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1 EXECUTIVE SUMMARY

The analysis of light propagation in fibers is of great importance in telecom-
munications, RF signal processing, and optical sensing. This report provides
a brief but comprehensive summary of the concept of core modes in fiber
optic waveguides. We discuss such topics as

• the origin of modal solutions;

• core-guided modes in singlemode and multimode fiber;

• propagation effects in the presence of multiple core modes;

• directional characteristics of splice loss.

An Appendix provides further details of the fundamental mode.
It is hoped that the report will serve as an introduction for new re-

searchers as well as a compact summary for seasoned practitioners.
This report is based on a lecture ”Modes in Optical Fiber” presented by

F. Bucholtz to the Optical Sciences Division in May, 2016.
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A Short Introduction to Core Modes in Optical Fiber 1

2 Overview

Optical fibers are ubiquitous in today’s telecommunications infrastructure
and have become essential components in RF signal processing systems and
optical sensing systems. The fibers are made from silica glass (amorphous
SiO2) to which dopants are added to produce a radial variation in the re-
fractive index.

Two broad approaches are used to analyze the propagation of light in
fibers: a) ray analysis, and b) electromagnetic or modal analysis, as shown
schematically in Fig. 1. In our opinion, ray analyses are suitable for in-
troductory treatments but become cumbersome and can lead to incorrect
conclusions when applied to more complex problems, especially problems
involving narrowband, coherent light. Modal analyses start with the dif-
ferential Maxwell’s equations (MEs), apply the boundary conditions
imposed by the fiber, and obtain all the possible solutions. Here, the solu-
tions are called the modes of the fiber and, in general, there are an infinite
number of modal solutions. An important subset of solutions are those that
are actually guided by the fiber and, in particular, those modes that are
guided by the core of the fiber. It is these modes that are most useful for
physics and engineering applications and these solutions are both discrete
and finite.

Figure 1: A schematic depiction of the two approaches for analyzing light propa-
gation in fiber. (a) Ray analysis; (b) Electromagnetic or mode analysis.

In this report we will provide a quick, broad introduction to mode con-
cepts in optical fiber with an emphasis on core-guided modes and, especially, 
on the lowest-order or fundamental mode.

Distribution Statement A. Approved for public release, distribution is unlimited.
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2 Bucholtz, Singley

3 Introduction

Suppose we are presented with the following challenge. We are handed a
length of optical fiber and are given the specific form of the optical electric
field E(x, y, z = 0, t) at the fiber input. Our task is to calculate E(x, y, z, t)
everywhere inside the fiber as the light propagates in the z-direction (Fig. 2).
The propagating field E is obtained by solving Maxwell’s equations (MEs)
subject to the appropriate boundary conditions and the general solution for
a transverse, propagating wave has the form

E(x, y, z, t) = E0(x, y) cos (βz − ωt) (1)

where
E0(x, y) = field amplitude distribution in the transverse plane,
ω = 2πf where f is the optical frequency,
β = 2πneff/λ = propagation constant,
neff = an effective refractive index,
λ = optical wavelength.

In writing the solution in the form of Eq.(1) we have made a number of
important assumptions.

1. The light is perfectly monochromatic at optical frequency f = ω/2π.
In doing so we neglect any effects that involve spectral width such as
dispersion.

2. The fiber’s refractive index depends only on the transverse coordinates
(x, y) and is independent of z. This assumption — invariance of the
fiber properties on position z — is crucial in making the problem

( , )x y
z

( ), , 0,E x y z t= ( ), , ,E x y z t

Optical Fiber

Figure 2: The challenge: Given input field E(x, y, z = 0, t) to an optical fiber
determine the field E(x, y, z, t) at any position z along the fiber.

Distribution Statement A. Approved for public release, distribution is unlimited.



A Short Introduction to Core Modes in Optical Fiber 3

tractable and, as we shall see below, has far-reaching consequences for
the mathematical form of the allowed solutions.

3. The electric field is a vector quantity so the solutions will be vectors
E = Ex x̂ + Ey ŷ + Ez ẑ and Eq. (1) shows the general form of the
solution for any one of the components Ex, Ey or Ez. Later on we
will see that a certain subset of the solutions called core-guided modes
or just core modes can be represented to a very good approximation
by just a scalar field of the type in Eq.(1). For these modes we can
learn quite a bit about the mode properties by calculating just Ex
or Ey — we don’t need the full vector solution. Calculations with
scalar fields are of course much simpler than calculations with the
full vector field but, in doing so, we give up information about effects
such as polarization that require knowledge of both transverse field
components Ex and Ey.

4. The fiber is lossless. Otherwise a z−dependence would need to be
included in the amplitude E0(x, y).

The transverse spatial variation of the refractive index n(x, y) is the key
property determining the optical properties of a fiber and we discuss it now
in more detail. In all fibers of interest in this report, the refractive index is
independent of z and has circular symmetry — its value depends only on the
radial distance from the fiber center, r =

√
x2 + y2. The radial dependence

of the index n(r) is called the ”refractive index profile” or RIP. Once the
optical frequency and RIP are specified, all the possible solutions
to Maxwell’s equations are locked in.

For a standard, step-index fiber, as shown in Fig. 3, the RIP comprises
a core region with index nco slightly larger than the index ncl of the sur-
rounding cladding region. The core and cladding together form the glass
fiber itself and, for most telecommunications fibers, have an overall diame-
ter of 125 µm. The index values in Fig. 3 are typical for a commercial fiber
called SMF-28 in which the cladding is pure silica (amorphous SiO2) and
the core is SiO2 doped with GeO2 to raise its index with respect to the
cladding. In contrast, modern long-haul undersea cables use flourine doping
in the cladding to lower its index with respect to the pure SiO2 core. This
results in a slight reduction in attenuation for the pure silica core compared
to a doped-core and has significant financial benefits for multi-thousand km
undersea links.

A parameter typically specified by fiber manufacturers is the so-called

Distribution Statement A. Approved for public release, distribution is unlimited.



4 Bucholtz, Singley

Figure 3: The refractive index profile (RIP) for a step-index fiber with index values
typical for commercial SMF-28 fiber. For this fiber ∆ = 0.0028

Figure 4: Showing the high-index buffer layer (jacket) applied to the outer cladding
surface to both form a protective mechanical layer, to prevent ambient light from
entering the fiber, and to absorb light that has escaped the core.

delta parameter,

∆ =
n2
co − n2

cl

2n2
co

. (2)

All of the optical fibers used for communications and for interferometric
sensing are weakly-guiding fibers in which nco ≈ ncl. In this case,

∆ −→ nco − ncl
nco

<< 1. (3)

Distribution Statement A. Approved for public release, distribution is unlimited.



A Short Introduction to Core Modes in Optical Fiber 5

(a) (b) (c)

Figure 5: Some examples of RIPs. (a) Depressed cladding; (b) dispersion flattened;
(c) dispersion shifted.

A typical value for a telecommunications fiber such as Corning SMF-28 is
∆ ' 0.36% which Corning calls the ”index difference.”

As a practical matter, in order to physically handle the fiber, the outer
surface of the glass is coated with one or more polymer layers collectively
called the jacket or buffer as shown in Fig. 4. The index of the jacket is
significantly larger than that of either the core or cladding so any light
that has escaped from the core and reaches the cladding-buffer interface is
absorbed by the buffer instead of possibly reflecting back into the fiber. The
jacket can also prevent ambient light from entering the fiber.

Depending on the intended application of a fiber, the RIP can be custom-
designed to trade off various engineering parameters such as attenuation,
bend resistance, and dispersion properties. A few of the myriad custom RIP
designs are shown in Fig. 5. For the remainder of this report we will consider
only step-index profiles.

4 Modal Solutions to Maxwell’s Equations

4.1 Overview

In this section we discuss solutions to Maxwell’s equations subject to the
boundary conditions imposed by the RIP assuming the fiber is lossless and
that its material properties don’t depend on position along the fiber. Com-
mon scientific sense tells us that these last two assumptions cannot be strictly
met in the real world but fabrication techniques for optical fiber have become
so good that, under normal use, these assumptions are quite reasonable. Fi-
nally, as stated earlier, in this report we consider only scalar field solutions
for step-index RIPs.

As with many boundary-value problems, it turns out that only certain
forms of the general solution in Eq.(1) are allowed. These specific solutions

Distribution Statement A. Approved for public release, distribution is unlimited.



6 Bucholtz, Singley

are called modes. Mathematically, the modes are eigenfunctions (or
eigenmodes or eigensolutions) of the system defined by MEs and the RIP.
We will see below that, once we have the modal solutions, we can easily
answer the challenge posed in the Introduction, namely, given an input field
determine the field at any position along the fiber. We assumed the RIP
was independent of z with the result that the amplitude of the modal field
distributions |E(x, y, z)| are independent of z. However, the overall phase
of each mode depends strongly, but simply, on z. It is these two properties
together that make the mode approach so powerful.

4.2 Modes in Step-Index Fiber

There exist three broad categories of allowed modes in optical fiber:

1. Core modes are modes guided by the core-cladding interface. They
are discrete and finite in number.

2. Cladding modes are modes guided by the combination of core-
cladding and cladding-buffer interfaces. They are also discrete and
finite in number.

3. Radiation modes are unguided waves that are not confined by the
fiber but are nevertheless valid solutions. These modes form a contin-
uum and are infinite in number.

Taken together these solutions comprise the complete set of allowable solu-
tions to our problem. Each mode is identified by a label of some sort and it
will be convenient to use a pair of labels l and m. Since the guided waves are
discrete their labels are integers while, for the radiation modes, the labels
must be treated as continuous parameters.

Leaky modes are another type of mode are often mentioned in the lit-
erature. They are actually radiation modes that behave like cladding modes
over short distance and they are useful for understanding the operation of
certain devices and will be discussed in more detail below.

For the purposes of our discussion it is helpful to rewrite the scalar
solution of Eq.(1) in complex form and to include the mode labels

Elm(x, y, z, t) = ej(βlmz−ωt)E0lm(x, y). (4)

We now summarize some important general properties of modes.

• Each mode is characterized by a specific transverse field distribution
E0lm(x, y) and a propagation constant βlm or, equivalently, an effective
mode refractive index neff, lm = βlm/(2π/λ).

Distribution Statement A. Approved for public release, distribution is unlimited.



A Short Introduction to Core Modes in Optical Fiber 7

• As light propagates in any particular mode, the only change is an
overall accumulation of the phase across the entire phase front at a rate
per unit meter given by the propagation constant βlm. The magnitude
of transverse field distribution E0lm(x, y) remains the same everywhere
along z.

• The field distribution E0lm(x, y) is independent of the direction of
propagation which is itself determined by the sign in the argument of
the exponential in Eq.(4). For waves propagating in the +z−direction
the argument is (βlmz − ωt) while for waves propagating in the
−z−direction the argument is (βlmz + ωt). In both cases the propa-
gation constant βlm is assumed to be positive.

• As mathematical functions, the modes are orthogonal and form a basis.
This means that any arbitrary field distribution can be expressed as a
linear combination of the modal solutions. If Ein(x, y) is the transverse
distribution of an arbitrary light beam incident on the fiber endface,
then that light beam can always be written as a linear combination of
the basis modes

Ein(x, y, 0) =
∑
l,m

clmE0lm(x, y) +

∫ ∞
0

∫ ∞
0

cµνE0µν(x, y)dµdν (5)

where the clm are complex weighting coefficients and where the discrete
indices l,m label the guided modes and the continuous indices µ, ν
label the radiation modes. In any realistic situation many of the clm
will be zero or close to zero so, typically, not all the modes are needed
to represent an incident field to a high degree of fidelity. But this
also means that if an arbitrary, oddly-distributed beam of light is
injected into a fiber it’s likely that more than one mode and possibly
a great many modes will be excited. To say a particular mode (l,m)
is ”excited” by an input field in this context means that the coefficient
clm 6= 0.

• Orthogonality of modes means that there is never intermodal crosstalk.
Light in one mode stays in that mode. But this is in the ideal case. If
there are any perturbations to the fiber such as bends, deformations,
or localized composition or density fluctuations, then our carefully
crafted assumption of the invariance of the index along z is invalid
and crosstalk can occur. But again, today’s fibers are so well designed
and fabricated that this assumption is quite accurate under most cir-
cumstances.

Distribution Statement A. Approved for public release, distribution is unlimited.



8 Bucholtz, Singley

• It sometimes happens that two modes have exactly the same propaga-
tion constant even though they have different lm labels. In this case,
the modes are said to be degenerate and they can exchange power
even in the absence of perturbations.

The complex coefficients clm in Eq.(5) are a normalized measure of how
well any particular fiber mode E0lm(x, y) matches the incoming field distri-
bution Ein(x, y, z = 0). Quantitatively

|clm|2 =

∣∣∫ ∫ Ein(x, y, z = 0)E0lm(x, y)dxdy
∣∣2∫ ∫

|Ein(x, y, z = 0)|2dxdy
∫ ∫
|E0lm(x, y)|2dxdy

. (6)

where the integrals are performed over the entire transverse plane. The
magnitude of the clm’s are proportional to what in traditional optics is
called the overlap integral,

clm ∝
∫ ∫

Ein(x, y, 0)E0lm(x, y)dxdy. (7)

The quantum optics folks would call this the projection of the input field
onto the mode and the math folks would call this the inner product of the
input field and the mode field.

Taken together, these general properties provide the great power and
utility of the mode approach for propagating fields:

1. The modes form a basis so any arbitrary incident field can be expressed
as a linear combination of modes.

2. Each mode then propagates along the z-direction undisturbed in
amplitude, independent of all the other modes, and with a simple
z−dependent phase term, exp (jβz).

3. To obtain the total field distribution anywhere along z simply propa-
gate each mode individually up to z and then add up all the modes.

That’s it! We now have almost all the tools needed to solve the challenge.
What remains is to determine the actual shape of the modal solutions for a
step-index fiber.

5 Core Modes in Step-Index Fiber

5.1 Basics

For core modes in general, all three vector components of the field
(Ex, Ey, Ez) are non-zero and the exact solutions are messy and cumber-
some. In 1971, using the weakly-guided assumption of Eq.(3), Gloge [1]

Distribution Statement A. Approved for public release, distribution is unlimited.



A Short Introduction to Core Modes in Optical Fiber 9

 0,  1 l m= =  1,  1 l m= =  2,  1 l m= =  0,  2 l m= =

 3,  1 l m= =  1,  2 l m= =  4,  1 l m= =  2,  2 l m= =

 0,  3 l m= =  5,  1 l m= =  3,  2 l m= =  1,  3 l m= =

Figure 6: The transverse field distributions LPlm(x, y) for a few of the lower-order
core-guided LP modes. Red vs blue colors indicates a relative difference in sign
(π phase shift) between the fields at the two locations.

constructed a set of approximate solutions that were intended to be ”good
enough” for engineering applications and in which the level of accuracy was
on the order of the core/cladding index difference. For these approximate
solutions the transverse field ends up almost entirely in either Ex or Ey.
That is, the solutions are nearly linearly polarized and these modes are thus
referred to as “LP” modes. For our purposes, we will need to consider only
one of the field components and thus we will deal entirely with scalar modes.

Figure 6 shows the field distribution for a few of the lower-order LP
modes. We will designate the core-guided LP modes by LPlm. Although
the boundary condition imposed by the RIP has perfect circular symmetry
we see that, in general, all the modes do not enjoy that same symmetry. Only
the l = 0 modes are circularly symmetric. However, the remaining modes do
possess rotational symmetry, where the field distribution is symmetric under
rotations of 2π/l and the power distribution is symmetric under rotations
of π/l.

Details of the calculation of modes in circular dielectric waveguides can
be found in many excellent texts and articles. We have already cited the
article by Gloge which is very readable. In addition, we recommend the

Distribution Statement A. Approved for public release, distribution is unlimited.



10 Bucholtz, Singley

ModeProfile.m

Core
radius

LP01

LP51

V=8.0
λ=0.632 um

a=4.1 um
ncl=1.4440
nco=1.4529

Figure 7: The mode profiles for two modes, LP01 and LP51, far from cut-off at
V = 8.0, showing the extent to which the tail of radial field distributions can extend
into the cladding. Parameters used to calculate the curves are shown in the inset.

books by Jeunhomme [2], Miller and Chenowyth [3], Unger [4], Marcuse [5],
Agrawal [6], and Snyder and Love [7]. In particular, if it is required to per-
form computer simulations of LP modes, we recommend the Chapter by
Marcuse, Gloge, and Marcatili in Miller and Chenowyth [3] and Chapter 1
in Jeunhomme [2] as good references, as well as the summary provided in
the Appendix to this report.

It is important to keep in mind that the modes shown in Fig. 6 are indeed
all guided by the core but they are definitely not confined entirely within
the core. In fact, the tails of the field distribution of every core-guided
mode extends into the cladding, with higher-order modes having more light
near and beyond the core-cladding interface than lower-order modes. This
behavior is seen in Fig. 7 which shows the radial field profile for an LP01 and
an LP51 mode as examples.

We now examine some aspects of the behavior of the guided LP core
modes in step-index fiber.

As mentioned earlier, the E-field distribution for any particular mode
LPlm(x, y) remains unchanged as it propagates in the fiber. The phase of
the mode does change but it changes very simply,

LPlm(x, y, z) = ejβlmzLP0lm(x, y). (8)

That is, the phase accumulates at a constant rate βlm per meter.

Distribution Statement A. Approved for public release, distribution is unlimited.



A Short Introduction to Core Modes in Optical Fiber 11

The mode with the largest propagation constant (largest refractive in-
dex) is by definition called the fundamental mode. Of all the core modes,
this mode accumulates phase at the largest rate per unit length and has the
lowest phase velocity

vphase =
ω

β
=

c

neff
(9)

where neff = β/k is the effective index of the mode and k = 2π/λ is the
wavenumber in vacuum.

On the other hand, the speed at which power flows in a mode is given
by the mode group velocity

vgroup =

(
dβ

dω

)−1

=
c

ngroup
=

c

(neff + ω (dneff/dω))
. (10)

Among all the allowable core guided modes, the fundamental mode has the
smallest phase velocity, but it may or may not have the smallest group
velocity. Typically it does not.

5.2 Single- vs Multi-Mode Fiber

For the remainder of this section we will consider only core-guided modes.
Earlier we stated that once the optical frequency and the RIP of the fiber
were specified then all the allowed modal solutions were locked in. When
solving MEs for the core-guided modes in step-index fiber, an extremely
useful parameter falls out naturally. It is referred to as the “V-parameter”
or the “normalized frequency” and is given by

V =
2π

λ
a
(
n2
co − n2

cl

)1/2
= ω

a

c

(
n2
co − n2

cl

)1/2
(11)

where a is the core radius and the remaining parameters were defined earlier.
For a given optical frequency and RIP, the value of V determines the number
of core-guided modes the fiber can support:

• If V ≤ 2.405, there is only one core-guided solution and the fiber is
called singlemode.

• If V > 2.405 more than one core-guided mode is allowed and the fiber
is called few-mode or multimode depending on how many modes
are allowed. But the term ”multimode” is often applied to any fiber
that supports more than one core mode, regardless of number.

Distribution Statement A. Approved for public release, distribution is unlimited.



12 Bucholtz, Singley

Note that V is dimensionless and depends on the difference between core and
cladding indices and on the ratio of the core radius to the optical wavelength.
Also, keep in mind that the terms ”singlemode” and ”multimode” apply only
to the core-guided modes. A singlemode fiber can still have many
allowed cladding and radiation modes.

Each core mode is characterized by an effective index of refraction
neff = β/k that lies somewhere in value between the cladding and core
indices,

ncl ≤ neff ≤ nco (12)

as shown in Fig. 8. The exact value of the effective index between its two
limits is determined by a parameter b called the normalized propagation
constant where

n2
eff = (1− b)n2

cl + bn2
co (13)

or, in the weakly-guided approximation,

neff ≈ (1− b)ncl + bnco. (14)

Hence

b =
(β/k)2 − n2

cl

n2
co − n2

cl

≈ (β/k)− ncl
nco − ncl

=
(neff − ncl)
nco − ncl

. (15)

con

cln
effn

Figure 8: For a core-guided mode the effective index always lies between the
cladding and core indices.

To get an overall understanding of the behavior of the LP modes it is
useful to plot the propagation constant as a function of V-number. But
rather than make such a plot for each particular situation, that is, for each
particular combination of nco, ncl, λ and a, we can instead create a set of
universal curves by plotting b as a function of V , as shown in Fig. 9 for a
few of the lowest-order LP modes.

This plot is extremely useful and reveals at a glance a number of im-
portant properties of core-guided modes in step-index optical fibers in the
weakly-guided approximation:

Distribution Statement A. Approved for public release, distribution is unlimited.



A Short Introduction to Core Modes in Optical Fiber 13

Figure 9: Normalized propagation constant b as a function of normalized frequency
V for a few LP modes. nco = core index, ncl = cladding index, Vc ' 7.6 indicates
the cut-off frequency for the LP51 mode as an example. The value 2.405 is especially
important since the fiber supports only a single core mode when V < 2.405. For
SMF-28 fiber at 1550 nm, for example, V ' 2.0.

• For all modes, 0 ≤ b ≤ 1 which is equivalent to ncl ≤ neff ≤ nco
emphasizing that, for a mode to remain core-guided, its effective index
must lie between the core and cladding indices.

• As V decreases, there comes a point for (almost) every mode where
neff = ncl. The wave then can’t distinguish its own effective index
from the cladding index and can no longer be core-guided. At this
point the mode is said to “reach cut-off” or to “be at cut-off”
and that mode is no longer a solution to MEs. For example, the LP51

reaches cut-off at approximately V ' 7.6 as seen in Fig. 9.

• For the fundamental mode, b approaches zero only asymptotically as
V approaches zero.

Distribution Statement A. Approved for public release, distribution is unlimited.



14 Bucholtz, Singley

• For V ≤ 2.405 only the fundamental exists, all the other core modes
have reached cut-off, and the waveguide is singlemode. Note that if,
say, the wavelength were then decreased to the point that V > 2.404,
then at that new wavelength the same fiber would be multimode.

• As V −→ ∞, the effective index of all modes approaches the core
index, the waveguide is highly multimode, all the modes are far from
cut-off and are strongly guided. This situation rarely occurs in practice
for glass fibers since very large V-number requires either very short
wavelength or very large ∆.

Hopefully the reader can see that once you know V you know a lot!
Before moving on we need to clarify two points in regard to Fig. 9. First,

we have restricted our discussion to scalar fields and have therefore ignored
polarization effects. However, for each mode there are actually two solutions
in orthogonal polarization states. For an ideal fiber with perfect circular
symmetry these two modes are degenerate — they have exactly the same
propagation constant. However, if the symmetry is broken (due to bending
or manufacturing inaccuracies, for example) then the degeneracy is removed
and the two modes propagate with different constants. In the extreme case
of polarization-maintaining fiber, the RIP of the fiber is purposely designed
to be non-circularly symmetric so that the two modes have significantly
different propagation constants. Second, to simplify the figure we plotted
only some of the allowable modes in the range of V-numbers shown. LP22

was not plotted for example. It can be shown that for a given V-number,
the number of allowable core-guided modes is approximately N = V 2/2,
counting the two polarization modes for each scalar mode.

As an example of a plot for a specific fiber, in Fig. 10 we show the mode
effective index neff vs V for a fiber having RIP similar to SMF-28 fiber
where we assumed ncl = 1.444 and nco = 1.448

The mode group index ngroup, which determines how fast power propa-
gates through the fiber, depends on both the effective index and the deriva-
tive dneff/dV ,

ngroup = neff + V
dneff
dV

. (16)

Figure 11 is a plot of ngroup vs V for the same SMF-28-type fiber that was
plotted in Fig. 10. We see here that the group index of the fundamental
LP01 mode is smaller than the group index of the other modes shown over
just about the whole range of V values. Hence, in the fundamental mode
compared to the other modes, power propagates fastest per unit time while
phase accumulates at the slowest rate per unit length.
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Figure 10: Mode effective index neff as a function of V for a fiber having RIP
similar to SMF-28 fiber. The effective index for all modes lies between the cladding
index ncl = 1.444 and the core index nco = 1.448 of the fiber.

Recall that one of the general properties of a mode in a lossless fiber
is that the transverse field distribution LPlm(x, y) remains unchanged as
light in the mode propagates along the fiber: there is no attenuation of
the mode nor spatial redistribution of the E-field in the transverse plane.
Also, referring to Fig. 9, we noted that as the value of V decreases the mode
eventually reaches cut-off when neff = ncl. Light that was propagating
in a core mode that went through cut-off due, for example, to a localized
mechanical deformation, typically converts into a radiation mode. But it
can be a radiation mode with characteristics very close to certain cladding
modes. Instead of quickly radiating away the light can propagate for quite
long distances — tens of microns or more — before eventually ”leaking”
away. Leaky modes are typically not an issue in communication and RF
links but they can produce unwanted interference effects in the presence
of strong bends and other mechanical perturbations. Here, the mechanical
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Figure 11: Mode group index ngroup as a function of V for a few LP modes for a
fiber having RIP similar to SMF-28. The fundamental mode LP01 has neither the
largest nor the smallest group index over the range of V values shown.

disturbance puts light into a leaky-mode and it is then possible for the
same disturbance to couple some light back into the fundamental mode and
produce optical interference.

Finally, as if the V-number had not yet proved its worth, it is directly
related to a geometrical-optics property of the fiber, namely, the acceptance
angle as shown in Fig. 12. The sine of the acceptance angle θc is the nu-
merical aperture (NA) and is given by

NA = sin θc =
1

2 · f/#
=
√
n2
co − n2

cl =
λ

2πa
V (17)

for air (index ni ≈ 1) as the input medium. (Otherwise the right-hand
side of (17) must be divided by the index of the input medium ni.) Here,
f/# is the traditional f−number or speed of the entrance aperture of the
optical fiber. Only light having k−vectors within the acceptance angle will
propagate in the fiber as a guided mode. Note that in the case of multimode
operation, V > 2.405, (17) gives the acceptance angle for all available modes
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but does not dictate how much power is injected into each mode.

cθ

Figure 12: The critical angle θc defines an acceptance cone of k−vectors for inci-
dent light to enter the fiber and excite a guided mode.

5.3 Applications

5.3.1 Superposition of Modes

In this section we consider what happens when light in multiple core-guided
modes propagate simultaneously. In particular, we calculate and compare
the z−dependence of the total field and the total optical power. Assume
that the input field comprises a sum of LP modes given by

E(x, y, 0, t) = exp (−jωt)
L∑
l=0

M∑
m=1

clmLPlm(x, y) (18)

where L and M are integers and the clm are complex weighting coefficients
from Eq. (7). Then the field at any position z in the fiber is obtained
simply by first advancing the phase of each mode individually according to
its propagation constant βlm, that is, LPlm(x, y) −→ LPlm(x, y) exp (jβlmz),
and then re-assembling all the mode fields into a total field

E(x, y, z, t) = exp (−jωt)
L∑
l=0

M∑
m=1

clmLPlm(x, y) exp (jβlmz). (19)

This result is the answer to the challenge posed at the beginning of the
report. It gives the prescription for determining the field at any point along
the fiber, E(x, y, z, t) given a monochromatic input field E(x, y, 0, t).

The distribution of optical power p(x, y, z) in the transverse plane (x, y)
at location z, is

p(x, y, z) ∝ |E(x, y, z, t)|2. (20)

The total field at any location (x, y, z) is the sum of a number of modes, all
at the same optical frequency ω but each with phase βlmz. Hence, optical
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interference occurs at each point (x, y, z) and strong spatial variations can
occur in both the transverse distribution of power for fixed z = z0, and in
the longitudinal distribution of power for fixed (x0, y0). If we took successive
slices of the fiber and examined the pattern of optical power at the output
we would find that it ”sloshes around” quite a lot in the transverse plane as
z changes on optical length scales. But if the fiber is lossless the total power
- obtained by integrating p(x, y, z0) over the (x, y) plane - will be constant,
independent of z.

As an example, suppose the incident field is represented by the following
linear combination of LP01, LP11, and LP21 modes

E(x, y) =
∞∑
l=0

∞∑
m=1

clmLPlm(x, y) (21)

= (−0.707)LP01(x, y) (22)

+ (0.548)LP11(x, y) (23)

+ (−0.447)LP21(x, y). (24)

Then the distribution of optical power just inside the fiber is

p(x, y, z = 0) ∝ |E(x, y)|2 (25)

Figure 13 shows the individual mode fields, individual mode powers, total
field, and total power for this example.

We can determine how both the optical field distribution and the optical
power distribution evolve with z as the light propagates in the fiber. The
propagation constants for each mode were obtained using the mode effective
index from Fig. 10 for SMF-28 fiber. The result is shown in Fig. 14.
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E(x,y)     =    (−0.707) LP01   + (0.548) LP11  − (0.447) LP21 
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total field
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Individual modes

Figure 13: Showing the field and power distribution in the transverse plane for
the example incident field in the text.

5.3.2 Modes and Splice Loss

Overview In this section we apply the mode concept to discuss light prop-
agating across the interface between two fibers, a situation that occurs when
two fibers are spliced together. Here we are interested in both how loss oc-
curs and in the dependence of loss on the direction of light through the
splice. The discussion will be largely qualitative.

We will see that, provided all the modes in both fibers are taken into
account, all the optical power incident on the splice is present beyond the
splice. Mathematically, every splice is lossless. But to the experimentalist
loss means something very different. In the context of a splice joint, the
term ”loss” usually refers to the ratio of optical powers in the fundamental
modes of two singlemode fibers on either side of the splice. More generally,
it may refer to the ratio of optical power in the core-guided modes of two
multimode fibers or even between a singlemode and multimode fiber. In
this last case, some light from the input fiber can end up in modes in the
output fiber that are not easily accessible for measurement and, hence, to
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20 Bucholtz, Singley

Figure 14: Evolution of the optical field and the optical power distribution in the
transverse plane for the example incident field in the text for various z values in
the range 0 to 1m. The array of values are the magnitude and phase (expressed as
a complex number) of each mode field at a particular z.
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the experimentalist, such a splice has loss.
Loss is typically measured in one of two ways: 1) in the forward direction

using an optical power meter, and 2) in the backward direction using an op-
tical time-domain reflectometer (OTDR). The power meter measurement is
relatively easy to set up but subject to errors due to position and orientation
inaccuracies of the optics used to inject light into the fiber. The OTDR mea-
surement is very easy to set up, is not subject to optical alignment errors,
and is definitely the preferred approach for splices between identical, sin-
glemode fibers. For nonidentical fibers, an OTDR measurement can exhibit
some weird subtleties that must be understood (see Jablon [8], for example,
for a discussion of ”gainers” in OTDR measurements.)

We can model the splice as a ”device” that scatters light from the modes
of the incoming fiber (Fiber A) into the modes of the outgoing fiber (Fiber
B) as shown in Fig. 15. To simplify the discussion assume the light in fiber
A is contained in just one LP mode, say, Al0m0(x, y). When light from fiber
A passes through the splice it will scatter into a linear combination of the
modes of fiber B,

Al0m0(x, y) −→
∑
l,m

clmBlm(x, y). (26)

This is just the mode expansion from Eq.(5) but where we have simplified
the notation by lumping all the modes — guided and radiation — into
the sum with the understanding that the radiation modes really should be
integrated, not summed. We also note that, provided all the modes in fiber
B are taken into account, then all the power from fiber A is accounted for
in fiber B and the splice is lossless in the mathematical sense that∑

l,m

|clm|2 = 1. (27)

The weighting coefficients can thus be regarded as optical scattering
coefficients and we really should write the coefficient as clm, l0m0 to keep
track of the fact that this coefficient connects mode (l0m0) to mode (lm).
Hence the splice can be characterized by the collection of scattering
coefficients {clm, l0m0} which tells us how much of the light from mode
(l0m0) in fiber A ended up in mode (lm) in fiber B. These coefficients are
proportional to the overlap integral of Eqs.(6) and (7),

|clm, l0m0 | ∝
∣∣∣∣∫ ∫ Al0m0(x, y)Blm(x, y)dxdy

∣∣∣∣ . (28)
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Figure 15: A mode model for a fusion splice between two fibers A and B as a
”device” that scatters light from modes in fiber A to modes in fiber B.

Each coefficient is symmetric in the two mode fields |clm, l0m0 | = |cl0m0, lm|
and is thus independent of the direction of light through the splice. Hence,
the splice loss between any particular mode in fiber A and any
particular mode in fiber B is independent of direction.

Importantly, especially for the discussion in the next section, the func-
tional form of the (x, y)−dependence of the expressions for the modes
Alm(x, y) depends on the choice of coordinate system. For example, if the
origin is shifted to (x0, y0) then Alm(x, y)→ Alm(x− x0, y − y0).

We next consider two situations, splices between identical singlemode
fibers and splices between non-identical or dissimilar fibers.

Identical singlemode fibers Suppose the two fibers A and B are single-
mode and identical so they have exactly the same mode solutionsAlm(x, y) =
Blm(x, y). Assume the fundamental mode (l,m = 0, 1) is the only core-
guided mode but recall that a large number of cladding and radiation modes
may exist. In the ideal case where the two fibers are perfectly aligned there
is no loss and, trivially, no dependence on direction. If the two fibers are
not aligned, as shown in Fig. 16(a), they still have identical modes and the
functional form of the modes is exactly the same in the coordinate system
of each fiber. But from Fig. 16(a) we see that the two coordinate systems
are not aligned and hence Alm(x, y) 6= Blm(x, y). From the point of view
of fiber B, the incoming fundamental mode from fiber A is not the nice,
circularly symmetric, perfectly centered distribution shape of Fig. 16(b) but
rather has the oblong, offset shape of Fig. 16(c). For an arbitrary misalign-
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ment of fibers we are then effectively back to the situation of Eq.(26) where
we must expand an input field from fiber A as a linear combination of all
the modes in fiber B. If any of the scattering coefficients other than the one
linking the two fundamental modes is nonzero, then the splice has loss. But
the scattering coefficient still doesn’t depend on direction and so the splice
loss between truly identical, singlemode fibers is independent of
direction.

Figure 16: Effect of misalignment in a splice between identical, singlemode fiber.
(a) The coordinate systems of the two fibers are tilted and offset with respect to
each other. (b) Fundamental mode output of fiber A as viewed in the fiber A
coordinate system. (c) Fundamental mode output of fiber A as viewed in the fiber
B coordinate system.

Nonidentical fibers For nonidentical fibers we need to be careful about
how we define loss. For the purposes of this discussion we will define splice
loss in terms of the ratio of power in the core-guided modes of the two
fibers. (The measurement of this loss carries a practical danger — some
light from fiber A may scatter into cladding-guided modes of fiber B and
inadvertently reach the photodetector if precautions are not taken to ”strip
off the cladding modes.”) Again let Alm(x, y) denote the modes of fiber A
and now let Bpq(x

′, y′) denote the modes of fiber B where we use (x′, y′) for
fiber B since the two coordinate systems may not be identical. To simplify
the analysis we’ll again assume all the light in fiber A is contained in the
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fundamental mode A01. Then after the splice the light from fiber A is now
contained in a linear combination of all the modes in fiber B

A01(x, y) =
∑
p,q

cpq, 01Bpq(x
′, y′)

=
∑
core
modes

cpq, 01Bpq(x
′, y′) +

∑
cladding+
radiation
modes

cpq, 01Bpq(x
′, y′). (29)

The ratio of core-guided power into the splice to core-guided power out of
the splice is then

pin
pout

∣∣∣∣∣
A→B

=

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣ ∑
core
modes

cpq01Bpq(x
′, y′)

∣∣∣∣∣
2

dx′dy′. (30)

If now the light were initially contained in the fundamental mode B01 of
fiber B, propagating in the opposite direction through the splice, then

pin
pout

∣∣∣∣∣
B→A

=

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣∣ ∑
core
modes

clm01Alm(x, y)

∣∣∣∣∣
2

dxdy. (31)

The right-hand sides of Eqs. (30) and (31) clearly are not equal in general.
Hence, in general, the splice loss between dissimilar fibers depends
on direction.

These results bring up the obvious question “Are any two fibers truly
identical?” The practical answer is “No” so some degree of directionality
will be observed in the loss of any fiber splice. The directionality may be
insignificant for two sections of singlemode fiber taken from the same reel or
it may be quite strong such as in the case of a singlemode fiber spliced onto
the distal end of a multimode fiber for the purpose of spatial mode filtering.

5.3.3 Mode-Field Diameter

In this section and the next we discuss two useful parameters for singlemode
fibers. (A closely-related topic, effective mode area, is discussed in the
Appendix.) These are the mode-field diameter (MFD) and the Gaussian
approximation to the MFD. As the name implies, mode-field diameter is a
measure of the spatial width of the mode and most fiber manufacturers list
the MFD at two wavelengths on their data sheet. The MFD is important for
two reasons. First, when fusion splicing two non-identical singlemode fibers,
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knowledge of the MFD of each fiber allows the minimum theoretical splice
loss to be estimated. Secondly, today’s telecommunications systems increase
capacity by pushing to higher optical power levels but with increased power
comes the threat of fiber nonlinearities. Signal-to-noise ratio depends on
optical power but nonlinearities depend on optical intensity, that is, the
power per unit cross-sectional area of the mode. By designing fibers with
large MFDs, optical power can be increased while minimizing nonlinear
effects.

Two conventions have arisen over the years to define MFD depending
on whether we consider the mode pattern in the near field at the fiber
endface, or in the far field where measurements are more-easily performed.
Artiglia [9] provides a good summary. As shown in Fig. 17 let E(r) denote
the near-field radial distribution of the mode field and let F (p) denote the
far-field diffracted pattern resulting from E(r) where p = k sin θ. For splice
loss and nonlinearities E(r) is the field that matters but F (p) is more easily
determined experimentally. Fortunately, under relatively mild restrictions,
the two fields are related by a transform F (p) = (1/

√
2π)H(E(r)), where

H denotes Hankel transform. The MFD can thus be defined in either the
near- or far-field and in terms of either E(r) or F (p). The near-field MFD,
denoted MFDn, is given by

MFDn = 2
√
2

(∫∞
0

E2(r)r3dr∫∞
0

E2(r)rdr

)1/2

= 2
√
2

(∫∞
0

[F ′(p)]2 p3dp∫∞
0

F 2(p)pdp

)1/2

(32)
where F ′(p) denotes the derivative of F with respect to p. The first ex-
pression on the RHS is called the ”Petermann I” definition. In the far
field,

( )E r ( )F ρ

( )Near field  λ≤ ( )Far field  1000 λ>

Fiber

Figure 17: Calculation of the mode-field diameter (MFD) is performed using either
the theoretical near-field E(r) or the measured far-field F (ρ).
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MFDf = 2
√

2

( ∫∞
0 F 2(p)pdp∫∞
0 F 2(r)p3dp

)1/2

= 2
√

2

( ∫∞
0 E2(r)rdr∫∞

0 [E′(r)]2 rdr

)1/2

(33)

Here the first expression on the RHS is called the ”Peterman II” definition.

For step-index fiber the two definitions yield answers that are quite close
but with

MFDf ≤MFDn (34)

However, if we assume the near field can be written as a Gaussian,

Eg(r) = A exp
(
−qr2

)
(35)

then all four expressions give the same result MFD = MFDn = MFDf =
2/
√
a. Here, r = 1/

√
q is the radius at which the intensity has dropped to

1/e2 of its value at r = 0.1

The maximum possible linear power transmission coefficient T resulting
from a splice between two singlemode fibers having mode-field diameters
MFD1 and MFD2 is given by Marcuse [10]

T =

(
2 ·MFD1 ·MFD2

MFD2
1 +MFD2

2

)2

. (36)

5.3.4 Gaussian Approximation to the Fundamental Mode

We found the V-number to be of great utility for determining both elec-
tromagnetic modal solutions and the geometric acceptance angle . The
V-number appears again in this section for the purpose of approximating
the field distribution of the fundamental mode for a singlemode fiber by a
Gaussian function. Marcuse [10] has shown that, with quite-good accuracy
for step-index fiber, the Bessel-shaped near-field E(r) can be approximated
by the Gaussian of Eq. (35) where q is given empirically by

1

a
√
q

= 0.65 +
1.619

V 3/2
+

2.879

V 6
. (37)

For a Gaussian of the form exp
(
−r2/w2

)
, then the left side of Eq.(37) is

simply w/a. Fig. 18 shows the ratio of MFD to core diameter, 2w/2a, as a
function of V . It is seen that, as V decreases, the MFD increases. This is

1Note: The integrals in (32) and (33) are evaluated easily using
∫∞
0

rn exp(−ar2)dr =

((n− 1)/2)!/2a(n+1)/2 for n odd.
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Figure 18: Ratio of MFD in the Gaussian approximation to core diameter as a
function of V .

true qualitatively for higher-order modes as well — as the mode approaches
cut-off its MFD increases.

Finally, the reader is cautioned that a slightly different form of the Gaus-
sian approximation appears in Marcuse [11]. In that paper, Marcuse sought
an approximation that was valid in the more general case of graded-index
fibers (of which step-index is a special case). Specifically for step-index
fibers, (37) is more accurate.

6 Summary

We have provided a brief introduction to the concept of modes in optical
fiber with an emphasis on core-guided modes and, especially, the lowest-
order mode or fundamental mode. Some important summary points are:

1. Modes comprises the solutions to Maxwell’s equations subject to
boundary conditions given by the refractive index profile of the fiber.

2. Mathematically, the complete set of mode solutions comprise a basis,
hence, any input field can be written as a complex linear combination
of modes.
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3. Modes in fiber can be classified as either core-guided modes, cladding-
guided modes, or radiation modes.

4. As light in a mode propagates in the fiber, the E-field amplitude dis-
tribution in the transverse plane of core-guided modes remains un-
changed while the phase accumulates at a rate per meter given by the
propagation constant. These two properties make it simple to calcu-
late the mode at any point along the fiber and, together with Summary
point 2), allow the total core-guided field to be easily calculated as it
propagates in the fiber.

5. The normalized frequency or V-number is probably the most impor-
tant parameter governing the modal behavior of a fiber. Another
important parameter is the so-called normalized propagation constant
b. A plot of b vs V provides a set of universal curves that pretty much
tell the complete story of the behavior of core-guided modes in fiber,
all in a single graph.

6. The mode approach can be used to analyze splice loss. In principle,
the splice loss between identical, singlemode fibers is independent of
direction of the light but, in practice, some directionality is likely to
be present.

7. Using the mode approach a number of important parameters associ-
ated with the fundamental mode can be calculated including mode-
field diameter, effective mode area, the Gaussian approximation to the
fundamental mode, and the relationship between mode amplitude and
optical power carried by the mode.
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A Appendix: Some Details of the Fundamental
Mode

In this Appendix we provide details for the calculation of certain parameters
associated with the core-guided modes. As overall references we used the
original article by Gloge [1], Chap. 3 by Marcuse, Gloge, and Marcatili,
”Guiding properties of fibers,” in Optical Fiber Communications, S.E. Miller
and A.G. Chenowyth (eds.), Academic Press, Orlando, 1979, and the book
by Jeunhomme [2]. Compared to that reference material, this Appendix adds
value by a) summarizing only the relevant information; b) adding detail and
explanation where needed; and c) making direct connections to equations
and plots found in the body of this report.

A.1 Form of the Core-Guided Eigenmodes

Core modes in the weakly-guiding approximation are designated LPlm where
l is the azimuthal mode number and m is the radial mode number. These
modes are nearly linearly polarized in the x− or y−directions. From
Gloge [1] and Marcuse [5] the dominant transverse E-field components of
the LP modes can be written

(Ex)lm =


ElJl

(
U
r

a

)(cos lφ

sin lφ

)
exp (jβlmz) for r ≤ a

El
Jl(U)

Kl(W )
Kl

(
W
r

a

)(cos lφ

sin lφ

)
exp (jβlmz) for r ≥ a

(38)

where

U = a
√
k2n2

co − β2
lm, (39a)

W = a
√
β2
lm − k2n2

cl, (39b)

and where El is an amplitude parameter (Volts/m), βlm = kneff, lm is the
mode propagation constant and k = 2π/λ. For the fundamental mode, El=0

is the field strength at the origin. U and W are sometimes referred to as
the scalar mode parameters.

In the above equation subscript x indicates the Cartesian component
of the E-field and the field is expressed in terms of cylindrical coordinates
(r, φ, z) and A is the mode amplitude. Here J and K are Bessel functions
of integer order. (In Matlab, they are besselj(l,x) and besselk(l,xr) and in
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Mathematica they are BesselJ[l,x] and BesselK[l,x].) Choosing either cos lφ
or sin lφ yields a valid solution so both must be stated explicitly in order for
the solution set to be complete. And there is another set of solutions just
like (38) for the orthogonal polarization component Ey. Either in plotting
the field distribution of the mode or in performing calculations, typically
only one version of one polarization state is used. For example, the mode
pictures in Fig. 6 represent a choice of one state of polarization Ex or Ey
and one choice of either cos lφ or sin lφ. But bear in mind that in doing
the mode expansion for, say, an incident field, ALL the solutions must be
included.

Inside the core radius the field is proportional to Jl(Ur/a) which remains
finite at the origin while, outside the core, the mode field is proportional to
Kl(Wr/a) which decays exponentially to zero as r goes to infinity. Solving
for the modes then requires that the scalar mode parameters satisfy two
constraints

U2 +W 2 = V 2, (40a)

U
Jl+1(U)

Jl(U)
= W

Kl+1(W )

Kl(W )
(40b)

where V is the V-number. The second equation is the characteristic equa-
tion or eigenvalue equation and it must be solved to obtain values for U
and W . Unfortunately, the eigenvalue equation cannot be solved analyti-
cally and even after the great simplification arising from introduction of the
LP mode concept by Gloge. But it turns out that either U or W can be
approximated as a function of V and then the other parameter (W or U)
can be determined from (40a). We now compare two approximation ap-
proaches that have appeared in the literature. We will limit the analysis to
the fundamental mode (l = 0) for which the eigenvalue equation becomes

U
J1(U)

J0(U)
= W

K1(W )

K0(W )
. (41)

A.2 Approximations for the Scalar Mode Parameters

Tables providing numerically accurate values for U and W for various values
of V are given in Jeunhomme [2] (Table 1.1, where his u is our U and his
v is our W ), and in Snyder and Love [7] (Table 14-4, where their Ũ and
W̃ correspond to our U and W , respectively). Both Tables are presumed
accurate. Figure 19 show U and W as a function of V . At low V-numbers,

W is small compared to U . Since W = a
√
β2 − k2n2

cl this indicates that
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the mode effective index is close to the cladding index in the low-V regime,
while at larger V values, the mode index gets closer to the core index.

V

U

W

Figure 19: The scalar mode parameters U and W as a function of the normalized
frequency V where U2 + W 2 = V 2. V itself is also plotted for comparison. For
SMF-28 fibers V ' 2.0.

If you’re stuck on a deserted island and don’t have access to a table
of scalar mode parameters two approximations exist that can be used in a
pinch. One was given by Marcuse, Gloge, and Marcatilli, Chapter 3 in Miller
and Chenowyth [3], and provides an approximation for U(V ) and from which
W (V ) is then obtained using (40a)

UMGM (V ) =

(
1 +
√

2
)
V[

1 + (4 + V 4)1/4
] , (42a)

WMGM (V ) =
√
V 2 − UMGM (V )2, (42b)

where the subscript indicates Marcuse, Gloge, and Marcatilli. The other is
an approximation for W (V ) given by Jeunhomme [2] and from which U(V )
is obtained, again, using (40a),

WJ(V ) = 1.1428V − 0.9960, (43a)

UJ(V ) =
√
V 2 −WJ(V )2, (43b)

where subscript ”J” indicates Jeunhomme. To check the accuracy of the
approximations we first chose a value for V , then found the correct corre-
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sponding U and W from the Table, and then calculated the approximation
error Error = X −XMGM,J where X = U,W .

Alternatively, the two parameters can also be obtained numerically by
finding the U value U = UNum that minimizes the difference

diff =

∣∣∣∣∣∣U J1(U)

J0(U)
−
(√

V 2 − U2
) K1

(√
V 2 − U2

)
K0

(√
V 2 − U2

)
∣∣∣∣∣∣ , (44)

and then calculating W =
√
V 2 − U2. In this way we find the (U,W ) values

that come close to satisfying the characteristic equation (40b) as shown in
Fig. 20.

checkchar2.m

V 
= 

1.
2

1.
6

2.
0

2.
4

U = 
1.5283

Figure 20: Some examples of graphical solutions to the eigenvalue equation. The
red curve corresponding to V = 2.0, typical of SMF-28 fibers, has solutions U =
1.5282, W =

√
V 2 − U2 = 1.2902.

These results are summarized in Fig. 21. We see that the Jeunhomme
approximation is quite good over most of the range shown while the MGM
approximation is not quite as good. The numerical approach provides ex-
cellent results.
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(a) (b)

CompareApprox.m

MGM

J

Num

MGM

J

Num

Figure 21: Approximation errors using each approach for (a) U and (b) W . For
SMF-28 fibers, V ' 2.0.

A.3 Amplitude and Power of the Fundamental Mode

The mode amplitude El and the optical power Pl in the l − th mode are
related by [1]

El =

[
4Z0W

2

elπncoa2V 2 |Jl−1(U)Jl+1(U)|

]1/2√
Pl (45)

where the amplitude El is in units Volts/m, Z0 =
√
µ0/ε0 = 377 Ω is the

characteristic impedance of free space, and

el =

{
2 for l = 0,

1 for l 6= 1.
(46)

For the fundamental mode (l = 0),

E0 =

[
2Z0W

2(V )

πncoa2V 2J2
1 (U(V ))

]1/2√
P0 (47)

where U(V ) =
√
V 2 −W 2(V ) and we have used J−n(x) = (−1)nJn(x).

As an example, suppose we use the Jeunhomme approximation W (V ) =
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1.1428V − 0.9960 and choose fiber parameters typical of an SMF-28-type
fiber, nco = 1.448 and a = 4.1µm then, for P01 = +10 dBm, the dependence
of E0 on V is plotted in Fig. 22. We see that, for fixed power, as V decreases,
the mode is less tightly bound (recall from Fig. 18 that the MFD increases
as V decreases) and, hence, the same power is spread over a larger mode
cross-sectional area. Also note that, even for the relatively modest power
level of 10 mW, the field in the fiber center is approaching 1 MVolt/m!

ModePowerAmplitude.m

01 10 dBmP = +

SMF-28

Figure 22: For the fundamental mode, the dependence of the mode field amplitude
E0(Volts/m) as a function of V-number for mode power P01 = 10mW , a = 4.1µm,
and λ = 1550nm

.

A.4 Effective Area of the Fundamental Mode

An important fiber parameter for understanding nonlinear effects in fiber is
the effective mode area Aeff defined by

Aeff, lm =

(∫∞
−∞

∫∞
−∞ |LPlm(x, y)|2 dxdy

)2

∫∞
−∞

∫∞
−∞ |LPlm(x, y)|4 dxdy

. (48)

If we approximate the fundamental mode shape by a Gaussian

LP01(x, y) = exp

(
−x2 − y2

w2

)
(49)
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then, very nicely, Aeff,01 = πw2. And we can then use the approximation
(37) to express Aeff,01 as a function of V for the fundamental mode as

Aeff, 01(V ) = πa2

(
0.65 +

1.619

V 3/2
+

2.879

V 6

)2

. (50)

Figure 23 is a plot of Aeff,01 vs V for core radius a = 4.1µm.

ModeAreaComparison.m

2aπ

SMF-28

Figure 23: For the fundamental mode, the dependence of the mode effective area
Aeff,01 as a function of V-number. Also shown is the core area πa2. Both curves
are for core radius a = 4.1µm.
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