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Abstract

The Houston Ship Channel is one of the busiest deep-draft navigation
channels in the United States and must be able to accommodate larger
vessel dimensions over time. The U.S. Army Engineer District, Galveston
(SWG) requested the U.S. Army Engineer Research and Development
Center, Coastal and Hydraulics Laboratory perform hydrodynamic and
sediment modeling of proposed modifications along the Houston Ship
Channel. The modeling results are necessary to provide data for salinity
and sediment transport analysis as well as ship simulation studies.

SWG provided a project alternative that includes channel widening,
deepening, and bend easing. After initial analysis, two additional channel
widths in the bay portion of the Houston Ship Channel were requested for
testing. The results of these additional channel widths are presented in
this report.

The model shows that the salinity does not vary significantly due to the
channel modifications being considered for this project. Changes in
salinity are 2 parts per thousand or less. The tidal prism increases by less
than 2% when the project is included, and the tidal amplitudes increase by
no more than o0.01 meter. The residual velocity vectors do vary in and
around areas where project modifications are made.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.
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Iintroduction

Background

Since the early 1800s, vessels have transited Galveston Bay both to and
from Galveston and Houston (Galveston Bay Estuary Program 2002).
Galveston Bay is a tidal estuary, such that the effect of the tide on the
water surface elevation is observed from the Gulf of Mexico to locations
near Houston, TX. The Houston Ship Channel (HSC) is a deep-draft
navigation channel that allows for vessel passage from the Gulf to the City
of Houston, approximately 53 miles upstream. Since 1903, Operations and
Maintenance dredging has been conducted in the bay portion to maintain
authorized channel dimensions. Figure 1 shows the HSC as it passes
through Galveston Bay from its entrance at Bolivar Roads to the Port of
Houston.

Figure 1. HSC area map.
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In 2005, The U.S. Army Corps of Engineers (USACE), Galveston District
(SWG) enlarged the HSC from a 40 ft™ depth by 400 ft width to a 45 ft
depth by 530 ft width. Previously, a three-dimensional (3D) numerical
model study was implemented at the U.S. Army Engineer Research and
Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL),
to evaluate the salinity and circulation impact of this enlargement. In
Berger et al. (1995a) the model was shown to represent the salinity and
circulation in the earlier channel configuration. Berger et al. (1995b) used
the model to predict the impact of the enlarged channel. Carrillo et al.
(2002) used the model to evaluate the addition of barge lanes along the
ship channel flanks. Tate and Berger (2006) looked into possible reasons
for increased shoaling in the ship channel by analyzing vessel effects and
sediment properties in the area. In Tate et al. (2008), the sediment model
was validated using the same hydrodynamic model, and the results
included the effects of vessel transport on the sedimentation patterns. The
model was utilized again to investigate proposed changes to the Bayport
Flare (Tate and Ross 2012).

The deep navigation channel acts as a natural pathway for salinity to travel
upstream since high-saline water is denser than fresh water and tends to
flow up-channel along the channel bottom. The residual velocity, or net
drift, is flood in much of the channel (Tate and Berger 2006) (i.e., the
tendency is for suspended material to move upstream into Galveston Bay.)
The velocity magnitudes drop in the Atkinson Island reach due to tidal
reflections from the bay boundaries. More stratification occurs as a result
in this reach, and material from farther downstream in the estuary will
tend to collect near Atkinson Island.

The behavior of the salinity and hydrodynamics in Galveston Bay during
May through June is different than the remainder of the year due to a
salinity drop in the northern Gulf of Mexico as the Mississippi, Sabine-
Neches, Atchafalaya, and other northern Gulf river systems provide a
significant influx of fresh water. When the salinity in the Gulf of Mexico
drops, the salt water tends to evacuate from the bays (Berger et al. 1995a).
A reduction in bay salinity is hypothesized to result in different suspended

* For a full list of the spelled-out forms of the units of measure used in this document, please refer to US
Government Publishing Office Style Manual, 31st ed. (Washington, DC: US Government Publishing
Office 2016), 248-52, https://www govinfo gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-
STYLEMANUAL-2016 _pdf.



https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf
https://www.govinfo.gov/content/pkg/GPO-STYLEMANUAL-2016/pdf/GPO-STYLEMANUAL-2016.pdf

ERDC/CHL TR-21-2

concentrations. Therefore, fresh deposit characteristics may change during
this time period when compared to data collected at other times during the
year. If this is the case, sediment would tend to collect farther down the
channel toward Red Fish Reef during this late springtime period.

1.2 Objective

In 2016, SWG requested the ERDC-CHL perform hydrodynamic and
sediment transport modeling of proposed modifications along the HSC
from its connection at the Gulf of Mexico to the Port of Houston

(Figure 2). The modeling results are necessary to provide data for salinity
and sediment transport analysis as well as ship simulation studies in
which pilots test the navigation effects of the modifications. The model
results of project year zero (2029) and project year 50 (2079) with and
without project results were documented in McAlpin et al. (2019b).
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In 2020, the Port of Houston Authority requested modeling for two
additional channel widths in the bay portion of the HSC (HSC Stations
1384000 to 0+000, labeled from 1 to 13 in Figure 2). These widths are
necessary for ship simulation such that an adequate channel width can be
determined for safe navigation. Previously, a 650 ft channel width was
simulated. This addendum includes channel widths of 700 ft and 750 ft.

Approach

Previously, a 3D Adaptive Hydraulics (AdH) model was developed and
validated for simulation of hydrodynamics, salinity, and sediment
transport (Savant and Berger 2015). The AdH code solves the shallow
water equations to compute depth and velocity at node points defining the
domain. AdH includes a linkage to the SEDLIB sediment transport library
that computes cohesive and non-cohesive erosion and deposition that is
then transported by the AdH code. Flocculation of sediment is not
included in AdH but is somewhat accounted for by manipulation of
sediment grain size and settling velocity. All models are limited by the data
used to define them, and uncertainty in model boundary conditions must
be considered when reviewing the model results and determining their
applicability to the specific project.

The model was validated to available field data for all parameters
(McAlpin et al. 2019a) and then utilized to test project alternatives for
present and future conditions (McAlpin et al. 2019b). For all simulations
the model was set up to run for 2 years — the first year being a spin-up
period to obtain an accurate initial salinity field as well as an accurate
sediment bed and the second year was used for all analyses. The same
method is used for simulation of these two additional channel widths.

The model development and boundary condition specification for the
hydrodynamic, salinity, and sediment transport model as well as the
model to field data comparisons, including water surface elevation,
velocity, salinity, and HSC dredge volumes were documented in McAlpin
et al. (2019a). This addendum focuses on the model results for the 700 ft
channel and the 750 ft channel for the bay section of the HSC deepening
and widening alternative. These simulations are only made for the present
boundary conditions) and all other proposed changes to the HSC are
included. No future boundary condition simulations were performed in
this study.
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Plan Alternatives

Documentation of the plan alternatives includes the geometric
modifications to the system, defined as “project,” as well as the input
conditions for the “present” project year zero (2029). Therefore, there will
be four alternatives — present without project (PWOP), present with 650 ft
width project (PWP650), present with 700 ft width project (PWP700), and
present with 750 ft width project (PWP750). The PWOP and he PWP650
were simulated during the initial project (McAlpin et al. 2019b) but will be
presented here with the additional width alternatives for purpose of
comparison.

Project modifications

SWG along with the Port of Houston developed several potential channel
modification plans. These plans were analyzed for cost/benefit based on
labor for dredging, mitigation for habitat adjustment, and other factors.
The final tentatively selected plan (TSP) was alternative 8, otherwise
known as the “everything plan.” This plan includes widening the bay
portion of the HSC to a width between 650 ft to 820 ft, widening and
deepening several sections of the bayou portion of the HSC, as well as
bend easings, mooring facilities, and turning basins. Figure 2 is a
schematic of this alternative.

Details of the TSP, or project, are provided in Table 1 and Figure 3.
Deepening segments are not included in Figure 3. All depths given in the
table are based on Mean Lower Low Water and include advanced
maintenance (AM) and Allowable Overdepth (AO) where specified. The
width of the bay portion of the HSC from Bolivar Roads to Morgan’s Point
was modeled initially at 650 ft as requested by SWG. The Bolivar-to-
Morgan’s Point widening is now being modeled at the two additional
channel widths — 700 ft and 750 ft. All other plan features remain
unchanged in the project alternative.
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Table 1. Details of TSP. Dimensions in feet.

HSC Segment

Widening

Deepening

Bend Easing

Mooring
Facility

Turning
Basin

Bolivar Roads to
Red Fish Light 1

650/700/750

Redfish Light 1 to
Beacon 76

650/700/750

Beacon 76 to
Lower End
Morgan’s Point
Cut

650/700/750

Morgan’'s Point to
Exxon

600

Station
153+06
Station
246+54

Exxon to
Carpenter's
Bayou

Carpenter's
Bayou to Boggy
Bayou

530

Station
520+00

415

Bayport Ship
Channel

455

Flare

RoRo
16.5

Barbours Cut
Ship Channel

455

Flare

Boggy Bayou to
Greens Bayou

530

465
+2 AM +1
AO

Station
775+00

16.5

Greens Bayou to
Sims Bayou

16.5

+2 AM +1
AO

Hunting
465

Sims Bayou to |-
610 Bridge

415
+2 AM +1
AO

I-610 Bridge to
End Main Turning
Basin

415
+2 AM +1
AO

Brady 900
465
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Figure 3. TSP location map.
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2.2

Input conditions

Although most USACE design projects require a 50-year project life span,
the modeling of these additional HSC channel widths will only be
simulated at the year zero (2029) condition. For this project, the 2010
validation year was determined suitable by SWG as a base or starting point
for the year zero (present, 2029) model inputs. The 2010 sea level was
adjusted to account for sea level change to arrive at the 2029 sea level
values. All other forcings were equivalent to 2010. (For details of the 2010
model boundary conditions, see McAlpin et al. [2019a]). All simulations
will be made for a 2-year period with the first year-long simulation serving
to generate an accurate initial salinity field and initial sediment bed. Data
availability for each input parameter determines if consecutive years of
data are used for the 2-year simulations or if a single year of data is
repeated in the spin-up and analysis years.

2.2.1 Sea level rise

The tidal boundary condition at the Gulf of Mexico is based on harmonics
and measured data from National Oceanic and Atmospheric
Administration gages at Freeport (8772447) and Sabine Pass (8770822),
Texas. To account for potential sea level rise at year zero (2029), guidance
defined in USACE Engineering Circular 1165-2-212, Sea-Level Change
Considerations for Civil Works Programs, was used. The 2010 data for
the model validation were adjusted to 2017 utilizing the low sea level rise
curve to obtain present conditions. The intermediate sea level rise
projection curve was then applied to the 2017 adjusted elevations. Table 2
provides the elevation shift applied to the 2010 tide elevation for the year
2029, present, model scenario. The elevation shift was constant over the
length of the model boundary and the time of the model simulation for
each year.

Table 2. Sea level rise adjustment for model tidal boundary conditions.

Adjustment Period Sea Level Rise Curve | Elevation Shift

2010 to 2017 Low 0.148 ft (0.045 m)

2017 to 2029 Intermediate 0.322 1 (0.098 m)
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2.2.2 Freshwater Inflow

Freshwater inflow into the model domain was applied at the two major
rivers — Trinity River and San Jacinto River — and at seven ungaged flow
locations. These flow values were obtained from the Texas Water
Development Board (TWDB) hydrology model, which computes flows for
the area from the 1970s to present (Schoenbaechler and Guthrie 2012).
For the 2029 spin-up and 2029 (present) conditions simulations, 2009
(spin-up year) and 2010 (analysis year) inflows are used for all freshwater
inflow locations. Figure 4 shows the year 2029 (2009/2010) inflows.

Figure 4. Year 2029 (present) freshwater inflows (first 365 days were spin up and
remaining 365 days were 2029 inflows).
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2.2.3 Salinity

The salinity input at the model’s ocean boundary is unchanged from the
model validation and shown in Figure 5 (McAlpin et al. 2019a). The time
varying boundary condition is based on monthly averages over a 15-year
period. The single year of data was repeated such that the same input was
applied for the spin-up year and the analysis year.

Figure 5. Salinity boundary condition for present condition.
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224 Wind

The 2010 wind data set was obtained from the Wave Information Studies
computed wind field at 26 points in the vicinity of the model domain. This
data set was maintained from the model validation (McAlpin et al. 2019a).
This wind data set was unchanged and repeated for the spin-up and
analysis years. Figure 6 shows the 2010 wind rose for all 26 computed
wind series locations.

Figure 6. 2010 wind rose at all sites for 2029 (present) condition.
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2.25 Meteorological conditions

Precipitation and evaporation were included in the model validation and
alternative conditions simulations (McAlpin et al. 2019a). The 2010 data
from the TWDB were applied equally over the model domain. The data
were unchanged and repeated for the spin-up and analysis years. Figure 7
shows the time series of the meteorological data.

Figure 7. 2010 meteorological conditions for 2029 (present) condition.
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2.2.6 Sediment

The sediment grain and initial bed parameters were equivalent to the
validation effort (McAlpin et al. 2019a). The loads are applied to the two
major rivers by applying a rating curve that correlates river discharge with
the total concentration in the same manner as in the model validation.

Figure 8 shows the 2029 sediment loads, which are based on 2009 (2029
spin up) and 2010 (2029 simulations) inflow data. These total loads are
divided equally among the five simulated grain classes when applied in the
model. No sediment is applied at the ungaged inflow locations similar to
the model validation.

The model validation (McAlpin et al. 2019a) details sediment loads that
are not included in this model. These include unaccounted sediment
loads from the ungaged freshwater inflows, from wind-generated wave
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erosion along the shallows, and from vessel-induced erosion in the bays.
A historical scaling method for each channel segment was determined to
be the best option to account for the combined effect of the various
unknown loads.

Figure 8. Year 2029 (present) total sediment load (first 365 days were spin up and
remaining 365 days were 2029 sediment concentrations).
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3.1

Model Results and Discussion

The four alternatives — PWOP, PWP650, PWP700, and PWP750 — were
simulated using 3D AdH as stated in the previous chapters. Present is
considered the projected project completion in year 2029. No future
condition beyond 2029 was simulated. The results will include changes in
salinity and velocity throughout the model domain under the various
alternative conditions. Additionally, changes to the shoaling in the HSC
and sedimentation patterns in the surrounding bays will be analyzed from
the model results.

Salinity
3.1.1 Salinity point analysis

Several locations were identified for specific analysis such as time history,
percent less than, and maximum/minimum/average computations of
salinity. These locations are shown by the points in Figure 9 and labeled in
Table 3. A subset of these locations, circled in red in Figure 9 and the
shaded rows in Table 3, will be included and discussed in the text. All
analysis plots and images will be included in the appendix.
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Figure 9. Point analysis locations. Circled locations discussed in this section.
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Table 3. Point analysis location hames. Highlighted locations discussed
in this section.
Point # Name Point # Name
1 HSC at Morgan’s Point 16 Eastern East Bay
2 HSC at Atkinson Island 17 Eastern West Bay
3 HSC at Mid Bay Marsh 18 Mid West Bay
4 HSC at Red Fish Reef 19 Offatts Bayou
5 HSC at Lower Galveston Bay 20 Dickinson
6 HSC at Bolivar Roads 21 Clear Creek
7 HSC at Entrance 22 Smith Point
8 HSC at Gulf 23 Mid East Bay
9 Upper Galveston Bay 1 24 HSC at Fred Hartman Bridge
10 Upper Galveston Bay 2 25 HSC at Goat Island
11 Lower Galveston Bay 26 HSC at Carpenters Bayou
12 Lower Trinity Bay 27 HSC at Greens Bayou
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13 Mid Trinity Bay 28 HSC at Sims Bayou
14 Upper Trinity Bay 29 HSC at Tumning Basin
15 Western East Bay

Time history of salinity is shown for several points within the HSC and
several in the bays. Also provided are plots showing the maximum,
average, and minimum salinity at each location for the year-long analysis
period. The salinity shown in the plots are bottom values, which will be
larger than or equal in magnitude to the surface values due to the density
stratification of salt water. For all plots of salinity, PWOP is blue, PWP650
is red, PWP7o0o0 is yellow, and PWP750 is purple.

Additionally, percent less than plots are provided to show how the bottom
salinity varies over the analysis period. The maximum salinity value is
given at 100% and the minimum value at 0%. The 50% salinity value
indicates that the salinity is less than this value for 50% of the analysis
time and greater than this value for 50% of the time.

Vertical salinity profiles are also included for the salinity analysis points.
Figure 10 through Figure 41 show the point salinity analysis (bottom) at
the eight selected locations. The results (surface and bottom) for all 29
locations are provided in the appendix.

The variation in salinity between with and without project alternatives is
quite small for most locations — generally less than 2 ppt. The largest
variation in salinity between with and without project results is in the
upstream locations of the HSC. The salinities are almost identical near
the entrance but begin to diverge farther into the system at Mid Bay
Marsh, Morgan’s Point, and locations farther up the HSC. However, the
change in the mean salinity between with and without project remains
within 2 ppt. This behavior is visible in the point analysis as well as in the
cross-sectional analysis to be discussed in the next section. The time
history of salinity includes dotted lines for 10 ppt and 15 ppt thresholds.
The with project conditions generally maintain the pattern of the salinity
over time but do increase above these thresholds for short periods of
time at some locations.
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Figure 10. Bottom salinity time history at HSC at Greens Bayou (Point 27).
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Figure 11. Maximum, minimum, and mean salinity at HSC at Greens Bayou

(Point 27).
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Figure 12. Percent less than salinity at HSC at Greens Bayou (Point 27).
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Figure 13. Vertical salinity profile at HSC at Greens Bayou (Point 27).
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Figure 14. Bottom salinity time history at HSC at Goat Island (Point 25).

Salinity at HSC at Goat Island
T T T

40 T T T T T
ECIP PWOP
ECIP PWP&E50
35 ECIP PWP700 |
ECIP PWP750
30 a
25 b

Salinity (ppt)
S

15 |

10 -

D 1 1 1 1 1 1 1 1
11/23 01/12 03/03 0422 06/11 07/31 09/19 11/08 12/28 02/16
Date (mm/dd)

Figure 15. Maximum, minimum, and mean salinity at HSC at Goat Island (Point 25).
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Figure 16. Percent less than salinity at HSC at Goat Island (Point 25).

Salinity (ppt)

35

30

25

20

15

10

Bottom Salinity Percentiles at HSC at Goat Island
T T T T

ECIP PWOP

ECIP PWP&E50
ECIP PWP700
ECIP PWP750

20 30 40 50 60
Percentile (%)

70 80

90 100

Figure 17. Vertical salinity profile at HSC at Goat Island (Point 25).
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Figure 18. Bottom salinity time history at HSC at Morgan's Point (Point 1).
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Figure 19. Maximum, minimum, and mean salinity at HSC at Morgan's Point (Point 1).
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Figure 20. Percent |ess than salinity at HSC at Morgan's Point (Point 1).
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Figure 21. Vertical salinity profile at HSC at Morgan's Point (Point 1).
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|Figure 22. Bottom salinity time history at HSC at Lower Galveston Bay (Point 5).
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Figure 23. Maximum, minimum, and mean salinity at HSC at Lower Galveston Bay

(Point 5).
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Figure 24. Percent less than salinity at HSC at Lower Galveston Bay (Point 5).
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Figure 25. Vertical salinity profile at HSC at Lower Galveston Bay (Point 5).
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Figure 26. Bottom salinity time history at Upper Galveston Bay 2 (Point 10).
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Figure 27. Maximum, minimum, and mean salinity at Upper Galveston Bay 2

(Point 10).
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Figure 28. Percent less than salinity at Upper Galveston Bay 2 (Point 10).
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Figure 29. Vertical salinity profile at Upper Galveston Bay 2 (Point 10).
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Figure 30. Bottom salinity time history at Upper Trinity Bay (Point 14).
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Figure 31. Maximum, minimum, and mean salinity at Upper Trinity Bay (Point 14).
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Figure 32. Percent less than salinity at Upper Trinity Bay (Point 14).

35 Bottom Salinity Percentiles at Upper Trinity Bay
T T T T T T T
30 - .
25 .
B0}
=
=
£
W 15 -
3]
10
5 ECIP PWOP
i ——— ECIP PWP&50 | |
ECIP PWP700
ECIP PWP750
0 | L L | |
20 30 40 50 60 70 80 90 100
Percentile (%)

Figure 33. Vertical salinity profile at Upper Trinity Bay (Point 14).
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Figure 34. Bottom salinity time history at Mid West Bay (Point 18).
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Figure 35. Maximum, minimum, and mean salinity at Mid West Bay (Point 18).
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Figure 36. Percent less than salinity at Mid West Bay (Point 18).
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Figure 37. Vertical salinity profile at Mid West Bay (Point 18).
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Figure 38. Bottom salinity time history at Mid East Bay (Point 23).
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Figure 39. Maximum, minimum, and mean salinity at Mid East Bay (Point 23).
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Figure 40. Percent less than salinity at Mid East Bay (Point 23).
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Figure 41. Vertical salinity profile at Mid East Bay (Point 23).
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3.1.2 Cross-sectional salinity analysis

Cross-sectional analysis of mean salinity along the HSC is provided for 11
cross sections beginning near the Texas City Dike and ending near the
Houston Turning Basin. Figure 42 shows the location of these cross
sections. Again, a subset of these cross sections — those circled in red in
Figure 42 — are provided in the text (Figure 43 through Figure 45) with all
locations included in the appendix. All cross-sections are defined looking
upstream (i.e., left to right for cross-section 3 and bottom to top for cross-
section 10).

Figure 42. HSC cross-sectional analysis locations. Circled locations discussed
in this section.
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Figure 43. Cross section 3 mean salinity.
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Figure 44. Cross section 6 mean salinity.
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Figure 45. Cross section 9 mean salinity.
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3.1.3 Salinity HSC slice analysis

A slice along the center of the HSC from the Gulf of Mexico to the HSC
Turning Basin allows for the comparison of the salinity wedge migration
along the ship channel. These results are for mean salinity over the year-
long analysis period. Figure 46 shows the location of key features along the
HSC for reference (contours are irrelevant). Figure 47 shows the mean
salinity along the HSC for all four conditions. The distance of salinity
migration along the bottom of the ship channel is shown in Table 4. The
salinity does migrate farther upstream for the wider channel alternatives;
however, the shift in salinity in the upstream direction is greatest from
PWOP to PWP650. The change in salinity wedge migration among the with
project width alternatives is largest (approximately 2.8 miles for the 24 ppt
contour) in the bay portion of the domain yet almost undetectable for
contours farther upstream. The wider ship channel allows the high saline
ocean water to push farther upstream until it is compressed in the along
channel direction due to the fresh water entering the ship channel from the
San Jacinto River and the Buffalo River. The mid-depth salinity actually
increases in some locations due to this along channel compression, making
the salinity wedge thicker and more stair-stepped in shape.
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Figure 46. HSC slice analysis reference map (contours are irrelevant).
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Figure 47. HSC average salinity slice results.
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3.2

Table 4. Salinity wedge migration from PWOP to with project alternatives.

Salinity PWP650 PWP700 PWP750
contour (ppt) upstream shift | upstream shift | upstream shift

(m) / (mi) (m) / (mi) (m) / (mi)

24 6520/41 9170/5.7 11050/ 69

21 4150/ 26 4640/ 29 4750/ 3.0

15 4680/ 29 4780/ 3.0 4810/ 3.0

9 1170 /0.7 1200/ 0.7 1290/08

3 1290/08 1330/08 1390/09

Tidal prism and amplitude

Changes to the system geometry can impact the tidal exchange into a bay
environment such as Galveston and Trinity Bays. Although the entrance
into the bay area is not modified in these alternatives, the HSC channel
depth and width are modified and will allow for changes in the volume of
flow being exchanged through the inlets. The tidal prism is a calculation of
the volume of water that enters and leaves through the inlets with each
tide. This volume is computed for all tides over the analysis year, and the
average tidal prism is determined. Table 5 shows the volume of the
average tidal prism for each alternative as well as the percentage change in
the with project alternative as compared to the without project alternative.
There is a steady increase in the percentage change from PWOP for each
with project width alternative. The change is less than 1.5%, which
indicates that the modifications to the HSC do not greatly impact the
volume of water entering and leaving the system.

Table 5. Average tidal prism volume for analysis year and percent change of the with
project alternatives from the without project alternative.

PWP650 PWP700 PWP750
% change % change | PWP750 | % change
PWOP PWPG50 from PWP700 from (1000 from
(1000 m3) [ (1000 m3) | PWOP | (1000 m3) PWOP m3) PWOP
Average | 527,609 | 531,148 067 532,965 102 534,451 1.30

The tidal amplitude is the change in the water level from low tide to high
tide and vice versa. The tidal prism gives an overall impact on the water
exchange whereas the tidal amplitude may vary at locations depending on
where the system modifications are made and changes in the flow patterns
within the system. Table 6 shows the percentage change between PWOP
and with project width alternatives. All locations see less than a 2%
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increase or decrease in the tidal amplitude when the project modifications
are included. Figure 48 and Figure 49 show the tidal amplitudes for all
alternatives for the HSC locations and bay locations, respectively. There is
very little impact on the tidal amplitude when the with project conditions
are compared to the without project conditions — less than 0.01 m at any
location with the largest variations found among the points in the lower
portion of the model.

Table 6. Percent change in tidal amplitude of the with project alternatives from the

without project alternative.

PWP650 % PWP700 % PWP750 %

change from change from change from

PWOP PWOP PWOP
HSC at Morgans Point -0.82 -0.93 -0.95
HSC at Atkinson Island -0.77 -0.89 -1.68
HSC at Mid Bay Marsh -1.23 -1.35 -1.41
HSC at Red Fish Reef -1.14 -1.25 -1.37
HSC at Lower Galveston Bay -1.09 -1.26 -1.38
HSC at Bolivar Roads -0.63 -0.81 -0.92
HSC at Entrance -0.86 -0.79 -0.89
HSC at Gulf -0.76 -0.84 -1.20
Upper Galveston Bay 1 -1.29 -1.29 -1.52
Upper Galveston Bay 2 -0.93 -1.19 -1.74
Lower Galveston Bay -0.92 -1.05 -1.76
Lower Trinity Bay -0.80 -0.93 -1.40
Mid Trinity Bay -0.82 -0.96 -0.96
Upper Trinity Bay -0.65 -0.79 -0.78
Western East Bay -0.41 -0.54 -0.54
Eastern East Bay 0.13 0.00 -0.01
Eastern West Bay -0.28 042 -0.22
Mid West Bay 0.79 0.85 0.85
Offatts Bayou 0.31 0.18 -0.01
Dickinson 0.80 0.67 0.49
Clear Creek 0.54 0.40 0.42
Smith Point 0.21 0.07 0.08
Mid East Bay 0.15 0.00 0.02
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PWPG650 % PWP700 % PWP750 %
change from change from change from
PWOP PWOP PWOP

HSC at Fred Hartman Bridge 0.12 011 0.09

HSC at Goat Island 0.14 0.00 0.02

HSC at Carpenters Bayou 0.00 0.04 -0.12

HSC at Greens Bayou -0.19 -0.02 -0.31

HSC at Sims Bayou -0.23 -0.05 -0.31

HSC at Turning Basin 0.07 0.19 -0.18

Figure 48. Tidal amplitude comparison at HSC points for all alternatives.
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Figure 49. Tidal amplitude comparison at bay points for all alternatives.
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Velocity

The velocity comparisons among the alternatives will focus on residual
velocity vectors. Residual velocity is the velocity that remains when the
tidally varying velocity has been averaged out. This vector defines the
predominant flow direction and speed of a particle of water. Although the
tide will cause the particle to move back and forth, there is generally a flow
direction that is dominant, allowing for a particle to migrate along a certain
path. Typically, in a tidally driven environment with a deep navigation
channel such as the HSC, the predominant flow direction is upstream along
the channel bottom and downstream along the channel surface. The surface
and bottom velocity comparisons for the with project alternatives are shown
in Figure 50 through Figure 55. The red vectors indicate the direction of the
with project residual velocity and the black vectors, the without project. The
contours represent the difference in the velocity magnitudes — with project
minus without project such that positive values (reds/yellows) indicate the
with project residual velocity magnitude is greater and negative values
(blues) indicate that the without project residual velocity magnitude is
greater. The bottom velocity is a near-bed velocity and can be assumed to be
at 5% of the depth above the bed.
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The comparisons show that the residual vector directions are very similar
for the with and without project alternatives, especially in Trinity Bay.
There are locations where the residual vector directions vary but the
general flow patterns are similar. The area with the most variation is along
western Galveston Bay, primarily between Red Fish Reef and Morgan’s
Point. There is widening of the HSC, bend easing, and turning basins
added to this area, so the variation is not unexpected. The same variations
are shown in both the surface and bottom residual velocities. The further
increase in the bay section channel width, as with the alternatives
presented here, does not create additional changes in the residual velocity
patterns. The change in the residual velocity magnitudes from the without
project condition are a maximum of approximately 0.05 m/s.

Figure 50. Surface average residual velocity comparison for PWP650 conditions.
(Red vectors - with project; Black vectors - without project)
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Figure 51. Bottom average residual velocity comparison for PWP650 conditions. (Red
vectors - with project; Black vectors - without project)
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Figure 52. Surface average residual velocity comparison for PWP700 conditions.
(Red vectors - with project; Black vectors - without project)
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Figure 53. Bottom average residual velocity comparison for PWP700 conditions.
(Red vectors - with project; Black vectors - without project)
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Figure 54. Surface average residual velocity comparison for PWP750 conditions.

(Red vectors - with project;

Black vectors - without project)
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Figure 55. Bottom average residual velocity comparison for PWP750 conditions. (Red
vectors - with project; Black vectors - without project)
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3.4 Shoaling

The sediment analysis is based on the historical dredge records from the
USACE annual reports as done in the model validation (McAlpin et al.
2019a). These volumes are provided for several reaches of the HSC as
noted in the dredge template shown in Figure 56. This template is used to
show how the alternative shoaling estimates from the numerical model
compare to each other for different channel reaches.
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Figure 56. HSC dredge template for shoaling analysis.
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Figure 57 shows the scaled shoaling volume (McAlpin et al. 2019a) within
each segment for the 2010 base condition and all four alternatives —
PWOP, PWP650, PWP700, and PWP750. The with project shoaling is
larger for all segments except at the farthest downstream segment. Bolivar
Roads to Red Fish Reef indicates a small decrease in the shoaling with the
project changes in place likely due to the slight increase in the tidal prism
which will generate some higher velocity magnitudes. The Bayport area
shows the largest increase in shoaling volume. The flare is already a
sediment trap due to its present size, and the project alternative of
widening the Bayport channel and the bend easing further increase the
footprint and therefore the tendency to trap sediment. Although the
channel width increases in the project alternatives further increase the
shoaling in the Bayport Flare, the largest impact is seen with the initial
implementation of the plan conditions (PWP650).
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Figure 57. Shoaling results by reach for all alternatives over the analysis year.
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Figure 58 shows the model computed, unscaled bed displacement along
the HSC from the Texas City Dike to the Houston Turning Basin. These
results show a similar pattern to those in Figure 57, although no scaling
has been done to ensure a correlation to historical data as in the shoaling
volume plot. However, the comparison between with and without project
will remain if scaled to replicate actual shoaling volumes/depths. The plot
does show that the with project alternatives increase the deposition along
most of the HSC. It also indicates a potential shift to areas upstream of
Red Fish Reef and upstream of Bayport in the peak shoaling locations for
the with project alternatives. It is not uncommon for channel
modifications to change the flow patterns such that the turbidity
maximum (the location where the sediment tends to collect and often tied
to the location of the salinity wedge) moves upstream, especially in the
case of channel deepening.
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Figure 58. Modeled bed displacement along HSC (non-scaled, focus on the change).
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The widened ship channel in the bay section shows definite increases in
shoaling volume as well as shoaling depth (bed displacement) along the
HSC with each increase in width, especially in the Bayport Flare area.
Based on survey data, vessel traffic will continuously erode the navigation
channel centerline and may actually reduce these modeled shoaling depth
projections (vessel impacts are included in the historical shoaling factor
applied to the modeled reach volumes). However, vessels can transit at
higher speeds in wider channels, which, in turn, can cause more erosion in
the bays, providing a sediment source easily transported into the channel.

The deepened portion of the HSC in the project alternatives is located
upstream of the San Jacinto River. Sediment loads from the bayous
entering the HSC in the area of the deepening may have a tendency to
migrate upstream due to the salinity wedge moving further upstream
along the channel bottom, although the salinity change is less than 1 ppt
for most of this area. This model does not include these bayou sediment
loads because they are unknown and therefore is unable to predict this
potential upstream sediment migration.
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Conclusions

Overall, the proposed alternatives and various bay channel widths have
little effect on salinity, but they do generate larger shoaling and localized
changes in velocity patterns.

The salinity was analyzed at 29 locations along the HSC and in the
surrounding bays and on average, did not vary by more than 2 ppt
between with and without project conditions at any location. At some
locations the maximum or minimum salinity values varied by more, but
these are extreme values and likely only occur a couple of times
throughout the simulation year. The percent less than plots of salinity
show the range of salinity values for all locations over the simulation
period and again, show little variation between with and without project
results. The salinity wedge does tend to migrate farther upstream due to
the channel widening and deepening. That distance is on the order of 0.5
to almost 7 miles depending on the salinity value being tracked. However,
once upstream of Morgan’s Point, the salinity contours compress together,
and the upstream migration due to the geometry changes in the ship
channel lessens. Although the distance of the salinity wedge migration is
several miles at the bed, the variation in the salinity at any given point
remains on the order of 2 ppt for the with project conditions. The increase
in the bay channel width does allow for a small amount of additional
upstream migration of the salinity wedge but the primary increase is due
to the initial channel widening and additional channel modifications.

The average tidal prism and average tidal amplitudes also remained fairly
consistent between with and without project over the simulation year. The
tidal prism change with the project alternative in place is less than 1.5% for
all project conditions. The tidal amplitudes varied by no more than o.01 m
at any of the 29 locations.

The residual velocity indicates the predominant flow direction and
magnitude when the tide is removed from the velocity throughout the
model domain. The residual velocity change from the without project
condition is limited to areas in and immediately around where the
modifications are made. Significant differences in residual velocity
direction and magnitude are visible around Bayport as well as in the upper
HSC area where widening and deepening occur but these changes are less
than 0.05 m/s. Changes due to further increases in bay channel width are
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extremely small and do not impact the residual velocity much beyond the
original channel modifications. There are impacts to velocity magnitude in
the bay areas, but they are much smaller than the impacts at the locations
of the modifications.

The alternative conditions do indicate an increase in the shoaling along the
HSC when compared to the without project results. The largest increases
are in the Bayport channel and flare. This is not unexpected since this area
is presently a sediment trap due to its large, deep footprint and the
alternative condition increases the channel width at the location of the
flare. Additionally, it is in this area where the salinity wedge shows the
largest migration (on average), which will also impact the tendency for
sediment to fall to the bed in the area of the flare. It should be expected
that the shoaling volume at the Bayport Flare will exceed the volume
change due to the increased channel dimensions. Further increases in
shoaling are observed in the model results with each bay channel width
increase. Upstream of Morgan’s Point, this shoaling increase is on the
order of the increase in channel size. However, as noted previously,
sediment loads from bayous entering the ship channel in this area are not
included in the model. The shoaling volume results should be reviewed in
connection with shoal height to determine the overall impacts of the
channel shoaling analysis and how they relate to the proposed
modifications. A widened channel with an increased shoal volume may
mean that although more volume must be removed when dredged, the
number of dredging occurrences may be reduced if shoal height is
reduced. In addition, a deeper/wider channel tends to result in increased
sizes and speeds for the ships navigating the channel. In general, this will
result in larger resuspension of sediment and could result in increased
deposition in the ship channel beyond those predicted in this model study.
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Appendix

Point Salinity Analysis
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Surface Salinity Percentiles at HSC at Morgans Point
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0 Mean Salinity Profiles at HSC at Morgans Point
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20 Surface Salinity at HSC at Atkinson Island
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Mean Salinity Profiles at HSC at Atkinson Island
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Surface Salinity Percentiles at H
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0 Mean Salinity Profiles at HSC at Mid Bay Marsh
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Surface Salinity Percentiles at H
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Mean Salinity Profiles at HSC at Red Fish Reef
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Surface Salinity Percentiles at HSC at Lower Galveston Bay
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0 Mean Salinity Profiles at HSC at Lower Galveston Bay
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35 Surface Salinity Percentiles at HSC at Bolivar Roads
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Mean Salinity Profiles at HSC at Bolivar Roads
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Surface Salinity Percentiles at HSC at Entrance
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0 Mean Salinity Profiles at Upper Galveston Bay 2
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35 Surface Salinity at Lower Galveston Bay
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0 Mean Salinity Profiles at Lower Galveston Bay
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35 Surface Salinity Percentiles at Lower Trinity Bay
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Mean Salinity Profiles at Lower Trinity Bay
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35 Surface Salinity Percentiles at Mid Trinity Bay
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0 Mean Salinity Profiles at Mid Trinity Bay
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35 Surface Salinity Percentiles at Upper Trinity Bay
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0 Mean Salinity Profiles at Upper Trinity Bay
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35 Surface Salinity at Western East Bay
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35 Surface Salinity Percentiles at Western East Bay
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0 Mean Salinity Profiles at Western East Bay
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35 Surface Salinity at Eastern West Bay
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35 Surface Salinity Percentiles at Eastern East Bay
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0 Mean Salinity Profiles at Eastern East Bay
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35 Surface Salinity at Eastern West Bay
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0 Mean Salinity Profiles at Eastern West Bay
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0 Mean Salinity Profiles at Offatts Bayou
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35 Surface Salinity Percentiles at Clear Creek
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35 Surface Salinity Percentiles at Mid East Bay
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35 Surface Salinity Percentiles at HSC at Fred Hartman Bridg
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0 Mean Salinity Profiles at HSC at Fred Hartman Bridge
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55 Surface Salinity at HSC at Goat Island
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35 Surface Salinity Percentiles at HSC at Goat Island
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0 Mean Salinity Profiles at HSC at Goat Island
T % ..! \_. T T T T T
ECIP PWOP
ECIP PWPG50
2 ECIP PWP700 |
ECIP PWP750
4 4
6 L N s
% N\
P 8 ‘\\ el T
o N
[ \
3 NN
-10 | N\ .
N\
\ e
43 AN .
214 \I 4
'=. ||
\ [
-16 | \ ' .
1 1 1 1 1 | [ L
6 8 10 12 14 16 18 20
Salinity (ppt)
20 Salinity at HSC at Carpenters Bayou
T T T T T T T T
ECIP PWOP
ECIP PWPG50
35 ECIP PWP700 |
ECIP PWP750
30 1
25 b
a
=
220 .
£
T
3]
15 &
10 b
5 - -
U 1 | 1 | | 1 | 1
11/23 01/12 03/03 04/22 06/11 07/31 09/19 11/08 12/28 02/16
Date (mm/dd)




ERDC/CHL TR-21-2 132
50 Surface Salinity at HSC at Carpenters Bayou
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35 Surface Salinity Percentiles at HSC at Carpenters Bayou
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0 Mean Salinity Profiles at HSC at Carpenters Bayou
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14 Surface Salinity at HSC at Greens Bayou
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35 Surface Salinity Percentiles at HSC at Greens Bayou
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Mean Salinity Profiles at HSC at Greens Bayou
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Surface Salinity Percentiles at HSC at Sims Bayou
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0 Mean Salinity Profiles at HSC at Sims Bayou
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35 Surface Salinity at HSC at Turning Basin
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35 Surface Salinity Percentiles at HSC at Turning Basin
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0 Mean Salinity Profiles at HSC at Turning Basin
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Cross-Sectional Salinity Analysis
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Cross Section 2
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Cross Section 3
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Cross Section 4
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Cross Section 5
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Cross Section 6
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Cross Section 7
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Cross Section 8
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Cross Section 9
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Cross Section 10
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Cross section 11
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Unit Conversion Factors

Multiply By To Obtain

acres 4046873 square meters
acre-feet 12335 cubic meters
cubic feet 0.02831685 cubic meters
cubic feet per second 0.02831685 cubic meters per second
cubic inches 16387064 E-05 cubic meters
cubic yards 0.7645549 cubic meters

feet 0.3048 meters

inches 0.0254 meters

knots 05144444 meters per second
miles (nautical) 1,852 meters

miles (U.S. statute) 1609347 meters

square feet 0.09290304 square meters
square yards 0.8361274 square meters
yards 09144 meters
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Acronyms and Abbreviations

3D

AdH
AM

AO

CHL
ERDC
HSC
PWOP
PWP650
PWP7o0
PWP750
SWG
TSP
TWDB
USACE

three-dimensional

Adaptive Hydraulics

advanced maintenance

allowable overdepth

Coastal and Hydraulics Laboratory
U.S. Army Engineer Research and Development Center
Houston Ship Channel

present without project

present with 650 ft width project
present with 700 ft width project
present with 750 ft width project
Galveston District

tentatively selected plan

Texas Water Development Board

U.S. Army Corps of Engineers

Units of Measure

ft

m
m3
cms
m/s
mi
mg/1
ppt

feet

meters

cubic meters

cubic meters per second
meters per second
miles

milligrams per liter

parts per thousand
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