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1. Introduction 

With the emergence of 5G wireless networks, US Department of Defense (DOD) 
systems will have to operate in a crowded and contested environment. The DOD 
Gallium Nitride (GaN) RF Challenge is enabling development and fabrication of 
the best competed concepts for high-performance, efficient, broadband monolithic 
microwave integrated circuits (MMICs) related to the 5G expansion and to critical 
electronic warfare needs. Two different GaN foundries, BAE and Qorvo, will 
fabricate the many competed circuit ideas as part of this effort. The circuits 
documented in the following are part of the DOD design team’s fabrication space 
on the Qorvo 0.15-µm GaN multiproject wafer fabrication. The US Army Combat 
Capabilities Development Command Army Research Laboratory was also part of 
the DOD design team for the BAE 0.18-µm GaN multiproject wafer fabrication, 
and those designs are documented in other technical reports. 

2. Redo Dual S-/X-Band 5-W Power Amplifier (PA) Design 

A number of circuits were designed, fabricated, and tested as part of a multiproject 
Qorvo 0.15-µm GaN prototype wafer-fabrication effort.1 One of those circuits, a 
dual-band S-/X-band PA design, suffered from an odd-mode stability issue.  
Odd-mode resistors were added using a focused-ion-beam process to a couple of 
die to stabilize the designs for testing. With the availability of die space on the GaN 
RF Challenge for DOD designers using the Qorvo 0.15-µm GaN process, this was 
a good chance to correct and improve this critical PA design by adding the 
necessary odd-mode resistors. If the odd-mode could be stabilized, the dual-band 
PA should operate as originally intended. 

The original PA layout by Ken McKnight used a 4- × 2-mm die size, so it needed 
to be convoluted into a new 2.15- to 3-mm die space without changing the original 
performance while adding the correction to the odd-mode stability. Figure 1 shows 
the original layout in the 4- × 2-mm die size, while Fig. 2 shows the updated layout 
in a 2.15- to 3-mm die size, which should only differ in the addition of odd-mode 
resistors on the gate and an update of the values of the existing odd-mode resistors 
on the drain. First, the gate and drain feed layouts to the combined high-electron-
mobility transistors (HEMTs) were Axiem electromagnetic (EM)-simulated for use 
in evaluating the odd-mode stability. The Microwave Office (MWO) schematic of 
the odd-mode instability simulation is shown in Fig. 3, with the potential oscillation 
below 9 GHz shown in Fig. 4. In the original PA design, odd-mode resistors were 
added between the drains of the two HEMTs, but were insufficient in the actual PA 
to prevent an odd-mode oscillation near 9 GHz. A re-analysis was performed, 



 

2 

calculating the resistor value needed on the drain to make the real part greater than 
zero (e.g., non-negative). Additionally, an odd-mode resistor value on the gate was 
calculated for achieving odd-mode stability. Then, both gate and drain odd-mode 
resistors were added to the two HEMTs, creating a large positive stability margin, 
as shown in Fig. 5. The even mode, or normal, operation of the redesigned  
S-/X-band PA should now be as originally intended. Performance of the PA will be 
verified when the fabricated circuit is returned from Qorvo sometime in 2021.  

 

Fig. 1 McKnight original dual S-/X-band ~5-W PA Qorvo 0.15-µm GaN (4.0 × 2.0 mm) 
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Fig. 2 McKnight dual S-/X-band ~5-W PA with odd-mode fix Qorvo 0.15-µm GaN  
(2.15 × 3.0 mm) 
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Fig. 3 Simple schematic to evaluate odd-mode stability of combiner portion of PA 

 

Fig. 4 Odd-mode stability analysis without odd-mode resistors for PA 
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Fig. 5 Odd-mode stability analysis with both gate and drain odd-mode resistors for PA 

The full original layout and new modified layout were EM-simulated to make sure 
the convolutions and contortions in modifying the PA layout did not break anything 
or change the original performance. It may be hard to see in the plot (Fig. 6), but 
there is a faint trace that is nearly identical in shape to the solid traces, showing that 
the two layouts are essentially equivalent. 
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Fig. 6 S-parameter simulation of old and new S-/X-band ~5-W PA (Axiem EM) 
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A recent broadband S- to X-band PA was designed and successfully tested.2 Given 
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broadband 10-W PA was on a 2-mm-wide die; the new die size was 2.15–3 mm. 
Between the input match layout shrink and the extra 0.15-mm die width, the added 
driver stage was squeezed into a redesigned two-stage 10-W PA. Also, two 
identical mirror images of the PA fit within the height of the new die size (Fig. 7). 
This mirror image allows for the two 10-W amplifiers to be combined into a 20-W 
design in a higher-level assembly. 
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Fig. 7 (Left) original CKT9 with broadband S- to X-band 10-W PA (top left: 2- × 4-mm 
die) and (right) final duplicate two-stage 10-W PAs in 2.15- × 3-mm die plot 

Since the design time available before tapeout was short, a simple feedback 
amplifier was developed for the first-stage driver. A feedback amplifier should be 
broadband but would likely have a decreasing gain with frequency. To offset this 
negative gain slope, a simple two-element low-pass filter (LPF) was added to flatten 
the gain slope and provide the DC drain voltage through the shunt inductor of the 
LPF. The power output of the driver stage needed to be sufficient to ensure that it 
would not compress before the output stage of the PA compressed. The small signal 
gain of a 6- × 100-µm broadband feedback amplifier design was similar to an  
8- × 100-µm broadband feedback amplifier design, as shown in Fig. 8. Since both 
had similar small signal gain, the nonlinear performance was simulated next to 
verify that these designs generated sufficient power to drive the 10-W output stage. 
The schematics of the 6- × 100-µm feedback amplifier and its associated power 
performance with a 20-V DC drain bias are shown in Figs. 9 and 10, while the 
schematics of the 8- × 100-µm feedback amplifier and its associated power 
performance with a 20-V DC drain bias are shown in Figs. 11 and 12. Since output 
power and efficiency are higher in the 8- × 100-µm driver stage, the  
8- × 100-µm design was chosen for the driver stage. A simple shunt-inductor-series 
capacitor LPF was inserted between the driver amp and the two-way combiner  
10-W output stage. Figure 13 shows the relatively flat gain of the original one-stage 
PA versus the two-stage PA, which increases the small-signal gain to be about  
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20 dB, or more, from S- to X-band. A plot of the final layout of the two-stage PA 
is shown in Fig. 14. 

 

Fig. 8 S-parameters of 6- and 8- × 100-µm broadband feedback amplifiers 

  
Fig. 9 Schematic of 6- × 100-µm broadband feedback amplifier (uses EM simulation of 
layout) 
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Fig. 10 Power performance of 6- × 100-µm broadband feedback amplifier (20 V,  
2–10 GHz) 

 
Fig. 11 Schematic of 8- × 100-µm broadband feedback amplifier (uses EM simulation of 
layout) 
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Fig. 12 Power performance of 8- × 100-µm broadband feedback amplifier (20 V,  
2–10 GHz) 

 

Fig. 13 S-parameters of two-stage (dash) vs. one-stage (solid) 10-W PA 
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Fig. 14 Layout of two-stage 10-W PA (8- × 100-µm driver, 2× 8- × 150-µm output) 

4. Broadband Feedback Amplifiers Design 

The feedback amplifiers for the driver stage of the previous two-stage PA were 
added as stand-alone test circuits in a small 2.15- × 1.0-mm die site (Fig. 15). The 
simulations of the 6- and 8- × 100-µm broadband amplifiers were shown 
previously. Included in the die space is the stand-alone 8- × 100-µm amplifier and 
an 8- × 100-µm amplifier with the added LPF, which is the driver stage design of 
the prior two-stage S- to X-band 10-W PA. An s-parameter simulation of the  
8- × 100-µm broadband amplifier with and without the LPF on the output is shown 
in Fig. 16. 

 
Fig. 15 Layout of broadband feedback amplifiers 2.15- × 1.0-mm die (6 × 100 µm,  
8 × 100 µm, and 8 × 10 µm + LPF) 
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Fig. 16 S-parameters of 8 × 100 µm (dash) and 8 × 100 µm + LPF (solid) broadband feedback 
amplifiers 
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to the Qorvo 0.15-µm GaN-on-silicon carbide process. An input (right side) to the 
balun should be split equally in power to the two outputs (left side) with a 180° 
phase difference between them. This balun will be used in another frequency-
doubler circuit also included in this fabrication for the GaN RF Challenge. 
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Fig. 17 Layout of broadband PA, broadband balun 3.925- × 1-mm die (test 8- × 75-µm 
HEMT, Thru) 

A PA for 12- to 24-GHz operation was designed starting with load pull for a  
0.25-mm (4- × 62-µm) HEMT at 10, 20, and 30 GHz. The schematic for the load 
pull is shown in Fig. 18, which results in load-pull contours for peak power and 
efficiency at 10 and 20 GHz (Figs. 19 and 20). These load-pull contours were used 
to determine a parallel resistor–capacitor (RC) model of the ideal power match, 
which was then scaled to a larger 8- × 75-µm HEMT for the PA design. Because 
the output match of a PA is critical to its performance, a broadband double-tuned 
match was designed for a center frequency of 17 GHz with the goal of 12- to  
24-GHz bandwidth. Ideal lossless elements were used for the initial design  
(Fig. 21), then an equivalent output match using the lossy MMIC elements were 
created. The layout of the MMIC output match is shown in Fig. 22, and its 
performance relative to the lossless ideal output match is shown in Fig. 23. Some 
loss is expected in the physical implementation, but this plot shows that the losses 
are quite high at 13 and 23 GHz, meaning the 12- to 24-GHz bandwidth goal for 
power performance will not be met. It will likely work well over some range in the 
middle of the band.  

An ideal lossless broadband input match was designed, using a parallel RC to 
stabilize the PA at lower frequencies where gain is higher while maximizing gain 
at the higher end of the band. Figure 24 shows the lossless input match, which is 
converted into a MMIC layout shown in Fig. 25. A simulation of the ideal lossless 
PA shows the potential gain bandwidth, which exhibits the typical decreasing gain 
slope with frequency (Fig. 26). Final simulation of the lossy MMIC broadband PA 
has a similar, but slightly lower gain slope, as shown in Fig. 27. The result appears 
to be less than the desired goal of 12–24 GHz; however, the PA should work well 
over a broad band around the 17-GHz center frequency. When the fabricated design 
is tested, its performance and potential for an improved future redesign will be 
evaluated. 
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Fig. 18 MWO load load-pull schematic (4- × 62-µm HEMT) 
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Fig. 19 Power-added efficiency (PAE) load-pull contours (4- × 62-µm HEMT, 10 GHz,  
28 V) 
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Fig. 20 PAE load-pull contours (4- × 62-µm HEMT, 20 GHz, 28 V) 

 

0 1.
0

1.
0

-1
.0

10
.0

10.0

-10.0
5.
0

5.0

-5.
0

2.
0

2.
0

-2
.0

3.
0

3.
0

-3
.0

4.
0

4.0

-4.
0

0.
2

0.2

-0.
2

0.
4

0.
4

-0
.4

0.
6

0.
6

-0
.6

0.
8

0.
8

-0
.8

LP_20G_4x62
Swp Max

2e+10

Swp Min
-18

p9p10

p20

p19

p8p7

p6

p5

p4
p3

p2

p1

p21
p18

p17
p16

p15p14
p13
p12p11

31.539 dBm
Mag 0.7305
Ang 59.99 Deg
PLoad = 31.539 dBm
iPower = 1
harm = 1

41.779 %
Mag 0.7549
Ang 59.5 Deg
PAE = 41.779 %
iPower = 1
harm = 1

G_LPCM(PLoad,2,10,50,0)
LP_4x62_20G_28V_PIn22
G_LPCMMAX(PLoad,50,0)[*,*]
LP_4x62_20G_28V_PIn22
G_LPCMMAX(PAE,50,0)[*,*]
LP_4x62_20G_28V_PIn22
G_LPCM(PAE,5,10,50,0)
LP_4x62_20G_28V_PIn22
S(2,2)
LP4x62
S(1,1)
OMN_4x50_10G_B
S(1,1)
LP4x62

p11: PAE = 0 %
iPower = 1
harm = 1

p12: PAE = 5 %
iPower = 1
harm = 1

p13: PAE = 10 %
iPower = 1
harm = 1

p14: PAE = 15 %
iPower = 1
harm = 1

p15: PAE = 20 %
iPower = 1
harm = 1

p16: PAE = 25 %
iPower = 1
harm = 1

p17: PAE = 30 %
iPower = 1
harm = 1

p18: PAE = 35 %
iPower = 1
harm = 1

p21: PAE = 40 %
iPower = 1
harm = 1

p1: PLoad = 12 dBm
iPower = 1
harm = 1

p2: PLoad = 14 dBm
iPower = 1
harm = 1

p3: PLoad = 16 dBm
iPower = 1
harm = 1

p4: PLoad = 18 dBm
iPower = 1
harm = 1

p5: PLoad = 20 dBm
iPower = 1
harm = 1

p6: PLoad = 22 dBm
iPower = 1
harm = 1

p7: PLoad = 24 dBm
iPower = 1
harm = 1

p8: PLoad = 26 dBm
iPower = 1
harm = 1

p19: PLoad = 28 dBm
iPower = 1
harm = 1

p20: PLoad = 30 dBm
iPower = 1
harm = 1

p10: PAE = 41.779 %
iPower = 1
harm = 1

p9: PLoad = 31.539 dBm
iPower = 1
harm = 1



 

17 

 

Fig. 21 MWO ideal lossless output match schematic (8- × 75-µm HEMT) 

 

 

Fig. 22 MWO lossy MMIC output match layout (8- × 75-µm HEMT) 
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Fig. 23 Simulation of ideal (thin) vs. MMIC (thick) output match to ideal power load  
(8- × 75-µm HEMT) 

An ideal lossless broadband input match was designed, using a parallel RC to 
stabilize the PA at lower frequencies where gain is higher while maximizing gain 
at the higher end of the band. Figure 24 shows the lossless input match, which is 
converted into a MMIC layout shown in Fig. 25. A simulation of the ideal lossless 
PA shows the potential gain bandwidth, which exhibits the typical decreasing gain 
slope with frequency (Fig. 26). Final simulation of the lossy MMIC broadband PA 
has a similar, but slightly lower gain slope, as shown in Fig. 27. The result appears 
to be less than the desired goal of 12–24 GHz; however, the PA should work well 
over a broad band around the 17-GHz center frequency. When the fabricated design 
is tested, its performance and potential for an improved future redesign will be 
evaluated. 
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Fig. 24 MWO schematic of broadband 12- × 24-GHz, 8- × 75-µm PA with ideal lossless 
matching 

 

Fig. 25 MWO lossy MMIC input match layout 8- × 75-µm, 12- to 24-GHz PA 
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Fig. 26 S-parameter simulation of ideal broadband 8- × 75-µm, 12- to 24-GHz PA 

 
Fig. 27 S-parameter simulation of final MMIC broadband 8- × 75-µm, 12- to 24-GHz PA 
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6. Frequency-Doubler, 28–56 GHz 

A broadband frequency-doubler topology using a balun was suggested by Dr Ali 
Darwish, of the ARL team, using the modified balun designed Sami Hawasli for 
Ka-band. The final 3.925- × 1-mm die site (Fig. 28) contains a broadband 
frequency-doubler with a smaller subcircuit frequency-doubler and two test 
HEMTs—a 4- × 50-µm HEMT and an 8- × 150-µm HEMT. Due to the limited 
design time, the doubler demonstration borrowed from prior designs around  
28 GHz.3 A new, simple, output match around 56 GHz was designed to be used 
with the existing 28-GHz low-noise amplifier design. Simulations verified that the 
circuit should work well. Two of these doubler subcircuits were then parallel-
combined using the balun and a broadband Wilkinson coupler (60 GHz), the latter 
simulated using Axiem EM, showing a comparison between the original linear 
simulation and the EM simulation in Fig. 29. The broadband doubler consists of 
the broadband balun, the Wilkinson combiner, and two parallel copies of the 28- to 
56-GHz doubler subcircuit connected as shown in the layout plot of Fig. 30. Each 
of the components of the doubler were Axiem EM-simulated and used for a 
nonlinear simulation whose schematic is shown in Fig. 31. A comparison of the 
nonlinear simulation of the basic doubler and the fundamental cancelling doubler 
(with balun) is shown in Figs. 31 and 32. Figure 31 shows the cancelling of the  
28-GHz input signal due to the use of the balun, which is further emphasized by the 
spectrum plot of Fig. 32. Measurements of the fabricated circuit will demonstrate 
this topology, which could be modified or redesigned for future uses.  

 

Fig. 28 Layout of broadband frequency-doubler and doubler subcircuit 3.925- × 1-mm die 
(4- × 50-µm and 8- × 150-µm test HEMTs) 
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Fig. 29 Wilkinson 60-GHz coupler simulation linear (dash) vs. EM (solid) 

 

 

Fig. 30 Broadband frequency-doubler layout 
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Fig. 31 Schematic of broadband frequency-doubler (uses EM simulations of layout) 

 
Fig. 32 Harmonic performance of frequency-doublers vs. input power 
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Fig. 33 Spectrum plot of frequency-doublers simulation 
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Fig. 34 ARL designs for DOD teams sites for GaN RF challenge (Qorvo 0.15-µm GaN) 

8. Conclusions 

The GaN RF Challenge effort included many teams exploring challenges focused 
on the broadband 5G development and DOD electronic warfare needs. Parallel 
fabrication efforts using BAE’s 0.18-µm GaN process and Qorvo’s 0.15-µm GaN 
process will consolidate and produce multiple design-team efforts, with die to be 
returned in 2021 for test. Our ARL III/V Team was primarily focused on the BAE 
design effort, but was also able to use the available space of the DOD design teams 
for the Qorvo fabrication. These designs used prior experience and efforts from the 
ARL III/V team to quickly assemble useful circuits to fabricate in the Qorvo 
process. Some circuits were improvements to prior designs, such as adding an extra 
gain stage to a broadband S- to X-band 10-W PA or a redesign of a dual-band  
S-/X-band 5-W PA to remove an odd-mode stability issue. Other circuits were new 
designs to prove-out concepts like a Ka-band frequency-doubler and other 
broadband PA designs. When the designs return, they will be tested, evaluated, and 
documented for future use and incorporation into DOD needs. 
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GAN RF Challenge
3.925x1mm – 2
2.15x1mm – 1
2.15x3mm - 2

CKT9B*
Re-arranged Prior 10W S/X PA John
Added Driver Stage Amp (HP Filter)

CKT1B*
Re-arranged Prior 5W S/X PA Ken
Added Gate Odd Mode Resistors (& Drain)

CKT4
Based on 28GHz 4x25LNA
Doubler 28G w/ 30G Balun
Single Stage Doubler 28G
Test HEMTs 8x150, 4x50

CKT3
New 12-24G PA 8x75
30G Balun
Test HEMT 8x75, Thru

CKT2
Three Broadband Amps
6x100, 8x100, 8x100 w/ DC
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List of Symbols, Abbreviations, and Acronyms 

5G fifth generation 

ARL Army Research Laboratory 

CAD computer-aided design 

DC direct current 

DEVCOM US Army Combat Capabilities Development Command 

DOD Department of Defense 

EM electromagnetic 

GaN gallium nitride 

HEMT high electron mobility transistor 

LPF low-pass filter 

MMIC monolithic microwave integrated circuit 

MWO Microwave Office (computer-aided design tool) 

PA power amplifier  

PAE power-added efficiency  

RC resistor–capacitor 

RF radio frequency 
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