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1  Abstract 
In this report, we present summary of the digital, physical and semantic image forensics and integrity 
methods developed by the DiSPARITY team, lead by the University of Southern California Information 
Sciences Institute, under DARPA’s Media Forensics program between 2016 and 2020. The team also 
included University of Naples, Italy and University of Erlangen-Nuremberg, Germany. The DiSparity  team 
has developed various state of the digital integrity methods (e.g.   NoisePrint,  GAN fingerprint      and 
ManTra-Net), physical integrity (e.g. segmentation-free light direction estimation and analysis of incident 
light direction). 
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2 Summary 
In this report, we present the novel methods we proposed and implemented for digital integrity, physical 
integrity and semantic integrity. For the research of digital integrity, we developed algorithms for camera 
fingerprint modeling and manipulation detection, including: 

A deep learning-based noiseprint to represent the camera characteristics, and trained Siamese 
network and classifier to perform camera identity matching and classification respectively with 
state of the art results. 

• A GAN to generate the noiseprints of cameras.

A variety of algorithms and models to perform image-based manipulation detection, copy/move
localization, splice localization and video facial manipulation detection resulting in top-rated per- 
formance among Medifor evaluation participants. A notably algorithm is the ManTraNet: an end-to-
end trainable image manipulation detection algorithm.

A two-branch Recurrent Network for Isolating Deepfakes in Videos. Evaluation results showed better
performance than all existing methods.

Our research of physical integrity focused on two directions — (1) incidental light direction estimation 
and (2) novel approaches to fingerprinting the camera and imaging process. We developed physical integrity 
algorithms, including: 

Two light direction estimation methods (gradient-based and convolutional network-based) are de- 
signed and evaluation results showed very good splice detecting performance when light direction 
estimation is applied. 

A number of fingerprints for describing camera characteristics, such as color fingerprinting (color filter 
sensitivity, camera white-balancing and additional camera-internal non-linearities like gamma 
correction.), fingerprinting of JPEG library chroma subsampling, and fingerprinting of depth image 
calculation in Cameras. 

For semantic integrity, we have designed an end-to-end system for indexing a large image database, 
and retrieving provenance images of a given probe image. The evaluation results showed our system 
ranked the second in terms of provenance filtering performance among three participants. For a million- 
image world set, our system can reliably retrieve over 80% provenance images when looking at top-ranked 
candidates. This showed the system is promising for a real-world application. 

3 Introduction 
For  digital and physical image integrity,  we  focused on modeling and finding manipulations in images    or 
videos. For physical integrity, we focused on searching an image collection for original images and 
intermediate images generated when making a manipulated image using image editing tools. 

Digital integrity tends to care about clues of the manipulation that exist in the image itself, e.g.,  whether 
the PRNU pixels do not match those of the claimed camera, or  whether  a  trained  neural  network can 
indicate the manipulation as an abnormal region from a heat-map.  Although the PRNU of      a camera is 
stable, when capturing a natural scene image, it is always made obscure due to the relatively low intensity. 
Thus, when comparing the camera fingerprints between two natural scene images, it is beneficial to apply 
metric learning or complex classifiers than simply computing the distance between    the fingerprints. Some 
types of manipulations can be detected as pixel-level local or global modifications. However, manipulations 
like the copy/move and splicing need to be detected by examining if duplicated regions exist in the image. 
As DeepFake becomes a powerful tool to fake images, there has been an imperative need of algorithms 
detecting DeepFake-generated manipulations.  The  key  to  developing these algorithm is to use deep 
learning to extract coherent features that can capture distinguishable distributions between genuine images 
and manipulated images. 

Same as digital integrity, research in physical integrity also focuses on finding manipulations from 
images or videos. But the subject to research on is very different from that of digital integrity. For 
example, when splicing an object taken from one image into another image, it is very difficult to modify 
the direction of the light source lighting the object. This fact can be useful for splice detection. As one 
can see, the direction of the light can be considered an attribute intrinsic to a physical process. Intrinsic 

• 

• 

• 

• 

• 
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processes of a camera such as how the signal received in the sensor is converted into a digital image, how 
Gamma compression parameters and image encoding are selected are also characteristics of the camera. 
All of those characteristics can be useful in media forensic. 

The goal of provenance filtering is finding evidence of manipulation by means of image retrieval. Given 
a probe image, if one can find the original images,  and even the intermediate images created  during 
manipulation, the manipulation will look very obvious when one compares all these ”provenance” images 
against each other. One challenge in building a provenance filtering algorithm is that the boundary of the 
retrieval query is not precisely given (it can be just an arbitrary and quite small region within the probe 
image). What’s more, one cannot run an ordinary object detection network to solve this problem because the 
training data are not sufficient and the time to perform the retrieval will be too slow when feeding all images 
from the world dataset into the network. 

4 Methods, Assumptions and Procedures 

4.1 Digital Integrity 
4.1.1 Noiseprint 

Forensic analyses of digital images rely heavily on the traces of in-camera and out-camera processes left  on 
the acquired images.  Such traces represent a sort of camera fingerprint.   If one is able to recover   them,  by  
suppressing the high-level scene content and other disturbances,  a number of forensic tasks   can be easily 
accomplished. A notable example is the Photo-Response Non-Uniformity (PRNU) pattern, which can be 
regarded as a device fingerprint, and has received great attention in multimedia forensics. Following this line 
of reasoning, we proposes a method to extract a camera model fingerprint, called noiseprint, where the 
scene content is largely suppressed and model-related artifacts are enhanced [15]. 

1st patch sequence 
… Extracted Residues 

Updating
Weights  Distance Binary 

classification 

Figure 1: Using a Siamese architecture for training. The output of one CNN takes the role of desired (same 
model and position) or undesired (different models or positions) reference for the other twin CNN. 

This is obtained by means of a Siamese network, shown above, which is trained with pairs of image 
patches coming from the same camera (label +1) or different cameras (label 1). By so doing, we obviate
the absence of the noiseprint, which needs be estimated. In fact, if two different input patches acquired 
with the same camera model are fed to the two branches, their outputs are expected to be similar, and 
hence the output of net 1 can take the role of desired output for the input of net 2, and vice-versa, 
providing two reasonable input-output pairs. For both nets, we can therefore compute the error between 
the real output and the desired output, and back-propagate it to update the network weights. More in 
general, for positive examples (same model) weights are updated so as to reduce the distance between 
the outputs, while for negative examples (different models) weights are updated to increase this distance 
so the network learns to discard irrelevant information, common to all models, and keep in the noiseprint 
only the most discriminative features. 

A further key point in the training process is that two input patches can be considered similar only 
if they come from the same position in the image, besides coming from the same camera model. In fact, 
artifacts generated by in-camera processes are not spatially stationary, and hence noiseprint patches 

Residual 
Neural Network 

Residual 
Neural Network 

Cross-Entropy 

LOSS 

2nd patch sequence 

…
 

-1 +1  … +1

Sequence of relative labels 
+1) Patches from the same camera and position 
-1) otherwise
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corresponding to different positions are different themselves and must not be pooled during training, in 
order not to dilute the artifacts’ strength. An important consequence for forensic analyses is that any 
image shift, not to talk of rotation, will impact on the corresponding noiseprint, thereby allowing for the 
detection of many types of manipulations. 

The loss function used for training is the weighted sum of two terms 

L = L0 − λR (1) 

with the weight λ to be determined by experiments. As first term we use the distance based logistic, L0, 
recently proposed in the literature for similar tasks. Then a regularization term, R, based on average  the 
spectral content of extracted noiseprints, is added to encourage their diversity. 

 
4.1.2 An end-to-end trainable approach for image forgery detection 

Due to limited computational and memory resources, current deep learning models accept only rather 
small patches in input, much smaller than typical images. In computer vision, this problem is often 
solved by resizing the input image. However, in image forensics this must be definitely avoided not to 
lose precious details with dramatic impact on performance. As an example, a well-crafted splicing (see 
the figure) does not show obvious artifacts that allow detection by visual inspection, but suitable analysis 
tools, like the image noiseprint, expose inconsistencies in the image micro-structure that may be due only 
to the insertion of alien material in the host image. After strong image resizing, such fine-grain details 
would be irremediably lost. 

 

Figure 2: Structural differences in the noiseprint of a pristine and a spliced region. 
 

One can avoid resizing by means of patch-wise processing, and this is the strategy of many state-of- 
the-art forensic tools that rely on the statistical analysis of local micro-patterns. However, local analyses 
alone are necessarily suboptimal. Clues emerging from the whole image, and at multiple scales, should 
be combined and processed jointly to make a reliable decision. So, image forensic applications have the 
need to look, at the same time, at the whole image but also at its tiniest details. 

Therefore, we proposed a new framework for full-resolution image forgery detection based on Convo- 
lutional Neural Network (CNN) [53]. Our goal was to design CNN-based forensic tools that, overcoming 
current technological limitations, met the contrasting requirements of full-resolution and full-image train- 
ing and analysis. We proposed the CNN-based framework depicted in Fig. 3 which makes decisions based 
on full-resolution information gathered from the whole image. Thanks to gradient check pointing, the 
framework is trainable end-to-end with limited memory resources and weak (image-level) supervision, al- 
lowing for the joint optimization of all parameters. To further boost performance, we use both plain RGB 
features and noiseprint data, obtained from a pre-trained noiseprint extractor, which is then finetuned 
together with the whole framework. 

 
4.1.3 GAN fingerprints 

GANs are pushing the limits of image manipulation. A skilled individual can easily generate realistic images 
sampled from a desired distribution or convert original images to fit a new context of interest.  With 
progressive GANs, images of arbitrary resolution can be created, further improving the level of photorealism. 
Although GAN-based manipulations present often artifacts that raise the suspect of observers, the technology 
is improving very fast and it is only a matter of time before GAN-generated images will consistently pass 
visual scrutiny. 

In recent years, a large number of methods have been proposed to single out fake visual data, relying 
on their semantic, physical, or statistical inconsistencies. Statistical-based approaches, in particular, rely 
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Figure 3: The proposed end-to-end trainable framework. 
 
 

on the long trail of subtle traces left in each image by the acquisition devices, traces that can be hardly 
disguised even by a skilled attacker. In fact, each individual device, due to manufacturing imperfections, 
leaves a unique and stable mark on each acquired photo, the Photo-Response Non-Uniformity (PRNU) 
pattern, which can be estimated and used as a sort of device fingerprint. Likewise, each individual 
acquisition model, due to its peculiar in-camera processing suite (demosaicking, compression, etc.), leaves 
further model-related marks on the images, which can be used to extract a model fingerprint, like the so-
called noiseprints.   Such fingerprints can be used to perform image attribution as well as to detect     and 
localize image manipulations, and represent one of the strongest tools in the hands of the forensic analyst. 

Of course, GANs have little in common with conventional acquisition devices, and GAN-generated 
images will not show the same camera-related marks. Nonetheless, they are the outcome of complex 
processing systems involving a large number of filtering stages, which may well leave their own distinctive 
marks on output images. Therefore, based on this observation,  in this research we  set to prove for the  first 
time that each GAN leaves, indeed, its specific fingerprint in the images it generates, just like real- world 
cameras mark acquired images with traces of their photo-response non-uniformity pattern. By carrying out 
a process similar to the PRNU extraction, we ended up with stable patterns that characterize all images 
generated by a specific GAN, and differ from GAN to  GAN [52].  Interestingly, not only the network 
architecture, but also its training impacts on such fingerprints. 

Needless to say, GAN fingerprints are very subtle patterns, which cannot be spotted at visual 
inspection but only through statistical processing. Some insight about them can be gained by observing 
their spatial autocorrelation, shown in the figure below for two examples. In particular, the strong 
regular peaks clearly visible in the figure show that not only the filters but also the upsampling processes 
impact heavily on the formation of the GAN fingerprints, as confirmed by later findings by other 
researchers. 

 

 
Figure 4:  Autocorrelation matrices of the Cycle-GAN and Pro-GAN fingerprints averaged on 512 images. 
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4.1.4 Video facial manipulation detection 

Human faces are by far the most expressive and emotionally-charged pieces of information that circulate on 
the web. Therefore, advanced AI based methods that are able to modify in a credible  way  the attributes of 
faces in videos has raised great alarm. Instead of changing expressions, these methods  replace the face of a 
person with the face of another person. This category is known as face swapping. It became popular with 
wide-spread consumer-level applications like Snapchat. DeepFakes also performs face swapping, but via 
deep learning. 

To evaluate the effectiveness of a facial manipulation detector, we created a novel dataset of manipu- 
lated videos. We considered four automated state-of-the-art face manipulation approaches: two computer 
graphics-based approaches (Face2Face and FaceSwap) and two learning-based approaches (DeepFakes 
and NeuralTextures). The Face2Face and NeuralTextures manipulations are facial reenactment methods 
where the expressions of the source video are transferred to the target video while retaining the identity 
of the target person. FaceSwap and DeepFakes are instead face swapping methods that replace the face 
in the target video with the face in the source video. 

 

 
Figure 5: Examples of facial manipulations split in two main categories: identity modification and expression 
modification. 

 
The dataset, called FaceForensics++ [70], contains 1000 pristine videos and 1000 forged videos for 

each manipulation method. To imitate realistic scenarios, we chose to collect videos in the wild, specifically 
from YouTube. However, early experiments with all manipulation methods showed that the target face had 
to be nearly front-facing to prevent the manipulation methods from failing or producing strong artifacts. To 
create a realistic setting for manipulated videos, we generated output videos with different quality levels, 
similar to the video processing of many social networks. Since raw videos are rarely found on the Internet, 
we compressed the videos using the H.264 codec, which is widely used by social networks or video-sharing 
websites. To generate high quality videos, we used a light compression denoted by HQ (constant rate factor 
parameter equal to 23) which is visually nearly lossless. Low quality videos (LQ) were produced using a 
factor of 40. 

This new large-scale dataset enables us to train a forgery detector for facial image manipulation in 
a supervised fashion. We cast the forgery detection as a per-frame binary classification problem of the 
manipulated videos. Since our goal is to detect forgeries of facial imagery, we use additional domain- 
specific information that we can extract from input sequences. To this end, we use the state-of-the-art 
face tracking method to track the face in the video and to extract the face region of the image.  We use 
a conservative crop (enlarged by a factor of 1.3) around the center of the tracked face, enclosing the 
reconstructed face. This incorporation of domain knowledge can improve the overall performance of a 
forgery detector in comparison to an approach that uses the whole image as input. The extracted region 
is fed into a learned classification network that outputs the prediction for each processed frame (see 
fig.6). In order to give a single score for the whole video we fused the results obtained from each frame. 

 

Figure 6: Our domain-specific forgery detection pipeline for facial manipulations. 
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4.1.5 Video Copy-move Detection and Localization 

Video manipulation is becoming more and more widespread nowadays, especially due to the availability of 
artificial-intelligence tools based on deep learning, which enable even non-expert users to realize deepfake 
videos. However, video forgery can be carried out also by means of conventional methods, so-called cheap 
fakes, and may be very difficult to detect and localize. This is certainly the case of video copy-moves, 
involving the insertion or deletion of compact video objects. By this approach, one can perform both additive 
copy-moves (e.g., replicating cells in a medical video to modify cell count) and occlusive copy-moves (e.g., 
pasting background areas to remove a person from a surveillance video). When properly carried out, these 
attacks can be quite challenging to detect. Indeed, they neither leave traces in the video temporal structure 
nor insert alien video objects from another video, thus rendering ineffective all detectors looking for 
statistical anomalies. In addition to this, occlusive copy-moves offer no visual clues or salient keypoints to 
enable their discovery by visual of automated analyses. 

In this research we proposed a new technique for the detection and localization of copy-move video 
forgeries [18]. In the following, we summarize the main technical approaches used to deal with the inherent 
problems of this task. 

First, suitable features are computed, invariant to various spatial, temporal (including temporal 
flipping), and intensity transformations which may be used to disguise the attack. Versions with 
both original RGB blocks and compact Zernike moments are considered. 

Features are computed densely on a spatio-temporal grid, rather than at salient keypoints. This is 
an especially qualifying point, since it allows one to deal not only with additive copy-moves (easily 
detected by key point-based methods) but also with occlusive ones. On the down side, dense-field 
methods are more computationally demanding than keypoint-based ones. 

A major effort was therefore devoted to limit complexity.   First, a nearest-neighbor field (NNF)     is 
built, connecting each feature with its best-matching. To this end, an ad hoc video-oriented version of 
PatchMatch was developed, exploiting the inherent coherency of the NNF to reduce search complexity. 
Then, the NNF is processed to single out areas with coherent spatio-temporal displacement as 
candidate copy-moves. The fast multi-scale processing structure described in the figure is used, with 
volume of interest detected at the coarsest resolution and then refined. 

 

  

Figure 7: Block diagram of the proposed fast video copy-move detector with multi-resolution processing. The 
high-resolution field of features F 0 is extracted from the original video, V . This field is then downsampled twice 
to obtain fields F 1 and F 2. At level 2 (lowest resolution) PatchMatch works on F 2 and F 0 to provide the NN 
field NN 2. This is upsampled to become the initial NN field at level 1, NN 1. At level 1, the copy-move detector 
(CMD) works on F 1 and F 0 to refine NN 1 to NN 1, and to extract the detection map M 1 by applying the 
post-processing. Copy-moved objects are detected in this level, but their shape can be recovered more precisely 
at level 0. So M 1 is upsampled to define the volume of interest (VoI) and NN 1 is upsampled to become the initial 
NN field at level 0, NN 0. At level 0, the copy-move detector works on F 0, limited only to the VoI, to extract the 
final output, the detection map M 0 = M . 

• 

• 

• 
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4.1.6 Image Manipulation 

We developed the ManTraNet [86], an end-to-end image forgery detection  and localization solution, 
which means it takes a testing image as input, and predicts pixel-level forgery likelihood map as output. 

 

Figure 8: ManTraaNet architecture overview. 
 

The network architecture of ManTraNet is showed in Fig. 8. ManTraNet is composed of two sub- 
networks as showed below: 

Image Manipulation Trace Feature Extractor: the feature extraction network for the image ma- 
nipulation classification task, which is sensitive to different manipulation types, and encodes the 
image manipulation in a patch into a fixed dimension feature vector. 

Local Anomaly Detection Network: the anomaly detection network to compare a local feature 
against the dominant feature averaged from a local region, whose activation depends on how far a 
local feature deviates from the reference feature instead of the absolute value of a local feature. 

Comparing to existing methods, the proposed ManTraNet has the following advantages: 

Simplicity: ManTraNet needs no extra pre- and/or post-processing Fast: ManTraNet puts all 
computations in a single network, and accepts an image of arbitrary size. 

Robustness: ManTraNet does not rely on working assumptions other than the local manipulation 
assumption, i.e. some region in a testing image is modified differently from the rest. 

 
4.1.7 Camera Identification 

The acrshortPRNU of a camera is a stable pattern after mild global transformations are applied to a digital 
image. However, when we extract the acrshortPRNU using the noise residue algorithms, it is still much 
noisier than the camera fingerprint extracted from flat field images. Our motivation is to research on whether 
a deep learning model can distinguish between different cameras using the noise residue, and then we can 
determine how reliable that model is when applied to camera identification and verification.    

We adopted a model architecture using the CNN layers from the VGG-16 model followed by several 
dense layers to make a decision on camera ID: a 256d ReLU-activated dense layer, a 0.5 drop-out layer, a 
145d sigmoid-activated dense layer, and a 102d softmax dense layer. 102 is the number of camera classes.  

The training set (MFC19) was augmented with image rotated by n x 90 degree (n=1,2,3) and partitioned 
into training and validation using a 4:1 ratio. We trained the model and measured the 102-class closed-set 
camera classification accuracy on MFC19. The accuracy on the training partition is 36.2% 
and the accuracy on the validation partition is 36.6%. 

We find the following three applications of our model to be useful: 

Camera verification:  Given tuple  <image,  hpid>,  determine if  the image  is taking using camera 
hpid, and produce a confidence score. 

Same-camera image pair verification: Given two images <image 1,  image 2>,  determine if they  are 
taking using the same camera and produce a confidence score. Instead of letting the model determine 
the posterior probability for each camera class, each image is represented using the sigmoid layer 
output as features. And the cosine similarity is computed between features of two images. 

Near-duplicate verification: Use the image pair verification score to verify if two images are near- 
duplicates 

• 

• 

• 

• 

• 

• 

• 
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4.1.8 Two-branch Recurrent Network for Isolating Deepfakes in Videos 
 
 

(a) Expression Transfer + Lip Sync (b) Realistic Face Swapping (c) “Shallow Fakes” or “dumbfakes” 
 

Figure 9: Different types of facial video manipulations. Fake videos can be roughly categorized in three 
groups of manipulations; the first two groups (a,b) can be referred to as “DeepFakes” since they involve a complex 
AI model often based on deep neural networks; the last type (c) involves other “shallow” manipulations [4, 79] 
instead, such as slowing down the video and audio; such effects can still be very effective in misleading the public. 

 
Introduction and  Motivation:  Social networks and multimedia content improve human connectivity  and 
information sharing. On the other hand, visual misinformation and technology-facilitated manipulations 
have dramatically increased on social networks and the Internet [1]. Nonetheless, image manipulation is not 
new. Falsification of lithographs or photographs has been used for many years to reinforce political ideas or 
political characters [29] or to practice censorship by erasing people from pictures.  In   the modern era of 
digital pictures, perpetrators used commercial software and “elbow grease” to create realistic swapping of 
faces given a pair of still images. Although some of these results look very realistic, they involve a huge 
amount of manual work using a personal computer and an expensive raster graphics editor to produce just 
a single image [34]. 

Lately, democratized artificial intelligence (AI) made it very easy to produce highly realistic face swaps 
with a few clicks, giving the ability to non-experts to synthesize content with “Hollywood-like” quality by 
simply using off-the-shelf applications and open-source tools [63]. The technology, dubbed “Deepfake” has 
been quickly developed to process videos, transferring the identity of a subject from a source video into a 
target video. Unlike manual digital editing, face swapping in videos became effective and efficient, 
reaching hyper-realistic results, thanks to recent advances in data synthesis using Generative Adversarial 
Networks (GAN) [28], Deep Convolutional Neural Networks (DCNN) [45, 44], and AutoEncoders (AE) 
[41]. It also became easily available to non-experts through customized applications, such as DeepFaceLab 
[2], or even mobile applications, such as Zao [3]. 
Research Objective: The research objective of this effort was to develop a DeepFake Detection technology 
that could operate on videos to detect realistic AI-backed face manipulations of the family of   those depicted 
in Fig. 9(b).  The approach operates on the visual content provided by a video and is able to predict which 
segments of the videos are likely to be manipulated. One of the key issues in developing DeepFake Detection 
systems is to make them able to generalize across datasets and manipulations types.  In this sense, we 
optimize our method for better generalization across datasets, reaching a good balance between bias and 
variance [65, 80, 22], i.e., performing remarkably on same dataset used for training [71] yet transferring 
reasonably well across datasets [47, 21]. 
Technical Approach: The objective is to learn a classifier for the detection of manipulated faces, 
squishing a set of aligned video frames1 I RH×W×3×F to an embedding Φ(I) RD so that the repre- 
sentations of natural faces are compact around a reference centroid c and manipulated faces are spread 
out, ensuring a large margin between tampered and untamperd faces. 

In Fig. 10 we introduce a two-branch backbone representation extractor Φ( ) based on densely con- 
nected layers [36]. Φ learns to fuse different representations obtained using regular convolutional filters 
ΦRGB and representations extracted using multi-scale Laplacian of Gaussian [10] kernels ΦLoG. ΦLoG 
suppresses the visual information present in the low-level feature maps, effectively acting as a band-pass 
filter to amplify generation artifacts. 

The combined features maps are then fed to the backbone that ends with a bi-directional Long Short-
Term Memory (LSTM) for temporal modeling. Φ(I) indicates the concatenated output from the two 
bidirectional LSTM streams. The entire recurrent model is supervised through a novel formulation. 
Unlike recent methods [71, 74] that use classification losses for detection, we introduce a loss function 
that encourages the compactness of the representations of untampered faces, while distancing the 

1Throughout this section I indicates a sequence (or window) of aligned faces from video frames of cardinality F . 
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Figure 10: Our video-based face manipulation detection architecture. A face image is processed by two 
independent DenseBlocks: the first learns to suppress high-level content and amplify a wide range of frequencies 
using a Deep Laplacian of Gaussian (Deep LoG) layer (frequency enhancement); the second is a classic branch that 
works in the color domain.  The two feature maps are fused so that a backbone of dense blocks learns a   rich 
representation.  The architecture uses dropout after each DenseLayer and a different learning rate per layer   to 
mitigate overfitting. Our architecture ends with a bi-directional LSTM layer for video-based modeling and is 
supervised using a novel loss formulation. 
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(a) Loss idea (b) Feature space (c) Logit distribution (d) Our distribution 

 

Figure 11: Loss formulation. (a) The loss induces compression of the natural face sequences within a inner 
hypersphere placing easier samples close to c and tougher samples at the boundary; meanwhile it induces a large 
margin forcing the manipulated face sequences outside the outer hypersphere (b) t-SNE [51] visualization of the 
feature space on  the test set between natural  faces (yellow) and  deepfakes (violet).  The center  c is shown as  an 
orange cross. (c) Genuine-Impostor distribution of logits with binary cross-entropy and (d) with our loss function: 
imposing a wider margin induces less confusion in the distribution. 

 
representations of manipulated faces, for better, wider separation boundaries. At test-time, given an 
input sequence I, the method obtains the distance ||Φ(I) – c||2; the larger the distance the higher the 
likelihood of the sample being manipulated. The formulation of our loss function is explained below. 

We propose a new loss for better isolating manipulated faces inspired by recent work on one-class 
classifiers, such as one-class Deep Support Vector Data Description (Deep SVDD) [73]. The new for- 
mulation induces compactness of the embedding space for sequences of unmanipulated faces. However, 
unlike [73], the proposed loss employs manipulations synthesized by a few generators as negative samples 
enforcing a larger margin to the natural face sequences. 

More formally, we optimize the entire recurrent network defined in Fig. 10 through a cost function 
that organizes the feature space such that the variability of sequences of natural faces is compacted 
toward a reference center while the representations of manipulated face sequences are placed far apart 
at the boundaries of the feature space. Before training, we begin by pre-computing a reference center 
c ∈ℜD  by  averaging the encodings of all the natural,  unmanipulated face sequences in the training  set. 
The encodings are obtained by taking the responses of our entire architecture with two-branches 
and the bi-directional fore training. The concatenated bidirectional structures are extracted using the same 
network that is pre-trained.  The two-branches and the backbone are pre-trained on ImageNet.  When      the 
training starts, all the features are aligned to this predefined embedding space. Then we define two 
hyperspheres centered around c to constrain the feature space so that natural faces lie within SD−1(c; r−), 
while manipulated faces are kept outside SD−1(c; r+). The loss induces compression on the regular faces 
embeddings. However, unlike [73],  we  avoid  reducing all samples to a single high-dimensional point  and 
mitigate overfitting by  requiring compression up to an internal inner margin defined by the radius    r− of  
the  first  hypersphere. Furthermore, the  proposed  loss  enforces  sequences  of  manipulated  faces 
to be kept outside the  second hypersphere defined  by  the  radius  r+.  The loss L given a mini-batch 
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Ω ∈ RH×W×3×F×B of face sequences is defined as shown in Eq. (2): 

 

where Ωnat.,man. selects natural and manipulated face samples, respectively. For this loss to be valid, it 
has to hold that 0 < r− < r+ and the margin imposed between the two classes is m = r+ - r−. The 
values of the two radii have to be set according to the dimensionality D of the feature embedding. The 
loss mitigates the problem of class imbalances by normalizing each term by its cardinality. Further, the 
second margin r+ is essential to the loss because the network may choose to lower the cost just by pushing 
the negative samples indefinitely, without inducing compression on the natural faces. 

Fig. 11a illustrates the basic idea of the proposed loss, and Fig. 11b demonstrates the feature space 
of the test set of natural faces vs deepfakes.  The features are mapped to R2  using t-SNE optimizing    a 
plain DenseNet model. Natural faces are compressed while manipulated faces lie at the boundaries. The 
clusters formed by videos are visible for the manipulated faces. Fig. 11c shows the genuine and 
impostor distribution of the logits at inference time for a model trained for discerning real faces from 
deepfakes using binary cross-entropy on FaceForensics++ [71]. Although the distribution presents two peaks 
corresponding to real and deepfakes faces,  the variance of those distribution is not minimized,    and, more 
importantly, real face logits are spread out toward the manipulated faces thereby negatively affecting the 
detection rate at a low false alarm regime.  In contrast, Fig. 11d offers the distribution of     the distances 
from the center c for the two classes. Using the proposed loss we achieved compression of the natural faces 
and a clear separation from the manipulated faces, visible when zooming in a highly confusing region. 
Interpretation:  Eq. (2) shares similar traits with the formulation in [73] with a few key differences.   First, 
we have a secondary term for supervision for abnormal cases. Second, we have margins that avoid overfitting 
and better separate the two classes. The loss function also resembles the classic formulations found in deep 
metric learning such as contrastive loss functions [83], although in our case the optimization is better 
constrained since the network is allowed to “move” only Φ(I) while c is kept fixed. Finally, we spare the 
sampling of pairs or even triplets [75] which significantly reduces training complexity. Our loss differs from 
recent formulations: [82] uses softmax while we do not; it also sets one center for each class while we have 
a single center for both classes; finally, unlike us, [82] updates the centers while training. 

 
4.2 Physical Integrity 
4.2.1 Robust Analysis of the Direction of Incident Light 

The direction of incident light was first forensically investigated by Johnson and Farid [38]. It is arguably 
the most popular physics-based forensic cue. The idea is to compare the lighting environments of two objects 
under investigation,  with the goal of exposing spliced images.  However, the classical approach,  as well as 
follow-up works [39, 23, 66] impose strong assumptions on the scene, which severely limits their 
applicability in practice: 2-D estimation methods require manual annotations of carefully selected contours 
[38]. 3-D methods are constrained to objects to which a 3-D model can be robustly fitted, which essentially 
reduces the applicability to the comparison of faces. 

One major outcome of this investigation is a novel cue for estimating 2-D lighting environments. 
The key observation is that the average of all gradients on the surface of a sphere always points in the 
direction of the light source [67]. We show in our work that this finding can be directly relaxed to mostly 
convex objects with significant texture [55]. This relaxation yields a forensic cue that is very robust to 
strong image compression and downsampling, and even to major object segmentation errors. Moreover, 
partitioning the object surface into sectors extends the analysis of lighting environments slightly beyond 
2-D: diverging gradients indicate broad environment light, while converging gradients indicate a light 
source in front of the scene. These properties are illustrated in Fig. 12. The two images on the top left 
show a gray input sphere and a textured input sphere. The two images on the top right show that the 
direction of incident light is robustly estimated with 45◦ incident angle on the textured sphere,  even if  only 
a part of the sphere is segmented. The two left images in the bottom row show that the direction of 
incident light is consistently and correctly estimated when all gradients are taken into consideration and when 
subgradients from partitions of the sphere are used. The two images on the bottom right show that 
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Figure 12:  Gradient distribution on a sphere.  Top,  from left to right:  gray input sphere,  textured input  sphere, 
illumination direction on full and partially segmented textured input sphere. Bottom, from left to right: illumination 
direction on gray sphere for one segmentation and four object-local partitions point in the same direction, diverging 
partition gradients for environment light, and converging partition gradients for light in front of the scene. 

 
 

environment light leads to diverging subgradients, while light in front of the scene leads to converging 
subgradients. 

The gradient-based method calculates elementary statistical features from the gradient field. These 
features are classified to compare the lighting environments on pairs of segmented objects of a scene. The 
main benefit of this method is its remarkable robustness to downsampling, lossy compression, and also 
to variations in texture and surface reflectance properties, and to segmentation errors. This makes this 
method quite robust on data that cannot be analyzed with previous lighting-based forensic algorithms. 

 
4.2.2 Segmentation-free Lighting Estimation 

One precondition of the gradient-based lighting estimator is to segment the scene into meaningful objects. 
In many practical scenarios, this is not a serious limitation: powerful state-of-the-art object segmentation 
algorithms cover dozens or hundreds of object classes. However, the dependency on a segmentation limits 
the analysis to actual objects in the scene, while unordered structures and background elements are left 
out. 

To include also such unordered structures into the analysis, we also propose a machine-learning based 
approach to lighting estimation that does not require any object segmentation. The proposed method directly 
estimates the lighting environment of a rectangular image area. 

To this end, we calculate ground truth lighting environments from light probes of more than 1000 scenes 
from the dataset by Murmann et al. [59]. This data is used to train a Convolutional Neural  Network (CNN) 
that regresses for each patch of the image its corresponding lighting environment.  To this end, a L2-loss is 
calculated on the first nine spherical harmonics coefficients on patches of 150 x 150 pixels. The consistency 
of lighting environments is assessed in a Siamese architecture that uses the CNN  as submodule. A schematic 
overview of this approach is shown in Fig. 13. 

 
4.2.3 Color Fingerprinting from the Scene and the Camera 

The formation of colors in an image depend on the scene reflectance, the spectral distribution of the 
illuminant, and on camera-internal processing, most notably the color filter sensitivity, camera white- 
balancing and additional camera-internal nonlinearities like gamma correction. Previous works focused 
on isolating the color of the illuminant to expose spliced images that were captured under different 
lighting conditions. 

We propose to go one step further, and to include both the color of the illuminant and the camera- 
internal color processing into a combined descriptor. This offers the possibility to expose spliced images 
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Figure 13: Overview of the learning-based segmentation-less lighting estimation algorithm. 
 
 

that were either acquired with different cameras, different white-balancing settings, or different scene 
illumination. 

To this end, we propose to learn a metric space into which the features from a rectangular image 
patch are embedded. This space maps patches that are captured under identical lighting or camera 
settings to nearby locations, such that their distance in the metric space is small. The challenge here is 
to learn a descriptor that is invariant to varying object texture. 

For this task, we leverage a Residual Neural Network (ResNet) ResNet-50 architecture with an input 
patch size of 128 128 pixels, pre-trained on ImageNet. A specialized training dataset is used to achieve 
covariance with the imaging conditions with simultaneous invariance to textures. To this end, we use 
several datasets of RAW images, i.e., raw sensor readouts that have not been subject to the camera- 
internal development of the final image. Each raw image is converted to 12 final images using different 
white-balancing and color-conversion settings available in LibRaw. More specifically, each image is white- 
balanced with each of the modes “autoWB”, “cameraWB” and “noWB”, combined with each of the four 
color transformations “raw”, “sRGB”, “Adobe” and “ProPhoto”. The resulting images generally differ in 
their color appearance. However, for some combinations of scenes and acquisition devices, a subset of the 
pipelines lead to almost identical results. After removing broken and completely over- or underexposed 
images, we employ a total of 5997 RAW images from the RAISE database [19], 4998 RAW images from 
the MIT-Adobe FiveK dataset [11], 1632 RAW images from the dataset by Nam and Kim [60], and 645 
RAW images crawled from raw.pixls.us. We use the preset training/validation/test split for the 
dataset by Nam and Kim [60]. The remaining data is split by scenes with a ratio of 0.8, 0.1, 0.1. This 
yields a total of   |Strain | = 10494,   |S val | = 1463, and    |S test | = 1315 scenes for training, validation and    
test, and thus |S train| ⋅ |C| = 125928, |S val| ⋅ |C| = 17556, and |S test| ⋅ |C|  = 15780 images in total. 

The desired invariances and covariances are achieved by enforcing two conditions during training. First, 
the embeddings of patches from the same image must be closer than patches from the same scene  but 
processed with different camera color pipelines. Second, the embeddings of patches from the same image 
must be closer than pairs from different scenes with arbitrary color pipeline.  These constraints focus on 
differences in the color image formation. Texture differences are suppressed, as they are not subject to the 
distance constraints. As a side note,  these  conditions  implicitly  create  an  embedding space that can be 
marginalized in two directions, namely towards the identification of different scene illumination, and 
towards the identification of different camera settings. 

The primary application of this embedding space is to compare pairs of patches for their color 
consistency. These pairwise comparisons can be aggregated to obtain a method for forgery localization, 
i.e., that indicates an image area that deviates from the background. Forgery localization is performed 
by first calculating the medoid of all embeddings, and to mark all patches that significantly deviate from 
that medoid. It is in principle also possible to perform manipulation detection, i.e., to make a binary 
statement whether an image is spliced or not, by calculating the average distance across all pairs of 
patches. Alternatively, the more complex MeanShift aggregation can also be used for detection [12]. 
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4.2.4 Fingerprinting of JPEG Library Chroma Subsampling 

The formation of a color image differs also between Joint Photographic Experts Group (JPEG) library 
implementations. In the JPEG algorithm, the color space is transformed to YCbCr. Here, Y denotes 
luminosity, and Cb and Cr denote the luminosity-normalized blue and red chroma components.  Since    the 
eye is less sensitive to color variations, the Cb and Cr channels are typically spatially subsampled  prior to 
encoding, to further reduce the storage size of the image. 

This subsampling step is performed differently across JPEG libraries. In particular, libjpeg-turbo, 
which is a widely distributed fork of the standard library libJPEG, introduces during subsampling a small 
periodic offset in horizontal direction of each 8 x 8 pixels JPEG block. 

This periodic offset is invisible to the eye, and can only be measured in JPEG images with a compres- 
sion quality that well preserves high-frequency coefficients. Detecting this artifact is relatively straight- 
forward, by correlating each JPEG block with a fixed template that contains the artifact. That way, it is 
possible to distinguish images that were created with different JPEG libraries. Additionally, it is also 
possible to expose local manipulations in an image. This refers either to local editing like inpainting, 
where the structure of the artifact is locally destroyed, or splicing if images from two different JPEG 
libaries are combined. However, since the artifact critically depends on the high-frequency content of an 
image, it can only be detected at quality levels of about 85 and beyond if it has been introduced in the 
last compression step, or at quality levels of 97 and beyond if the image has undergone another JPEG 
compression after introduction of the artifact. 

 
4.2.5 Fingerprinting of Depth Image Calculation in Cameras 

Top-of-the-line smartphones have the capability to calculate a depth image of the scene, with applications 
in image enhancement, image segmentation, and biometric authentification. Moreover, the depth image 
is typically silently embedded into the camera JPEG image to facilitate post processing of an image after 
acquisition. When downloading an image from a camera, the depth image can be directly accessed. 

There are different possibilities for the hardware setup that is used to obtain such a depth image, 
e.g., by using time-of-flight sensors, stereo cameras, or by estimating depth from a monocular sensor. 
There are also different possibilities for the algorithmic transformation of a hardware measurement to 
the final depth image. 

This large space of possibilities offers new, interesting perspectives for a forensic analysis. First, the 
actual realization of the depth image can be used as a fingerprint for the acquisition device. Second, if an 
image is manipulated, its accompanying depth image must either be removed from the JPEG container     to 
prevent detection, or it must be manipulated in a consistent way. 

We make the assumption that the depth image is available, and investigate the possibilities to predict 
from a patch of the depth image the acquisition device. 

To this end, we use a total of twelve monocular and stereo algorithms for depth-estimation, and apply 
these algorithms on the 7481 RGB stereo image pairs of the KITTI dataset. Distinguishing these 
algorithms serves as a proxy task for training, since the actual implementations of smartphone 
manufacturers are not publicly available. 

The depth images are used to set up two training tasks. First, we train a deep neural network with twelve  
output neurons for algorithm fingerprinting.  Second, we also use this fingerprinting CNN also in  a Siamese 
network to distinguish whether two  patches stem from the same depth estimation algorithm     or not.  Both 
setups are illustrated in Fig. 14.  For  the CNN architecture, we  evaluate architectures that   are also commonly 
used for other forensic tasks, namely Extreme Inception Neural Network (Xception), ResNet-50, Multimedia 
and Information Security Lab Neural Network (MISLNet), and Mesoscopic Anal- ysis Neural Network 
(MesoNet).  For application on real smartphone data,  these pre-trained networks    are refined with few-shot 
tuning on three images per smartphone device. 

 
4.3 Semantic Integrity 
4.3.1 Provenance Filtering 

Fig. 15 shows the overall architecture of the developed provenance detection system. As shown in Fig. 
15 (a) base detection is an initial stage to detect all images created using the same base image. Starting 
from a cluster of similar images (e.g., illustrated in Fig. 15 (b)), splice detection is performed by 
subtracting the base image from the image containing the spliced object. A trimming step is applied to 
reduce the number of subtractions (illustrated as solid arrows in Fig. 15 (c)). In the donor detection 
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Figure 14: Overview on the depth map fingerprinting pipeline. Top: a single CNN is used for depth map  
fingerprinting. Bottom: a Siamese architecture of this CNN is used for patch-wise comparison of depth-map  
consistency. 

 
 

stage, spliced objects are used as queries to search for donor images that have these spliced objects 
(illustrated as red boxes in Fig. 15 (d)). In both base detection and donor detection stages, the cosine 
similarity is measured using the VGG-16 [11] features. Since the extraction of VGG-16 features is still 
not fast enough, the intensity of the down-sampled version of the original image (down-sampled into 
24 by 24 pixels) is also used as a rapid feature extraction step to quickly determine if two images are 
near-duplicates. Near-duplicates are likely to be images created using the same base image. For a pair 
of feature vectors, the cosine similarity is computed to measure their similarity. 

In the donor detection stage, the scores for two  special types of provenances are also computed.      The 
first type is the probe-as-donor scores. Probe-as-donor means the probe is a donor rather than a manipulated 
image. The second type is indirect provenance. When three images are involved in splicing where an object 
from image A was taken and spliced into image B, and another object from image     B was taken and spliced 
into image C, images A and C became indirect provenances. 

Our system produces multiple groups of base and donor detection results, each from a different method.  
These results were aggregated by taking the top candidates of each method,  and merged into   the final list 
of results. 

 
5 Results and Discussion 

5.1 Digital Integrity 
5.1.1 Noiseprint 

Since an image noiseprint is a camera model-related piece of information extracted from a test image,        it 
can be used to perform a whole range of diverse forensic tasks. Therefore, there is a large number of potential 
applications, some of which have been pointed out and highlighted in the original paper. 

Among the many applications, however, image forgery localization is one of the most interesting, 
both for its intrinsic importance in multimedia forensic analysis, and for its good match with the charac- 
teristics of noiseprint themselves. Therefore, focusing on this task, we implemented a forgery localization 
algorithm, inspired to Splicebuster, but based on the image noiseprints as original data. Then, we carried 
out experiments on a large number of datasets currently used in the community. Some of them focus 
only on splicing, like DSO-1, VIPP, and the FaceSwap dataset. Others are much more challenging, and 
present a wide variety of manipulations, sometimes cascaded on one another on the same image. This 
applies in particular to the datasets designed by NIST for algorithm development and evaluation in the 
context of the Medifor program, which can be considered very challenging benchmarks for all meth- 
ods under test. As for reference methods, we considered all the most popular and promising proposed 
in the literature, which can be roughly grouped in three classes according to the features they exploit: 
compression artifacts, color filter array artifacts and inconsistencies in the spatial distribution of features. 

Results are reported in the table below in terms of the Matthews Correlation Coefficient. To ensure 
a meaningful comparison across datasets so diverse we also report the performance ranking. Best results 
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Figure 15: Provenance filtering system diagram. 
 
 

are highlighted in red. It clearly appears that noiseprint provides the best performance on the average, ranking 
always first or second among all techniques. Finally, in fig.1 we report just a few examples with forged 
images, their associated ground truth, and the output of the noiseprint-based algorithm. 

 
Image Ground truth Noiseprint out. Image Ground truth Noiseprint out. 

 

    
 

Figure 16: Examples of forged images with relative ground truth and the output of the noiseprint-based 
algorithm. 

 
 

5.1.2 An end-to-end trainable approach for image forgery detection 

To train the proposed framework we generated a suitable synthetic  dataset.  Background images  are 
taken from the Vision dataset for camera model identification. To generate manipulated images, we 
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Table 1: Experimental results on Localization in terms of Matthews Correlation Coefficient 
 

Dataset DSO-1 VIPP FaceSwap Nim.16 Nim.17d2 Nim.17ev MFC18d1 MFC18ev AVERAGE 

ELA 0.149 (14) 0.190 (12) 0.087 (11) 0.145 (14) 0.103 (14) 0.112 (14) 0.110 (13) 0.115 (14) 0.122 (13.2) 

BLK 0.388 ( 7) 0.365 ( 8) 0.118 (10) 0.204 ( 9) 0.163 (10) 0.156 ( 9) 0.167 ( 9) 0.153 (11) 0.207 ( 9.3) 

DCT 0.234 (10) 0.376 ( 7) 0.194 ( 8) 0.195 (10) 0.154 (12) 0.151 (10) 0.153 (10) 0.159 (10) 0.193 ( 9.9) 

NADQ 0.065 (15) 0.162 (14) 0.040 (15) 0.154 (13) 0.103 (15) 0.113 (13) 0.104 (14) 0.123 (13) 0.101 (14.1) 

ADQ1 0.321 ( 9) 0.473 ( 3) 0.311 ( 4) 0.262 ( 7) 0.181 ( 8) 0.193 ( 7) 0.203 ( 8) 0.194 ( 8) 0.256 ( 7.1) 

ADQ2 0.464 ( 6) 0.557 ( 1) 0.463 ( 1) 0.305 ( 4) 0.205 ( 7) 0.190 ( 8) 0.299 ( 3) 0.237 ( 4) 0.325 ( 4.8) 

CAGI 0.488 ( 4) 0.429 ( 4) 0.205 ( 7) 0.279 ( 6) 0.242 ( 4) 0.258 ( 4) 0.232 ( 6) 0.215 ( 5) 0.286 ( 5.1) 

CFA1 0.179 (11) 0.225 (11) 0.072 (12) 0.185 (11) 0.175 ( 9) 0.148 (11) 0.140 (11) 0.164 ( 9) 0.193 ( 9.6) 

CFA2 0.168 (12) 0.167 (13) 0.071 (13) 0.184 (12) 0.160 (11) 0.132 (12) 0.136 (12) 0.153 (12) 0.159 (11.3) 

NOI1 0.332 ( 8) 0.276 (10) 0.145 ( 9) 0.235 ( 8) 0.226 ( 5) 0.214 ( 5) 0.215 ( 7) 0.212 ( 7) 0.231 ( 7.3) 

NOI4 0.160 (13) 0.160 (15) 0.052 (14) 0.133 (15) 0.112 (13) 0.111 (15) 0.104 (15) 0.104 (15) 0.113 (14.3) 

NOI2 0.487 ( 5) 0.339 ( 9) 0.221 ( 6) 0.296 ( 5) 0.218 ( 6) 0.199 ( 6) 0.251 ( 5) 0.213 ( 6) 0.271 ( 6.2) 

EXIF-SC 0.529 ( 3) 0.402 ( 5) 0.306 ( 5) 0.344 ( 2) 0.320 ( 3) 0.297 ( 1) 0.261 ( 4) 0.260 ( 3) 0.333 ( 3.3) 

Spliceb. 0.615 ( 2) 0.391 ( 6) 0.350 ( 3) 0.344 ( 3) 0.328 ( 1) 0.280 ( 3) 0.305 ( 2) 0.281 ( 2) 0.365 ( 2.7) 

Noiseprint 0.758 ( 1) 0.532 ( 2) 0.356 ( 2) 0.387 ( 1) 0.324 ( 2) 0.295 ( 2) 0.334 ( 1) 0.292 ( 1) 0.403 ( 1.7) 
 
 

spliced on them objects drawn from a set of 81 objects manually cropped from the uncompressed images  of 
the UCID dataset. 

For performance assessment we used a number of datasets widespread in the forensics community 
with markedly different characteristics. First, the Dresden/FAU synthetic dataset, built like the training 
dataset but from different sources. Then, the DSO-1 and Korus datasets, where only splicings and copy- 
moves are present. Finally the very challenging NC2017, MFC2018, and MFC2019 datasets, developed 
by NIST the context of the Medifor initiative, where images have been manually doctored, often with 
multiple and possibly overlapping manipulations of various types. 

 
Table 2: Results of all versions of E2E and all references methods on the test datasets. No fine-tuning. 

 
Method supervision Dres./FAU DSO-1 Korus NC2017 MFC2018 MFC2019 average 
Xcep.-resize weak 0.609 0.539 0.527 0.513 0.570 0.516 0.546 
Xcep.-patchwise strong 0.721 0.643 0.533 0.729 0.711 0.632 0.661 
Xcep.-pooling strong 0.839 0.702 0.561 0.751 0.635 0.633 0.687 
SPAM+SVM weak 0.506 0.768 0.502 0.767 0.631 0.634 0.635 
CNN+SVM strong 0.593 0.728 0.568 0.798 0.702 0.679 0.678 
LSTM-EnDec strong 0.543 0.590 0.521 0.504 0.535 0.542 0.539 
ManTraNet strong n/a 0.874 0.555 *0.612 *0.758 *0.580 0.676 
CFA – 0.507 0.584 0.598 0.593 0.539 0.526 0.558 
DCT – 0.505 0.614 0.501 0.683 0.523 0.509 0.556 
NOI – 0.558 0.543 0.507 0.678 0.523 0.726 0.589 
Noiseprint – 0.611 0.821 0.583 0.746 0.684 0.662 0.684 
EXIF-SC – 0.599 0.721 0.496 0.709 0.670 0.655 0.642 
E2E-RGB weak 0.958 0.596 0.607 0.774 0.760 0.737 0.739 
E2E-NP weak 0.874 0.924 0.665 0.766 0.776 0.741 0.791 
E2E-RGB+NP weak 0.914 0.790 0.619 0.762 0.765 0.765 0.769 
E2E-Fusion weak 0.993 0.824 0.655 0.846 0.838 0.787 0.824 

 
ManTraNet results marked with an asterisk are obtained on approximately 20% of the dataset (small images). 

 
As reference, we considered three natural baselines, Xception-resize, and Xception-patchwise, imple- 

menting the extreme options, and Xception-pooling, identical to our proposal except for the isolated  rather 
than joint training of blocks.  In addition we used a number of state of the art methods proposed     in the 
literature working both at the image level and at patch-level. All these references are classified in terms of 
the level of supervision they require, strong, weak (like our proposal), or none. 

In table 2 we report the detection AUC for all methods on all test datasets. In the upper part of 
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the table we  group all reference methods,  including the baselines,  and in the lower  part all version of   the 
proposed method with end-to-end (E2E) training. Best results are highlighted in red for reference methods 
and in blue for our proposal. It results that the best proposed method is always better than the best reference, 
often with a large margin. Looking at average results, all E2E methods are better than the reference methods, 
and the best version, E2E-fusion, outperforms the best reference, Xception-pooling,  by 0.137. This 
performance is confirmed by ROC curves, not reported for brevity, and remains the same  in all internal 
Medifor tests. 

 
5.1.3 GAN fingerprints 

We  carried out a number of experiments to assess the potential of GAN fingerprints for typical tasks         in 
multimedia forensics. Preliminarily, we collected a number of noise residuals, obtained by filtering GAN-
generated images and taking their high-pass content. Then, we computed the correlation between noise 
residuals and GAN fingerprints.  In the figure below we  show (only for two  GANs for brevity)  some 
histograms of same-GAN (green) and cross-GAN (red) correlations. Cross-GAN correlations are evenly 
distributed around zero, indicating no correlation between generated images and the unrelated fingerprint 
while, and well separated by same-GAN correlations, almost always positive. 

 

 
Figure 17: Correlation of Cycle-GAN (left) and Pro-GAN (right) residuals with same/cross-GAN fingerprints. 

 
Then, we tested the use of GAN fingerprints for source identification. we considered three GAN 

architectures, with different training datasets,  since  both  architecture  and  training  data  contribute  to the 
GAN fingerprint. 

 

 
Figure 18: Source identification confusion matrix. Entries below 1% are canceled. 

 
For Cycle-GAN, we considered 9 different image-to-image translation tasks (apple2orange, horse2zebra, 

monet2photo, orange2apple, photo2Cezanne, photo2Monet, photo2Ukiyoe, photo2VanGogh, zebra2horse), 
for Progressive GAN 6 different datasets (bedroom, bridge, church, kitchen, tower, celebA), and 5 attributes 
for Star-GAN (black hair, blond hair, brown hair, male, smiling).  Together with GAN generated images, we 
also considered images acquired by two real cameras. We then performed GAN/camera attribution. For each 
image, we computed the distance between the corresponding residual and all fingerprints, attributing the 
image with a minimum-distance rule.  Results are summarized in the confusion 
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matrix below, and show almost perfect attribution. The only exception concerns some Star-GAN im- 
ages, since the weights of a single generator are shared among all target domains, inducing a significant 
cross-GAN correlation. A slightly worse attribution performance is observed also for the real cameras, 
characterized by a lower-energy PRNU. 

Finally, we note that this approach was used also in the “GAN Challenge” organized in June-July 2018 
by the US NIST in the context of the Medifor program. The goal was to classify as real or GAN-generated 
1000 images of widely different resolution, from 52 x 256 to 4608 x 3072 pixels.  As baseline method we  
used a deep network trained on a large number of images retrieved from the InterNet. However, we also 
tested the GAN fingerprint idea, which allowed us to improve the deep net accuracy by a simple fusion rule, 
for a final 0.999 AUC. 

 
5.1.4 Video facial manipulation detection 

Using our dataset of facial manipulations, we evaluated different state-of-the-art classification methods. 
We considered a hand-crafted based approach and five network architectures known from the literature 
to solve the classification task: Steganalysis Features + SVM, Cozzolino et al., Bayar and Stamm, 
Rahmouni et al., MesoNet and XceptionNet. 

 

 

 
 

 
 

 
 

Figure 19: Binary detection accuracy of all evaluated architectures on different manipulation methods. 
 
 

 

Figure 20: Binary precision values of our baselines when trained on all four manipulation methods simulate- 
nously. 

 
Fig.19 shows the results of a binary forgery detection task using all network architectures evalu- 

ated separately on all four manipulation methods and at different video quality levels. All approaches 
achieve very high performance on raw input data. Performance drops for compressed videos, particularly 
for hand-crafted features and for shallow CNN architectures. The neural networks are better at han- 
dling these situations, with XceptionNet able to achieve compelling results on weak compression while 
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still maintaining reasonable performance on low quality images, as it benefits from its pre-training on 
ImageNet as well as larger network capacity. 

We also tested the detection variants on a dataset containing images from all manipulation methods. 
Fig.20 show the results on the full dataset. The experiments highlight that all detection approaches 
achieve a lower accuracy on the GAN-based NeuralTextures approach. NeuralTextures is training a 
unique model for every manipulation which results in a higher variation of possible artifacts. While 
DeepFakes is also training one model per manipulation, it uses a fixed post-processing pipeline similar 
to the computer-based manipulation methods and thus has consistent artifacts. 

 
5.1.5 Video Copy-move Detection and Localization 

To assess the performance of the proposed method we prepared a dataset, called the GRIP dataset from 
now on, comprising 15 short videos with rigid copy-moves, 10 additive and 5 occlusive. Copy- moves 
were carried out using After Effects Pro, and show little or no artifacts, just as with a real-world skilled 
attacker. Inserted objects may be subject to rotation and temporal flipping, moreover, the whole videos 
may be compressed at various quality factors. All copy-moved videos are available online at 
http://www.grip.unina.it/ together with their pristine versions and the ground truths. In addition, we used 
the REWIND dataset available online. This latter dataset, however, comprises only rigid additive copy-
moves and comes without a ground truth allowing only for limited analyses. 

 
 Basic 2D Basic 3D Fast 2D Fast 3D 

dataset case # videos det. f.a. F det. f.a. F det. f.a. F det. f.a. F 

GRIP plain 15 15 2 0.83 15 1 0.76 14 3 0.79 15 1 0.75 
 
 

GRIP 

QF = 10  
 

15 

15 1 0.84 15 1 0.77 14 2 0.74 14 1 0.75 
QF = 15 15 1 0.76 15 1 0.72 13 2 0.65 15 1 0.70 

QF = 20 12 1 0.54 12 1 0.56 13 2 0.53 12 0 0.52 
 
 

GRIP 

θ = 5o  
 

8 

8 – 0.81 7 – 0.73 5 – 0.40 7 – 0.68 
θ = 25o 7 – 0.71 4 – 0.60 3 – 0.25 4 – 0.44 

θ = 45o 5 – 0.56 4 – 0.43 2 – 0.12 4 – 0.43 

GRIP flipping 9 8 – 0.81 9 – 0.76 6 – 0.59 7 – 0.59 

REWIND plain 10 8 4 – 9 4 – 8 4 – 6 1 – 

 
Experimental results are reported in the Table above for various version of the algorithm, Basic/Fast 

working on 2D/3D features. Detection performance is  measured  by  the  number  of  detected  attacks and 
the number of false alarms (on pristine videos) while localization performance is given in terms of F-
measure. The detection performance is near-perfect for the slower versions of the algorithm, and very good 
also for the faster versions, except in the presence of large rotation angles and strong compression.   It is 
worth underlining that the performance is equally good for additive and occlusive copy-moves,    while 
keypoint-based methods fail on all occlusive attacks. Localization performance is also very good in general, 
provided the attack is detected.  This is also confirmed by the sample detection maps shown in the figure, 
obtained with the proposed algorithm (basic, 2D features) on some GRIP videos with copy- moves and 
various operating conditions. Finally, the various solutions proposed to limit computational complexity allow 
for a huge reduction of running time w.r.t. linear search. This enable laboratory video analysis, but not yet 
real-time analysis or mass screening of video repositories. 

 
5.1.6 Image Manipulation 

A few examples of manipulation detection heat maps using ManTraNet are showed in Fig. 22. The pristine 
images came from the Dresden Image Database. The three columns are pristine images, manipulated images, 
and the heat maps, respectively. 

The manipulation detection performance (AUC) of the ManTraNet is showed in Table 3. For details 
about the datasets and experiment settings, see [86]. 

Methods NIST Columbia COVERAGE CASIA Forgery Types , , , , ELA [29] 0EOI1 [34] 0CFA1 [22] 
0J-LSTM [7] 72RGB-N [55] 72ManTra-Net 0Table 8. (training scores and training) 

http://www.grip.unina.it/
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Copy-move with flipping Copy-move with 45o rotation 
 

Figure 21: Sample color-coded detection maps for videos of the GRIP dataset. True Negative pixels are  
transparent for correct visualization, True Positive are in green. Only rotation (right) causes the loss of a copy 
moved segment, following sudden camera motion. 

 
Table 3: (training %, AUC) performance comparisons. 

 
Methods NIST Columbia COVERAGE CASIA 

Forgery Types splicing 
copy-move 

removal 

splicing copy-move splicing 
copy-move 

enhancement 
ELA 0% 42.9% 0% 58.1% 0% 58.3% 0% 61.3% 
EOI1 0% 48.7% 0% 54.6% 0% 58.7% 0% 61.2% 
CFA1 0% 50.1% 0% 72.0% 0% 48.5% 0% 52.2% 

J-LSTM 72% 76.4% N/a 75% 61.4% N/a 
RGB-N 72% 93.7% 0% 85.8% 75% 81.7% 85% 79.5% 

ManTraNet 0% 79.5% 0% 82.4% 0% 81.9% 0% 81.7% 
 
 
 

5.1.7 Camera Identification 

Result on the MFC19 dataset We experimented with camera verification, image pair verification and 
near-duplicate detection on the MFC19 dataset. 

The ROC curve for the camera verification result on MFC19 Eval set is shown in Fig. 23. The 
corresponding AUC is 85.5%. The best AUC from all teams in the 2019 evaluation was 79.7%. 

The ROC curve for the image pair verification result on MFC19 Eval set is shown in Fig.   24.       The 
corresponding AUC is 77.5%. This performance showed us even without providing the camera ID, 
verification of whether two images were captured using the same camera can still be done with very good 
performance. 

Using the same features we used for image pair verification, we also measured the near-duplicate 
verification performance on MFC19 Eval  set.  We labeled all near-duplicate pairs as the ground-truth.  The 
ROC curve is showed in Fig. 25.  The corresponding AUC is 100%.  Given the good performance, this can 
potentially be very useful for base detection in provenance filtering. 

 
5.1.8 Two-branch Recurrent Network for Isolating Deepfakes in Videos 

Benchmarks and metrics: Experiments are conducted on (1) FaceForensics++ [71] (FF++), (2) Celeb- 
DF [48], (3) and the Deepfake Detection Challenge Preview Dataset [21] (DFDC) . We report results at 
the video-level and also at the frame-level. Given that our method works at a sequence level, when 
comparing to other methods, we made sure that the number of samples prior computing the ROC is the 
same for all methods when comparing at the frame-level or, at least, that that all methods observed the 
same quantity of data. Further, we use standard metrics such as True Acceptance Rate (TAR) at low 
False Acceptance Rates (FAR), similar to [42, 77]. Besides standard area under receiver operating curve 
(AUC), we further use global metrics yet at a low false alarm rate such. These metrics can shed light on 
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Figure 22: ManTraNet manipulation detection heat maps output (Dresden DB). 
 
 

performance in realistic operational scenarios, thereby requiring detectors to operate at a very low false alarm 
rate and raising the bar for the community.  We used the standardized partial AUC or pAUC [58] and our 
tAUC, that is defined as AUC yet taking into consideration only the low false alarm rate up to       a cut-off 
point FARτ , thereby ignoring high false alarm rates.  tAUC is computed as the ratio between     the area of 
TARs up to a given low FARτ normalized by the total area up to the FARτ value. Given 
Fτ = {0, . . . , FARτ } 

. 
, then tAUC at an operating point τ is defined as tAUCτ  = Σi∈Fτ TARi . |Fτ | 

Implementation  and  Hyper-Parameters:  Unless otherwise stated,  we  used the following settings. 
The global learning rate µ is 1e-03 using the Adam optimizer and the results are produced with LSTM.  The 
learning rate is decreased three times by a factor of 10.  We decrease it every time the validation    loss does 
not decrease after 50 stratified epochs. We used a weight decay of 1e-06. The final global average pooling 
flattening the spatial dimension gives a descriptor with dimensionality 1024 transformed into D=128 by 
the LSTM. The final dimensionality considered in the loss is 2D2  and the two radii  
r{-,+} = {0. 042, 1. 638} have to be optimized together and cross-validated on a validation set. In high 
dimensional space, the volume of the hyper-sphere decreases when the feature descriptor dimension D 
increases [81]: thus, if D does change, the radii have to be changed accordingly. By increasing the 
dimensionality D of the final feature, the radii have to be increased as well to compensate for the diminished 
hyper-volume of the hyper-sphere. The cardinality F of the sequence of aligned frames as input to the 
recurrent model is 10.  Since the sequential modeling is trained on sampled FF++ data, at 

2The dimensionality is doubled since the results of the bi-directional streams are concatenated. 
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Figure 23: ROC curve for camera verification on the MFC19 Eval set. 
 
 

inference time we take 1 frame over 7 to build the sequence. Faces are aligned with dlib [40]. If alignment 
fails, we revert back to [9]. In case of multiple detected faces, we select the largest detected face. Since 
FaceForensics++ has imbalanced labels (1:4), we oversample the natural faces twice and undersample 
randomly faces for each manipulation with a factor of two to get a proper balance, when training with 
multiple manipulations. We used average to perform video-level evaluation to aggregate all the scores within 
a video for all methods.  When doing cross-testing, we  use always the same model trained on  FF++ on the 
four manipulations on high compression (c40). 
FaceForensics++ (FF++): When training and evaluating on FF++, we follow the sampling strategy 
mentioned in [71] that selects 270 frames/video for the training and 110 frames/video for validation and 
testing. We evaluated both medium compression (c23) and high compression levels (c40) subsets. Table 
4 shows a thorough comparison on FF++ [71] training and testing with four manipulations types 
(Deepfakes, FaceSwap, Face2Face, and NeuralTextures) along with the natural faces. Following [71], 
we trained a model for c23 and another for c40. The table offers multiple evaluations metrics such as 
AUC, pAUC10%, tAUC10% and TAR10%. In general, our approach has superior performance compared to 
Xception. In particular, we improved almost all frame-level performance for the medium compression case 
(c23), pushing the video-level AUC from 92% to 99%. The result is consistent for the other compression 
level but in general results are lower due to the low image quality; nevertheless our system improves 
video-level AUC from 86% to 91% along with other low false alarm video-level metrics. The table also 
reports the result of a self-supervised method Dual Spatial Pyramid for Exposing Face Warp Artifacts 
(DSP-FWA) [46]. Table 6a further shows the binary classification accuracies for several state-of-the-art 
face manipulation detection methods computed on FF++ [71]. Our approach scores the highest accuracies 
across manipulations for all the compression levels when trained on the four manipulations. It should 
be noted that a classifier exploiting the class imbalance here can get an accuracy of 80% by simply 
predicting all samples as fakes given that we have 140 real and 560 fake videos or similar balance at the 
frame level. 
Celeb-DF: We evaluate how well our model transfers to Celeb-DF given that it is trained on FF++ with 
multiple manipulations. We do this with the goal of confirming that we optimized our method for better 
generalization across datasets, reaching a good balance between bias and variance. Table 5a shows a 
state-of-the-art evaluation at the frame- and video-level on the 518 test video of Celeb-DF, comparing 
it to other recent methods. Like other methods [71], we trained the model on FF++ to discern real faces 
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Figure 24: ROC curve for image pair verification on the MFC19 Eval set. 
 
 
 

Methods AUC pAUC10% tAUC10% TAR10% AUC pAUC10% tAUC10% TAR10% AUC pAUC10% tAUC10%  

DSP-FWA [46] 56.89 51.33 7.47 14.60 57.49 51.59 7.48 15.00 59.15 52.04 8.82 17.30 62.34 51.93 9.82 22.14 
Xception [71] 92.30 87.71 73.34 81.21 92.50 89.20 58.21 82.85 83.93 74.78 45.92 63.25 86.75 79.10 39.06 68.75 
Ours 98.70 97.43 65.29 97.95 99.12 98.41 86.10 98.21 86.59 69.71 40.41 62.48 91.10 76.57 51.18 72.85 

 
Table 4: Frame-level and Video-level comparison on FF++. Multiple metrics reported for medium 
compression (c23) and high compression (c40) on FF++ comparing our method with XceptionNet [71] and DSP- FWA 
[46]. Results are reported on four manipulations. 

 
 

versus four manipulation types at the c40 compression level. Table 5a reports a clear net improvement 
over the state-of-the-art, even when compared with recent methods that trained the model with self- 
supervision thereby, in theory, being less prone to overfitting, such as DSP-FWA [46]. Table 5b offers 
instead the classic evaluation performance in terms of AUC comparing our approach to the very recent 
method for digital face manipulation detection. We obtained higher AUC when compared to all the other 
methods on Celeb-DF while keeping an high AUC on FF++ on Deepfakes. 
The Deepfake Detection Challenge (DFDC) Preview Dataset:  We  report video-level results on the 
“The Deepfake Detection Challenge (DFDC) preview set” using the evaluation described in [21]. This 
dataset contains approximately 5,250 videos of digitally manipulated and bona fide videos. As in [21], 
we used part of the training for cross validation for the two parameters available in our approach that 
are the optimal number of sequences and the distance ||Φ(I) – c||2. We implemented five-fold cross- 
validation (20% of training retained for validation) and selected the best pair of parameters across the 
folds required to maximize the Log-Weighted Precision (log(wP)), with α=100, maintaining the desired 
level of recall. This procedure was repeated for different cutoff recalls (R10%, R50%, R90%). Although 
cross validation procedure aims to optimize the two parameters to keep a desired level of recall, meeting 
the same level of recall is not guaranteed when evaluating on the test set. This procedure simulates what 
can happen in real scenarios in which a system can be optimized on a validation set and then simply 
tested in the wild over millions of unlabeled data. For this reason, we report log(wP)@recall on the best 
validation fold under “valid” and the test set with “test-from-valid” using the parameters from validation. 
Alternatively, we also searched for the best log(wP) to exactly match the recall value on the test set and 
report those values under “test”. Except for the above parameter selection, our method has not been 

 HQ (c23)  LQ (c40) 
Frame Video Frame Video 
Level (∼70K samples) Level (700 samples) Level (∼70K samples) Level (700 samples) 

TAR10% AUC pAUC10% tAUC10% TAR10% 
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Figure 25: ROC curve for near-duplicate pair verification on the MFC19 Eval set. 

 
 

re-trained on DFDC preview. Table 6b shows the evaluation results at the video level. Considering our 
results under “test,” our method has slightly worse precision than XceptionNet [71] at R10%. However, 
if we optimize for high recall (R90%), we obtain a substantial boost in the log(wP), increasing log(wP) 
from -4.041 to -3.548. Moreover, we notice the following if we evaluate with the best hyper-parameters 
selected on the validation set our method maintains log(wP) better than other methods (-3.721) with a 
good recall of 0.943. 

 
5.2 Physical Integrity 
5.2.1 Robust Analysis of the Direction of Incident Light 

The method is evaluated in two parts. We first show the performance of the estimator on a dataset with 
given segmentation. Then, we show the performance in a fully automated setting, with automatically 
segmented objects. 

 
 

Method FF++ [71] Celeb-DF [48] 

Two-stream [31] 70.1 53.8 
   Meso4 [5] 84.7 54.8 

Frame Video 
Level Level 

Methods AUC    pAUC10%   tAUC10%   TAR10%     AUC    pAUC10%   tAUC10%  TAR10% 
 

 

Xception-c40 [71]    65.86 54.49 12.23 22.97 69.70 57.18 16.85 34.70 
DSP-FWA [46] 64.13 52.87 10.18 19.67 69.30 51.40 17.20 32.02 
Xception-c23 [71]    66.65 53.05 10.21 19.83 73.04 52.77 9.45 18.82 

Ours 73.41 57.42 18.18 32.22 76.65 58.70 19.73 39.70 
 

(a) 

MesoInception4 83.0 53.6 
HeadPose [85] 47.3 54.6 
FWA [46] 80.1 56.9 
VA-MLP [54] 66.4 55.0 
VA-LogReg 78.0 55.1 
Xception-raw [71]      99.7 48.2 
Xception-c23 99.7 65.3 
Xception-c40 95.5 65.5 
Multi-task [61] 76.3 54.3 
Capsule [62] 96.6 57.5 
DSP-FWA [46] 93.0 64.6 

Ours 93.18 73.41 

(b) 

Table 5: Cross-dataset evaluation on Celeb-DF. (a) Frame- and video-level performance yet computed at 
a very low false alarm rate. Best competing methods on Celeb-DF are reported.  Ours obtains a wide margin in all 
the low false alarm rate metrics (b) still performs well when tested on just deepfake class (93.18 %) AUC on FF++. 
Results for other methods are from [48]. 
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Table 6: FF++ Accuracies and DFDC Preview Dataset. (a) Comparison of accuracies on FF++ (b) Video-
level log(wP) for various recall rates. 
 
 

 

Table 7: AUC of ROC curves for binary classification into same or different lighting environments. The 
performance of the related methods drops significantly on the more challenging natural scenes. The proposed  
method performs consistently well on the natural scenes and outperforms the related methods. 

 
Laboratory (ALOI) 
All Single Multi 

 
Person 

Natural Scenes (COCO) 
Animal Furniture Vehicle 

 
Mixed 

Contour [38] 0.728 0.766 0.756 0.589 0.654 0.567 0.609 0.539 
Contour ICE [69] 0.740 0.776 0.776 0.598 0.641 0.592 0.588 0.518 

SIRFS [6] 0.738 0.763 0.793 0.580 0.665 0.581 0.559 0.524 
Proposed 0.708 0.738 0.740 0.716 0.735 0.633 0.657 0.677 

 
 

Classification of Lighting Environments on Pre-Segmented Objects We present results for 
laboratory data and for natural scenes.  Laboratory data with single and multiple light sources are used 
from the ALOI dataset [26]. To further evaluate the performance in a realistic setting, we use the 
Common Objects in Context (COCO) dataset [14] to emulate splices. Here, we do not have ground truth 
illumination. Hence, make the common assumption that objects from different images exhibit different 
lighting environments [38]. Thus, the classification task is to determine whether two objects stem from 
the same image or from two different images. 

Table 7 shows the Area under the Curve (AUC) of the resulting Receiver Operating Characteristic 
(ROC) curves for binary classification into same or different lighting environments of pairs of images. The 
proposed method is compared to the contour lighting estimator by Johnson and Farid (Contour) [38], on 
the intrinsic-contour estimator by Riess et al. [69], and to the lighting environment estimator by Barron 
and Malick [6]. 

On the relatively clear laboratory data, the proposed method performs slightly worse than related analytic 
approaches. This changes on realistic objects from the COCO dataset.  Here, for all object classes, the 
proposed method clearly outperforms the related  works.  This can  be  attributed  to  the robust inclusion of 
all object pixels, instead of working only on the contour, and a comparably simple inference process as 
opposed to SIRFS. 

 
Fully Automated Splicing Detection  To  show  the  method  performance  in  a  fully  automated  setting, 
we create the OpenImages Splices (OIS) dataset. The source images of the dataset stem from the publicly 
available OpenImages V4 dataset [43], which contains about nine million images annotated with image-level 
labels and bounding-boxes. The OIS dataset consists of 450 images with two well visible persons each. In 
150 of these images, one person is inserted from a different image. The pristine images are directly taken 
from the original URLs provided by the OpenImages dataset, and scaled to 1280 pixels in the larger image 
dimension. As the images in the dataset might themselves be preprocessed, we only consider the splicing of 
persons for manipulation detection. 

The tampered images are created by selecting target and donor images using the provided image labels 
and Mask Region-based Convolutional Neural Network (R-CNN) for segmentation [32]. The target image 
is chosen to show exactly one well-visible person in foreground. The donor image is manually selected to 
find a person with reasonable semantic consistency to the target image.  During creation of the dataset,    no 
particular attention was paid to match illumination environments. As a consequence, the illumination can be 
accidentally consistent in spliced images, which we believe is a realistic situation for real splices. Care was 
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taken that both persons do not completely occlude each other upon splicing. The spliced 
 
 

Figure 26: ROC curves for the fully-automated splicing classification on the three variants of the proposed OIS 
dataset. 

 
 

persons are scaled and placed manually to fit the target image, and might be slightly blurred or copied  with 
feathered edges, but no additional post-processing is applied. Target and donor image are scaled to 1280 
pixels in the larger image dimension. The segmentation of Mask R-CNN is manually refined using GrabCut 
[72]. The quality of the splices is partly limited by the segmentation. 

We believe that the OIS dataset presents an interesting benchmark for instance-level forensic methods, 
as the image provenance from the web (e.g., Flickr) is a plausible use case, and the detection of spliced 
persons is a semantically meaningful goal. 

For evaluation, we additionally consider three variants of the dataset. The first variant uses the images 
as-is. The second variant downsamples the image such that the larger dimension is 960 pixels, and 
applies JPEG compression of quality 70. The third variant downsamples the image such that the larger 
dimension is only 600 pixels, and applies JPEG compression of quality 30. These cases mimick strong 
image degradations as they may be found, e.g., on forums or image boards in the internet. 

The methods are compared to the same works as before (Contour  [38],  Contour  ICE  [69],  and SIRFS 
[6], and additionally to two statistical methods by Huh et al. [37] and Cozzolino et al. [16]. 

The ROC curves for the three levels of image degradation are shown in Fig. 26. The setup is challenging 
for the statistical methods due to the strong image degradations, which remove most of the high-frequency 
information in the image. The physics-based methods are much less affected by these degradations. The 
proposed method clearly outperforms the related methods, with an almost constant  AUC of about 0.77 
across all three levels of degradation. More details can be found in the associated journal paper [55]. 

 
5.2.2 Segmentation-free Lighting Estimation 

The segmentation-free lighting estimation is evaluated on the same dataset OIS and with the same 
experimental setup as the first experiment on the gradient-based estimator reported in Tab. 7. The 
segmentation-free approach sets the area outside of the segmented object to black, and scales the object 
bounding box to a square of 150 pixels. The results for this experiment are shown in Tab.  8.  The  proposed 
method outperforms the related works, and the very well-performing gradient-based estimator  on all object 
classes except of “mixed” objects.  This shows that this learning-based estimator is very    well capable of 
estimating the lighting environment on pre-segmented objects. 

Furthermore, this approach can also be used without any segmentation. We evaluate this on a 
synthetic dataset created from the multi-illuminant dataset by Murmann et al. [59]. The generated 
dataset contains 5000 images, whereof 2500 are spliced. The splices are generated by randomly changing 
a square region of an image with specific scene content and light setting to a different, randomly chosen, 
light setting. The images have a resolution of 750x500 pixels and the size of the spliced region is 
randomly sampled between 100 and 400 pixels per dimension. Qualitatively, the splices are differently 
hard to identify, depending on the size of the spliced region, the image content and the similarity of the 
randomly chosen light setting. 

A heatmap is generated for splicing localization.  To  this end, each 150  150 pixels patch is compared to 
twelve randomly selected reference patches. These reference patches stem either from the same image, 
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Table 8: Comparison of the proposed segmentation-free method  to  the  state-of-the-art  for  different  object classes. 
 

 Person Animal Furniture Vehicle Mixed 

Contour [38] 0.589 0.654 0.567 0.609 0.539 
Contour ICE [69] 0.589 0.641 0.592 0.588 0.518 
SIRFS [6] 0.580 0.665 0.581 0.559 0.524 
Gradient-based (previous Sec.) 0.716 0.735 0.633 0.657 0.677 
Proposed 0.753 0.749 0.651 0.663 0.641 

 
 

or the same image after downsampling or upsampling by a factor of 2, to enable a multi-scale analysis.  The 
AUC of the ROC curve for this completely segmentation-free experiment is 0.718. 

These experiments show that this learning-based approach to lighting estimation has the potential to fully 
replace all existing analytic approaches, while relaxing the requirement to compare pre-segmented object 
instances.  Instead, it can operate on arbitrary image regions, similar to statistical forensic meth-  ods. A 
publication on this method is currently in preparation. 

 
5.2.3 Color Fingerprinting from the Scene and the Camera 

The method is evaluated on several publicly available datasets, namely Columbia [35], DSO-1 [20], 
“Splices-In-The-Wild” dataset [37], and the Aligned Scenes dataset [30]. Additionally,  we  create  a dataset 
that specifically aims at evaluating the detection of splices from different camera color pipelines, which we 
denote as “Spliced Color Pipeline”. 

The “Spliced Color Pipeline” dataset consists of 200 pristine images, consisting of randomly selected 
scenes from the developed RAW-to-final images in test. It also consists of 200 manipulations, where one 
region of the scene is replaced by identical scene content, but developed with a randomly selected 
different camera pipeline. The region is a randomly selected superpixel with minimum size of 5 104 
pixels (i.e., about three patch sizes), obtained with the segmentation algorithm by Felzenszwalb and 
Huttenlocher [24] with scale parameter 10 and σ = 0.5. Upon replacement, it is ensured that the average 
Lab-distance of the replaced and inserted regions is at least 5 to simulate local differences in within-
camera color processing. 

The images of all datasets are post-processed to simulate quality degradations of images distributed over  
the internet.  The “Aligned Scenes” dataset applies downsampling and recompresses the images   with JPEG 
qualities from 100 down to 10 in steps of 10 [30].  The remaining datasets are prepared in   three variants: 
The high-quality (HQ) variant contains each image as-is. For the medium-quality (MQ) variant, each image 
is resized to a larger dimension of 1200 pixels, and JPEG compressed with quality 
75. For the low-quality (LQ) variant, each image is resized to a larger dimension of 800 pixels, and JPEG 
compressed with quality 50. 

Since the method primarily aims at manipulation localization, it is compared to the related localiza- 
tion methods “Noiseprint” (NP) [15], “Fighting Fake News” (FFN) [37], “Forensic Similarity” (FS) [57] 
and “Learned Color Representations” (LCR) [30]. The two aggregation variants of the proposed methods 
are denoted as “Medoid” and “Meanshift”. The resulting ROC AUCs for manipulation localization are 
shown in Fig. 27 across the three considered quality levels (strength of postprocessing) for each dataset. 
Except for the DSO-1 dataset, the proposed method excells particularly in the analysis of low-quality 
images, since color is a low-frequency property that is relatively robust to strong JPEG compression and 
downsampling. 

A similar trend can be observed for splicing detection. Here, we selected for each method the best 
threshold on the generated heatmap to separate pristine and manipulated images. Note that the “In the 
Wild” dataset is omitted here, since it only contains manipulations. The resulting accuracies again show 
that the proposed method is particularly stable under strong image degradations, where it outperforms 
all competing methods. 

 
5.2.4 Fingerprinting of JPEG Library Chroma Subsampling 

The properties of the chroma subsampling artifact are evaluated on the 1491 images from the Dresden 
database [27]. We convert the RAW images to JPEG using dcraw and cjpeg from libjpeg v9a. Com- 
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Figure 27: Matthews Correlation Coefficient for color-based splicing localization on various datasets. 
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Figure 28: ROC AUC for color-based splicing detection on various datasets. 
 

mand line switches allow to generate images both with Discrete Cosine Transform (DCT) scaling and 
with simple scaling, where the latter includes the artifact. In all experiments, care was taken that the type 
of subsampling is the only difference in the processing of the images. All experiments are performed with 
4:2:0 chroma subsampling, but the same artifact is analogously part of 4:2:2 chroma subsampling.  We 
distinguish both scaling variants with a Support Vector Machine (SVM), where one SVM is trained for each 
quality factor. The training is performed separately for each quality factor on 90% of the images using 10-
fold cross-validation. Testing is performed on the remaining images. 

Figure 29 (left) shows the accuracy per quality factor. Accuracies range around 98% for JPEG quality 90 
and better.  With decreasing JPEG quality, the classifier’s effectiveness drops, which is expected due to the 
suppression of high-frequencies. 

Figure 29 (right) shows how well the artifact can be recovered when four common post processing 
operations are applied, namely recompression, gamma adjustment, additive noise, and image scaling. To this 
end, the RAW images from the Dresden database are first converted to JPEG with simple scaling and 
quality 100. We then apply DCT upsampling, perform the post-processing operation in image space, and 
recompress the resulting image with DCT scaling and quality factor 100. The results show that 
recompressing the image again at a lower quality level impacts detectability, with high accuracies only for 
JPEG quality 98 or higher.  The artifact is quite robust to gamma correction, but susceptible also        to 
additive Gaussian noise and resampling. Hence, the artifact can only be recovered for high-quality images, 
and as such is likely most useful for fingerprinting of images that are supposed to stem directly from a 
camera, or where the background of an image carries the artifact, but an inserted or edited part       of the 
image does not. More details can be found in our paper [50]. 
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Figure 29: Left: Accuracy to distinguish simple scaling and DCT scaling with a linear SVM on block cor- 
relations.   The detection accuracy decreases with lower  JPEG quality factors.   Right:  Correlation scores in     Cb 
channel after applying one of four common post-processing operations: JPEG compression (quality factor), gamma 
correction (gamma), corruption by additive noise (Signal-to-Noise Ratio (SNR) in dB), scaling (scale factor). 

 
Table 9: Results for algorithm fingerprinting and patch discrimination. Evaluation on generated data with 
different network variants. 

 
Architecture Fingerprinting 

Accuracy 
Discrimination 

AUC 
Xception [13] 0.97 0.997 
ResNet-50 [33] 0.91 0.989 
MISLNet [8] 0.90 0.983 
MesoNet [5] 0.62 0.958 

 
 

5.2.5 Fingerprinting of Depth Image Calculation in Cameras 

Depth map fingerprinting is first evaluated on the 7481 images from the Kitti dataset are split into       5404, 
954, and 1123 images for training, validation, and test. On the test images, we classify the center patch per 
class. The average classification accuracy is shown in the middle column of Tab. 9. Xception performs best 
with a remarkable accuracy of 0.97. ResNet-50 and MISLNet perform slightly worse with accuracies of 0.91 
and 0.90. MesoNet only achieves an accuracy of 0.62. 

For patch discrimination, the trained network is integrated into a Siamese architecture.  We only report 
results for retraining the new top layers, as additional end-to-end training did not further improve results. For 
evaluation, 13464 patch pairs are randomly chosen, where the patches in 50% of the pairs stem from the 
same device, and in 50% of the pairs from different devices. Area under the Curve (AUC) of the Receiver 
Operating Characteristic (ROC) curve are reported in the right column of Tab.  9.  Consistent with the 
fingerprinting results, Xception performs best with an excellent AUC of 0.997. Overall, all networks perform 
very well with AUC values between 0.958 and 0.989. 

We further use the collected smartphone data for patch discrimination. First, the models are evaluated 
without further training to test the generalization of the features learned from generated data. Then,we  
perform few-shot fine-tuning of the pretrained networks, by retraining the models with five images from a 
single scene of the dataset. We analyze the performance by evaluating samples for specific pairs of devices. 
The resulting ROC curves are shown in Fig. 30. Overall, the performance is quite encouraging. We note that 
the model cannot reliably discriminate patches from smartphones of the same manufacturers, which is 
expected due to the assumed similarities in hardware and software between related models.  Overall,   the 
experiments show that the generalization of the learning from generated data is sufficient for few-shot 
training of powerful CNN architectures with little data. More details can be found in our paper [56]. 

 
5.3 Semantic Integrity 
5.3.1 Provenance Filtering 

Data corpora The method was evaluated using a number of NIST NIMBLE dataset releases.  The NC2016 
Web dataset has 724 probes and a world set of 1124 reference images. Out of 724 probes, we found 128 that 
have spliced objects corresponding to 264 donor images in the world set of 1124 reference 
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Figure 30: ROC curves for evaluating samples of specific pairs of devices with the Xception variant. 
 

Table 10: Impact of the segmentation scheme on donor detection (NC2016). 
 

Method Recall % @Top 10 
Fisher w/o segmentation 13.6 

DML (CARS) w/o segmentation 18.9 
DML (CARS) w/ semantic segmentation 31.4 

 
 
 

images. The NC2017 Dev1Beta4 dataset has 65 probe images and a world set of 1631 reference images. The 
NC2017Dev3Beta1 dataset has 2260 probe images and a world set of 3441 reference images. The NIMBLE 
Evaluation world set has 2992 probe images and 1008681 reference images.  The ground truth   is given for 
993 out of 2992 probe images. 

 
Segmentation vs. Whole-image Matching for Donor Detection We ran the first set of  experiments 
on NC2016 Web to evaluate several donor detection strategies. We ran an image-to-image matching 
using 512D Fisher vectors embedding raw Overfeat [84] features and got 100% recall rate from top-1 base 
detection results. We also used a Deep Metric Learning (DML) model [64] to represent the image using 
a 128D feature vector. We experimented all three pre-trained models for DML coming from different 
training sets (CARS, online products, CUB) mentioned in that paper. The manipulated regions for each 
probe were obtained by subtracting the probe from its base, and were used as queries to search for 
donors. We tried to use both the homogeneous regions returned by the Berkeley Semantic Segmentation 
algorithm [49] and the whole image can search candidates for donor detection. We took the maximum 
of cosine similarities between a query and all candidates of an image as the final similarity score. The 
recall rates of donors from top 10 results of these experiments are shown in Table 10 . By comparing 
the first two rows of results, the DML features from the CARS model outperforms the Fisher vector 
method. By comparing the 2nd and the 3rd rows of results, semantically segmented candidates have 
significantly better performance than the whole image. 

 
Comparison of Features We made two attempts to further improve our core algorithm for donor 
detection. First, keeping Berkerly’s semantic segmentation unchanged, we tried the pre-trained DML 
models for the online products and CUB datasets. We also used the Inception V3 [78] and VGG-16 [76] 
pre-trained models. The recall rates of donor detection from top 10 results are shown in Table 11 . The 
best performance is obtained from using the VGG-16 model. 

The second attempt was to replace semantic segmentation with evenly sampled rectangular sliding 
windows. We used 188 sub-images from the 6 scales of sliding windows and extracted DML (CUB) 
features from each sub-image. Table 12 indicates significant improvement of donor detection is obtained 
from using the sliding windows. 

 
Results on  Evaluation  Datasets  We  compared with two  other systems on the NC2017 dataset.  Our 
system on NC2017 used the experiment conditions that have been evaluated as having the best 
performance on the dev set, i.e., 6-scale sliding window segmentation and VGG-16 features. Locality- 
sensitive hashing is deployed to speed up the computation of similarity scores in all stages described in 
Section II. The system returns a number of results, each corresponding to a certain operation from the 
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Table 11: Comparison of features using Semantic Segmentation on NC2016. 
 

Method Recall % @Top 10 
DML (CARS) 31.4 

DML (online products) 45.1 
DML (CUB) 61.7 
Inception V3 81.1 

VGG-16 81.8 
 
 

Table 12: Comparison of Semantic Segmentation vs. sliding-window sampled sub-images using DML (CUB) features 
on NC2016. 

 
Method Recall % @Top 10 

Semantic segmentation 61.7 
6-scale sliding window 81.8 

 
 
 

following: 

• Base detection 

• Donor detection 

• Splice detection in ref images + hue rescoring 

Probe-as-donor detection + multi-dimensional (MD) brute-force matching + hue value-based rescor- 
ing 

• Indirect provenance detection 

A certain number of top candidates from each run of search are collected and aggregated to create      up 
to 300 candidates for each probe. Fig. 9 illustrates how these results (on the NC2017 Evaluation set) that 
have somewhat not very high recall produce a much better result when merged. Table 13 shows our system 
performance on MFC20 Eval set. 

 
6 Conclusions 

6.1 Noiseprint 
We proposed a deep learning method to extract a noise residual, called noiseprint, where  the  scene content 
is largely suppressed and model-related artifacts are enhanced. Therefore, a noiseprint bears  traces of the 
ideal camera model fingerprint much like a PRNU residual bears traces of the ideal device fingerprint. In 
noiseprints, however, the signal of interest is much stronger than in PRNU residuals, allowing for the reliable 
accomplishment of many forensic tasks.  Experiments show that noiseprint can   be a promising tool for the 
image forgery localization task for different type of manipulations. 

 
6.2 An end-to-end trainable approach for image forgery detection 
We proposed a new CNN-based framework for image forgery detection. Thanks to suitable architectural 
solutions, it allows one to process jointly information gathered at full-resolution from the whole image. 
Moreover, the framework can be trained end-to-end based only on weak (image-level) supervision. We 
proved the effectiveness of this solution by extensive performance analysis on forensic datasets widespread 

 

Table 13: Provenance filtering performance in the MFC20 Evaluation 
 

Recall % @Top 
50 

Recall % @Top 
100 

Recall % @Top 
200 

Recall % @Top 
300 

0.814 0.846 0.867 0.877 

• 
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Figure 31: Recall rates measured for the provenance filtering results from single operations and the merged 
result. 

 
 

in the community. A large performance gain is observed in all cases with respect to all reference methods. 
In addition, the framework can be also recast to provide localization information, both in supervised and 
unsupervised modality. 

 
6.3 GAN fingerprints 
The goal of this work was to prove the existence of GAN fingerprints and their value for reliable forensic 
analyses. We have demonstrated that each GAN leaves its specific fingerprint in the images it generates, just 
like real-world cameras mark acquired images with traces of their photo-response non-uniformity pattern. 
Source identification experiments with several popular GANs show such fingerprints to represent a precious 
asset for forensic analyses. 

 
6.4 Video facial manipulation detection 
While current state-of-the-art facial image manipulation methods exhibit visually stunning results, we 
demonstrated that they can be detected by trained forgery detectors. To this end we introduced a novel 
dataset of videos of manipulated faces that includes four different type of facial manipulations, It is 
particularly encouraging that also the challenging case of low-quality video can be tackled by learning- 
based approaches, where humans and hand-crafted features exhibit difficulties. 

 
6.5 Video Copy-move Detection and Localization 
We proposed a method for the detection and localization of video copy-moves. Since keypoint-based 
approaches are ineffective with most occlusive forgeries, we focused on dense-field methods. With this 
approach, the main issue is complexity, especially for videos, cursed by their huge data size.  To deal  with 
this problem we resorted to a fast randomized patch matching algorithm, a hierarchical analysis 
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strategy, and parallel implementation. Experiments confirm that the proposed method has an excellent 
detection and localization ability, also for occlusive copy-moves, and even in adverse scenarios including 
rotated copy-moves and compressed videos. Moreover, the running time is much reduced w.r.t. linear 
search, enabling practical video analysis. 

 
6.6 Image Manipulation 
We have developed a novel end-to-end DNN solution to image forgery localization called ManTra-Net.  Our 
extensive experimental results using only pre-trained models demonstrate that the proposed ManTra- Net is 
sensitive to subtle manipulations, and robust to post processing disguising manipulations,  and that  it attains 
good generalizability to unseen data and unknown manipulation types 

 
6.7 Camera Identification 
We developed a camera identification model with good performance for camera verification and image pair 
verification. The camera identification model has very reliable performance for near-duplicate verification 
for the MFC2019 dataset. This is potentially useful for improving the accuracy in the near-duplicate 
clustering stage for provenance filtering. 

 
6.8 Two-branch Recurrent Network for Isolating Deepfakes in Videos 
We developed a method for video-based deepfake detection that uses a recurrent model to process 
sequences of aligned faces using a two-branch backbone to fuse information across the color and frequency 
domain. The method is supervised with a novel loss function that isolates manipulated face sequences in 
the feature space. We have shown results on FaceForensics++, Celeb-DF, and DFDC that outperform or 
are on par with state-of-the-art. In the long term, we plan to augment our model with an explainability 
mechanism that does not need any pixel-wise supervision for face manipulations. 

 
6.9 Robust Analysis of the Direction of Incident Light 
We proposed a new method for estimating the lighting environment on an object in the image plane. In 
contrast to previous works, the method operates on all pixels of the object, which dramatically increases 
the robustness towards common failure cases of lighting-based methods, such as slight mis- 
segmentations, partial self-shadowing or occlusions. It also makes the method remarkably robust to 
common post processing operations such as strong JPEG compression and significant down-sampling. 

 
6.10 Segmentation-free Lighting Estimation 
We proposed a learning-based method for estimating the lighting environment on arbitrary image patches. 
This completely removes the requirement of pre-segmented objects, and hence enables application of the 
method on a considerably broader range of scenes. Although the method is learning-based,  it  also exhibits 
excellent robustness to common post processing operations such as JPEG recompression and down-
sampling. 

 
6.11 Color Fingerprinting from the Scene and the Camera 
We proposed a method to learn a metric space for fingerprinting the color formation in cameras. The 
proposed method maps variations in illumination and in camera-internal color processing far apart, 
which is subsequently used for splicing localization. The method particularly excells in its robustness to 
common postprocessing operations such as JPEG compression and downsampling. 

 
6.12 Fingerprinting of JPEG Library Chroma Subsampling 
We present a characteristic artifact in the chroma subsampling of popular implementations of the JPEG 
library. The artifact can be detected in high-quality images of JPEG quality 90 and beyond. It has 
applications in fingerprinting the origin of images, and also in exposing local manipulations that lead 
distort the artifact. 
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6.13 Fingerprinting of Depth Image Calculation in Cameras 
We present a new forensic cue for modern smartphones, namely to exploit JPEG-embedded depth in- 
formation for forensic analysis. We show that the depth image exhibits characteristic traces for the 
hardware setup and the computational algorithm to compute the depth image. This subtle cue imposes 
the additional constraint on a manipulator to also consistently edit the depth image to create a believable 
forgery. 

 
6.14 Provenance Filtering 
We developed an end-to-end provenance filtering system with excellent performance and all the feature 
extraction, indexing and retrieval modules implemented as specified by the program-defined API. The 
evaluation results showed our system is capable of indexing million-image datasets for searching. 
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