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1. Introduction

Injuries that occur after a non-penetrating ballistic projectile impacts a Soldier
wearing personal protective equipment (PPE) are referred to as behind armor blunt
trauma (BABT). The kinetic energy from such an impact is absorbed by the Sol-
dier’s PPE and the bony and soft tissues of the Soldier beneath.1–3 Standards have
been written to which PPE have been designed since 1972. Verification is through
experiments where, typically, a suit of body armor is placed over a “body” sub-
jected to a ballistic impact from a projectile fired by a weapon, all in accordance
with a standard. Current practice is to use clay (usually Roma Plastilina No. 1 clay)
as a surrogate for the human body in these tests.4 Injuries that occur from a rapidly
increasing overpressure (e.g., shockwaves from an explosion) are denoted as pri-
mary blast injuries (PBI).5 Blast lung injury (BLI) refers to PBI experienced by the
lung.6 Dynamic blunt thoracic trauma can also occur in nonmilitary settings (e.g.,
automobile accidents), and PBI likewise may occur irrespective of the presence of
PPE.

A principal objective of an internal US Army Combat Capabilities Development
Command (DEVCOM) Army Research Laboratory (ARL)–Weapons and Materials
Research Directorate (WMRD) project, Modeling Large Deformations and Stress

Wave Mechanics in Soft Biological Tissue, is to develop accurate material models
for the human body that are also efficient in their finite element implementation,
thereby facilitating the study of BABT and PBI in an effort to improve the designs
of PPE. This is a 6.1 research project whose hand-off to a 6.2 development team at
project’s end will aid Army engineers in their design of improved PPE by allowing
them to run in-silico BABT tests to complement their actual in-field testing.

The DEVCOM Army Research Laboratory-WMRD Modeling Large Deformations

and Stress Wave Mechanics in Soft Biological Tissue project has three primary ob-
jectives: i) new material models, ii) new experiments, and iii) new trauma metrics.
Lung has been selected as the soft tissue of interest for this study. What are sought
are models and metrics whose parameters are physical and unique, and whose nu-
meric implementation will be efficient and stable. Continuum thermodynamic mod-
els for lung tissue and a trauma metric are being developed (Clayton, Freed, and
co-authors7–13 and this document). The work done under this sub-project, A Dodec-

ahedral Model for Alveoli, complements its parent project, Modeling Large Defor-
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mations and Stress Wave Mechanics in Soft Biological Tissue, with regard to the
first and third objectives of this ARL-WMRD program. The models being devel-
oped are expected to be improvements over those currently supplied by LS-DYNA
in their materials library that, e.g., have been used to study shock waves traversing
a human torso not wearing body armor, cf. Fig. 1.

BABT and BLI manifest at the microscopic level of alveoli, which make up the
parenchyma, i.e., the spongy tissue of lung that composes around 90% of lung
by volume, cf. Fig. 2, there being some 500 million alveoli in a typical human
lung. Most damage occurs just beneath the visceral pleural, as seen in Fig. 3, and
is thought to be a consequence of the large disparity in wave speeds between solid
tissues („1,500 m/s) and the spongy parenchyma („30–40 m/s).15 The objective of
this work is to develop a mechanistic multi-scale model that is capable of describ-
ing the deformation and damage that occur at an alveolar level, caused by a shock
wave traveling through the parenchyma, induced through either a blast or a ballistic
impact to a Soldier’s PPE. In-silico experiments done using this microscopic model
are to be used to “inform” our macroscopic model in those areas where actual lung
experiments are difficult, if not impossible, to perform.

This is the first full-length report for the project A Dodecahedral Model for Alve-

oli. This first report discusses theoretical foundations and numerical techniques for
interrogating the dodecahedral response. A second report describing results of nu-
merical calculations is anticipated in the next 12 months.

1.1 Problem Statement

Pulmonary contusion is one of the most common thoracic soft-tissue injuries caused
by blunt trauma, with a mortality rate of 10%–25%.16 Damage to lungs is the main
cause of morbidity following high-level blast exposures.17 Lung laceration is also
common and debilitating.18 Existing constitutive models for lung tissue have been
developed from limited static test data, e.g., Fung, Vawter et al.19–21 These mod-
els, and others developed since then, omit relevant physics pertinent to blast and
ballistic impacts required to assess BLI and BABT, respectively. They also require
cumbersome optimization protocols to fit non-unique parameter sets,22,23 and/or are
not validated against independent data.24 Better lung models suitable for dynamic
analysis are needed so that the Army can design improved PPE to better protect
Soldiers.
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Fig. 1 Finite element analysis done using LS-DYNA to model shock waves traversing a cross-
sectional slice of a human torso. Material models from the LS-DYNA library of available mod-
els were used.14

3



Fig. 2 A medical drawing of the respiratory system14

Fig. 3 Lungs excised from animals (most likely ovine) who expired from blast injury15
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The primary objective of the ARL-WMRD project Modeling Large Deformations

and Stress Wave Mechanics in Soft Biological Tissue is to develop such models
for deformation and damage/injury assessment. These are continuum models de-
rived from thermodynamics that utilize internal state variables to account for the
irreversible aspects of response.8,9 Models (both macroscopic and microscopic) are
specifically sought whose parameters are physical and whose parameterization is
straightforward. Characterization of the parameters in a model requires experimen-
tal data. This presents an enormous challenge, one that is being addressed in this
ARL-WMRD project through other university collaborators.

Performing experiments for the purpose of model characterization is extremely dif-
ficult when it comes to modeling lung. Lung is a structure; parenchyma is a mate-
rial. Therefore, one would normally choose to test the parenchyma, and from these
data extract one’s model parameters but, because of its spongy nature, we are chal-
lenged to do so in a physically meaningful way. Consequently, one typically tests
whole lungs, or lobes thereof, and from these structural experiments we are tasked
to extract material parameters through an inverse analysis. An alternative approach
whereby one could, in principle, acquire parameters for the continuum models be-
ing developed at ARL-WMRD would be to homogenize a microscopic structural
response for the alveoli of the parenchyma. The work presented here addresses this
approach in our modeling of deformation, damage, and injury in alveolar structures.

Our approach is also advantageous for understanding the influence of microstruc-
ture on the higher-scale continuum properties. Curve fitting to macroscopic data
alone does not provide such insight. This multi-scale approach can also be used
to determine properties for regimes (stress/strain/strain-rate histories) that cannot
be reached experimentally, due to limitations in testing facilities, capabilities, or
sufficient animal/human tissue availability.

The narrative that follows seeks to develop two material models for lung: one for
mechanical deformation and the other for damage/injury/trauma. Models are sought
whose parameters have physical interpretation. Ideally, they will enhance our un-
derstanding of the deformation and damage mechanisms at play during BABT and
BLI. Specifically, they will describe how alveoli respond to pressure-waves and/or
shear-waves as these wave fronts pass through them. This modeling will be accom-
plished by constructing a multi-scale model connecting the parenchyma (macro)
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(a) Magnification at 100X. This is Fig. 5 in
Freed et al.25

(b) Magnification at 750X. This is Fig. 7 in
Freed et al.25

Fig. 4 Scanning electron microscopy photographs from a sectioned rat lung. The alveolar
diameter in rat lung is about one quarter the alveolar diameter in human lung.

and alveolar (micro) levels. In-silico experiments can then be done on the alveolar
structural model, whose homogenized response can serve as an aid in the char-
acterization of ARL’s continuum models. These ARL-WMRD continuum models
are being designed to perform efficiently in their implementation in finite element
codes. This will allow for BABT and BLI analyses to be done during the design of
future PPE with an ultimate goal of saving Soldiers’ lives.

The primary purpose of this work is to provide a microscopic model for lung tis-
sue that can be used as an aid in the parameterization of a macroscopic model for
lung that will be reasonably accurate yet efficient to run in full torso finite element
analyses13 to study BABT and BLI for the purpose of improving PPE. Secondarily,
the alveolar-level model will provide stand-alone information that will increase our
fundamental understanding of the thermomechanical response of lung parenchyma
to dynamic loading.

1.2 Approach

Figure 4 shows micrographs from a rat lung taken at different magnifications. In the
lower-resolution image, one sees numerous alveoli that became exposed because of
the sectioning process. Also present are several alveolar ducts that connect indi-
vidual alveoli to a bronchial tree. In the higher-resolution image we observe the
faceted structure of these alveoli, wherein one can see the septal chords and mem-
branes, the latter being traversed by capillaries through which gas exchange occurs.
Gas exchange is not modeled here.
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(a) Immunohistochemical
staining for hemoglobin
showing edema fluid buildups
(arrows) caused by blast injury.

(b) Histopathology image
showing tearing of septal
membranes (arrows) caused by
blast injury.

(c) Electron microscope image
showing perforations (arrows)
of the alveolar wall caused by
blast injury.

Fig. 5 Local injury mechanisms in blast lung. All images from Tsokos et al.26

Alveolar geometry is modeled here as a dodecahedron, i.e., a soccer-ball like struc-
ture comprising 12 pentagonal facets bordered by 30 septal cords that are connected
at 20 vertices. Each vertex links three neighboring cords of the alveolus with a
fourth chord from a neighboring alveolus. BABT and BLI can occur through mul-
tiple mechanisms, e.g., tearing of septal cords and/or alveolar membranes, and in
more severe cases, rupturing of capillaries can also happen causing interstitial fluids
and blood to leak into neighboring alveoli, all illustrated in Fig. 5. Our dodecahedral
model for alveoli is capable of capturing these trauma events.

Conjecture. A microscopic strain field, measured at the scale of alveoli, is the

same as its macroscopic strain field in which it resides, measured at the scale of

parenchyma. The motion is affine, and the local motion is homogeneous.

This hypothesis was tested and confirmed in an experimental study done by Butler
et al.27 where they used light scattering to study changes in geometry of the septal
planes in alveoli, from which they concluded: “the microscopic strain field does
not differ significantly from the macroscopic field.” We employ this hypothesis by
taking the deformation gradient from, say, a Gauss point in a finite element model
of lung, e.g., from a Gauss point associated with Fig. 1, and imposing it as a far-
field deformation onto our dodecahedral model of an alveolus. From this kinematic
input we arrive at an upper bound on the macroscopic stress/stiffness response, akin
to a Voigt approximation,28,29 through a homogenization of the microscopic forces
created within our structural model for an alveolus.

The authors of a recent review article on alveolar strain finished by writing:
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“In general, computational mechanics approaches to determine function in a

healthy or diseased lung have proven to be useful in explaining or measuring

observations that are not captured by imaging modalities. However, for these

models to fully explain complex physiological mechanical events, appropriate

mechanical properties, boundary conditions, and mechanical loads must be

identified. Moreover, validation of such computational models, which is an

essential component of any computational mechanics approach, remains to be

a challenge in the analysis of soft tissue mechanics.”

Roan & Waters30 (p. L633)

In this research we set out to develop a constitutive framework for alveolar mechan-
ics, fully cognizant of the aforementioned challenges. Our objectives are different
from those of prior studies in alveolar mechanics in that we seek to describe the re-
sponse/injury of a human lung that has been subjected to a stress wave propagating
across the thorax region caused by an impact from either a blunt object or a blast
wave. Consequently, some important aspects in the modeling of a breathing lung
are thought to be less impactful here, e.g., the effect of surfactant in keeping alveoli
from collapsing at the end of expiration.

As a foundation, we adopt the guideline:

“Constitutive equations are phenomenological. They are regarded as empiri-

cal by experimenters, and axiomatic by mathematicians. In biomechanics, we

often try to derive them on the basis of microstructure . . . in order to gain a

better understanding, or to get some guidance to the mathematical form.”

Y.-C. Fung31 (p. 431)

The approach adopted here is to use the geometry of a dodecahedron as a micro-
scopic mechanical model for alveoli, whose far-field response to mechanical stim-
uli, in accordance with our Conjecture on p. 7, will be used to inform the devel-
opment of a macroscopic mechanical model for parenchyma,9 the predominant tis-
sue in lung. This is deemed necessary because of the complex porous structure of
parenchyma, as compared with the homogeneous structure of rubbery elastic solids
whose theories have historically been employed to model parenchyma.19,20,32,33 The
complementary continuum (macroscopic) model for parenchyma7,9,11–13 is imple-
mented into finite element codes with an end objective of providing a numerical
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tool that can be used by Army engineers in their efforts to develop improved and
more effective designs for a Soldier’s PPE.

1.3 Organization

This document is organized in the following manner. Section 2 introduces the do-
decahedron as a model for alveoli. Its geometric properties are derived in detail with
regards to its three geometric features: 1D septal chords, 2D septal membranes, and
3D alveolar sacs. Section 3 develops the kinematics required for us to model a de-
forming dodecahedron, again focusing on the 1D chords, 2D membranes, and the
3D volume within, including the shape functions needed for interpolating each ge-
ometry. Section 4 derives constitutive models suitable for describing the thermome-
chanical response for the structural constituents of an alveolus: its septal chords, its
permeable membranes, and its volume. Section 5 presents numerical methods used
for solving first- and second-order, ordinary, differential equations (ODEs) and spa-
tial integrations along a bar, across a pentagon, and throughout a tetrahedron using
Gaussian quadrature schemes designed for each geometry. Section 6 describes a
variational formulation used to create our structural modeling of an alveolus, which
consists of three separate models: one consisting of septal chords, another consist-
ing of septal membranes, and the third consisting of alveolar volume. Forces at the
vertices are summed and homogenized for return to the macroscopic solver. Consti-
tutive equations suitable for modeling biological tissues are derived from thermo-
dynamics using the theory of implicit elasticity, and are presented in the Appendix.
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2. Dodecahedra: A Model for Alveoli

Typical alveoli are 14 sided polyhedra with one face normally being open as a
mouth to an alveolar duct, and whose septal membranes typically become flat at
transpulmonary pressures as low as 2 cm H2O.34 To capture the microstructural
features of lung, researchers have modeled both alveoli and alveolar ducts, as seen
in Fig. 4; we only address alveoli here. One of three different geometric shapes
is usually employed when modeling an alveolus: a dodecahedron introduced by
Frankus and Lee35 in 1974, a rhombic dodecahedron introduced by de Ryk et al.36

in 2007, and a truncated octahedron, i.e., a tetrakaidecahedron, introduced by Dale
et al.37 in 1980. The dodecahedron and rhombic dodecahedron are both 12 sided
polyhedra with faces being pentagons and rhombuses, respectively. A tetrakaidec-
ahedron is a pair of pyramids stacked bottom to bottom, forming an octahedron,
whose six points are then removed. The end result is a 14 sided polyhedron with
six faces that are squares and eight faces that are hexagons, where like shapes have
like dimensions.

The tetrakaidecahedron and rhombic dodecahedron are both volume filling. This
property is preferred whenever one sets out to construct assemblages of alveoli to
build a microstructural model that is to be solved numerically via a finite element
method. The purpose of such an exercise is to homogenize the response of an alve-
olar assembly up to the macroscopic level, i.e., the level of a continuum mass point,
a.k.a., the parenchyma.36–42 Such a finite element model can serve as a representa-
tive volume element (RVE) for parenchyma.

The dodecahedron is an isotropic structure, or very nearly so as we shall show, and
is nearly volume filling.43 A dodecahedron is one of the five perfectly symmetric
solids in geometry. It becomes a preferred geometry whenever a single alveolus is to
be used as the RVE of homogenization, and from which closed-form solutions have
been derived.25,43–45 Here isotropy of the microstructure ensures an isotropic macro
response. Parenchyma, as a tissue, is isotropic33,46,47; whereas, lung, as an organ,
is a complex, heterogeneous structure.48,49 This distinction has, from time-to-time,
been forgotten.50

For the reasons stated above, a dodecahedron, with vertices labeled according to
Fig. 6(b), is the geometric structure selected for use in this study. The question of
how one assigns a co-ordinate system to a dodecahedron is discussed first. Given
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(a) A cube is contained within a dodecahe-
dron, with one of its five possible orientations
being displayed. Atop each face of the cube
reside four pentagonal sub-areas that form the
shape of a hipped roof line.

(b) Vertices 1 through 8 are located at the cor-
ners of such a cube. The centroid for the cube
is also the centroid for the dodecahedron. Ver-
tices 9 through 20 are corners of the hipped
roof lines residing above each face of the cube.

Fig. 6 Geometric representations for a dodecahedron

this co-ordinate system, vertices of a dodecahedron are then assigned from which
its septal chords and septal membranes are readily established.

2.1 Co-ordinate Indexing

An orthonormal set of base vectors p~ı,~, ~kq is assigned to a dodecahedron whose
origin resides at its centroid and whose directions align with a set of far-field base
vectors used for reference in one’s finite element model of a lung. The question is:
How does one orient the indexing scheme of Fig. 6 against this basis? Alternatively:
How can one describe a mapping p~ı,~, ~kq ?

ÞÑ p~E1, ~E2, ~E3q wherein an orthonormal
set of base vectors p~E1, ~E2, ~E3q is to serve as the reference basis for our alveolar
dodecahedron to which the indexing scheme presented in Fig. 6(b) applies?

Given that a finite element model for lung exists, then a deformation gradient F
can be made available at any mass point therein whereat an alveolus of interest
resides. Let the components of this deformation gradient be Fij , i, j “ 1, 2, 3, when
evaluated in the co-ordinate frame p~ı,~, ~kq, which is the co-ordinate frame of the
finite element analysis. A Gram–Schmidt (or QR) decomposition of a non-singular
3ˆ3 matrix results in a tangent vector ~g1 and normal vector ~g1 ˆ ~g2 that remain
invariant under transformations of the triangular matrix R.51 These convected base
vectors p~g1, ~g2, ~g3q rotate out of basis p~E1, ~E2, ~E3q via a Gram rotation.52 Given this
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geometric information, Paul et al.53 were able to provide an answer to the above
question of co-ordinate frame selection.

Our approach begins by establishing the extent of transverse shear crossing each of
the co-ordinate directions p~ı,~, ~kq, as quantified by

G1 “

a

F 2
21 ` F

2
31

F11

, G2 “

a

F 2
12 ` F

2
32

F22

, G3 “

a

F 2
13 ` F

2
23

F33

, (1)

where Gi is a measure of the shear deformation cutting across the ith direction.
Unit vector ~E1 is selected as that direction from the set t~ı,~, ~ku which possesses
minimal transverse shear. Once selected, there are two possible planes that contain
base vector ~E1, and the one selected whose normal is to be ~E1ˆ

~E2 is that plane with
the least amount of in-plane shear, which can be determined by taking appropriate
dot products between column vectors f i “ tF1i F2i F3iu

T, i “ 1, 2, 3. Vector f i has
elements taken from the ith column of matrix Fji, which represents the deformation
gradient F evaluated in p~ı,~, ~kq. This strategy is summarized in Alg. 1.

Algorithm 1 inputs a deformation gradient F whose components Fij are evaluated in
the co-ordinate system p~ı,~, ~kq associated with, in our case, a finite element model
for lung. The algorithm outputs an orthogonal matrix P that re-indexes the compo-
nents of deformation gradient Fij into an equivalent form where F “ Fij

~Eib~Ej . It
is this re-indexed matrix Fij that is to be subjected to Gram–Schmidt factorization,
which is discussed later in Section 3.

There are six cases that can arise. Their associated orthogonal matrices are

rP1s “

»

—

–

1 0 0

0 1 0

0 0 1

fi

ffi

fl

rP2s “

»

—

–

1 0 0

0 0 1

0 1 0

fi

ffi

fl

rP3s “

»

—

–

0 1 0

1 0 0

0 0 1

fi

ffi

fl

rP4s “

»

—

–

0 0 1

1 0 0

0 1 0

fi

ffi

fl

rP5s “

»

—

–

0 1 0

0 0 1

1 0 0

fi

ffi

fl

rP6s “

»

—

–

0 0 1

0 1 0

1 0 0

fi

ffi

fl

(2a)
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Algorithm 1: Pivoting of the co-ordinate system

Input: Deformation gradient F with components Fij expressed in p~ı,~, ~kq
if G1 ď G2 and G1 ď G3 then

if f 1 ¨ f 2 ď f 1 ¨ f 3 then
rF1s “ rP1s

TrFsrP1s : rF s “ rF1s, rPs “ rP1s,

6 p~ı,~, ~kq ÞÑ p~E1, ~E2, ~E3q

else
rF2s “ rP2s

TrFsrP2s : rF s “ rF2s, rPs “ rP2s,

6 p~ı,~, ~kq ÞÑ p~E1, ~E3, ~E2q

else if G2 ď G1 and G2 ď G3 then
if f 1 ¨ f 2 ď f 2 ¨ f 3 then
rF3s “ rP3s

TrFsrP3s : rF s “ rF3s, rPs “ rP3s,

6 p~ı,~, ~kq ÞÑ p~E2, ~E1, ~E3q

else
rF4s “ rP4s

TrFsrP4s : rF s “ rF4s, rPs “ rP4s,

6 p~ı,~, ~kq ÞÑ p~E2, ~E3, ~E1q

else
if f 1 ¨ f 3 ď f 2 ¨ f 3 then
rF5s “ rP5s

TrFsrP5s : rF s “ rF5s, rPs “ rP5s,

6 p~ı,~, ~kq ÞÑ p~E3, ~E1, ~E2q

else
rF6s “ rP6s

TrFsrP6s : rF s “ rF6s, rPs “ rP6s,

6 p~ı,~, ~kq ÞÑ p~E3, ~E2, ~E1q

Output: Deformation gradient F with components Fij expressed in
p~E1, ~E2, ~E3q, as re-indexed by the orthogonal matrix rPs

13



whose affiliated components for the re-indexed deformation gradient are

rF1s “

»

—

–

F11 F12 F13

F21 F22 F23

F31 F32 F33

fi

ffi

fl

rF2s “

»

—

–

F11 F13 F12

F31 F33 F32

F21 F23 F22

fi

ffi

fl

rF3s “

»

—

–

F22 F21 F23

F12 F11 F13

F32 F31 F33

fi

ffi

fl

rF4s “

»

—

–

F22 F23 F21

F32 F33 F31

F12 F13 F11

fi

ffi

fl

rF5s “

»

—

–

F33 F31 F32

F13 F11 F12

F23 F21 F22

fi

ffi

fl

rF6s “

»

—

–

F33 F32 F31

F23 F22 F21

F13 F12 F11

fi

ffi

fl

(2b)

where case 1 is the default case whose operator P1 is the identity tensor.

All vectors V with components Vi evaluated in p~E1, ~E2, ~E3q will rotate into p~ı,~, ~kq
with components Vi according to the map

Vi “ PijVj or inversely Vi “ PjiVj, (3a)

while all tensors T with components Tij evaluated in p~E1, ~E2, ~E3q will rotate into
p~ı,~, ~kq with components Tij according to the map

Tij “ PikTk`Pj` or inversely Tij “ PkiTk`P`j, (3b)

where the latter appears in Alg. 1 with regards to components of the deformation
gradient.

From this point onward, it is assumed that base vectors p~E1, ~E2, ~E3q are known, and
that they serve as the reference basis for our alveolar analysis.

2.2 Geometric Properties of a Regular Pentagon

Figure 7 presents a regular pentagon drawn in its natural co-ordinate system with
co-ordinates designated as pξ, ηq. Vertices of such a pentagon are placed at

ξ “ cos

ˆ

2pk ´ 1qπ

5
`
π

2

˙

η “ sin

ˆ

2pk ´ 1qπ

5
`
π

2

˙

k “ 1, 2, . . . , 5 (4)

wherein k denotes the vertex number, as assigned in Fig. 7. These vertices inscribe
a pentagon within the unit circle.

Lengths of the five chords in a regular pentagon, when measured in its natural co-
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Fig. 7 A regular pentagon inscribed within the unit circle establishes its natural co-ordinate
system with co-ordinates pξ, ηq described in Eq. 4, and whose origin is located at its centroid.
Vertices are numbered counterclockwise with the uppermost vertex being labeled 1.

ordinate system, are all
Lp “ 2 cospωq « 1.176, (5)

while the area of this pentagon is

Ap “ 5
4

tanpωq pLpq2 “ 5 sinpωq cospωq « 2.378, (6)

where the area of the unit circle that inscribes this pentagon is πr2 « 3.142, r “ 1.
The inside angles of a regular pentagon all measure 2ω “ 108˝. All approximations
are truncated at four significant figures.

2.3 Geometric Properties of a Regular Dodecahedron

Like the pentagon considered above, which inscribes the unit circle, here we con-
sider a dodecahedron that inscribes the unit sphere. Let this geometry be described
in its natural co-ordinate system with co-ordinates pξ, η, ζq whose origin is located
at its centroid, the center of the sphere. The 20 vertices of this dodecahedron, all of

15



which touch the unit sphere, are placed at

ξ η ζ

˘1{
?

3 ˘1{
?

3 ˘1{
?

3

˘φ{
?

3 ˘1{
?

3φ 0
0 ˘φ{

?
3 ˘1{

?
3φ

˘1{
?

3φ 0 ˘φ{
?

3

(7)

where φ “ p1`
?

5q{2 « 1.618, which is also known as the golden ratio.

Lengths of the 30 chords in a regular dodecahedron, when measured in its natural
co-ordinate system, are all

Ld “
2
?

3φ
« 0.7136, (8)

while the volume of such a dodecahedron is

V d
“

40

3
?

3φ3
tan2

pωq sinpωq « 2.785, (9)

where the volume of the unit sphere that inscribes the dodecahedron is 4
3
πr3 «

4.189, r “ 1.

The scale factor to map between the natural co-ordinates of a pentagon, defined in
Eq. 4, with those of a dodecahedron, defined in Eq. 7, is

Lp

Rp
“
Ld

Rp
d

or Rp
d “

RpLd

Lp
“
Ld

Lp
“

1
?

3φ cospωq
« 0.6071 (10)

because Rp “ 1, with scale factor Rp
d being the radius that inscribes a pentagon on

the surface of a dodecahedron that itself inscribes an unit sphere.

2.4 Dimensions of Human Alveoli

Septal chord length LpDq, expressed as a function of alveolar diameter D, can be
estimated by considering the areal projection of a dodecahedron onto a plane that
contains one of its pentagonal faces, which leads to

L “
D

tanpωqp1` cospαqq
«

D

2.685
, (11)
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where α “ π/10 “ 18˝. (There are 20, equal, pie-shaped wedges that compose
this projected area.) This is an average of the shortest and longest distances across
this plane of projection. Alveolar diameter D is a property that can be measured in
histological studies of parenchyma.

(a) Mean and standard deviations for alveolar
diameters in human lung.54

(b) A typical histogram for these statistics, trun-
cated at alveolar diameters below 24 µm.

Fig. 8 Alveolar diameters in human lung

To dimension the alveoli of human lung, Sobin et al.54 measured the mean diam-
eter across an individual alveolus, viz., D of Eq. 11, sectioned from human lungs
that were fixed at three different pressures. Samples were taken from nine lungs ex-
tracted postmortem from individuals between 16 to 89 years of age.* At a transpul-
monary pressure of 4 cm H2O, the mean alveolar diameter was D “ 191 ˘ 86 µm
determined from a sampling size of 1423; at a pressure of 10 cm H2O, D “ 202 ˘

88 µm determined from a sampling size of 1296; and at a pressure of 14 cm H2O,
D “ 235˘ 99 µm determined from a sampling size of 1083. These data are plotted
in Fig. 8. All reported and drawn error bounds pertain to plus/minus one standard
deviation in error.

*Sobin et al.54 also documented an age effect in these data that has been averaged over here, i.e.,
ignored.
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2.5 Geometric Properties for Irregular Pentagons and Dodecahedra

Formulæ 6 and 9 only apply for regular pentagons and dodecahedra evaluated in
their respective natural co-ordinate systems. For irregular dodecahedra, the areas of
its irregular pentagons are calculated via*

A “
1

2

5
ÿ

i“1

pxiyi`1 ´ xi`1yiq, (12)

where x6 ð x1 and y6 ð y1. In order for the predicted area to be positive when
using this formula, it is necessary that the vertices pxi, yiq index counterclockwise,
as drawn in Fig. 7. The centroid of this pentagon has co-ordinates*

cx “
1

6A

5
ÿ

i“1

pxi ` xi`1qpxiyi`1 ´ xi`1yiq, (13a)

cy “
1

6A

5
ÿ

i“1

pyi ` yi`1qpxiyi`1 ´ xi`1yiq, (13b)

wherein the vertex co-ordinates xi and yi are quantified in a 2D pentagonal frame
of reference, e.g., as established later in Fig. 10.

To compute the volume of an irregular dodecahedron, we use the formula†

288V 2
tet “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 1 1 1

1 0 ` 2
12 ` 2

13 ` 2
14

1 ` 2
21 0 ` 2

23 ` 2
24

1 ` 2
31 ` 2

32 0 ` 2
34

1 ` 2
41 ` 2

42 ` 2
43 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(14)

to calculate each of the 60 individual tetrahedral volumes that collectively fill the
volume of an irregular dodecahedron. Here `ij is the length of that tetrahedral edge
with vertices i and j; i, j “ 1, 2, 3, 4; i ‰ j; with `ij “ `ji.

*Bourke, P. “Polygons, meshes.” http://paulbourke.net/geometry.
†Colins, KD. “Cayley-Menger Determinant.” MathWorld–A Wolfram Web Re-

source, created by Eric W Weisstein. http://mathworld.wolfram.com/Cayley-
MengerDeterminant.html.
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Table 1 Natural co-ordinates for the vertices of a regular dodecahedron, as labeled in Fig. 6(b)
according to Eq. 7

Vertex ξ η ζ Vertex ξ η ζ

1 1{
?

3 1{
?

3 1{
?

3 11 φ{
?

3 1{
?

3φ 0
2 1{

?
3 1{

?
3 -1{

?
3 12 φ{

?
3 -1{

?
3φ 0

3 -1{
?

3 1{
?

3 -1{
?

3 13 -φ{
?

3 1{
?

3φ 0
4 -1{

?
3 1{

?
3 1{

?
3 14 -φ{

?
3 -1{

?
3φ 0

5 1{
?

3 -1{
?

3 1{
?

3 15 1{
?

3φ 0 φ{
?

3

6 1{
?

3 -1{
?

3 -1{
?

3 16 -1{
?

3φ 0 φ{
?

3

7 -1{
?

3 -1{
?

3 -1{
?

3 17 1{
?

3φ 0 -φ{
?

3

8 -1{
?

3 -1{
?

3 1{
?

3 18 -1{
?

3φ 0 -φ{
?

3

9 0 φ{
?

3 1{
?

3φ 19 0 -φ{
?

3 1{
?

3φ

10 0 φ{
?

3 -1{
?

3φ 20 0 -φ{
?

3 -1{
?

3φ

2.6 Indexing Scheme for Dodecahedra

In order to implement the dodecahedron as a geometric model for an alveolar sac, as
suggested by the images in Fig. 4, it first becomes necessary to introduce a labeling
strategy. Such a scheme is arbitrary, but once chosen it enables an analysis to be put
forward. The labeling scheme adopted in this work is illustrated in the Fig. 6(b).

The co-ordinates positioning the 20 vertices of a regular dodecahedron in its natural
frame of reference are presented in Table 1. According to the labeling scheme of
Fig. 6(b), the 30 chords of a dodecahedron are given vertex assignments according
to Table 2, while its 12 pentagons are given vertex assignments according to Table 3.

The 60 tetrahedra that fill the volume of the dodecahedron contain vertices accord-
ing to the following strategy. Beginning with pentagon 1 and sequencing to pen-
tagon 12, two of the four vertices in a tetrahedron come from a side of the pentagon
in question with the remaining two vertices being the centroid for the associated
pentagon and the centroid for the dodecahedron, i.e., the co-ordinate origin. From
Table 3, tetrahedron 1 contains vertices 11 and 2 of pentagon 1, tetrahedron 2 con-
tains vertices 2 and 10, tetrahedron 3 contains vertices 10 and 9, tetrahedron 4
contains vertices 9 and 1, tetrahedron 5 contains vertices 1 and 11, tetrahedron 6
contains vertices 10 and 2 from pentagon 2, etc. The first and fourth vertices of a
tetrahedron associate with the centroids of its pentagon and dodecahedron, respec-
tively, with the remaining two being assigned in a right-handed manner such that
the first vertex serves as an origin to this tetrahedral triad.
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Table 2 Vertices that locate the endpoints of septal chords in a dodecahedron, as labeled in
Fig. 6(b)

Chord Vertices Chord Vertices Chord Vertices
1 9, 10 11 17, 18 21 7, 18
2 1, 9 12 3, 18 22 7, 14
3 2, 10 13 4, 16 23 13, 14
4 3, 10 14 15, 16 24 8, 14
5 4, 9 15 1, 15 25 8, 16
6 1, 11 16 5, 15 26 5, 19
7 2, 11 17 5, 12 27 6, 20
8 3, 13 18 11, 12 28 7, 20
9 4, 13 19 6, 12 29 8, 19

10 2, 17 20 6, 17 30 19, 20

Table 3 Vertices that locate the corners of regular pentagonal surfaces in a regular dodeca-
hedron, and the chords that connect them. They are indexed counterclockwise when viewed
looking from the outside in, and labeled according to Fig. 6(b). The apex for each pentagon
resides at the peak of the hipped roof-line for that pentagon. This turns out to be important.

Pentagon Vertices Chords
1 11, 2, 10, 9, 1 6, 7, 3, 1, 2
2 10, 2, 17, 18, 3 4, 3, 10, 11, 12
3 13, 4, 9, 10, 3 8, 9, 5, 1, 4
4 9, 4, 16, 15, 1 2, 5, 13, 14, 15
5 15, 5, 12, 11, 1 15, 16, 17, 18, 6
6 17, 2, 11, 12, 6 20, 10, 7, 18, 19
7 18, 7, 14, 13, 3 12, 21, 22, 23, 8
8 16, 4, 13, 14, 8 25, 13, 9, 23, 24
9 12, 5, 19, 20, 6 19, 17, 26, 30, 27

10 14, 7, 20, 19, 8 24, 22, 28, 30, 29
11 20, 7, 18, 17, 6 27, 28, 21, 11, 20
12 19, 5, 15, 16, 8 29, 26, 16, 14, 25
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Fig. 9 The co-ordinate system of a chord p~e1,~e2,~e3q relative to the co-ordinate system of its
dodecahedron p~E1, ~E2, ~E3q with origins located at their respective centroids that are offset by a
translation χ. These describe a mapping rt~e1ut~e2ut~e3us “ rt~E1ut~E2ut~E3usrQs where Q is an
orthogonal rotation. The tangent base vector ~e1 aligns with the axis of this chord. The normal
base vector ~e2 is coaxial with a line segment drawn from the origin out to the chordal axis such
that ~e1 ¨ ~e2 “ 0, while the binormal base vector is given by the cross product ~e3 “ ~e1 ˆ ~e2.

2.7 Co-Ordinate Systems for Chordal Fibers and Pentagonal Membranes

The dodecahedron used to model an alveolus is considered to be regular in its “nat-
ural” configuration, with a capability of being irregular in its reference configura-
tion, and certainly becoming irregular after deformation. The co-ordinate frame of
its natural state is taken to have its origin positioned at the centroid of this regular
dodecahedron, i.e., at the centroid of its enclosed cube (cf. Fig. 6) or, equivalently,
at the origin of that unit sphere for which the dodecahedron inscribes, as presented
in Table 1. We denote the base vectors associated with this frame of reference as
p~E1, ~E2, ~E3q, assigned according to Section 2. There are three other co-ordinate sys-
tems with relevance to our analysis: those for the chordal fibers, those for the pen-
tagonal membranes, and those for the tetrahedral volumes.

The local co-ordinate system of a chordal fiber is presented in Fig. 9. The local
co-ordinate system of a pentagonal membrane is presented in Fig. 10. And the local
co-ordinate system of a tetrahedral volume is presented in Fig. 11. All three, local,
co-ordinate systems are denoted as p~e1,~e2,~e3q and each rotates out of the reference
co-ordinate system p~E1, ~E2, ~E3q of the dodecahedron via its own orthogonal rotation
tensor Q.
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Fig. 10 The co-ordinate system of a pentagon p~e1,~e2,~e3q relative to the co-ordinate system of
its dodecahedron p~E1, ~E2, ~E3q with origins located at their respective centroids that are offset
by a translation χ. These describe a mapping rt~e1ut~e2ut~e3us “ rt~E1ut~E2ut~E3usrQs where Q
is an orthogonal rotation. Base vector ~e1 is coaxial to a line segment that connects two vertices
which locate a pair of shoulders in a pentagon, viz., vertices 2 and 5 in Fig. 7. Base vector ~e2 is
coaxial with a line segment drawn from the head of this pentagon, i.e., vertex 1 in Fig. 7, down
to its base such that ~e1 ¨~e2 “ 0. Base vector ~e3 “ ~e1ˆ~e2 is the outward normal to this surface.

Fig. 11 The co-ordinate system of a tetrahedron p~e1,~e2,~e3q relative to the co-ordinate sys-
tem of its dodecahedron p~E1, ~E2, ~E3q with origins located at their respective centroids. These
describe a mapping rt~e1ut~e2ut~e3us “ rt~E1ut~E2ut~E3usrQs where Q is an orthogonal rotation.
Base vector ~e1 is coaxial to a line segment that connects the centroid of a pentagon with one
of the pentagon’s vertices. Base vector ~e2 is normal to ~e1 and lies in the plane of the pentagon
such that ~e1 ¨ ~e2 “ 0. Base vector ~e3 “ ~e1 ˆ ~e2 points toward the origin of the dodecahedron
along the spine that connects the centroid of the dodecahedron with the centroid of a pen-
tagon. Vertex 1 is at the origin of p~e1,~e2,~e3q. Vertex 2 is along ~e1. Vertex 3 lies in the plane of
the pentagon. And vertex 4 is at the centroid of the dodecahedron p~E1, ~E2, ~E3q.
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3. Kinematics

The irregular dodecahedron used here as a model for alveoli describes a 3D struc-
ture comprising 30 1D rods (the septal chords) joined at 20 nodes (the vertices) that
collectively circumscribe 12 2D pentagonal membranes (the alveolar septa) that in
turn envelop an alveolar sac whose volume is represented using 60 tetrahedra. To be
able to describe the overall mechanical response of this 3D dodecahedral structure,
it is conjectured to be sufficient to know the individual mechanical responses of its
1D septal chords, its 2D septal membranes, and the 3D void within. Their relevant
kinematics are presented here, along with the shape functions used for interpolation
and their descriptions of deformation via stretch, using a Lagrangian measure for
Laplace stretch55 as our chosen kinematic field.

3.1 1D Chords

The stretch of a rod under extension is a ratio of its lengths. Specifically, λ ..“ L{L0

where L and L0 are its current and reference lengths, respectively, whose strain and
strain rate are taken to be e “ lnλ and de “ λ´1dλ. This is often referred to as a
logarithmic, natural, or true strain. Consequently, the kinematic analysis of a chord
is trivial.

3.1.1 Shape Functions for Interpolating a Rod

A two-noded alveolar chord has shape functions Ni, i “ 1, 2, that, when evalu-
ated in its natural co-ordinate system where ´1 ď ξ ď 1, describe a matrix with
elements

N “

”

N1 N2

ı

“

”

1
2
p1´ ξq 1

2
p1` ξq

ı

(15a)

that interpolate vector fields according to

x pξq “
2
ÿ

i“1

Nipξqxi, upξq “
2
ÿ

i“1

Nipξqui, (15b)

etc., and whose spatial gradients are

N1,ξ “ ´
1
2

and N2,ξ “
1
2
, (15c)
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wherein ξ is the natural co-ordinate. Components xi and ui ..“ xi´x0i, i “ 1, 2, are
their global co-ordinates and displacements, respectively, located at the two nodes
of a chord evaluated in the co-ordinate frame p~e1,~e2,~e3q of Fig. 9 with the chordal
axis lying in the ~e1 direction.

3.1.2 Deformation Gradient for a Rod

The deformation gradient in this case is simply

Fpξq “ I`
Bu

Bξ

ˆ

Bx 0

Bξ

˙´1

“ I`
2
ÿ

i“1

Ni,ξui

˜

2
ÿ

i“1

Ni,ξx0i

¸´1

~e1 b ~e1

“ I`
u2 ´ u1

x02 ´ x01

~e1 b ~e1 “
x2 ´ x1

x02 ´ x01

~e1 b ~e1, (16)

which is uniform over the length of a chord, i.e., it is independent of ξ.

3.2 2D Triangles

Triangular elements are needed in a support capacity in order to construct our alve-
olar model; specifically, the four surfaces of a tetrahedron are triangles. What is
required of them is a capability to compute the traction acting across such a surface
through integration. This requires knowledge of their shape functions and quadra-
ture rules, the latter topic being discussed in Section 5.

3.2.1 Shape Functions for Interpolating a Triangle

The shape functions for a triangle expressed in terms of its natural co-ordinates
pξ, ηq, where 0 ď ξ ď 1 and 0 ď η ď 1´ ξ, are given by

N1 “ 1´ ξ ´ η N2 “ ξ N3 “ η (17a)

with gradients of

N1,ξ “ ´1 N2,ξ “ 1 N3,ξ “ 0 (17b)

N2,η “ ´1 N2,η “ 0 N3,η “ 1 (17c)

so that the area of a triangle in its natural co-ordinates is 1/2.

No further kinematics are required from triangular elements in our analysis.
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3.3 2D Irregular Pentagons

The kinematics of an irregular pentagon, on the other hand, are not trivial. Shape
functions are required from which deformation gradients can then be constructed.
Once a deformation gradient is in hand, the state of stretch occurring within a pen-
tagon at its Gauss points can finally be derived. Several possible decompositions of
the deformation gradient are possible, i.e., the notion of stretch is not unique in 2D
(nor in 3D). Here we employ the Lagrangian version of Laplace stretch.56

3.3.1 Wachspress’ Shape Functions for Interpolating an Irregular Pen-
tagon

The idea here is to model each pentagonal face of a dodecahedron with one, pen-
tagonal, finite element. Five constant-strain triangles were originally considered,
but their accuracy was found to be wanting when compared with that of a single
pentagonal element whenever the deformation becomes non-uniform. There was
no difference between them whenever the deformation was just a uniform dilation.

In 1975, Wachspress57,58 derived a set of shape functions Ni that are capable of
interpolating convex polyhedra. His shape functions take on the form of rational
polynomials, viz., Ni “ Ai{B where Ai and B are polynomials. In contrast, classic
isoparametric elements are constructed from polynomial shape functions.59 For the
Wachspress shape functions of a pentagon, the Ai are cubic polynomials, while B
is a quadratic polynomial.

Let us consider a convex pentagonal domain Ω defined over R2 whose vertices have
global co-ordinates of

px1, y1q, px2, y2q, px3, y3q, px4, y4q, px5, y5q

when evaluated in the pentagonal co-ordinate system p~e1,~e2q of Fig. 10, with ~e3

being an outward normal to the pentagon. Associated with this set of global co-
ordinates is a set of local or natural co-ordinates

pξ1, η1q, pξ2, η2q, pξ3, η3q, pξ4, η4q, pξ5, η5q

25



that describe a mapping of interpolation where

xpξ, ηq “
ÿ5

i“1
Nipξ, ηqxi

ypξ, ηq “
ÿ5

i“1
Nipξ, ηq yi

or x pξq “
5
ÿ

i“1

Nipξqx i (18)

which relate natural co-ordinates ξ ” pξ, ηq to global co-ordinates x ” px, yq,
where x i ” pxi, yiq are nodal co-ordinates at the ith vertex, with i indexing counter-
clockwise around a pentagon according to Fig. 7. Displacement upx q ..“ x ´ x 0,
with reference co-ordinates x 0 ” px0, y0q, also obeys this mapping

upξ, ηq “
ÿ5

i“1
Nipξ, ηqui

vpξ, ηq “
ÿ5

i“1
Nipξ, ηq vi

or upξq “
5
ÿ

i“1

Nipξqu i (19)

whose components u i ” pui, viq designate the nodal displacements.

Shape functions Nipξq ” Nipξ, ηq are interpolation functions that place any po-
sition P with local co-ordinates ξ ” pξ, ηq P sΩ, where sΩ ..“ Ω Y BΩ, into their
global co-ordinates x ” px, yq. The shape functions of Wachspress57,58 possess the
following properties60:

1. Partition of unity:
ř5
i“1Nipξq “ 1, 0 ď Nipξq ď 1.

2. Interpolate nodal data: Nipξ jq “ Ξij .

3. Linear completeness:
ř5
i“1Nipξqx i “ x .

4. For ξ P Ω, Nipξq is C8, but for ξ P BΩ, Nipξq is C0, i.e., interpolation is
linear along an edge (or alveolar chord) connecting two neighboring vertices.

Item 4 is often considered a disadvantage of Wachspress shape functions, viz., the
linear interpolation along their boundaries. However, this is appropriate for our
modeling of alveoli, because the septal boundaries are alveolar chords that are taken
to interpolate linearly.

For interpolating a convex, planar, pentagonal shape, the shape functions of Wach-
spress have polynomials of order three in their numerators, and another polynomial
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of order two in their denominators; specifically, we write them here as

Ni`1pξ, ηq “ κiAipξ, ηq{Bpξ, ηq, i “ 1, 2, . . . , 5 (20a)

using a scaling factor of κi, where N1 ð N6. The numerators and denominator for
interpolating a pentagon take on the general form of

Aipξ, ηq “ α0i ` α1iξ ` α2iη ` α3iξ
2
` α4iξη ` α5iη

2

` α6iξ
3
` α7iξ

2η ` α8iξη
2
` α9iη

3, (20b)

Bpξ, ηq “ β0 ` β1ξ ` β2η ` β3ξ
2
` β4ξη ` β5η

2, (20c)

where coefficients in the numerator, i.e., the Ai, differ with index i, while those in
the denominator, viz., the B ..“

ř5
i“1Ai, are the same for all five shape functions.

We apply the construction technique of Dasgupta61 to compute the shape functions
of Wachspress for an irregular convex pentagon. Consider a chord ci that connects
vertex ξ i´1 “ pξi´1, ηi´1q with vertex ξ i “ pξi, ηiq via a straight line segment such
that `i “ 0 with `i ..“ 1´ aiξ ´ biη wherein

ai “
ηi ´ ηi´1

ξi´1ηi ´ ξiηi´1

, (21a)

bi “
ξi´1 ´ ξi

ξi´1ηi ´ ξiηi´1

, (21b)

for which Dasgupta derived the following set of constraints

κi “ κi´1

ˆ

ai`1pξi´1 ´ ξiq ` bi`1pηi´1 ´ ηiq

ai´1pξi ´ ξi´1q ` bi´1pηi ´ ηi´1q

˙

(21c)

with recursion starting at κ1
..“ 1. Coefficients κi enforce property 4 listed above.

With this information in hand, we then derived rational polynomials describing
Wachspress’ shape functions for a pentagon specified in Eq. 20 in terms of the
parameters ai, bi, and κi. The polynomial coefficients for the Ai in Eq. 20b have
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values of

α0i “ 1 (22a)

α1i “ ´pai`1 ` ai`2 ` ai`3q (22b)

α2i “ ´pbi`1 ` bi`2 ` bi`3q (22c)

α3i “ ai`1ai`2 ` ai`2ai`3 ` ai`3ai`1 (22d)

α4i “ ai`1pbi`2 ` bi`3q ` ai`2pbi`1 ` bi`3q ` ai`3pbi`1 ` bi`2q (22e)

α5i “ bi`1bi`2 ` bi`2bi`3 ` bi`3bi`1 (22f)

α6i “ ´ai`1ai`2ai`3 (22g)

α7i “ ´pai`1ai`2bi`3 ` ai`1bi`2ai`3 ` bi`1ai`2ai`3q (22h)

α8i “ ´pai`1bi`2bi`3 ` bi`1ai`2bi`3 ` bi`1bi`2ai`3q (22i)

α9i “ ´bi`1bi`2bi`3 (22j)

which differ for each shape function via index i “ 1, 2, . . . , 5, while the polynomial
coefficients for B in Eq. 20c have values of

βi “
5
ÿ

j“1

αijκj, i “ 0, 1, . . . , 5 (23)

which are the same for all five shape functions. Sums over the four cubic terms in
Eq. 22 all vanish—a byproduct of Wachspress’ formulation. In the above formulæ,
an index count of i ” 0 ùñ i “ 5, while index counts of i ” 6 ùñ i “ 1,
i ” 7 ùñ i “ 2, and i ” 8 ùñ i “ 3. Shape function N1 is illustrated in
Fig. 12, with like images applying for the other four shape functions.

3.3.2 First Derivatives of the Shape Functions

The first derivatives of Wachspress’ shape functions for a pentagon are

Ni`1,ξpξ, ηq “ κiNi,ξpξ, ηq{B
2
pξ, ηq, (24a)

Ni`1,ηpξ, ηq “ κiNi,ηpξ, ηq{B
2
pξ, ηq, (24b)

where Ni`1,ξpξ, ηq “ BNi`1pξ, ηq{Bξ and Ni`1,ηpξ, ηq “ BNi`1pξ, ηq{Bη with

Ni,ξpξ, ηq “ Bpξ, ηqAi,ξpξ, ηq ´B,ξpξ, ηqAipξ, ηq, (24c)

Ni,ηpξ, ηq “ Bpξ, ηqAi,ηpξ, ηq ´B,ηpξ, ηqAipξ, ηq, (24d)
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Fig. 12 Wachspress shape functions for a pentagon, in this case, shape function N1

which contain the polynomials

Ai,ξpξ, ηq “ α1i ` 2α3iξ ` α4iη ` 3α6iξ
2
` 2α7iξη ` α8iη

2, (24e)

Ai,ηpξ, ηq “ α2i ` α4iξ ` 2α5iη ` α7iξ
2
` 2α8iξη ` 3α9iη

2, (24f)

B,ξpξ, ηq “ β1 ` 2β3ξ ` β4η, (24g)

B,ηpξ, ηq “ β2 ` β4ξ ` 2β5η, (24h)

from which the deformation and displacement gradients are constructed.

3.3.3 Second Derivatives of the Shape Functions

The second derivatives of these shape functions, which we used to test the compat-
ibility conditions of this element, are described by

Ni`1,ξξ “ κiNi,ξξpξ, ηq{B
3
pξ, ηq, (25a)

Ni`1,ξη “ κiNi,ξηpξ, ηq{B
3
pξ, ηq, (25b)

Ni`1,ηξ “ κiNi,ηξpξ, ηq{B
3
pξ, ηq, (25c)

Ni`1,ηη “ κiNi,ηηpξ, ηq{B
3
pξ, ηq, (25d)
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where Ni`1,ξηpξ, ηq “ B
2Ni`1pξ, ηq{BξBη, etc., and where

Ni,ξξpξ, ηq “ Bpξ, ηqNi,ξξpξ, ηq ´ 2B,ξpξ, ηqNi,ξpξ, ηq, (25e)

Ni,ξηpξ, ηq “ Bpξ, ηqNi,ξηpξ, ηq ´ 2B,ξpξ, ηqNi,ηpξ, ηq, (25f)

Ni,ηξpξ, ηq “ Bpξ, ηqNi,ηξpξ, ηq ´ 2B,ηpξ, ηqNi,ξpξ, ηq, (25g)

Ni,ηηpξ, ηq “ Bpξ, ηqNi,ηηpξ, ηq ´ 2B,ηpξ, ηqNi,ηpξ, ηq, (25h)

wherein

Ni,ξξpξ, ηq “ Bpξ, ηqAi,ξξpξ, ηq ´B,ξξpξηqAipξηq, (25i)

Ni,ξηpξ, ηq “ Bpξ, ηqAi,ξηpξ, ηq `B,ξpξ, ηqAi,ηpξ, ηq

´B,ηpξ, ηqAi,ξpξ, ηq ´B,ξηpξ, ηqAipξ, ηq, (25j)

Ni,ηξpξ, ηq “ Bpξ, ηqAi,ηξpξ, ηq `B,ηpξ, ηqAi,ξpξ, ηq

´B,ξpξ, ηqAi,ηpξ, ηq ´B,ηξpξ, ηqAipξ, ηq, (25k)

Ni,ηηpξ, ηq “ Bpξ, ηqAi,ηηpξ, ηq ´B,ηηpξ, ηqAipξ, ηq, (25l)

which contain polynomials

Ai,ξξpξ, ηq “ 2α3i ` 6α6iξ ` 2α7iη, (25m)

Ai,ξηpξ, ηq “ α4i ` 2α7iξ ` 2α8iη, (25n)

Ai,ηηpξ, ηq “ 2α5i ` 2α8iξ ` 6α9iη, (25o)

B,ξξpξ, ηq “ 2β3, (25p)

B,ξηpξ, ηq “ β4, (25q)

B,ηηpξ, ηq “ 2β5, (25r)

with Ai,ξηpξ, ηq “ Ai,ηξpξ, ηq and B,ξηpξ, ηq “ B,ηξpξ, ηq.

3.3.4 Deformation Gradient for an Irregular Pentagon

Derivatives of displacement pu, vq taken with respect to the local co-ordinates pξ, ηq
described in terms of gradients of the shape functions Ni,ξpξ, ηq and Ni,ηpξ, ηq of a
pentagon have components

«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff

“

«

ř5
i“1Ni,ξpξ, ηqui

ř5
i“1Ni,ηpξ, ηqui

ř5
i“1Ni,ξpξ, ηq vi

ř5
i“1Ni,ηpξ, ηq vi

ff

, (26a)

30



where u ..“ x ´ x0 and v ..“ y ´ y0. Gradients of the global co-ordinates px0, y0q

evaluated in a reference state taken with respect to the local co-ordinates pξ, ηq have
components

«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff

“

«

ř5
i“1Ni,ξpξ, ηqx0i

ř5
i“1Ni,ηpξ, ηqx0i

ř5
i“1Ni,ξpξ, ηq y0i

ř5
i“1Ni,ηpξ, ηq y0i

ff

, (26b)

wherein px0i, y0iq are the reference global co-ordinates at the ith vertex, while gra-
dients of the global co-ordinates px, yq evaluated in the current state taken with
respect to the local co-ordinates pξ, ηq have components

«

Bx{Bξ Bx{Bη

By{Bξ By{Bη

ff

“

«

ř5
i“1Ni,ξpξ, ηqxi

ř5
i“1Ni,ηpξ, ηqxi

ř5
i“1Ni,ξpξ, ηq yi

ř5
i“1Ni,ηpξ, ηq yi

ff

, (26c)

whose transpose establishes the Jacobian matrix

J ..“

«

Bx{Bξ By{Bξ

Bx{Bη By{Bη

ff

“

«

ř5
i“1Ni,ξpξ, ηqxi

ř5
i“1Ni,ξpξ, ηq yi

ř5
i“1Ni,ηpξ, ηqxi

ř5
i“1Ni,ηpξ, ηq yi

ff

, (26d)

wherein pxi, yiq denote the current global co-ordinates at the ith vertex.

From the above matrices, one can construct the deformation gradient F “ Bx{Bx0 “

I` Bu{Bx 0 for an irregular pentagon via

Fpξ, ηq “

«

F11pξ, ηq F12pξ, ηq

F21pξ, ηq F22pξ, ηq

ff

“

«

1 0

0 1

ff

`

«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff´1

, (27a)

whose inverse is

F´1
pξ, ηq “

1

F11pξ, ηqF22pξ, ηq ´ F21pξ, ηqF12pξ, ηq

«

F22pξ, ηq ´F12pξ, ηq

´F21pξ, ηq F11pξ, ηq

ff

,

(27b)
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while its associated displacement gradient G “ Bu{Bx is given by

Gpξ, ηq “

«

G11pξ, ηq G12pξ, ηq

G21pξ, ηq G22pξ, ηq

ff

“

«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff«

Bx{Bξ Bx{Bη

By{Bξ By{Bη

ff´1

,

(28)
which is not invertible, in general. All are evaluated in the 12 plane belonging to
a co-ordinate system p~e2,~e2,~e3q that orients this pentagon, with ~e3 being normal
to its surface, as illustrated in Fig. 10. The deformation and displacement gradi-
ents are two, fundamental, kinematic fields commonly used in the construction of
constitutive equations.

3.3.5 Compatibility Conditions

To ensure that a deformation is compatible, and therefore integrable, it follows that
the curl of its deformation gradient must be zero.62 This condition is trivially satis-
fied for the shape functions that we use for 1D chords, 2D triangles, and 3D tetrahe-
dra. However, for the Wachspress shape function used to interpolate pentagons, this
needs to be verified. Vanishing of the curl of F results in two constraint equations
for the planar case, they being

F11,2 “ F12,1 and F22,1 “ F21,2 (29)

whose spatial derivatives associate with the p~e1,~e2q co-ordinate frame.

From Eq. 27, it follows that the spatial derivatives of the deformation gradient are

F,1pξ, ηq “
B

Bx0

«

F11pξ, ηq F12pξ, ηq

F21pξ, ηq F22pξ, ηq

ff

“
Bξ

Bx0

¨

˝

B

Bξ

˜«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff¸«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff´1

´

«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff

ˆ

«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff´1
B

Bξ

˜«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff¸«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff´1
˛

‚

(30a)
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and

F,2pξ, ηq “
B

By0

«

F11pξ, ηq F12pξ, ηq

F21pξ, ηq F22pξ, ηq

ff

“
Bη

By0

¨

˝

B

Bη

˜«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff¸«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff´1

´

«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff

ˆ

«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff´1
B

Bη

˜«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff¸«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff´1
˛

‚

(30b)

wherein

B

Bξ

«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff

“

«

ř5
i“1Ni,ξξpξ, ηqui

ř5
i“1Ni,ξηpξ, ηqui

ř5
i“1Ni,ξξpξ, ηq vi

ř5
i“1Ni,ξηpξ, ηq vi

ff

(31a)

B

Bη

«

Bu{Bξ Bu{Bη

Bv{Bξ Bv{Bη

ff

“

«

ř5
i“1Ni,ηξpξ, ηqui

ř5
i“1Ni,ηηpξ, ηqui

ř5
i“1Ni,ηξpξ, ηq vi

ř5
i“1Ni,ηηpξ, ηq vi

ff

(31b)

and

B

Bξ

«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff

“

«

ř5
i“1Ni,ξξpξ, ηqx0i

ř5
i“1Ni,ξηpξ, ηqx0i

ř5
i“1Ni,ξξpξ, ηq y0i

ř5
i“1Ni,ξηpξ, ηq y0i

ff

(31c)

B

Bη

«

Bx0{Bξ Bx0{Bη

By0{Bξ By0{Bη

ff

“

«

ř5
i“1Ni,ηξpξ, ηqx0i

ř5
i“1Ni,ηηpξ, ηqx0i

ř5
i“1Ni,ηξpξ, ηq y0i

ř5
i“1Ni,ηηpξ, ηq y0i

ff

(31d)

with Bξ{Bx0 and Bη{By0 effectively being scaling factors that we take to be de-
scribed as a ratio of septal chord lengths; specifically, let

Bξ

Bx0

»
Bη

By0

«
Lpξ, ηq

L0px, yq
“

cospωq
a

A0{5 tanpωq
, (32)

where Lpξ, ηq is the septal length of a pentagonal edge in its natural configuration,
as drawn in Fig. 7, while L0px, yq is the actual, alveolar, septal length with A0px, yq

being the area of an alveolar septum in its reference state. This formula follows
from Eqs. 5 and 6.

Note: We study compatibility only for the purpose of assessing applicability in our
choice of selecting Wachspress shape functions. Otherwise, it is not required in our
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modeling of an alveolus via a dodecahedron.

3.3.6 Gram–Schmidt Decomposition of the Deformation Gradient

To describe kinematics of a planar membrane, an upper-triangular Gram–Schmidt
decomposition of the deformation gradient F is used in lieu of the symmetric polar
decomposition that is commonly adopted.56,63–66 McLellan51,67 was the first to pro-
pose a triangular decomposition of F, to prove its uniqueness and existence, and to
establish many of its physical properties. This idea has been rediscovered several
times since then.63,68,69 A thorough history of the QR (Gram–Schmidt) decomposi-
tion has been written by Leon et al.,70 with a brief history regarding its application
to kinematics being given in Freed et al.56 Compatibility conditions have been ana-
lyzed in the context of QR kinematics for mechanics problems in two71 and three72

spatial dimensions.

A Lagrangian Gram–Schmidt factorization of the deformation gradient F is written
here as F “ RU , where the rotation R is orthogonal and the Laplace stretch U
is upper-triangular.56* (An Eulerian Gram–Schmidt factorization has just been de-
rived,55 but it came along too late to adopt in this study. Its application is a topic
for future study.) This triangular measure of stretch possesses an inherent property
in two space: the direction aligned with the rotated 1-axis, denoted as ~g 1, remains
invariant under transformation U ,51 i.e., it is a material vector in a neighborhood
surrounding that particle whereat F is evaluated.52 This property has some interest-
ing ramifications addressed in Section 3.3.6.2.

3.3.6.1 QR Factorization of F

The 2 ˆ 2 deformation gradient associated with a planar membrane has a Gram–
Schmidt decomposition expressed in terms of four physical attributes. Three of
these attributes describe deformation. They are defined as65

a “
b

F 2
11 ` F

2
21, b “

F11F22 ´ F12F21
a

F 2
11 ` F

2
21

, g “
F11F12 ` F22F21

F 2
11 ` F

2
21

, (33)

*The QR rotation R and stretch U tensors are distinct from those that arise from a polar de-
composition of a deformation gradient, typically denoted as R and U, as found in any, modern,
continuum mechanics text. McLellan51,67 introduced the Laplace stretch in 1976, which he denoted
as H, while Srinivasa63 denoted it as F̃ in his 2012 paper.
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Fig. 13 Physical attributes of a planar deformation: a and b represent elongations, while g “
tanφ denotes the magnitude of shear. They are measured in a physical frame of reference with
unit base vectors p~g1, ~g2q where ~g1 embeds in the material.

thereby populating Laplace stretch U and its inverse U´1 with components

U “

«

a ag

0 b

ff

and U´1
“

«

1{a ´g{b

0 1{b

ff

, (34)

where a and b are the principal elongations (ratios of current lengths to refer-
ence lengths) and g is the extent of in-plane shear, as measured in a co-ordinate
frame p~g1, ~g2q illustrated in Fig. 13. It is worth pointing out that the components of
Laplace stretch, viz., Uij , are evaluated in the reference co-ordinate system p~e1,~e2q

of the pentagon, as F “ Fij ~ei b ~ej , but their physical interpretations arise in the
Gram rotated co-ordinate system p~g1, ~g2q.

Orthogonal tensor R “
“

~g1

ˇ

ˇ ~g2

‰

“ δij ~gi b ~ej “ Rij ~ei b ~ej rotates the reference
co-ordinate axes p~e1,~e2q into a physical co-ordinate system p~g1, ~g2q through an
angle θ, which is the fourth physical attribute arising from a QR factorization of F.
This angle of rotation describes a proper orthogonal matrix, specifically

R “

«

cos θ ´ sin θ

sin θ cos θ

ff

, (35)

with

sin θ “
F21

a

F 2
11 ` F

2
21

, cos θ “
F11

a

F 2
11 ` F

2
21

6 θ “ tan´1

ˆ

F21

F11

˙

(36)

where a positive angle θ corresponds with a counterclockwise rotation of physical
axes p~g1, ~g2q about reference axes p~e1,~e2q.
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From the four independent components of a planar deformation gradient Fij come
three deformation attributes, i.e., a, b, and g, and one rotational attribute, i.e., θ.

3.3.6.2 Dilemma

Until recently,53 there has been a tacit assumption in prior applications of Gram–
Schmidt factorizations of F. Specifically, the physical base vectors p~g1, ~g2q satisfy
a geometric condition whereby the physical 1-direction ~g1 rotates out of the refer-
ence 1-direction ~e1, but this need not always be the case. Physical vector ~g1 could
equally likely rotate out of the 2-direction ~e2 of the reference frame. At issue is not:
How the physical base vectors orient in space? That is managed by Gram’s proce-
dure. Rather, at issue is: How do the physical base vectors index with respect to the
reference base vectors? This topic is addressed in Section 2 for the 3D case; below,
we address this topic for the 2D case.

To illustrate the concern, consider two deformation histories, as drawn in Fig. 14,
each of which describes a simple shear taking place in the plane of a membrane.
In one case shear occurs in the 1-direction, while in the other case shear occurs in
the 2-direction. There are no elongations in either deformation considered. These
motions lead to different Gram–Schmidt factorizations of the deformation gradient.
When following the protocol of Eqs. 33–36, these factorizations are found to be

F “

«

1 γ

0 1

ff

ùñ R “

«

1 0

0 1

ff

, U “

«

1 γ

0 1

ff

(37a)

and

F “

«

1 0

γ 1

ff

ùñ

$

’

’

’

’

&

’

’

’

’

%

R “
1

a

1` γ2

«

1 ´γ

γ 1

ff

U “

«

a

1` γ2 γ

0 1
L
a

1` γ2

ff (37b)

respectively, where we see that shear U12 has the same physical interpretation in
both cases, viz., γ, but elongations U11 and U22 do not, viz., U11 “ 1 and U22 “ 1 in
Eq. 37a, whereas U11 “

a

1` γ2 and U22 “ 1{
a

1` γ2 for the motion described
in Eq. 37b. Consequently, two geometric interpretations are produced for just one
physical mode of deformation. This cannot be!

The only difference between the motions that lead to the two deformation gradients
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Fig. 14 The left graphic designates a reference configuration while the right two graphics
designate deformed configurations, both in basis p~g1, ~g2q. The top graphic associates with the
motion of Eq. 37a, while the bottom graphic associates with the motion of Eq. 37b.

presented in Eq. 37 is one’s choice for labeling the co-ordinate directions. Matrix
operations of row and column pivoting, taken from linear algebra, allow one to
transform the lower-triangular form of Eq. 37b into an upper-triangular form like
Eq. 37a; hence, producing an unified physical interpretation for both shearing mo-
tions, and thereby providing a means for establishing a remedy to this dilemma.

3.3.6.3 Remedy

For 2D membranes, there are only two co-ordinate re-indexings that are possible
(for 3D solids there are six, cf. Section 2). The default is no re-indexing at all, in
which case

rPs “ rP0s
..“

«

1 0

0 1

ff

ùñ

«

F11 F12

F21 F22

ff

..“

«

F11 F12

F21 F22

ff

(38a)

while in the second case there is a re-indexing specified by

rPs “ rP1s
..“

«

0 1

1 0

ff

ùñ

«

F11 F12

F21 F22

ff

..“

«

F22 F21

F12 F11

ff

(38b)

where components Fij “ PkiFk`P`j are the components to be used in the Gram–
Schmidt factorization presented in Section 3.3.6.1, see also Section 2, and where
P P tP0,P1u is orthogonal, i.e., PPT

“ PTP “ I with detP “ ˘1; specifically,
detP0 “ `1 while detP1 “ ´1.
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Fig. 15 A general description for homogeneous planar deformation, where x, y P R` and
α, β P R. Shears α and β are drawn in their positive sense.

The challenge in implementing such a strategy is to determine when to switch from
P0 (case 1) to P1 (case 2), or back again, viz., from P1 to P0. Continuity in the
physical fields of deformation pa, b, gqmust be satisfied in order for such a change in
co-ordinate frame to be physically meaningful. To this end, it is useful to represent
the components of a planar deformation gradient as

«

F11 F12

F21 F22

ff

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

case 1 :

»

–

F11 F12

F21 F22

fi

fl “

»

–

x βy

αx y

fi

fl

case 2 :

»

–

F22 F21

F12 F11

fi

fl “

»

–

y αx

βy x

fi

fl

(39)

where x “ F11 and y “ F22 are elongations, while ratios α “ F21{F11 and β “
F12{F22 are magnitudes of shear, as illustrated in Fig. 15.

The physical attributes for Laplace stretch, as they pertain to the two cases in Eq. 38,
written in terms of components Fij from F “ Fij ~ei b ~ej as defined in Eq. 39, are
respectively given by

ã “ x
?

1` α2 â “ y
a

1` β2 (40a)

b̃ “ yp1´ αβq
L
?

1` α2 b̂ “ xp1´ αβq
L

a

1` β2 (40b)

g̃ “ ypα ` βq
L

xp1` α2
q ĝ “ xpα ` βq

L

yp1` β2
q (40c)

θ̃ “ tan´1
p´αq θ̂ “ tan´1

p´βq (40d)

where attributes in the left column apply to case 1 (i.e., Eq. 38a) while those in the
right column apply to case 2 (viz., Eq. 38b). The actual set of physical attributes
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ta, b, g, θu that are to be used when quantifying Laplace stretch and its inverse,
according to Eq. 34, are then selected via the strategy

if |g̃| ě |ĝ| : tã, b̃, g̃, θ̃u ÞÑ ta, b, g, θu (41a)

else |g̃| ď |ĝ| : tâ, b̂, ĝ, θ̂u ÞÑ ta, b, g, θu, (41b)

where it is easily verified that ã “ â and b̃ “ b̂ whenever g̃ “ ĝ; consequently, the
physical attributes of deformation a, b, g remain continuous across a co-ordinate
switch, however, the angle of co-ordinate rotation θ will not be continuous across
such a switch between co-ordinate frames, as they represent rotations out of differ-
ent co-ordinate directions. A like statement applies in the 3D case whenever one
uses the re-indexing scheme presented in Section 2, i.e., the physical attributes
of Laplace stretch remain continuous across a re-indexing of one’s co-ordinate
frame.53

The above strategy returns matrices for the rotation and Laplace stretch described in
Eq. 37a for both deformation gradients presented in Eq. 37. The dilemma is reme-
died. Laplace stretch, as remedied, therefore has an unique physical interpretation.
Co-ordinate re-indexing ensures that the invariant properties of Laplace stretch51

are adhered to.

The above protocol is the 2D version of the 3D version53 presented in Section 2. It
is easier to understand what is happening in the 2D case, which is why more detail
is presented here. It may certainly happen that even when the 3D co-ordinates for
the dodecahedron are re-indexed, there may be one or more of the 12 pentagons
whose 2D co-ordinates need to be re-indexed, too.

There are three kinematic variables that describe deformation in a planar membrane:
elongation ratios a and b and simple shear g. These variables will vary both tem-
porally and spatially throughout a pentagon whenever Wachspress’ shape functions
are used.

3.3.7 Thermodynamic Strains and Strain Rates

In terms of the above physical attributes for stretch, i.e., a, b, and g, and their ref-
erence values, viz., a0, b0, and g0, one can define a set of strain attributes derived

39



from thermodynamics, specifically73

ξ ..“ ln

˜

c

a

a0

b

b0

¸

dξ “
1

2

ˆ

da

a
`

db

b

˙

(42a)

ε ..“ ln

˜

c

a

a0

b0

b

¸

dε “
1

2

ˆ

da

a
´

db

b

˙

(42b)

γ ..“ g ´ g0 dγ “ dg (42c)

whose rates are exact differentials, i.e., they are independent of path—a tacit re-
quirement from thermodynamics.74 Here ξ denotes a dilation (uniform areal stretch),
ε denotes a squeeze (pure shear), and γ denotes a (simple) shear.

3.3.7.1 Stretch Rates

The following approximations for stretch rates were derived by Freed and Zamani.52

From these, the various strain rates listed in Eq. 42 can be established.

A forward difference formula is used to approximate rates in the reference config-
uration for the various stretch attributes, as obtained from dU0 “ pU1 ´ U0q{dt`

Opdtq that, neglecting higher-order terms, produces

da0 “
a1 ´ a0

dt
, db0 “

b1 ´ b0

dt
, dg0 “

a1

a0

´g1 ´ g0

dt

¯

, (43)

where dt “ t1 ´ t0 is the applied time step. A backward difference formula dU1 “

pU1 ´ U0q{dt`Opdtq is used to estimate rates for the various stretch attributes at
the end of its first integration step that, neglecting higher-order terms, give

da1 “
a1 ´ a0

dt
, db1 “

b1 ´ b0

dt
, dg1 “

a0

a1

´g1 ´ g0

dt

¯

. (44)

Curiously, there is a distinction in how the shear rates are approximated at the two
nodes for this first interval of integration.

Equations 43 and 44 are first-order approximations for these derivatives. Second-
order approximations can be established whenever i ą 0 provided the stepsize for
step ri, i`1s equals the stepsize for step ri´1, is, where state i “ 0 associates with
an initial condition. The backward difference formula dU i`1 “ p3U i`1 ´ 4U i `
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U i´1q{2dt`O
`

pdtq2
˘

then produces rates for the stretch attributes of

dai`1 “
3ai`1 ´ 4ai ` ai´1

2dt

dbi`1 “
3bi`1 ´ 4bi ` bi´1

2dt

dgi`1 “
2ai
ai`1

´gi`1 ´ gi
dt

¯

´
ai´1

ai`1

´gi`1 ´ gi´1

2dt

¯

,

(45)

which require stretch attributes ai´1, bi´1, and gi´1 to be stored in a finite element
setting.

3.4 3D Irregular Dodecahedra

The primary kinematic variables needed to describe the deformation of an irregular
dodecahedron used as a model for an alveolar sac are its volume V (see Section 2)
and the differential change in volume dV , with the former following from Eq. 14
and the latter coming from a suitable finite difference formula. Whenever the mate-
rial filling an alveolar sac is air (its normal healthy condition), no further breakdown
of these kinematics is required.

However, whenever an alveolar sac is filled with fluid (blood, interstitial fluids,
pflem, etc.), this fluid can be expected to behave solid-like in the face of a passing
shock wave. In this situation, the non-uniform measures for strain (i.e., shears) can
be expected to produce non-uniform responses in stress.

3.4.1 Shape Functions for Interpolating an Irregular Tetrahedron

The shape functions associated with the four vertices of a tetrahedron Ni, i “
1, 2, 3, 4, are defined as

N1 “ 1´ ξ ´ η ´ ζ, N2 “ ξ, N3 “ η, N4 “ ζ, (46a)

where ξ, η and ζ represent natural co-ordinates with 0 ď ξ ď 1, 0 ď η ď 1´ ξ and
0 ď ζ ď 1´ ξ ´ η. Gradients of these shape functions are

N1,ξ “ ´1, N1,η “ ´1, N1,ζ “ ´1

N2,ξ “ 1, N2,η “ 0, N2,ζ “ 0

N3,ξ “ 0, N3,η “ 1, N3,ζ “ 0

N4,ξ “ 0, N4,η “ 0, N4,ζ “ 1 (46b)
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and consequently the deformation gradient will be constant throughout its volume,
like the deformation gradients used for chords and triangles.

3.4.1.1 Deformation Gradient for an Irregular Tetrahedron

The deformation gradient for a volume element is constructed from

Fpξ, η, ζq “

»

—

–

1 0 0

0 1 0

0 0 1

fi

ffi

fl

`

»

—

–

Bu{Bξ Bu{Bη Bu{Bζ

Bv{Bξ Bv{Bη Bv{Bζ

Bw{Bξ Bw{Bη Bw{Bζ

fi

ffi

fl

»

—

–

Bx0{Bξ Bx0{Bη Bx0{Bζ

By0{Bξ By0{Bη By0{Bζ

Bz0{Bξ Bz0{Bη Bz0{Bζ

fi

ffi

fl

´1

(47)

such that, for the four-node tetrahedron considered here, one has

»

—

–

Bu{Bξ Bu{Bη Bu{Bζ

Bv{Bξ Bv{Bη Bv{Bζ

Bw{Bξ Bw{Bη Bw{Bζ

fi

ffi

fl

“

»

—

–

ř4
i“1Ni,ξui

ř4
i“1Ni,ηui

ř4
i“1Ni,ζui

ř4
i“1Ni,ξvi

ř4
i“1Ni,ηvi

ř4
i“1Ni,ζvi

ř4
i“1Ni,ξwi

ř4
i“1Ni,ηwi

ř4
i“1Ni,ζwi

fi

ffi

fl

“

»

—

–

u2 ´ u1 u3 ´ u1 u4 ´ u1

v2 ´ v1 v3 ´ v1 v4 ´ v1

w2 ´ w1 w3 ´ w1 w4 ´ w1

fi

ffi

fl

(48a)

whose nodal displacements u i
..“ x i ´ x 0i, i “ 1, 2, 3, 4, have components of

u i “ ui ~E1 ` vi ~E2 ` wi ~E3 with ui ..“ xi ´ x0i, vi ..“ yi ´ y0i, and wi ..“ zi ´ z0i,
evaluated in the reference co-ordinate frame p~E1, ~E2, ~E3q of the dodecahedron, and

»

—

–

Bx0{Bξ Bx0{Bη Bx0{Bζ

By0{Bξ By0{Bη By0{Bζ

Bz0{Bξ Bz0{Bη Bz0{Bζ

fi

ffi

fl

“

»

—

–

ř4
i“1Ni,ξx0i

ř4
i“1Ni,ηx0i

ř4
i“1Ni,ζx0i

ř4
i“1Ni,ξy0i

ř4
i“1Ni,ηy0i

ř4
i“1Ni,ζy0i

ř4
i“1Ni,ξz0i

ř4
i“1Ni,ηz0i

ř4
i“1Ni,ζz0i

fi

ffi

fl

“

»

—

–

x02 ´ x01 x03 ´ x01 x04 ´ x01

y02 ´ y01 y03 ´ y01 y04 ´ y01

z02 ´ z01 z03 ´ z01 z04 ´ z01

fi

ffi

fl

(48b)
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whose initial nodal positions are x 0i “ x0i
~E1` y0i

~E2` z0i
~E3 at vertex i. This ma-

trix is invertible, because the four vertices of a tetrahedron are distinct. The Jacobian
matrix is therefore given by

J ..“

»

—

–

Bx{Bξ By{Bξ Bz{Bξ

Bx{Bη By{Bη Bz{Bη

Bx{Bζ By{Bζ Bz{Bζ

fi

ffi

fl

“

»

—

–

ř4
i“1Ni,ξxi

ř4
i“1Ni,ξyi

ř4
i“1Ni,ξzi

ř4
i“1Ni,ηxi

ř4
i“1Ni,ηyi

ř4
i“1Ni,ηzi

ř4
i“1Ni,ζxi

ř4
i“1Ni,ζyi

ř4
i“1Ni,ζzi

fi

ffi

fl

“

»

—

–

x2 ´ x1 y2 ´ y1 z2 ´ z1

x3 ´ x1 y3 ´ y1 z3 ´ z1

x4 ´ x1 y4 ´ y1 z4 ´ z1

fi

ffi

fl

(48c)

whose determinant is used in integrations. The current nodal positions have com-
ponents x i “ xi ~E1 ` yi ~E2 ` zi ~E3, i “ 1, 2, 3, 4, in the dodecahedral frame
p~E1, ~E2, ~E3q. The Jacobian matrix remains invertible provided that the four vertices
of a tetrahedron remain distinct.

3.4.2 QR Factorization of F

The re-indexed deformation gradient presented in Section 2 has a Gram–Schmidt
decomposition that we denote as F “ RU whose components are an orthogonal
rotation matrix R “

“

~g1

ˇ

ˇ ~g2

ˇ

ˇ ~g3

‰

“ δij ~gi b ~Ej “ Rij
~Ei b ~Ej and an upper-

triangular matrix U “ Uij ~Ei b ~Ej called Laplace stretch,56 both evaluated in the
reference co-ordinate frame p~E1, ~E2, ~E3q, so that F “ Fij

~Eib~Ej “ RikUkj ~Eib~Ej ,
and therefore Fij “ RikUkj .

The components of Laplace stretch Uij are readily gotten through a Cholesky factor-
ization of the right Cauchy–Green deformation tensor C “ Cij ~Ei b ~Ej with tensor
components Cij “ FkiFkj that relate to their physical attributes via73

U “

»

—

–

a aγ aβ

0 b bα

0 0 c

fi

ffi

fl

with inverse U´1
“

»

—

–

1{a ´γ{b ´pβ ´ αγq{c

0 1{b ´α{c

0 0 1{c

fi

ffi

fl

(49)
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with tensor components Uij being evaluated according to formulæ63

U11 “
a

C11 U12 “ C12{U11 U13 “ C13{U11

U21 “ 0 U22 “

b

C22 ´ U 2
12 U23 “

`

C23 ´ U12U13

˘

{U22

U31 “ 0 U32 “ 0 U33 “

b

C33 ´ U 2
13 ´ U 2

23

(50)

implying that the physical attributes for Laplace stretch can be evaluated via

a ..“ U11, b ..“ U22, c ..“ U33, α ..“
U23

U22

, β ..“
U13

U11

, γ ..“
U12

U11

, (51)

where a, b, and c are three, orthogonal, elongation ratios, and where α, β, and γ are
three, orthogonal, simple shears, with a0, b0, c0, α0, β0, and γ0 denoting their values
in some reference state. The elongations must be positive, whereas the shears may
be of either sign. Collectively, they constitute a complete set of physical attributes
for describing stretch from which constitutive equations can then be constructed.

No eigenvalue/eigenvector analysis is required to acquire either the stretch compo-
nents or their attributes when using this technique.63 The eigenvalues and eigen-
vectors of the triangular Laplace stretch equate with the eigenvalues and eigen-
vectors of the symmetric polar stretch only in an absence of shear.68 Laplace stretch
associates with the geometric description of a cube deforming into a parallelepiped;
whereas, polar stretch associates with the geometric description of a sphere deform-
ing into an ellipsoid. They are distinct geometric measures for stretch.
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3.4.3 Thermodynamic Strains and Strain Rates

In terms of the above physical attributes for stretch, one can define an useful set of
strain attributes derived from thermodynamics, specifically73

Ξ ..“ ln

˜

3

c

a

a0

b

b0

c

c0

¸

dΞ “
1

3

ˆ

da

a
`

db

b
`

dc

c

˙

(52a)

ε1
..“ ln

˜

3

c

a

a0

b0

b

¸

dε1 “
1

3

ˆ

da

a
´

db

b

˙

(52b)

ε2
..“ ln

˜

3

c

b

b0

c0

c

¸

dε2 “
1

3

ˆ

db

b
´

dc

c

˙

(52c)

γ1
..“ α ´ α0 dγ1 “ dα (52d)

γ2
..“ β ´ β0 dγ2 “ dβ (52e)

γ3
..“ γ ´ γ0 dγ3 “ dγ (52f)

whose rates are exact differentials, i.e., they are independent of path—a tacit re-
quirement from thermodynamics.74 Here Ξ represents dilatation, ε1 is a squeeze in
the 12 plane, and ε2 is a squeeze in the 23 plane, while γ1 is a shear in the 23 plane,
γ2 is a shear in the 13 plane, and γ3 is a shear in the 12 plane, which are three, or-
thogonal, simple shearing motions. There is a third squeeze, too, viz., ε3 “ ´ε1´ε2,
but it is not an independent descriptor of strain.

3.4.3.1 Stretch Rates

The following approximations for stretch rates were derived by Freed and Zamani.52

From these, the various strain rates listed in Eq. 52 can be established.

A forward difference formula is used to approximate rates in the reference config-
uration for the various stretch attributes, as obtained from dU0 “ pU1 ´ U0q{dt`

Opdtq. Neglecting higher-order terms, this produces

da0 “
a1 ´ a0

dt
dα0 “

b1

b0

´α1 ´ α0

dt

¯

db0 “
b1 ´ b0

dt
dβ0 “

a1

a0

ˆ

β1 ´ β0

dt

˙

dc0 “
c1 ´ c0

dt
dγ0 “

a1

a0

´γ1 ´ γ0

dt

¯

.

(53)

A backward difference formula dU1 “ pU1 ´ U0q{dt `Opdtq is used to estimate
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rates for the various stretch attributes at the end of its first integration step, from
which it follows that

da1 “
a1 ´ a0

dt
dα1 “

b0

b1

´α1 ´ α0

dt

¯

db1 “
b1 ´ b0

dt
dβ1 “

a0

a1

ˆ

β1 ´ β0

dt

˙

dc1 “
c1 ´ c0

dt
dγ1 “

a0

a1

´γ1 ´ γ0

dt

¯

.

(54)

Curiously, there is a distinction in how the shear rates are approximated at the two
nodes belonging to this first interval of integration.

Equations 53 and 54 are first-order approximations for these derivatives. Second-
order approximations can be established whenever i ą 0 provided the stepsize for
step ri, i`1s equals the stepsize for step ri´1, is, where state i “ 0 associates with
an initial condition. The backward difference formula dU i`1 “ p3U i`1 ´ 4U i `

U i´1q{2dt`O
`

pdtq2
˘

produces differential stretch rates of

dai`1 “
3ai`1 ´ 4ai ` ai´1

2dt

dbi`1 “
3bi`1 ´ 4bi ` bi´1

2dt

dci`1 “
3ci`1 ´ 4ci ` ci´1

2dt

dαi`1 “ 2
bi
bi`1

´αi`1 ´ αi
dt

¯

´
bi´1

bi`1

´αi`1 ´ αi´1

2dt

¯

dβi`1 “ 2
ai
ai`1

ˆ

βi`1 ´ βi
dt

˙

´
ai´1

ai`1

ˆ

βi`1 ´ βi´1

2dt

˙

dγi`1 “ 2
ai
ai`1

´γi`1 ´ γi
dt

¯

´
ai´1

ai`1

´γi`1 ´ γi´1

2dt

¯

,

(55)

which require data to be stored for the previous state associated with step i´ 1.

3.5 Code Verification: Kinematics

The thermodynamic conjugate pairs of Freed et al.55,65,66,73 result in the follow-
ing geometric/thermodynamic strain measures for our dodecahedral model. For 1D
rods: an axial strain e “ lnpL{L0q. For 2D membranes: a dilation ξ “ ln

a

ab{a0b0

“ ln
a

A{A0, a squeeze (or pure shear) ε “ ln
a

ab0{a0b “ ln
a

Γ{Γ0, and a (sim-
ple) shear γ “ g ´ g0. And for 3D dodecahedra: a dilatation Ξ “ ln 3

a

V{V0 and,
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Fig. 16 Response of a dodecahedron exposed to an isotropic motion of dilatation. The abscissa
is the control variable and the ordinates are response variables. The right graphic plots the
areal response of the pentagons ξ “ ln

a

A{A0, while the left graphic plots the axial response
of the chords e “ lnpL{L0q. Both are plotted against the volumetric response of the dodecahe-
dron Ξ “ ln 3

a

V{V0. Here V denotes dodecahedral volume, A denotes pentagonal area, and L
denotes chordal length, all being evaluated in the current state, whose reference values are V0,
A0 and L0.

for those cases where the medium within an alveolar sac can support non-uniform
stresses, two squeezes ε1 “ ln 3

a

ab0{a0b and ε2 “ ln 3
a

bc0{b0c plus three shears
γ1 “ α ´ α0, γ2 “ β ´ β0, and γ3 “ γ ´ γ0.

3.5.1 Isotropic Motions

Imposing an uniform far-field motion of a volumetric expansion onto our dodeca-
hedral model results in a dodecahedral dilatation (Ξ ..“ ln 3

a

V{V0) that equals its
pentagonal dilation (ξ ..“ ln

a

A{A0) that equals its chordal strain (e ..“ lnpL{L0q).
These three strain measures follow from the 3-mode thermodynamic theory of
Freed et al.,55,65,66 as presented above. Other choices for strain measures do not
result in one-to-one relationships when exposed to an isotropic motion like those
observed here. This is a particularly useful result in that it establishes a meaningful
scaling in terms of strains between the three dimensions, cf. Fig. 16. It also provides
for a verification of the numerical implementation of our dodecahedral model.

3.5.1.1 Geometric vs. Thermodynamic Strains

There are two types of strain measures that one can use to quantify deformation
within a pentagon of a dodecahedron: geometric and thermodynamic. For the uni-
form far-field motion of volumetric expansion, only a thermodynamic strain known
as dilation, i.e., ξ “ ln

a

ab{a0b0, varies with the motion, and its response equals
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Fig. 17 Response of a dodecahedron exposed to a far-field isotropic motion of dilatation. The
abscissa is the control variable and the ordinates are response variables. The right graphic
plots the three thermodynamic strains, as they apply to a pentagon, while the left graphic
plots the geometric strain of a pentagon.

that of the geometric strain ln
a

A{A0, see Fig. 17. Also present in this graph is
an observation that the thermodynamic strains for squeeze ε and shear γ do not
contribute under motions of pure dilatation, as expected. This further verifies the
numerical implementation of our dodecahedral model.

To put this into perspective, we compare with studies done by multiple investigators
where ratios of alveolar surface area, viz., A{A0, have been measured in rat, rabbit,
guinea pig, and cat, cf. Roan and Waters30 (Table 1). These experiments considered
ranges that went as low as 25% and as high as 100% of total lung capacity. Taking
statistics of their tabulation produced results ofA{A0 “ 1.47˘0.44 during inflation
and A{A0 “ 1.18˘ 0.14 during deflation, which correspond to a ξ “ ln

a

A{A0 “

0.19 ˘ 0.18 for inflation and a ξ “ ln
a

A{A0 “ 0.08 ˘ 0.07 for deflation. These
areal strain values coincide with chordal strains of e “ lnpL{L0q “ 0.13 measured
in vivo around the periphery of an alveolus in rat lung, as reported by Perlman
and Bhattachary.75 Our kinematics have been verified well past these physiologic
ranges, viz., for dilatations up to 100% logarithmic strain.

3.5.2 Isochoric Motions

The motions of pure and simple shears are volume preserving. Imposing these
shears as far-field motions onto our dodecahedral model produced the results dis-
played in Fig. 18. For a simple shear, the numerical model is in error by about
machine precision, i.e., εm « 2.2 ˆ 10´16, for strains up to 100%, while for pure
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Fig. 18 Response of a dodecahedron exposed to far-field motions of pure and simple shears.
Note that the ordinate is ˆ10´15 and machine precision is „ 2.2ˆ 10´16.

shear (a special case of squeeze in 3D) the model is in error by about machine pre-
cision for strains up to of about 60%, after which the error increases up to about
10εm at strains around 100%. This further verifies the numerical implementation of
our dodecahedral model.

3.5.2.1 Geometric Strains

How the 30 chords and 12 irregular pentagons deform under far-field motions of
pure shear is displayed in Fig. 19. Figure 18 demonstrates that the overall response
of a dodecahedron is isochoric during pure shear. Regardless, Fig. 19 demonstrates
that individual chordal and pentagonal constituents deform in a non-homogeneous
manner, where the strains have been calculated as geometric changes in dodeca-
hedral shape. This result agrees with in vivo observations made by Perlman and
Bhattacharya75 where confocal microscopy was used to image a breathing rat lung.

For the chords, there are six independent responses for dodecahedral motions of
pure shear: two chords each for three of these lines, and eight chords each for the
remaining three curves present in the left images of Fig. 19. For pentagons, there
are three independent responses with four pentagons responding according to each
curve shown in the right images. Although different chords and pentagons deform
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Fig. 19 Response of a dodecahedron exposed to far-field pure-shear motions in the sense of
Treloar76: a “ `, b “ 1{` and c “ 1 in the top images; a “ 1, b “ ` and c “ 1{` in the middle
images; and a “ 1{`, b “ 1 and c “ ` in the bottom images, with ` denoting an elongation of
extrusion. In all six graphic images, the relevant (controlled) motion of the far-field pure shear
is plotted along the abscissa. In each image pair, the right graphic presents pentagonal dila-
tions, while the left graphic presents chordal elongations. Only unique responses are plotted;
repetitions are not.
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differently when sheared in different directions, their collective responses are the
same regardless of the far-field direction being sheared. Consequently, the local
geometric response of a dodecahedron is isotropic under the far-field motions of
pure shear.

How the 30 chords and 12 irregular pentagons deform under far-field motions of
simple shear is displayed in Fig. 20. Figure 18 demonstrates that the overall re-
sponse of a dodecahedron is isochoric during a far-field simple shear. Figure 20
demonstrates that the individual chordal and pentagonal constituents deform in a
non-homogeneous manner during simple shears, like they do for pure shears. How-
ever, unlike pure shears whose collective chordal and pentagonal responses remain
isotropic, here they diverge slightly from isotropy under motions of simple shear.
Simple shears in the 12 and 23 planes have the same collective response; whereas,
simple shear in the 13 plane has a slightly different response with respect to changes
in the shearing direction.

Figures 16–20 show that a dodecahedron is (nearly, but not completely) isotropic
in its kinematic response, as measured by the geometric strains e “ lnpL{L0q, ξ “
ln
a

A{A0, and Ξ “ ln 3
a

V {V0. Furthermore, even though a far-field deformation
is homogeneous, in accordance with our Conjecture on pg. 7, the local deformations
within the individual constituents of an alveolus will typically be heterogeneous,
which agrees with imaging data.75

3.5.2.2 Thermodynamic Strains

Addressing the septal response, modeled here as a set of 12 irregular pentagons per
alveolus, we desire to come to a determination regarding how to best model the
deformation occurring within these alveolar septa. In the section above we inves-
tigated the geometric response of alveolar septa via the strain measure ln

a

A{A0,
which quantifies dilation.

The thermodynamic strains arising from a Gram–Schmidt factorization of the de-
formation gradient put forward in Section 3.3.6 specify three strain measures per-
tinent to a membrane: dilation ξ “ ln

a

ab{a0b0, squeeze ε “ ln
a

ab0{a0b, and
shear γ “ g ´ g0, where elongations a and b and magnitude of shear g are illus-
trated in Fig. 13. Of these, dilation is an uniform response, while squeeze and shear
describe isochoric non-uniform responses. To acquire them requires knowing the
deformation gradient.
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Fig. 20 Response of a dodecahedron exposed to far-field simple-shear motions. In all six
graphic images, the relevant (controlled) motion of simple shear is plotted along the abscissa.
In each image pair, the right graphic presents pentagonal dilations, while the left graphic
presents chordal elongations. Only unique responses are plotted; repetitions are not. Re-
sponses in the 13 plane differ slightly from those of the 12 and 23 planes.
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The curves in Figs. 19 and 20 were obtained from geometric measures for chordal
strain lnpL{L0q and areal dilation ln

a

A{A0. They were computed under separate
far-field conditions of pure and simple shears. The curves in Figs. 21 and 22 were
obtained from thermodynamic measures for membrane strain under the same far-
field deformations. The strains of dilation ξ, squeeze ε, and shear γ were computed
in accordance with Section 3.3.6 using deformation gradients gotten from the pen-
tagonal shape functions of Wachspress57 discussed in Section 3.3.1.*

Figures 19–22 allow us to conclude that if septal dilation were the only mode of pla-
nar deformation thought to cause a mechanical response, then knowledge of the ge-
ometric strain ξ “ ln

a

A{A0 would be adequate; there would be no need to intro-
duce a separate finite element discretization of the septal planes for acquiring their
deformation gradients. However, if the non-uniform responses of squeeze ε and
shear γ are thought to contribute to the overall mechanical response of these mem-
branes, then the shape functions of Wachspress57,58 ought to be used for acquiring
the deformation gradient within a septal plane. We found, but do not present figures
to support this observation, that constant-strain triangles are not accurate enough for
our application whenever non-uniform deformations are considered. Strains derived
from Wachspress shape functions are inhomogeneous; consequently, the deforma-
tion gradient will need to be evaluated at each Gauss point of integration within a
pentagon, cf. Section 5.2.1.3.

3.5.3 Co-ordinate Pivoting

The pivoting strategy of Section 3.3.6.3 used to address the physical dilemma of
Section 3.3.6.2 did not engage often during our assessment of the code, but it did
arise at least twice with effects illustrated in Figs. 23 and 24. Here one can see that
there is a clear effect on the shear response within four pentagonal planes; however,
no change is observed to have occurred in either the dilation or squeeze responses,
as expected. It is not always possible to know when or where a co-ordinate rela-
beling ought to occur; consequently, the algorithm put forward in Section 3.3.6.3 is
deemed necessary.

*Five constant-strain triangles were also used to quantify the deformation gradient for each
pentagonal surface at its centroid—the common vertex to all five triangles. This approach provided
accurate descriptions for uniform strain, i.e., dilation ξ, but not for the two non-uniform strains, viz.,
squeeze ε and shear γ; hence, our preference to use Wachspress shape functions for alveolar planes.
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Fig. 21 Same boundary conditions as in Fig. 19. Pentagonal areas were used to compute di-
lation in Fig. 19. The shape functions of Wachspress were used to compute dilation here. The
uniform response in the right column of Fig. 19 and in the left column above are the same,
providing additional assurance that the code has been correctly implemented. The squeeze
response shown in the center column is the same for all three orientations of far-field pure
shear, i.e., this response is isotropic. The right column has ordinates scaled by 10´14 implicat-
ing that there is no effective simple shear response occurring within any pentagonal surface of
the dodecahedron whenever it is subjected to a far-field motion of pure shear.
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Fig. 22 Same boundary conditions as in Fig. 20. Pentagonal areas were used to compute di-
lation in Fig. 20. The shape functions of Wachspress were used to compute dilation here. The
uniform response in the right column of Fig. 20 and in the left column above are the same,
providing additional assurance that the code has been correctly implemented. Like the dila-
tional responses of the left column, the squeeze responses of the center column are the same in
the 12 and 23 planes, but differ in the 13 plane. In all cases, the simple shear response of any
pentagonal plane is proportional to that of the far-field shear imposed, further substantiating
the code’s implementation. The shear response of the septal membranes is isotropic.
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Fig. 23 A far-field shear of γ23 is imposed on the dodecahedron. Pentagons 1 and 8 exhibit the
plotted response. The top set of figures result whenever the pivoting strategy of Section 3.3.6.3
is used, while the bottom set of figures result whenever no pivoting strategy is employed. The
dilation (left graphs) and squeeze (center graphs) responses are not effected by pivoting, only
shear (right graphs) is effected. Pivoting maintains a linear shear response under a far-field
shearing of the dodecahedron, as desired.

Fig. 24 A far-field shear of γ23 is imposed on the dodecahedron. Pentagons 3 and 10 exhibit the
plotted response. The top set of figures result whenever the pivoting strategy of Section 3.3.6.3
is used, while the bottom set of figures result whenever no pivoting strategy is employed. The
dilation (left graphs) and squeeze (center graphs) responses are not effected by pivoting, only
shear (right graphs) is effected. Pivoting maintains a linear shear response under a far-field
shearing of the dodecahedron, as desired.
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Fig. 25 Planar compatibility requires F11,2 “ F12,1 and F22,1 “ F21,2 where the left-hand
sides of these formulæ are plotted as the abscissæ and the right-hand sides are plotted as the
ordinates. For compatibility, the response ought to lie along the 45˝ diagonal, which is drawn
in red over the range of˘10´15 where machine precision is about 2.2ˆ10´16. Here the motion
is one of uniform dilatation out to 100% strain.

3.5.4 Compatible Membrane Deformations

For a deformation to be compatible, and therefore integrable, the curl of its defor-
mation gradient must vanish, viz., curlpFq “ 0.62 Equation 29 provides constraint
equations for the compatibility of planar motions, e.g., septal planes of an alveolus.
Here we test to make sure that these conditions are satisfied within the pentagonal
planes of our alveolar dodecahedron, assuming that the shape functions of Wachs-
press apply.

Figure 25 presents the compatibility response at the centroid of a typical pentagonal
plane during the uniform expansion of a regular dodecahedron out to 100% strain.
Theoretically, all four derivatives should be zero for this motion. Actually, their
values are on the order of machine precision. Most importantly, whenever they are
not zero, they lie along the 45˝ diagonal, thereby verifying compatibility in the case
of a dilatation.

Similarly, Figs. 26 and 27 present typical responses for testing compatibility dur-
ing far-field pure shear (Fig. 26) and simple shear (Fig. 27) deformations. In both
cases, one of the four pentagons around the girth of the dodecahedron (viz., #5) has
been selected, as both modes of deformation are activated in this pentagon. In both
cases, errors are typically less than 10 times machine precision, thereby verifying
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compatibility in the cases of squeeze and shear.

This collective set of graphs, Figs. 25–27, investigate the constraint of compatibility
in terms of the three fundamental modes of deformation: dilatation, squeeze, and
shear. These figures verify that the constraint of compatibility is satisfied when
using the pentagonal shape functions of Wachspress57,58 in our dodecahedral model,
as errors are typically less than 10 times machine precision. This has been verified
out to deformations that are at least 3 times those of their normal physiologic range.

Our kinematic analysis of a dodecahedron has been verified, both theoretically and

numerically.
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Fig. 26 Planar compatibility requires F11,2 “ F12,1 and F22,1 “ F21,2 where the left-hand
sides of these formulæ are plotted as the abscissæ and the right-hand sides are plotted as the
ordinates. For compatibility, the response ought to lie along the 45˝ diagonal, which is drawn
in red over the range of˘10´15 where machine precision is about 2.2ˆ10´16. Here the motion
is one of pure shear out to 100% strain with elongation occurring in the 1-direction, contrac-
tion occurring in the 2-direction, while the 3-direction is held fixed. These results pertain to
pentagon 5: nodes 15, 5, 12, 11, 1, cf. Fig. 6 and Table 3. The top row of figures is the best
response among the Gauss points, while the bottom row of figures is the worst response.
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Fig. 27 Planar compatibility requires F11,2 “ F12,1 and F22,1 “ F21,2 where the left-hand
sides of these formulæ are plotted as the abscissæ and the right-hand sides are plotted as the
ordinates. For compatibility, the response ought to lie along the 45˝ diagonal, which is drawn
in red over the range of˘10´15 where machine precision is about 2.2ˆ10´16. Here the motion
is one of simple shear out to 100% strain, shearing along 1-2 planes in the 1-direction. These
results pertain to pentagon 5: nodes 15, 5, 12, 11, 1, cf. Fig. 6 and Table 3. The top row of
figures is the best response among the Gauss points, while the bottom row of figures is the
worst response.
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4. Constitutive Theory

Roan and Waters30 and Suki et al.77,78 have both written extensive review articles
on the mechanics of parenchyma. They have provided detailed information about
the structural constituents of alveoli. And they have discussed their influence on the
overall mechanical response of parenchyma. Of particular relevance, from a me-
chanics perspective, are the constituent building blocks of alveolar tissue: collagen
(types I and III, predominantly), elastin, proteoglycans and other structural proteins,
surfactant, and cells (epithelial and endothelial, predominantly). These constituents
are assembled in such a manner so as to produce a variety of alveolar sub-structures
that are essentially 1D (alveolar chords), 2D (alveolar septa), and 3D (alveolar sacs)
in their geometric construction.

A dodecahedron is used here as a geometric model for an alveolus,35 cf. Figs. 4
and 6. This model comprises 30 1D rods that represent alveolar chords, 12 2D
membranes that represent alveolar septa, considered here to be pentagonal in shape,
and 1 3D cavity filled with air (or fluid in the case of a contusion caused by injury, or
of an edema caused by disease) whose geometry is considered to be dodecahedral
in shape. The thermoelastic constitutive equations presented here for spatial chords
and membranes are derived in the Appendix. Elastic behavior is sufficient for our
intended application of studying alveoli subjected to traveling stress waves.

We recall from our kinematic study of a dodecahedron that the geometric strains
(i.e., e ..“ lnpL{L0q for the elongation of septal chords, ξ ..“ ln

a

A{A0 for the dila-
tion of septal membranes, and Ξ ..“ ln 3

a

V {V0 for the dilatation of alveolar volume)
are equivalent to one another under motions of uniform expansion/compression.
These three, geometric, strain measures also exist as thermodynamic strains, each
associating with a distinct and unique conjugate stress.66,73

Constitutive equations are a derived consequence from physical laws governing
thermodynamic processes. Here we derive constitutive equations applicable for
modeling 1D thermoelastic fibers (alveolar chords), 2D thermoelastic membranes
(alveolar septa), and 3D thermoelastic volumes (alveolar sacs). In Section 4, we as-
sume that the motions are uniform in their spatial dimension. Later, in Sections 4.1.3
and 4.2.3.1, the non-uniform motions of squeeze and shear are included into our
thermodynamic framework for membranes and volumes. Section 4.3.3.1 pulls these
results together, sufficient for the intended purpose of modeling the three structural
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facets that compose an alveolus. Specifically, all geometric entities (alveolar chords,
alveolar septa, and alveolar sacs) are now described in terms of stresses (dyne/cm2)
instead of their intensive thermodynamic forces (force, surface tension, or stress).
This is done to facilitate implementation of these models into code, and to facilitate
interpretations of their results by engineers and scientists. This section closes with a
discussion of their implementation into finite elements in Section 4.4.4.2 along with
a set of examples created to verify our code, also in Section 4.4.4.2. The biologic
constitutive equations presented in this part are derived in the Appendix from an
implicit theory of elasticity.

4.1 Green Thermoelastic Solids: Uniform Motions in 1D, 2D, and 3D

Combining the First and Second Laws of Thermodynamics governing uniform, re-
versible, adiabatic processes results in the following three formulæ, one per dimen-
sion; they are

In 1D: dU “ θ dη ` 1
ρ1D

F dL{L (56a)

In 2D: dU “ θ dη ` 1
ρ2D

T dA{A (56b)

In 3D: dU “ θ dη ´ 1
ρ3D

P dV{V (56c)

wherein U is an internal energy density (erg/g = dyne.cm/g), which is a function of
state, θ is a temperature in Kelvin (273 ` ˝C), η is an entropy density (erg/g.K), L
is a length of line (cm), A is an area of surface (cm2), V is a volume of space (cm3),
F is a force (dyne), T is a surface tension (dyne/cm), and P is a pressure (dyne/cm2

= barye), whereas the mass densities ρ1D (g/cm), ρ2D (g/cm2), or ρ3D (g/cm3) as-
sociate with a reference state of per unit length, per unit area, or per unit volume,
as appropriate. Pressure P is assigned to be positive whenever a body undergoes
hydrostatic compression, as classically assigned. However, per accepted practice in
continuum mechanics, the sign of pressure may flip back and forth depending upon
what pressure we are talking about in lung mechanics, e.g., it is common to refer
to transpulmonary pressures as being positive (not negative). Typically, the trace of
stress is positive for this measure of pressure.

4.1.1 Constitutive Equations

Because the internal energy density U is a state function, its differential rate of
change describes a Pfaffian form74 out of which the following constitutive formulæ
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are readily obtained:

In 1D: θ “ BηUpη, lnpL{L0qq F “ ρ1D BlnpL{L0qUpη, lnpL{L0qq (57a)

In 2D: θ “ BηUpη, lnpA{A0qq T “ ρ2D BlnpA{A0qUpη, lnpA{A0qq (57b)

In 3D: θ “ BηUpη, lnpV{V0qq ´P “ ρ3D BlnpV{V0qUpη, lnpV{V0qq (57c)

where strains are logarithms of dimension-appropriate stretches. As a matter of
convenience, we adopt the notation BηU ..“ BU{Bη, etc. Employing the geometric
strains of Section 3, viz., e ..“ lnpL{L0q, ξ ..“ ln

a

A{A0, and Ξ ..“ ln 3
a

V{V0

with differential rates of de “ L´1 dL, dξ “ 1
2
A´1 dA, and dΞ “ 1

3
V ´1 dV , these

constitutive equations take on the simpler form of

In 1D: θ “ BηUpη, eq F “ ρ1D BeUpη, eq (58a)

In 2D: θ “ BηUpη, ξq π “ ρ2D BξUpη, ξq (58b)

In 3D: θ “ BηUpη,Ξq Π “ ρ3D BΞUpη,Ξq (58c)

wherein π ..“ 2T and Π ..“ ´3P are the measures for surface tension and pressure
that we use in this work. We find it useful to use this negative measure for pressure
because the transpulmonary pressure in lung, under normal physiologic conditions,
is typically negative; hence, Π would be positive in its specification of transpul-
monary pressure. The above constitutive equations describe Green thermoelastic
solids of specified dimension undergoing uniform motions in adiabatic enclosures.

We consider response variables for temperature and force/surface-tension/pressure
to be C1 functions of state; therefore, the internal energy U is a C2 function of state
in a Green thermoelastic solid undergoing uniform adiabatic motions (cf. Wein-
hold79 and Gilmore80). Under these conditions of smoothness, one can differentiate
Eq. 58, thereby producing the following collection of coupled, partial, differential
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equations

In 1D:

#

dθ

dF

+

“

«

BηηU BηeU

ρ1D BeηU ρ1D BeeU

ff#

dη

de

+

(59a)

In 2D:

#

dθ

dπ

+

“

«

BηηU BηξU

ρ2D BξηU ρ2D BξξU

ff#

dη

dξ

+

(59b)

In 3D:

#

dθ

dΠ

+

“

«

BηηU BηΞU

ρ3D BΞηU ρ3D BΞΞU

ff#

dη

dΞ

+

(59c)

where mixed partial derivatives obey BeηU “ B2U{BeBη “ B2U{BηBe “ BηeU , etc.,
that in the thermodynamics literature are referred to as Maxwell’s relations; they
are also known as Silvester’s criteria for the integrability of a Pfaffian form.

Exchanging cause and effect between entropy and temperature in Eq. 59 gives rise
to the following:
In 1D:

#

dη

dF

+

“

«

θ{BηηU ´BηeU{BηηU

ρ1Dθ BeηU{BηηU ρ1DpBeeU ´ BeηU ¨BηeU{BηηUq

ff#

θ´1 dθ

de

+

(60a)

In 2D:
#

dη

dπ

+

“

«

θ{BηηU ´BηξU{BηηU

ρ2Dθ BξηU{BηηU ρ2DpBξξU ´ BξηU ¨BηξU{BηηUq

ff#

θ´1 dθ

dξ

+

(60b)

In 3D:
#

dη

dΠ

+

“

«

θ{BηηU ´BηΞU{BηηU

ρ3Dθ BΞηU{BηηU ρ3DpBΞΞU ´ BΞηU ¨BηΞU{BηηUq

ff#

θ´1 dθ

dΞ

+

(60c)

where we recall that de “ L´1 dL, dξ “ 1
2
A´1 dA, and dΞ “ 1

3
V ´1 dV , so that we

have logarithmic rates describing both components in each of the right-hand vectors
above. Here we adopt the independent variables of a Helmholtz free energy, namely
temperature and strain, but we do not employ his potential, preferring to retain
the internal energy potential so as to ensure a proper incorporation of Maxwell’s
constraint.

Constitutive equations (Eqs. 59 and 60) take on the form of a hypo-elastic material
model,81 which is ideal for numerical implementation whenever one uses solution
techniques like those presented in Section 5.
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4.1.2 Material Response Functions

Experiments are performed for the purpose of characterizing material behavior. In
mechanics, we relate measured material properties to gradients and curvatures of
thermodynamic potentials, out of which material models are constructed. Experi-
ments are typically done to quantify the following material properties, defined here
as tangents to response curves, and selected per a material’s physical dimension.
In 1D:

CF ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dF“0

αF ..“
L´1 dL

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dF“0

Eθ ..“
dF

L´1 dL

ˇ

ˇ

ˇ

ˇ

dθ“0

(61a)

In 2D:

CT ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dT“0

αT ..“
A´1 dA

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dT“0

“ 2αF Mθ
..“

dT

A´1 dA

ˇ

ˇ

ˇ

ˇ

dθ“0

(61b)

In 3D:

CP ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dP“0

αP ..“
V ´1 dV

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dP“0

“ 3αF Kθ
..“

´dP

V ´1 dV

ˇ

ˇ

ˇ

ˇ

dθ“0

(61c)

whose analogs, as secant functions, are defined in the Appendix.

The various thermal strain coefficients αF , αT , αP are, however, distinct from one
another. Even though each is dimensionless, each is defined with respect to its own
physical dimension. Nevertheless, because lnpL{L0q “

1
2

lnpA{A0q “
1
3

lnpV{V0q,
it follows that αT “ 2αF and αP “ 3αF , so there is really just one thermal strain
coefficient, i.e., αF , that, hereafter, is denoted as αt where the subscript t denotes
tangent.* It is noteworthy to point out that what one typically refers to as the coef-
ficient of thermal expansion, i.e., α (1/K), is distinct from the thermal strain coeffi-
cient, viz., αt (dimensionless); specifically, αt “ αθ0 for small temperature excur-
sions, cf. the Appendix.

The various specific heatsCF ,CT ,CP (erg/g.K) are distinct, yet essentially, they are
equivalent as each is defined per unit mass, insensitive to dimension. They are evalu-
ated at a fixed thermodynamic force, which does depend upon dimension. Hereafter,

*In the Appendix, sub/super script t is used to denote tangent; whereas, sub/super script s is
used to denote secant, e.g., dF “ Et de whereas F “ Es e. Here, the defined material properties
are tangent properties. Secant properties, and their definitions, can be found in the Appendix. Both
secant and tangent moduli are used in the variational formulation put forward in Section 6.
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we will denote the tangent response to specific heat as Ct that, in the Appendix, is
shown to relate to the secant version of specific heat Cs via

1D: Ct “ Cs ´ αs
F ´ F0

ρ1Dθ
(62a)

2D: Ct “ Cs ´ αs
π ´ π0

ρ2Dθ
(62b)

3D: Ct “ Cs ´ αs
Π´ Π0

ρ3Dθ
(62c)

where Cs is the density of specific heat at constant pressure that one typically finds
tabulated in the literature. Usually, the secant and tangent versions for the thermal
strain coefficient are equivalent, i.e., αs ” αt. Here F0, π0, and Π0 are the force,
surface tension, and pressure associated with some specified reference state, i.e.,
it is in this state where their conjugate strains are assigned to zero, viz., e0 “ 0,
ξ0 “ 0, and Ξ0 “ 0 even though F0 ‰ 0, π0 ‰ 0, and Π0 ‰ 0, in general.

The various tangent moduli Eθ, Mθ, and Kθ are also distinct. They have different
dimensions. Material property Eθ is a modulus of extension (dyne); material prop-
erty Mθ is a modulus of dilation (dyne/cm); and material property Kθ is a modulus
of dilatation (dyne/cm2), a.k.a. the bulk modulus, with each modulus being mea-
sured at a fixed temperature. Shear moduli are discussed later in Sections 4.1.3
and 4.2.3.1. The above material properties are gradients. They constitute tangents
to their associated physical response curves, and as such, are denoted hereafter as
Et, Mt, and Kt. Consequently, they need not be of constant value throughout state
space, like a Hookean material would suppose them to be. In other words, the secant
and tangent moduli need not be the same at any given state. This is an important
characteristic for the hypo-elastic constructions of Eqs. 59 and 60, as they pertain
to our application.

In terms of the thermoelastic material properties given in Eq. 61, of which there are
three per dimension, the internal energy density has three curvatures that associate
with it.
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For 1D materials:

BηηU “
ρ1Dθ

2

ρ1DCtθ ´ α2
tEt

(63a)

BeeU “
CtEtθ

ρ1DCtθ ´ α2
tEt

(63b)

BηeU ” BeηU “
´αtEtθ

ρ1DCtθ ´ α2
tEt

(63c)

For 2D materials:

BηηU “
ρ2Dθ

2

ρ2DCtθ ´ 4α2
tMt

(63d)

BξξU “
4CtMtθ

ρ2DCtθ ´ 4α2
tMt

(63e)

BηξU ” BξηU “
´4αtMtθ

ρ2DCtθ ´ 4α2
tMt

(63f)

For 3D materials (cf. Weinhold79 and Gilmore80):

BηηU “
ρ3Dθ

2

ρ3DCtθ ´ 9α2
tKt

(63g)

BΞΞU “
9CtKtθ

ρ3DCtθ ´ 9α2
tKt

(63h)

BηΞU ” BΞηU “
´9αtKtθ

ρ3DCtθ ´ 9α2
tKt

(63i)

These materials constants are constrained by thermodynamics in that

0 ă Et ă
ρ1DCtθ

α2
t

, 0 ăMt ă
ρ2DCtθ

4α2
t

, 0 ă Kt ă
ρ3DCtθ

9α2
t

(64)

which ensure that their respective thermodynamic Jacobians cannot become singu-
lar. Singularities can and do occur, e.g., during a phase change in a crystal,67,80 but
such processes are not expected to arise in our application.

4.1.3 Thermoelastic Models for Modeling Alveoli: Uniform Motions

We now write down our constitutive formulæ for quantifying uniform responses
in thermoelastic solids of 1, 2, and 3 dimensions. They are thermoelastic constitu-
tive equations (Eq. 60) with Helmholtz variables expressed in terms of the material
properties defined in Eq. 61 assigned to the internal energy density U according to
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Eq. 63, with outcomes of

For 1D:

#

dη

dF

+

“

«

Ct ´ α
2
tEt{ρθ αtEt{ρθ

´αtEt Et

ff#

θ´1 dθ

de

+

(65a)

For 2D:

#

dη

dπ

+

“

«

Ct ´ 4α2
tMt{ρθ 4αtMt{ρθ

´4αtMt 4Mt

ff#

θ´1 dθ

dξ

+

(65b)

For 3D:

#

dη

dΠ

+

“

«

Ct ´ 9α2
tKt{ρθ 9αtKt{ρθ

´9αtKt 9Kt

ff#

θ´1 dθ

dΞ

+

(65c)

where we simplify our expressions by suppressing the dimension for which mass
density applies. This is considered to be understood. There are four material prop-
erties for each dimension (e.g., for 1D materials they are ρ, Ct, αt, and Et) with the
latter three being tangent properties defined according to Eq. 61.

The upper-left element in each matrix of Eq. 65 represents a heat capacity evaluated
at constant strain—a material property not easily measured. Whereas, the specific
heat evaluated at constant pressure (viz., the Cs found in the 11 matrix component
of these tangent moduli, as established in Eq. 62) is more amenable to experiments,
and is the property that one typically finds in published data tables.

Constitutive equations, Eqs. 65a–65c, derived here from the First and Second Laws
of Thermodynamics, describe thermoelastic materials undergoing uniform motions
through adiabatic processes. They present themselves as hypo-elastic material mod-
els,81 which are often preferred for incorporating constitutive equations into finite
element packages.

Equation 65 has cause and effect variables that are appropriate for our multi-scale
application. In this process, a localization procedure pulls the temperature θ and
deformation gradient F taken from the parenchyma scale (e.g., Gauss points in a
finite element grid of lung) down to the level of an alveolar scale (in our modeling,
a dodecahedron). Differential strain rates dU ¨U´1 are then constructed through ap-
propriate finite difference formulæ, where U denotes the Laplace stretch.56 These
continuum rates are then mapped into our local thermodynamic rates, with alveolar
entropy and stress following from a numerical integration of the above constitutive
equations. These constitutive equations apply to the various facets of our dodecahe-
dral model for an alveolar sac through a finite element discretization. Afterword, an
homogenization procedure takes the updated alveolar entropy and nodal tractions,

68



and pushes them up to the continuum level as averaged parenchymal entropy and
parenchymal stresses.

4.2 Green Thermoelastic Membranes: Non-Uniform Motions

The First and Second Laws of Thermodynamics governing a reversible adiabatic
process are described by the formula dU “ θ dη ` 1

ρ
dW , where dW is the me-

chanical power expended by stressing a material element of mass density ρ. For the
case of a 2D planar membrane, a mass density of ρð ρ2D applies, with its change
in mechanical work being expressed as55,65,66

dW “ tr

˜«

S11 S12

S21 S22

ff«

a´1 da pa{bq dg

0 b´1 db

ff¸

“ π dξ ` σ dε` τ dγ, (66a)

wherein Sij are the components of a surface tension evaluated in the co-ordinate
frame of a membrane.

Equation 66a conjectures that the First and Second Laws of Thermodynamics can
be expressed as a differential equation known as a Pfaffian form that, in this case,
looks like

dU “ θ dη ` 1
ρ

`

π dξ ` σ dε` τ dγ
˘

, (66b)

where tπ, σ, τu describes a set of intensive scalar-valued stresses whose thermo-
dynamic conjugates tξ, ε, γu describe a set of extensive scalar-valued strains. This
contrasts with the classic approach, where the work done is decomposed into a
scalar-valued isotropic part and a tensor-valued deviatoric part. The above thermo-
dynamic strains are defined in Section 3.3.6.1, while their conjugate stresses, and
how they relate to the tensor components of stress, are discussed below.

Conjugate pair pξ, πq describes a dilation 2 dξ ð A´1 dA caused by a surface ten-
sion π ð 2T where ξ ..“ ln

a

A{A0 and π ..“ S11 ` S22. This pair describes the
uniform contribution to stress power discussed in Section 4. Pair pε, σq describes a
squeeze ε (or pure shear) caused by a normal-stress difference σ ..“ S11´ S22. And
pair pγ, τq describes an in-plane shear γ caused by a shear stress τ . Collectively,
pairs pε, σq and pγ, τq account for any non-uniform contributions to stress power,
i.e., contributions from other than uniform dilation. These pairs are quantified in
Section 4.4.3.
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4.2.1 General Constitutive Equations

Because a change in the internal energy dU governing a reversible adiabatic pro-
cess is described by an exact differential,74 with Upη, ξ, ε, γq in the case of a planar
membrane, it follows that a constitutive response for a Green thermoelastic mem-
brane is described by

θ “ BηUpη, ξ, ε, γq π “ ρ BξUpη, ξ, ε, γq

σ “ ρ BεUpη, ξ, ε, γq τ “ ρ BγUpη, ξ, ε, γq.
(67)

Considering each intensive variable, viz., θ, π, σ, and τ , to be at least a C1 function
of the set of extensive variables (η, ξ, ε, γ), thereby implies that the internal energy
U is at least a C2 function of state. Therefore, the constitutive expressions in Eq. 67
can be recast into the following system of differential equations:

$

’

’

’

’

&

’

’

’

’

%

dθ

dπ

dσ

dτ

,

/

/

/

/

.

/

/

/

/

-

“

»

—

—

—

—

–

BηηU BηξU BηεU BηγU

ρ BξηU ρ BξξU ρ BξεU ρ BξγU

ρ BεηU ρ BεξU ρ BεεU ρ BεγU

ρ BγηU ρ BγξU ρ BγεU ρ BγγU

fi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

&

’

’

’

’

%

dη

dξ

dε

dγ

,

/

/

/

/

.

/

/

/

/

-

(68)

whose upper-left 2 ˆ 2 sub-matrix also appears in Eq. 59b, which governs the uni-
form contribution of a response. The above 4 ˆ 4 matrix describes the full non-
uniform response permissible by a Green thermoelastic membrane undergoing an
adiabatic process.

For our application, it is reasonable to assume that the presence of a non-uniform
planar motion will not cause an uniform planar response. Said differently, it is rea-
sonable to assume that pure ε and simple γ shears will not affect a change in either
temperature θ or surface tension π. As such, BηεU “ BηγU “ BξεU “ BξγU “ 0,
and Eq. 68 simplifies to

$

’

’

’

’

&

’

’

’

’

%

dθ

dπ

dσ

dτ

,
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/
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/
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/
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“

»

—

—

—

—

–

BηηU BηξU 0 0

ρ BξηU ρ BξξU 0 0

0 0 ρ BεεU ρ BεγU

0 0 ρ BγεU ρ BγγU
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ffi

ffi

ffi

ffi
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with BεηU “ BγηU “ BεξU “ BγξU “ 0 following because of Maxwell’s rela-
tionships. Furthermore, it is considered that the pure and simple shear responses
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act independently, too, so that BγεU “ BεγU “ 0.* Converting the above internal
energy formulation into its Helmholtz equivalent produces two uncoupled matrix
equations; they are

#

dη

dπ

+

“

«

θ{BηηU ´BηξU{BηηU

ρθ BξηU{BηηU ρ
`

BξξU ´ BξηU ¨BηξU{BηηU
˘

ff#

θ´1 dθ

dξ

+

(69a)

where both θ´1 dθ and dξ “ 1
2
A´1 dA are logarithmic rates, and

#

dσ

dτ

+

“ ρ

«

BεεU 0

0 BγγU

ff#

dε

dγ

+

(69b)

where dε “ Γ´1 dΓ is also logarithmic in structure, while dγ “ dg is linear in its
deformation field. All diagonal based strains are logarithmic, while all off-diagonal
based strains are linear in our conjugate pair approach. Equation 69 is the general
form for a Green thermoelastic membrane appropriate for our application.

Note: The uniform response Eq. 69a and the non-uniform response Eq. 69b are,
by supposition, decoupled in this constitutive construction. There is experimental
evidence that the bulk and shear moduli of parenchyma both depend upon transpul-
monary pressure.7,9,82,83 It is conjectured that this is a structural effect of alveolar
geometry; it is not a characteristic of the constituents that compose an alveolus. As
such, we do not couple the uniform and non-uniform responses in the constitutive
framework of Eq. 69 at this time in order that we may test this conjecture.

4.2.2 Material Response Functions

The material model put forward here for a thermoelastic membrane has a mass den-
sity per unit area of ρ and five material properties that appear as tangent functions: a
specific heat Ct at constant tension, a lineal thermal strain coefficient αt at constant
tension, an areal modulus Mt at constant temperature, a squeeze modulus Nt at
constant shear, and a shear modulus Gt at constant squeeze. The density of specific
heat Ct is defined as

Ct ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

T

“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

π

, (70a)

*There is a second-order coupling that can exist between the modes of squeeze and shear in a
3D solid. It is the Poynting effect,66 but this effect is thought not to arise to a level of significance in
a 2D biologic membrane.
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where θ is temperature, η is entropy density, and π “ S11`S22 “ 2T is the surface
tension in a membrane. Ct is commonly referred to in the literature as the specific
heat at constant pressure. The lineal thermal strain coefficient αt is defined as

αt ..“
L´1 dL

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

T

“
1

2

A´1 dA

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

T

“
dξ

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

π

, (70b)

which, here, is a dimensionless material property. A “ ab denotes a relative area
with ξ “ ln

a

A{A0 being the areal strain, a.k.a. dilation. This property is not the
thermal expansion coefficient commonly used in the literature, which has dimen-
sions of reciprocal temperature, cf. the Appendix. The associated, uniform, areal
modulus Mt is defined as

Mt
..“

dT

A´1 dA

ˇ

ˇ

ˇ

ˇ

θ

“
d1

2
pS11 ` S22q

A´1 dA

ˇ

ˇ

ˇ

ˇ

θ

“
1

4

dπ

dξ

ˇ

ˇ

ˇ

ˇ

θ

, (70c)

which is the 2D version of a 3D bulk modulus. A new modulus introduced by Freed
et al.,65 which they call the in-plane squeeze modulus Nt, is defined as

Nt
..“

dN1

Γ´1 dΓ

ˇ

ˇ

ˇ

ˇ

g

“
dpS11 ´ S22q

Γ´1 dΓ

ˇ

ˇ

ˇ

ˇ

g

“
1

2

dσ

dε

ˇ

ˇ

ˇ

ˇ

γ

, (70d)

where σ “ S11 ´ S22 is a normal-stress difference, often denoted as N1 in the
polymers literature, and where Γ “ a{b is the stretch of squeeze with ε “ ln

a

Γ{Γ0

being the strain of squeeze, while γ “ g ´ g0 determines the shear strain. Finally,
an in-plane shear modulus Gt is defined as

Gt
..“

1

Γ

dS21

dg

ˇ

ˇ

ˇ

ˇ

Γ

“
dτ

dγ

ˇ

ˇ

ˇ

ˇ

ε

, (70e)

where τ ..“ ΓS21 establishes the shear stress.

4.2.3 Constitutive Equations Governing a Thermoelastic Membrane

It is the Gibbs free-energy potential (viz., Gpθ, π, σ, τq “ U ´ θη ´ πξ ´ σε´ τγ,
which exchanges cause and effect with that of the internal energy Upη, ξ, ε, γq), that
is most easily expressed in terms of the above material properties, cf. the Appendix;
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specifically, considering that

$

’

’

’

’

&

’

’

’

’

%

dη

dξ

dε

dγ

,

/

/

/

/

.

/

/

/

/

-

“ ´

»

—

—

—

—

–

BθθG BθπG 0 0

ρ BπθG ρ BππG 0 0

0 0 ρ BσσG 0

0 0 0 ρ BττG

fi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

&

’

’

’

’

%

dθ

dπ

dσ

dτ

,

/

/

/

/

.

/

/

/

/

-

where BθπG “ BπθG from Maxwell’s constraint, then incorporating material prop-
erty definitions put forward in Eq. 70 into the above differential equation gives

$

’

’

’

’

&

’

’

’

’

%

dη

dξ

dε

dγ

,

/

/

/

/

.

/

/

/

/

-

“

»

—

—

—

—

–

Ct αt{ρθ 0 0

αt 1{4Mt 0 0

0 0 1{2Nt 0

0 0 0 1{Gt

fi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

&

’

’

’

’

%

θ´1 dθ

dπ

dσ

dτ

,

/

/

/

/

.

/

/

/

/

-

where gradients Bη{Bθ, Bξ{Bθ, and Bπ{Bξ relate to the material properties through
BθθG “ Bη{Bθ, ρ BπθG “ Bξ{Bθ “ ρ BθπG, and ρ BππG “ Bξ{Bπ “ pBπ{Bξq´1. The
upper-left 2ˆ2 sub-matrix, which describes the uniform contribution to a response,
can be rearranged to read as

#

dη

dπ

+

“

«

Ct ´ 4α2
tM{ρθ 4αtM{ρθ

´4αtM 4M

ff#

θ´1 dθ

dξ

+

(71a)

where M “ Mtpθ, ξ, πq, while the non-uniform or shear response of Eq. 69b is
given quite simply by

#

dσ

dτ

+

“

«

2N 0

0 G

ff#

dε

dγ

+

(71b)

where N “ Ntpε, σq and G “ Gtpγ, τq. Collectively, moduli Mt, Nt, and Gt de-
scribe the tangent mechanical response of a thermoelastic membrane. These moduli
can depend upon both stress and strain, in accordance with the implicit theory of
elasticity presented in the Appendix.

4.2.3.1 The Poisson Effect

The areal modulus Mt is ideally determined from an equibiaxial experiment. As-
suming knowledge of its value, then given the following definition for an areal
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Poisson’s ratio
ν ..“ ´

db{b

da{a
,

it immediately follows that the squeeze modulus Nt can be determined from an
uniaxial experiment where traction is applied along that axis from which elongation
a is measured; specifically,

Nt “ 2Mt
1´ ν

1` ν
given that S11 ‰ 0 and S21 “ S22 “ 0,

provided that the temperature θ is held constant. Consequently, 2
3
Mt ď Nt ď 2Mt

follows whenever 0 ď ν ď 1/2, so the squeeze modulus Nt is observed to play an
analogous role as the shear modulus µ does in the classical theory of elasticity.

If one were to consider such a membrane as having an uniform thickness h varying
with deformation to preserve volume, then ν “ 1/2 and Eq. 71b becomes

#

dσ

dτ

+

“

«

4Mt{3 0

0 Gt

ff#

dε

dγ

+

(71c)

which is a useful result, as now there are just two moduli needed to establish through
experiments, viz., Mt and Gt. This result is independent of any assumed functional
form for these material parameters.

Note: The conjugate pair approach presented here allows for a distinct shear mod-
ulus G that can take on any positive value. This is important because shear experi-
ments done on soft tissues, which, unfortunately, are few in number, tend to produce
shear moduli that are many orders in magnitude smaller than their bulk moduli, e.g.,
in parenchyma their ratio is K{G « 104 (150 MPa vs. 10–54 kPa).84 Classically,
such a result has been used to argue that a material can be modeled, to a reasonable
approximation, as being ideally incompressible, with the consequence being that
G ! K. In the conjugate pair approach, incompressibility of a planar membrane
response implicates that Eq. 71c describes their non-uniform response. The idea of
modeling parenchyma as an incompressible material is in complete opposition with
its true physiologic nature; however, it is an appropriate assumption when modeling
the alveolar membranes that make up parenchyma at the microscopic level. In clas-
sical theory, incompressibility constrains its shear modulus G. In the conjugate pair
theory, incompressibility constrains its squeeze modulus N .8,9,55,56,65,66,73 The shear
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modulus in the conjugate pair theory has no counterpart in the classical theory.

4.3 Green Thermoelastic Solids: Non-Uniform Motions

The First and Second Laws of Thermodynamics governing a reversible adiabatic
process done on a 3D body result in the formula dU “ θ dη ` 1

ρ
dW , where dW

is the mechanical power expended by stressing a body with a mass density of ρ;
specifically,55,65,66

dW “ tr

¨

˚

˝

»

—

–

S11 S12 S13

S21 S22 S23

S31 S32 S33

fi

ffi

fl

»

—

–

a´1 da pa{bq dγ pa{cqpdβ ´ α dγq

0 b´1 db pb{cq dα

0 0 c´1 dc

fi

ffi

fl

˛

‹

‚

“ Π dΞ`
3
ÿ

i“1

pσi dεi ` τi dγiq , (72a)

which is subject to constraints σ3 “ ´pσ1 ` σ2q and dε3 “ ´pdε1 ` dε2q. Conse-
quently, six of the seven conjugate pairs in this formulation are independent, as one
ought to expect. Stress components Sij can be either rotated into the Kirchhoff stress
of an Eulerian frame, or they can be pulled back into the second Piola–Kirchhoff
stress of a Lagrangian frame.

The above expression conjectures that the thermodynamics of a 3D elastic solid
contained within the confines of an adiabatic enclosure can be described by the
Pfaffian equation

dU “ θ dη `
1

ρ

˜

Π dΞ`
2
ÿ

i“1

σi dεi ` pσ1 ` σ2qpdε1 ` dε2q `

3
ÿ

i“1

τi dγi

¸

,

(72b)

where stresses tΠ, σ1, σ2, τ1, τ2, τ3u describe a set of independent, scalar-valued,
intensive variables, and where strains tΞ, ε1, ε2, γ1, γ2, γ3u describe a set of inde-
pendent, scalar-valued, extensive variables. This contrasts with the classic approach
where the work done decomposes into a scalar-valued isotropic part and a tensor-
valued deviatoric part. A direct consequence of adopting a triangular construction
for strain rate is that the pure- and simple-shear contributions of a deviatoric re-
sponse can be further separated into independent scalar contributions that are nearly
orthogonal to one another; whereas, they remain coupled into one tensor field when-
ever a symmetric construction for strain rate is adopted, which is standard practice
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today. The above thermodynamic strains are defined in Section 3.4.2, while their
conjugate stresses and how they relate to commonly used stress tensors is discussed
later.

4.3.1 Constitutive Equations

Because a change in the internal energy dU governing a reversible adiabatic process
is described by an exact differential,74 with Upη,Ξ, ε1, ε2, γ1, γ2, γ3q in three space,
it necessarily follows that a constitutive response for a Green thermoelastic solid is
governed by a constitutive equation for temperature73

θ “ BηUpη,Ξ, ε1, ε2, γ1, γ2, γ3q, (73a)

a constitutive equation for pressure

Π “ ρ BΞUpη,Ξ, ε1, ε2, γ1, γ2, γ3q, (73b)

two constitutive equations for the normal-stress differences

#

σ1

σ2

+

“
1

3

«

2 ´1

´1 2

ff#

ρ Bε1Upη,Ξ, ε1, ε2, γ1, γ2, γ3q

ρ Bε2Upη,Ξ, ε1, ε2, γ1, γ2, γ3q

+

, (73c)

and three constitutive equations for the shear stresses

τ1 “ ρ Bγ1Upη,Ξ, ε1, ε2, γ1, γ2, γ3q, (73d)

τ2 “ ρ Bγ2Upη,Ξ, ε1, ε2, γ1, γ2, γ3q, (73e)

τ3 “ ρ Bγ3Upη,Ξ, ε1, ε2, γ1, γ2, γ3q, (73f)

where the coupled expressions for the two squeeze stresses in Eq. 73c arise from
the energetic contribution

Bε1U dε1 ` Bε2U dε2 “ σ1 dε1 ` σ2 dε2 ` pσ1 ` σ2qpdε1 ` dε2q

that incorporates constraints σ3 “ ´pσ1`σ2q and dε3 “ ´pdε1`dε2q into the work
done, viz., σ3 dε3 does work, and as such, conjugate pair pσ3, ε3q has an influence
on constitutive response, even though they are not independent variables.

Considering each, independent, intensive variable, i.e., θ, Π, σ1, σ2, τ1, τ2, τ3, to
be at least a C1 function of each, independent, extensive variable, viz., η, Ξ, ε1,
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ε2, γ1, γ2, γ3, then the internal energy U will be at least a C2 function of state,
and therefore the constitutive expressions of Eq. 73 can be recast into the following
system of differential equations:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

dθ

dΠ

dσ1

dσ2

dτ1

dτ2

dτ3

,

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

-

“

»

—

—

—

—

—

—

—

—

—

—

—

–

BηηU BηΞU Bηε1U Bηε2U Bηγ1U Bηγ2U Bηγ3U

ρ BΞηU ρ BΞΞU ρ BΞε1U ρ BΞε2U ρ BΞγ1U ρ BΞγ2U ρ BΞγ3U

ρM1η ρM1Ξ ρM1ε1 ρM1ε2 ρM1γ1 ρM1γ2 ρM1γ3

ρM2η ρM2Ξ ρM2ε1 ρM2ε2 ρM2γ1 ρM2γ2 ρM2γ3

ρ Bγ1ηU ρ Bγ1ΞU ρ Bγ1ε1U ρ Bγ1ε2U ρ Bγ1γ1U ρ Bγ1γ2U ρ Bγ1γ3U

ρ Bγ2ηU ρ Bγ2ΞU ρ Bγ2ε1U ρ Bγ2ε2U ρ Bγ2γ1U ρ Bγ2γ2U ρ Bγ2γ3U

ρ Bγ3ηU ρ Bγ3ΞU ρ Bγ3ε1U ρ Bγ3ε2U ρ Bγ3γ1U ρ Bγ3γ2U ρ Bγ3γ3U

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

dη

dΞ

dε1

dε2

dγ1

dγ2

dγ3

,

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

-

(74)

whose upper-left 2 ˆ 2 sub-matrix also appears in Eq. 59c, which governs the uni-
form contribution of a response. The squeeze response of Eq. 73c associates with
tangent moduli that are defined accordingly

M1η “
1
3

`

2Bε1ηU ´ Bε2ηU
˘

M2η “
1
3

`

2Bε2ηU ´ Bε1ηU
˘

(75a)

M1Ξ “
1
3

`

2Bε1ΞU ´ Bε2ΞU
˘

M2Ξ “
1
3

`

2Bε2ΞU ´ Bε1ΞU
˘

(75b)

M1ε1 “
1
3

`

2Bε1ε1U ´ Bε2ε1U
˘

M2ε1 “
1
3

`

2Bε2ε1U ´ Bε1ε1U
˘

(75c)

M1ε2 “
1
3

`

2Bε1ε2U ´ Bε2ε2U
˘

M2ε2 “
1
3

`

2Bε2ε2U ´ Bε1ε2U
˘

(75d)

M1γ1 “
1
3

`

2Bε1γ1U ´ Bε2γ1U
˘

M2γ1 “
1
3

`

2Bε2γ1U ´ Bε1γ1U
˘

(75e)

M1γ2 “
1
3

`

2Bε1γ2U ´ Bε2γ2U
˘

M2γ2 “
1
3

`

2Bε2γ2U ´ Bε1γ2U
˘

(75f)

M1γ3 “
1
3

`

2Bε1γ3U ´ Bε2γ3U
˘

M2γ3 “
1
3

`

2Bε2γ3U ´ Bε1γ3U
˘

(75g)

so that, collectively, Eqs. 74 and 75 describe the full non-uniform response permis-
sible by a Green thermoelastic solid expressed as a hypo-elastic material undergoing
an adiabatic process.

As in the case of membranes, it is reasonable to assume that the presence of a
non-uniform motion will not cause an uniform response. For our application, it is
also reasonable to assume that there is no coupling between the modes of squeeze
and shear.* Furthermore, it is assumed that there is no coupling betwixt the two
independent squeeze modes, nor between the three independent shear modes. Con-
sequently, all mixed partial derivatives that associate with a non-uniform response

*The Poynting effect is a second-order effect that couples squeeze and shear.66 It is assumed
that such a coupling does not play a contributing role in the current application, and can therefore
be neglected.
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are taken to be zero, and therefore Eqs. 74 and 75 simplify to

!

dθ dΠ dσ1 dσ2 dτ1 dτ2 dτ3

)T

“

»

—

—

—

—

—

—

—

—

—

—

—

–

BηηU BηΞU 0 0 0 0 0

ρ BΞηU ρ BΞΞU 0 0 0 0 0

0 0 ρ 2
3Bε1ε1U ´ρ 1

3Bε2ε2U 0 0 0

0 0 ´ρ 1
3Bε1ε1U ρ 2

3Bε2ε2U 0 0 0

0 0 0 0 ρ Bγ1γ1U 0 0

0 0 0 0 0 ρ Bγ2γ2U 0

0 0 0 0 0 0 ρ Bγ3γ3U

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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%

dη

dΞ

dε1

dε2

dγ1

dγ2

dγ3

,
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/

/
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/

/
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/
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/

/
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/

/

/

/

/

/

/

/

/

/

/

-

where what may appear as being a coupling between dσ1 and dσ2 is actually a
consequence arising from the two constraint equations dσ3 “ ´pdσ1 ` dσ2q and
dε3 “ ´pdε1 ` dε2q.

The above system of equations can be rewritten as three independent systems of
differential equations; specifically, the first differential matrix equation is

#

dθ

dΠ

+

“

«

BηηU BηΞU

ρ BΞηU ρ BΞΞU

ff#

dη

dΞ

+

that when rewritten in terms of Helmholz state variables becomes
#

dη

dΠ

+

“

«

θ{BηηU ´BηΞU{BηηU

ρθ BΞηU{BηηU ρ
`

BΞΞU ´ BΞηU ¨BηΞU{BηηU
˘

ff#

θ´1 dθ

dΞ

+

(76a)

recalling that dΞ “ 1
3
V ´1 dV , plus a full matrix equation that governs the squeeze

response

#

dσ1

dσ2

+

“
ρ

3

«

2 Bε1ε1U ´Bε2ε2U

´Bε1ε1U 2 Bε2ε2U

ff#

dε1

dε2

+

(76b)

and a diagonal matrix equation that governs the shear response

$

’

&

’

%

dτ1

dτ2

dτ3

,

/

.

/

-

“ ρ

»

—

–

Bγ1γ1U 0 0

0 Bγ2γ2U 0

0 0 Bγ3γ3U

fi

ffi

fl

$

’

&

’

%

dγ1

dγ2

dγ3

,

/

.

/

-

(76c)

to which we now seek an interpretation when expressed in terms of a set of specified
material properties.
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4.3.2 Material Properties

The material model put forward here is for a general thermoelastic solid with mass
density ρ that has, at most, 8 material properties/functions: a specific heat Ct and
a lineal thermal strain coefficient αt, both evaluated at constant pressure, a bulk
modulus Kt evaluated at constant temperature, two squeeze moduli N1 and N2

evaluated at constant shear, and three shear moduli G1, G2, and G3 evaluated at
constant squeeze. The specific heat Ct density is defined as

Ct ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

P

“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

Π

, (77a)

where θ is temperature, η is entropy density, and Π ..“ S11 ` S22 ` S33 “
.. ´3P is

a negative pressure. The lineal thermal strain coefficient αt is defined as

αt ..“
L´1 dL

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

P

“
1

3

V ´1 dV

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

P

“
dΞ

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

Π

, (77b)

where V “ abc denotes a relative volume with Ξ “ ln 3
a

V{V0 being volumetric
strain, a.k.a. dilatation. Note: The above definition for thermal strain, which is di-
mensionless, is not equivalent to the coefficient for thermal expansion commonly
used in mechanics, which has units of reciprocal temperature, cf. the Appendix. The
associated bulk modulus Kt is defined as

Kt
..“ ´

dP

V ´1 dV

ˇ

ˇ

ˇ

ˇ

θ

“
1

9

dΠ

dΞ

ˇ

ˇ

ˇ

ˇ

θ

, (77c)

that together with Ct and αt describe the uniform response. Considering transpul-
monary pressure P ă 0 under normal physiologic conditions; so Π ą 0, not P ă 0,
is the more intuitive measure for working with the trace of stress when describing
transpulmonary pressure.

The non-uniform response is described in terms of two in-plane squeeze moduli N1

and N2 that are defined as

N1
..“

dpS11 ´ S22q

Γ´1
1 dΓ1

ˇ

ˇ

ˇ

ˇ

Γ2

“
1

3

dσ1

dε1

ˇ

ˇ

ˇ

ˇ

ε2

, (77d)

N2
..“

dpS22 ´ S33q

Γ´1
2 dΓ2

ˇ

ˇ

ˇ

ˇ

Γ1

“
1

3

dσ2

dε2

ˇ

ˇ

ˇ

ˇ

ε1

, (77e)
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where σ1
..“ S11 ´ S22 and σ2

..“ S22 ´ S33 are commonly referred to as the first
and second normal-stress differences, respectively, in the polymers literature, with
Γ1

..“ a{b and Γ2
..“ b{c being their conjugate squeeze stretches, and with ε1 “

ln 3
a

Γ1{Γ0 1 and ε2 “ ln 3
a

Γ2{Γ0 2 being their conjugate squeeze strains. Finally,
there are three in-plane shear moduli G1, G2, and G3 that are defined as

G1
..“ Γ2

dS32

dγ1

ˇ

ˇ

ˇ

ˇ

Γ2

, (77f)

G2
..“ Γ1Γ2

dS31

dγ2

ˇ

ˇ

ˇ

ˇ

Γ1Γ2

, (77g)

G3
..“ Γ1

dS21

dγ3

ˇ

ˇ

ˇ

ˇ

Γ1,γ1,τ2

, (77h)

where τ1
..“ Γ2S32, τ2

..“ Γ1Γ2S31, and τ3
..“ Γ1S21 ´ ατ2 quantify the three shear

stresses, with γ1
..“ α ´ α0, γ2

..“ β ´ β0, and γ3
..“ γ ´ γ0 being their respective

shear strains.

A material is said to be “isotropic” in our constitutive framework if its squeeze
moduli can be described via a single material function, i.e., N1 “ Ntpσ1, ε1q and
N2 “ Ntpσ2, ε2q, and if its shear moduli can be described via a single material func-
tion, viz., G1 “ Gtpτ1, γ1q, G2 “ Gtpτ2, γ2q, and G3 “ Gtpτ3, γ3q. In other words,
the two squeeze response curves may have different tangents at any given moment,
but these tangents are evaluated from the same material function for squeeze. A
like statement applies to shear. In this regard, parenchyma is isotropic. An isotropic
thermoelastic solid, in our approach, is characterized by its mass density ρ along
with five, tangent, material properties: Ct, αt, Kt, Nt, and Gt where subscript t de-
notes that these are tangent properties (vs. secant properties, which are discussed
in the Appendix). This notion of isotropy is different from that of classical theory,
where only four material properties apply: a specific heat, a coefficient for thermal
expansion, a bulk modulus, and a shear modulus.

4.3.3 Constitutive Equations Governing a Thermoelastic Solid

In terms of the material properties put forward in Eq. 77, the uniform response of
the thermoelastic solid given in Eq. 76a takes on the form of

#

dη

dΠ

+

“

«

Ct ´ 9α2K{ρθ 9αK{ρθ

´9αK 9K

ff#

θ´1dθ

dΞ

+

,
α “ αt

K “ Ktpθ,Π,Ξq
(78a)
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while the non-uniform squeeze response is described by

#

dσ1

dσ2

+

“
3

2

«

2N1 ´N2

´N1 2N2

ff#

dε1

dε2

+

,
N1 “ Ntpσ1, ε1q

N2 “ Ntpσ2, ε2q
(78b)

and the non-uniform shear response is described by

$

’

&

’

%

dτ1

dτ2

dτ3

,

/

.

/

-

“

»

—

–

G1 0 0

0 G2 0

0 0 G3

fi

ffi

fl

$

’

&

’

%

dγ1

dγ2

dγ3

,

/

.

/

-

,

G1 “ Gtpτ1, γ1q

G2 “ Gtpτ2, γ2q

G3 “ Gtpτ3, γ3q

(78c)

which is the general form for a thermoelastic solid that we shall use going forward.
These moduli are expressed as depending upon both stress and strain, in accordance
with the implicit theory of elasticity presented in the Appendix.

4.3.3.1 The Poisson Effect

Assuming that the bulk modulus Kt is known, then the squeeze modulus Nt for an
isotropic material can be determined from a single uniaxial experiment by measur-
ing its Poisson response via

ν ..“ ´
db{b

da{a
“ ´

dc{c

da{a
,

from which it follows that

Nt “ 3Kt
1´ 2ν

1` ν
provided that S11 ‰ 0 and S22 “ S33 “ 0,

where temperature θ has been held constant. Consequently, Nt “ 2µ where µ is the
shear modulus from the classical theory of elasticity. On the other hand, our shear
modulus Gt is distinct from the shear modulus µ employed by the classical theory
of elasticity where strains and rotations are infinitesimal in extent—an assumption
not imposed by our approach.

4.4 Modeling an Alveolus

To facilitate the numerical implementation of our models and interpretations of

their results by engineers and scientists who will use our framework, this section

converts all fields defined in 1D and 2D into their 3D analogs; specifically, forces

and surface tensions are converted into stresses, all moduli will now have units of
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stress, all thermal strain coefficients associate with linear expansions, and all mass

densities relate mass to volume.

Only one-third of the cross-sectional area of an alveolar chord, and only one-half of
the wall thickness of an alveolar septum associate with any given dodecahedron.43

Specifically, a third of the total force carried by a septal fiber belongs with the given
alveolus, with the remaining two-thirds of the transmitted force belonging to its two
adjoining alveoli. Likewise, only half of the surface traction carried along a septal
membrane belongs with the given alveolus, with the other half of its surface traction
belonging to its adjacent alveoli. Like statements apply for their entropies.

About 75% of the acting transpulmonary pressure (the difference between pleural
and alveolar pressures) is carried by the alveolar structure, with the remaining 25%
being carried by the pleural membrane encasing the lung.85

4.4.1 Constraints/Assumptions for Alveoli Subjected to Shock Waves

Because the primary purpose for the alveolar model being constructed here is to
better understand alveolar behavior as a shock wave passes over it, there are cer-
tain assumptions that we impose upon our model that under normal or different
physiologic conditions might otherwise not apply.

First: An alveolus is considered to be an adiabatic pressure vessel in which air and
heat cannot move into or out of as a shock wave passes over it, simply because the
wave speed is too fast. There is insufficient time for these transport phenomena to
occur. This relates to the “closed-cell” approximation used by Clayton et al.7,9,11 in
the dynamic loading of their continuum model for parenchyma.

Second: Tissues that compose lung are viscoelastic34,86 mixtures of collagen, elastin,
cells, and the ground substance.30,78 Whenever a lung is subjected to a shock wave,
there is insufficient time for the viscous characteristics in a viscoelastic response to
manifest themselves; hence, the overall response is modeled as glassy elastic.7,9,11

Third: Even though one could construct a mixture theory for the modeling of alveo-
lar membranes, like we do for alveolar chords, it would be challenging to establish
their boundary conditions, nor would we be able to construct the necessary ex-
periments to parameterize them. Consequently, an isotropic, elastic, homogeneous
continuum is assumed for modeling the planar septa.
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Fourth: Temperature remains continuous in a jump across the kinematic discon-
tinuity caused by a shock wave traveling through a compressible gas.87 As such,
temperature is expected to be continuous across the spatial discontinuity of a shock
wave traveling through parenchyma, too. Nevertheless, temperature is expected to
change both in front of and behind a traveling wave, where the alveolar sac first
compresses and then expands. Throughout this excursion, the overall process is
considered to be adiabatic, in accordance with the first assumption. Furthermore,
because temperature changes are expected to be small, and wave speeds are fast,
the finite element models being developed here assume temperature remains con-
stant. Continuum modeling7,9,11 suggests that the constant temperature assumption
for dynamic lung compression is not severe.

Fifth: The air/membrane interface of an alveolus is lined with a surfactant, which
is a thin bi-lipid film that has a significant role to play during normal lung func-
tion. This film reduces alveolar surface tension to help advert total lung collapse
at maximum exhale.88 Even so, some alveoli still collapse, getting re-recruited dur-
ing a later breath. Models have been proposed for both surfactant89 and alveolar
recruitment,90 but these effects are not included here as they are not thought to play
a significant role in lung mechanics when a lung becomes subjected to a shock
wave. Instead, surface tension is assigned a prestress to effectively account for this
physiologic condition.

Sixth: Matsuda et al.91 found the diameters of collagen and elastin fibers that cir-
cumscribe an alveolar mouth to be about 5–7 times larger than those of their septal
chords. The alveolar mouth, with its thicker fibers and open face that attach an
alveolus to an alveolar duct, is modeled here as a phantom face, viz., with fibers
sized like any of the other 11 pentagonal elements composing a dodecahedron, and
a twelfth phantom face placed where an alveolar mouth would otherwise reside.25

Kimmel and Budiansky supported this conjecture via a private communication they
had with Prof TA Wilson, after which Kimmel and Budiansky wrote:45

“Professor TA Wilson notes that the present model does not take explicit ac-

count of either alveolar openings or their fibrous boundaries. Wilson suggests

that the elastic resistance of the ring boundaries tends to make up for the

missing surface tension in the holes, so that neglect of both effects may be

self-compensating.”
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Table 4 Mean and standard deviations in variance for the square root of septal chord diam-
eters

?
D reported by Sobin et al.54 These septal chords comprise collagen and elastin fibers

that act independent of one another, and therefore, they are considered to be loaded in parallel
with one another.

transpulmonary pressure 4 cm H2O

age 15–35 36–45 ą 65

collagen:
?
D, pµmq1{2 0.952 ˘ 0.242 0.958 ˘ 0.255 1.045 ˘ 0.270

elastin:
?
D, pµmq1{2 0.957 ˘ 0.239 0.970 ˘ 0.213 1.093 ˘ 0.274

transpulmonary pressure 14 cm H2O

age 15–35 36–45 ą 65

collagen:
?
D, pµmq1{2 0.955 ˘ 0.246 0.994 ˘ 0.237 1.054 ˘ 0.279

elastin:
?
D, pµmq1{2 0.956 ˘ 0.237 0.988 ˘ 0.263 1.079 ˘ 0.281

This conjecture of Kimmel and Budiansky,45 along with the experimental findings
of Matsuda et al.,91 provide a pathway by which one can scale the surface traction
carried by a single alveolar membrane with that of the chords that envelope it. In
other words, this provides an avenue for parameterizing the membrane model in an
otherwise void of relevant experimental data needed to estimate its parameters.

Seventh: Alveolar surfaces are modeled as membranes, not plates, and therefore are
assumed to have no out-of-plane bending stiffness. This is in concert with our as-
sumption that the septal chords are modeled as rods, not beams, because of their
slenderness ratio. Furthermore, these septa tend to be flat because there are roughly
equal pressures acting on both sides of these membranes, thereby eliminating any
curvature, which is the driving force behind out-of-plane bending34 and, we sur-
mise, also helps to suppress wrinkling.

4.4.2 Modeling Septal Chords Subjected to Shock Waves

Alveoli are biologic structures constructed of septal chords that circumscribe alve-
olar membranes that envelope an alveolar sac whereat gas exchange occurs. These
chords comprise individual collagen and elastin fibers loaded in parallel.54,91 The
extent of elastic energy stored within a chord will depend upon the diameters Dc

and De and length L of these individual fibers.* Let superscript c denote collagen,

*Sobin et al.54 considered that the stored energy of chords also depends upon their curvature,
which they measured and quantified, i.e., they considered these chords to be beams. However, with a
slenderness ratio of L̄{D̄ “ 102˘ 12, which we obtained from analyzing their data, it is reasonable
to model them as rods, not beams. Consequently, the dodecahedral space truss used as an alveolar
model is considered to be a pinned truss, not a rigid truss, thereby greatly simplifying the boundary
value problem.
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(a) Histogram for collagen chord diameters. (b) Histogram for elastin chord diameters.

Fig. 28 Typical histograms for alveolar chord diameters constructed using the statistics re-
ported in Table 4. Their tails weigh heavy at the larger diameters, because their distributions
are normal in the square root of their diameters. These two histograms are virtually identical.

and superscript e denote elastin. Sobin et al.54 determined that the square root of
their diameters

?
D distribute normally, with a mean D̄1{2 and standard deviation

σ?D that also depend upon age and transpulmonary pressure, as presented in Ta-
ble 4 and illustrated in Fig. 28.

The collagen and elastin fibers that make up a septal chord have the same length
L, they experience the same strain e, and they exist at the same temperature θ;
therefore, we employ Eq. 65a as the governing constitutive equation to describe
their mechanical behaviors; specifically, for the collagen fiber in an alveolar chord:

#

dηc

dsc

+

“

«

Cc
t ´ pα

c
tq

2Ec{ρcθ αctE
c{ρcθ

´αctE
c Ec

ff#

θ´1 dθ

L´1 dL

+

, (79a)

where Ec “ Ec
t pθ, e, s

cq, and for the elastin fiber in an alveolar chord:

#

dηe

dse

+

“

«

Ce
t ´ pα

e
t q

2Ee{ρeθ αetE
e{ρeθ

´αetE
e Ee

ff#

θ´1 dθ

L´1 dL

+

, (79b)

where Ee “ Ee
t pθ, e, s

eq, and where ηc and ηe are the entropy densities (erg/g.K)
for collagen and elastin; sc ..“ λF c{Ac0 and se ..“ λF e{Ae0 are the chordal stresses
(barye = dyne/cm2) carried by the collagen and elastin fibers, wherein λ “ L{L0

is the fiber stretch, Ac0 and Ae0 are their traction-free cross-sectional areas (cm2),
and F c and F e are the forces (dyne) they transmit. Parameters Cc

t and Ce
t are their

specific heats at constant pressure (erg/g.K), αct and αet are their lineal thermal strain
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coefficients,Ee andEe are their elastic moduli (dyne/cm2 = erg/cm3), and ρc and ρe

are their mass densities (g/cm3). These differential equations are subject to initial
conditions considered to be sc0 “ sc|L“L0 , se0 “ se|L“L0 , ηc “ ηc0, and ηe “ ηe0,
where ηc0 and ηe0 are their respective entropy densities at rest. In vivo, sc0 and se0 are
positive valued, cf. the Appendix; whereas, ex vivo, sc0 and se0 would be zero valued.

The actual force and entropy of an individual septal chord in our alveolar model
is taken to be one third of a fiber’s calculated values, as determined by Eq. 79,
because each alveolar chord is typically shared between three adjoining alveoli;
consequently,

F f
“ pAc0s

c
` Ae0s

e
q{3λ and Sf “ pρcV c

0 η
c
` ρeV e

0 η
e
q{3, (80)

where F f (dyne) is a third of the fiber’s force carried by a septal chord, and Sf

(erg/K) is a third of the fiber’s entropy.

Collagen is a fiber comprising numerous, long, slender, wavy filaments whose wavi-
ness, known as crimp, straightens under sufficient deformation.92,93 Elastin is a
linked fiber network, much like an elastomer, whose filaments between crosslinks
rotate to align with an axis of loading under sufficient deformation.94,95 Conse-
quently, collagen and elastin both recruit constituent filaments with increasing de-
formation into an overall, load-bearing, fiber response. The internal energies of col-
lagen and elastin may therefore be thought of as comprising a molecular configura-
tion energy and a mechanical strain energy. As such, both collagen and elastin are
modeled as Freed–Rajagopal96 biologic fibers, which are described in terms of two
such internal energies. Their model is derived from the theory of implicit elasticity,
cf. the Appendix. According to their model, Eq. A-7, tangent compliances for col-
lagen and elastin, pertinent to the hypo-elastic constitutive formulation of Eq. 79,
are described by

1

Ec
t pθ, s

c, eq
“

ec1max
´ ec1

Ec
1e
c
1max

` 2psc ´ sc0q
`

1

Ec
2

, (81a)

1

Ee
t pθ, s

e, eq
“

eet ´ e
e
1

Ee
1e
e
t ` 2pse ´ se0q

`
1

Ee
2

, (81b)
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whose internal strains are established from

ec1 “ e´ αct ln

ˆ

θ

θ0

˙

´
sc ´ sc0
Ec

2

, (81c)

ee1 “ e´ αet ln

ˆ

θ

θ0

˙

´
se ´ se0
Ee

2

, (81d)

with θ0 being body temperature, i.e., 310 K. Material constants Ec
1 and Ec

2 are the
two asymptotic moduli for collagen that bound its response, i.e., Ec

1 ď Ec
t ď Ec

2,
while Ee

1 and Ee
2 are the two asymptotic moduli for elastin that bound its response,

viz., Ee
1 ď Ee

t ď Ee
2, both having units of stress (barye = dyne/cm2), with ec1max

and
ee2max

being their respective transition strains (see their derivation in the Appendix),
i.e., they are the limiting/maximum states of internal conformation strain. Collagen
fibers are considered to fracture whenever the strain of stretching molecular bonds
exceeds ecf ..“ scf{E

c
2, where scf is the fracture stress. In contrast, elastin fibers are

assumed to remain intact. (Elastin ruptures at strains in excess of 250%, which
vastly exceeds the strain range that alveoli are exposed to.)

Moduli Ec
t “ Ec

1E
c
2{pE

c
1`E

c
2q and Ee

t “ Ee
1E

e
2{pE

e
1`E

e
2q are considered to apply

for stresses less than their respective reference stress, viz., for sc ă sc0 or se ă se0,
to which we assign values of sc0 “

1
2
Ec

1e
c
1max

and se0 “
1
2
Ee

1e
e
1max

. At these reference
stresses, L is set to L0 and therefore strain e “ 0. This is done to help ensure a stable
numerical implementation, as long slender rods readily buckle under compressive
loads—a phenomenon not modeled here. Prestressing fibers is also nature’s way of
ensuring their structural integrity.

Material properties needed to model septal chords are listed in Tables 4 and 5. From
Eq. 64, these elastic moduli are bound from above by Eq. 64 implying that Ec

max “

2.25 ˆ 1012 barye (dyne/cm2) and Ee
max “ 1.7 ˆ 1012 barye. We therefore observe

that Ec
2 and Ee

2 are about 105 times smaller than Ec
max and Ee

max, which seems
reasonable for in vivo fibers. This theoretical upper bound for a collagen molecule
is about 100 times greater than what have been measured by testing collagen fibrils
under ideal laboratory conditions.105 Like results have been found for metals.

4.4.3 Modeling Alveolar Septa Subjected to Shock Waves

The thermoelastic response of a planar membrane used to model alveolar septa, as
described in Eq. 71, is governed by the following pair of differential equations. The
first set of ODEs establishes the uniform response of a membrane, as described in
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Table 5 Physical properties for hydrated collagen and elastin fibers. Collagen denatures at
around 60˝C,97 i.e., above this temperature collagen will shrink rapidly—an effect not modeled
here.

Collagen
Parameter Value Reference
ρc [g/cm3 ] 1.34 Fels98

ηc0 [erg/g.K] 3.7ˆ 107

Ccp [erg/g.K] 1.7ˆ 107 Kanagy99

αcs “ αct 0.056 Weir100

ec1max
0.09˘ 0.018 estimated from TLC « 30%

ecf 0.25˘ 0.025

Ec1 [barye] 5.0˘ 1.0ˆ 105

Ec2 [barye] 5.0˘ 0.5ˆ 107

se0 [barye] Ec1e
c
1max

{2

Elastin
ρe [g/cm3 ] 1.31 Lillie and Gosline101

ηe0 [erg/g.K] 3.4ˆ 107 Shadwick and Gosline102

Cep [erg/g.K] 4.2ˆ 107 Kakivaya and Hoeve103

αes “ αet 0.1 Lillie and Gosline101

ee1max
0.4˘ 0.08 Shadwick and Gosline102

Ee1 [barye] 2.3˘ 0.3ˆ 106 Urry95 [Fig. 18]
Ee2 [barye] 1.0˘ 0.1ˆ 107 Lillie and Gosline104 [Fig. 5]
se0 [barye] Ee1e

e
1max

{2

Eq. 71a, viz.,

#

dη

dsπ

+

“

«

Ct ´ 4α2
tM{ρθ 4αtM{ρθ

´4αtM 4M

ff#

θ´1 dθ

dξ

+

, M “Mtpθ, s
π, ξq,

where sπ ..“ π{h has units of stress (dyne/cm2) with h denoting height or thick-
ness of the setpal membrane. Assuming the volume of a septal membrane remains
constant, thickness would obey h “ h0 expp´2ξq with h0 being its reference thick-
ness. Tangent modulus M is an areal equivalent of the bulk modulus. The second
set of ODEs establishes the non-uniform response of a membrane, as described in
Eq. 71b, such that upon assuming incompressibility per Eq. 71c, results in

#

dsσ

dsτ

+

“

«

4M{3 0

0 G

ff#

dε

dγ

+

, G “ Gtps
τ , γq,

where sσ ..“ σ{h and sτ ..“ τ{h also have units of stress (dyne/cm2), with G being
the tangent modulus for in-plane (simple) shear.

From a mechanics perspective, we know a great deal more about alveolar chords
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Table 6 The elastic properties reported here are for visceral pleura taken from Freed et al.65

and parenchyma taken from Saraf et al.,84 divided by 10 to adjust for septal thickness vs.
basement membrane thickness. The thermophysical properties lie between that of water and
collagen, weighted toward that of water, and evaluated at body temperature.

Property Value
ρ [g/cm3 ] 1.1
η0 [erg/g.K] 5.0ˆ 106

Cp [erg/g.K] 2.1ˆ 107

αt 0.037
ξ1max

0.24˘ 0.24
ξf 0.2
M1 [barye] 1.0˘ 0.1ˆ 104

M2 [barye] 3.0˘ 0.1ˆ 106

sπ0 [barye] M1ξ1max
{2

γ1max 3ξ1max{2
G1 [barye] M1{25
G2 [barye] M2{25

than we know about alveolar septa. More judgment will therefore be required in
our construction and parameterization of a material model for alveolar membranes.

A typical alveolar septum is 4–5 µm thick78 with an outside layer of epithelial cells
that encase capillaries built from endothelial cells along with a basement membrane
that comprises unorganized collagen and elastin filaments, plus proteoglycans and
other extracellular proteins. This basement membrane, roughly at mid-plane in an
alveolar septum, has a width of about 0.5µm.30 Inertial forces generated by these
membranes are to be based upon a membrane thickness of „5 µm with an approx-
imate density of water, while the structural forces that they carry are to be based
upon a basement membrane thickness of „0.5 µm.

It is not known how much of the mechanical load is actually carried by the cells in
an alveolar septum vs. the extracellular basement membrane they encase, but it is
generally thought that this basement membrane carries the majority of the load.78

Therefore, by diminishing the moduli that are appropriate for describing a base-
ment membrane with thickness „0.5 µm by a factor of 10, one gets an estimate for
the effective septal moduli—an estimate applicable when modeling a whole septal
membrane with thickness „5 µm. We employ the model parameters specified in
Table 6, which are based upon this assumption.

Collagen and elastin appear as thin filaments randomly oriented and somewhat uni-
formly dispersed throughout a basement membrane, unlike the strongly aligned
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fibers that appear in septal chords. Furthermore, there are large numbers of proteins
dispersed throughout these septa. Consequently, for our purposes, we model this
collective ensemble of tissue and structure types as a homogeneous isotropic mem-
brane modeled after the Freed–Rajagopal biologic fiber96 that we have extended to
membranes65 in the Appendix, specifically

1

Mtpθ, ξ, sπq
“

ξ1max ´ ξ1

M1ξ1max `
1
2ps

π ´ sπ0 q
`

1

M2
ξ1 “ ξ ´ αt ln

ˆ

θ

θ0

˙

´
sπ ´ sπ0

4M2

(82a)

and

1

Gtpγ, sτ q
“

sgnpγ1q γ1max ´ γ1

G1 sgnpγ1q γ1max ` 2sτ
`

1

G2
γ1 “ γ ´

sτ

G2
, (82b)

where compliant, initial, tangent moduli M1 and G1 and stiff, terminal, tangent
moduli M2 and G2 bound their respective responses so that M1 ď Mt ď M2 and
G1 ď Gt ď G2, with a gradual transition between their asymptotic bounds occur-
ring around strains of ξ1max and γ1max , and with membrane failure or rupture being
considered to only occur in the dilation mode whenever ξ ą ξf .

Whenever sπ ă sπ0 , modulus Mt is assigned a value of Mt “ M1M2{pM1 `M2q

that is the tangent modulus at reference stress sπ0 , which we take to be 1
2
M1ξ1max .

Negative surface tensions cause wrinkling of a membrane surface, which is not ad-
dressed here. In contrast, the shear modulus Gt maintains applicability whenever
its arguments become negative valued, which is handled via the sign function intro-
duced in Eq. 82b.

Finite element technology is used to interpolate entropy and stress, integrated at the
Gauss points, to entropy and force at the vertices of a pentagon, which are vertices
of the dodecahedron, cf. Section 6. The actual entropies and forces interpolated to
these nodes are halved, because each septal plane belongs to two adjoining alveoli.

4.4.4 Modeling an Alveolar Volume Subjected to Shock Waves

Alveoli are connected to bronchial trees via alveolar ducts. Under normal condi-
tions, air moves in and out of the alveoli via these ducts. However, when subjected
to a stress wave passing over an alveolus, there is no time for the transport of air
to take place.7,9,11,12 Hence, we can consider the air (and heat) within an alveolus to
become “trapped”, and the pressure to be uniform therein. The governing thermo-
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dynamic process is therefore adiabatic. It is under this condition that we model the
volumetric response of an alveolar sac.

4.4.4.1 Alveoli Filled with Air

Considering the water saturated air within an alveolus to be an ideal gas, then106

PV “ nRθ or
PV

θ
“
P0V0

θ0

“ nR “ constant (83)

where, in our case, P0 is taken to be the atmospheric pressure at sea level (1 bar or
105 Pa or 106 barye), with V0 being that alveolar volume whereat alveolar pressure
and plural pressure are both atmospheric, while θ0 “ 37˝C = 310 K is assigned as
body temperature. Parameter n is the molar content of gas within an alveolus, and
R is the universal gas constant.

The material properties associated with an ideal gas contained within an adiabatic
enclosure are

αt ..“
θ

L

BL

Bθ

ˇ

ˇ

ˇ

ˇ

P

“
θ

3V

BV

Bθ

ˇ

ˇ

ˇ

ˇ

P

“
1

3θ0

P0

P

V0

V
(84a)

and

Kt
..“ ´V

BP

BV

ˇ

ˇ

ˇ

ˇ

θ

“ P0
θ

θ0

V0

V
(84b)

with the other two material properties pertaining to moist air at body tempera-
ture* being its mass density ρ of 1.125 ˆ 10´3 g/cm3 and its specific heat Ct of
1.007ˆ 107 erg/g.K at constant pressure, constrained by Kt ă Kmax “ ρCtθ{α

2
t «

ρCtθ0{9 “ 3.9ˆ105 barye. An alveolar sac, when modeled as an adiabatic pressure
vessel filled with an ideal gas, is described by

#

dη

´3 dP

+

“

«

Ct ´ 9α2
tKt{ρθ 9αtKt{ρθ

´9αtKt 9Kt

ff#

θ´1 dθ

dΞ

+

, (65c)

where the entropy within an alveolar sac is given by Sa “ ρV η whose initial con-
dition is Sa0 “ ρV0η0 with ρη0 being the entropy per unit volume of humid air at
body temperature and atmospheric pressure, viz., ρη0 “ 7.770 ˆ 104 erg/cm3.K.

*Physical properties for air were taken from the website www.peacesoftware.de hosted
by Berndt Wischnewski.
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Equation 65c, in conjunction with the physical properties describing an ideal gas
given in Eq. 84, results in the following differential equation governing pressure:

dP

P
“
P0

P

V0

V

θ

θ0

ˆ

P0

P

V0

V

θ

θ0

dθ

θ
´

dV

V

˙

,

wherein pressure, volume, and temperature all appear as logarithmic rates.

Pressure P is mapped to nodal forces at the vertices of a dodecahedron in our alveo-
lar model. This requires finite element technology, which is discussed in Section 6.

4.4.4.2 Alveoli Filled with Fluid

In lung tissues that are not healthy, fluids may fill alveolar volumes at various re-
gions throughout a lung, e.g., as could have been caused by injury, pneumonia, etc.
In such localities the mechanical response of the local parenchyma will be vastly
stiffer than that of healthy tissue, and as such, it will respond very differently to
an imposed traveling shock wave. For example, the speed of a wave moving over
alveoli filled with fluid will be several orders in magnitude faster than the speed of
the same wave moving over healthy alveoli filled with air.

In the presence of a passing shock wave, we suppose that an unhealthy alveolar
sac, like a healthy one, can be modeled as an adiabatic enclosure, but now the fluid
within such an alveolus is considered to behave, momentarily, like an elastic solid,
viz., as the glassy, elastic, upper-bound response of a viscoelastic liquid, which
blood is, for example.

The thermoelastic response of an alveolar volume, as described in Eq. 78, is gov-
erned by three sets of uncoupled differential equations. The first set of ODEs estab-
lishes the uniform response of Eq. 78a described by

#

dη

dΠ

+

“

«

Ct ´ 9α2
tK{ρθ 9αtK{ρθ

´9αtK 9K

ff#

θ´1 dθ

dΞ

+

, K “ Ktpθ,Π,Ξq,

with the second set of ODEs in Eq. 78b governing the squeeze response

#

dσ1

dσ2

+

“
3

2

«

2N1 ´N2

´N1 2N2

ff#

dε1

dε2

+

,
N1 “ Ntpσ1, ε1q

N2 “ Ntpσ2, ε2q
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while the third set of ODEs in Eq. 78c governs the shear response
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,

G1 “ Gtpτ1, γ1q

G2 “ Gtpτ2, γ2q

G3 “ Gtpτ3, γ3q

that, collectively, can be used to describe the thermoelastic response of a volume of
material.

How these are to be parameterized will be addressed in future research.

4.5 Code Verification and Capabilities of the Constitutive Equations

Figure 29 illustrates what a typical thermomechanical response for a collagen fiber
would be expected to look like in vivo (top row) and ex vivo (bottom row) for 30 typ-
ical fibers, as predicted by the Freed–Rajagopal96 model derived in Section A.2.1 of
the Appendix. The in vivo response typifies how fibers are prestressed in the various
alveolar structures of parenchyma. The material properties for collagen used to cre-
ate this figure came from Table 5. Stress/strain curves are shown in the left column,
while entropy/strain curves are shown in the right column. The top row provides
their absolute responses, while the bottom row provides their relative responses.
In vivo, biologic fibers do not associate with reference states that are void of stress.
This is apparent in the upper-left graph (s vs. e), whose response is normalized in
the lower-left graph (s´s0 vs. e), and likewise for entropy. The graphs that follow
plot relative values.

Figure 29 presents stress/strain and entropy/strain response curves out to 5% strain.
Figure 30 extends the deformation out to 10%, 20%, 30%, and 40% strains. In all
of these figures we observe that any additional contribution to the entropy caused
by deformation can be neglected (it being less than 1 part out of 104). In addition to
possessing a capability of having stressed fibers in their reference state, established
via s0

..“ 1
2
E1e1max and as seen in Fig. 29, our fiber model also accounts for fiber

rupture, which is considered to be triggered at a maximum stress of sf ..“ E2ef .
Ruptures start at around 30% strain for the specified material parameters. In these
figures, material properties E1, E2, and e1max for collagen were all assigned random
values according to their respective probabilistic distributions taken from Table 5.
Employing 75 steps to integrate each response (sufficient for drawing nice curves)
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Fig. 29 Typical stress/strain (left column) and entropy/strain (right column) response curves
for collagen fibers loaded in vivo to 5% strain. The top row presents their absolute responses,
while the bottom row presents their relative responses. A reference fiber length, whereat strain
is arbitrarily set to zero, has been selected to associate with half the available stretch that can
be attributed to molecular reconfiguration.
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results in numerical errors of integration (right column in Fig. 30), specifically, in
local truncation errors that were found to be on the order of the square root of
machine precision, which is considered to be very good.

Like Figs. 29 and 30, material properties E1, E2, and e1max were each assigned ran-
dom values for both elastin and collagen using parameters taken from Table 5 for
the purpose of constructing the 30 curves presented in each plot of Fig. 31 for sep-
tal chords. Plus, their fiber lengths and diameters were likewise assigned random
values according to their respective probabilistic distributions taken from Fig. 8,
using formula 11, and the data from Table 4. Figure 31 presents realistic variabil-
ity with what one should expect for chordal responses in the alveoli of lung. Both
the chordal force and entropy (actual entropy, not entropy density) were calculated
using the rule of mixtures based upon volume fractions of collagen vs. elastin. The
change in chordal entropy was so small that variability caused by variation in vol-
ume fraction dominates this response; hence, relative changes in entropy (S´S0)
had to be plotted to visualize the effect. In the septal chords that failed during this
analysis, it was collagen fibers that ruptured with elastin fibers continuing to carry
load.

The three conjugate pairs that describe a membrane’s response are presented as
rows in Fig. 32—one row per experiment, with there being 30 curves per plot. These
conjugate pairs describe: uniform dilation psπ, ξq, non-uniform squeeze psσ, εq, and
non-uniform (simple) shear psτ , γq. The three motions that we consider include
dilation

a “ λ b “ λ g ´ g0 “ 0 (85a)

pure shear64

a “

?
λ2 ` λ´2

?
2

b “

?
2

?
λ2 ` λ´2

g ´ g0 “
λ2 ´ λ´2

λ2 ` λ´2
(85b)

and simple shear

a “ 1 b “ 1 g ´ g0 ‰ 0 (85c)

where λ denotes a stretch with λ0 “ 1. For dilation: ξ “ lnλ, ε “ 0, and γ “ 0; for
pure shear: ξ “ 0, ε “ ln

`

1
2
pλ2 ` λ´2q

˘

, and γ “ pλ2 ´ λ´2q{pλ2 ` λ´2q; and for
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Fig. 30 Stress/strain (left column), entropy density/strain (center column), and local truncation
error/strain (right column) curves for collagen using the material parameters listed in Table 5,
which are described in terms of probability distributions. The top row is for strains out to 10%,
the second row is for strains out to 20%, the third row is for strains out to 30%, and the fourth
row is for strains out to 40%. There were no fiber failures in those that were stretched out
to 10% and 20% strain. Six of the 30 fibers failed in those stretched out to 30% strain, while
28 of the 30 fibers failed for those stretched out to 40% strain. The local truncation errors
plotted here associate with the PECE integrator presented in Eq. 87 of Section 5 using 75 steps
of integration, with errors less than 10´10 set at 10´10. The reported truncation errors never
exceeded 0.001%.
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Fig. 31 Relative force/strain (left column), relative nominal stress/strain (center column), and
relative entropy/strain (right column) curves for septal chords comprised of individual colla-
gen and elastin fibers whose material parameters are listed in Table 5, which are described in
terms of probability distributions. The top row is for strains out to 10%, the second row is for
strains out to 20%, the third row is for strains out to 30%, and the fourth row is for strains out
to 40%. There were no fiber failures in those that were stretched out to 10% and 20% strain.
Six of the 30 collagen fibers failed in those stretched out to 30% strain with none of the elastin
fibers failing, while 29 of the 30 collagen fibers failed for those stretched out to 40% strain,
again, with none of the elastin fibers failing.
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simple shear: ξ “ 0, ε “ 0, and γ “ g ´ g0. The constitutive model is that of Eqs.
71 and 82, applying material parameters (and their variability) given in Table 6. In
the dilation experiment (top row) there is only uniform psπ, ξq response. There are
no non-uniform responses, neither psσ, εq nor psτ, γq in an uniform dilation, either
theoretical or numerical. The conjugate pairs are uncoupled here. Likewise, in the
simple shear experiment (bottom row) there is only a non-uniform psτ, γq response.
Theoretically, there is neither uniform psπ, ξq nor non-uniform psσ, εq responses in a
non-uniform simple shear. However, we observe some numerical error arising in the
uniform response—on the order of 1 part in 1012 and, therefore, negligible. The pure
shear experiment (middle row) is dominated by both a squeeze psσ, εq and a shear
psτ, γq response, with there being a small, systematic, dilational coupling through
pair psπ, ξq that is on the order of 1 part in 106. This is the greatest numerical error
in our implementation, but still it is sufficiently small so that it can be neglected
without concern. Eight of the 30 dilation experiments presented here resulted in
membrane rupture. As currently modeled, rupture only associates with the dilational
response in septal membranes.

Recently, Birzle et al.107 performed experiments on thin slices of rat parenchyma
loaded in tension where they removed the collagen and/or elastin fiber content
through collagenase and elastase treatment baths to study their individual behav-
iors and their interactions under load.

Observation: The change in entropy caused by deformation has been shown to be
negligible when compared with the entropy present in its reference state. As such,
entropy and its conjugate, i.e., temperature, will not be modeled in our finite element
representations of alveoli being exposed to traveling shock waves.
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Fig. 32 Membrane response from 30 numerical experiments whose constitutive behavior is
described by Eqs. 71 and 82 using the parameters listed in Table 6. The first column gives the
psπ´sπ0 , ξq conjugate pair response, the second column gives the psσ´ sσ0 , εq conjugate pair
response, while the third column gives the psτ´sτ0 , γq conjugate pair response. The first row
represents a dilation experiment described by Eq. 85a) the second row represents a pure shear
experiment described by Eq. 85b, while the third row represents a simple shear experiment
described by Eq. 85c. During these numerical experiments, eight membranes ruptured under
dilation, while none ruptured during these pure and simple shear experiments.
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5. Numerical Integrators

This analysis tool, which models alveolar geometry as a dodecahedron, requires nu-
merical methods for the temporal integration of its constitutive equations (systems
of first-order ODEs) and their governing equations of motion (systems of second-
order ODEs), and for the spatial integrations of length of line, area of surface, and
volume of space that pertain to the various finite-element geometries used. Some
results obtained at the Gauss points may need to be mapped out to their nodal loca-
tions, so extrapolation procedures that are consistent with the shape (interpolation)
functions are also derived for the various elements and quadrature rules selected.

5.1 ODE Solvers

The constitutive equations used to describe our alveolar model present themselves
as ODEs that need to be integrated, cf. Section 4.3.3.1. To this end, we employ
the PECE (Predict, Evaluate, Correct, re-Evaluate) algorithms of Freed108 suitable
for solving stiff systems of first- and second-order differential equations. These
methods are based upon Gear’s well-known, second-order, backward, difference
formula (BDF2) that appears in Eqs. 87c and 91e.

Time t is considered to be the independent variable, discretized over an interval in
time rt0, tIs for which I solutions are to be extracted at nodes i “ 1, 2, . . . , I spaced
at uniform intervals in time with a common step size of dt “ ptI ´ t0q{I separating
them, where time t0 associates with the initial condition.

5.1.1 PECE Solver for First-Order ODEs

Let xptq be a vector of independent control variables described in terms of time t,
and let ypxq be a vector of dependent response variables obeying a differential equa-
tion of evolution 9y “ fpx,yq 9x, or equivalently dy “ fpx,yq 9x dt “ fpx,yq dx,
subject to an initial condition y0 “ ypx0q where x0 “ xpt0q, with matrix fpx,yq

establishing the constitutive response for the system.

The two-step method put forward here incrementally solves such an ODE, returning
solutions associated with the next moment in time ti`1, i.e., it acquires yi`1, given
knowledge of the previous yi´1 and current yi solutions plus their rates 9yi´1 and
9yi, with the corrector also depending upon 9yi`1; consequently, the corrector is an
implicit method, which is the source of the method’s stability properties.

100



5.1.1.1 Start-Up Algorithm

Multi-step methods are not self-starting. As such, Heun’s method (a forward-Euler
predictor with a trapezoidal corrector) is used to start this integrator; specifically,

Predict yp1 “ y0 ` 9y0 dt`O
`

pdtq2
˘

(86a)

Evaluate 9yp1 “ fpx1,y
p
1q 9x1 (86b)

Correct y1 “ y0 `
1
2

`

9yp1 ` 9y0

˘

dt`O
`

pdtq3
˘

(86c)

Re-Evaluate 9y1 “ fpx1,y1q 9x1 (86d)

wherein 9y0 “ fpx0,y0q 9x0. Its predictor is the forward Euler method, while its
corrector is the trapezoidal rule. The order of accuracy for a method (the exponent
on dt in O), as they appear in the above big oh operators, O, pertains to a single step
of integration. The overall order of the integrator, when integrated over a sequence
of steps, is one less than the exponent inside the O operator. Therefore, Euler’s
method is first-order accurate, and the trapezoidal method is second-order accurate.

5.1.1.2 Two-Step ODE Solver

The two-step method of Freed108 for solving first-order ODEs is

Predict ypi`1 “
1
3

`

4yi ´ yi´1

˘

` 2
3

`

2 9yi ´ 9yi´1

˘

dt`O
`

pdtq3
˘

(87a)

Evaluate 9ypi`1 “ fpxi`1,y
p
i`1q 9xi`1 (87b)

Correct yi`1 “
1
3

`

4yi ´ yi´1

˘

` 2
3

9ypi`1dt`O
`

pdtq3
˘

(87c)

Re-Evaluate 9yi`1 “ fpxi`1,yi`1q 9xi`1 (87d)

whose corrector is the well-known BDF2 formula made popular by Gear, for which
Freed has provided a predictor. This method is second-order accurate in both its
predictor and corrector.

Both the predictor and corrector of this PECE scheme have a solution y with a
weight of 1, and a rate 9y with a weight of 2

3
dt; hence, this predictor/corrector pair

is internally consistent, i.e., the predictor and corrector will produce the same result
whenever they integrate over a constant 9y field.

The evaluate/correct (EC) steps of a PECE method are often iterated over until a
convergence criterion is satisfied. Such methods are typically denoted as PEpCEqm,
where m specifies the number of iterations imposed.
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5.1.2 A Relevant Example

In our finite element implementation, a hypo-elastic material model81 is introduced
to describe the constitutive response of an alveolus whereby

9σ “ Mpε,σq 9ε or equivalently109 dσ “ Mpε,σq dε,

where ε is a vector of thermodynamic strains, σ is a vector of thermodynamic
stresses, and M is a square matrix comprising their tangent moduli, which can
depend upon both stress and strain in our application; specifically, the response is

σ1D “ tη, su
T, σ2D “ tη, s

π, sσ, sτuT, σ3D “ tη,Π, σ1, σ2, τ1, τ2, τ3u
T,

where η is entropy and the rest of its constituents are stress attributes. Their thermo-
dynamic conjugates are the control variables

ε1D “ tθ, eu
T, ε2D “ tθ, ξ, ε, γu

T, ε3D “ tθ,Ξ, ε1, ε2, γ1, γ2, γ3u
T,

where θ is temperature and the rest of its constituents are strain attributes. In the
2D and 3D cases, these stress/strain attributes arise from Gram–Schmidt decom-
positions of their respective deformation gradients (cf. Sections 3.3.6.1 and 4.4.3).
Constructing tangent moduli Mpε,σq is the topic of Section 4. Both strain ε and
stress σ appear as arguments in our tangent moduli, i.e., the model is implicit.

Equation 86 is used to take the first step of integration; specifically,

Predict σp1 “ σ0 ` 9σ0 dt

Evaluate 9σp1 “ Mpε,σp1q 9ε1

Correct σ1 “ σ0 `
1
2

`

9σp1 ` 9σ0

˘

dt

Re-Evaluate 9σ1 “ Mpε1,σ1q 9ε1

where 9σ0 “ Mpε0,σ0q 9ε0. The remaining steps of integration follow according to
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Eq. 87; specifically,

Predict σpi`1 “
1
3

`

4σi ´ σi´1

˘

` 2
3

`

2 9σi ´ 9σi´1

˘

dt

Evaluate 9σpi`1 “ Mpεi`1,σ
p
i`1q 9εi`1

Correct σi`1 “
1
3

`

4σi ´ σi´1

˘

` 2
3

9σpi`1 dt

Re-Evaluate 9σi`1 “ Mpεi`1,σi`1q 9εi`1

whose strain rates 9ε are computed according to Section 3.4.3.

5.1.3 PECE Solver for Second-Order ODEs

Now let u denote a vector of dependent variables obeying a differential equation
of evolution d2uptq{dt2 “ :u “ fpt,u, 9uq subjected to the pair of initial conditions
u0 “ upt0q and 9u0 “ 9upt0q. One may think of u as being displacements whose
rates 9u are their velocities v, with :u “ 9v representing their accelerations a.

The two-step method put forward here incrementally solves such an ODE, returning
solutions associated with the next moment in time ti`1 for both displacement ui`1

and velocity 9ui`1. To update displacement to ui`1, the predictor requires knowledge
of the previous fields ui´1, 9ui´1, and :ui´1 plus the current fields ui, 9ui, and :ui, with
the corrector also requiring knowledge of 9ui`1 and :ui`1. Likewise, to update the
velocity to 9ui`1, the predictor requires knowledge of the previous fields 9ui´1 and
:ui´1 plus the current fields 9ui and :ui, with the corrector also requiring knowledge of
:ui`1. Both predictors are explicit, and both correctors are implicit. It is this implicit
quality that provides numeric stability for the integrator.

5.1.3.1 Start-Up Algorithm

Again, multi-step methods are not self-starting, so a one-step method is needed to
take the first step of integration; specifically, we employ

Predict up1 “ u0 ` 9u0 dt` 1
2

:u0pdtq
2
`O

`

pdtq3
˘

(90a)

9up1 “ 9u0 ` :u0 dt`O
`

pdtq2
˘

(90b)

Evaluate :up1 “ fpt1,u
p
1, 9up1q (90c)

Correct u1 “ u0 `
1
2
p 9up1 ` 9u0qdt´

1
12
p:up1 ´ :u0qpdtq

2
`O

`

pdtq4
˘

(90d)

9u1 “ 9u0 `
1
2
p:up1 ` :u0qdt`O

`

pdtq3
˘

(90e)

Re-Evaluate :u1 “ fpt1,u1, 9u1q (90f)
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wherein :u0 “ fpt0,u0, 9u0q and t1 “ t0 ` dt.

5.1.3.2 Two-Step ODE Solver

The two-step method of Freed108 for solving second-order ODEs is

Predict upi`1 “
1
3
p4ui ´ ui´1q `

1
6
p3 9ui ` 9ui´1qdt

` 1
36
p31:ui ´ :ui´1qpdtq

2
`O

`

pdtq4
˘

(91a)

9upi`1 “
1
3
p4 9ui ´ 9ui´1q `

2
3
p2:ui ´ :ui´1qdt`O

`

pdtq3
˘

(91b)

Evaluate :upi`1 “ fpti`1,u
p
i`1, 9upi`1q (91c)

Correct un`1 “
1
3
p4ui ´ ui´1q `

1
24
p 9upi`1 ` 14 9ui ` 9ui´1qdt

` 1
72
p10:upi`1 ` 51:ui ´ :ui´1qpdtq

2
`O

`

pdtq4
˘

(91d)

9ui`1 “
1
3
p4 9ui ´ 9ui´1q `

2
3

:upi`1 dt`O
`

pdtq3
˘

(91e)

Re-Evaluate :ui`1 “ fpti`1,ui`1, 9ui`1q (91f)

which is a second-order method for integrating velocities 9u, and a third-order method
for integrating displacements u.

This PECE solver for velocity 9u has a predictor and a corrector, i.e., Eqs. 91b and
91e, that are the same as those of method (i.e., 87a and 87c), and as such, this
predictor/corrector pair for integrating velocity is consistent. Likewise, in both the
predictor and corrector for integrating displacement u, contributions from the so-
lution u have a weight of 1, contributions from the velocities 9u have a weight of
2
3
dt, and contributions from the accelerations :u have a weight of 5

6
pdtq2; hence, this

predictor/corrector pair is internally consistent, too.

5.1.4 A Relevant Example

The finite element problem that we consider here requires solutions for the second-
order ODE

M:u`C 9u`Ku “ fpt,u, 9uq

where u, 9u, and :u are the displacement, velocity, and acceleration vectors, M is a
mass matrix, C and K are tangent and secant stiffness matrices, while fpt,u, 9uq is a
forcing function. In our application, matrices M, C, and K vary with deformation.

Given initial conditions u0 and 9u0, establish initial matrices M0 “ Mpu0q and
C0 “ Cpu0q, noting that K0u0 “ 0 because u0 “ 0. For this system of ODEs, the
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first step to be taken follows algorithm (Eq. 90) and is implemented as

Predict up1 “ u0 ` 9u0 dt` 1
2

:u0pdtq
2

9up1 “ 9u0 ` :u0 dt

Evaluate :up1 “ M´1
0

`

fpt1,u
p
1, 9up1q ´C0 9u0

˘

Correct u1 “ u0 `
1
2
p 9up1 ` 9u0qdt´

1
12
p:up1 ´ :u0qpdtq

2

9u1 “ 9u0 `
1
2
p:up1 ` :u0qdt

Re-Evaluate :u1 “ M´1
0

`

fpt1,u1, 9u1q ´C0 9u0

˘

Update Matrices M1 “ Mpu1q, C1 “ Cpu1q, K1 “ Kpu1q

with continued steps being governed by algorithm (Eq. 91), which takes on the form
of

Predict upi`1 “
1
3
p4ui ´ ui´1q `

1
6
p3 9ui ` 9ui´1qdt

` 1
36
p31:ui ´ :ui´1qpdtq

2

9upi`1 “
1
3
p4 9ui ´ 9ui´1q `

2
3
p2:ui ´ :ui´1qdt

Evaluate :upi`1 “ M´1
i

`

fpti`1,u
p
i`1, 9upi`1q ´Ci 9ui ´Kiui

˘

Correct ui`1 “
1
3
p4ui ´ ui´1q `

1
24
p 9upi`1 ` 14 9ui ` 9ui´1qdt

` 1
72
p10:upi`1 ` 51:ui ´ :ui´1qpdtq

2

9ui`1 “
1
3
p4 9ui ´ 9ui´1q `

2
3

:upi`1 dt

Re-Evaluate :ui`1 “ M´1
i

`

fpti`1,ui`1, 9ui`1q ´Ci 9ui ´Kiui
˘

Update Matrices Mi`1 “ Mpui`1q, Ci`1 “ Cpui`1q, Ki`1 “ Kpui`1q

where Kiui returns an internal force due to stress that has accumulated from initial
time t0 to current time ti, while Ci 9ui returns an incremental addition to this internal
force that has accumulated between current time ti and future time ti`1 “ ti ` dt.

We observe that the mass matrix must not be ill conditioned in order for this algo-
rithm to work as intended. In those cases where the mass matrix does not change
with time, it will only need to be evaluated and inverted once. This is an advan-
tage over using the popular Newmark110 integrator, where matrix evaluation and
inversion are required at every step along a solution path.
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5.2 Quadrature Rules for Spatial Integration

In a general finite element setting, information comes into an element via its nodes.
Once there, it gets interpolated into its interior Gauss points, where the constitutive
equations are solved and spatial integrations occur. In some applications, and in
particular, in ours, one also needs to be able to take fields (e.g., a damage parameter)
whose constitutive equations have been integrated at the Gauss points of an element,
and extrapolate this information back out to the exterior nodes of the element.

Particular to our application, a suite of nodes is common betwixt three, separate,
finite-element models that share 20 common vertices. These vertices establish the
geometry of a dodecahedron used as the model for a microscopic alveolus. The
resultant microscopic force at each vertex arises from i) a finite element model
of 30 1D rods representing the alveolar chords, ii) a finite element model of 12
2D pentagons representing the alveolar membranes, and iii) a finite element model
of 60 3D tetrahedra representing the alveolar sac. The microscopic forces coming
from these three geometric models are summed at their 20 common vertices. These
resultant microscopic forces are then collectively homogenized to yield an averaged
macroscopic state of stress at a chosen location in the parenchyma.

Feasibility of this solution strategy hinges upon one’s ability to extrapolate informa-
tion at the Gauss points out to their nodal positions. This requires an intermingling
between an element’s shape functions used for interpolation with its quadrature rule
used for integration.

5.2.1 Interpolations: Nodal Points ÞÑ Gauss Points
Extrapolations: Gauss Points ÞÑ Nodal Points

Shape functions are introduced for interpolating within an element; specifically,
consider an arbitrary field, say f , whose values are known at the nodes, then

fpξkq “
n
ÿ

i“1

Nipξkqfpxiq k “ 1, 2, . . . ,m (94a)
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where thexi are co-ordinates that locate one of the n nodes in an element of interest,
and where the ξi are co-ordinates that locate one of its m Gauss points, both being
evaluated in the natural co-ordinate system of the element. The transformation in
Eq. 94a maps a point x in an element of a mesh to a point ξ in its natural element.
Functions Ni are the so-called shape functions. They obey

řn
i“1Nipξq “ 1 @ ξ.

A corresponding extrapolation scheme can therefore be written down as

fpxkq “
m
ÿ

i“1

Mipxkqfpξiq k “ 1, 2, . . . , n (94b)

where the Mi denote extrapolation functions, i.e., they take values of function f ,
now assumed to be known at all Gauss points ξi, i “ 1, 2, . . . ,m, and extrap-
olate them out to their individual nodal points xk, k P t1, 2, . . . , nu. They obey
řm
i“1Mipxq “ 1 @ x.

The interpolation/extrapolation functions of interest here also obey the following
constraints: either

1 “
n
ÿ

i“1

NipξjqMjpxiq j “ 1, 2, . . . ,m (94c)

0 “
n
ÿ

i“1

NipξjqMkpxiq j, k “ 1, 2, . . . ,m, j ‰ k (94d)

or

1 “
m
ÿ

i“1

MipxjqNjpξiq j “ 1, 2, . . . , n (94e)

0 “
m
ÿ

i“1

MipxjqNkpξiq j, k “ 1, 2, . . . , n, j ‰ k (94f)

which follow from substituting Eq. 94b into Eq. 94a, or vice versa. In this regard,
such a pair of interpolation/extrapolation functions are said to be self-consistent. In
other words, if a field whose values are known at the nodal points is interpolated
down to the Gauss points, and then extrapolated back out to the nodal points, then
the outgoing values located at the nodes will equal their incoming values at these
nodes. The overall process is therefore self-consistent. As straightforward as this
procedure is, we found no satisfactory explanation of it in a finite element text.
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Whenever m “ n, the matrices that come about from the interpolation and extrap-
olation coefficients are reciprocal to one another, with the 0’s and 1’s of Eqs. 94c
and 94d or 94e and 94f associating with the individual components of an identity
matrix. Consequently, our need to extrapolate information, as well as interpolate
it, strongly suggests that the number of Gauss points selected ought to equal the
number of nodal points associated with a given element geometry, albeit this is not
a strict requirement for self-consistency.

As an example, a self-consistent strategy for a tetrahedron interpolates via
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where vectors x1, x2, x3, and x4 hold the co-ordinates for its four nodal points,
and where vectors ξ1, ξ2, ξ3, and ξ4 hold the co-ordinates of their Gauss points,
all evaluated in the natural co-ordinate system of the element. The matrices in the
above mappings will be inverses of one another in a self-consistent construction.

Our three-model, finite-element modeling of an alveolus requires the use of rods
with two nodes, triangles with three nodes, tetrahedra with four nodes, and pen-
tagons with five nodes. We now provide consistent interpolation/extrapolation pro-
cedures for these four geometries. This requires the selection of a two-point quadra-
ture rule for rods, a three-point quadrature rule for triangles, a four-point quadrature
rule for tetrahedra, and a five-point quadrature rule for pentagons. Our selections for
quadrature, and their associated interpolation/extrapolation maps, are presented in
the following subsections.
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5.2.1.1 Self-Consistent Interpolation/Extrapolation Procedures for Rods

Considering a rod with two Gauss points, the interpolation of an arbitrary field (say
f , whose values are known at nodal points xi, i “ 1, 2) into approximated values
located at Gauss points ξi, assigned according to Table 7, while selecting shape
(interpolation) functions N1 “

1
2
p1 ´ ξq and N2 “

1
2
p1 ` ξq, where ´1 ď ξ ď 1,

results in an interpolation map that sends values for a field known at the element
nodes down to its Gauss points via

#

fp´
?

3/3q

fp
?

3/3q

+

“
1

6

«

3`
?

3 3´
?

3

3´
?

3 3`
?

3

ff#

fp´1q

fp1q

+

(95a)

that, upon applying the methodology put forward in Eq. 94, leads to a straight-
forward extrapolation formula that maps values for a field of interest from the ele-
ment Gauss points out to its nodes via

#

fp´1q

fp1q

+

“
1

2
?

3

«?
3` 3

?
3´ 3

?
3´ 3

?
3` 3

ff#

fp´
?

3/3q

fp
?

3/3q

+

. (95b)

This extrapolation matrix can be found in Oñate111 (p. 332). As a check, each row in
this matrix sums to 1. Furthermore, the matrices in Eqs. 95a and 95b are reciprocals
to one another, as they must be.

Table 7 A quadrature rule for integrating functions over a length of line. This quadrature
rule approximates

ş1

´1
fpξqdξ using two Gauss points, i.e.,

ş1

´1
fpξqdξ «

ř2
i“1 wifpξiq. The

weights of quadrature wi sum to its length, because L “
ş1

´1
dξ “ 2. This quadrature rule is

due to Christoffel. It integrates polynomials along a line exactly up through second order.

node ξ co-ordinate weight
1 ´

?
3{3 1

2
?

3{3 1

5.2.1.2 Self-Consistent Interpolation/Extrapolation Procedures for Triangles

Now, considering a triangle with three Gauss points, the interpolation of an arbitrary
field f whose values are known at nodal points xi, i “ 1, 2, 3, into approximated
values located at Gauss points ξ, assigned according to Table 8, while selecting
shape (interpolation) functions N1 “ 1 ´ ξ ´ η, N2 “ ξ, and N3 “ η, where
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Table 8 A simple quadrature rule for integrating functions over the area of a trian-
gle. This quadrature rule approximates

ş1

0

ş1´ξ

0
fpξ, ηqdη dξ using three Gauss points, i.e.,

ş1

0

ş1´ξ

0
fpξ, ηqdη dξ «

ř3
i“1 wifpξi, ηiq. The weights of quadrature wi sum to its area, be-

cause A “
ş1

0

ş1´ξ

0
dη dξ “ 1/2. This quadrature rule is due to Strang. It integrates polynomials

over a triangular region exactly up through second order. As a point of reference, its centroid
has co-ordinates (1/3, 1/3).

node ξ co-ordinate η co-ordinate weight
1 1/6 1/6 1/6
2 2/3 1/6 1/6
3 1/6 2/3 1/6

0 ď ξ ď 1 and 0 ď η ď 1´ ξ, results in an interpolation that maps according to
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that, upon applying the methodology put forward in Eq. 94, which requires some
algebra, leads to a simple extrapolation formula applicable for triangles when eval-
uated in their natural co-ordinate system, viz.,
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As a check, each row in both matrices sums to 1 and, as expected, these matrices
are reciprocals to one another.

5.2.1.3 Self-Consistent Interpolation/Extrapolation Procedures for Pentagons

We only know of two papers where quadrature formulæ have been derived for in-
tegrating over the area of a pentagon.112,113 Neither presents tables for their nodes
and weights of quadrature. Only mathematical methodologies are provided, from
which one can numerically construct such tables. More importantly, for our appli-
cation, neither of their strategies exploits the symmetry properties of a pentagon.
Their formulæ, which can be highly accurate, unfortunately do not meet our needs.

Because we seek a quadrature rule for regular pentagons that employs five Gauss
points, and pentagons possess five radial lines of symmetry, it is reasonable to con-
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sider that the five nodes of quadrature that we seek lie along these five radial lines.
Specifically, we seek a quadrature rule for a pentagon whose nodes are located at
xi, i “ 1, 2, . . . , 5, and whose Gauss points are located at ξi, i “ 1, 2, . . . , 5, with

x1 “
`

cospπ/2q, sinpπ/2q
˘

ξ1 “ `x1 (97a)

x2 “
`

cosp9π/10q, sinp9π/10q
˘

ξ2 “ `x2 (97b)

x3 “
`

cosp13π/10q, sinp13π/10q
˘

ξ3 “ `x3 (97c)

x4 “
`

cosp17π/10q, sinp17π/10q
˘

ξ4 “ `x4 (97d)

x5 “
`

cospπ/10q, sinpπ/10q
˘

ξ5 “ `x5 (97e)

where lines radiating from the origin out to each vertex xi have unit length, while
the lines that radiate out to the Gauss points ξi each have a shorter length of `.

Implementing the strategies that underlie Gauss quadrature, length ` represents a
distance from the pentagon’s centroid out to the centroid of a quadrilateral. In our
case, this area (one of five equivalent areas) is a four-sided polygon whose apex has
an inside angle of 108˝, whose two shoulders have right angles, while the inside
angle is 72˝ at the origin. A little bit of algebra and geometry leads to the result

` “
1` sinp3π/10q

3 sinp3π/10q
« 0.7454, (98a)

whose area becomes the associated weight of quadrature, it being

w “ sinp3π/10q cosp3π/10q « 0.4755, (98b)

which is one-fifth the area of a regular pentagon, cf. Eq. 6. To the best of our knowl-
edge, the quadrature rule put forward in Eqs. 97 and 98 for pentagons is new to the
literature.

Interpolation is described through shape functions. Adopting the shape functions of
Wachspress, which are constructed in Section 3.3.1 for a pentagon, while using the
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quadrature rule of Eqs. 97 and 98, results in a symmetric interpolation map of

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fpξ1q

fpξ2q

fpξ3q

fpξ4q

fpξ5q

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

“

»

—

—

—

—

—

—

–

a b c c b

b a b c c

c b a b c

c c b a b

b c c b a

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fpx1q

fpx2q

fpx3q

fpx4q

fpx5q

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

(99a)

whose matrix elements are a “ 0.6901471673508344, b “ 0.1367959452017669,
and c “ 0.0181304711228159, and whose paired extrapolation map is
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(99b)

wherein

x “ a2
` pa´ bqpb` cq ´ c2, (99c)

y “ pb` cqc´ pa` bqb, (99d)

z “ b2
´ pa´ bqc´ c2, (99e)

∆ “ a2
´ pa` bqb´ pa´ 3bqc´ c2, (99f)

where, as a check,
ř5
i“1Nipξjq “ 1 and

ř5
i“1Mipxjq “ 1 for j “ 1, 2, . . . , 5, and

therefore, a ` 2pb ` cq “ 1 and x ` 2py ` zq “ ∆. Furthermore, these coefficient
matrices for interpolation and extrapolation are inverses to one another.

5.2.1.4 Self-Consistent Interpolation/Extrapolation Procedures for Tetrahedra

We now consider a tetrahedron with four Gauss points. Here the interpolation of an
arbitrary field f whose values are known at nodal points xi, i “ 1, 2, 3, 4, into ap-
proximated values located at Gauss points ξi, assigned according to Table 9, while
selecting shape functions N1 “ 1 ´ ξ ´ η ´ ζ , N2 “ ξ, N3 “ η, and N4 “ ζ ,
bounded by 0 ď ξ ď 1, 0 ď η ď 1 ´ ξ, and 0 ď ζ ď 1 ´ ξ ´ η, leads to the
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Table 9 A simple quadrature rule for integrating functions over the volume of a tetrahedron.
This quadrature rule approximates

ş1

0

ş1´ξ

0

ş1´ξ´η

0
fpξ, η, ζqdζ dη dξ using four Gauss points,

i.e.,
ş1

0

ş1´ξ

0

ş1´ξ´η

0
fpξ, η, ζqdζ dη dξ «

ř4
i“1 wifpξi, ηi, ζiq. The weights of quadrature wi sum

to its volume, because V “
ş1

0

ş1´ξ

0

ş1´ξ´η

0
dζ dη dξ “ 1/6. This quadrature rule is due to Keast.

It integrates polynomials over a tetrahedral region exactly up through second order. As a point
of reference, its centroid has co-ordinates (1/4, 1/4, 1/4).

node ξ co-ordinate η co-ordinate ζ co-ordinate weight
1 0.1381966011250105 0.1381966011250105 0.1381966011250105 1/24
2 0.5854101966249685 0.1381966011250105 0.1381966011250105 1/24
3 0.1381966011250105 0.5854101966249685 0.1381966011250105 1/24
4 0.1381966011250105 0.1381966011250105 0.5854101966249685 1/24

following interpolation formula

$

’

’

’

’

&

’

’

’

’

%

fpa, a, aq

fpb, a, aq

fpa, b, aq

fpa, a, bq

,

/

/

/

/

.

/

/

/

/

-

“

»

—

—

—

—

–

1´ 3a a a a

1´ 2a´ b b a a

1´ 2a´ b a b a

1´ 2a´ b a a b

fi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

&

’

’

’

’

%

fp0, 0, 0q

fp1, 0, 0q

fp0, 1, 0q

fp0, 0, 1q

,

/

/

/

/

.

/

/

/

/

-

(100a)

that, upon applying the methodology put forward in Eq. 94, which now requires a
good deal of algebra, results in the following extrapolation formula for tetrahedra
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where a “ 0.1381966011250105 and b “ 0.5854101966249685 from Table 9.
As a check, each row in the above matrices sums to 1. Unlike the interpolation/
extrapolation formulæ for rods, triangles, and pentagons, whose matrices of trans-
formation are symmetric, the interpolation/extrapolation matrices for a tetrahedron
are not symmetric. Lack of symmetry in a quadrature rule is not uncommon, but in
our application, such symmetries are advantageous. Nevertheless, for a tetrahedron,
quadrature symmetry is not necessary.
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6. Variational Formulation

The problem that we have set up to solve is cast in a Lagrangian setting and takes
on the general form of a second-order ODE; specifically,

F “ K ∆`C 9∆`M :∆, (101a)

that under conditions of equilibrium (i.e., whenever :∆ “ 9∆ “ 0) reduces to

F “ K ∆, (101b)

where K is a secant stiffness matrix, C is a tangent stiffness matrix*, M is a mass
matrix, and F is a force vector, while vector ∆ contains the assembled nodal dis-
placements with 9∆ and :∆ denoting their velocities and accelerations.

Our problem of interest is the dynamic mechanical response of an alveolus, whose
geometry is modeled as a dodecahedron. The shape of an irregular dodecahedron is
described by a set of 20 vertices, each experiencing displacements of

u
pvq
i “

!

u
pvq
i v

pvq
i w

pvq
i

)T

, (102a)

where at the beginning of a solution step upvqi ..“ x
pvq
i ´ x

pvq
0 , vpvqi ..“ y

pvq
i ´ y

pvq
0 ,

and wpvqi ..“ z
pvq
i ´ z

pvq
0 , while at the end of that solution step upvqi`1 “ x

pvq
i`1 ´ x

pvq
0 ,

v
pvq
i`1 “ y

pvq
i`1 ´ y

pvq
0 , and w

pvq
i`1 “ z

pvq
i`1 ´ z

pvq
0 , with pxpvq, ypvq, zpvqq denoting co-

ordinates for vertex v in the co-ordinate frame p~E1, ~E2, ~E3q of a dodecahedron, as
established in Section 2. The velocities at these vertices are

9u
pvq
i “

!

9u
pvq
i 9v

pvq
i 9w

pvq
i

)T

, (102b)

*In the literature, matrix C is typically utilized as a damping matrix; however, there are presently
no damping mechanisms in our alveolar model. For example, viscoelastic effects are often important
when modeling biologic tissues. Nevertheless, they can be neglected here, because the event of a
shock wave passing over an alveolus happens so fast that viscoelastic effects do not have a chance to
manifest themselves. Tissue response will be glassy elastic during such an event. Here C provides
for an elastic tangent response, while K provides for an elastic secant response.
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where at the beginning of a solution step 9δi “
1

2dt
pδi`1 ´ δi´1q, while at the end

of that solution step 9δi`1 “
1

2dt
p3δi`1 ´ 4δi ` δi´1q, with δ P tupvq, vpvq, wpvqu.

Likewise, their accelerations are

:u
pvq
i “

!

:u
pvq
i :v

pvq
i :w

pvq
i

)T

, (102c)

where at the beginning of a solution step :δi “
1

pdtq2
pδi`1 ´ 2δi ` δi´1q, while at the

end of that solution step :δi`1 “
1

pdtq2
p2δi`1 ´ 5δi ` 4δi´1 ´ δi´2q. An evaluation of

these nodal fields requires knowledge of the co-ordinates for each vertex at states
i`1, i, i´1, and i´2. All finite difference equations listed above are second-order
formulæ.

Symbol ∆ is used to denote an assemblage of all nodal displacements, while sym-
bol upvq is used to denote the nodal displacement of an individual vertex (node) v
located within this model, of which there are 20 in our dodecahedral model. These
20 vertices uniquely establish 30 alveolar chords, 12 alveolar membranes, and the
alveolar sac enveloped by them, cf. Section 2.

Our problem is not cast as a typical finite element solution, in the sense that we
know the nodal displacements ∆, velocities 9∆, and accelerations :∆ a priori, for
which nodal forces F are to be found. Furthermore, the constitutive responses of
the local structural members composing the alveolus are also interrogated by our
model construction (e.g., local stress-strain histories, damage/rupture, etc.), given
an imposed far-field deformation history. Typically, boundary conditions are known
for which displacements are determined in a weak sense, which is the opposite of
our situation. Inputs for our model are considered to come from a finite element
model of a torso subjected to an impact caused by either a ballistic projectile or
a blast wave. Say, for example, that a location of interest in the lung has been se-
lected. What will serve as input to our dodecahedral model will be a history of
the deformation gradient sequenced in time and taken from that element containing
this location of interest. For example, if 8-noded brick elements are used, then the
deformation gradient will be constant over its volume.

An element of size 1 mm3 (which is at the resolution capability of current lung
imaging technologies) would then have 100 to 200 alveoli in it. Consequently, tak-
ing a statistical average over many dodecahedral model runs ought to provide a
reasonable representation for the parenchymal response at that lung location. Pre-
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dictions coming from our dodecahedral model can be compared with predictions
coming from a continuum model used to represent the parenchyma of lung in a torso
model. This information from our microscopic alveolar model will allow for refine-
ment and parameterization of a macroscopic continuum model for parenchyma.
This is particularly relevant because the spongy nature of lung tissue makes it ex-
tremely difficult to perform dynamic experiments that are suitable for parameteriz-
ing such continuum models.114,115

The assembled nodal forces F pT q, discussed in Section 6.4.3.4, depend on stresses
T evaluated at the Gauss points, as do the tangent and secant stiffness matrices,
i.e., CpT q and KpT q, which thereby couples the system of equations that are to
be solved. As such, an iterative solver is proposed. The mass matrix M will vary
between solution steps, too, but not because the mass matrix of a particular element
changes, but rather, because rotations of the local co-ordinate systems for the ele-
ments about the global reference frame for the dodecahedron can become large, and
as such, effect change in the assembled mass matrix.

The stress that arises from K∆ is due to an elastic deformation that begins in some
reference state (at an initial time t0) and ends at the current state (at present time
ti). The stress that arises from C 9∆ is due to an additional elastic deformation that
begins in this current state (at time ti) and ends at some nearby state (at a future
time ti`1 “ ti ` dt). An inertial contribution to stress results from M :∆.

The solution strategy adopted here mimics that of a predictor/corrector method used
for solving ODEs. At the beginning of a current solution step, the solution at the
end of its previous step takes on the form of

F i “ Ki∆i `Mi
:∆i, (103a)

where F i “ F pT iq and Ki “ KpT iq. Recall that there is no damping in our model,
so there is no 9∆i contribution entering here. At the beginning of a step the stiffness
response arises singularly from a secant modulus. Meanwhile, the response at the
end of the time step is considered to be described by a predictor of the form

F p
i`1 “ Ki∆i `Ci

9∆i `Mi
:∆i,
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where F p
i`1 “ F pT

p
i`1q. Subtracting Eq. 103a from the above equation produces

F p
i`1 “ F i `Ci

9∆i, (103b)

where we observe that the tangent stiffness matrix Ci “ CpT iq is used to extrap-
olate the known value for F i into an estimate (prediction) for its next value, viz.,
F p
i`1. This step is similar in concept to an arbitrary Lagrangian–Eulerian (ALE) fi-

nite element formulation.116 At this point in the solution process, one evaluates the
mass and secant stiffness matrices according to Mi`1 and Ki`1 “ KpT p

i`1q and
then corrects the solution via

F i`1 “ Ki`1∆i`1 `Mi`1
:∆i`1, (103c)

where F i`1 “ F pT i`1q, while 9∆i`1 and :∆i`1 are approximated using backward
difference formulæ, as they are positioned at the end of the solution step. A reeval-
uation of Ki`1 “ KpT i`1q now takes place, and Eq. 103c is iterated on until con-
vergence. In preparation for advancing to the next solution step, one evaluates the
tangent stiffness matrix Ci`1 “ CpT i`1q.

Equation 103 is not self-starting. To start, because :∆0 “ ∆0 “ 0, it follows that

F p
1 “ F 0 `C0

9∆0, (104a)

where F 0 “ F pT 0q denotes a residual force or prestress that must exist in biologic
tissues, while C0 “ CpT 0q and F p

1 “ F pT
p
1 q. Here 9∆0 is to be approximated us-

ing an Euler forward step. After evaluating K1 “ KpT p
1 q, a correction is computed

F 1 “ K1∆1, (104b)
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where F 1 “ F pT 1q. This allows for an improvement K1 “ KpT 1q that can be in-
serted back into the above equation, iterating until convergence. Upon convergence,
one determines the mass matrix M1 and the tangent stiffness matrix C1 “ CpT 1q

in preparation for advancing to solution step 2.

It is during the second solution interval whereat nodal accelerations can first be
computed, so that with Eq. 104b applying at the start of this interval, and with the
following predictor considered to apply at the end of the interval

F p
2 “ K1∆1 `C1

9∆1 `M1
:∆1

then subtracting Eq. 104b from this equation finds the solution advances via

F p
2 “ F 1 `C1

9∆1 `M1
:∆1 (104c)

whereF p
2 “ F pT

p
2 q. At this point there is enough information to estimate the nodal

accelerations :∆1, as displacement data are available for i ` 1 “ 2. Both 9∆1 and
:∆1 are approximated using central difference formulæ. Upon evaluating the mass
matrix M2 and the secant stiffness matrix K2 “ KpT p

2 q, a corrected solution at the
end of the step is computed via

F 2 “ K2∆2 `M2
:∆2, (104d)

where :∆2 Ð :∆1, because at this juncture there is not enough nodal displacement
information to estimate acceleration at the end of this step, while 9∆2 is approxi-
mated using a backward difference formula. Equation 104d allows for an improve-
ment for K2 “ KpT 2q that can be inserted back into itself, iterating until conver-
gence. Upon convergence, one determines the tangent stiffness matrix C2 “ CpT 1q

in preparation for advancing to solution step 3.

Equation 103 is used to advance all solution steps from the third step onward.

As a modeling simplification, the alveolar chords, the alveolar membranes, and the
alveolar sac are each considered to be described by their own finite element model.
It is assumed that there is no coupling occurring between these three structural
groups. This is an important simplification, because the mass and compliance of
these three geometric structures are vastly different, and as such, if not decoupled,
these differences in mass and compliance would become problematic sources out
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of which numerical difficulties would likely arise.

From physics, we know that forces add, and therefore, the nodal forces coming
from these three finite-element models can be summed. From these three sources
for microscopic alveolar force, one can construct a homogenized (averaged) state
of macroscopic stress descriptive of the parenchymal response.

Consequently, we construct three, individual, finite-element models governed by
the following three systems of differential equations

F 1D “ K1D ∆`C1D
9∆`M1D

:∆, (105a)

F 2D “ K2D ∆`C2D
9∆`M2D

:∆, (105b)

F 3D “ K3D ∆`C3D
9∆`M3D

:∆. (105c)

The assembled nodal displacements ∆, velocities 9∆, and accelerations :∆ are com-
mon fields betwixt them, i.e., each problem is cast as a 3D analysis. Subscript 1D
associates with alveolar chords that assemble into a 3D space truss, subscript 2D
associates with alveolar membranes that assemble into a 3D tiled balloon-like struc-
ture, and subscript 3D associates with an alveolar sac. Again, it is thought to be
beneficial to split the overall problem space into these three sub-problems due to
the vast differences in their structural mass and compliance.

When assembled, vectors F , ∆, 9∆, and :∆ have lengths of 60 for the alveolar chord
and alveolar membrane models, and a length of 63 for the alveolar sac model, while
matrices K, C, and M have dimensions of 60̂ 60 for the alveolar chord and alveolar
membrane models, and dimensions of 63ˆ63 for the alveolar sac model. The model
for alveolar volume has an extra node located at the centroid of the dodecahedron,
i.e., the co-ordinate origin, which is a node in common betwixt all 60 tetrahedra
used to fill the volume of a dodecahedron in this alveolar model.

The objective of this section is to derive the elemental mass matrix, the two stiffness
matrices (secant and tangent), plus the forcing functions and necessary boundary
conditions, and to then assemble them for analysis.
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6.1 Mass Matrices

The consistent mass matrix of an element,117 when quantified in the element’s co-
ordinate frame p~e1,~e2,~e3q, is defined as follows: For 1D elements,

MC1D “

ż

L

ρNTNA dL MC1D
ij “

ż

L

ρN1iN1j A dL (106a)

with i, j “ 1, 2, . . . , n where n is the number of nodal points. For 2D elements,

MC2D “

ż

A

ρNTNH dA MC2D
ij “

ż

A

ρ
2
ÿ

k“1

NkiNkj H dA (106b)

with i, j “ 1, 2, . . . , 2nwhere n is the number of nodal points. And for 3D elements,

MC3D “

ż

V

ρNTN dV MC3D
ij “

ż

V

ρ
3
ÿ

k“1

NkiNkj dV (106c)

with i, j “ 1, 2, . . . , 3n where n is the number of nodal points. For a rod, MC1D is a
2ˆ2 matrix; for a pentagon, MC2D is a 10ˆ10 matrix; and for a tetrahedron, MC3D

is a 12ˆ12 matrix. In each expression, ρ is mass per unit volume, N is a matrix of
shape functions for the element of interest, L is length, H is height, A is area, and
V is volume.

These mass matrices are said to be consistent in that they are calculated with the
same shape functions that are used to create their stiffness matrices. Consistent
mass matrices are symmetric because NTN is symmetric. Unfortunately, for all of
the elements that we employ, matrices NTN are singular, which is not a desirable
feature.

One form of a lumped mass matrix is where the entries from each row of a con-
sistent mass matrix are summed and placed in their respective diagonal entries.118

Specifically, for 1D elements,

ML1D
ii “

n
ÿ

j“1

MC1D
ij “

ż

L

ρN1i

n
ÿ

j“1

N1j A dL, ML1D
ij “ 0 i ‰ j (107a)
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with i “ 1, 2, . . . , n where n is the number of nodal points. For 2D elements,

ML2D
ii “

2n
ÿ

j“1

MC2D
ij “

ż

A

ρ
2
ÿ

k“1

Nki

2n
ÿ

j“1

Nkj H dA, ML2D
ij “ 0 i ‰ j (107b)

with i “ 1, 2, . . . , 2n where n is the number of nodal points. And for 3D elements,

ML3D
ii “

3n
ÿ

j“1

MC3D
ij “

ż

V

ρ
3
ÿ

k“1

Nki

3n
ÿ

j“1

Nkj dV, ML3D
ij “ 0 i ‰ j (107c)

with i “ 1, 2, . . . , 3n where n is the number of nodal points.

A lumped-consistent (or weighted) mass matrix MW can then be created as follows

MW “ p1´ µqMC ` µML,

wherein µ is a free scalar parameter for weighting between the consistent and
lumped mass matrices. The reason for mixing MC and ML is to achieve a non-
singular mass matrix by making the resulting matrix diagonally dominant. In this
work, µ is taken to be a half, i.e., an averaged mass matrix is adopted, which has a
nice property of minimizing low frequency dispersion. Specifically, we select

M1D
..“ 1

2
pMC1D `ML1Dq, (108a)

M2D
..“ 1

2
pMC2D `ML2Dq, (108b)

M3D
..“ 1

2
pMC3D `ML3Dq (108c)

as our means for constructing mass matrices. Each of these mass matrices is invert-
ible that, for example, is a requirement of the numerical solution strategy presented
in Section 5.1.4.

6.1.1 Mass Matrix for a Chord

A two-noded alveolar chord (a pinned beam in finite element terminology) has
shape functions Ni that aggregate into a 1ˆ2 matrix of shape functions when eval-
uated in their natural co-ordinate system wherein ´1 ď ξ ď 1, viz.,

Npξq “
“

N1 N2

‰

“
“

1
2
p1´ ξq 1

2
p1` ξq

‰

(109a)
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whose constituents have gradients

N1,ξ “ ´1/2 and N2,ξ “ 1/2 (109b)

from which a symmetric matrix arises to become the backbone for this mass matrix
(which happens to be singular), its components being

NTNpξiq “
1

4

«

1´ 2ξi ` ξ
2
i 1´ ξ2

i

1´ ξ2
i 1` 2ξi ` ξ

2
i

ff

(109c)

where ξi designates a co-ordinate for the ith Gauss point associated with a specific
Gauss quadrature rule for integration, which in our case comes from Table 7.

The determinant |J| of Jacobian matrix J is used to transform the integrals in
Eqs. 106 and 107 from natural co-ordinates into the co-ordinate system p~e1,~e2,~e3q

of a chord, cf. Fig. 9. Its value is

J ” |J| “
ÿ2

i“1
Ni,ξpξqxi “ ´

1
2
¨ ´1

2
L` 1

2
¨ 1

2
L “ 1

2
L (110)

given nodal co-ordinates of x1 “ ´
1
2
L and x2 “

1
2
L, where L is the length of our

alveolar chord. The Jacobian matrix J and its determinant |J| are equivalent in the
case of a rod, because this geometric space is one dimensional.

The consistent mass matrix for a 1D alveolar chord modeled as a two-noded rod,
when evaluated in the co-ordinate system of the chord, becomes

MC1D “

ż L

0

ρNTNA dx “

ż 1

´1

ρNTNA |J| dξ

“ |J|
m
ÿ

i“1

ρiAi N
TNpξiqwi

“
L

2

m
ÿ

i“1

ρiAiwi
4

«

1´ 2ξi ` ξ
2
i 1´ ξ2

i

1´ ξ2
i 1` 2ξi ` ξ

2
i

ff

(111)

where Npξiq is a matrix of shape functions evaluated at a node of quadrature ξi
whose associated weight of quadrature is wi, both evaluated at Gauss point i for a
selected Gauss integration rule comprising m Gauss points. Table 7 presents values
for the co-ordinates ξi and weights wi of quadrature where two Gauss points of
integration (m “ 2) are employed for integrating over a length of chord.
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A lumped mass matrix for a 1D alveolar chord, when evaluated in the co-ordinate
system of a chord is

ML1D “
ÿ

rows

L

2

m
ÿ

i“1

ρiAiwi
4

«

1´ 2ξi ` ξ
2
i 1´ ξ2

i

1´ ξ2
i 1` 2ξi ` ξ

2
i

ff

“
L

2

m
ÿ

i“1

ρiAiwi
2

«

1´ ξi 0

0 1` ξi

ff

.

(112)

It is seen that the mass matrix in Eq. 111 is singular at any given Gauss point,
whereas the mass matrix in Eq. 112 has a reciprocal, except whenever ξ “ ˘1,
which are points not realized in Gaussian quadrature rules.

A chordal mass matrix that is appropriate for biologic fibers, and that associates
with the Gauss quadrature rule listed in Table 7, has a consistent mass matrix of

MC1D “
ρ1A1L

12

«

2`
?

3 1

1 2´
?

3

ff

`
ρ2A2L

12

«

2´
?

3 1

1 2`
?

3

ff

(113a)

and a lumped mass matrix of

ML1D “
ρ1A1L

12

«

3`
?

3 0

0 3´
?

3

ff

`
ρ2A2L

12

«

3´
?

3 0

0 3`
?

3

ff

(113b)

that when averaged become

M1D “
ρ1A1L

24

«

5` 2
?

3 1

1 5´ 2
?

3

ff

`
ρ2A2L

24

«

5´ 2
?

3 1

1 5` 2
?

3

ff

(113c)

with M1D being the 1D mass matrix that we implement. Because the mass of an
alveolar chord does not change when exposed to a traveling shock wave, it follows
that ρAL “ ρ0A0L0, and as such, this mass matrix only needs to be evaluated once.

In contrast with engineered structures, like steel trusses, where bars have uniform
mass density over their lengths, and typically have uniform cross-sectional areas,
too, biologic fibers, like alveolar chords, have mass densities ρi and cross-sectional
areas Ai that vary along their lengths, and hence, they remain properties of the
Gauss points and cannot be pulled out in front of the summation, as is usually done.

The finer details of constructing a mass matrix have been presented above, because
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the level of complexity is relatively small in the case of a chord. Much of this finer
detail is omitted in the following presentations, since the complexity in these cases
is more substantial.

6.1.1.1 Assembly of Chordal Mass Matrices

In our alveolar model comprising septal chords, there are 20 nodes (vertices) whose
numbering scheme and natural co-ordinates (those of a regular dodecahedron) are
specified in Table 1. Connecting these 20 nodes are 30 line segments (septal chords)
whose numbering scheme and associated nodal numbers are specified in Table 2.

In 3D analyses, the components M1D
ij of mass matrix M1D from Eq. 113 populate

a mass matrixM peq
1D for element e, e P t1, 2, . . . , 30u, accordingly

M
peq
1D “

»

—

—

—

—

—

—

—

—

—

–

M1D
11 0 0 M1D

12 0 0

0 0 0 0 0 0

0 0 0 0 0 0

M1D
21 0 0 M1D

22 0 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(114)

so that, e.g., given the formula f “ M:u, one would have
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0 0 0 0 0 0
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ffi

ffi

ffi
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where element e has nodes i and j, with all components being evaluated in the
co-ordinate system p~e1,~e2,~e3q

peq. Only an axial force is carried by the chord. No
transverse forces are present. Also, no moments of inertia have been introduced.
Like mass matrix M1D, Mass matrix M peq

1D is constant, and therefore only needs to
be evaluated once.

To rotate this mass matrix for an element from its co-ordinate system for a chord
p~e1,~e2,~e3q

peq into the fixed co-ordinate system for a dodecahedron p~E1, ~E2, ~E3q,
where it can be assembled with the mass matrices from the other 29 chordal ele-
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ments, one must first apply the orthogonal transformation

R
peq
1D “

»

—

—

—

—

—

—

—

—

—

–

Q
peq
11 Q

peq
12 Q

peq
13 0 0 0

Q
peq
21 Q

peq
22 Q

peq
23 0 0 0

Q
peq
31 Q

peq
32 Q

peq
33 0 0 0

0 0 0 Q
peq
11 Q

peq
12 Q

peq
13

0 0 0 Q
peq
21 Q

peq
22 Q

peq
23

0 0 0 Q
peq
31 Q

peq
32 Q

peq
33

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(115)

so that, accordingly,
M
peq
1D “

`

R
peq
1D

˘T
M

peq
1D R

peq
1D, (116)

where M
peq
1D becomes this mass matrix, transformed into a dodecahedral co-ordinate

system p~E1, ~E2, ~E3q with rt~e1ut~e2ut~e3us
peq “

“

t~E1ut
~E2ut

~E3u
‰“

Qpeqs, cf. Fig. 9.
Even though M peq

1D is a constant mass matrix, M
peq
1D need not be, because R

peq
1D will

typically vary over time in our analysis of alveoli subjected to shock waves.

We can now rewrite our example equation for f “ M:u as a block matrix equation

#

f i

f j

+

“

«

M
peq
1D:ii M

peq
1D:ij

M
peq
1D:ji M

peq
1D:jj

ff#

:ui

:uj

+

wherein f i “ f
piq
1
~E1 ` f

piq
2
~E2 ` f

piq
3
~E3, etc., where i and j are the nodal numbers

for the two nodes that establish this chord.

From this example, following standard procedures,119 it becomes apparent how to
assemble the overall mass matrix of our space truss when using the geometry of a
dodecahedron to model an alveolus. This mass matrix will be a 20̂ 20 block matrix,
with each block element being a 3ˆ3 matrix. Entries placed into this block matrix
for each truss element are positioned into this matrix according to the element num-
bering scheme presented in Table 2.

6.1.2 Mass Matrix for a Triangle

Even though we need to know the shape functions and quadrature rule for trian-
gles in our analysis, we do not need to construct their mass matrix for our specific
application.
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6.1.3 Mass Matrix for a Pentagon

The surface of a dodecahedron is tiled with 12 pentagons, and as such, an analysis
to establish a mass matrix for a pentagon becomes the building block needed to be
able to assemble a 2D mass matrix M2D representing the alveolar membranes that
envelope an alveolar sac.

For an alveolar membrane, represented here as an irregular pentagon, the matrix of
shape functions Npξ, ηq takes on the general form of

N “

«

N1 0 N2 0 N3 0 N4 0 N5 0

0 N1 0 N2 0 N3 0 N4 0 N5

ff

(117)

whose product NTNpξ, ηq is a symmetric singular matrix with a banded structure

NTN “
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

N2
1 0 N1N2 0 N1N3 0 N1N4 0 N1N5 0

0 N2
1 0 N1N2 0 N1N3 0 N1N4 0 N1N5

N1N2 0 N2
2 0 N2N3 0 N2N4 0 N2N5 0

0 N1N2 0 N2
2 0 N2N3 0 N2N4 0 N2N5

N1N3 0 N2N3 0 N2
3 0 N3N4 0 N3N5 0

0 N1N3 0 N2N3 0 N2
3 0 N3N4 0 N3N5

N1N4 0 N2N4 0 N3N4 0 N2
4 0 N4N5 0

0 N1N4 0 N2N4 0 N3N4 0 N2
4 0 N4N5

N1N5 0 N2N5 0 N3N5 0 N4N5 0 N2
5 0

0 N1N5 0 N2N5 0 N3N5 0 N4N5 0 N2
5

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(118)

that when summed along rows produces a diagonal matrix with elements

ÿ

rows

NTN “ diag
`

N1 N1 N2 N2 N3 N3 N4 N4 N5 N5

˘

(119)

wherein Ni, i “ 1, . . . , 5, are the five shape functions that correspond with the five
vertices of a pentagon, as established in Eq. 20. These shape functions are nonlinear
functions of their co-ordinates pξ, ηq, which is readily apparent in Fig. 12.

A consistent mass matrix MC2D is constructed by substituting the above matrix of
shape functions into the following expression

MC2D “

ż

D
ρNTN |J|H dξ dη “ |J|

m
ÿ

i“1

ρiHi N
TNpξi, ηiqwi, (120)
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where m is the number of Gauss points with pξi, ηiq and wi being their respective
co-ordinates and weights of quadrature that, in our implementation, are provided by
Eqs. 97 and 98. As with alveolar chords, alveolar membranes have mass densities
ρi and heightsHi (thicknesses) that are not uniform across a membrane; hence, they
are treated as properties of the Gauss point, and as such, are not pulled out in front
of the above summation, as is typically done.

Here |J| is the Jacobian determinant of a 2̂ 2 Jacobian matrix J. In areal derivations,
the Jacobian of a 2D transformation connects the physical x, y to the natural ξ, η co-
ordinate systems involved. Components of this Jacobian matrix are calculated using
derivatives of shape functions taken with respect to the local co-ordinates via (cf.
Reddy118 p. 424)

J “

«

Bx{Bξ By{Bξ

Bx{Bη By{Bη

ff

“

«

ř5
i“1Ni,ξpξ, ηqxi

ř5
i“1Ni,ξpξ, ηq yi

ř5
i“1Ni,ηpξ, ηqxi

ř5
i“1Ni,ηpξ, ηq yi

ff

(121)

where the shape function gradients Ni,ξ and Ni,η are provided by Eq. 24, with

|J| “
Bx

Bξ

By

Bη
´
Bx

Bη

By

Bξ
(122)

establishing the Jacobian determinant. It is proportional to the area of the pentagon
AD because AD “

ş

D dx dy “
ş

D |J| dξ dη “ |J|
ř5
i“1wi “ 2.378|J| using the

quadrature rule for pentagons given in Eq. 98, cf. Eq. 6.

From the consistent mass matrix of Eq. 120, its associated lumped mass matrix is
readily computed via Eq. 107b that when averaged with Eq. 120 results in the 2D
mass matrix M2D that we implement.

6.1.3.1 Assembly of Pentagonal Mass Matrices

In our alveolar model comprising septal membranes, there are 20 common nodes
(vertices) whose numbering scheme and natural co-ordinates (those of a regular
dodecahedron) are specified in Table 1. Subsets of these 20 nodes allow for the
construction of 12 pentagons (septal membranes) whose numbering scheme and
associated nodal numbers are specified in Table 3.

In the co-ordinate system of a pentagon p~e1,~e2,~e3q
peq, e P t1, 2, . . . , 12u, a pentagon
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has a mass matrix with a symmetric block structure of

M
peq
2D “

»

—

—

—

—

—

—

–

M 2D
11 M 2D

12 M 2D
13 M 2D

14 M 2D
15

M 2D
21 M 2D

22 M 2D
23 M 2D

24 M 2D
25

M 2D
31 M 2D

32 M 2D
33 M 2D

34 M 2D
35

M 2D
41 M 2D

42 M 2D
43 M 2D

44 M 2D
45

M 2D
51 M 2D

52 M 2D
53 M 2D

54 M 2D
55

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(123a)

with each element in this matrix being a 3ˆ3 matrix with diagonal entries of

M 2D
ij “

»

—

–

M2D
ij 0 0

0 M2D
ij 0

0 0 0

fi

ffi

fl

(123b)

whose components have values of

M2D
ii “

|J0|

2

5
ÿ

k“1

ρ0kH0kNip1`Niqpξk, ηkqwk i “ 1, 2, . . . , 5 (124a)

M2D
ij “M2D

ji “
|J0|

2

5
ÿ

k“1

ρ0kH0kNiNjpξk, ηkqwk i ‰ j (124b)

with co-ordinates pξi, ηiq and weights wi of quadrature being given in Eqs. 97 and
98, and whose shape functions are defined according to Eq. 20. Because the mass
of an alveolar membrane is conserved when exposed to a traveling shock wave, it
follows that ρH|J| “ ρ0H0|J0|, and as such, like the mass matricesM peq

1D andM peq
3D

for chords and tetrahedra, the mass matrix M peq
2D for each pentagon only needs to

be evaluated once.

To rotate this mass matrix for element e, e P t1, 2, . . . , 12u, from its elemental co-
ordinate system for the pentagon p~e1,~e2,~e3q

peq into a fixed co-ordinate system for
the dodecahedron p~E1, ~E2, ~E3q, where it can be assembled with mass matrices from
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the other 11 elements, one must apply the orthogonal transformation

R
peq
2D “

»

—

—

—

—

—

—

–

Qpeq 0 0 0 0

0 Qpeq 0 0 0

0 0 Qpeq 0 0

0 0 0 Qpeq 0

0 0 0 0 Qpeq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(125a)

whose diagonal entries are themselves orthogonal matrices with components

Qpeq
“

»

—

–

Q
peq
11 Q

peq
12 Q

peq
13

Q
peq
21 Q

peq
22 Q

peq
23

Q
peq
31 Q

peq
32 Q

peq
33

fi

ffi

fl

(125b)

so that, accordingly,

M
peq
2D “

`

R
peq
2D

˘T
M

peq
2D R

peq
2D, (125c)

where M
peq
2D is its mass matrix transformed into the dodecahedral co-ordinate sys-

tem p~E1, ~E2, ~E3q according to the map rt~e1ut~e2ut~e3us
peq “

“

t~E1ut
~E2ut

~E3u
‰“

Qpeqs,
cf. Fig. 10. Even though M peq

2D is a constant mass matrix, M
peq
2D need not be, be-

cause R
peq
2D will typically vary over time in our analysis of alveoli subjected to shock

waves.

One can now take entries from mass matrix M
peq
2D for each nodal location in a pen-

tagonal element e and sum them into their appropriate nodal locations in the overall
mass matrix M2D for the structure, following standard procedures.119

6.1.4 Mass Matrix for a Tetrahedron

The volume of a dodecahedron is filled with 60 tetrahedra, whose centroid (the ori-
gin in its natural co-ordinate system) is a common vertex among these 60 tetrahedra.
Hence, an analysis to find the mass matrix of a tetrahedron becomes the building
block needed to be able to assemble a 3D mass matrix for modeling an alveolar sac.
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The matrix of shape functions Npξ, η, ζq for a tetrahedron has a general form of

N “

»

—

–

N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

fi

ffi

fl

(126)

whose product NTNpξ, η, ζq is a symmetric singular matrix with banded structure

NTN “
»

—

—

—

—

—

—

—

—

–

N2
1 0 0 N1N2 0 0 N1N3 0 0 N1N4 0 0

0 N2
1 0 0 N1N2 0 0 N1N3 0 0 N1N4 0

0 0 N2
1 0 0 N1N2 0 0 N1N3 0 0 N1N4

N1N2 0 0 N2
2 0 0 N2N3 0 0 N2N4 0 0

0 N1N2 0 0 N2
2 0 0 N2N3 0 0 N2N4 0

0 0 N1N2 0 0 N2
2 0 0 N2N3 0 0 N2N4

N1N3 0 0 N2N3 0 0 N2
3 0 0 N3N4 0 0

0 N1N3 0 0 N2N3 0 0 N2
3 0 0 N3N4 0

0 0 N1N3 0 0 N2N3 0 0 N2
3 0 0 N3N4

N1N4 0 0 N2N4 0 0 N3N4 0 0 N2
4 0 0

0 N1N4 0 0 N2N4 0 0 N3N4 0 0 N2
4 0

0 0 N1N4 0 0 N2N4 0 0 N3N4 0 0 N2
4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(127)

that when summed along each row produces a diagonal matrix with elements
ÿ

rows

NTN “ diag
`

N1 N1 N1 N2 N2 N2 N3 N3 N3 N4 N4 N4

˘

(128)

in which the Ni, i “ 1, 2, 3, 4, are the four shape functions corresponding to the
four vertices of a tetrahedron that, along with their gradients, are described by

N1 “ 1´ ξ ´ η ´ ζ N1,ξ “ ´1 N1,η “ ´1 N1,ζ “ ´1 (129a)

N2 “ ξ N2,ξ “ 1 N2,η “ 0 N2,ζ “ 0 (129b)

N3 “ η N3,ξ “ 0 N3,η “ 1 N3,ζ “ 0 (129c)

N4 “ ζ N4,ξ “ 0 N4,η “ 0 N4,ζ “ 1 (129d)

out of which consistent, lumped, and weighted mass matrices can be constructed.

Numerical integration is used to obtain a consistent mass matrix for a tetrahedron

MC3D “

ż

V

ρNTN dz dy dx

“

ż 1

0

ż 1´ξ

0

ż 1´ξ´η

0

ρNTN |J| dζ dη dξ

“ ρ |J|
m
ÿ

i“1

NTNpξi, ηi, ζiqwi

(130)
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where |J| is the determinant of the Jacobian matrix J, with m being the number of
Gauss points used for spatial integration, which in our case is four. The co-ordinates
pξi, ηi, ζiq and weights wi of quadrature used for integrating over the volume of a
tetrahedron are found in Table 9.

The Jacobian is calculated from taking derivatives of the shape functions with re-
spect to their local co-ordinates pξ, η, ζq, as specified in Eq. 129, which associate
with the current global co-ordinates pxi, yi, ziq of its four vertices according to (cf.
Reddy118 p. 424)

J “

»

—

–

Bx{Bξ By{Bξ Bz{Bξ

Bx{Bη By{Bη Bz{Bη

Bx{Bζ By{Bζ Bz{Bζ

fi

ffi

fl

“

»

—

–

ř4
i“1Ni,ξpξ, η, ζqxi

ř4
i“1Ni,ξpξ, η, ζq yi

ř4
i“1Ni,ξpξ, η, ζq zi

ř4
i“1Ni,ηpξ, η, ζqxi

ř4
i“1Ni,ηpξ, η, ζq yi

ř4
i“1Ni,ηpξ, η, ζq zi

ř4
i“1Ni,ζpξ, η, ζqxi

ř4
i“1Ni,ζpξ, η, ζq yi

ř4
i“1Ni,ζpξ, η, ζq zi

fi

ffi

fl

“

»

—

–

x2 ´ x1 y2 ´ y1 z2 ´ z1

x3 ´ x1 y3 ´ y1 z3 ´ z1

x4 ´ x1 y4 ´ y1 z4 ´ z1

fi

ffi

fl

(48c)

whose determinant |J| is proportional to the volume of this element when evaluated
in the physical co-ordinate system p~E1, ~E2, ~E3q. Specifically, |J| “ 6Vtet because
Vtet “

ş

Vtet
dz dy dx “

ş1

0

ş1´ξ

0

ş1´ξ´η

0
|J| dζ dη dξ “ |J|

řm
i“1wi “

1
6
|J|.

Averaging this mass matrix based on Eq. 127 with its lumped version based on
Eq. 128, according to Eq. 130, gives the 3D mass matrix M3D that we implement.

Because tetrahedra are used to model an alveolar sac, which will either be filled with
air or fluid, their mass densities ρ are considered to be uniform over the domains
of these elements, which is why ρ can be pulled out in front of the summation in
Eq. 130.

6.1.4.1 Assembly of Tetrahedral Mass Matrices

In our finite element model for an alveolar sac, there are 21 nodes (20 vertices and
the origin) whose numbering scheme and natural co-ordinates are given in Table 1.
Filling this volume are 60 tetrahedra whose numbering scheme and associated nodal
numbers are specified according to the following strategy. Using the element and
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nodal numbering scheme for pentagons given in Table 3, begin with pentagon 1 and
sequence to pentagon 12. Associated with any given pentagon are five tetrahedra.
Nodes 1 and 4 of these five tetrahedra are the same. Node 1 is at the centroid of the
pentagon, and node 4 is at the origin of the dodecahedron. Nodes 2 and 3 of the tetra-
hedron are also nodes of this pentagon, and are sequenced such that when traversing
nodes 1 Ñ 2 Ñ 3 of a tetrahedron one undergoes a counterclockwise path when
viewed looking inward from outside of the dodecahedron. The first tetrahedron as-
sociated with a pentagon shares nodes 2 and 3 of its tetrahedron with nodes 1 and
2 of the pentagon. The second tetrahedron shares nodes 2 and 3 of its tetrahedron
with nodes 2 and 3 of the pentagon, etc.

In the co-ordinate system of a tetrahedron p~e1,~e2,~e3q
peq, a tetrahedron has a mass

matrix with a symmetric block structure of

M
peq
3D “

»

—

—

—

—

–

M 3D
11 M 3D

12 M 3D
13 M 3D

14

M 3D
21 M 3D

22 M 3D
23 M 3D

24

M 3D
31 M 3D

32 M 3D
33 M 3D

34

M 3D
41 M 3D

42 M 3D
43 M 3D

44

fi

ffi

ffi

ffi

ffi

fl

(131a)

with each element in this matrix being a 3ˆ3 matrix with diagonal entries of

M 3D
ij “

»

—

–

M3D
ij 0 0

0 M3D
ij 0

0 0 M3D
ij

fi

ffi

fl

(131b)

whose components have values of

M3D
ii “

ρ0|J0|

2

4
ÿ

k“1

Nip1`Niqpξk, ηk, ζkqwk i “ 1, 2, 3, 4 (132a)

M3D
ij “M3D

ji “
ρ0|J0|

2

4
ÿ

k“1

NiNjpξk, ηk, ζkqwk i ‰ j (132b)

with co-ordinates pξi, ηi, ζiq and weights wi of quadrature being given in Table 9,
and whose shape functions are defined according to Eq. 129. Here we consider that
mass is conserved over the volume of each element, and as such, ρ|J| “ ρ0|J0|.
Specifically, there is insufficient time for the normal transport of air into and out of
an alveolar sac to occur through breathing in the presence of a shock wave traversing

132



across the alveolus. Consequently, the mass matrix M peq
3D for each element only

needs to be evaluated once.

To rotate this mass matrix for element e, e P t1, 2, . . . , 60u, from its elemental co-
ordinate system for the tetrahedron p~e1,~e2,~e3q

peq into a fixed co-ordinate system for
the dodecahedron p~E1, ~E2, ~E3q, where it can be assembled with mass matrices from
the other 59 elements, one must apply the orthogonal transformation

R
peq
3D “

»

—

—

—

—

–

Qpeq 0 0 0

0 Qpeq 0 0

0 0 Qpeq 0

0 0 0 Qpeq

fi

ffi

ffi

ffi

ffi

fl

(133a)

whose diagonal entries are themselves orthogonal matrices with components

Qpeq
“

»

—

–

Q
peq
11 Q

peq
12 Q

peq
13

Q
peq
21 Q

peq
22 Q

peq
23

Q
peq
31 Q

peq
32 Q

peq
33

fi

ffi

fl

(133b)

so that, accordingly,

M
peq
3D “

`

R
peq
3D

˘T
M

peq
3D R

peq
3D (133c)

where M
peq
3D is its mass matrix transformed into the dodecahedral co-ordinate sys-

tem p~E1, ~E2, ~E3q according to the map rt~e1ut~e2ut~e3us
peq “

“

t~E1ut
~E2ut

~E3u
‰“

Qpeqs.
Even though M peq

3D is a constant mass matrix, M
peq
3D need not be, because R

peq
3D will

typically vary over time in our analysis of alveoli subjected to shock waves.

One can now take the mass matrix M
peq
3D for each nodal location in a tetrahedral

element e and sum them into their appropriate nodal locations in an overall mass
matrix M3D for the structure, following standard procedures.119

6.2 Constitutive Models for Finite Elements

In this study, we implement implicit, elastic, material models. Consequently, their
elastic compliance C and modulus M, where M ..“ C´1, are taken to be func-
tions of both strain and stress in a manner that is consistent with thermodynamics,
cf. Section 4 and the Appendix. Furthermore, the conjugate response between tem-
perature and entropy is not incorporated into our finite element solution strategy,
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because changes in entropy caused by elastic deformations have been shown to be
negligible in our application, cf. Section 4.4.4.2. As such, one can write down the
governing constitutive equations for use in finite elements as

E “ CspE,T q ¨ pT ´ T 0q, (134a)

T “ T 0 `Ms
pE,T q ¨E, (134b)

where T 0 is an initial (residual) stress at zero strain, and where Cs and Ms are
the secant compliance and secant modulus, respectively, obeying Ms

“ pCsq´1.
Written symbolically, Cs “ E{pT ´ T 0q and Ms

“ pT ´ T 0q{E.

Expressing these constitutive equations in differential form, one can write

dE “ CtpE,T q ¨ dT , (134c)

dT “Mt
pE,T q ¨ dE, (134d)

where Ct and Mt are the tangent compliance and tangent modulus, respectively,
obeying Mt

“ pCtq´1. Written symbolically, Ct “ dE{dT and Mt
“ dT {dE.

The components from these elastic compliance and moduli relate to one another via

Ctij “
ˆ

Iik ´
BCsi`
BEk

pT` ´ T0 `q

˙´1 ˆ

Cskj `
BCsk`
BTj

pT` ´ T0 `q

˙

, (134e)

Mt
ij “

ˆ

Iik ´
BMs

i`

BTk
E`

˙´1 ˆ

Ms
kj `

BMs
k`

BEj
E`

˙

, (134f)

that, because Mt
“ pCtq´1, enables one to write

Mt
ij “

ˆ

Csik `
BCsi`
BTk

pT` ´ T0 `q

˙´1 ˆ

Ikj ´
BCsk`
BEj

pT` ´ T0 `q

˙

, (134g)

and therefore we observe that if CspE,T q and T 0 are known, then Ms, Ct, and
Mt can all be determined in terms of this secant compliance and initial stress. The
tangent compliance will equate with its associated secant compliance only when all
of its elastic parameters are constant valued. A like statement applies for the mod-
uli. It is the moduli Ms and Mt that appear later in our finite element equations
(Eq. 151).

In finite element implementations, strain E and stress T are treated as vectors of
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size `ˆ1 (Voigt components, typically, but not so in our case) while the compliance
Cs and Ct and the moduli Ms and Mt are each matrices of size `ˆ `, where `
denotes the number of independent stress/strain attribute pairs that there are.

Equations 134a and 134b represent an implicit version of a Cauchy elastic material.
Equations 134c and 134d represent an implicit version of a hypo-elastic material.
Thermodynamically admissible compliance and moduli suitable for soft tissue anal-
ysis have been derived in Section 4 and the Appendix.

6.2.1 Moduli for a Chord

Alveolar chords comprise collagen and elastin fibers loaded in parallel.54,91 Con-
sequently, they are exposed to the same axial strain of e “ lnpL{L0q but carry
different stresses sc and se, where superscript c is for collagen and superscript e is
for elastin. The rule of mixtures is used to average their individual responses into
a collective chordal response. Specifically, the chordal, elastic, secant modulus is
described by the averaged response

Es ..“ φEc
s ` p1´ φqE

e
s , (135a)

while the chordal, elastic, secant compliance is described by the averaged response

Cs
“

Cc
s C

e
s

φCe
s ` p1´ φqC

c
s

. (135b)

Consequently, the chordal, elastic, secant modulus Ms appearing in Eq. 134b,
when described in terms of compliances Cc

s and Ce
s , becomes

Ms
“ φ{Cc

s ` p1´ φq{C
e
s . (135c)

Given the constitutive equation s “ s0`E
se, it follows that the stresses average as

s0
..“ φ sc0 ` p1´ φqs

e
0, (135d)

s ..“ φ sc ` p1´ φqse (135e)

because these fibers experience the same strain. The collagen, fiber, volume fraction
φ that does this partitioning is established by

φ ..“ Ac0{pA
c
0 ` A

e
0q, (135f)
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where the cross-sectional area of a chord is the sum of cross-sectional areas for its
collagen Ac0 and elastin Ae0 fibers, here evaluated in a reference state. These areas
are assigned via probability density functions according to Table 4. Assuming an
isochoric fiber response, i.e., that volume is preserved, it necessarily follows that the
homogenization parameter φ is a constant, i.e., it is independent of deformation.

The secant complianceCs that we apply to the collagen and elastin fibers in an alve-
olar chord are derived in the Appendix, cf. Eq. A-9. This model, under isothermal
conditions, describes an elastic secant compliance for collagen of

Cc
sps

c
q “

ec1max

sc ´ sc0

˜

1´

a

Ec
1e
c
1max

a

Ec
1e
c
1max

` 2psc ´ sc0q

¸

`
1

Ec
2

, (136a)

and an elastic secant compliance for elastin of

Ce
s ps

e
q “

ee1max

se ´ se0

˜

1´

a

Ee
1e
e
1max

a

Ee
1e
e
1max

` 2pse ´ se0q

¸

`
1

Ee
2

, (136b)

whose inverses, viz., Ec
s

..“ 1{Cc
s and Ee

s
..“ 1{Ce

s , are their secant moduli, which
are defined in accordance with Eqs. 134a and 134b, and as such, sc “ sc0 ` Ec

se

and se “ se0 ` Ee
se. The material properties associated with collagen fibers are a

soft initial modulus Ec
1, a stiff terminal modulus Ec

2, and their strain of transition
ec1max

, with like material properties describing an elastin fiber, cf. Section 4 and the
Appendix.

Whenever sc ă sc0, the elastic modulus for collagen is taken to be its modulus at
zero strain, i.e., Ec

s “ Ec
1E

c
2{pE

c
1`E

c
2q so that Cc

s “ pE
c
1`E

c
2q{E

c
1E

c
2, which helps

to ensure numeric stability. Also, whenever a collagen fiber ruptures, Ec
s Ñ 0 and

therefore Cc
s Ñ 8. Like statements apply to the elastin fiber of an alveolar chord.

The elastic fiber compliance in Eq. 136 depend only upon stress, not upon strain,
and as such the elastic tangent modulus Mt of Eq. 134g, which is one of two
moduli we use in our finite element implementation, reduces in this 1D case to

Mt
“

ˆ

Cs ` B C
s

Bs
ps´ s0q

˙´1

, (137a)
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where Cs is given by Eq. 135b, whose individual compliance Cc
s and Ce

s are de-
scribed by Eq. 136, and whose derivatives are determined to be

B Cs

Bs
“

B

Bsc
Ccspscq Cespseq

φ Cespseq ` p1´ φq Ccspscq

ˆ

Bs

Bsc

˙´1

`
B

Bse
Ccspscq Cespseq

φ Cespseq ` p1´ φq Ccspscq

ˆ

Bs

Bse

˙´1

“
1

`

φCe
s ` p1´ φqC

c
s

˘2

ˆ

pCe
s q

2 BC
c
s

Bsc
` pCc

sq
2 dCe

s

dse

˙

, (137b)

wherein

dCc
s

dsc
“

ec1max

sc ´ sc0

˜

a

Ec
1e
c
1max

`

Ec
1e
c
1max

` 2psc ´ sc0q
˘3{2

´
1

sc ´ sc0

˜

1´

a

Ec
1e
c
1max

a

Ec
1e
c
1max

` 2psc ´ sc0q

¸¸

(137c)

and

dCe
s

dse
“

ee1max

se ´ se0

˜

a

Ee
1e
e
1max

`

Ee
1e
e
1max

` 2pse ´ se0q
˘3{2

´
1

se ´ se0

˜

1´

a

Ee
1e
e
1max

a

Ee
1e
e
1max

` 2pse ´ se0q

¸¸

, (137d)

which follow from Eq. 136. The complexity here comes from the fact that an alve-
olar chord is a mixture of collagen and elastin fibers.

6.2.2 Moduli for a Pentagon

The secant response of an isothermal, isochoric, elastic pentagon can be written in
terms of Eq. 134a, as established in Section 4.4.3, whose constitutive behavior is
established via an elastic compliance Cs defined through the matrix equation
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or in terms of Eq. 134b, whose constitutive behavior is established through an elas-
tic modulus Ms such that

$

’

&

’

%

sπ

sσ

sτ

,

/

.

/

-

loomoon

T

“

$

’

&

’
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sπ0

0

0

,

/

.

/
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loomoon

T 0

`

»

—

–

4M s 0 0

0 4M s{3 0

0 0 Gs

fi

ffi

fl

loooooooooooomoooooooooooon

Ms

$

’

&

’

%

ξ

ε

γ

,

/

.

/

-

loomoon

E

(138b)

which is used in our finite element implementation. This strain vector E has ele-
ments denoting dilation ξ “ ln

a

ab{a0b0, squeeze (pure shear) ε “ ln
a

ab0{a0b,
and (simple) shear γ “ g ´ g0, which in turn are described in terms of two elonga-
tions a and b plus an in-plane shear g, with their reference values being a0, b0, and
g0. These stretch attributes are acquired via a QR decomposition of the deformation
gradient F, cf. Section 3.3.6. Dilation, squeeze, and shear are not coupled in this
model.

The stress vector T “ tsπ, sσ, sτuT conjugate to strain vector E “ tξ, ε, γuT has
elements of a surface tension sπ “ S11 ` S22, a normal-stress difference sσ “
S11´S22, and a shear stress sτ “ a

b
S12. Only surface tension is considered to have

a residual state of stress sπ0 , which is necessary for alveolar stability, and is caused,
in part, by the presence of surfactant. In a reciprocal sense, the stress components
are assigned via S11 “

1
2
psπ`sσq, S22 “

1
2
psπ´sσq, and S12 “ S21 “

b
a
sτ such that

S “ PU´1S U´TPT with S being the second Piola–Kirchhoff stress evaluated in
the co-ordinate system of a pentagon, while U is Laplace stretch, and P is a re-
indexer of co-ordinate labeling needed to ensure invariance under a transformation
of Laplace stretch.

The elastic compliance governing an isothermal dilation response is

1

4M spsπq
“

ξ1max

sπ ´ sπ0

¨

˝1´

a

M1ξ1max
b

M1ξ1max `
1
2
psπ ´ sπ0 q

˛

‚`
1

4M2

, (139a)

where M spsπ ď sπ0 q “ M1M2{pM1 ` M2q. The elastic compliance governing a
shear response is

1

Gspsτ q
“
γ1max

|sτ |

˜

1´

a

G1γ1max
a

G1γ1max ` 2|sτ |

¸

`
1

G2

, (139b)
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where Gspsτ “0q “ G1G2{pG1 `G2q.

Only in the mode of dilation is membrane rupture considered to be possible. Nev-
ertheless, whenever a rupture event does happen, both moduli vanish, i.e., M s Ñ 0

and Gs Ñ 0. The membrane loses structural integrity upon rupture. The material
parameters describing the various modes of a membrane are analogous to those
used to describe a fiber.

Like the fiber compliance (Eq. 136) used to model an alveolar chord, the membrane
compliance (Eq. 139) used to model alveolar septa has components that depend
upon stress, but not upon strain. Consequently, the tangent modulus of Eq. 134g
required of our finite element implementation has components of

Mt “

»

—

–

1
4Ms ` psπ ´ sπ0 q

dp1{4Msq

dsπ 0 0

0 3
4Ms ` psπ ´ sπ0 q

dp3{4Msq

dsπ 0

0 0 1
Gs ` s

τ dp1{Gsq
dsτ

fi

ffi

fl

´1

(140)

whose entries, taking into account Eq. 139, are determined to be

1

4M s
` psπ ´ sπ0 q

dp1{4M sq

dsπ
“

ξ1max

a

M1ξ1max

4
`

M1ξ1max `
1
2
psπ ` sπ0 q

˘3{2
`

1

4M2

(141a)

1

Gs
` sτ

dp1{Gsq

dsτ
“

γ1max

a

G1γ1max

pG1γ1max ` 2|sτ |q3{2
`

1

G2

(141b)

and as such, our implementation becomes quite straightforward.

6.2.3 Moduli for a Tetrahedron

The isothermal response of a volume element located within an alveolar sac will
have a secant response governed by
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where, for air, only the bulk modulus K is non-zero; whereas, for blood, the bulk
modulus K, the squeeze modulus N , and the shear modulus G are all non-zero.
Blood is actually a nonlinear viscoelastic liquid, but for our application of studying
pressure and shear waves traveling across a lung, blood will behave glassy elastic.
Blood supports a normal-stress difference, henceN ‰ 0, and blood supports a shear
stress, hence G ‰ 0.

The strain vector E “ tΞ, ε1, ε2, γ1, γ2, γ3u
T has elements that denote a dilatation

Ξ “ ln 3
a

abc{a0b0c0, two separate squeezes (pure shears) ε1 “ ln 3
a

ab0{a0b and
ε2 “ ln 3

a

bc0{b0c, and three separate (simple) shears γ1 “ α ´ α0, γ2 “ β ´ β0,
and γ3 “ γ ´ γ0 whose stretch attributes come from a QR decomposition of the
deformation gradient F.

The stress vector T “ tΠ, σ1, σ2, τ1, τ2, τ3u
T conjugate to strainE has elements that

comprise a pressure Π “ S11 ` S22 ` S33 “ ´3P where P denotes the common
definition for pressure, two separate normal-stress differences σ1 “ S11 ´ S22 and
σ2 “ S22 ´ S33, and three separate shear stresses τ1 “

b
c
S32, τ2 “

a
c
S31, and

τ3 “
a
b
S21 ´ ατ2. Of these, only pressure has an initial value, viz., Π0, which

represents atmospheric pressure.

Moduli K, N , and G are considered to be constants in our modeling of an alveolar
sac; therefore, Mt

“Ms when modeling alveolar volumes.

6.3 Stiffness Matrices

The solution strategy adopted here uses a secant modulus to determine the stress
acquired over a past interval in time spanning from t0 to ti, i.e., from an initial to
the current time, while a tangent modulus is used to determine an additional stress
acquired over a future interval in time spanning from ti to ti`1 “ ti ` dt that is of
infinitesimal extent. Here time ti denotes time at the beginning of a solution step,
where all fields are known, while time ti`1 denotes time at the end of a solution
step, whereat all dependent fields are to be determined.

6.3.1 Strain-Displacement Matrices

Finite element techniques introduce a matrix B that transforms nodal displacements
upeq for an element e into a vector of thermodynamic strains E located at a Gauss
point via the mapping

E “ Bupeq, (143)
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where E has size `ˆ1, B has size `ˆnd, and upeq has size ndˆ1. Here: d is the
spatial dimension of an element (viz., d “ 1, 2 or 3 that, in our case, associate with
a chord, a pentagon, and a tetrahedron, respectively); ` is the number of conjugate
pairs appropriate for an element (viz., ` “ 1, 3 or 6 that, in our case, associate
with a chord, a pentagon, and a tetrahedron, respectively); while n is the number of
nodes in an element (viz., n “ 2, 5 or 4 that, in our case, associate with a chord, a
pentagon, and a tetrahedron, respectively).

In order to make our computation more systematic, the strain-displacement matrix
B is taken to additively decompose into linear and nonlinear constituents such that

B “ BL `BN , (144a)

where the entries in BL are constants (its strain-displacement relationship is linear
in displacement), while the entries in BN are functions of displacement (its strain-
displacement relationship is nonlinear in displacement). Hence, in accordance with
Eq. 143, this decomposition allows definitions for linear and nonlinear strain con-
stituents to be introduced as

EL
..“ BL u

peq, (144b)

EN
..“ BN u

peq, (144c)

which add, i.e., E “ EL `EN . Their associated derivatives, taken with respect to
displacement, produce the formulæ

dEL “ BL dupeq 7 dBL “ 0 (144d)

dEN “ BN dupeq ` dBN u
peq (144e)

which obey dE “ dEL ` dEN and dB “ dBN so that dE “ B dupeq ` dBupeq.
This differential equation reduces to the classic result dE “ B dupeq found in the
finite element literature whenever the total displacements are infinitesimal in extent,
under which conditions BN « 0 and dBN « 0.

It is advantageous for us to re-write this nonlinear strain-displacement relation BN

as a product between two matrices such that

BN “ A H, (145a)
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where matrix A has size `ˆd, while matrix H has size dˆnd, with A comprising
various displacement gradients, and H comprising derivatives of shape functions
taken in the element’s co-ordinate system, and as such

dBN “ dA ¨H 7 dH “ 0. (145b)

As a consequence of this definition, at least for the elements of interest to us, it turns
out that one can establish another useful relationship, specifically

dAT T “ S H dupeq, (145c)

wherein S is a symmetric matrix of size dˆd whose components come from those
of its conjugate stress vector T of size `ˆ1. This representation follows whenever
one adopts a triangular deconstruction of the deformation gradient F from which
strain E is established, as addressed in Section 3.

6.3.2 Secant Stiffness Matrix

For nonlinear elastic materials, like soft tissues, stress/strain response curves gener-
ally become stiffer with increasing deformation.31,120 Consequently, the slope of a
line segment connecting the origin with its current stress/strain state, located some-
where along its response curve, will change with a change in stress and strain, and
therefore, its secant modulus will necessarily be a function of stress and/or strain.

A variation in the residual energy R of a deformed elastic body is the difference
between variations from two energy sources, assuming a simply connected body
whose motion maps have sufficient smoothness, etc. These energies are a potential
energy U that stores an internal strain energy, and a work done W that expends
energy though an external loading, specifically

δR “ δU ´ δW, (146a)

such that for an element e one has121

δW “
ÿ

e
F ¨ δupeq, (146b)

δU “
ÿ

e

ż

V

BT T dV ¨ δupeq, (146c)
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or alternatively

δR “
ÿ

e
R ¨ δupeq “

ÿ

e

ˆ
ż

V

BT T dV ´ F

˙

¨ δupeq, (146d)

where F and R are vectors denoting the external and residual forces, respectively,
while T is a stress conjugate to strainE, which are represented here as vector fields,
with B being the well-known strain-displacement matrix found in Eq. 143.

In order to satisfy equilibrium, the internal and external forces of Eq. 146 must be
in balance, and therefore, for each element122

R “

ż

V

BT T dV ´ F “ 0 (147a)

whose solution is typically achieved through an iterative process. Substituting the
secant constitutive equation (Eq. 134b) along with the strain-displacement relation-
ship of Eq. 143 into the above integral allows it to be rewritten as

ż

V

BT T dV “

ż

V

BT T 0 dV `

ż

V

BTMsE dV

“

ż

V

BT T 0 dV
loooooomoooooon

F 0

`

ż

V

BT Ms B dV
looooooooomooooooooon

Ks

upeq, (147b)

where Ks is a stiffness matrix built around the secant modulus Ms, and F 0 is an
internal force accounting for an initial residual stress of T 0. Here B and Ms are
evaluated at current time ti, i.e., at the beginning of an integration step.

6.3.3 Tangent Stiffness Matrix

Motivated by a definition for the tangent stiffness matrix being C ..“ dR{du that,
e.g., would be appropriate for an updated-Lagrangian finite element formulation,116

we differentiate Eq. 146d to get dδR “ δdR “ dR ¨ δupeq from which one gets

dR “

ż

V

dBT T dV `

ż

V

BT dT dV “.. C dupeq, (148)

which follows because the external force F is considered to be a fixed boundary
condition during a variation in its displacements. This equation establishes that a
change in residual force dR is needed to further deform an elastic body from an
equilibrium condition R “ 0 that exists at current time ti into another equilibrium
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state associated with some future moment in time ti`1 “ ti ` dt. This differential
force depends upon both the stress T at time ti and its change dT that occurs when
advancing from ti to ti`1.

Substituting constitutive equation 134b for T into the first integral of Eq. 148, while
incorporating Eq. 145, allows this integral to be rewritten as

ż

V

dBT T dV “

ż

V

dBT
`

T 0 `MsE
˘

dV “

ż

V

HT S H dV
looooooomooooooon

Cs

dupeq (149)

where T 0`MsE ÞÑ S, and as such, Cs is that contribution to the tangent stiffness
matrix C attributed to the secant modulus Ms appearing in Eq. 134b, which is
quadratic in H (not B).

Now, substituting constitutive equation 134d for dT into the second integral in
Eq. 148, while employing Eqs. 144d and 144e to describe strain rate dE, this inte-
gral can be re-written as

ż

V

BT dT dV “

ż

V

BT Mt dE dV (150a)

“

ż

V

BT Mt B dV
looooooooomooooooooon

Ct

dupeq `

ż

V

BTMt dB dV
looooooooomooooooooon

Kt

upeq, (150b)

where the contribution to the secant stiffness can be expressed alternatively as

Kt
“

ż

V

HT dS H dV given dS ..“ AT Mt dA (150c)

because of Eq. 145.

6.3.4 Equations of Motion

Pulling everything together, the equations of motion (Eq. 101), when written for an
element, are given by

F “ Kupeq `C 9upeq `M :upeq, (151a)
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which has a secant stiffness matrix of

K “ Ks
`Kt, (151b)

a tangent stiffness matrix of

C “ Cs
`Ct, (151c)

and a forcing function of

F “ FBC ´ F 0, (151d)

wherein

Ks
“

ż

V

BTMs B dV (151e)

Kt
“

ż

V

HT dSt H dV where dSt “ ATMt dA (151f)

Cs
“

ż

V

HT Ss H dV where T 0 `MsE ÞÑ Ss (151g)

Ct
“

ż

V

BT Mt B dV (151h)

F 0 “

ż

V

BT T 0 dV (151i)

with FBC being an external force associated with the boundary conditions evalu-
ated at the end of a solution step. All other fields are evaluated at the beginning of
this solution step. Superscript s implies that these matrices are evaluated using the
secant modulus Ms, while superscript t implies that these matrices are evaluated
using the tangent modulus Mt. There are contributions from both moduli in both
stiffness matrices.

To minimize an accumulation of roundoff error, it is advantageous to compute Ks

as four separate integrals, viz.,

Ks
“

ż

V

BT
LMs BL dV `

ż

V

BT
LMs BN dV

`

ż

V

BT
N Ms BL dV `

ż

V

BT
N Ms BN dV
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and to compute Ct as four separate integrals, too, viz.,

Ct
“

ż

V

BT
LMt BL dV `

ż

V

BT
LMt BN dV

`

ż

V

BT
N Mt BL dV `

ż

V

BT
N Mt BN dV

while computing F 0 as two separate integrals, viz.,

F 0 “

ż

V

BT
L T 0 dV `

ż

V

BT
N T 0 dV,

where the first integral will only need to be evaluated once, as its argument is con-
stant valued.

The vector and matrices established in Eq. 151 pertain to a single finite element.
These arrays are to be assembled using standard techniques119 when describing a
finite element model. They will assemble into the form of Eq. 101, at which point
these equations of motion can be solved.

6.4 Kinematic Matrices of Finite Elements

To implement our finite element discretization, it is necessary that we know the
following matrices for a given element type: the linear strain-displacement matrix
BL, the nonlinear strain-displacement matrix BN , and its decomposition BN “

AH, plus the differential rate dA. These matrices are acquired in the following
sections for a chord, a pentagon, and a dodecahedron where QR kinematics have
been adopted.

6.4.1 Kinematic Matrices for a Chord

The components of Laplace stretch U can be obtained from a Cholesky factorization
of the right, Cauchy–Green, deformation tensor C “ FTF “ UTU ,63 which is a
symmetric tensor. For a 1D chord, the only possible deformation is a stretch of the
chord in its axial direction. Therefore, in this case, the deformation gradient, as well
as the right Cauchy–Green tensor C, have only one component. Consequently, the
Laplace stretch U also consists of only one component, which is denoted by a.

If u is the axial displacement of a chord, then its axial elongation a becomes

a “ U11 “
a

C11 (152a)
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with

C11 “ 1` 2
Bu

Bx
`

ˆ

Bu

Bx

˙2

given F11 “ 1`
Bu

Bx
. (152b)

This chord is subjected to an axial strain defined as e “ lnpaq “ lnpL{L0q, where
L0 and L are the initial and current lengths of the chord. Here we decompose the
total strain into its linear and nonlinear components as

e “ eL ` eN (153)

as determined by a Taylor expansion of e “ ln
?
C11, which gives

eL “
Bu

Bx
and eN “ ´

1

2

Bu

Bx

Bu

Bx
, (154)

where all contributions have been truncated beyond the quadratic term in this series
expansion.

The linear strain-displacement matrix BL can now be obtained by expressing the
linear strain eL in terms of its nodal displacements, viz.,

eL “
Bu

Bx
“
ÿ2

i“1
Ni,x ui “

“

rbL1srbL2s
‰ 

upeq
(

“
“

BL

‰ 

upeq
(

, (155a)

wherein

rbLis “ rNi,xs “ rNi,ξsrJs
´1 and upeq “

 

u
peq
1 u

peq
2

(T
, (155b)

where Ni,ξ is the gradient of shape function Ni evaluated in element e’s natural co-
ordinate system, which maps into gradient Ni,x evaluated in the element’s physical
co-ordinate system via its Jacobian matrix rJs, with upeq1 and upeq2 denoting the two
nodal displacements of the chord. Shape functions Ni and their gradients Ni,ξ for a
chord are given in Eq. 15, whose Jacobian matrix rJs can be found in Eq. 110.

We now introduce machinery that is excessive for the chord, but becomes very
useful when constructing the nonlinear strain-displacement matrices for a pentagon
and a tetrahedron. Let nonlinear strain eN be written as a product between some
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matrix A and some vector θ; specifically, let

eN “
1
2
r´Bu{BxstBu{Bxu “ 1

2
Aθ (156)

where A “ r´Bu{Bxs whose differential is

dA “
 

´Bdu{Bx
(

“
 

´
ř2
i“1Ni,x dui

(

“
“

rl1srl2s
‰“

rd1srd2s
‰T
“ L D (157a)

wherein

rlis “ r´Ni,xs “ r´Ni,ξsrJs
´1 and rdis “ rduis. (157b)

Furthermore, we consider that θ can be expressed in terms of the nodal displace-
ments as

θ “
 

Bu{Bx
(

“
 

ř2
i“1Ni,x ui

(

“
“

rh1srh2s
‰ 

upeq
(

“ H upeq, (158a)

wherein

H “
“

rh1srh2s
‰

with rhis “ rNi,xs “ rNi,ξsrJs
´1, (158b)

and we see that, for the chord, there is no difference between bLi and hi, which
will not be the case in higher-dimensional spaces. Hence, the nonlinear strain-
displacement matrix BN can be written as

BN “ A H “
“

rbN1srbN2s
‰

, (159)

where bNi “ r´Bu{Bxsrhis.

6.4.1.1 Tangent Stiffness Matrix Cs

The tangent stiffness matrix Cs associated with T 0 `MsE ÞÑ Ss “ rs0 ` Eses,
which is defined in Eq. 135, becomes

Cs
“

ż

L

HT Ss HA dL “ |J0|

n
ÿ

i“1

HT SspξiqHA0pξiqwi, (160)

where an isochoric response is assumed in that A0|J0| “ A|J|. Here ξi and wi are
the co-ordinates and weights of quadrature for Gauss point i, and A0 and A are the
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initial and current cross-sectional areas of the chord with A0pξiq being the initial
cross-sectional area at Gauss point ξi.

6.4.1.2 Tangent Stiffness Matrix Ct

The tangent stiffness matrix Ct, as established in Eq. 150, becomes

Ct
“

ż

L

BTMt BA dL “ |J0|

n
ÿ

i“1

BT Mt
pξiqBA0pξiqwi, (161a)

where axial stress rate ds is described by a tangent modulus Mt from Eq. 137.

6.4.1.3 Secant Stiffness MatrixKs

The secant stiffness matrix Ks, as established in Eq. 147b, becomes

Ks
“

ż

L

BTMs BA dL “ |J0|

n
ÿ

i“1

BT Ms
pξiqBA0pξiqwi, (162a)

where axial stress s is described by a secant modulus Ms from Eq. 135.

6.4.1.4 Secant Stiffness MatrixKt

Likewise, a secant stiffness matrix Kt, also established in Eq. 150, becomes

Kt
“

ż

L

HT dSt HA dL “ |J0|

n
ÿ

i“1

HT dStpξiqHA0pξiqwi, (163a)

where its stress rate is given by dSt ..“ ATMt dA.

6.4.2 Kinematic Matrices for a Pentagon

For a planar membrane, components of Laplace stretch U , obtained from a Cholesky
factorization of the right Cauchy–Green tensor C ..“ FTF “ UTU , cf. Eq. 34, such
that65

U11 “ a “
a

C11 U12 “ a g “ C12{U11

U21 “ 0 U22 “ b “
a

C22 ´ pU12q
2

(164)

where a and b are elongations (stretches) in the 1- and 2-directions, respectively,
and g is a magnitude for shear in the 12 plane, while C11, C12 “ C21 and C22 are
components of the right Cauchy–Green tensor C. Furthermore, components from

149



this Cauchy–Green tensor can be expressed in terms of displacement gradients as

C11 “ 1` 2
Bu

Bx
`

ˆ

Bu

Bx

˙2

`

ˆ

Bv

Bx

˙2

(165a)

C12 “
Bu

By
`
Bv

Bx
`
Bu

Bx

Bu

By
`
Bv

Bx

Bv

By
(165b)

C22 “ 1` 2
Bv

By
`

ˆ

Bu

By

˙2

`

ˆ

Bv

By

˙2

(165c)

which arise from the deformation gradient

F “

«

1` Bu{Bx Bu{By

Bv{Bx 1` Bv{By

ff

(165d)

where u and v are displacements associated with the deformation of a planar mem-
brane.

Gradients of shape functions are used to construct the above spatial gradients, viz.,

#

Ni,ξ

Ni,η

+

“

«

Bx{Bξ By{Bξ

Bx{Bη By{Bη

ff#

Ni,x

Ni,y

+

whose matrix is the non-singular Jacobian defined in Eq. 121, while Ni,ξ and Ni,η

are gradients of the shape functions in their natural co-ordinates, as established in
Eq. 24 for pentagons. These are evaluated at the ith Gauss point for the quadrature
rule used that, in our case, is found in Eqs. 97 and 98. It is necessary to invert this
equation for it to become useful for us so that

#

Ni,x

Ni,y

+

“

«

Bx{Bξ By{Bξ

Bx{Bη By{Bη

ff´1 #

Ni,ξ

Ni,η

+

(166a)

from which one determines
$

’

’

’

’

&

’

’

’

’

%

Bu{Bx

Bu{By

Bv{Bx

Bv{By

,

/

/

/

/

.

/

/

/

/

-

“

$

’

’

’

’

&

’

’

’

’

%

ř5
i“1Ni,xui

ř5
i“1Ni,yui

ř5
i“1Ni,xvi

ř5
i“1Ni,yvi

,

/

/

/

/

.

/

/

/

/

-

(166b)

with Ni,x and Ni,y being employed below.
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The thermodynamic strain attributes that we use are defined in Eq. 42 and can be
expressed in terms of the components of Laplace stretch as

ξ “ ln

˜

c

a

a0

b

b0

¸

, ε “ ln

˜

c

a

a0

b0

b

¸

, γ “ g ´ g0. (167)

Without loss of generality, we consider the membrane to be initially undeformed,
which allows us to set a0 and b0 to one, while the initial shear g0 is taken as zero.
To gain computational advantage, we decompose these strain attributes into linear
and nonlinear components; specifically, we consider

ξ “ ξL ` ξN1 ` ξN2 ` ξN3, (168a)

ε “ εL ` εN1 ` εN2 ` εN3, (168b)

γ “ γL ` γN1 ` γN2 ` γN3. (168c)

Traditionally, finite element constructions decompose strain into a linear component
and a nonlinear component. However, in our case, a further decomposition of the
nonlinear strain component into three separate components makes our computation
much easier, as is realized later.

Decomposition of strain attributes in Eq. 167 is achieved via Taylor expansions that
retain terms through second-order. The linear and nonlinear components of these
strain attributes, thus obtained, are given as

ξL “
1

2

ˆ

Bu

Bx
`
Bv

By

˙

(169a)

ξN “
1

4

ˆ

´
Bv

By

Bv

By
´
Bu

Bx

Bu

Bx
´ 2

Bu

By

Bv

Bx

˙

(169b)

εL “
1

2

ˆ

Bu

Bx
´
Bv

By

˙

(169c)

εN “
1

4

ˆ

2
Bv

Bx

Bv

Bx
`
Bv

By

Bv

By
´
Bu

Bx

Bu

Bx
` 2

Bu

By

Bv

Bx

˙

(169d)

γL “
Bu

By
`
Bv

Bx
(169e)

γN “
Bv

Bx

Bv

By
´ 2

Bu

Bx

Bv

Bx
´
Bu

Bx

Bu

By
(169f)

where the linear components of these strain attributes consist only of first-order
derivatives in the displacements, while the nonlinear components contain the second-
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order terms. (Recall that terms with third-order and higher derivatives in displace-
ment have been truncated.) The nonlinear components of strain have been arranged
in such a way that when represented in a set of base vectors, they can be written as
the product of a matrix and a vector that contain these derivatives of displacement.
To achieve that, for the dilatation ξ and squeeze ε strains, the nonlinear compo-
nents contain squares of derivatives and products between different derivatives of
displacement. Note that the nonlinear part of the total shear strain contains only
products of different derivatives of displacements, i.e., no square term is present in
its expression.

In terms of the nodal displacements, the vector containing the linear strain at-
tributes, i.e., EL, can be written as

EL “

$

’

&

’

%

ξL

εL

γL

,

/

.

/

-

“

$

’

&

’

%

1
2
u,x `

1
2
v,y

1
2
u,x ´

1
2
v,y

u,y ` v,x

,

/

.

/

-

“

5
ÿ

i“1

»

—

–

1
2
Ni,x

1
2
Ni,y

1
2
Ni,x ´1

2
Ni,y

Ni,y Ni,x

fi

ffi

fl

#

ui

vi

+

“
“

rbL1srbL2srbL3srbL4srbL5s
‰ 

upeq
(

“ BL upeq (170a)

where

rbLis “

»

—

–

1
2
Ni,x

1
2
Ni,y

1
2
Ni,x ´1

2
Ni,y

Ni,y Ni,x

fi

ffi

fl

(170b)

upeq “
 

u1 v1 u2 v2 u3 v3 u4 v4 u5 v5

(T (170c)

for element e, whose matrix entries come from Eq. 166.

Now let nonlinear strain EN1 be written as a product between some matrix A1 and
some vector θ1; specifically, let

EN1 “

$

’

&

’

%

ξN1

εN1

γN1

,

/

.

/

-

“

$

’

&

’

%

´1
4
v2
,y

´1
4
u2
,x `

1
4
v2
,y

v,x v,y

,

/

.

/

-

“
1

2

»

—

–

0 ´1
2
Bv{By

´1
2
Bu{Bx 1

2
Bv{By

0 2 Bv{Bx

fi

ffi

fl

#

Bu{Bx

Bv{By

+

“ 1
2
A1 θ1
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with

dA1 “

»

—

–

0 ´1
2
Bdv{By

´1
2
Bdu{Bx 1

2
Bdv{By

0 2 Bdv{Bx

fi

ffi

fl

“

»

—

–

0 ´1
2

ř5
i“1Ni,y dvi

´1
2

ř5
i“1Ni,x dui

1
2

ř5
i“1Ni,y dvi

0 2
ř5
i“1Ni,x dvi

fi

ffi

fl

“

”

rl1srl2srl3srl4srl5s
ı ”

rd1srd2srd3srd4srd5s

ıT

“ L1D1 (171a)

wherein

rlis “

»

—

–

0 ´1
2
Ni,y

´1
2
Ni,x

1
2
Ni,y

0 2Ni,x

fi

ffi

fl

and rdis “

«

dui 0

0 dvi

ff

. (171b)

To obtain the nonlinear strain-displacement matrix, we require the nonlinear strain
to be expressed in terms of the nodal displacements. This is achieved by expressing
the elements of displacement gradient in terms of the nodal displacements by using
the shape functions, specifically, the vector θ1 can be written as

θ1 “

#

Bu{Bx

Bv{By

+

“

#

ř5
i“1Ni,x ui

ř5
i“1Ni,y vi

+

“

”

rh1srh2srh3srh4srh5s

ı

 

upeq
(

“ H1u
peq

(172a)

where the components of H1 contains the derivatives of shape functions with re-
spect to spatial variables, i.e.,

rhis “

«

Ni,x 0

0 Ni,y

ff

. (172b)

Therefore, the first nonlinear strain-displacement matrix BN1 can be written as

BN1 “ A1 H1 “

”

rbN1srbN2srbN3srbN4srbN5s

ı

(173a)
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where the components of BN1 are given as

rbNis “

»

—

–

0 ´1
2
Bv{By

´1
2
Bu{Bx 1

2
Bv{By

0 2 Bv{Bx

fi

ffi

fl

«

Ni,x 0

0 Ni,y

ff

. (173b)

In a similar manner, the second nonlinear strain terms can be written as

EN2 “

$

’

&

’

%

ξN2

εN2

γN2

,

/

.

/

-

“

$

’

&

’

%

´1
2
u,y v,x

1
2
u,y v,x

´2u,x v,x

,

/

.

/

-

“
1

2

»

—

–

´Bv{Bx 0

Bv{Bx 0

0 ´4 Bu{Bx

fi

ffi

fl

#

Bu{By

Bv{Bx

+

“ 1
2
A2 θ2 (174)

with

dA2 “

»

—

–

´Bdv{Bx 0

Bdv{Bx 0

0 ´4 Bdu{Bx

fi

ffi

fl

“

»

—

–

´
ř5
i“1Ni,x dvi 0

ř5
i“1Ni,x dvi 0

0 ´4
ř5
i“1Ni,x dui

fi

ffi

fl

“

”

rl1srl2srl3srl4srl5s
ı ”

rd1srd2srd3srd4srd5s

ıT

“ L2D2 (175a)

wherein

rlis “

»

—

–

´Ni,x 0

Ni,x 0

0 ´4Ni,x

fi

ffi

fl

and rdis “

«

dvi 0

0 dui

ff

. (175b)

The vector θ2 is expressed in terms of the nodal displacements with the use of shape
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functions as

θ2 “

#

Bu{By

Bv{Bx

+

“

#

ř5
i“1Ni,y ui

ř5
i“1Ni,x vi

+

“

”

rh1srh2srh3srh4srh5s

ı

 

upeq
(

“ H2u
peq

(176a)

where the elements of H2 are given as

rhis “

«

Ni,y 0

0 Ni,x

ff

. (176b)

Hence, the second nonlinear strain-displacement matrix BN2 becomes

BN2 “ A2 H2 “

”

rbN1srbN2srbN3srbN4srbN5s

ı

(177a)

where its elements are given as

rbNis “

»

—

–

´Bv{Bx 0

Bv{Bx 0

0 ´4 Bu{Bx

fi

ffi

fl

«

Ni,y 0

0 Ni,x

ff

. (177b)

In like manner, the third nonlinear strain terms can be written as

EN3 “

$

’

&

’

%

ξN3

εN3

γN3

,

/

.

/

-

“

$

’

&

’

%

´1
4
u2
,x

1
2
v2
,x

´u,y u,x

,

/

.

/

-

“
1

2

»

—

–

´1
2
Bu{Bx 0

0 Bv{Bx

´2 Bu{By 0

fi

ffi

fl

#

Bu{Bx

Bv{Bx

+

“ 1
2
A3 θ3 (178)
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with

dA3 “

»

—

–

´1
2
Bdu{Bx 0

0 Bdv{Bx

´2 Bdu{By 0

fi

ffi

fl

“

»

—

–

´1
2

ř5
i“1Ni,x dui 0

0
ř5
i“1Ni,x dvi

´2
ř5
i“1Ni,y dui 0

fi

ffi

fl

“

”

rl1srl2srl3srl4srl5s
ı ”

rd1srd2srd3srd4srd5s

ıT

“ L3D3 (179a)

wherein

rlis “

»

—

–

´1
2
Ni,x 0

0 Ni,x

´2Ni,y 0

fi

ffi

fl

and rdis “

«

dui 0

0 dvi

ff

. (179b)

The vector θ3 is expressed in terms of the nodal displacements with the use of shape
functions as

θ3 “

#

Bu{Bx

Bv{Bx

+

“

#

ř5
i“1Ni,x ui

ř5
i“1Ni,x vi

+

“

”

rh1srh2srh3srh4srh5s

ı

 

upeq
(

“ H3u
peq

(180a)

where the components of H3 contains the derivatives of shape functions with re-
spect to spatial variables, i.e.,

rhis “

«

Ni,x 0

0 Ni,x

ff

. (180b)

Therefore, the first nonlinear strain-displacement matrix BN3 can be written as

BN3 “ A3 H3 “

”

rbN1srbN2srbN3srbN4srbN5s

ı

(181a)

where the components of BN3 are given as

rbNis “

»

—

–

´1
2
Bu{Bx 0

0 Bv{By

´2 Bu{By 0

fi

ffi

fl

«

Ni,x 0

0 Ni,x

ff

. (181b)
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The total nonlinear strain-displacement matrix is evaluated as the summation of its
components BN1, BN2, and BN3. Now, with all the strain-displacement matrices
evaluated, we are ready to compute the stiffness matrix for a planar membrane.

To obtain the stiffness matrix for a planar membrane, we need to compute the four
constituent strain-displacement matrices Cs, Ct, Ks, and Kt, as mentioned earlier.
These strain-displacement matrices are obtained by expressing their corresponding
strain components in terms of the five nodal displacements, with help from the
shape functions.

6.4.2.1 Tangent Stiffness Matrix Cs

The tangent stiffness matrix Cs, as established in Eq. 149, becomes

Cs
“

ż

D
HT Ss HH dA “ |J0|

n
ÿ

i“1

HT Sspξi, ηiqHH0 iwi (182a)

wherein

Ss “

«

S11 S12

S21 S22

ff

with S21 “ S12 (182b)

where an isochoric response is assumed in that H0|J0| “ H|J|. Here H0 and H
are the initial and current height or thickness of the septal membrane, and ξi, ηi,
and wi are the co-ordinates and weights of quadrature for Gauss point i whereat the
membrane has an initial thickness of H0 i.

The stress vector T “ tsπ, sσ, sτuT conjugate to strain vector E “ tξ, ε, γuT has
elements of a surface tension sπ “ S11 ` S22, a normal-stress difference sσ “
S11´S22, and a shear stress sτ “ a

b
S12. Only surface tension is considered to have

a residual state of stress sπ0 , which is necessary for alveolar stability, and is caused,
in part, by the presence of surfactant. In a reciprocal sense, the stress components
are assigned via

S11 “
1

2
psπ ` sσq, S22 “

1

2
psπ ´ sσq, and S12 “ S21 “

b

a
sτ , (183)

such that S “ PU´1S U´TPT with S being the second Piola–Kirchhoff stress
evaluated in the co-ordinate system of a pentagon, while U is the Laplace stretch,
and P is a re-indexer of co-ordinate labeling needed to ensure invariance under a

157



transformation of Laplace stretch.

6.4.2.2 Tangent Stiffness Matrix Ct

The tangent stiffness matrix Ct, as established in Eq. 150, becomes

Ct
“

ż

D
BT Mt B |J|H dA “ |J0|

n
ÿ

i“1

BTMt
pξi, ηiqBH0 iwi, (184)

where its associated stress rate is described by a tangent modulus Mt that, for
biologic membranes, is described by Eq. 140.

6.4.2.3 Secant Stiffness MatrixKs

The secant stiffness matrix Ks, as established in Eq. 147b, becomes

Ks
“

ż

D
BT Ms BH dA “ |J0|

n
ÿ

i“1

BTMs
pξi, ηiqBH0 iwi, (185)

where its associated stress is described by a secant modulus Ms that, for biologic
membranes, is described by Eq. 138b.

6.4.2.4 Secant Stiffness MatrixKt

Likewise, a secant stiffness matrix Kt, also established in Eq. 150, becomes

Kt
“

ż

D
HT dSt HH dA “ |J0|

n
ÿ

i“1

HT dStpξi, ηiqHH0 iwi, (186)

where its associated stress rate is given by dSt ..“ ATMt dA.

6.4.3 Kinematic Matrices for a Tetrahedron

Let us consider a tetrahedron subjected to displacements of u, v, and w in its three
spatial directions, respectively. In terms of these displacements, elements of the
deformation gradient can be written as

F “

»

—

–

1` Bu{Bx Bu{By Bu{Bz

Bv{Bx 1` Bv{By Bv{Bz

Bw{Bx Bw{By 1` Bw{Bz

fi

ffi

fl

. (187)
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Therefore, components of the right Cauchy–Green deformation tensor, defined as
C ..“ FTF, can be expressed as

C11 “

ˆ

Bu

Bx

˙2

`

ˆ

Bv

Bx

˙2

`

ˆ

Bw

Bx

˙2

` 2
Bu

Bx
` 1 (188a)

C22 “

ˆ

Bu

By

˙2

`

ˆ

Bv

By

˙2

`

ˆ

Bw

By

˙2

` 2
Bv

By
` 1 (188b)

C33 “

ˆ

Bu

Bz

˙2

`

ˆ

Bv

Bz

˙2

`

ˆ

Bw

Bz

˙2

` 2
Bw

Bz
` 1 (188c)

C12 “ C21 “
Bu

By
`
Bv

Bx
`
Bu

Bx

Bu

By
`
Bv

Bx

Bv

By
`
Bw

Bx

Bw

By
(188d)

C13 “ C31 “
Bu

Bz
`
Bw

Bx
`
Bu

Bx

Bu

Bz
`
Bv

Bx

Bv

Bz
`
Bw

Bx

Bw

Bz
(188e)

C23 “ C32 “
Bv

Bz
`
Bw

By
`
Bu

By

Bu

Bz
`
Bv

By

Bv

Bz
`
Bw

By

Bw

Bz
. (188f)

The Laplace stretch associated with an alveolar volume is a 3 ˆ 3 upper-triangular
matrix whose elements have specific geometric interpretations. The Laplace stretch
can be written in matrix form as64

Uij “

»

—

–

a aγ aβ

0 b bα

0 0 c

fi

ffi

fl

. (189)

It is possible to express the components of Laplace stretch U in terms of displace-
ment gradients through a Cholesky factorization of the right Cauchy–Green tensor
C “ UTU . Specifically, the elements of Laplace stretch are obtained as63

U11 “
a

C11 U12 “ C12{U11 U13 “ C13{U11

U21 “ 0 U22 “

b

C22 ´ U 2
12 U23 “

`

C23 ´ U12U13

˘

{U22

U31 “ 0 U32 “ 0 U33 “

b

C33 ´ U 2
13 ´ U 2

23

(190)

where C11, C12, C13, C22, C23, and C33 are components of the right Cauchy–Green
tensor C.

Now, in order to obtain the stiffness matrix for an alveolar volume, first we need to
derive the strain attributes and express them in terms of the nodal displacements.
The strain attributes are defined in terms of the derived elements of Laplace stretch,
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as mentioned earlier.

The dilatation ξ for an alveolar volume is

ξ ..“ ln 3

c

a

a0

b

b0

c

c0

(191a)

whereas the squeeze strains εi are defined as

ε1
..“ ln 3

c

a

a0

b0

b
ε2

..“ ln 3

c

b

b0

c0

c
(191b)

and the shear strains γi are defined as

γ1
..“ α ´ α0 γ2

..“ β ´ β0 γ3
..“ γ ´ γ0 (191c)

wherein a0, b0, and c0 are their initial elongation ratios, and where α0, β0, and γ0

are their initial shears. Without loss of generality, we can assume that the initial
stretches a0, b0, and c0 are one, whereas the initial shears α0, β0, and γ0 are zero.
There is a third squeeze, too, viz., ε3 “ ´ε1 ´ ε2, but it is not an independent
descriptor of strain.

For computational ease, these strain attributes are additively decomposed into one
linear and five nonlinear components. The primary advantage of this decomposition
is an emergence of a systematic structure in the strain-displacement matrix, which
makes evaluation of the stiffness matrix much easier. The linear and nonlinear com-
ponents for the strain attributes are obtained by applying a Taylor series expansion
to these strain attributes, and then expressing their constituents in terms of gradients
for the displacements with respect to the different spatial variables. Here only terms
up to second-order have been retained. The linear and nonlinear components for the
strain attributes, thus obtained, are given by

ξ “ ξL ` ξN1 ` ξN2 ` ξN3 ` ξN4 ` ξN5, (192a)

εi “ εiL ` εiN1 ` εiN2 ` εiN3 ` εiN4 ` εiN5, (192b)

γi “ γiL ` γiN1 ` γiN2 ` γiN3 ` γiN4 ` γiN5, (192c)

where their linear and nonlinear components can be expressed in terms of elements
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arising from a matrix representation of the displacement gradient as

ξL “
1

3

ˆ

Bu

Bx
`
Bv

By
`
Bw

Bz

˙

(193a)

ξN “
1

6

´

´
Bu

Bx

Bu

Bx
`
Bu

Bz

Bu

Bz
´
Bv

By

Bv

By
´
Bv

Bz

Bv

Bz

`
Bw

Bx

Bw

Bx
´
Bw

By

Bw

By
´
Bw

Bz

Bw

Bz
´ 2

Bu

By

Bv

Bx
´ 4

Bv

Bz

Bw

By

¯

(193b)

ε1L “
1

3

ˆ

Bu

Bx
´
Bv

By

˙

(193c)

ε1N “
1

6

ˆ

2
Bv

Bx

Bv

Bx
`
Bv

By

Bv

By
´
Bu

Bx

Bu

Bx
`
Bw

Bx

Bw

Bx
´
Bw

By

Bw

By
` 2

Bu

By

Bv

Bx

˙

(193d)

ε2L “
1

3

ˆ

Bv

By
´
Bw

Bz

˙

(193e)

ε2N “
1

6

´

´
Bv

Bx

Bv

Bx
´
Bv

By

Bv

By
´
Bu

Bz

Bu

Bz
`
Bv

Bz

Bv

Bz
` 3

Bw

By

Bw

By
`
Bw

Bz

Bw

Bz

´ 2
Bu

By

Bv

Bx
` 4

Bv

Bz

Bw

By

¯

(193f)

γ1L “
Bv

Bz
`
Bw

By
(193g)

γ1N “ 2
Bu

Bx

Bv

Bz
´
Bu

Bz

Bv

Bx
` 2

Bu

Bx

Bw

By
´
Bu

By

Bw

Bx
´
Bv

By

Bv

Bz
´ 2

Bv

By

Bw

By

`
Bw

By

Bw

Bz
(193h)

γ2L “
Bv

Bz
`
Bw

By
(193i)

γ2N “
Bu

By

Bu

Bz
´ 2

Bu

Bx

Bv

Bz
´ 2

Bu

Bx

Bw

By
`
Bv

By

Bv

Bz
`
Bw

By

Bw

Bz
(193j)

γ3L “
Bu

By
`
Bv

Bx
(193k)

γ3N “ ´
Bu

Bx

Bu

By
´ 2

Bu

Bx

Bv

Bx
`
Bv

Bx

Bv

By
`
Bw

Bx

Bw

By
(193l)

The total stiffness matrix can be obtained as a sum of the linear and five nonlinear
stiffness matrices. Therefore, we first have to evaluate these components of the stiff-
ness matrices by using the associated strain-displacement matrices. For all these
cases, the strain-displacement matrices are obtained by expressing the strains in
terms of the nodal displacements with the help of shape functions and their spatial
derivatives.
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First, the linear strain-displacement matrix BL is obtained by expressing the strain
attributes in terms of the nodal displacements through derivatives of the shape func-
tions. Specifically, the linear strain-displacement matrix takes the form of

EL “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ξL

ε1L

ε2L

γ1L

γ2L

γ3L

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1
3
u,x `

1
3
v,y `

1
3
w,z

1
3
u,x ´

1
3
v,y

1
3
v,y ´

1
3
w,z

v,z ` w,y

v,z ` w,y

u,y ` v,x

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

“

»

—

—

—

—

—

—

—

—

—

–

1
3

ř4
i“1Ni,x

1
3

ř4
i“1Ni,y

1
3

ř4
i“1Ni,z

1
3

ř4
i“1Ni,x

´1
3

ř4
i“1Ni,y 0

0 1
3

ř4
i“1Ni,y

´1
3

ř4
i“1Ni,z

0
ř4
i“1Ni,z

ř4
i“1Ni,y

0
ř4
i“1Ni,z

ř4
i“1Ni,y

ř4
i“1Ni,y

ř4
i“1Ni,x 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

&

’

%

ui

vi

wi

,

/

.

/

-

“

”

rbL1srbL2srbL3srbL4s

ı

 

upeq
(

“ BLupeq

(194)

wherein each component of BL is given by

rbLis “

»

—

—

—

—

—

—

—

—

—

–

1
3
Ni,x

1
3
Ni,y

1
3
Ni,z

1
3
Ni,x ´1

3
Ni,y 0

0 1
3
Ni,y ´1

3
Ni,z

0 Ni,z Ni,y

0 Ni,z Ni,y

Ni,y Ni,x 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(195a)

and the nodal displacement vector for element e is given as

upeq “
 

u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4

(T
. (195b)

Note that the linear strain-displacement matrix BL consists only of derivatives for
the shape functions, and thus, remains the same throughout a deformation process.

Now we establish the nonlinear strain-displacement matrices that will be used to
obtain the nonlinear stiffness matrix. The nonlinear components of each strain at-
tribute have been additively decomposed into five components to make our com-
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putation easier. Components of each strain attribute are placed into an associated
vector resulting in an additive decomposition of the total nonlinear strain EN . To
obtain the nonlinear stiffness matrix corresponding to these nonlinear strain com-
ponents, the nonlinear strains are written as a product of two quantities: a matrix
A containing various components of the displacement gradient, and a vector θ that
contains the derivatives of displacement with respect to spatial location. The vec-
tor θ essentially represents the slope of response resulting from the deformation
process. The components of the displacement gradient are placed in the matrix A

in such a way so that its product with the slope vector yields the corresponding
contribution to the nonlinear strain.

The slope vector θ can further be expressed in terms of the corresponding nodal
displacements by using the derivatives of the shape functions. Thus, the nonlinear
strain components ENi, i “ 1, 2, 3, 4, can be expressed in terms of the nodal dis-
placements, with the nonlinear strain-displacement matrix BNi corresponding to
these strain components. These strain-displacement matrices are used to obtain the
corresponding nonlinear stiffness matrices in a way described earlier. Note that, un-
like its linear counterpart, the nonlinear strain-displacement matrix varies with the
deformation of a body, and hence, the matrices corresponding to it must be updated
at each step along a solution path.

Now let us perform the procedure described above on all five nonlinear strain com-
ponents.

For the first nonlinear strain, EN1, can be written as a product of the matrix A1 and
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the slope vector θ1 as

EN1 “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

ξ1N

ε1N

ε2N

γ1N

γ2N

γ3N

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1
6

`

´u2
,x ´ v

2
,y ´ w

2
,z

˘

1
6

`

´u2
,x ` v

2
,y

˘

1
6

`

´v2
,y ` w

2
,z

˘

´v,z v,y ` w,y w,z

v,z v,y ` w,y w,z

´u,x u,y ` v,x v,y

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

“
1

2

»

—

—

—

—

—

—

—

—

—

–

´1
3
Bu{Bx ´1

3
Bv{By ´1

3
Bw{Bz

´1
3
Bu{Bx 1

3
Bv{By 0

0 ´1
3
Bv{By 1

3
Bw{Bz

0 ´2 Bv{Bz 2 Bw{By

0 2 Bv{Bz 2 Bw{By

´2 Bu{By 2 Bv{Bx 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

&

’

%

Bu{Bx

Bv{By

Bw{Bz

,

/

.

/

-

“ 1
2
A1 θ1

(196)

with

dA1 “

»

—

—

—

—

—

—

—

—

—

–

´1
3
Bdu{Bx ´1

3
Bdv{By ´1

3
Bdw{Bz

´1
3
Bdu{Bx 1

3
Bdv{By 0

0 ´1
3
Bdv{By 1

3
Bdw{Bz

0 ´2 Bdv{Bz 2 Bdw{By

0 2 Bdv{Bz 2 Bdw{By

´2 Bdu{By 2 Bdv{Bx 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

´1
3

ř4
i“1Ni,x dui ´1

3

ř4
i“1Ni,y dvi ´1

3

ř4
i“1Ni,z dwi

´1
3

ř4
i“1Ni,x dui

1
3

ř4
i“1Ni,y dvi 0

0 ´1
3

ř4
i“1Ni,y dvi

1
3

ř4
i“1Ni,z dwi

0 ´2
ř4
i“1Ni,z dvi 2

ř4
i“1Ni,y dwi

0 2
ř4
i“1Ni,z dvi 2

ř4
i“1Ni,y dwi

´2
ř4
i“1Ni,y dui 2

ř4
i“1Ni,x dvi 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

”

rl1srl2srl3srl4s
ı ”

rd1srd2srd3srd4s

ıT

“ L1D1 (197a)
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wherein

rlis “

»

—

—

—

—

—

—

—

—

—

–

´1
3
Ni,x ´1

3
Ni,y ´1

3
Ni,z

´1
3
Ni,x

1
3
Ni,y 0

0 ´1
3
Ni,y

1
3
Ni,z

0 ´2Ni,z 2Ni,y

0 2Ni,z 2Ni,y

´2Ni,y 2Ni,x 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and rdis “

»

—

–

dui 0 0

0 dvi 0

0 0 dwi

fi

ffi

fl

.

(197b)

Now, the derivative of displacement with respect to spatial variables x, y, and z can
be related to the nodal parameters via

θ1 “
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upeq
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“ H1 u
peq (198)

for element e, where

rhis “

»

—

–

Ni,x 0 0

0 Ni,y 0

0 0 Ni,z

fi

ffi

fl

. (199)

Hence, the strain-displacement matrix BN1 corresponding to the first nonlinear
strain becomes

BN1 “ A1 H1 “

”

rbN1srbN2srbN3srbN4s

ı

(200)

wherein the components of BN1 are given as

rbNis “

»

—

—

—

—

—

—

—

—

—

–

´1
3
Bu{Bx ´1

3
Bv{By ´1

3
Bw{Bz

´1
3
Bu{Bx 1

3
Bv{By 0

0 ´1
3
Bv{By 1

3
Bw{Bz

0 ´2 Bv{Bz 2 Bw{By

0 2 Bv{Bz 2 Bw{By

´2 Bu{By 2 Bv{Bx 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

–

Ni,x 0 0

0 Ni,y 0

0 0 Ni,z

fi

ffi

fl

. (201)

In a similar manner, we can obtain the strain-displacement matrices corresponding
to the other nonlinear strain components. The second nonlinear strain terms can be
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written in terms of an A2 whose slope vector θ2 is

EN2 “
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“ 1
2
A2 θ2

(202)

with

dA2 “

»

—

—

—

—

—

—

—

—

—

–

1
3
Bdu{Bz ´1

3
Bdv{Bz ´1

3
Bdw{By

0 0 ´1
3
Bdw{By

´1
3
Bdu{Bz 1

3
Bdv{Bz Bdw{By

0 0 0

2 Bdu{By 0 0

0 0 2 Bdw{Bx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi
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»
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—

—
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—

—

—

—

–

1
3

ř4
i“1Ni,z dui ´1

3

ř4
i“1Ni,z dvi ´1

3

ř4
i“1Ni,y dwi

0 0 ´1
3

ř4
i“1Ni,y dwi

´1
3

ř4
i“1Ni,z dui

1
3

ř4
i“1Ni,z dvi

ř4
i“1Ni,y dwi

0 0 0

2
ř4
i“1Ni,y dui 0 0

0 0 2
ř4
i“1Ni,x dwi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

”

rl1srl2srl3srl4s
ı ”

rd1srd2srd3srd4s

ıT

“ L2D2 (203a)
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wherein

rlis “

»

—

—

—

—

—

—

—

—

—

–

1
3
Ni,z ´1

3
Ni,z ´1

3
Ni,y

0 0 ´1
3
Ni,y

´1
3
Ni,z

1
3
Ni,z Ni,y

0 0 0

2Ni,y 0 0

0 0 2Ni,x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and rdis “

»

—

–

dui 0 0

0 dvi 0

0 0 dwi

fi

ffi

fl

.

(203b)

The slope vector can further be expressed in terms of the nodal parameters via

θ2 “

$

’

&

’

%

Bu{Bz

Bv{Bz

Bw{By

,

/

.

/

-

“

$

’

&

’

%

ř4
i“1Ni,z ui

ř4
i“1Ni,z vi

ř4
i“1Ni,y wi

,

/

.

/

-

“

”

rh1srh2srh3srh4s

ı

 

upeq
(

“ H2 upeq

(204)
where

rhis “

»

—

–

Ni,z 0 0

0 Ni,z 0

0 0 Ni,y

fi

ffi

fl

. (205)

Hence, the strain-displacement matrix BN2 becomes

BN2 “ A2 H2 “

”

rbN1srbN2srbN3srbN4s

ı

. (206)

The components of this strain-displacement matrix are given as

rbNis “
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—

—

—

—

—
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—

—

–

1
3
Bu{Bz ´1

3
Bv{Bz ´1

3
Bw{By

0 0 ´1
3
Bw{By

´1
3
Bu{Bz 1

3
Bv{Bz Bw{By

0 0 0

2 Bu{By 0 0

0 0 2 Bw{Bx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

–

Ni,z 0 0

0 Ni,z 0

0 0 Ni,y

fi

ffi

fl

. (207)
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For the third nonlinear strain term, i.e., EN3, can be written as

EN3 “
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A3 θ3

(208)

with

dA3 “

»

—

—

—

—

—

—

—

—

—

–

´2
3
Bdv{Bx ´4

3
Bdw{By 1

3
Bdw{Bx

2
3
Bdv{Bx 0 1

3
Bdw{Bx

´2
3
Bdv{Bx 4

3
Bdw{By 0

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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—

—
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´2
3

ř4
i“1Ni,x dvi ´4

3

ř4
i“1Ni,y dwi

1
3

ř4
i“1Ni,x dwi

2
3

ř4
i“1Ni,x dvi 0 1

3

ř4
i“1Ni,x dwi

´2
3

ř4
i“1Ni,x dvi

4
3

ř4
i“1Ni,y dwi 0

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

”

rl1srl2srl3srl4s
ı ”

rd1srd2srd3srd4s

ıT

“ L3D3 (209a)
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wherein

rlis “

»

—

—

—

—

—

—

—

—

—

–

´2
3
Ni,x ´4

3
Ni,y

1
3
Ni,x

2
3
Ni,x 0 1

3
Ni,x

´2
3
Ni,x

4
3
Ni,y 0

0 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and rdis “

»

—

–

dvi 0 0

0 dwi 0

0 0 dwi

fi

ffi

fl

. (209b)

Here the slope vector θ3 contains derivatives of displacements with respect to spa-
tial variables y, z, x that relate to the nodal parameters via
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where
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–

Ni,y 0 0

0 Ni,z 0

0 0 Ni,x

fi

ffi

fl

. (211)

Therefore, the strain-displacement matrix BN3 becomes

BN3 “ A3 H3 “

”

rbN1srbN2srbN3srbN4s

ı

(212)

whose components are given as

bNi “
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—
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3
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ffi
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»
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0 0 Ni,x
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ffi
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. (213)
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For the fourth nonlinear strain term, viz., EN4, can be written as

EN4 “
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with

dA4 “

»
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ffi

fl
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rl1srl2srl3srl4s
ı ”

rd1srd2srd3srd4s

ıT

“ L4D4 (215a)
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wherein
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(215b)

Here the slope vector θ4 contains derivatives of displacements with respect to the
spatial variables x and y that relate to the nodal parameters via
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where
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fi
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fl

. (217)

Therefore, the strain-displacement matrix BN4 becomes

BN4 “ A4 H4 “

”
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ı

(218)

whose components are given as
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. (219)
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The last nonlinear strain term, i.e., EN5, can be written as
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with
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wherein
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fl
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(221b)

Here the slope vector θ5 contains derivatives of displacements with respect to the
spatial variables z, y, and x that relate to the nodal parameters via

θ5 “
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where
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—

–

Ni,z 0 0

0 Ni,y 0
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fi
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fl

. (223)

Therefore, the strain-displacement matrix BN5 becomes

BN5 “ A5 H5 “

”

rbN1srbN2srbN3srbN4s

ı

(224)

whose components are given as
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fi
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fl

. (225)

The total nonlinear strain-displacement matrix BN can be obtained as a sum of its
five components, i.e., BN “

ř5
i“1 BNi.
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With all the strain-displacement matrices evaluated, now we are able to find the
total stiffness matrix.

To obtain the stiffness matrix for a tetrahedron, we need to compute the four con-
stituent strain-displacement matrices Cs, Ct, Ks, and Kt, as mentioned earlier.
These strain-displacement matrices are obtained by expressing their corresponding
strain components in terms of the four nodal displacements, with help from the
shape functions.

6.4.3.1 Tangent Stiffness Matrix Cs

The tangent stiffness matrix Cs, as established in Eq. 149, becomes

Cs
“

ż

V

HT Ss H dV “ |J|
n
ÿ

i“1

HT Sspξi, ηi, ζiqHwi, (226a)

wherein ξi, ηi, ζi, and wi are the co-ordinates and weights of quadrature at the ith

Gauss point, and

Ss “

»

—

–

S11 S12 S13

S21 S22 S23

S31 S32 S33

fi

ffi

fl

. (226b)

The stress vector T “ tπ, σ1, σ2, τ1, τ2, τ3u
T conjugate to strainE has elements that

comprise a pressure π “ S11 ` S22 ` S33 “ ´3P where P denotes the common
definition for pressure, two separate normal-stress differences σ1 “ S11 ´ S22 and
σ2 “ S22 ´ S33, and three separate shear stresses τ1 “

b
c
S32, τ2 “

a
c
S31, and

τ3 “
a
b
S21 ´ ατ2. Of these, only pressure has an initial value, viz., Π0, which

represents atmospheric pressure. In a reciprocal sense, the stress components are
assigned via

Ss “

»

—

–

1
3
pπ ` 2σ1 ` σ2q

b
a
pτ3 ` α τ2q

c
a
τ2

b
a
pτ3 ` α τ2q

1
3
pπ ´ σ1 ` σ2q

c
a
τ1

c
a
τ2

c
a
τ1

1
3
pπ ´ σ1 ´ 2σ2q

fi

ffi

fl

(227)

such that S “ PU´1S U´TPT with S being the second Piola–Kirchhoff stress,
while U is the Laplace stretch, and P is a re-indexer of co-ordinate labeling needed
to ensure invariance under a transformation of Laplace stretch.

174



6.4.3.2 Tangent Stiffness Matrix Ct

The tangent stiffness matrix Ct, as established in Eq. 150, becomes

Ct
“

ż

V

BT Mt B dV “ |J|
n
ÿ

i“1

BT Mt
pξi, ηi, ζiqBwi, (228)

where the stress rate is described by its tangent modulus Mt.

6.4.3.3 Secant Stiffness MatrixKs

The secant stiffness matrix Ks, as established in Eq. 147b, becomes

Ks
“

ż

V

BT Ms B dV “ |J|
n
ÿ

i“1

BT Ms
pξi, ηi, ζiqBwi, (229)

where the stress is described by its secant modulus Ms.

6.4.3.4 Secant Stiffness MatrixKt

Likewise, a secant stiffness matrix Kt, also established in Eq. 150, becomes

Kt
“

ż

V

HT dSt H dV “ |J|
n
ÿ

i“1

HT dStpξi, ηi, ζiqHwi, (230)

where its stress rate is given by dSt ..“ ATMt dA.

6.5 Force Vector

The principle of stationary potential energy via the Rayleigh–Ritz approach, i.e.,
Eq. 146, determines a basis for finite element stress analysis. The internal strain
energy is balanced with the potential energy of applied internal and external loads
on the body.

The virtual work done by external forces δW in Eq. 146 can be expressed as

δW “

ż

S

t δu dS “

ż

S

t N d∆ dS “

ˆ
ż

S

NT t dS

˙

d∆, (231a)

where dS denotes a surface element with t being its surface traction vector (per unit
surface area) at current time. Hence, the external FBC force vectors are

FBC “

ż

S

NT t dS. (231b)
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The force needed to balance the residual stresses, i.e., F 0, is evaluated as two sep-
arate integrals, viz.,

F 0 “

ż

V

BT
L T 0 dV `

ż

V

BT
N T 0 dV, (232)

where the first integral only needs to be evaluated once, as its argument is constant
valued.

6.5.1 Force Vector for a Chord

Following the procedure described above, the force vector of a 1D alveolar chord is
evaluated numerically in its natural co-ordinate system as

FBC “

ż

L

NT t dL “
2
ÿ

i“1

NT t |J|wi, (233)

where wi are the weighting coefficients of the Gauss integration rule, N is the shape
function matrix for chord, and t is the traction on the septal chord that is selected
so that the traction can be additively decomposed into that carried by the collagen
and elastin fibers, i.e., t “ tc ` te.

The internal force F 0 accounting for an initial residual stress of T 0, expressed as
two separate integrals, can be computed as

F 0 “

ż

L

BT
L T 0A dL`

ż

L

BT
N T 0A dL (234a)

“ |J|
2
ÿ

i“1

BT
L T 0Aiwi ` |J|

2
ÿ

i“1

BT
N T 0Aiwi, (234b)

where the first integral will only need to be evaluated once, as the argument is
constant valued. The cross-sectional areas of biologic chords need not be the same
at both Gauss points; hence, it cannot be pulled outside the sum (integration). Here
the initial stress T0 “ rs0s ÞÑ S0 “ rs0s contains the initial stress s0 carried by the
collagen and elastin fibers; specifically, from the rule of mixtures

s0 “
`

φsc0 ` p1´ φqs
e
0

˘

where φ ..“ Ac0{pA
c
0 ` A

e
0q “ Ac0{A0, (234c)

where A0 and A are the initial and current cross-sectional areas of the chord. The
superscripts c and e designate collagen and elastin.
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6.5.2 Force Vector for a Pentagon

The boundary of a 2D pentagon consists of line segments, which can be considered
as 1D chords. Hence, an evaluation of the boundary integrals of a pentagon amounts
to evaluating the line integrals along these boundary lines. Once the interpolation
function for a pentagon are evaluated on the boundary of a pentagon, we can obtain
the corresponding chordal interpolation functions.118 Thus, the force vector FBC

for a pentagon can be obtained by integrating the traction vectors multiplied by
appropriate shape functions over all sides of pentagon. Specifically, force along the
boundary of a membrane can be obtained as

FBC “

¿

L

NT t dL “

ż

L12

NT t12 |J| dL`

ż

L23

NT t23 |J| dL`

ż

L34

NT t34 |J| dL

`

ż

L45

NT t45 |J| dL`

ż

L51

NT t51 |J| dL

“ |J|
2
ÿ

i“1

NT t12wi ` |J|
2
ÿ

i“1

NT t23wi ` |J|
2
ÿ

i“1

NT t34wi

` |J|
2
ÿ

i“1

NT t45wi ` |J|
2
ÿ

i“1

NT t51wi,

(235)
where N represents the shape function matrix of a chord, but with the matrix di-
mension of a pentagon, |J| is the determinant of the Jacobian for a 1D chord, wi
denotes the natural weight of the chord, dS is the arc-length of an infinitesimal
line element along the boundary, and t is the traction vector on each edge of the
pentagon defined as

t “ SsT ¨ n, (236)

where n is the normal vector to each sides of pentagon on which the traction acts,
and Ss are established in Eq. 182b.

The internal force F 0 accounting for an initial residual stress of T 0 becomes

F 0 “

ż

V

BT
L T 0 dV `

ż

V

BT
N T 0 dV

“ |J|
5
ÿ

i“1

BT
L T 0Hiwi ` |J|

5
ÿ

i“1

BT
N T 0Hiwi,

(237)

where B and J are the strain displacement and Jacobian matrix of pentagon, respec-
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tively, whose thickness or heightHi can vary over the surface of the membrane, and
as such, cannot be pulled outside the summation. Here the initial stress

T0 “

$

’

&

’

%

sπ0

sσ0“0

sτ0“0

,

/

.

/

-

ÞÑ S0 “

«

1
2
sπ0 0

0 1
2
sπ0

ff

(238)

contains the initial surface tension sπ0 carried by the septal membrane.

6.5.3 Force Vector for a Tetrahedron

The force vector on the alveolar volume is computed by integrating the traction
vector over the four boundary surfaces of the tetrahedron. Here the matrix of shape
functions, given in Eq. 126, is used to obtain the force vector for tetrahedron. The
force vector FBC can be specified as

FBC “

¿

A

NT t dA “

ż

41

NT t41 dA`

ż

42

NT t42 dA

`

ż

43

NT t43 dA`

ż

44

NT t44 dA

“ |J|
3
ÿ

i“1

NT t41 wi ` |J|
3
ÿ

i“1

NT t42 wi

` |J|
3
ÿ

i“1

NT t43 wi ` |J|
3
ÿ

i“1

NT t44 wi,

(239)

where ∆i, i “ 1, 2, 3, 4, represent the triangular boundary surfaces of a tetrahedron.
Here N represents the shape function matrix for these associated triangular bound-
aries. |J| is the determinant of the Jacobian for triangle, n denotes the number of
Gauss points, wi is the natural weight of the triangle from Table 8, and t is the
surface traction on the triangle surface. Integral

ű

denotes an integration over the
surface boundary of a tetrahedron.

Note: Except for the base of the tetrahedron, the tractions on its other sides have
equal and opposite contributions to the total force vector. Therefore, contributions
from opposite boundary surfaces of the tetrahedron nullify each other. Hence, in
order to obtain the total force vector for a tetrahedron, it is sufficient to only consider
the contributions due to the traction on its base. Therefore, the total force vector
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takes the form of

FBC “ |J|
3
ÿ

i“1

NT t41 wi, (240)

where t41 is the traction vector on the surface of triangle defined as

t41 “ SsTn, (241)

wherein n is the normal vector to each sides of tetrahedron on which the traction
acts, and Ss has been defined in Eq. 226b.

The internal force F 0 accounting for an initial residual stress of T 0 becomes

F 0 “

ż

V

BT T 0 dV (242a)

“ |J|
4
ÿ

i“1

BT
L T 0wi ` |J|

4
ÿ

i“1

BT
N T 0wi, (242b)

where B and J are the strain displacement and Jacobian matrices of a tetrahedron,
respectively. Here the stress vector T 0 “ tΠ, σ1, σ2, τ1, τ2, τ3u

T is conjugate to
strain E “ tΞ, ε1, ε2, γ1, γ2, γ3u

T, where

T0 “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

Π0

σ1 0“0

σ2 0“0

τ1 0“0

τ2 0“0

τ3 0“0

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

ÞÑ S0 “

»

—

–

1
3
Π0 0 0

0 1
3
Π0 0

0 0 1
3
Π0

fi

ffi

fl

(243)

contains the residual pressure Π0 inside a tetrahedron.
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7. Conclusions

This report develops a microscopic alveolar model whose homogenized response
describes the macroscopic behavior of parenchyma in lung. Such a model can be
used in lieu of physical experiments to help develop and parameterize a better con-
tinuum lung model for use in finite element analyses. The need for such a model is
to aid Army engineers in their development of improved PPE to better protect Sol-
diers from BABT and BLI when impacted by ballistic projectiles or blast waves.

The geometry of an individual alveolus is modeled as an irregular dodecahedron
comprising 20 alveolar vertices, 30 1D alveolar chords, and 12 2D pentagonal alve-
olar septa, all enveloping a 3D alveolar sac. Implicit elastic constitutive equations
are used to model these alveolar chords and septa. Alveolar chords are modeled as
collagen and elastin fibers loaded in parallel. Damage is accounted for through the
rupture of individual alveolar fibers and septa, and the tearing of capillaries that
lead to blood and interstitial fluids leaking into its alveolar sac. Material proper-
ties for the individual fibers and septa are assigned through probability distribution
functions to account for their biologic variability.

It is shown that geometric strains for the three physical dimensions that arise in
this analysis are equivalent during uniform deformations when they are defined as
lnpL{L0q for 1D rods, ln

a

A{A0 for 2D membranes, and ln 3
a

V{V0 for 3D vol-
umes. Adopting Laplace stretch as our fundamental kinematic variable, thermo-
dynamic conjugate pairs are established for these three geometric dimensions. These
thermodynamic strains equate with the above geometric strains under conditions of
uniform deformation, plus they allow for the handling of nonuniform deformations,
in particular, pure and simple shears.

New to this report are the following: i) Sets of consistent interpolation/extrapolation
procedures for 1D rods, 2D triangles and pentagons, and 3D tetrahedra, which allow
physical fields to be mapped between the nodes and Gauss points of an element in a
reproducible manner; ii) Shape functions and a Gauss integration formula suitable
for constructing a pentagonal finite element, which is used to model alveolar septa;
iii) Nonlinear strain-displacement matrices for 2D pentagons and 3D tetrahedra that
employ Laplace stretch as their kinematic variable; and iv) A numerical algorithm
that employs both secant and tangent stiffness matrices in its finite element solver.
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Appendix. Implicit Elasticity

193



Both explicit (i.e., Green123) and implicit (i.e., Rajagopal124) elastic material models
are put forward in this appendix for one’s consideration when choosing a material
model to represent biologic fibers and membranes. We discuss thermoelastic fibers
first, and then thermoelastic membranes. We have no need to address thermoelastic
bodies in 3D for our application, beyond what has been presented in Section 4.4.4.
In this appendix, we employ Gibbs free-energy potential G instead of the internal
energy potential U , which we employ in the body of this report. These potentials re-
late to one another through a well-known Legendre transformation. A Gibbs energy
approach implies that a change in the intensive variables (thermodynamic forces)
will cause a response in the extensive variables (thermodynamic displacements),
which is the exact opposite cause-and-effect arising from an internal energy ap-
proach. Causality is correct whenever one uses a Gibbs approach, from a physics
perspective. Nevertheless, applications often find other approaches to be more use-
ful, especially that of Helmholtz. Here we present both secant and tangent moduli
formulations for biologic fibers and membranes, as both are required by our varia-
tional formulation.

A.1 Alveolar Chords as Green (Explicit) Thermoelastic Fibers

For a 1D fiber with a mass density of ρ per unit length, the thermodynamic conju-
gate fields are temperature θ and entropy η, plus force F and length L, whose initial
values in some reference configuration are denoted as θ0, η0, F0, and L0. In our
construction, it is insightful to use lnpθ{θ0q and lnpL{L0q as measures for change in
temperature and length, with the former changing how we interpret thermal strain,
but not specific heat, while the latter is commonly referred to as mechanical strain,
viz., e ..“ lnpL{L0q.

A Green thermoelastic fiber has a Gibbs free-energy potential described by an ex-
plicit function of state, viz., Gpθ, F q where dG “ ´η dθ ´ 1

ρ
e dF (cf. Eq. 56a), out

of which one derives the governing thermoelastic constitutive equations, viz., for
entropy

η “ ´Bθ Gpθ, F q, (A-1a)

and for strain

e ..“ lnpL{L0q “ ´ρ BF Gpθ, F q. (A-1b)
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Providing an energy function establishes a material model.

A.1.1 Hookean Fibers

Herein we consider a Gibbs free-energy potential suitable for describing a Hookean
fiber, i.e.,

Gpθ, F q “ ´η0pθ ´ θ0q ´ C

ˆ

θ ln

ˆ

θ

θ0

˙

´ pθ ´ θ0q

˙

´
F ´ F0

ρ

ˆ

α ln

ˆ

θ

θ0

˙

`
F ´ F0

2E

˙

(A-2)

normalized so that Gpθ0, F0q “ 0 with initial conditions of η0 “ ´Bθ Gpθ0, F0q and
e0 “ ´ρ BFGpθ0, F0q “ 0 in our reference state associated with fields θ0 and F0.
Introducing lnpθ{θ0q presumes that temperature θ is absolute, i.e., it is measured in
Kelvin, not centigrade, so in our application θ0 “ 310 K is body temperature.

The model’s material properties are a specific heat C, a thermal strain coefficient α,
and an elastic compliance 1{E or modulus E. These properties are interpreted from
the perspective of both secant and tangent functions of state in this appendix.

In vivo, biologic fibers operate under cyclic loading conditions where, typically,
0 ă Fmin ă F ă Fmax ă Fult that, under normal physiologic conditions, finds force
F traversing between Fmin and Fmax with Fult designating ultimate rupture strength.
Here we take F0 to associate with Fmin. Consequently, strain is assigned to be zero
in this reference state of F0 ą 0. Similarly, physicians will reference against some
physiologic state of relevance; however, their reference states usually associate with
Fmax, not Fmin, e.g., total lung capacity for pulmonary applications, and max systole
for cardiac applications. Ex vivo, one typically selects F0 “ 0 for biologic fibers.

A.1.2 Secant Material Properties

Substituting the Gibbs free-energy function (Eq. A-2) into the constitutive equa-
tions (Eqs. A-1a and A-1b) governing entropy and strain, respectively, results in the
matrix expression

#

η ´ η0

lnpL{L0q

+

“

«

Cs αs{ρθ

αs 1{Es

ff#

lnpθ{θ0q

F ´ F0

+
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which rearranges into a form that is more suitable for our needs, specifically

#

η ´ η0

F ´ F0

+

“

«

Cs ´ α
2
sEs{ρθ αsEs{ρθ

´αsEs Es

ff#

lnpθ{θ0q

lnpL{L0q

+

(A-3a)

with material properties: a specific heat (evaluated at some reference force F0) of

Cs ..“
η ´ η0

lnpθ{θ0q

ˇ

ˇ

ˇ

ˇ

F“F0

, (A-3b)

with Cs ´ α2
sEs{ρθ being a heat capacity (evaluated at some reference length L0),

plus a thermal strain coefficient (evaluated at some reference force F0) of

αs ..“
lnpL{L0q

lnpθ{θ0q

ˇ

ˇ

ˇ

ˇ

F“F0

, (A-3c)

and an elastic compliance (evaluated at some reference temperature θ0) of

1

Es
..“

lnpL{L0q

F ´ F0

ˇ

ˇ

ˇ

ˇ

θ“θ0

. (A-3d)

These are secant material properties, hence the subscript s, which can be measured
through appropriate experiments. The curves that they trace through state space are
then to be approximated via a model.

Note: Thermal elongation is typically modeled as αpθ ´ θ0q, wherein α is referred
to as the coefficient for thermal expansion. Our thermal strain coefficient αs, which
is dimensionless, and the coefficient for thermal expansion α, which has dimen-
sions of reciprocal temperature, relate via αs “ αθ0 ` O

`

ppθ ´ θ0q{θ0q
2
˘

because
lnpθ{θ0q “ pθ ´ θ0q{θ0 ´ pθ ´ θ0q

2{θ2
0 ` pθ ´ θ0q

3{θ3
0 ´ ¨ ¨ ¨ .

A.1.3 Tangent Material Properties

Upon differentiating the constitutive equations for entropy and strain found in Eqs. A-
1a and A-1b, respectively, assuming that they are both sufficiently differentiable
functions of state, while adopting the expression for Gibbs free energy found in
Eq. A-2, results in the following constitutive equation

#

dη

L´1 dL

+

“ ´

«

Bθθ G BθF G
ρ BFθ G ρ BFF G

ff#

dθ

dF

+

“

«

Ct αt{ρθ

αt 1{Et

ff#

θ´1 dθ

dF

+
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where we observe that the intensive and extensive variables now appear in rate or
differential form; hence, this formulation is hypo-elastic.81 This matrix equation can
be rearranged into an expression that is more suitable for our needs, viz.,

#

dη

dF

+

“

«

Ct ´ α
2
tEt{ρθ αtEt{ρθ

´αtEt Et

ff#

θ´1 dθ

L´1 dL

+

(A-4a)

whose material properties are a specific heat (at constant force) of

Ct ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dF“0

“ Cs ´
αspF ´ F0q

ρ θ
“ ´θ Bθθ Gpθ, F q, (A-4b)

where the tangent response for specific heat Ct relates to the secant response for
specific heat Cs via Ct “ Cs ´ αspF ´ F0q{ρθ, with Ct ´ α2

tEt{ρθ being a heat
capacity (at constant strain), plus a thermal strain coefficient (at constant force) of

αt ..“
L´1 dL

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dF“0

“ ´ρθ BFθ Gpθ, F q “ ´ρθ BθF Gpθ, F q, (A-4c)

where, typically, αt ” αs, and an elastic compliance (at constant temperature) of

1

Et
..“

L´1 dL

dF

ˇ

ˇ

ˇ

ˇ

dθ“0

“ ´ρ BFF Gpθ, F q, (A-4d)

which is distinct from its secant compliance for the biologic fiber model that fol-
lows. These are tangent material properties, hence the subscript t, whose values can
be measured through appropriate experiments.

Matrix equation A-4a is expressed in terms of Helmholtz causality, but is derived
out of Gibbs causality to ensure that Maxwell’s condition present in Eqs. A-4a and
A-4c is satisfied.

It turns out that these tangent material properties correspond directly with compo-
nents acquired from the Laplacian of one’s Gibbs free-energy potential.
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A.2 Alveolar Chords as Rajagopal (Implicit) Thermoelastic Fibers

In 2003, Rajagopal124 introduced the idea of an implicit elastic solid. In 2016,
Freed and Rajagopal96 constructed an elastic fiber model that convolves an explicit
energy with an implicit energy. In their approach, they decomposed fiber strain
e ..“ lnpL{L0q into a sum of two strains, viz., e “ e1 ` e2 wherein e1

..“ lnpL1{L0q

and e2
..“ lnpL{L1q. Length L0 is a reference fiber length, viz., its length whereat

F “ F0. Length L1 can be thought of as the fiber’s length caused solely by a
molecular reconfiguration under an applied load of F (e.g., an unraveling of crimp
in collagen, a network reorientation in elastin, a reconformation in structural pro-
teins, etc.). The state associated with length L1 is non-physical in that one cannot
unravel molecules without also stretching some of their bonds to a certain extent.
Final length L is the actual fiber length under an applied load F caused by both
a reconfiguration and a stretching of its molecular network. Here we present their
ideas in terms of a Gibbs free-energy function, which leads naturally to additive
compliances, instead of working with moduli, which do not add.*

Let the Gibbs free-energy potential be described by a function of the form†

Gpθ, e, F q ..“ G1pe1, F q ` G2pθ, F q with dG “ ´η dθ ´ 1
ρ
e dF, (A-5)

where G1 is an implicit potential (a configuration energy) and G2 is an explicit po-
tential (a strain energy). This energy function leads to the same constitutive equation
displayed in Eq. A-4a, but whose material properties from Eqs. A-4b–A-4d are now
interpreted according to the following formulæ

Ct ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dF“0

“ ´θ Bθθ Gpθ, e, F q “ ´θ Bθθ G2pθ, F q (A-6a)

αt ..“
L´1 dL

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dF“0

“ ´ρθ BFθ Gpθ, e, F q “ ´ρθ BFθ G2pθ, F q (A-6b)

1

Et
..“

L´1 dL

dF

ˇ

ˇ

ˇ

ˇ

dθ“0

“ ´
`

ρ Be1G1pe1, F q
˘´1`

e` ρ BF Gpθ, e, F q
˘

´ ρ BFF G2pθ, F q (A-6c)

*Freed and Rajagopal96 originally used a Helmholtz free-energy function.
†One might be tempted to consider an implicit energy function of the form G “ G1pθ, e, F q `

G2pθ, F q, but this would lead to a non-symmetric susceptibility matrix. Consequently, it would not
satisfy Maxwell’s thermodynamic constraint, a.k.a. Sylvester’s condition for integrability of a Pfaf-
fian form. Hence, it is an inadmissible functional dependence for a Gibbs potential.
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where mass density ρ is a mass per unit length of line. Elastic compliance 1{Et is
now found to be a sum of two compliances, independent of the functional forms that
one might select for G1pe1, F q and G2pθ, F q. One compliance is explicit in origin,
i.e., e2 “ ´ρ BF G2 with rate de2 “ ´ρ BFθ G2 dθ ´ ρ BFF G2 dF . It comprises the
second row in Eq. A-6c. The other compliance is implicit in origin, viz., de1 “

´pρ Be1 G1q
´1pe1 ` ρ BF G1qdF ” ´pρ Be1 G1q

´1pe ` ρ BF GqdF . It comprises the
first row in Eq. A-6c. Also, BFθ G “ BθF G because of Maxwell’s thermodynamic
constraint.

The material properties of Eq. A-6 apply to matrix equation A-4a, just as those
for a Hookean material do, viz., Eqs. A-4b–A-4d. The specific heat Ct and thermal
strain coefficient αt have the same interpretations for both explicit and implicit fiber
theories. It is with respect to their compliances through which they differ.

Derivation: Because Gibbs free energy is a state function, its differential describes
a Pfaffian form, and as such, the left-hand side of the thermodynamic expression
dG “ ´η dθ´ 1

ρ
e dF becomes dG “ Be1G1 de1 ` BF G1 dF ` Bθ G2 dθ` BF G2 dF .

Recalling that e “ e1`e2, the explicit (hyper-elastic like) terms combine to produce
constitutive equations

η “ ´Bθ G2pθ, F q and e2 “ ´ρ BF G2pθ, F q

while the remaining implicit terms collect to yield a differential constitutive equa-
tion of the form

ρ Be1G1pe1, F q de1 “ ´
`

e1 ` ρ BF G1pe1, F q
˘

dF.

Differentiating the constitutive equation for entropy with respect to state leads di-
rectly to expressions for the specific heat Ct and the thermal expansion coefficient
αt stated in Eqs. A-6a and A-6b. Recalling that the strains add, i.e., e “ e1`e2, and
therefore so do their rates, viz., de “ de1`de2, a direct consequence of them being
logarithmic in construction, it follows that upon rearranging the implicit constitu-
tive equation to solve for de1, while differentiating the explicit constitutive equation
for e2, and finally adding these strain increments to get de, one obtains the elastic
compliance function stated in Eq. A-6c.
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A.2.1 Biologic Fibers with Tangent Material Properties

The fiber model of Freed and Rajagopal96 imposes a limiting constraint e1max onto
the internal strain of reconfiguration e1, viz., e1 ď e1max . Their model, when cast
in terms of a Gibbs free-energy function in the form of Eq. A-5, is described by an
implicit energy contribution of*

G1pe1, F q “ ´
1

ρ

´

e1max

`

E1e1 ´ pF ´ F0q
˘

` 2e1pF ´ F0q

¯

(A-7a)

and explicit energy contribution of

G2pθ, F q “ ´η0pθ ´ θ0q ´ C

ˆ

θ ln

ˆ

θ

θ0

˙

´ pθ ´ θ0q

˙

´
F ´ F0

ρ

ˆ

α ln

ˆ

θ

θ0

˙

`
F ´ F0

2E2

˙

(A-7b)

that, collectively, depend upon temperature θ, force F , and an internal strain e1,
whose free energy is normalized so that G1pe1,0, F0q “ 0 and G2pθ0, F0q “ 0 with
initial conditions e1,0 “ 0, e2,0 “ ´ρ BF G2pθ0, F0q “ 0 and η0 “ ´Bθ G2pθ0, F0q.
In fact, the explicit contribution to the free energy adopted here is Hookean, cf.
Eq. A-2. The resulting constitutive responses for entropy η and force F are therefore
described by the following differential matrix equation

#

dη

dF

+

“

«

Ct ´ α
2
tEt{ρθ αtEt{ρθ

´αtEt Et

ff#

θ´1 dθ

L´1 dL

+

(A-4a)

whose elastic tangent compliance is now described by

1

Etpθ, e, F q
“

e1max ´ e1

E1e1max ` 2pF ´ F0q
`

1

E2

(A-7c)

wherein

e1 “ e´ α ln

ˆ

θ

θ0

˙

´
F ´ F0

E2

(A-7d)

*In the paper of Freed and Rajagopal,96 they adopted a Helmholtz free-energy potential of the
form Ee1 ´ F ` βe1F where β is a material parameter that relates to a limiting state of strain.
Here we adopt a Gibbs free-energy potential of like form, specifically e1max

pEe1 ´ F q ` 2e1F
where e1max

is this limiting state of internal strain e1. We point out that an exponential response
akin to Fung’s material models will result whenever the energy of reconfiguration takes on a form
of Ee1 ´ F .
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and whose initial tangent modulus Etpθ0, e0, F0q is E1E2{pE1 ` E2q (« E1 when-
ever E2 " E1 ą 0) while its terminal tangent modulus Etpe1“e1maxq is E2. A tran-
sition strain occurs at e1max pą 0q, which establishes the limiting state for internal
strain e1, i.e., e1 ď e1max . This is a strain whereat the fiber’s molecular configura-
tion becomes completely unraveled. The 2 in term 2e1pF ´ F0q of Eq. A-7a leads
to the desired numerator for the implicit contribution to compliance established in
Eq. A-7c, viz., e1max ´ e1, which is the source of the strain limiting quality of the
model. This fiber model has been found to be superior to other models commonly
employed in the literature for modeling biologic fibers.125,126

Both the explicit and implicit models have the same hypo-elastic structure, viz.,
Eq. A-4a. Furthermore, their thermal properties Ct and αt have the same physical
interpretations. Only their elastic compliances/moduli are interpreted differently.
Even so, they are related because 1{Es “

şF

F0
p1{Etq dF .

The sum of implicit and explicit fiber compliances, as established in Eq. A-7c, was
originally a conjecture by Freed and Rajagopal.96 Here it is shown to be a thermo-
dynamic consequence, provided that Gpθ, e, F q “ G1pe1, F q ` G2pθ, F q and that
e “ e1 ` e2 with e2 “ ´ρ BF G2. This follows because a Gibbs free energy is used
here; whereas, Freed and Rajagopal employed a Helmholtz free energy.

Biologic fibers, per our application, are long and slender. Consequently, they will
buckle under compression. Buckling is not accounted for in our modeling of alve-
olar chords. Rather, it is assumed that the compliant response at F0, with a mod-
ulus of E1E2{pE1 ` E2q, continues over the non-physiologic loading range of
0 ă F ď Fmin “ F0, which is the body’s way of ensuring structural integrity
of its biologic fibers.

The above methodology would allow us to construct a suite of thermodynamically
admissible, elastic, compliance functions, but we will only have need for the simple
fiber model put forward in Eq. A-7.

A.2.2 Biologic Fibers with Secant Material Properties

Material properties Ct, αt, and Et for the above model, viz., those of Eq. A-7,
describe tangents to material response functions. For the thermal properties, their
secant counterparts Cs and αs relate to their tangent properties Ct and αt just as
they do for a Green elastic fiber. Only the elastic compliance needs to be addressed.
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The tangent modulus Et is established through the relationship

1

Et
..“

de

dF

ˇ

ˇ

ˇ

ˇ

dθ“0

“
de1

dF

ˇ

ˇ

ˇ

ˇ

dθ“0

`
de2

dF

ˇ

ˇ

ˇ

ˇ

dθ“0

“..
1

E1t

`
1

E2t

(A-8a)

so that a fiber’s elastic compliance is described by

de “
dF

Et
where

1

Et
“

1

E1t

`
1

E2t

(A-8b)

and, consequently, its elastic modulus is described by

dF “ Et de where Et “
E1tE2t

E1t ` E2t

. (A-8c)

The implicit free-energy function introduced through Eq. A-7 produces a tangent
compliance of

1

Et
“

e1max ´ e1

E1e1max ` 2pF ´ F0q
`

1

E2

(A-8d)

whose internal strain caused by molecular reconfiguration comes from

e1 “ e´ αt ln

ˆ

θ

θ0

˙

´
F ´ F0

E2

. (A-8e)

The material properties of this model are: E1E2{pE1 ` E2q pą 0q is the initial
tangent modulus, E2 p" E1 ą 0q is the terminal tangent modulus, e1max is the max-
imum strain that can arise from a molecular reconfiguration, and αt is the thermal
strain coefficient, all quantified against a reference state described by θ0 and F0.

It follows then that its associated secant compliance obeys

1

Es
..“

e

F ´ F0

ˇ

ˇ

ˇ

ˇ

θ“θ0

“
e1

F ´ F0

ˇ

ˇ

ˇ

ˇ

θ“θ0

`
e2

F ´ F0

ˇ

ˇ

ˇ

ˇ

θ“θ0

“..
1

E1s

`
1

E2s

(A-9a)

so the fiber’s compliance representation is described by

e “
F ´ F0

Es
where

1

Es
“

1

E1s

`
1

E2s

(A-9b)
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and, therefore, its modulus representation is described by

F “ F0 ` Es e where Es “
E1sE2s

E1s ` E2s

. (A-9c)

Upon integrating Eq. A-8d by separation of variables, one arrives at a secant com-
pliance comprising a sum between

1

E1s

“
e1max

F ´ F0

˜

1´

a

E1e1max
a

E1e1max ` 2pF ´ F0q

¸

(A-9d)

and

1

E2s

“
1

E2

(A-9e)

with EspF ďF0q “ E1E2{pE1 ` E2q.

A.2.3 Viscoelastic Biologic Fibers

Freed and Rajagopal127 have shown that realistic viscoelastic responses for biologic
fibers can be based upon the above thermoelastic fiber model by retaining the im-
plicit contribution to the compliance, i.e., 1{E1, as elastic, while only extending
the explicit contribution to the compliance, viz., 1{E2, into the viscoelastic domain.
This finding is significant! It allows one to model the viscoelastic response of non-
linear biologic fibers by employing a linear theory for viscoelasticity. Effectively,
elastic compliance 1{E2 in Eq. A-7c becomes a viscoelastic function of state. This
is a topic for future work.

A.3 Alveolar Septa as Green (Explicit) Thermoelastic Membranes

For a 2D membrane with a mass density of ρ per unit area, its response comprises
uniform and non-uniform contributions. The thermodynamic conjugate fields per-
taining to uniform behaviors are temperature θ and entropy η, and surface tension
π and dilation ξ, cf. Eq. 69a. While the conjugate fields pertaining to non-uniform
behaviors are normal stress difference σ and squeeze strain ε, and shear stress τ and
shear strain γ, cf. Eq. 69b.

We observed in Section 4.1.3 that the uniform and non-uniform contributions of an
alveolar membrane are not coupled. Consequently, their Gibbs free energies add in
such a manner that Gpθ, π, σ, τq “ Gupθ, πq ` Gnpσ, τq, with Gu being the uniform
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contribution of G, and Gn being the non-uniform contribution of G.

A Green thermoelastic membrane has a Gibbs free-energy potential described by
Gpθ, π, σ, τq “ Gupθ, πq`Gnpσ, τqwhere dG “ ´η dθ´ 1

ρ

`

ξ dπ`ε dσ`γ dτ
˘

from
which one derives its governing thermoelastic constitutive equations; specifically,
for entropy

η “ ´Bθ Gpθ, π, σ, τq “ ´Bθ Gupθ, πq, (A-10a)

for dilation

ξ “ ´ρ Bπ Gpθ, π, σ, τq “ ´ρ Bπ Gupθ, πq, (A-10b)

for squeeze

ε “ ´ρ Bσ Gpθ, π, σ, τq “ ´ρ Bσ Gnpσ, τq, (A-10c)

and for shear

γ “ ´ρ Bτ Gpθ, π, σ, τq “ ´ρ Bτ Gnpσ, τq (A-10d)

whereby specifying energies Gu and Gn produces a material model for membranes.

A.3.1 Hookean Membranes

In this appendix, we consider a function for the Gibbs free-energy potential that
is suitable for describing biologic Hookean membranes; specifically, for governing
their uniform response, let

Gupθ, πq “ ´η0pθ ´ θ0q ´ C

ˆ

θ ln

ˆ

θ

θ0

˙

´ pθ ´ θ0q

˙

´
π ´ π0

2ρ

ˆ

2α ln

ˆ

θ

θ0

˙

`
π ´ π0

4M

˙

(A-11a)

and for governing their non-uniform response, let

Gnpσ, τq “ ´
1

2ρ

ˆ

σ2

2N
`
τ 2

G

˙

, (A-11b)

where symmetries Gnpσ, τq “ Gnp´σ, τq “ Gnpσ,´τq “ Gnp´σ,´τq must hold
because the squeeze and shear variables can take on either sign. These free energies
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are normalized so that Gupθ0, π0q “ 0 and Gnpσ0, τ0q “ 0 with initial conditions
of η0 “ ´Bθ Gupθ0, π0q, ξ0 “ ´ρ Bπ Gupθ0, π0q “ 0, ε0 “ ´ρ Bσ Gnp0, 0q “ 0, and
γ0 “ ´ρ Bτ Gnp0, 0q “ 0 for a reference state with fields θ0, π0, σ0 “ 0 and τ0 “ 0.

Here we presume that the reference values for the non-uniform stresses, viz., σ0 and
τ0, are both zero, i.e., σ0 “ 0 and τ0 “ 0. This follows because these fields can be
either positive or negative in their values; whereas, surface tension π is a positive
only field, and as such, the notion of a non-zero reference value π0 is physiologically
sound; it is nature’s way of helping to stabilize a membrane.

A.3.2 Secant Material Properties
A.3.2.1 Uniform Response

Substituting the Gibbs free-energy function of Eq. A-11a into the constitutive equa-
tions governing entropy (Eq. A-10a) and dilation (Eq. A-10b) results in a matrix
expression of

#

η ´ η0

ln
a

A{A0

+

“

«

Cs αs{ρθ

αs 1{4Ms

ff#

lnpθ{θ0q

π ´ π0

+

where ξ ..“ ln
a

A{A0. This matrix equation can be rearranged into a form that is
more suitable for our needs, viz.,

#

η ´ η0

π ´ π0

+

“

«

Cs ´ 4α2
sMs{ρθ 4αsMs{ρθ

´4αsMs 4Ms

ff#

lnpθ{θ0q

ln
a

A{A0

+

(A-12a)

whose material properties are a specific heat (evaluated at a reference surface ten-
sion π0) of

Cs ..“
η ´ η0

lnpθ{θ0q

ˇ

ˇ

ˇ

ˇ

π“π0

(A-12b)

with Cs´ 4α2
sMs{ρθ being a heat capacity in an absence of dilation, plus a thermal

strain coefficient (evaluated at a reference surface tension π0) of

αs ..“
lnpL{L0q

lnpθ{θ0q

ˇ

ˇ

ˇ

ˇ

π“π0

“
1

2

lnpA{A0q

lnpθ{θ0q

ˇ

ˇ

ˇ

ˇ

π“π0

, (A-12c)
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where lnpA{A0q “ 2 lnpL{L0q is the surface dilation, with L{L0 being the stretch
between any two points on its surface, plus an elastic membrane compliance (eval-
uated at a reference temperature θ0) of

1

Ms

..“
lnpA{A0q

T ´ T0

ˇ

ˇ

ˇ

ˇ

θ“θ0

“ 4
ξ

π ´ π0

ˇ

ˇ

ˇ

ˇ

θ“θ0

, (A-12d)

where T ..“ 1
2
pσ11 ` σ22q “

.. 1
2
π is the surface tension, with σij being components

of the Cauchy stress in this 2D space. These are secant material properties, hence
the subscript s, whose values can be measured in experiments.

Note: Thermal strain is typically modeled as αpθ ´ θ0q, wherein α is referred to as
the coefficient for lineal thermal expansion. Our thermal strain coefficient αs and the
coefficient for lineal thermal expansion α relate via αs “ αθ0 `O

`

ppθ ´ θ0q{θ0q
2
˘

because lnpθ{θ0q “ pθ ´ θ0q{θ0 ´ pθ ´ θ0q
2{θ2

0 ` pθ ´ θ0q
3{θ3

0 ´ ¨ ¨ ¨ .

A.3.2.2 Non-Uniform Response

Substituting the Gibbs free-energy function of Eq. A-11b into the constitutive equa-
tions governing squeeze (Eq. A-10c) and shear (Eq. A-10d) leads to the following
matrix equation

#

ε

γ

+

“

«

1{2Ns 0

0 1{Gs

ff#

σ

τ

+

that when inverted becomes
#

σ

τ

+

“

«

2Ns 0

0 Gs

ff#

ε

γ

+

(A-13a)

whose material properties are a squeeze compliance (in an absence of shear γ) of

1

Ns

..“
lnpΓ{Γ0q

σ11 ´ σ22

ˇ

ˇ

ˇ

ˇ

g“g0

“ 2
ε

σ

ˇ

ˇ

ˇ

γ“0
(A-13b)

where Γ ..“ a{b and Γ0 “ a0{b0 are the current and reference stretches of squeeze,
with ε ..“ ln

a

Γ{Γ0 being the squeeze strain, and where σ ..“ σ11 ´ σ22 establishes
a normal stress difference, plus a shear compliance (in an absence of squeeze ε) of

1

Gs

..“
g ´ g0

Γσ21

ˇ

ˇ

ˇ

ˇ

Γ“Γ0

“
γ

τ

ˇ

ˇ

ˇ

ε“0
(A-13c)
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where g and g0 are the current and reference magnitudes of shear, with γ ..“ g ´ g0

denoting shear strain, and where τ ..“ Γσ21 establishes the thermodynamic shear
stress. These are secant material properties, hence the subscript s, whose values
can be measured in experiments.

A.3.3 Tangent Material Properties
A.3.3.1 Uniform Response

Differentiating the constitutive equations for entropy and dilation found in Eqs. A-
10a and A-10b, respectively, assuming they are both sufficiently differentiable func-
tions of state, while adopting the Gibbs free energy from Eq. A-11a, results in the
following matrix constitutive equation

#

dη

dξ

+

“ ´

«

Bθθ Gu Bθπ Gu
ρ Bπθ Gu ρ Bππ Gu

ff#

dθ

dπ

+

“

«

Ct αt{ρθ

αt 1{4Mt

ff#

θ´1 dθ

dπ

+

which is hypo-elastic in its construction.81 This expression can be rearranged into

#

dη

dπ

+

“

«

Ct ´ 4α2
tMt{ρθ 4αtMt{ρθ

´4αtMt 4Mt

ff#

θ´1 dθ
1
2
A´1 dA

+

(A-14a)

recalling that dξ “ dA{2A, and with material properties defined accordingly: a
specific heat (at constant surface tension) of

Ct ..“
dη

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dπ“0

“ Cs ´ αspπ ´ π0q{ρθ “ ´θ Bθθ Gu (A-14b)

with Ct ´ 4α2
tMt{ρθ denoting a heat capacity at constant dilation, and a lineal

thermal strain coefficient (at constant surface tension) of

αt ..“
L´1 dL

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dπ“0

“
1

2

A´1 dA

θ´1 dθ

ˇ

ˇ

ˇ

ˇ

dπ“0

“

$

&

%

´ρθ Bπθ Gu
´ρθ Bθπ Gu

(A-14c)

plus a compliance (at constant temperature) of

1

Mt

..“
A´1 dA

dT

ˇ

ˇ

ˇ

ˇ

dθ“0

“ 4
dξ

dπ

ˇ

ˇ

ˇ

ˇ

dθ“0

“ ´4ρ Bππ Gu. (A-14d)

These are tangent material properties, hence the subscript t, whose values can be
measured in experiments.
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A.3.3.2 Non-Uniform Response

From dG “ dGu ` dGn with dGu “ ´η dθ ´ 1
ρ
ξ dπ comes dGn “ ´1

ρ
pε dσ `

γ dτq out of which one obtains the constitutive equations governing non-uniform
responses in a Green elastic membrane, viz., ε “ ´ρ Bσ Gn and γ “ ´ρ Bτ Gn, that,
assuming they are continuous and differentiable functions of state, can be expressed
as the matrix differential equation

#

dε

dγ

+

“ ´ρ

«

Bσσ Gn Bστ Gn
Bτσ Gn Bττ Gn

ff#

dσ

dτ

+

“

«

1{2Nt 0

0 1{Gt

ff#

dσ

dτ

+

where Bστ Gn “ Bτσ Gn “ 0, because the modes of squeeze and shear are taken to be
decoupled. The resulting matrix is readily inverted into a form that is more useful
for us, namely

#

dσ

dτ

+

“

«

2Nt 0

0 Gt

ff#

dε

dγ

+

(A-15a)

whose associated material properties are established via

1

Nt

..“
Γ´1 dΓ

dpσ11 ´ σ22q

ˇ

ˇ

ˇ

ˇ

dγ“0

“ 2
dε

dσ

ˇ

ˇ

ˇ

ˇ

dγ“0

“ ´2ρ Bσσ Gn (A-15b)

and

1

Gt

..“
1

Γ

dg

dσ21

ˇ

ˇ

ˇ

ˇ

dΓ“0

“
dγ

dτ

ˇ

ˇ

ˇ

ˇ

dε“0

“ ´ρ Bττ Gn (A-15c)

where the conjugate stresses are defined as σ ..“ σ11 ´ σ22 and τ ..“ Γσ21 with
Γ ..“ a{b being the stretch of squeeze from which it follows that Γ´1dΓ “ 2 dε

because the strain of squeeze is given by ε “ ln
a

Γ{Γ0. The squeeze compliance
1{Nt “ 2 dε{dσ|γ is evaluated at a constant shear γ, while the shear compliance
1{Gt “ dγ{dτ |ε is evaluated at a constant squeeze ε.
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A.4 Alveolar Septa as Rajagopal (Implicit) Thermoelastic Membranes

We employ implicit elasticity here to derive a constitutive theory suitable for de-
scribing biologic membranes.

A.4.1 Tangent Material Properties
A.4.1.1 Uniform Response

Like the implicit elastic fiber introduced in Eq. A-7, the uniform response of an im-
plicit elastic membrane with a strain-limiting dilation can be modeled using a Gibbs
free energy of the form Gupθ, ξ, πq ..“ G1pξ1, πq ` G2pθ, πq where our definition for
dilation ξ ..“ ln

a

A{A0 decomposes into a sum of two dilations: ξ1
..“ ln

a

A1{A0

and ξ2
..“ ln

a

A{A1 so that ξ “ ξ1 ` ξ2, with like interpretations as those from
their 1D fiber counterparts, viz., e, e1, and e2. Such a membrane’s tangent material
properties are then given by

Ct ..“ ´θ Bθθ Gupθ, ξ, πq “ ´θ Bθθ G2pθ, πq (A-16a)

αt ..“ ´ρθ Bπθ Gupθ, ξ, πq “ ´ρθ Bπθ G2pθ, πq “ ´ρθ Bθπ G2pθ, πq (A-16b)

1{4Mt
..“ ´

`

ρ Bξ1G1pξ1, πq
˘´1`

ξ ` ρ Bπ Gupθ, ξ, πq
˘

´ ρ Bππ G2pθ, πq (A-16c)

whose derivations are analogous to those for the implicit fiber derived in Eq. A-6.

A.4.1.2 Uniform Biologic Membrane Model

Like our model for a biologic fiber, we consider a Gibbs free-energy function for
describing the uniform response of a biologic membrane whose implicit energy
function takes on the form of

G1pξ1, πq “ ´
1

ρ

´

ξ1max

`

4M1ξ1 ´ pπ ´ π0q
˘

` 2ξ1pπ ´ π0q

¯

(A-17a)

and whose explicit energy function is

G2pθ, πq “ ´η0pθ ´ θ0q ´ Ct

ˆ

θ ln

ˆ

θ

θ0

˙

´ pθ ´ θ0q

˙

´
π ´ π0

2ρ

ˆ

2αt ln

ˆ

θ

θ0

˙

`
π ´ π0

4M2

˙

, (A-17b)
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thereby resulting an elastic tangent compliance, as established in Eq. A-16c, of

1

4Mtpθ, ξ, πq
“

ξ1max ´ ξ1

4M1ξ1max ` 2pπ ´ π0q
`

1

4M2

, (A-17c)

wherein

ξ1 “ ξ ´ αt ln

ˆ

θ

θ0

˙

´
π ´ π0

4M2

, (A-17d)

with ξ1max ą 0 being an upper bound on strain ξ1, i.e., ξ1 ď ξmax. Such a membrane
has an initial tangent stiffnessMtpθ0, ξ0, π0q ofM1M2{pM1`M2q («M1 whenever
M2 "M1 ą 0) and it has a terminal tangent stiffness Mtpξ1“ξ1maxq of M2.

Membranes will wrinkle under states of negative surface tension (or dilation). In
alveolar mechanics, surfactant helps to prevent this, and a possible ensuing alve-
olar collapse. Wrinkling is not accounted for in our modeling of alveolar septa.
Rather, like fibers, it is assumed that the compliant response at π0, with mod-
ulus M1M2{pM1 ` M2q, continues over the non-physiologic regime of loading
0 ă π ď π0, which is a body’s way of ensuring structural stability in its mem-
branes.

The difference between a Green and Rajagopal thermoelastic membrane under-
going a dilation is in their definitions for elastic compliance. There is no difference
in their properties for the specific heat or the thermal strain coefficient. The above
model has been successfully applied to a visceral pleura membrane.65

A.4.1.3 Non-Uniform Response

We seek an energetic construction that is consistent with the Freed and Rajagopal96

fiber model, but which is applicable to the non-uniform responses that planar mem-
branes can support. A Rajagopal elastic solid is implicit. Therefore, we choose a
Gibbs free-energy function for governing non-uniform behavior that looks like

Gnpε, γ, σ, τq “ G1pε1, σq ` G2pσq ` G3pγ1, τq ` G4pτq (A-18)

which depend upon three squeeze strains ε ..“ ln
a

Γ{Γ0, ε1
..“ ln

a

Γ1{Γ0, and
ε2

..“ ln
a

Γ{Γ1, and three shear strains γ ..“ g ´ g0, γ1
..“ g1 ´ g0, and γ2

..“

g ´ g1, both of which are additive in the sense that ε “ ε1 ` ε2 and γ “ γ1 ` γ2,
and as such, so are their differential rates of change dε “ dε1 ` dε2 and dγ “
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dγ1 ` dγ2. Strains ε1 and γ1 may be thought of as describing an unraveling of
molecular configuration, analogous to e1 in the fiber model of Eq. A-7, and ξ1 in
the uniform membrane model of Eq. A-17. No coupling between squeeze and shear
is assumed in this energy function.* Energies G1 and G3 are Rajagopal elastic (they
have implicit dependencies upon state), while energies G2 and G4 are Green elastic
(they have explicit dependencies upon state).

From the thermodynamic expression´ρ dGn “ ε dσ`γ dτ , the non-uniform Gibbs
free energy Gn, when expressed in the form of Eq. A-18, and given the definitions
for squeeze 1{N and shear 1{G compliances put forward in Eqs. A-15b and A-15c,
one determines that the tangent squeeze compliance is described by

1

2Nt

..“
dε

dσ
“ ´

`

ρ Bε1G1

˘´1`
ε` ρ BσpG1 ` G2q

˘

´ ρ Bσσ G2 (A-19a)

and that the tangent shear compliance is described by

1

Gt

..“
dγ

dτ
“ ´

`

ρ Bγ1G3

˘´1`
γ ` ρ Bτ pG3 ` G4q

˘

´ ρ Bττ G4 (A-19b)

whose mathematical structure is similar to that of the Freed–Rajagopal fiber model
presented in Eq. A-7. The first collection of terms on the right-hand side of both
formulæ is Rajagopal elastic; the second is Green elastic.

Derivation: The First and Second Laws of Thermodynamics, as they pertain to
non-uniform contributions of stress power, have energetic components described in
Eq. A-18 so that ρ dGn “ ρ Bε1G1pε1, σq dε1 ` ρ Bσ G1pε1, σq dσ ` ρ BσG2pσq dσ `

ρ Bγ1G3pγ1, τq dγ1 ` ρ Bτ G3pγ1, τq dτ ` ρ Bτ G4pτq dτ that associate with the conju-
gate pairings´ε1 dσ´ε2 dσ´γ1 dτ ´γ2 dτ because of the prescribed additivity in
strains. These follow from a Legendre transformation of the internal energy. Gath-
ering like terms result in a pair of Green elastic formulæ that describe two of the
four internal strains

ε2 “ ´ρ Bσ G2pσq and γ2 “ ´ρ Bτ G4pτq

*The Poynting effect is a consequence of a coupling between squeeze and shear.66 This is a
second-order effect that can be neglected when modeling biologic tissues.
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and two Rajagopal elastic formulæ whose ODEs describe the other internal strains

dε1 “ ´
`

ρ Bε1G1pε1, σq
˘´1`

ε1 ` ρ Bσ G1pε1, σq
˘

dσ

dγ1 “ ´
`

ρ Bγ1G3pγ1, τq
˘´1`

γ1 ` ρ Bτ G3pγ1, τq
˘

dτ

that when combined as rates become the constitutive formulæ in Eq. A-19.

A.4.1.4 Non-Uniform Biologic Membrane Model

We now specify the Gibbs free-energy functions of Eq. A-18 such that they produce
tangent compliances 1{Nt and 1{Gt with like mathematical structure to Eq. A-17c
for dilation, viz., 1{Mt. Specifically, we consider Gibbs free-energy functions of the
form

´ρG1pε1, σq “ sgnpε1q ε1max

`

2N1ε1 ´ σ
˘

` 2ε1σ (A-20a)

´ρG2pσq “ σ2
{4N2 (A-20b)

´ρG3pγ1, τq “ sgnpγ1q γ1max

`

G1γ1 ´ τ
˘

` 2γ1τ (A-20c)

´ρG4pτq “ τ 2
{2G2 (A-20d)

where these energy functions have the same mathematical structure as the energies
for biologic fibers (Eq. A-7) and uniform membranes (Eq. A-17), less their temper-
ature dependence, and less their states of pre-stress, i.e., σ0 “ 0 and τ0 “ 0.

The sign functions, viz., sgnpε1q and sgnpγ1q, account for the fact that squeeze
and shear strains can be of either sign, but the Gibbs energy must remain negative.
In effect, the sign functions flip the limiting state between tension and compres-
sion, i.e., they change the signs of ε1max and γ1max depending upon the respective
signs of ε1 and γ1. As a consequence, G1pε1, σq “ G1p´ε1,´σq, G2pσq “ G2p´σq,
G3pγ1, τq “ G3p´γ1,´τq, and G4pτq “ G4p´τq.

When substituted into Eq. A-19, these energy functions produce the following
thermoelastic compliances

1

2Npε, σq
“

sgnpε1q ε1max ´ ε1

2N1 sgnpε1q ε1max ` 2σ
`

1

2N2

ε1 “ ε´
σ

2N2

(A-21a)

1

Gpγ, τq
“

sgnpγ1q γ1max ´ γ1

G1 sgnpγ1q γ1max ` 2τ
`

1

G2

γ1 “ γ ´
τ

G2

(A-21b)

which provide the tangent operators that we use to describe the non-uniform behav-
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ior of a biologic membrane.

Like our other biologic models, the tangent squeeze compliance 1{Nt is described
by three material properties: an asymptotic modulus at the reference state of N1N2{

pN1 ` N2q (« N1 whenever N2 " N1 ą 0) where N1 may be thought of as the
stiffness of an unstretched molecular network, and a terminal modulus N2 desig-
nating a stiffness after its molecular network has been stretched out at a limiting
state of configurational squeeze ε1max . The tangent shear compliance 1{Gt is also
described by three material properties: an asymptotic modulus at the reference state
of G1G2{pG1 ` G2q (« G1 whenever G2 " G1 ą 0), a terminal modulus G2, and
a limiting state of configurational shear γ1max .

In soft biological tissues, the shear moduliG1 andG2 will be several orders in mag-
nitude smaller than their respective squeeze moduli N1 and N2. Classical theories
cannot make such a distinction.

A.4.2 Secant Material Properties
A.4.2.1 Uniform Response

Through a separation of variables, the tangent compliance governing dilation found
in Eq. A-17c can be integrated to produce a secant compliance of

1

4Mspπq
“

ξ1max

π ´ π0

¨

˝1´

a

M1ξ1max
b

M1ξ1max `
1
2
pπ ´ π0q

˛

‚`
1

4M2

(A-22)

where Mspπď π0q “ M1M2{pM1 `M2q. This compliance applies to the thermo-
dynamic equations governing the uniform secant response of our membranes, as
established in Eq. A-12a.

A.4.2.2 Non-Uniform Response

Integrating by separating variables, the tangent compliance governing squeeze in
Eq. A-21a integrates to a secant compliance of

1

2Nspσq
“
ε1max

|σ|

˜

1´

a

N1ε1max
a

N1ε1max ` |σ|

¸

`
1

2N2

, (A-23)
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where Nspσ “ 0q “ N1N2{pN1 ` N2q, while integrating the tangent compliance
governing shear in Eq. A-21b results in its secant compliance of

1

Gspτq
“
γ1max

|τ |

˜

1´

a

G1γ1max
a

G1γ1max ` 2|τ |

¸

`
1

G2

, (A-24)

where Gspτ “ 0q “ G1G2{pG1 ` G2q. These compliances apply to the thermo-
dynamic equations governing the non-uniform secant response of our membranes,
as established in Eq. A-13a.
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List of Symbols, Abbreviations, and Acronyms

Symbols

A, D, H , L, V area, diameter, height or thickness, length, volume
E, G, M , N elastic moduli
U , G internal energy and Gibbs free energy
a, b, c elongation attributes of Laplace stretch
α, β, γ shear attributes of Laplace stretch
ξ, ε, γ thermodynamic strain attributes
π, σ, τ thermodynamic stress attributes
p~ı,~, ~kq base vectors: user
p~E1, ~E2, ~E3q base vectors: dodecahedron
p~e1,~e2,~e3q base vectors: elements (chord, pentagon, tetrahedron)
pu, v, wq nodal displacements
px, y, zq nodal positions or locations
pξ, η, ζq natural co-ordinates of a finite element
BL, BN , B linear, nonlinear, and total strain-displacement matrices
C, K, M tangent stiffness, secant stiffness, and mass matrices
F force vector
F deformation gradient
J Jacobian matrix of a finite element
N matrix of shape functions
P pivoting or co-ordinate re-indexing matrix
Q, R orthogonal matrices
U Laplace stretch

Abbreviations and Acronyms

1D, 2D, 3D spatial dimensions
BABT behind armor blunt trauma
BDF2 backward difference formula of second order
BLI blast lung injury
ODE ordinary differential equation
PBI primary blast injury
PECE predict evaluate correct evaluate
PPE personal protective equipment
RVE representative volume element
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