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ABSTRACT 

Readiness Based Sparing (RBS) models support the life cycle of any system 

through the optimization of stock allowance levels. Optimal RBS results are essential 

to maintain fleet readiness at an acceptable cost. Naval Aviation RBS Model 

(NAVARM) is the tool used by Naval Supply Systems Command to plan the stock 

allowances for embarked airwings and shore-based aircraft. In order to gain 

confidence in NAVARM results, it is necessary to validate some modeling assumptions 

that have not been tested to date. RBS models like NAVARM assume that the 

distribution of the mean time between failures (MTBF) for any part is exponential. This 

assumption may not hold in practice for certain parts. Therefore, a question arises 

as to whether the quality (operational availability by cost) of the solution provided 

by NAVARM is subject to the effects of this assumption. 

This thesis tests the influence of the MTBF distribution on operational availability 

using the Readiness-Based Sparing Simulation (RBSIM) developed by a former Naval 

Postgraduate School student. We test the alternate distributions Weibull, gamma, and log-

normal, with mean to variance ratios (MTVRs) of 1.5 and 0.5. These MTBF distributions 

are applied to either all parts or a select subset of parts (based on demand). Initial results 

on the aviation consolidated allowance list for the USS Carl Vinson (CVN 70) show that 

both distribution type and MTVR may have a significant effect on operational availability 

of all weapon systems. 
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EXECUTIVE SUMMARY 

Naval Aviation uses a Readiness Based Sparing (RBS) planning model to develop 

stock levels for aircraft weapon systems (WS) for both afloat platforms and shore facilities. 

The RBS model known as Naval Aviation RBS Model (NAVARM) is the RBS model 

Naval Supply Systems Command (NAVSUP) employs to capture the allowances levels 

needed in order to achieve a directed level of WS operational availability (Ao) targets.  

NAVARM is designed as a single-site, multi-indentured model. It uses historical 

demand from the Navy Supply system along with other internal algorithmic inputs to 

produce cost-effective allowance levels that are needed to achieve Ao for each WS. 

NAVARM’s allowance levels are provided for all the parts that comprise each WS.  

NAVARM assumes an exponential distribution for mean time between failure 

(MTBF) to build the allowance levels. The purpose of this thesis is to test what would occur 

if NAVARM’s distribution assumption were incorrect; in particular, by hypothesizing the 

Weibull, gamma, and log-normal distributions as alternates to the default exponential. Like 

the exponential, these alternate distributions have theoretical support in some cases, as 

discussed in the literature.  

In order to test NAVARM’s assumption we employ an existing NAVARM 

simulation model (RBSIM) developed by Wray at the Naval Postgraduate School. RBSIM 

uses NAVARM’s output allowance as an input, and simulates failures at the individual 

component level. It accomplishes this task by generating a stochastic failure time of 

individual parts based on the MTBF distribution for each part. The original RBSIM has 

been modified in this thesis in order to utilize the alternate distributions as needed. In 

addition, we also specify a mean to variance ratio (MTVR) of 1.5 and 0.5 for those 

distributions. RBSIM develops an expected completion time of repair and return to 

inventory based on the assigned failure. The failure rates are also specific to the part’s 

position within the WS. The simulation only calculates the metrics that relate to readiness 

in order reduce the run time and complexity. 
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The scenario tested in this thesis is from the aviation consolidated allowance list 

(AVCAL) from the USS Carl Vinson (CVN 70). The AVCAL is built using a 24-month 

demand history of aviation parts. The AVCAL consists of 7 different WSs which represent 

all the different types of aircraft that currently deploy aboard the carrier. The AVCAL 

contains approximately 42,000 unique parts. RBSIM simulates failure of the parts first 

using only alternate distributions; then, with a mixture of the alternates and exponential. 

The mixed distribution method’s intent is to capture results where the possibility that just 

some parts violate the RBS distributional assumption. The mixed distribution applies the 

alternate distribution to approximately 16,000, low-demand parts (less than 5 demands over 

the 24-month period). 

Based on the use of single-distribution or mixed-distributions, we generate 13 

simulation results. There is a modest discrepancy between the simulation results for the 

exponential-only calculated Ao and NAVARM’s calculated Ao. RBSIM calculates the 

exponential-only Ao slightly higher than NAVARM. This discrepancy is more likely due 

to an error in RBSIM calculations than an error in NAVARM. We hypothesize that because 

NAVARM has been extensively tested by NAVSUP, but have not confirmed it within this 

research.  

Our overall results show that 33% of the alternate-only distributions with MTVR 

of 1.5 and 100% of the alternate-only distributions with 0.5 MTVR achieve Ao for all WSs. 

The gamma-only distribution with a 0.5 MTVR, and both the log-normal-only with MTVR 

values of 1.5 and 0.5, also achieve Ao across all WSs. The Weibull-only distribution with 

a 1.5 MTVR achieves the lowest Ao among all of the alternate distributions. 

The E2-D and H60-R WSs fail to achieve Ao using the alternate-only distributions 

most often. Both WSs closely resemble each other’s Ao for any distribution. The EA-18G 

WS achieves Ao regardless of distribution or MTVR. The F/A-18 E and F aircraft models 

differ on Ao results from the EA-18G, even though all three share the same logistical 

support pipeline. The H-60 R and S aircraft have the greatest difference between 

themselves for RBSIM’s Ao results even though they too share the same logistical support. 
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In conclusion, it appears that an alternate distribution may have a significant impact 

on Ao, depending on the distribution type, MTVR and parts that have that MTBF 

distribution. Therefore, if the distribution of MTBF does not align with the RBS assumed 

distribution then there are indications that the achieved Ao will not meet model projections.  

Although this thesis concentrates on the demand distribution of NAVARM, future 

analysis of NAVARM’s other assumptions is recommended. An in-depth analysis of 

RBSIM is also warranted given we observe modest unexpected differences with 

NAVARM’s estimated Ao when using the exponential distribution. Lastly, further 

statistical analysis on actual demand distribution of parts would be beneficial given we 

have already identified that alternate distributions affect Ao.  
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I. INTRODUCTION 

Material readiness of the U.S. Navy is critical to national security. It ensures that 

naval vessels and aircraft have the material on hand to carry out their mission to protect the 

U.S. and its interests. A memo by Secretary of Defense James Mattis in 2018 to the Navy 

and Marine Corps requires both services to immediately improve the operational 

availability of the F/A-18 Hornet fighter jet to meet the minimum operational readiness 

goal of 80%. (J. Mattis, personal correspondence, 17 Sep 2018). The main issue he 

addresses is the need to improve maintenance practices and have the correct parts readily 

available. Navy Supply Systems Command (NAVSUP) is the lead organization 

responsible for developing and implementing the supply chain processes to accomplish this 

goal.  

NAVSUP uses readiness requirements that are established by the fleet to build 

material support strategies for naval aviation by the most economical and efficient means 

possible, including the use of planning models. The Navy’s planning model for logistical 

support at the retail level is known as the Readiness Based Sparing (RBS) model. RBS 

allows the Navy to build parts allowances for organizational and intermediate level 

maintenance for aircraft that meet required availability at a low, potentially optimal cost. 

The Navy Aviation Readiness Based Sparing Model (NAVARM) is a planning 

model currently in use by Naval Supply Systems Command, Weapon Systems Support 

(NAVSUP, WSS) that calculates allowance levels for a pre-determined operational 

availability (Ao) level of systems or equipment and relates it to the sparing cost of aviation 

parts. NAVARM selects inventory levels for all parts (assemblies and subassemblies) in 

each weapon system (WS), from a set of allowance candidates. The selection seeks to 

minimize cost while ensuring the expected Ao is above the target threshold. The WS’s 

program resource sponsor establishes the Ao level in accordance with Operational Navy 

Instruction (OPNAVINST) 4442.5A. In order for NAVARM to perform and give spares 

level recommendations to reach the target Ao, it makes several assumptions. Some of those 

assumptions are made for mathematical tractability of the problem, while others are based 
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on operational considerations. A natural question arises about the importance to understand 

the sensitivity of NAVARM to violations of its assumptions.  

A. PURPOSE 

The intent of this thesis is to concentrate on some of the assumptions used by typical 

RBS models (Sherbrooke, 2004) like NAVARM to recommend inventory levels. 

Specifically, we perform a sensitivity analysis on one primary assumption: NAVARM’s 

distribution of the mean time between failure (MTBF) for any repair part is assumed to be 

exponential. 

We use the Readiness-Based Sparing Simulation (RBSIM) developed by Wray 

(2017) for the analysis. The simulation allows us to test the difference between 

NAVARM’s estimated Ao and simulated Ao for recommended inventory levels as input 

parameters are varied. To test the distribution assumption, we modify the MTBF, changing 

its current exponential distribution into either Weibull, gamma, or log-normal distributions 

in RBSIM and compare the Ao results to the theoretical results NAVARM predicts.  

B. BACKGROUND 

RBS models derive from early supply-oriented optimization models following the 

end of World War II. The goal of these models is to minimize backorders for a given WS 

by recommending future spare parts levels. The earliest models focus on single items with 

a single inventory control point (Galliher et al., 1959). Soon after, the military services start 

to develop their own versions of these models to meet customer demand.  

By the mid-1960s, the development of models that are able to calculate stock 

allowances from the assembly to the subassembly level (known as the multi-indentured 

model) for multiple items at a single site begins. Multi-indentured implies that a piece of 

equipment can have multiple sub-components that can be repaired or replaced. Muckstadt 

(1973) extends the capability of the single site model to account for the effects of 

subassembly backorders and how they affect higher indentured assemblies, and ultimately 

the availability of the WS. This model would evolve to incorporate the multisite hierarchal 

model (known as the multi-echelon model) into what is now known as the RBS model. 
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Multi-echelon implies that the repair of the failed part can occur beyond the organizational 

level at either the depot level or further up the supply chain at the manufacturer level. Multi-

echelon also implies those locations where staging of ready for issue material to best 

support the expected Ao goal at minimum cost.  

Today, the Navy uses NAVARM to plan spares order recommendation levels that 

ensure readiness thresholds are met in the most economical way. The Navy relies on 

NAVARM to produce the allowances for all aircraft carriers, 9 amphibious assault ships, 

31 naval air stations, and 17 aviation platform packages for all of the Marine Aviation 

Logistics Squadrons (MALS). According to NAVSUP WSS’s budget office, N8, the Navy 

spends on average $572M annually on these spares buys. NAVARM has the ability to 

process multiple WSs per project run, ranging from 1 (single WS) up to 24 (shore site 

consolidated allowance list). In terms of total aircraft numbers, NAVARM ranges from 1 

to 352 in an individual project run. 

C. THESIS STRUCTURE 

The following is a description of the subsequent chapters: 

· Chapter II discusses applicable literature related to the VARI-METRIC 

model that RBS uses in both civilian and military aviation, and the 

mathematics behind the demand distribution assumption. 

· Chapter III reviews the input data as well as describe the RBSIM model 

event process and assumptions. 

· Chapter IV analyzes the output data of RBSIM and compares it to 

NAVARM. 

· Chapter V summarizes the conclusions and provides recommendations for 

future research on this topic.  
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II. LITERATURE REVIEW 

This chapter opens with a general description of the VARI-METRIC model. The 

Navy’s RBS model, one instance of the VARI-METRIC model, provides the Navy with a 

functional allowance planning model. A discussion of the VARI-METRIC model is 

warranted for the context it provides later in this thesis. Next, we discuss why and how the 

VARI-METRIC model has been adopted for commercial and military aviation use. Lastly, 

we discuss the mathematical reasoning behind the MTBF distribution and the selection of 

alternatives. The selection of distribution alternatives is based on previous research of the 

VARI-METRIC model by Sherbrooke and is documented in his book (Sherbrooke, 2004, 

pp. 101–125).  

A. VARI-METRIC MODEL 

The VARI-METRIC model is first developed by Slay (1984). It improves upon the 

original Multi-Echelon Technique for Recoverable Item Control (METRIC) model that is 

first developed by Sherbrooke (1968). The METRIC model calculates the optimal stock 

level for every item in the WS across multiple sites. Slay notes that if his model could 

improve prediction of backorders, a user could consequently improve forecasts for parts 

needed in inventory (Slay, 1984). Sherbrooke extends Slay’s work in his 1986 comparison 

of the VARI-METRIC model to that of the METRIC model (Sherbrooke, 1986, and 2004, 

pp. 101–125). The VARI-METRIC model is used for multi-indentured, multi-echelon 

systems. The indenture structure can be viewed as a tree, where the base of the tree is often 

referred to as the line replaceable unit (LRU) and the branches are known as shop 

replaceable units (SRU). Figure 1 depicts the basic LRU and SRU relationship.  
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Figure 1. LRU and SRU Indenture Structure. Source: Sherbrooke (2004). 

Sherbrooke uses the LRU and SRU relationship to explain how the VARI-METRIC 

model works (Sherbrooke, 2004, p. 102). When an LRU fails, it is removed from the system 

and sent to a depot (for repair) or purchase. If no spare parts are available, this action creates 

a backorder against the LRU. If the LRU is immediately repaired, the backorder is filled 

by the same LRU. Additionally, if an SRU is needed to repair the LRU, a backorder is also 

created against the SRU. Essentially, from the point of view of “pipeline” demand, two 

backorders have been created (one for the LRU and one for the SRU).  

Repeating this process multiple times allows us to construct a theoretical 

distribution for LRU and SRU orders. This distribution’s mean demand and variance at the 

depot level can be calculated for both the LRU and SRU. If we have reasonable estimates 

of delay time of repair or purchase for the LRU and SRU, we may estimate expected 

backorders (EBOs). Since maximizing Ao approximates to minimizing EBOs at a WS 

level, this allows us to build an approximate allowance table of parts needed at the depot 

to minimize cost for a certain level of Ao.  

For repairable parts, Figure 2 depicts LRU and SRU relationship as LRU failure 

moves through inspection and repair stages. 
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Figure 2. Event Diagram of the LRU and SRU Repair Process. Source: 

Constantino et al. (2013).  

The VARI-METRIC model makes the following assumptions: 

· One and only one SRU fails simultaneously.  

· All SRUs that can be repaired are repaired at the depot.  

· A part’s demand follows a Poisson distribution. 

· The pipeline to calculate the EBOs follows a negative binomial 

distribution.  

B. VARI-METRIC MODEL USE IN AVIATION 

The aviation industry has experienced a constant increase in the volume of 

commercial flights since its inception. Consequently, the increasing volume of aircraft 

flights has brought about an increasing failure of aircraft equipment. However, both storage 

space and budget constraints limit the amount of spare parts the industry can have readily 

available in inventory. Sherbrooke’s multi-echelon, multi-indentured model is used in the 

aviation industry to help identify the best combination of spare parts allowances to keep on 

the shelf.  

In 2013, Northwestern Polytechnical University School of Aeronautics in China 

published a report discussing the use of a multi-echelon inventory allocation model with a 

finite repair capacity that aims at optimizing aircraft spare parts for civil aircraft (Li et al., 
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2013). They focus on optimizing the maintenance resources for civilian aircraft. The 

research team utilize a M/M/c queuing model to study the effects of repair time on the 

maintenance cycle of civil aircraft. They conclude that the Sherbrooke model approach to 

aviation maintenance can reduce overall maintenance cost as well as improve the support 

structure of civil aircraft operations in comparison to the traditional spare parts inventory 

allocation model currently in use by the Chinese civil aviation industry.  

At the same time, Costantino et al. (2013) analyze the VARI-METRIC model for 

spare part allocation to achieve an operational target given a budget constraint.  In order to 

overcome that both the budget constraint and repair centers that have different capabilities, 

they develop the model to minimize the system-wide, expected backorder levels with a 

solving algorithm based on marginal analysis. The model determines the stock levels at 

each warehouse as well as the center depot. The model design they develop is for military 

aviation use. However, they argue that a commercial buyer can run the same model to 

calculate the best economic level of parts acquisition at the beginning stages of logistic 

support. 

Both Li et al. (2017) and Constantino et al. (2013) determine that a VARI-METRIC 

model produce optimal results for minimizing aircraft downtime. More and more 

industries, such as ship-repair and maintenance facilities, are implementing their own 

version of Sherbrooke’s model. Most employ the model with variations and additions on 

the assumptions.  

C. NAVY ADAPTATION OF RBS FOR AVIATION 

Today’s Navy RBS model NAVARM connects the investment in spare parts to WS 

readiness. A WS down for a lack of parts is referred to in the military as non-mission 

capable supply (NMCS). Naval aviation consolidated allowance list (AVCAL) and shore 

consolidated allowance list (SHORECAL) allowancing uses historical demand to establish 

a base failure rate per item. This failure rate is applied to the aircraft population and 

projected flying hours to determine to failure rate at a specific site. In turn, NAVSUP outfits 

embarked airwings and shore facilities with necessary critical parts to maintain their 

readiness levels.  
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In accordance with the Chief of Naval Operations (CNO) instruction OPNAVINST 

4442.5A, “RBS models should directly compute both range and depth for all echelons of 

supply” (OPNAVIST 4442.5A, p. 5). Range implies the number of replaceable or 

repairable parts needed while depth implies the quantity of each part. Furthermore, the RBS 

model is designed as an item-indentured structure for use by NAVSUP. Top, “parent” 

level, inventory items are identified as those whose next higher assembly is the WS itself, 

and are commonly referred to (by NAVSUP) as weapon replaceable assemblies (WRAs), 

instead of LRUs. Lower level items below WRAs are known as shop repairable assemblies 

(SRAs) instead of SRUs. These “child” parts are used to repair the parent parts. 

The U.S. Navy began to invest into the RBS model during the mid-1980s. Their 

goal was to adapt the expected backorder models to forecast the level of spare parts that 

are needed to minimize backorders. In 1987 the CNO, Admiral Trost, directed NAVSUP 

to implement the use of RBS. He also directed aviation supply to embrace the idea (Naval 

Inventory Control Point, 2008, p. 4). Soon after, the Operational Analysis Department for 

NAVSUP in Mechanicsburg, PA, developed and implemented an RBS model to create 

AVCALs for aviation platforms. Strauch (1986) developed the RBS model known as the 

Aviation Readiness Requirements Oriented to Weapons Replaceable Assemblies 

(ARROWS).  

The ARROWS model is a site-level stockage model that optimizes aviation parts 

in the multi-indenture structure. It works to reach a given part Ao constraint while 

minimalizing cost. The model does allow for multiple WSs at a single site and it considers 

the impact of any parts that share commonality among the WSs on the overall readiness of 

the system. ARROWS optimizes a single WS before moving sequentially to the remaining 

WSs in the optimization process. It does consider previously set stock levels as it moves 

from one WS to the next. The initial testing of ARROWS model utilizes data collected 

from the 1986 deployment of the USS ENTERPRISE. Strauch compares readiness rates of 

both the F-14 and the SH-60 aircrafts that have been reported during the deployment and 

shows that ARROWS calculates the rates to within 10% of the actual observations 

(Strauch, 1986). NAVSUP also uses a commercial model called the Service Planning 

Optimization. In 2016, NAVSUP asked NPS to develop NAVARM, with the capability to 
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improve the heuristic VARI-METRIC logic and incorporate persistence of legacy solutions 

(aka “churn” control). The “churn” control minimizes the change between the new 

candidate solution and a previous solution. It acknowledges the cost of inventory 

recapitalization, which is not captured in RBS models. For example, if the legacy solution 

for item A is to stock a quantity of 2, at a cost of $100, but the new candidate solution is to 

stock 0 of item A and 1 of item B at $100, the RBS solution would have the same value. 

However, in reality the execution cost of recapitalizing the inventory is an additional $100 

in order to buy item B. 

NAVARM solves single-echelon, multi-indentured scenarios, optimizing part 

allowance levels for naval aviation WSs. It embeds a heuristic algorithm in order to 

recommend spare parts reorder points. NAVARM assumes an (S-1, S) inventory model at 

the retail level. S represents the maximum allowance stock level at an individual site that 

is determined by NAVARM. S-1 represents the reorder point where the inventory 

decreases by one.  NAVARM’s underlying theory of calculating EBO for an item follows 

Sherbrooke’s VARI-METRIC model. This means the model utilizes the Poisson 

distribution for the overall number of failures for a given system, but the sub-components 

reflect a Negative Binomial distribution for the failure rate (Sherbrooke, 2004, pp. 101–

125). 

NAVSUP operates with a more complex indentured structure than those shown in 

academic examples such as in Sherbrooke (2004, pp. 101–125). The WS is composed of 

one or several LRUs. The indentured levels of the SRUs stretch further down than the 

typical SRU components. The LRU and SRU components also can spread across multiple 

WSs. Sherbrooke admits that this type of structure does “complicate the computer 

programs substantially … [albeit] the basic logic is the same” (Sherbrooke, 2004, p. 114). 

The diagram in Figure 3 depicts three WSs, each one with a single LRU (parts “A,” “J” 

and “Q,” respectively), and the SRU relationship. Part of the complexity lies in the common 

parts and “chain of influence” depicted modeled (i.e., cannot be replaced) in “WS3.” The 

term “chain of influence” is used for those parts that are in one WS that have an influence 

in another WS. In Figure 3, “G” influences the Ao of “WS3” through their shared 

commonality of “L” even though “G” is not indentured to “WS3.” 
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Figure 3. The Chain of Influence in a Multi-Indenture Part Structure. Source: 

Salmeron (2016). 

NAVARM, like Sherbrooke’s VARI-METRIC model, makes certain assumptions 

in order to optimize properly. These key assumptions are: 

· NAVSUP’s supplied formula for estimating the average WS readiness 

levels are based on EBO and supply system demand inputs which gives an 

accurate estimate of expected availability. 

· Poisson is an adequate distribution for a part’s failure disregarding its 

subpart failures. Negative Binomial distribution is an adequate distribution 

to compound the effect of subpart failures into the parent part failures.  

· Sherbrooke’s VARI-METRIC model framework approximates EBOs 

correctly. 

· Partial mission capable WSs are not counted as being available. WS non-

availability is a result of all parts failure. 

· Cannibalization of parts from one WS to another does not occur. 
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D. DISTRIBUTION ALTERNATIVES 

For the purpose of this thesis the terms MTBF and demand for parts are 

interchangeable. The naval supply part ordering system does not register a part failure but 

instead registers a demand order. However, the demand is often because of a failure. 

Therefore, MTBF and demand represent the same process.  

In early VARI-METRIC models, the demand for parts assumes Poisson values with 

a mean estimated by a Bayesian procedure. However, a problem arises when the mean of 

the demand becomes non-stationary. This creates a mean to variance ratio (MTVR) greater 

than one. Sherbrooke discusses how this becomes problematic while using Poisson as the 

distribution estimate when trying to estimate parts especially with low demand 

(Sherbrooke, 2004, p. 89). He suggests that gamma, Weibull, or log-normal distribution 

may provide a better fit.  

An article published by the Department of Mechanical and Aerospace Engineering 

at Sapienza University of Rome analyzes the performance of both Poisson and Weibull as 

the demand distribution (Patriarca et al., 2019). The intent of the article is to test the multi-

indentured, multi-echelon model’s demand distribution using the discrete Weibull 

distribution. The research team design a simulation to calculate backorders by utilizing a 

demand data set. The outcome of their simulation shows that traditional models based on 

the Poisson distribution do not necessarily reflect the best framework for some demand 

patterns. They note that the Weibull distribution performs better than Poisson in estimating 

backorders.  

The above-mentioned paper utilizes Weibull as the alternate distribution for their 

model. However, Sherbrooke suggests that the gamma distribution may be an easier 

alternative (Sherbrooke, 2004, p. 89). Sherbrooke states “The demand process for some 

parts are not random, but results from wear and tear…the probability distribution of time 

to the next demand does not decrease uniformly like the exponential. Instead there is a peak 

value to the right of the origin as in distributions such as gamma, Weibull, or log-normal.” 

(Sherbrooke, 2004, p. 89). The mean and MTVR can be specified to compute the 

parameters of gamma. The Weibull distribution’s parameters are determined by solving 
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two nonlinear equations. The Weibull distribution has an advantage over gamma: If the 

time until next failure or demand is determined probabilistically, the Weibull distribution 

is better suited to sample. This thesis utilizes both distributions as well as the log-normal 

distribution in the simulation in order to explore Sherbrooke’s theory of alternatives.  
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III. DATA AND SIMULATION REVIEW 

A major issue with the data for this study is that the Navy’s method of collecting 

does not accurately reflect the mean time between failure for individual components. In 

order to track the data correctly, components would have to be serialized and monitored 

from the initial installation into the WS. Currently, the Navy only records part failures 

when the part is ordered in the supply system. NAVSUP WSS keeps track and records 

these orders in order to create the demand history of the parts. Therefore, the MTBF 

calculation is a result of a part’s demand in the supply system and not the actual operating 

lifespan. 

Next, we examine the simulation model of this thesis, RBSIM, developed by John 

Wray (2017). The aim is not to discuss the internal coding of the simulation, but to provide 

an overall understating of its operation and how it has been modified to use alternative 

distribution calculations. 

A. DATA COLLECTION AND MANIPULATION 

NAVSUP WSS populates a Microsoft Access file (known as the candidate file) 

with pertinent part requisitions information gathered from the supply system in order to 

capture demand. The part data NAVSUP WSS collects become the initial input for the 

aircraft carrier’s AVCAL. NAVARM uses the candidate file as the data input, along with 

a few other algorithm specific inputs, and populates an output allowance table and is used 

as the input data for the simulation of this thesis. This thesis utilizes NAVSUP WSS’s 

candidate file for the USS Carl Vinson (CVN 70).  

To fit new distributions to the collected data, this research adds a few parameters 

that do not exist in the original data: First, we designate a demand distribution type: If the 

demand of the part is less than five units over the 24-month period of data collection, we 

assign an alternate distribution; if the demand is over five units, we retain the default 

exponential distribution. This thesis simulates the Weibull, gamma, and log-normal 

alternative distributions as well as the exponential default distribution. Second, we specify 

the MTVR. Sherbrooke takes note of the importance of this ratio’s use for analysis when 
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he states “Our interest is not the time until the next demand, but something related to it – 

the mean and the mean-to-variance ratio for the number of demands over the pipeline.” 

(Sherbrooke, 2004, p. 90). We note that a MTVR of exactly 1.0 corresponds to an 

exponential distribution for demand inter-arrival times.  

For the alternate distribution we assign a MTVR value that is not equal to 1.0. We 

accomplish this by running the simulation with an alternate distribution at a MTVR of 1.5 

then run the same simulation with a MTVR of 0.5. Table 1 shows the type of distribution 

with the MTVR assignment. The ratios of 1.5 and 0.5 are arbitrarily chosen as numbers 

that are either greater or less than 1.0. We begin by assigning all parts in the database with 

the same alternate distribution. Once all of the alternate distributions complete the 

simulation, we incorporate the alternate distributions with the original exponential 

distribution in the database. We determine the distribution of the part based on the demand 

level. We classify low demand as having five or less requisitions in the candidate file we 

obtain from NAVSUP WSS. We assume a MTVR of 1.5 and 0.5 for low demand items. 

These mixed distributions contain both the alternate and default exponential distribution. 

Table 1. MTVR Selection for Sequential Simulations on the Three Different 
Distributions Criteria. 

MTVR Selection for Sequential Distribution Simulations Criteria 

 

Distribution Criteria 

MTVR Selection 

First Simulation for Each 

Distribution 

Second Simulation for 

Each Distribution 

Default 1.0 None 

100% Alternative 1.5 0.5 

Mixed Alternative  1.5 0.5 

 

NAVARM calculates the EBO and populates the NAVARM output allowance table 

with each SRU parts allowance that becomes the basis for the AVCAL. The allowance 
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output table is also the input data for the RBSIM simulation model that the research team 

uses to test the underlying MTBF distributional assumption. RBSIM uses the NAVARM 

allowances and specified distributions and calculates EBO and Ao by simulating part 

failures and replacements. 

B. SIMULATION OVERVIEW 

The RBSIM simulation was developed by Wray (2017) to help verify NAVARM’s 

outputs as well as provide additional data outputs for further study by analysts and decision 

makers. The model uses NAVARM’s allowances for all parts, and simulates failures at the 

individual SRU level. Then, it aggregates the parts’ chain to the parent LRU in order to 

estimate the WSs EBO and Ao. We compare RBSIM’s Ao results to NAVARM’s estimates. 

During the simulation, RBSIM characterizes parts by: 

· Status (whether the part is operational or not due to maintenance and/or 

supply) 

· Planned failure times 

· Physical position (if in use where is the part installed) 

In addition, each WS is characterized by: 

· Aircraft type 

· Operational status 

· List of the part positions within the WS 

Lastly, each part position is characterized by: 

· The WS, if it is currently in use 

· Expected failure times parameters 

· Parameters for individually repaired parts to return to inventory 
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RBSIM calculates expected completion times for repair and subsequent return to 

inventory based on the type of failure. RBSIM sums the different type of failure rates to 

form a combined failure rate. A random number draw compares the ratio of repairable and 

non-repairable failures in order to assign the type of failure when one occurs.  

Wray’s original RBSIM generates a stochastic failure time of the individual parts 

based on the exponential distribution. We have extended RBSIM so it can use either 

Weibull, gamma, or log-normal-distributed time between failures, where the inputs to these 

distributions are now based on mean and variance as determined by the MTVR.  

The failure rates are also specific to a part’s position on a particular WS. For 

example, a circuit card that is in an F/A-18 may have a different failure rate than the same 

circuit card in an SH-60. The circuit card may even be in multiple LRUs across multiple 

aircraft platforms and experience different failure rates for each SRU based on the part’s 

location within the WS. When a part fails, RBSIM immediately requisitions a new part and 

removes the failed part from circulation. It keeps the part out of the rotational pool until 

the part-specific completion time of repair.  

The basic steps of RBSIM’s core logic are: 

· Reading in the data from NAVARM’s allowance output. 

· Assigning a first-time failure rate of each part based on the input 

distribution, and assigning parts to fill each WS. 

When a failure occurs, RBSIM takes action by: 

· Assigning the return to service time. 

· If inventory is available, decrease the inventory level by amount of the 

part failure and place the WS in a “down” status for the duration of the 

specific mean time to repair (MTTR). If the inventory is not available, 

RBSIM adds the WS to a first-in first-out (FIFO) queue for the part. 

Lastly, when the part is repaired and available for issue: 

· RBSIM uses it to repair the first WS in the FIFO queue; and, 

· If no WS is awaiting repair, the repaired part returns to inventory. 
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RBSIM uses summary levels of data produced from recorded flight hours of the 

aircraft, parts failure intervals, repair times, and parts transportation lead times as 

deterministic values. These expected values are used in lieu of an actual repair process 

cycle at an intermediate or depot level repair site because the actual cycle has minimal 

effect on the metrics of interest. The simulation also ensures that the simulation run-time 

is within acceptable parameters by tightly scoping the factors that are taken into account in 

the simulation without having to sacrifice much fidelity for the metrics of interest.  

RBSIM only calculates metrics that are related to readiness in order to reduce run 

time and code complexity. RBSIM’s output is straightforward, and consists of the 

following metrics: 

· The mean of the backorders by part type 

· The mean of the on-hand inventory per part type 

· The fill rate of each part type 

· The average Ao of each WS used in the simulation 

· The percent of time the Ao was at or above the specified availability goal 

per WS type 

C. SIMULATION EVENT GRAPH OVERVIEW 

In this section, we explain the RBSIM originally developed by Wray (2017).  

Figure 4 shows a simplified event graph. It describes the overall process of the part failures 

and ensuing repairs. The event graph provides a broad level of understanding of how the 

parts flow through the simulation. RBSIM utilizes the Java Simkit Library to implement 

the simulation calculations (Buss, 2019). Simkit converts the event graph in Figure 4 into 

working computer code to support the simulation. The open source UCanAccess (2017) 

library also interacts with NAVSUP’s Microsoft Access database in support of RBSIM. 
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Figure 4. RBSIM Event Graph. Source: Wray (2017). 

The simulation begins at time zero where it initializes all state variables for the 

system. It assigns each part position a part on each WS in order to have each WS begin in 

an operational status. Known as the Run event (not depicted in Figure 4), the initialization 

process also schedules the Part Failure event for each part at a specific time using the data 

that is available for each of the part’s position. The Run event then calculates the next 

expected time to failure for the part based on the part’s position then provides the calculated 

parameter for the random number draw. The Run event completes when every part in the 

WS has one scheduled failure. 

The Part Failure event simulates the failure after it receives the failed part 

parameter from the initialization. This event sets both the part and the parent WS statuses 

to non-operational and schedules an Order Part event. If the inventory has the part 

available, the Part Failure event schedules a Complete WS Repair event to commence by 

using the MTTR associated with the specific WS. If the inventory does not have a ready-

for-issue part, the part type is added to a FIFO queue by part position. 

The Order Part Repair simulates acquiring parts from the supply system. The 

supply system turns the part in for repair and receives a part from inventory or from the 

repair cycle. This event also calculates an expected shipping lead time and subsequently 

schedules the Order Arrival event for each part that is in the cycle. A random number draw 

determines the shipping time and compares it to the repairable parts ratio to determine if 
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the shipment time should be calculated for repair at the given single-site or a resupply from 

the depot. 

The Order Arrival is the event where the site supply system receives the ready-for-

issue part. The corresponding inventory increases by one upon receipt of the part. If there 

is an outstanding order against the part in the FIFO queue, an MTTR delay is applied and 

the part is sent to the Complete WS Repair event. 

The Complete WS Repair event occurs when part installation occurs. It also 

generates a new time to failure using a random number generator based on the part’s input 

distribution. Lastly, the event checks all part positions in the WS to make sure all parts 

have been assigned. If all part positions have corresponding functioning parts, the WS 

status changes to “up” meaning the WS is operationally available. 

D. SIMULATION ASSUMPTIONS OVERVIEW 

In order for RBSIM to run in a reasonable time, certain assumptions are taken in 

the implementation of the simulation. Some of these assumptions could impact results but 

are made to keep run-times reasonable. The RBSIM principle assumptions are: 

· Failure rates are accurately represented by a specific distribution. This is 

the primary assumption this thesis is testing. As stated earlier, Weibull, 

gamma, and log-normal will replace the exponential distribution for some 

parts. 

· Failures are independent from one another. Scheduled failure times are on 

a continuous timeline and there are zero-part dependencies within the 

simulation. Simultaneous failures will not occur in the simulation although 

this sometimes occurs in the real world. 

· Simulated failures will continue to occur even though the WS is listed as 

non-operational. This is to ensure that scheduled failures continue to occur 

in the simulation and that the expected failure rate is upheld.  
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· SRA part failure times do not reset when replacing the parent WRA. The 

assumption is that when the part repair occurs, it does not affect the 

dependability of the other SRAs in the WRA. The collected data does not 

define how often parts repair is completed at a separate installation and 

what happens to the SRAs when an inventory restock is necessary for the 

parent WRA. The assumption does lead to a conservative estimate level of 

readiness; however, the degree of the impact on Ao is not known at this 

time. 

· Demands are set as FIFO. No priority parts demand from the fleet has 

been given to part orders. Also, priority has not been given to WS’s that 

are below the specified Ao goal. 

· Lateral supply support is not allowed. Sites that have high inventory 

cannot fill requisitions from sites that have low inventory.  

· The practice of removing parts from one WS to another WS in order to 

return non-operational WS back to an “up” status does occur in the real 

world, and is known as cannibalization. However, NAVARM achieves the 

desired readiness levels the user chooses without utilizing this practice so 

therefore RBSIM does not allow cannibalization of parts. 

· Repair times are independent from one another. RBSIM does not simulate 

a backlog of the repair pipeline involving multiple parts of the same type 

that fail simultaneously.  

· Demand rates are stationary for the simulation horizon. 

In future analysis using RBSIM, these assumptions can be replaced to better represent real 

world operations. This thesis tests the impact of the first assumption on Ao. 
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IV. ANALYSIS  

In this chapter we discuss the results produced by RBSIM, with the aim of 

analyzing whether Ao differences exist across WSs, and/or if alternate distributions and 

MTVRs make a difference to the achieved Ao. Before doing so, it is important to note that 

we observe a modest discrepancy between the Ao reported by NAVARM and the Ao 

estimated by RBSIM using the exponential distribution: RBSIM produces consistently 

higher Ao estimates than NAVARM. This difference appears to increase as the target Ao 

decreases. Since RBSIM is not an official NAVSUP tool, and has been tested only by its 

developer, Wray (during his thesis research), we cannot guarantee its Ao estimates are 

accurate. Further examining RBSIM is outside of the scope of this research. Therefore, we 

will proceed with the assumption that even though RBSIM estimates may not be accurate, 

at least they are “similarly biased” for all runs we perform. For example, if demand 

distribution “A” produces an RBSIM-estimated Ao higher than “B,” we assume that the 

difference in Ao is still a reasonable approximation. 

To begin our analysis, we execute RBSIM for 30 replications for every setting 

(distribution, MTVR) and calculate the average and confidence interval. Table 2 is an 

example of the F/A-18E WS mean Ao and confidence intervals. In all cases the reported 

Ao is reasonably representative, however, for the sake of brevity we choose to omit the 

confidence interval tables for the remaining WSs. RBSIM also records what percentage of 

parts are of the alternate distribution when a distribution mix is used. As stated before, we 

repeat this process for each of the three alternative distributions. Each replication of 

RBSIM produces a single observation of Ao based on the percentage of time the given WS 

was operational. We average Ao over the 30 simulation replications. We continue by 

analyzing the results first by WS then by distribution. Finally, we perform a statistical 

examination of the data. 
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Table 2. F/A-18E RBSIM Distribution 30 Replications Mean Ao and 95% 
Confidence Intervals. 

F/A-18E WS 30 Replications Mean Ao and 95% Confidence Intervals 

Distribution Ao Mean 95% Confidence Interval 

Exponential 87.98% (87.87%, 88.09%) 

Weibull (1.5) 74.01% (73.77%, 74.24%) 

Weibull (0.5) 80.43% (80.26%, 80.49%) 

Weibull Mix (0.5) 79.87% (79.78%, 79.97%) 

Gamma (1.5) 83.57% (83.39%, 83.76%) 

Gamma (0.5) 89.67% (89.58%, 89.76%) 

Gamma Mix (1.5) 74.36% (74.15%, 74.58%) 

Gamma Mix (0.5) 79.76% (79.64%, 79.89%) 

Log Normal (1.5) 86.67% (86.55%, 86.80%) 

Log Normal (0.5) 89.65% (89.57%, 89.73%) 

Log Normal Mix (1.5) 76.32% (76.17%, 76.48%) 

Log Normal Mix (0.5) 79.85% (79.70%, 79.80%) 

 

A. RESULTS BY WS 

The WS analysis separates the WSs by their assigned mission and aircraft type 

aboard the carrier. For example, the F/A-18 WSs are together because they share the same 

type of aircraft although they are different models. The H-60 helicopters grouping is based 

on the same criteria as the F/A-18. Lastly, the E-2D and V-22 analyses are together because 

both aircraft serve in support roles on the carrier even though they are not the same type of 

aircraft.  
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Figures 5, 6, and 7 show the impact of each distribution and MTVR on the three 

F/A-18 aircraft design WSs. The red line indicates the target Ao. As a reminder, the “Mix” 

cases indicate that demand is assumed to: (a) follow the specified distribution and MTVR 

for parts with less than five units (over the 24-month period of data collection); and, (b) 

follow the original exponential (MTVR=1) distribution for the other parts.  

What is most surprising is that, although all three WSs share the same integrated 

logistical support pipeline from the same manufacturer, all the estimated Ao are different 

for each distribution. This can possibly be attributed to the age of the WSs and mission 

roles each WS plays aboard the carrier. For instance, the EA-18G WS main mission is 

electronic warfare while the F/A-18 E/F WSs main missions are primarily air-to-air and 

air-to-ground combat. The F/A-18 E/F WSs are also older than the EA-18G WS and may 

not have as robust logistical support chain as the newer EA-18G. 

 
Figure 5. F/A-18E WS RBSIM Ao Results on All Distribution 

Combinations.  
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Figure 6. F/A-18F WS RBSIM Ao Results on All Distribution 

Combinations. 

 
Figure 7. EA-18G WS RBSIM Ao Results on All Distribution Combinations. 
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It is interesting to note that F/A-18E WS achieves the lowest Ao results among the 

three aircraft models. The F/A-18E WS only achieves target Ao in 46% of the distributions 

(those distributions at or above the red line in Figure 5) compared to 76% for F/A-18F and 

100% for the newer EA-18G WS. However, comparing the Ao graphs of all three together, 

it appears the F/A-18 E/F WSs closely resemble each other per distribution while the EA-

18G does not resemble either of the previous two WSs even though they are all the same 

type of aircraft.  

For the “mixed” case, 47% of the F/A-18E WS parts convert to an alternate 

distribution while 53% remain exponential. The F/A-18F WS has 47% of the parts 

converted and the EA-18G has 52% of all WS parts converted to the alternate distribution. 

Surprisingly, all three alternate distribution mixes have lower Ao results than the 

distributions where 100% of the demand was non-exponential regardless of MTVR. Since 

the default distribution in NAVARM is exponential, the alternate distributions that are 

combined with exponential should yield a higher Ao than their 100% alternate counterparts. 

This should be expected since NAVARM’s output allowance levels achieve the target Ao 

utilizing the exponential distribution. The gamma exponential mix distribution with the 

higher MTVR of 1.5 appears to achieve the lowest Ao among all the different mixed 

distribution. The Weibull mix with high MTVR achieves the second lowest Ao.  

Overall, the F/A-18 E/F WSs perform as expected with the alternate distributions 

producing lower Ao than the original exponential distribution. The EA-18G WS achieves 

the highest Ao of all the WSs tested. The Ao never falls below 83%, well above the 80% 

requirement. This can possibly be attributed to: (a) the potential inaccuracy of RBSIM Ao 

estimates; and, (b) the normal wear and tear of parts on the EA-18G being not as 

pronounced as it is on the earlier models of the F/A-18 aircraft design. Therefore, the E-

18G WS does not consume the amount of the allowance parts levels to have Ao below the 

target goal. 

Figures 8 and 9 show the results of RBSIM on the H-60 WSs. Although both WSs 

are from the same type of aircraft and the S model immediately follows in design of the R 

model, they perform completely differently from one another. The H-60S WS achieves 
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target Ao for 76% of simulation distributions which is shown in Figure 9 as those 

distributions that are above the red line; the H-60R WS does so in 30% of the distributions. 

  
Figure 8. H-60R WS RBSIM Ao Results on All Distribution Combinations. 

 
Figure 9. H-60S WS RBSIM Ao Results on All Distribution Combinations. 
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It appears the gamma distribution with a low MTVR of 0.5 achieves the highest Ao 

among all the distributions for both WSs. It even surpasses the default exponential 

distribution for both WSs by 2%. This is understandable since the MTVR of exponential 

is 1.0, so the variability is substantially less for MTVR of 0.5. The 100% alternate log-

normal distribution with the MTVR of 1.5 achieves the second highest Ao for both WSs. 

The H-60R alternative distribution mixes achieve the lowest Ao among the distributions 

just like in the F/A-18’s case. The H-60S WS alternative distribution mixes achieve a 

higher Ao than the 100% alternate distributions.  

Both of the H-60 aircraft WSs have the same logistics support chain as well as share 

a lot of the same parts, yet perform completely differently in RBSIM. For instance, the 

difference in the parts change for the mixed alternate distributions is minor. The H-60R 

experiences a 49% change and the H-60S experiences a 47% change. Yet, the H-60S WS 

appears to be able to achieve a higher Ao across all of the distributions more often than its 

older platform model. This could possibly be explained by the age of the parts on the H-

60R WS is becoming a factor and that wear and tear is more often than not the culprit of 

the additional demand. 

Lastly, we analyze the support aircraft and how they perform with the alternative 

distributions. Figures 10 and 11 show the results of the how the alternative distributions 

affected the Ao of both WSs. The E-2D WS is the newest variant of the E-2 aircraft yet it 

achieves the lowest Ao among the seven WSs that are tested. The V-22 WS is the Navy’s 

variant of the Marine Corp’s V-22 combat support aircraft. Its performance is consistent 

with middle of the group of the WSs. Like the F/A-18 E and F variants, it appears the V-

22’s allowance levels built by NAVARM are robust enough to handle the majority of the 

alternate distributions.  
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Figure 10. E-2D WS RBSIM Ao Results on All Distribution Combinations. 

 
Figure 11. V-22 WS RBSIM Ao Results on All Distribution Combinations. 
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The 100% alternate log-normal distribution with an MTVR of 0.5 achieves the 

highest Ao for the E-2D at 89%. The Log-normal distribution Ao is higher than the default 

exponential distribution by 2%. For the V-22, the Weibull distribution with an MTVR of 

0.5 achieves the highest Ao at 96%. It appears that in both WSs the gamma distribution 

achieves the lowest Ao. However, in the E-2D WS it is the gamma mix with the MTVR 1.5 

that achieves the lowest Ao at only 62%. For the V-22 it is the 100% alternate gamma 

distribution with an MTVR of 1.5 that achieves the lowest with a 63% Ao.  

Both WSs experience the majority of their unique parts change to reflect an 

alternate distribution. In particular, 61% of the E-2D WS parts change and 64% of the V-

22 change to non-exponential for the distribution mixes. However, the E-2D is not 

consistent with the performance of the distributions. In particular, the Weibull mixes 

achieve a higher Ao than the 100% alternate Weibull distributions for both the higher and 

lower MTVRs. Yet the gamma and log-normal mixed distributions achieve lower Ao 

results than their 100% alternates. The V-22 mixed distributions achieves higher Ao than 

all of the complete alternates.  

For all WS except the E-18G, using a high MTVR (1.5) results in lower estimated 

Ao than the target Ao. This suggests that, if actual failure time distributions do have a higher 

MTVR than 1.0, then the achieved Ao will be lower than projected. Without this analysis, 

we can only observe that the MTVR used to create allowances appears to make a difference 

in actual Ao achieved. 

Lastly, we group the WSs and evaluate the Ao results based on the MTVR. Figures 

12 and 13 shows the results. The graphs show that the 1.5 MTVR consistently achieves a 

lower Ao than that of the 0.5 MTVR. The mean Ao for the 1.5 MTVR is 79% while the 

mean for the 0.5 MTVR is 86%. Only three WSs achieve the target Ao with a 1.5 MTVR 

while all but two achieve the same target Ao with a 0.5 MTVR. It appears the MTVR makes 

a difference in achieving the target Ao for WSs.  
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Figure 12. RBSIM Collective Ao Results for all Weapon Systems at 1.5 

MTVR. 

 
Figure 13. RBSIM Collective Ao Results for all Weapon Systems at 0.5 

MTVR. 
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B. RESULTS BY DISTRIBUTION  

In this section we discuss results of each distribution across all seven weapon 

systems. The goal is to understand the trends of each distribution by grouping the results 

across the WSs. Just as important is to see which distribution produces similar results as 

when using the exponential distribution. If an alternative distribution achieves the same Ao 

as exponential then the use of exponential distribution can be seen as a reasonable one. On 

the other hand, a discrepancy suggests that the exponential assumption may be suspect.  

First and foremost is the performance of the exponential distribution in RBSIM. 

Figure 14 shows the results of RBSIM’s use of NAVARM’s allowance levels based on the 

exponential demand distribution. All of WSs achieve the target Ao. These levels are the 

basis achievements of the simulation that NAVARM’s output allowance levels are 

designed to achieve. In other words, the exponential simulation closely resembles how 

NAVARM’s allowance calculations are designed to perform in the real world.  

 
Figure 14. RBSIM Exponential Distribution Ao Results by WS. 
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Figure 15 shows the results of Weibull distribution (for 100% of the parts) with 

both MTVRs, as well as the mixed (Weibull and exponential) distributions. The 100% 

Weibull distribution appears to achieve the lowest Ao overall among the alternate 

distributions. Also apparent is that the Weibull distribution achieves a higher Ao with a 

lower MTVR. When all parts change to reflect a MTVR of 0.5, 57% of the WSs achieve 

target Ao. The Weibull and exponential parts demand distribution mix follows closely with 

42% of the WSs achieving target Ao, with only the F/A-18E WS missing the goal by less 

than 1%.  

When the MTVR increases to 1.5 the achieved Ao is much lower. Only one WS 

achieves target Ao when the entire demand distribution changes. The H-60S WS is within 

1% of the target Ao. The mixed Weibull distribution with MTVR of 1.5 appears to produce 

higher results than its 1.5 MTVR counterpart, where 42% of the WSs are able to achieve 

target Ao.  

 
Figure 15. RBSIM Weibull Distribution Ao Results by WS. 



35 

The gamma distribution performs very differently depending on the MTVR (see 

Figure 16). A lower MTVR appears to produce the target Ao more often. Specifically, 85% 

of the WSs for the lower MTVR achieve the target Ao, with the F/A-18E reaching within 

1% of the goal when the distribution is 100% gamma. The gamma mixture with the low 

MTVR produces the second highest results where 71% of the WSs achieve target Ao.  

When applying a large MTVR to the gamma distribution the majority WSs do not 

meet target Ao. The difference in failure appears quite significant when the MTVR of 1.5 

(where only 29% of the WSs achieve the target Ao) is compared to the performance of the 

0.5 MTVR (where 71% do so). It is also quite surprising that the introduction of the default 

distribution decreases the Ao among the WSs. When the exponential distribution is mixed 

in with the gamma distribution for rate of failure, only 36% of the WSs achieve the target 

Ao while 64% achieve Ao for the100% alternate gamma distribution. 

 
Figure 16. RBSIM Gamma Distribution Ao Results on WS.  
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Log-normal distribution appears to produce the highest Ao results of all three 

alternative distributions. Figure 17 shows the results of log-normal in RBSIM. Specifically, 

both log-normal distributions (where 100% of the part’s distributions change) perform just 

as (well if not better) than the exponential distribution. All WSs are able to achieve the 

target Ao. The log-normal distribution with the lower MTVR is the highest performing 

distribution among all those that are being tested, including the default exponential demand 

distribution.  

We have seen consistently that the mixed distributions do not achieve the same 

levels as the 100% alternate counterparts. However, both of the log-normal distributions 

perform just as well as the other two alternative mixed distributions. In all four log-normal 

simulations, the EA-18G and the V-22 produce the highest Ao results with both achieving 

90%. Of the three alternate distributions, log-normal appears to achieve relatively the same 

results as the exponential distribution. 

 
Figure 17. RBSIM Log-Normal Distribution Ao Results by WS.  
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Lastly, we group the distributions and evaluate the Ao based on the two MTVRs. 

Figures 18 and 19 shows the results. The graphs show that, consistently, the 1.5 MTVR 

achieves a lower Ao (averaging 29%) than that of the 0.5 MTVR (100%). Only two 

distributions achieve the target Ao with a 1.5 MTVR while all 0.5 MTVR achieve the target 

Ao. It appears the MTVR also makes difference on achieving the target Ao for the 

distribution. 

 
Figure 18. RBSIM Collective Ao Results on the Alternate Distributions at 1.5 

MTVR. 



38 

 
Figure 19. RBSIM Collective Ao Results on the Alternate Distributions at 0.5 

MTVR 

C. STATISTICAL ANALYSIS OF RBSIM AO RESULTS 

Finally, we perform a formal statistical analysis of RBSIM’s results. For the 

analysis we use the R Statistical Software language. We capture a statistically test each 

RBSIM replication in order to understand the distribution of the Ao results. We use the 

RBSIM results from the F/A-18E, E-2D, and H-60R to analyze. These WSs have been 

chosen in order to sample one of each type of aircraft. 

One goal is to test for normality in the RBSIM-generated Ao samples. A number of 

statistical tests, including the t-test we use later in this chapter, requires a normally 

distributed sample population. Verifying that RBSIM’s Ao results are normally distributed 

allows us to continue with the statistical analysis. We accomplish this by taking the 30 

replications of each WS estimated Ao and perform the Shapiro-Wilks test for normality 

(Taeger, 2015, p. 148). This test detects the departures from normality and rejects the null 

hypothesis of normality when the p-value is less than or equal to a specified value. We also 

perform two-sample t-tests comparing the estimated Ao means of the different alternate 

distributions and MTVRs (Taeger, 2015, p. 27). These t-tests consist of testing one WS 

using (a) two different distributions and different MTVRs; (b) the same distributions but 
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different MTVRs; and, (c) two different distributions but the same MTVR. Here we are 

testing the null hypothesis that the true difference in the means are equal to zero. 

We first test the F/A-18E WS. Each distribution with both MTVRs is run through 

the Shapiro-Wilks test for normality. The null hypothesis for this test is that RBSIM’s Ao 

results are normally distributed while the alternate hypothesis is that the Ao results depart 

from normality. All of the alternate distributions including the mixed distributions have p-

values higher than the 0.05 threshold and therefore there is not enough statistical evidence 

to reject the null hypothesis. RBSIM’s Ao results for the F/A-18E all show a high 

confidence level of being (approximately) normally distributed. 

 The F/A-18E WS’s estimated Ao normality test allows alternate distributions to be 

compared using the two sample t-test. The null hypothesis for this test is that the difference 

in the two sample Ao means equal zero, that is, that both means are identical. All p-values 

for the eighteen different combinations are less than 0.0001. Therefore, the difference in 

the 100% Weibull mean to all other selected distribution means is statistically significant. 

Next, we test the same distribution but different MTVRs. In all cases, we reject the null 

hypothesis that the difference in the estimated means of the compared distributions equals 

zero. 

Finally, we compare different distributions but the same MTVR. We find that one 

of the eighteen combinations returns p-value greater than 0.05. The 0.5 MTVR gamma and 

log-normal two sample t-test returns a p-value of 0.7991 as shown in Table 3. Here, there 

is not enough statistical evidence to reject the null hypothesis of identical means for the 0.5 

MTVR gamma and 0.5 MTVR log-normal distributions. For the F/A-18E, the difference 

in the mean for gamma and log-normal distributions with a 0.5 MTVR is not statistically 

significant. 
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Table 3. F/A-18E 100% Gamma Distribution Comparison to Other 
Distributions with Same MTVR. 

F/A-18E 100% Gamma Distribution Comparison to The Other Distributions with 
Same MTVR Results 

Distributions p-value Null Hypothesis (Ho): μ1 - µ2 = 0 

Gamma 1.5, Weibull Mixed 1.5 <0.0001 Reject Ho 

Gamma 0.5, Weibull Mixed 0.5 <0.0001 Reject Ho 

Gamma 1.5, Log-Normal 1.5 <0.0001 Reject Ho 

Gamma 0.5, Log-Normal 0.5 0.7991 No evidence to reject Ho 

Gamma 1.5, Log-Normal Mixed 1.5 <0.0001 Reject Ho 

Gamma 0.5, Log-Normal Mixed 0.5 <0.0001 Reject Ho 

 

The next WS we test is the E-2D WS’s estimated Ao results for normality. All of 

the Weibull alternate distributions have a p-value below the 0.05 threshold and therefore 

there is not enough statistical evidence to reject the null hypothesis that Weibull’s estimated 

Ao results are normally distributed. The E-2D’s 100% alternate gamma distribution with 

the 1.5 MTVR has a low p-value for the Shapiro-Wilks test at 0.1450, which suffices to 

avoid rejecting the null hypothesis. The Shapiro-Wilks p-value for the 0.5 MTVR for 

gamma is slightly higher at 0.1505. In contrast with the 100% alternate distribution, the 1.5 

MTVR mixed distribution has a much higher p-value for the normality test at 0.6990. The 

0.5 MTVR mixed distribution also produces a higher normality test p-value of 0.6715. 

The last distribution we test for normality for the E-2D WS is log-normal. The 1.5 

MTVR 100% log-normal distribution satisfies the normality test. The resulting p-value is 

0.5329. However, the log-normal distribution with a 0.5 MTVR rejects the null hypothesis 

for the normality test at 30 replications with a p-value of 0.0069 as Table 4 shows. Figure 

20 shows the log-normal distribution of Ao. Figure 21 shows the QQ-plot of the same 

distribution. The gray area represents a normality reference line with the y axis representing 

the Ao results and the x axis representing the mean at zero with points of separation to both 
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sides. As Figure 20 shows, both tails of the distribution depart from normal with majority 

of the replication points fall within the normality structure. The 100 independent runs of 

the 30 replications results are produced from RBSIM and the p-value for the 0.5 log-normal 

distribution is 0.9096. The 100 independent runs are required for the E2-D’s log-normal 

distribution in order for the replications to become normally distributed. Figure 22 shows 

the results. Lastly, both log-normal mixed distributions pass the Shapiro-Wilks test with a 

p-value of 0.1522 for the 1.5 MTVR and a p-value of 0.6612 for the 0.5 MTVR. The 

majority of the E-2D WS Ao results do not reject the null hypothesis for the normality test. 

The single instance that initially did so is now (after 100 averages of the 30 replications are 

tested using the Shapiro-Wilk test) not rejecting the normality test. 

Table 4. E-2D 100% Alternate Distribution Results for the Shapiro-Wilks 
Normality Test. 

E-2D 100% Alternate Distribution Results for The Shapiro-Wilk Normality Test 

Distribution p-value Null Hypothesis (Ho): Ao results 

normally distributed 

100% Weibull 1.5 MTVR 0.6690 Insufficient evidence to reject Ho 

100% Weibull 0.5 MTVR 0.1450 Insufficient evidence to reject Ho 

100% Gamma 1.5 MTVR 0.3547 Insufficient evidence to reject Ho 

100% Gamma 0.5 MTVR 0.1435 Insufficient evidence to reject Ho 

100% Log-Normal 1.5 MTVR 0.1505 Insufficient evidence to reject Ho 

100% Log- Normal 0.5 MTVR 0.0069 Reject Ho 
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Figure 20. 30 Replications of E-2D Log-Normal Distribution with MTVR 0.5. 

  

 
Figure 21. RBSIM E-2D Log-Normal Distribution Ao Results at 0.5 MTVR 

QQ-Plot. 
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Figure 22. 100 Replications of Mean Ao for E-2D Log-Normal Distribution 

with MTVR 0.5. 

The first t-test we perform is the comparison of the means of two different 

distributions with different MTVRs. Table 5 is the 100% Weibull distribution p-value 

results. The Weibull 0.5 and gamma 1.5 MTVRs t-test returns a p-value of 0.4861. There 

is not enough statistical evidence to reject the null hypothesis and therefore the difference 

in the means of these two distributions are not statistically significant. The remaining 

seventeen combinations have a p-value less than 0.05 and therefore the difference is 

statistically significant. The results for the same distribution but different MTVRs t-test 

produce the p-value less than 0.0001. All six combinations have a statistically significant 

difference in means. The final t-test comparing different distributions but the same MTVR 

returns one result with a p-value higher than 0.05. As Table 6 shows, the 0.5 MTVR gamma 

and log-normal distributions two sample t-test returns a p-value of 0.8971. There is not 

enough statistical evidence to reject the null hypothesis and the difference in the two means 

is not statistically significant. 
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Table 5. E-2D 100% Weibull Distribution Comparison Results to the Other 
Distributions with Different MTVRs. 

E-2D 100% Weibull Distribution Comparison to The Other Distributions with 
Different MTVR Results 

Distribution p-value Null Hypothesis (Ho): μ1 - µ2 = 0 

Weibull 1.5, Gamma 0.5 <0.0001 Reject Ho 

Weibull 0.5, Gamma 1.5  0.4861 Insufficient evidence to reject Ho 

Weibull 1.5, Log-Normal 0.5 <0.0001 Reject Ho 

Weibull 0.5, Log-Normal 1.5 <0.0001 Reject Ho 

Weibull 1.5, Gamma Mixed 0.5 <0.0001 Reject Ho 

Weibull 0.5, Gamma Mixed 1.5 <0.0001 Reject Ho 

Weibull 1.5, Log-Normal Mixed 0.5 <0.0001 Reject Ho 

Weibull 0.5, Log-Normal Mixed 1.5 <0.0001 Reject Ho 

 

Table 6. E-2D 100% Gamma Distribution Comparison to Different 
Distribution but Same MTVR Results. 

E-2D 100% Gamma Distribution Comparison to The Other Distributions with 
Same MTVR Results 

Distribution p-value Null Hypothesis (Ho): μ1 - µ2 = 0 

Gamma 1.5, Weibull Mixed 1.5 <0.0001 Reject Ho 

Gamma 0.5, Weibull Mixed 0.5 <0.0001 Reject Ho 

Gamma 1.5, Log-Normal 1.5 <0.0001 Reject Ho 

Gamma 0.5, Log-Normal 0.5 0.8971 Insufficient evidence to reject Ho 

Gamma 1.5, Log-Normal Mixed 1.5 <0.0001 Reject Ho 

Gamma 0.5, Log-Normal Mixed 0.5 <0.0001 Reject Ho 
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We select the H-60R WS to test the rotary wing platforms. The H-60R WS’s 100% 

alternate Weibull distribution with a 1.5 MTVR has one of the highest p-values among the 

WS samples at 0.8247 for the Shapiro-Wilks test. The p-value for Weibull’s 0.5 MTVR 

decreases to 0.4950 but still rejects the null hypothesis for the normality test. When we 

apply it to the 1.5 MTVR mixed Weibull distribution we observe a p-value of 0.1093. 

Lowering the MTVR to 0.5 increases the p-value for the mixed distribution to 0.3908.  

The 100% gamma distribution for the 1.5 MTVR also appears to be normally 

distributed. It has a p-value of 0.4310. The 0.5 MTVR 100% gamma distribution p-value 

result does reject the null hypothesis for normality at 30 replications. As Table 7 shows, 

the p-value is 0.0261. Figure 23 shows the histogram of the Ao distribution. However, 

Figure 24 shows that only the lower tail departs from normality while the rest of the results 

are in line with a normal distribution and with more replications it is highly likely that the 

distribution would be approximately normal. The 1.5 MTVR mixed distribution has the 

highest p-value for gamma’s normality test at 0.7918 with the 0.5 MTVR gamma mixed 

distribution having the second highest p-value at 0.5496. The H-60R WS Ao results show 

that they appear to be approximately normally distributed and the single one that rejects 

the null hypothesis of a normal distribution only departs from normal at the lower end of 

the QQ-plot tail. 
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Table 7. H-60R 100% Alternate Distribution Results for the Shapiro-Wilks 
Normality Test. 

H-60R 100% Alternate Distribution Results for The Shapiro-Wilk Normality Test 

Distribution p-value Null Hypothesis (Ho): Ao 

results normally distributed 

100% Weibull 1.5 MTVR 0.8247 No evidence to reject Ho 

100% Weibull 0.5 MTVR 0.4950 No evidence to reject Ho 

100% Gamma 1.5 MTVR 0.4310 No evidence to reject Ho 

100% Gamma 0.5 MTVR 0.0261 Reject Ho 

100% Log-Normal 1.5 MTVR 0.6844 No evidence to reject Ho 

100% Log- Normal 0.5 MTVR 0.6292 No evidence to reject Ho 

 
 

 
Figure 23. 30 Replications of H-60R Gamma Distribution with MTVR 1.5  
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Figure 24. RBSIM H-60R Gamma Distribution Ao Results at 0.5 MTVR QQ-

Plot.  

As before, the first two sample t-test we perform for the H-60R’s distributions is 

the comparison of the means of two different distributions with different MTVRs. Just like 

the E-2D’s t-test for the same classification, the Weibull 0.5 and gamma 1.5 MTVRs two 

sample t-test returns a p-value 0.2123, higher than the 0.05 null hypothesis rejection 

threshold. The difference in the means of these two distributions is not statistically 

significant. All of the other combinations have a p-value less than 0.05 and therefore the 

means are not statistically the same. The t-test results for the same distribution but different 

MTVRs produce the p-value lesser than 0.0001 for all combinations therefore there is 

enough statistical evidence to reject the null hypothesis that the estimated Ao means are the 

same given the distribution selection criteria. The final t-test comparing different 

distributions but the same MTVR returns one result with a p-value higher than 0.05. The 

0.5 MTVR gamma and log-normal distributions two sample t-test returns a p-value of 

0.6496 as shown in Table 8. This is the same two sample t-test combination that returns a 

high p-value for the E-2D as well. There is not enough statistical evidence to reject the null 

hypothesis that the difference in these two sample means equal zero and therefore the 

difference is not statistically significant. 
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Table 8. H-60R 100% Gamma Distribution Comparison of Different 
Distribution with Same MTVR. 

Results for H-60R 100% Gamma Distribution Comparison to The Other 
Distributions with Same MTVR  

Distribution p-value Null Hypothesis (Ho): μ1 - µ2 = 0 

Gamma 1.5, Weibull Mixed 1.5 <0.0001 Reject Ho 

Gamma 0.5, Weibull Mixed 0.5 <0.0001 Reject Ho 

Gamma 1.5, Log-Normal 1.5 <0.0001 Reject Ho 

Gamma 0.5, Log-Normal 0.5 0.6496 No evidence to reject Ho 

Gamma 1.5, Log-Normal Mixed 1.5 <0.0001 Reject Ho 

Gamma 0.5, Log-Normal Mixed 0.5 <0.0001 Reject Ho 
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V. CONCLUSION AND RECOMMENDATION 

In this chapter we discuss our conclusions from the data analysis and offer some 

recommendations of further study of NAVARM. 

A. CONCLUSIONS  

RBSIM was initially developed by Wray to assess the validity of NAVARM’s 

outputs. NAVARM calculates allowance levels to achieve the target Ao assuming an 

exponential demand distribution for all parts. These allowance levels are used to build an 

aircraft carrier’s AVCAL. This thesis is testing the sensitivity of the distribution 

assumption made in NAVARM by introducing alternative distributions to the demand 

pattern. We do so on the basis that these distributions are known to possess statistical 

properties for modeling mean time between failures, for certain types of parts, and under 

certain assumptions. Based on the analysis performed in Chapter IV, we can conclude the 

following: 

· Alternative distributions appear to have an impact on Ao. 

· The MTVR also appears to impact Ao. 

· The Weibull distribution produces the lowest Ao among the three 

alternative distributions. NAVARM’s allowance levels are not high 

enough to meet target Ao under this demand distribution. 

· NAVARM potentially does not allocate enough parts for the AVCAL 

where the MTBF distribution is non-exponential. 

· The newest aircraft to the fleet, the EA-18G, achieves target Ao regardless 

of distribution.  

· The log-normal distribution achieves the highest Ao among the three 

alternate distributions. 
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B. FUTURE WORK RECOMMENDATION  

While this thesis concentrates on NAVARM’s demand distribution assumption, 

further analysis would benefit the continued development of naval aviation RBS models. 

The following is a list of recommendations for future study in this area: 

· Perform an in-depth analysis on RBSIM. Compare RBSIM Ao to actual Ao 

recorded from several sites to validate RBSIM output. 

· Perform sensitivity analysis on any other NAVARM assumptions. For 

example, allow NAVARM to transfer parts between sites to cross-level 

inventory or allow for WS partial mission capable and record the impacts 

on Ao as well as allowance levels. 

· Modify RBSIM to reflect real world supply and maintenance practices by 

introducing cannibalization practices, prioritized queues for resupply, and 

conditional failure rates by parts position and rerun this thesis’s sensitivity 

analysis. 

· Perform a statistical analysis of NAVSUP’s candidate file with the goal of 

accurately capturing the real world MTBF in order to improve 

NAVARM’s allowance calculation.  

· Test the stationarity assumption of demands. In particular, measure the 

impact of a “surge” in demand on NAVARM’s solution to whether or not 

the allowance levels can absorb the new demand and still achieve target 

Ao. 

· In a similar vein, examine the impact of wartime operational-tempo on the 

AVCAL. The goal is to verify that NAVARM builds allowance levels 

using war-time flight hours that accurately capture wartime level of 

demand. 
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