑃𝑃+𝐹𝐹𝐹𝐹

 

• Precision = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

, Recall = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹

 
Many inexperienced practitioners simply rely on accuracy as a measure of performance.  
However, using accuracy alone has some serious disadvantages.  It does not perform well in 
situations with significant class imbalance issues.  It is easy to maximize accuracy under this 
scenario artificially, have a decision rule that labels all data as belonging to the class with the 
larger population.  Such a system is of no practical use, but this illustrates how accuracy alone is 
not the best indicator.  

Precision and recall focus on the number of true positives to address the more pertinent question: 
What percentage of the relevant classes have been labeled correctly and as well as the number of 
false positives?  In certain applications, one may be solely interested in high precision, i.e., only 
being concerned with observing a small number of events and desiring that as many of these as 
possible are labeled correctly.  For the present cyber-physical classification application, 
intelligence analysts will more than likely be concerned with having a high recall value, even if 
this results in low precisions.  With a high recall for event matching, we would label as many of 
the relevant events as possible from the captured data.  However, we must be careful: a recall of 
1 can be achieved by simply labeling all signal captures as the event of interest.  This would 
ensure we get back all the event signals.  But, as precision and recall trade-off against one 
another, the precision value for this scenario would be very low.  The recall is non-decreasing in 
terms of the number of events classified.  In a balanced ML system, precision will decrease as 
we increase the number of events we attempt to label. As a rule of thumb, we typically want a 
good recall within some tolerance of false positives. 

Precision and recall can also be compared to receiver operating characteristic (ROC) curves. 
Before discussing ROC curves, we first define two other statistical measures often used in 
classification performance evaluation: sensitivity and specificity.  Sensitivity (aka true positive 
rate) is identifiable with the previously defined recall value and measures the total number of 
positive events (i.e., events of interest) that were classified correctly.  Specificity (aka true 
negative rate) measures a total number of negative (or non-relevant) events that were correctly 
classified as negatives.  A ROC curve is a graph of the sensitivity (true positive rate) versus 1-
specificity (false positive rate).  Each time we run a classifier (e.g., under various threshold 
values), we get a confusion matrix.  Each point on the ROC curve represents a realization of a 
confusion matrix. If we have a case of a perfect classifier, then both sensitivity and specificity 
will be 1.  Hence, the best predictor would evaluate to value in the upper left corner of a ROC 
graph. A classifier is unable to discriminate, equivalent to random guessing, would result in a 
point that lies on the diagonal in the ROC space.   

The metrics we have discussed to this point are based on ML classification models that assign a 
single label from a set of discrete possibilities.  There are many ML models that provide a 
ranking rather than a single label.  This enables us to delve deeper into the performance of the 
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model through the use of rank-based metrics [54].  Rank-based evaluation metrics, such as Mean 
Average Precision (MAP) ([59], [60]), focus on analyzing the order of labeled confidences (or 
distances).  Intelligence analysts often find rank-based results more meaningful since they allow 
experts to evaluate multiple, closely related classification results rather than relying on a single 
label.  

Our team’s familiarity with these and other evaluation metrics ensures a rigorous assessment of all 
ML models developed and deployed during this project. 
 
5.5 Open-source Development Platforms for ML Data Processing and Analysis 
At a high level, the system acquires infrasonic data from mobile devices and then attempts to 
characterize the signal source and apply ML models to classify events of interest.  The data 
acquisition is handled by our team member RedVox, who has developed a cloud-based, fully 
scalable framework to handle simultaneous recording by numerous users.  When the system 
receives data faster than it can process (commonly known as backpressure), the AWS framework 
throttles the incoming streams using Apache Akka and Kafka.  This improves the data flow by 
regulating the ingest rate, allowing for reduced system response times and the processing of large 
data sets. Akka alleviates the backpressure, while Kafka allows buffering of data bursts. 

The ML models are implemented using a variety of open-source analysis engines and 
development environments.  Custom algorithms are developed in Python, leveraging its 
ecosystem of data analysis libraries like pandas, scikit-learn, SciPy, NumPy, etc.  The 
TensorFlow framework is ideally suited for neural architectures, supporting distributed training 
on clusters and a variety of optimization algorithms.  The DFL and CE engine is well suited for 
this platform.  The already existing tight integration between Python and TensorFlow minimized 
development delays and ensured that the D3IC capability is scalable and robust from prototype 
to production. 
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Figure 3 Comparison of high-fidelity infrasound data collected via sensor array versus mobile device.  

To demonstrate the need for state-of-the-art machine learning and signal processing algorithms 
customized to the cyber-physical domain, consider the data collections illustrated in Figure 3. 
These are collected infrasound recordings from the Falcon 9 rocket launch from Cape Canaveral, 
FL.  The observations were simultaneously collected by a high-quality array of Chaparral  
infrasound sensors and by a set of iOS devices (iPads and iPhones).  The first row in Figure 3 
(a)-(d) contains the data obtained by the sensor array, located within 5 km of the launch site. 
Each sub-figure has three panels: the top panel corresponds to SNR, the middle panel represents 
spectral power squared in decibels, and the bottom panel contains the raw, recorded waveform 
data. The second row in Figure 3 (e)-(h) contains the data from iPhones and iPod Touch units 
located within a 14 km radius of the launch site. All data were recorded within a frequency band 
of 0.5-32 Hz.  

The traditional sensor data near the source exhibits more uniformity in the waveform amplitudes 
and spectral characteristics.  This readily allows the data to be processed by traditional 
algorithmic techniques to improve SNR, then perform detection, characterize physical 
phenomenology, and provide event classification via standard machine learning approaches.  On 
the other hand, the data from the mobile sensors further afield exhibit many irregularities due to 
effects such as diffraction, dispersion scattering, and non-linear shocks that are compounded in 
the cyber-physical domain (as expected since the multipurpose device is not optimized to capture 
this type of data).  This test dataset clearly illustrates that the same event observed in the 
traditional domain near the source can appear considerably different from a cyber-physical 
device at a distance.  Recent data collections using selected Android smartphones have 
demonstrated improved system response approaching traditional systems. 
  



Approved for Public Release; Distribution Unlimited.   
22 

 

 

5.5.1 Data 
5.5.1.1 Firearm Data 
To augment our dataset, we constructed a synthetic library of firearm signals.  This allowed our 
team to successfully process firearm samples (around 735) and perform preliminary dictionary 
learning and principal component analysis (PCA). Several examples of typical firearm 
waveforms are shown below in Figure 4. 

 

Figure 4 Sample firearm acoustic signals. 

The Figure 4 distribution of samples per gun are (i) 9mm: 236, (ii) AR15: 300, (iii) Rifle308_147 
grain: 100 and (iv) Rifle308_180 grain: 100.  The shots were detected and boxed into 1 second 
windows.  These samples were then mapped into the frequency domain (using FFTs).  All 
subsequent analysis was performed in the frequency domain.  Typical examples of frequency 
domain information are shown below.  The Fourier magnitude information is shown (which is 
symmetric in the frequency space). 
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Figure 5 Frequency domain visual of the firearm signals. 

5.5.1.2 UAS Dataset 
An initial analysis of a UAS dataset was considered.  We took some summary statistics of the 
data and identified general patterns.  We then inferred some information about the data given 
some description of the collection process, location of the devices, and the flight pattern.  When 
devices were inside a vehicle, there was an audible difference in the signature, that was easily 
recognizable in the Fourier domain.  There was optimism that this difference will hopefully be 
captured in the generalization of our model moving forward.  Figure 6 shows the Fourier 
Transform plot of two cases of a drone.  

 

Figure 6 Log Fourier Transform of sounds signature of drone flying away (red) overlaid with drone flying 
towards (blue). 
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Figure 7 Spectrograms with .32s windows of away and towards drone signatures. 

5.5.2 Robust Feature Extraction 
We first constructed a filter bank of Gabor filters by creating an 𝑚𝑚 ×  𝑛𝑛 matrix A with 𝑛𝑛 equal to 
the number of atoms and 𝑚𝑚 equal to the length of the signals we are encoding (in this case 
799).  For the number of atoms, we chose to have one Gabor Filters centered around each 
possible shift, with sigma’s varying according to 𝑓𝑓(𝑥𝑥) = exp (𝑥𝑥) where 𝑥𝑥 = −5,−4, … , 4, 5.  So 
for each possible shift, there are ten different width Gaussians that are centered there. 

 

Figure 8 Three Gabor filters with the same width at 3 different shifts. 

We then take this Gabor Matrix and use a sparse coder algorithm to code each signal into a 
constrained number of combinations of a nonzero coefficient. The final code is a 𝑛𝑛 × 1with 
vector with only 𝑘𝑘 nonzero elements. Figure 9 is an example of a coded signal. 
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Figure 9 Example of a sparsely coded 9mm signal. 
We then use these coefficients as features in our classification algorithm and get around 80% 
accuracy using a 30/70 split and 90% accuracy with a 70/30 split, running through PCA and an 
SVM classifier. 

5.5.3 Classification Techniques 
We performed principal component analysis (PCA) on all firearm samples. Examples of PCA 
“atoms” are shown below in Figure 10. Again, all analysis is performed in the frequency domain, 
as mentioned above. 
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Figure 10 PCA atoms of signals. 

 
Next, we executed the K-SVD dictionary learning algorithm on all gun samples. Since the “atoms” 
are overcomplete, it is not easy to estimate each atom's relative importance. Some examples (again 
in the frequency domain) are shown below.  These results are anecdotal and more work needs to 
be done to establish the efficacy of dictionary learning. 
 
5.5.3.1 Kernel Discriminant Analysis 
This KDA algorithm was developed by [61].  The algorithm is known for producing state-of-the-
art results compared to other dimensionality reduction methods like PCA, PCA-LDA, and 
kernelized methods like SVM. The results for this algorithm in conjunction with a KNN on the 
firearms dataset are shown in Figure 11. 
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Figure 11 KDA classification report between the four firearms classes using a 70% training 30% test split. 

The classification results for KDA have a higher accuracy than dictionary learning classification.  
The dictionary learning experiments produced an average of only 67% classification accuracy, 
while PCA produced a closer 94%.  This was unexpected because as we know supervised 
methods look to maximize the class separation and minimize the in-class variance.  PCA picks 
combinations of features that explain the most variance.  One explanation of this is the dataset's 
size, where it has been shown that PCA can outperform LDA when the dataset is small. 

 

 

Figure 12 Our ML pipeline results on UAS data. 
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5.5.3.2 PCA --SVM 
Our team focused on running the full UAS dataset through the machine learning pipeline and 
getting baseline results for drone direction classification.  Our results for determining the drone's 
direction (away or towards) at any given time interval based on audio signals were not clear.  
Our initial baseline using our pipeline, which includes taking the PCA scores and sparse coding 
signatures from dictionary learning into a non-linear classifier, produced reasonable results.  

Several experiments focused on expanding our classification pipeline to optimize our current 
preprocessing and classification parameters on all the different RC helicopter datasets.  We 
sought to understand if our methods achieved significantly different results per experiment to 
reveal any discrepancies in each experiment's difficulty.  We also added a new preprocessing 
step of taking a spectrogram of the signals and passing the coefficients of those as features into 
our classifiers.  The spectrogram was first flattened, meaning if the spectrogram had m size FFTs 
and n time-intervals, the flattened spectrogram would just be one row of nm entries.  In this 
format, the entries would be fed into some classifier to determine if an RC copter was flying 
towards or away.  We continued to use the successful PCA into SVM and Dictionary Learning 
into SVM classifiers that we had built earlier.  We then used different window sizes of our 
signals to see if taking specific length samples helped classify. Lastly, we generalized each 
model to the full dataset to understand how well the models learned RC copters' discriminative 
features flying towards and away. 

Our model results scored highest on the validation sets, with the tuned PCA – SVM model 
producing the highest score of 77% classification accuracy.  Flattened spectrograms with 1/3s 
windows also produced comparable results.  Although 77% is good, the classification accuracy 
seems to depend on the length of the interval used to determine the direction that the drone is 
flying.  With an interval size of .5 or .25 seconds, the classification accuracy nears guessing 
(50% for a 2-class classification problem).  KLDA performs poorly on this dataset, as the 
method for computing kernels can be intractable for large datasets.  We have omitted the 
experiments and will continue to investigate a more tractable way for numerical computation. 



Approved for Public Release; Distribution Unlimited.   
29 

 

 
 

Figure 13 The PCA-SVM  technique with the FFT feature accuracy  (Blue) and the Spectrogram feature 
accuracy (Orange). 

The results of this experiment are shown in Figure 13. On the left, results are shown for 
dictionary learning using a 30/70 split.  Accuracy hovers in the range of 70-76%. For PCA in the 
same split, accuracy hovers around 81-86%.  The best window ranges tend to be higher, around 
8-10 seconds, but these window ranges are not always optimal as lower window sizes performed 
well in various experiments.  The variance between the experimental accuracies between 
experiments was only 3% at worse.  FFT outperformed spectrograms by more than one standard 
deviation, with an average performance bump of 5%.  We presume this is overfitting because the 
algorithm memorizes the change in Doppler frequency of a towards/away copter and uses that 
difference for classification.  This can be confirmed by the 70/30 splits showing significantly 
higher accuracy scores; scores for the 70/30 splits can be seen below. 

On the right, we can again see PCA ahead of the dictionary learning method.  When we 
generalize these models to the other experiments, we can see that performance is not that great. 
Below, in Figure 14, is the confusion matrix for the PCA-SVM experiment.  The models perform 
significantly worse (almost 50%, which is near guessing).  However, when the models are run on 
their training data, they achieve 100%, which is a sign of overfitting. 
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Figure 14 The confusion matrix for the PCA-SVM experiment. 

5.5.3.3 LDA-SVM 
We used machine learning techniques LDA-SVM and a CNN on only the infrasound data from 
the gunshots.  Our approach in this iteration utilized signal processing techniques that emphasize 
more discriminative features seen in Figure 15.  

 

Figure 15: Infrasound frequency range of different gunshots. 

In Figure 15, we took the signal average of each of the different types of guns and computed the 
log-scaled DFFT.  We then used the frequency coefficients corresponding to the infrasound 
range (0-20Hz).  The average energy at almost all of the infrasound frequencies is unique, 
indicating a measurable difference in the infrasound signature of each gun.  The Rifle_147 grain 
and 180 grain are closer in resemblance, most likely due to the same gun.  We performed a 
baseline classification using a Linear-Fischer Discriminant to project the data into a lower space 
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( c-1 dimensions, c being the number of classes).  The data was then classified with a SVM using 
an RBF kernel. The results for a 30/70 validation split are shown in Figure 16. 

  

Figure 16 The classification results for LDA-SVM. 

5.5.3.4 Leveraging Deep Learning 
Our team leveraged some of the latest deep learning techniques for audio classification to 
compare to more traditional machine-learning methods.  However, we found that the sample size 
that we attempt to train the network is too small, as our network attempts to learn thousands of 
parameters.  We used a convolutional neural network with the same overall structure as in 
Khamparia et al. [62] on spectrograms of only the infrasound frequencies.  This proved to be 
challenging, as there were not enough windows to make an image with a window size large 
enough to capture infrasound waves.  We remedied this by padding each window before 
computing the FFT.  This allowed us to have many windows with window-sizes that captured a 
modest amount of infrasound coefficients.  The resulting spectrograms appear in Figure 17. 

 

Figure 17: Spectrogram; x axis is time, y axis is power (log scaled) 
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One interesting thing to note about this spectrogram is the noticeable increase in power when the 
gun is fired in between windows 5 and 10.  The exact pattern of the infrasound from the gunshot 
is what we had hoped our convolutional network learns as a basis for discrimination. 

However, our network estimated too many parameters for a sample size of only around 500, 
whereas in Khamparia et al. [62], the sample size was around 50,000.  Our results are better than 
guess, with an accuracy score of around .33 after 10 epochs.  There is a possibility that our 
model is too large and is therefore overfit.  

6 Conclusions and Recommendations 
To summarize, we list high-level conclusions and recommendations gathered throughout the 
project: 
Conclusions 

• Convolutional deep learning models are robust to many signal preprocessing, and 
hyperparameters choices; recurrent deep learning models are less robust across all measured 
spaces. 

• By utilizing acoustic/infrasound deep learning models enjoy improved classification 
performance. 

• D3IC models outperform all other models due to dictionary learning; when discriminatory 
wavelet features are extracted, classification is based on these features to produce optimal 
results. 

Recommendations 

• Continued investigation of modern convolutional model architectures is highly recommended. 
• Continued investigation of dictionary learning to produce a basis representation can represent 

waveforms as a set of feature coefficients. 
• Test cross-domain transferability of features from gunshot and UAS datasets sources. 
• Commission synthetics production pipeline to utilize more sophisticated physics and 

acoustic/infrasonic environment models. 
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8 Acronyms 
 

AI/ML    Artificial Intelligence/Machine Learning 

MASINT-X   Measurement and Signatures Intelligence Exploitation 

SNR    Signal-To-Noise Ratio 

FIT    Florida Institute of Technology 

UoF    University of Florida 

IMS    International Monitoring Systems 

D3IC    Deep Discriminative Dictionaries for Infrasound Classification 

SNP    Sensor Network Processor 

TFDL    Time-Frequency Dictionary Learner 

DFL    Deep Feature Learner 

CE    Classification Engine 

SVM    Support Vector Machine 

DA    Directional Arrival 

FFT    Fast Fourier Transform 

SFFT    Short Time Fourier Transforms 

OMP    Orthogonal Matching Pursuits 

K-SVD    Kernel Singular Value Decomposition 

API    Application Program Interface 

HOSVD   Higher Order Singular Value Decomposition 

LASSO    Lease Absolute Shrinkage and Selection Operator 

PCA    Principal Component Analysis 

NL-Means   Non Local Means 

TNT    Trinitrotoluene 

ROC    Receiver Operator Curve 

PMML    Predictive Modeling Mark-up Language 

RESTful   Representational State Transfer 

MAP    Mean Average Precision 

AWS    Amazon Web Services 

KDA    Kernel Discriminant Analysis 

LDA    Linear Discriminant Analysis 

KNN    K-Nearest Neighbor 

UAS    Unmanned Aircraft systems 
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RC    Radio Control 

CNN    Convolutional Neural Network 

DFFT    Discrete Fast Fourier Transform 

RBF    Radial Basis Function 
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