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FOREWORD 

This report is one of a series of that compile the best of the experience, wisdom and tools that the 
Air Force has accumulated in its selection and classification work, and best practices from 
industry and academia. These reports draw upon the experiences of the Air Force Personnel 
Center/Strategic Research and Assessment branch (AFPC/DSYX) and leading researchers and 
practitioners in the field of Industrial/Organizational (I/O) Psychology to provide guides to cover 
a variety of topics. Each begins with a section describing AFPC/DSYX and the background of 
their research to provide context for the series. This report addresses best practices on test 
development and validation, with an emphasis on I/O psychology, industry, and government. 



 

v 
Distribution Statement A: Approved for public release.              

AFRL/PA  AFRL-2021-0247, cleared on 2 February 2021 

EXECUTIVE SUMMARY 

This series of reports is intended to consolidate the experience, wisdom, and tools that the Air 
Force has accumulated in its selection and classification work, and to blend these with best 
practice recommendations from industry. The reports cover a wide variety of material, including 
chapters on test development and validation, selection/classification model development, 
reporting/briefing results, and ethical and legal considerations. The goal is to ensure consistency 
as the Air Force Personnel Center Strategic Research and Assessment branch (AFPC/DSYX) 
continues to develop assessments and refine selection and classification models for a large 
number of Air Force career fields. 

We begin with an introduction to AFPC/DSYX. The background and history are covered, 
describing how the Air Force Human Resources Laboratory and its elimination left a need for 
providing research in human capital management. That was resolved in 2010 with funding to 
create AFPC/DSYX, which is intended to review, evaluate, develop, validate, and manage 
personnel programs to improve recruiting, selection, classification, and utilization of military 
personnel. The chapter describes how AFPC/DSYX contributes to strategic human capital 
management, tools it makes available for testing, experience and expertise it provides, and looks 
ahead to the future and how AFPC/DSYX can build on its capabilities. 

The body of this report provides recommendations and best practices around test development 
and validation for AFPC/DSYX. The recommendations are based on over a century of scientific 
research and practice, both within the United States Air Force (USAF) and in the scientific 
literature more generally. 

This report addresses a broad range of topics and is divided into five major sections. The first 
addresses validity and the validation process. In addition to defining validity, it reviews the 
current state of the science regarding the appropriate sources for accumulating validity evidence. 
The next section discusses steps in the test development and validation process. This section 
maps five levels of validation discussed in the Air Force Examining Activities Overview - Fiscal 
Year (FY) 2010-2011 onto the primary steps and activities suggested by a number of 
contemporary psychometricians. 

Then, the report discusses using classical test theory to evaluate items and build tests, providing 
a detailed summary of the statistics used as part of item analysis and test evaluation under 
classical test theory. This section also introduces newer recommendations related to the 
estimation of internal consistency reliability that capture temporal stability at both the item-level 
and test-level. Next, it goes over using classical test theory to evaluate items and build tests, 
reviewing models applicable to dichotomously scored items and discusses the interpretation of 
item parameters, item information, the standard error of the estimate, building tests, and 
evaluating model fit. Finally, in the last section, the report discusses item bias and test bias, 
including the definition of bias and approaches for testing bias under classical test theory and 
item response theory. The report also includes appendices containing annotated R code for 
conducting analyses described in the text proper.
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Introduction to the Air Force Personnel Center, Strategic Research and Assessment 
Branch (AFPC/DSYX) 

Background/History 

Human Capital Management Mandates. The Air Force Policy Directive, AFPD 36-XX, Air 
Force Personnel Assessment Program, raised the bar for validation of Air Force operations 
affecting human capital management. The policy directive laid out Air Staff-defined objectives 
in support of both 1) DoD initiatives, such as the Testing Modernization Program, supported by 
major influxes of research and development funding and 2) the Human Capital Annex of the Air 
Force Strategic Personnel Plan (moving ahead with several active Air Force-level working 
groups). The Air Force’s way forward in support of these flow-down mandates included both the 
objectives and the scope of this initiative: 

• Establish processes to apply scientific analysis and technology in support of recognized 
best practices to support personnel assessment. The goal of the Air Force Personnel 
Assessment Program is to support effective force management by ensuring that the right 
persons having the right aptitudes, characteristics, skills, and abilities are identified and 
accessed into the Air Force, are properly trained, and then optimally utilized to support 
the Air Force mission. 

• The Air Force Personnel Assessment Program includes, but is not limited to, selection 
and classification, promotion, and proficiency assessment; and survey capability for 
assessing attitudes and opinions, job performance, and Air Force Specialty (AFS) 
requirements and characteristics. 

Air Force Human Resources Laboratory  

In 1968, the broad personnel research efforts (e.g., manpower, personnel, training) from various 
programs across the Air Force were consolidated into the Air Force Human Resources 
Laboratory (AFHRL). The name “Air Force Human Resources Laboratory” was only used as the 
official designation for the combined program from 1968 to 1991. However, it was the name 
used for the longest period of time and is the one that has the greatest familiarity to professionals, 
in and out of the government, with an interest in military psychology. The antecedents of 
AFHRL can be traced to the Psychological Research Units of the Aviation Psychology Program 
in the Army Air Corps during World War II. After the Air Force became a separate service in 
1947, AFHRL was called the Human Resources Research Center (1949-1953), Personnel and 
Training Center (1954-1958), Personnel Laboratory (1958-1962), and Personnel Research 
Laboratory (1962-1968). In 1991, the name Air Force Human Resources Laboratory was retired 
and the mission was absorbed by successor organizational units within the Armstrong Laboratory 
(1991-1996) and the Air Force Research Laboratory (1997-1999). In 1999, the personnel 
research function in the Air Force (Manpower and Personnel Research Division) was eliminated, 
leaving no organizational entity for research in the domains of personnel selection and 
classification. 
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The Rise of the Strategic Research and Assessment Branch (AFPC/DSYX) 

The need for research in strategic human capital management within the Air Force did not end 
with the elimination of AFHRL funding. After the elimination of AFHRL, minimal funding was 
provided to manage testing-related contracts and provide basic support for operational testing 
programs. In 2010, additional funding was provided to create the AFPC/DSYX program and 
several billets were created to continue the work that ended with the elimination of AFHRL in 
1999. 

AFPC/DSYX Program Overview 

With the additional funding, the AFPC/DSYX program was tasked to review, evaluate, develop, 
validate, and manage personnel programs to improve recruiting, selection, classification, and 
utilization of military personnel. The current responsibilities of AFPC/DSYX include Air Force- 
and Department of Defense-related testing programs, research and analysis, and development 
and validation of new assessment processes and measures. The AFPC/DSYX program now 
develops person-job match screening processes to support optimal personnel utilization for the 
entire personnel life cycle including pre-recruiter job exploration (e.g., interest inventories, 
realistic job previews); applicant assessment, screening, and classification of recruits (e.g., 
cognitive, personality, psychomotor, occupation-specific assessment of skills), retraining, and 
specialized assignments. 

The DSYX program also helps maintain a mission-ready force by managing Air Force Specialty 
Code (AFSC) structures using scientific standards to establish desirable and mandatory 
occupational entry requirements and adjust occupational structures to optimize training 
investment, career progression, utilization, and retention for total force integration. Thus, the 
ultimate purpose of the AFPC/DSYX program is to provide: 1) consultation to program 
managers and Air Force leadership on selection and classification issues, 2) development, 
revision, and validation of personnel tests, 3) technical oversight of the operational testing 
program, and 4) management of contracts in support of personnel-related research. 

AFPC/DSYX Organizational Structure 

The DSYX branch is now embedded within the AFPC Directorate of Staff. As previously 
mentioned, while no longer supported by a multitude of scientists and psychologists, 
AFPC/DSYX provides an array of services and tools similar to AFHRL. The current structure of 
DSYX includes the branch chief, a program manager, seven personnel research psychologists, 
and two research assistants. While many of the tasks assigned to AFPC/DSYX and much of the 
funding to accomplish them come from Air Staff (A1) and Air Force Testing Policy (A1PT), 
DSYX is officially under the command of AFPC. 

Synergistic Relationships 

The AFPC Promotions, Evaluations, and Recognition Branch (AFPC/DP3SP) manages the 
operational personnel testing program. Thus, while AFPC/DSYX has the responsibility of 
developing and validating the tests within the personnel testing program, the operational 
responsibility of military testing resides with AFPC/DP3SP. The one current exception is the 
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Pilot Candidate Selection Method (PCSM; described later in this report) which has been 
developed, validated, and operationally maintained by DSYX. 

The Air Force Recruiting Service (AFRS) Operations Division’s Analysis Branch 
(AFRS/RSOA) supports DSYX through participation in the regular working group conference 
calls with AF/A1PT and DSYX, pre-accession process advisories, data collection facilitation, 
collaborative ad hoc analyses, and unrestricted access to relevant operational data. AFRS/RSOA 
also assists in implementation of new selection and classification assessment measures and 
processes. These activities are consistent with an operational mandate to support improving 
selection and classification systems (tests and processes) to optimize recruiting efficiency for Air 
Force Officer and Enlisted accessions while continuously adapting to changing population 
characteristics, training dynamics/criteria, and needs of the Air Force. 

The AFPC/DSYX Contribution to Human Capital Management and Strategic Human 
Resources Management through Mission Alignment 

DSYX makes contributions to the Air Staff by following the mission as tasked by Air Force 
Manual (AFMAN)  36-2664: 

• Provide technical guidance to and consult with AF/A1PT in identifying and overseeing 
strategic human resource capital initiatives. 

• Support human capital studies and research to support decision-making involving 
recruiting, selection, classification, promotion, utilization, and retention. 

• Coordinate changes to Air Force Officer and Enlisted Classification Directories (AFOCD 
& AFECD). 

• Support revision and validation of the Air Force Officer Qualifying Test (AFOQT), the 
Pilot Candidate Selection Method (PCSM), and the Test of Basic Aviation Skills 
(TBAS). 

• Conduct development, validation, and revision of tests and assessments. 
• Evaluate enlistment and commissioning standards. 
• Provide technical oversight of operational selection, classification, utilization, promotion, 

and proficiency testing and assessments to ensure they meet professional and legal 
standards. 

• Technically review requests to develop/implement new tests/assessments. 
• Manage the Applied Performance and Assessment Testing Center at Lackland Air Force 

Base (AFB). 

DSYX makes contributions to the Air Force Personnel Center by following the mission as tasked 
by AFPC Mission Directive 37, 2003 [1-up]: 

• Manage and operate Air Force military personnel data and information systems, execute 
policies that govern active duty accessions, testing, classification, assignments, personnel 
record systems, and personnel assessment. 

• Manage and operate Air Force civilian personnel data and information systems and 
personnel assessment programs. 
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The DSYX Testing Toolbox 

General Ability/Aptitude Tests 

Air Force Officer Qualifying Test (AFOQT). The AFOQT is used to help select candidates for 
officer commissioning programs and to classify commissioned officers into utilization specialties 
such as manned aircraft pilot, RPA pilot combat system operators, air battle manager, or 
technical. AFOQT scores are also used as a quality metric in the integrated officer classification 
model. The AFOQT is available in two versions (Form T1 and T2). Each version consists of 12 
subtests. Subtests are used to compute one or more of the five aptitude composites. Scores on the 
subtests relate to performance in certain types of training. AFOQT composite scores are reported 
in percentiles. 

Armed Services Vocational Aptitude Battery (ASVAB). The ASVAB evaluates specific 
aptitude areas and provides a percentile score related to requirements for selecting and 
classifying individuals for the Armed Services. There are two ASVAB testing programs—
Student and Enlistment. The Student Testing Program applies to ASVAB testing in educational 
institutions such as high schools and vocational trade schools. The Enlistment Testing Program 
applies to Armed Services Vocational Battery testing in authorized accessions testing facilities 
such as Military Entrance Processing Stations (MEPS) and Military Entrance Test Sites (METS). 
The Army is the executive agent for the overall ASVAB Testing Program. The Defense 
Personnel Assessment Center in the Office of People Analytics is the executive agent for the 
ASVAB. The Air Force computes four training classification composite scores for the ASVAB: 
Mechanical (M), Administrative (A), General (G), and Electronics (E). These scores are 
predictive of training success in a variety of military occupations. 

Electronic Data Processing Test (EDPT). The EDPT evaluates the basic ability to complete 
formal courses for programming electronic data processing equipment. The EDPT is a multiple-
choice test that contains measures of verbal ability, symbolic reasoning, and arithmetic 
reasoning. It is used to screen and select Airmen for career fields requiring this ability. It is 
available by paper-and-pencil and electronically on the Personnel Testing Station1 platform. 

Vocational Interests 

Air Force Work Interest Navigator (AF-WIN). The AF-WIN is an internet-delivered interest 
inventory that matches examinees’ interests on the dimensions of functional communities, job 
contexts, and work activities to Air Force Specialty Code (AFSC) job profile markers to identify 
their “best fit” Air Force Specialties. It takes 15-20 minutes to complete with the examinee 
indicating level of interest on a 5-point scale for 52 items. There is a version of the AF-WIN for 
enlisted AFSCs and two officer versions. One officer version is designed for use at the beginning 
of college to help examinees plan their curriculum to include coursework required for particular 
AFSCs. The second version is for use closer to commissioning when finalizing the AFSC 
assigned to a cadet upon commissioning. 

                                                 
1 The Personnel Testing Station was formerly called the Test of Basic Aviation Skills test station. 
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Personality 

Tailored Adaptive Personality Assessment System (TAPAS). The TAPAS uses a trait 
taxonomy that assesses facets of the Big Five personality factors using a multidimensional 
pairwise preference (MDPP) format. The assessment requires about 30 minutes to complete. It is 
completed by all new recruits at the Military Entrance Processing Station at the same time they 
complete the Armed Services Vocational Aptitude Battery. It is also administered on the 
Personnel Testing Station platform for selected retraining AFSCs. 

Self-Description Inventory (SDI). The SDI was first implemented on AFOQT Form S as a 220 
item, trait-based personality assessment of the Big Five personality domains and two Air Force 
related scales (Team Orientation and Service Orientation). Factor analyses of SDI item content 
revealed broad six domains encompassing the Big Five domains plus Machiavellianism, with 
subsequent factor analyses of domain content revealing a total of 20 narrower trait facets. The 
AFOQT Form T version of the SDI contains 240 items that assess the Big Five personality 
domains and Machiavellianism and 30 underlying facets. 

Although the SDI was initially developed for the USAF, a collaborative initiative with allied 
forces led to adaptations of the SDI for research purposes in the militaries of Canada, United 
Kingdom, New Zealand, and Australia. 

Miscellaneous/Specialty  

Test of Basic Aviation Skills (TBAS). The TBAS is a battery of cognitive, multi-tasking, and 
psychomotor subtests administered on a computer test station. Examinees are required to respond 
to computerized tasks using a keypad, joysticks, and foot pedals. The TBAS includes subtests 
measuring psychomotor coordination, cognitive abilities, and multi-tasking capabilities. A pilot 
candidate’s AFOQT Pilot composite score (or, where applicable, Enlisted Pilot Qualifying Test 
[EPQT] score) and Federal Aviation Administration certified flying hours are combined with the 
TBAS measurements to formulate a Pilot Candidate Selection Method (PCSM) score. Manned 
aircraft Pilot and RPA pilot selection boards receive each candidate’s PCSM composite score on 
a percentile scale of 1 to 99. PCSM assists pilot selection boards to select candidates most likely 
to successfully complete undergraduate pilot training. 

Air Traffic Scenarios Test (ATST). The ATST is part of the classification screening process 
for candidates for the enlisted Air Traffic Control (ATC) AFSC. The Air Traffic Scenarios Test 
consists of simulated Air Traffic Control scenarios where the examinee is scored on how 
effectively they manage the departure, landing, tracking, etc. of aircraft with minimal safety 
violations. The test is administered on the TBAS testing platform and takes about an hour to 
complete. 

Multi-Tasking Test (MTT). The MTT measures the ability to shift attention from one task to 
another over a short period of time. The test includes four component tasks: Math, Visual, 
Memory, and Listening. In the math task, participants add three-digit numbers. In the 
memorization task, a list of letters is initially presented and then disappears; after a delay, a 
probe letter is presented and participants indicate whether or not the probe letter was included in 
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the list. In the listening task, participants respond with a mouse click when they hear a high-
pitched tone and ignore a low-pitched tone. Finally, in the visual monitoring task, a needle 
moves from right to left across a display resembling a fuel gauge and the goal is to reset the 
needle when it nears the end of the display. The test is administered on the PTS testing platform 
and takes about 45 minutes to complete. 

The DSYX Expertise and Resources Toolbox 

Staff Expertise 

• Test Development/Validation – Professionals in the DSYX team have decades of 
experience in item writing, item selection, scale development, test development, and test 
validation. Current DSYX team members have experience developing DoD tests such as 
AFOQT, ASVAB, SDI, and AF-WIN. In addition, the team has experience in 
commercial test development including globally-recognized tests such as the Wechsler 
scales, the Beck inventories, and employee selection tests such as the Watson-Glaser 
Critical Thinking Appraisal and the Bennett Mechanical Comprehension Test.   

• Predictive Model Development/Validation – Numerous occupational-specific predictive 
models have been developed by DSYX using pre- and post-accession tests. Numerous 
empirical and regression-based formulas to predict important performance-based 
outcomes have now been operationalized for selection and classification purposes. 

• Job/Occupational Analysis – DSYX members have extensive expertise in 
job/occupational analysis to include task, trait, and competency analysis. The results of 
numerous DSYX-based job analysis studies are now used in developing predictive 
models, responding to career field inquiries, and setting standards for classification (e.g., 
based on ASVAB profiles). 

• Vocational Interest – DSYX personnel have enlisted- and officer-level vocational interest 
inventories. The tools developed by DSYX have moved beyond traditional, generic 
vocational interest inventories and are specific to Air Force occupational specialties. The 
inventories provide information on the ideal match between a potential recruit and an 
occupational specialty and provide guidance to the examinee regarding the cognitive and 
physical requirement for the job. 

• Job Satisfaction – DSYX personnel have conducted studies of job satisfaction using 
USAF Occupational Analysis (OA) data and internally-developed surveys to determine if 
DSYX tests and/or predictive models are contributing to improved satisfaction. 

• Structured Interviews – DSYX has worked with USAF career fields to create structured 
interviews, structured interview guides, and video-based instructions for conducting valid 
structured interviews. 

• Ethics/Integrity – DSYX staff members have extensive experience in ethical behavior, 
integrity, and counterproductive behavior. DSYX has developed integrity tests and valid 
tests designed to detect the propensity to engage in counterproductive behavior. 

• Realistic Job Preview Creation – DSYX staff members have extensive expertise in 
developing realistic job preview videos based on subject matter expert (SME) input 
video-based interviews. 
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• Leadership – DSYX staff members have extensive expertise in assessing theories/models 
of leadership competencies and in the evaluation of leadership potential to help senior 
leaders attract, develop, and retain talent to effectively and efficiently accomplish mission 
requirements. The expertise encompasses experiences gained through work in academia, 
private industry, and military/government, which aid in providing customers with 
valuable tools, analysis, and innovative insights designed to improve organizational 
performance. 

Contractor Expertise 

Consulting Firms. DSYX has had the opportunity work with the most well-known consulting 
firms in industrial and organization psychology and government research. In addition, DSYX has 
been able to contract out some work to the most recognized experts in their respective fields, 
including former presidents of the Society of Industrial and Organization Psychology (SIOP) and 
leading authors in academia and cutting-edge commercial innovation. 

Forward Looking: The Future of AFPC/DSYX 

Increased Effort to have AFPC/DSYX Expertise, Services, and Interventions Recognized 
throughout the Air Force 

Recent efforts by DSYX have improved the visibility of the branch throughout the Air Force. 
Specifically, efforts to educate Career Field Managers (CFMs) on the tools and services provided 
by DSYX have resulted in operational Predictive Success Models for numerous career fields and 
expansion of the use of existing tests for selection and classification purposes. In addition, 
updated internal marketing materials (e.g., slide decks, tri-fold brochures) are being prepared to 
provide additional exposure for the beneficial offerings of DSYX. Finally, high-profile attention 
to quality products such as the AF-WIN are providing additional recognition for how DSYX can 
provide high-quality and cost-effective services to the Air Force. Additional efforts will need to 
be expended in this area in order for DSYX to continue to thrive as a valuable internal asset. 

Improved Technology 

Recent and future advances in available technology will provide DSYX with the capability to 
provide services and tools in a more efficient manner. Examples include item-banking, a 
combined test-development and test-delivery platform, and even sophisticated tools such as text 
analysis. 

Improved Access to Data 

Current processes to procure and process necessary data (e.g., test scores, training grades) are 
somewhat inefficient and hinder the efficiency and effectiveness of the branch. Future 
enhancements are being vetted and implemented to automate and streamline the process. This 
will allow DSYX to provide real-time decision support to internal clients and will improve the 
speed in which DSYX can build the tests and tools required for effective selection and 
classification purposes. 
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Exiting the Operational Testing Domain 

AFPC/DSYX historically has been involved in many aspects of operational testing (e.g., test 
delivery, scoring, coding) which limits the time and resources available to devote to true 
mission-specific activities. Current efforts are being conducted to ensure a more efficient hand-
off from DSYX to the operational entities after successful development of tests and 
selection/classification tools. 

Repeatable and Scalable Processes 

AFPC/DSYX is currently striving to develop repeatable (e.g., consistent analyses, similar 
technical report templates) and scalable analyses and processes (e.g., processes that can be 
applied to large and small requests throughout the Air Force). This Guide is one small step in 
achieving that goal. 



 

1 
Distribution Statement A: Approved for public release.              

AFRL/PA  AFRL-2021-0247, cleared on 2 February 2021 

1.0 TEST DEVELOPMENT AND VALIDATION 

1.1 Introduction 

This report addresses a broad range of topics. Following the Introduction, the report is divided 
into five major sections. Section 1.2 addresses Validity and the Validation Process. After 
defining validity, it reviews the current state of the science regarding the appropriate sources for 
accumulating validity evidence. Section 1.3 discusses the Steps/Stages in the Test Development 
and Validation Process. This section maps the five levels of validation discussed in the Air Force 
Examining Activities Overview-FY 2010-20011 (pp. 25-26) onto the primary steps and activities 
suggested by a number of contemporary psychometricians. Section 1.4 discusses Using Classical 
Test Theory to Evaluate Items and Build Tests. It provides a detailed summary of the statistics 
used as part of item analysis and test evaluation under classical test theory. In addition to 
reviewing traditional recommendations, this section also introduces newer recommendations 
related to the estimation of internal consistency reliability using coefficient Omega (and its 
variants) and test-retest reliability using newer statistics that capture temporal stability at both the 
item-level and test-level. Section 1.5 covers topics related to Using Classical Test Theory to 
Evaluate Items and Build Tests. The section reviews models applicable to dichotomously scored 
items and discusses the interpretation of item parameters, item information, the standard error of 
the estimate, building tests, and evaluating model fit. It concludes with Section 1.6, which 
discusses Item Bias and Test Bias. Bias is defined and approaches for testing bias under classical 
test theory (CTT) and item response theory (IRT) are discussed. Specific recommendations are 
set-off using bullet points. Finally, appendices are included containing annotated R code for 
conducting analyses described in the text proper. 

1.2 Validity and the Validation Process 

Validity may be defined as “the degree to which evidence and theory support the interpretations 
of test scores for proposed uses of tests” (p. 11; American Educational Research Association 
(AERA), et al., 2014). The Principles for the Validation and Use of Personnel Selection 
Procedures (2018) stated “Validity is the most important consideration in developing and 
evaluating selection procedures. Because validation involves the accumulation of evidence to 
provide a sound scientific basis for the proposed score interpretations, it is the interpretations of 
these scores required by the proposed uses that are evaluated, not the selection procedure itself” 
(p. 5). Thus, tests are not said to be valid or invalid, but rather the inferences drawn from test 
scores are said to be valid or invalid (e.g., a ruler may be used to draw valid inferences about a 
person’s height, but invalid inferences about a person’s weight). 

1.2.1. A Conceptual Model for Discussing Validity and Validation 

Figure 1 was derived from previous work by Binning and Barrett (1989) and Binning and 
LeBreton (2009) and introduces a framework for conceptualizing the process of accumulating 
validity evidence, specifically within the context of employee selection. Briefly, the development 
of any selection test should begin with a careful analysis of the target job. This job analysis helps 
to ensure that any selection test is “job relevant”, per legal guidelines. The goal of the job 
analysis is to generate a job description (inference 6) by identifying the essential demands and 
requirements of a job and then translating those demands “into behavior-outcome units that 
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define the performance domain” (Binning & Barrett, 1989, p. 487). Once the performance 
domain has been clearly articulated, it can be used to develop selection tests (as well as criterion 
measures). 

 

 
Note: Adapted from Binning & Lebreton (2009) Figure 1 (p. 289) 

Figure 1. Framework for Conceptualizing Validity and Test Validation 

 

One test development strategy is to identify the predictor constructs (e.g., verbal fluency; 
extroversion) that are hypothesized to be related to the criterion constructs (e.g., job 
performance; organizational withdrawal) that comprise the performance domain (inference 3). 
Once these predictor constructs have been identified, they are then used to guide the 
development of selection tests (e.g., ASVAB; see inference 2). An alternative test development 
strategy is to build selection tests (e.g., flight simulator test) that are believed to be more directly 
representative of the criterion constructs (inference 5). It is also possible to use the results of a 
job analysis to develop criterion measures (inference 4). Finally, it is possible to examine the 
usefulness of a selection test by using it to predict scores on criterion measures (inference 1). 
This is an admittedly simplified overview of this important framework for test validation. 
However, it will be referenced throughout the remainder of the report so some basic familiarity 
with the model will be helpful. The interested reader is directed to Binning and Barrett (1989) 
and Binning and LeBreton (2009). 



 

3 
Distribution Statement A: Approved for public release.              

AFRL/PA  AFRL-2021-0247, cleared on 2 February 2021 

1.2.2. Sources of Validity Evidence 

There is a general consensus that validity should be considered a “unitary concept with different 
sources of evidence contributing to an understanding of the inferences that can be drawn from 
[test scores]” (p. 6; Principles, 2018; see also AERA et al., 2014; Binning & Barrett, 1989; 
Landy, 1986; Messick, 1995). Although different sources of validity evidence may be sampled 
using different strategies, the end goal of all personnel test validation efforts should be the 
demonstration that test scores predict relevant aspects of job performance/work behavior 
(Principles, 2018). Both the Standards and the Principles have identified five distinct sources of 
validity evidence: 1) relationships between test scores and other variables, 2) test content, 3) 
internal structure of the test, 4) response processes, and 5) consequences of testing. Of particular 
importance is the notation that no single source of validity evidence is to be considered 
“superior” to the other sources. Rather, the validity of inferences drawn from test scores are 
considered stronger when based on multiple, converging sources of evidence. Prior to reviewing 
these sources of validity evidence, it is important to first address the concepts of relevance, 
deficiency, and contamination in measurement, as those concepts are especially pertinent to the 
first two sources of validity evidence. 

1.2.2.1 Measurement Relevance, Deficiency, and Contamination 

Measures (both predictor and criterion) should include items/tasks that are representative of the 
underlying construct domain. This concept of relevance is important to researchers because it 
emphasizes the importance of sampling from the entire construct domain. If a measure (predictor 
or criterion) systematically fails to include items/tasks that are part of the construct domain, the 
measure is said to be deficient. In contrast, if a measure systematically includes irrelevant 
content (i.e., items/tasks that are unrelated to the construct domain), the measure is said to be 
contaminated. In contrast, when a measure (predictor or criterion) appropriately includes 
items/tasks that adequately sample from the breadth and depth of the focal construct domain (and 
appropriately excludes items/tasks asking about irrelevant constructs), then the measure is said to 
be relevant. When the target of measurement is a criterion construct, the discussion of relevance, 
deficiency, and contamination is sometimes denoted criterion relevance (Messick, 1995). These 
concepts are presented visually in Figure 2. 

 

 Is included in the underlying 
construct domain 

Is excluded from the 
underlying construct domain  

Is included in the observed 
measure RELEVANT CONTAMINATION 

Is excluded from the 
observed measure DEFICIENT CORRECT OMISSION 

Figure 2. Measurement Relevance, Deficiency, and Contamination 
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1.2.2.2 Evidence Based on Relationships Between Test Scores and Other Variables 

A critical component of any test validation process is to accumulate evidence supporting 
inferences linking test scores to other variables (i.e., measures of other constructs). Test scores 
may be related to a wide array of “other variables” including criterion measures (e.g., job 
performance; training performance; attrition), measures of the same (or similar) constructs, or 
measures of different constructs. 

Convergent validity. Evidence of convergent validity is observed when scores on a focal 
test are highly correlated with scores on another test that purportedly measures the same (or a 
very similar) construct. More formally, “Convergent [validity] evidence exists when (a) test 
scores relate to scores on other tests of the same construct, (b) test scores from people who differ 
in the extent to which they possess the focal construct also differ in a predictable way, or (c) test 
score relate to scores on tests of other constructs that are theoretically expected to be related” 
(Binning & Barrett, 1989, p. 482). For example, two tests purportedly measuring verbal fluency 
should be highly correlated. Likewise, a test of verbal fluency is likely to be strongly correlated 
with a test of reading comprehension. For additional information regarding convergent validity, 
and the modeling of multiple sources of variance via confirmatory analysis, see Shaffer et al. 
(2016).  

Divergent validity. In contrast, divergent (or discriminant) validity refers to the (lack of) 
correlation between scores on a focal test and scores on tests designed to measure 
psychologically distinct/different constructs. More formally, “Discriminant [validity] evidence 
occurs when test scores do not relate to scores on tests of theoretically independent constructs. 
Note that this discussion can apply equally to criterion measurement” (Binning & Barrett, 1989, 
p. 482). The second sentence in this quote is of particular importance-measures of criteria are 
measures of criterion constructs; thus, just as researchers should accumulate validity evidence for 
inferences drawn from test (predictor) scores, so too should they seek to accumulate validity 
evidence for inferences involving scores on criterion constructs. An example of accumulating 
evidence of divergent validity might take the form of testing the hypothesis that scores on a test 
of verbal fluency should be relatively uncorrelated with scores on tests designed to measure 
personality constructs (e.g., extroversion), job attitudes (e.g., job satisfaction), or job perceptions 
(e.g., justice climate). 

Evidence of convergent and divergent validity may also be obtained by examining the pattern of 
relationships between test scores and measures of various demographic variables. For example, a 
researcher could predict that a measure of the motive for power (i.e., the desire or need to exert 
influence over social collectives and to take responsibility for the well-being of others; James, 
LeBreton, et al., 2013) would be positively related to military rank in large and diverse set of 
soldiers. In contrast, a researcher might predict that there would be no relationship between the 
motive for power and race/ethnic group membership. 

Conceptually, evidence of convergent and divergent validity is represented in Figure 1 by 
inferences 2, 7, and 8. When the “alternative measure” refers to a different measure of the same 
(or highly similar) construct, these inferences are used to establish evidence of convergent 
validity. In contrast, when the “alternative measure” refers to a measure of a different construct, 
these inferences are then used to establish evidence of divergent validity. It is important to 
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remember that statistical tests of inference 8 (e.g., correlation coefficients; regression 
coefficients) are conditioned on inferences 7 and 2. These two inferences may be conceptualized 
as reflecting the psychological and psychometric fit between the latent construct(s) and the 
observed measures of those constructs. 

Although bivariate correlations furnish an important initial test of convergent and divergent 
validity evidence, it is important to recognize that test scores may be subject to various forms of 
measurement error. 

• Researchers are encouraged to supplement bivariate correlational analyses with more 
sophisticated analyses that permit the more accurate decomposition and modeling of 
different sources of variability (see Shaffer, DeGeest, & Li, 2016; DeShon, 1998; Schmidt 
& Hunter, 1996). 

Criterion-related validity. Evidence of criterion-related validity is accumulated by 
showing that test scores are related to measures of one or more organizationally relevant criterion 
constructs. It is important to state explicitly, that “the criterion variable is a measure of some 
attribute or outcome that is operationally distinct from the test. Thus, the test is not a measure of 
a criterion, but rather is a measure hypothesized as a potential predictor of the targeted criterion 
(Standards, 2014, p. 17). Although measures of job performance are arguably the most 
commonly used criteria in applied psychology, criterion is a term used to refer to any 
organizationally valued outcome. Thus, relevant criteria might include: counterproductive 
workplace behaviors, organizational citizenship behaviors, attrition/turnover, intentions to quit or 
re-enlist, job satisfaction, job commitment, rate of promotion, and/or level of promotion (just to 
name a few alternative criteria). The accumulation of criterion-related validity evidence places a 
primary emphasis on inferences 4 and 1. Inference 4 represents the psychological (and 
psychometric) fit between the latent criterion construct and the observed indicator of that 
construct. Inference 1 represents the relationship between scores on predictor tests and scores on 
criterion measures. 

• Evidence for criterion-related validity (inference 1) may be accumulated by estimating 
the magnitude and significance of correlation or regression coefficients between criterion 
scores and predictor scores. 

According to the SIOP Principles, “A relevant, reliable, and uncontaminated criterion measure(s) 
is critically important” to any criterion-related validation study (p. 15). The most critical of these 
requirements is relevance-a criterion is said to be relevant when “it reflects the relative standing 
of employees with respect to some [organizationally valued outcome]” (p. 15). Arguably, the 
second most important requirement for a criterion measure is reliability (e.g., a psychometric 
index of inference 4). This is especially true when statistical tests of inference 1 are disattenuated 
for measurement error in criterion measures (e.g., inference 4). That is, the reliability of the 
criterion is important, especially if one is planning to “correct” correlations for measurement 
error. The correction equations are only as accurate as the point-estimates for reliability that are 
being plugged into those equations. Also, it is important to remember that underestimates of 
reliability (i.e., conservative estimates) will yield overestimates of validity (i.e., liberal 
estimates). 
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• Researchers should base tests of criterion-related validity on criteria that are both job 
relevant and highly reliable. 

Some authors have raised concerns that the meta-analytic point estimates of criterion reliability 
based on supervisor ratings (ryy = .52) and peer ratings (ryy = .42; see Ones, Viswesvaran, & 
Schmitt, 1993) may be problematic (for the most recent discussion of these issues, the reader is 
encouraged to review the exchange in Volume 7, Issue 4 of Industrial and Organizational 
Psychology: Perspectives on Science and Practice).  For example, some researchers have 
suggested that these point estimates may be underestimated because the traditional correlations 
used to estimate reliability may have been attenuated due to variance restriction on the criterion 
measure (LeBreton, Burgess, Kaiser, Atchley, & James, 2013), or may have been incorrectly 
computed due to ignoring important sources of variability in performance ratings (variance due 
to supervisors; variance due to subordinate by supervisor interactions; DeShon, 2003; Murphy & 
DeShon, 2000), or they may have been incorrectly computed because data may have been 
obtained using an ill-structured measurement design (Putka, Le, McCloy, & Diaz, 2008).  Ill-
structured measurement designs are common in the organizational sciences and represent a 
hybrid between a perfectly nested design (i.e., all subordinates are nested within a single leader 
who evaluates each subordinate) and a perfectly crossed design (i.e., all subordinates are rated by 
the exact same set of leaders).  To better illustrate the differences between a nested, crossed, and 
ill-structured measurement design, consider a scenario where 10 job candidates are in an 
assessment center comprised of three different exercises.  The pattern of ratings summarized in 
Table 1 reveals a crossed designed was used with Exercise #1, a nested design was used with 
Exercise #2, and an ill-structured design was used with Exercise #3.   

• Researchers should be mindful of the extent to which their data conform to a fully nested 
design, a fully crossed design, or an ill-structured measurement design (Putka et al., 
2008) and use the appropriate equations for estimating reliability. 
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Table 1. Illustration of Crossed, Nested, and Ill-structured Measurement Designs 

Exercise #1: In-Basket (crossed-design) 

Candidate Assessor 1 Assessor 2 Assessor 3 Assessor 4 Assessor 5 Assessor 6 
1 x x x x x x 
2 x x x x x x 
3 x x x x x x 
4 x x x x x x 
5 x x x x x x 
6 x x x x x x 
7 x x x x x x 
8 x x x x x x 
9 x x x x x x 

Exercise #2: Role-Play (nested design) 

Candidate Assessor 1 Assessor 2 Assessor 3 Assessor 4 Assessor 5 Assessor 6 
1 x x     
2 x x     
3 x x     
4   x x   
5   x x   
6   x x   
7     x x 
8     x x 
9         x x 

Exercise #3: Leaderless Group Discussion (ill-structured design) 

Candidate Assessor 1 Assessor 2 Assessor 3 Assessor 4 Assessor 5 Assessor 6 
1 x x x    
2 x  x x   
3     x x 
4 x  x x   
5 x x    x 
6  x x    
7 x   x x  
8 x x     
9  x x x   

Predictive vs. concurrent validation designs. Criterion-related validation studies have 
traditionally been classified into two general categories based on when test scores and criterion 
measures are collected. When researchers adopt a predictive validation design, they commit to 
collecting criterion data after collecting data on the focal test (Standards, 2014). Thus, using this 
design, evidence of criterion-related validity exists when test scores predict subsequent (i.e., 
future) scores on the criterion. For example, scores on the ASVAB may be collected during 
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MEPS testing and scores on some criterion measure (e.g., job performance) may be collected 9 
to 12 months downstream. 

In contrast, when researchers adopt a concurrent validation design, they essentially collect 
predictor and criterion data at roughly the same time (Standards, 2014). Thus, evidence of 
criterion-related validity exists when there is a relationship between concurrently (or 
simultaneously) collected test scores and criterion scores. For example, researchers might collect 
data on the Remotely Piloted Aircraft (RPA) test from a sample of current remote pilots and at 
the same time obtain some type of performance data on those pilots (e.g., supervisory ratings of 
task performance; objective evaluations of multi-tasking effectiveness). In this instance, it is 
important to recognize that the variability in RPA test scores may be restricted, thus attenuating 
the correlation used to furnish evidence of criterion-related validity. 

Corrections for statistical artifacts. Sample data will furnish imperfect estimates of 
population-level correlations and/or regression coefficients used to furnish evidence of criterion-
related validity. The gap between observed sample estimates and the unobserved population 
estimates will fluctuate as a function of sampling error, measurement error (in both the predictor 
and criterion measures), and range restriction. Although equations exist that permit researchers to 
“correct” observed relationships for these statistical artifacts, it is important that any integration 
of these equations into practice is approached with great care and caution-especially if one is 
accumulating validity evidence using psychometric meta-analysis (Schmidt & Hunter, 2015). 
Several recent studies have documented that some of the important statistical assumptions that 
underlie psychometric meta-analysis may be untenable, or at least regularly violated (Köhler, 
Cortina, Kurtessis, & Gölz, 2015; Yuan, Morgeson, & LeBreton, 2020). Thus, if researchers 
wish to make corrections for statistical artifacts to observed correlations or regression 
coefficients, they are encouraged to do so judiciously. 

• When the variability in predictor (or criterion) scores is artificially restricted (i.e., a 
sample that is not fully representative of the target population), then researchers may 
correct observed correlations for range restriction. 

The reader is directed to Sackett and Yang (2000) and Schmidt, Oh, and Le (2006) for detailed 
guidance on matching range restriction corrections to different research scenarios; and, to Roth, 
Le, Oh, Van Iddekinge, and Robbins (2017) for a discussion on using applicant vs. incumbent 
samples when making corrections for range restriction. 

Schmidt, Hunter, and Urry (1976) aptly noted, “In the typical validation study, the criterion 
reliability, as well as the test validity, is available only on the restricted group. Both coefficients 
should be corrected first for restriction of range” (p. 475). Unfortunately, the most commonly 
referenced reviews of criterion reliability failed to make such adjustments (cf., LeBreton et al., 
2003; Viswesvaran, Ones, & Schmidt, 1996). Note also that the correction is agnostic with 
respect to whether values are estimated using the population of qualified candidates or the 
population of all candidates. The analyst must correctly align their analysis with the inference 
they wish to draw. There must be a theoretical rationale for the selection of the group being used 
to derive the values.    
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• When researchers wish to correct observed correlations for measurement error in the 
criterion, they are strongly encouraged to correct reliability estimates for potential range 
restriction prior to using those reliability estimates in subsequent correction equations 
(LeBreton et al., 2003). 

Incremental validity. Evidence of incremental validity is accumulated by showing that the 
addition of an instrument improves our ability to predict some criterion of interest. At its most 
basic, “validity must be claimed for a test in terms of some increment in predictive efficiency” 
over other information already gathered (Sechrest, 1963, p. 154). When evaluating, if an 
assessment has incremental validity, the most common approach is to use multiple regression 
with the criterion of interest as the outcome. The first step in the regression model would include 
the initial assessment used (e.g. ASVAB completed during MEPS testing). The second step in 
the regression model would include the additional assessment (e.g., AFOQT). An inference 
concerning the incremental validity of a selection test would be supported by a significant 
change in the regression model R2 after adding in the additional predictor (i.e., ΔR2; Schmidt & 
Hunter, 1998). The "significance” of the change may be defined as statistical significance, 
practical significance (i.e., effect sizes), or both. It is important to note that when the two 
assessments used are less correlated with each other, there will be greater utility with the 
additional assessment. Recommendations related to testing for incremental validity are revisited 
later in the report. 

1.2.2.3 Evidence Based on Test Content 

Evidence of content-related validity is accumulated by documenting how the test content, 
defined as the “themes, wording, and format of the items, tasks, or questions on a test” (p. 14) 
are representative of the construct purportedly being measured by those items, tasks, or questions 
(Standards, 2014). In addition, test content may include the instructions, response formats, and 
various test administration protocols (Principles, 2018). 

Binning and LeBreton (2014) clarified how content validity is relevant for the accumulation of 
evidence for tests developed to measure predictor constructs and tests that are designed to more 
directly measure criterion constructs. For example, a researcher may be interested in building 
tests designed to measure psychological (predictor) constructs such as cognitive ability, bravery, 
and cooperation (denoted 𝜓𝜓𝐷𝐷𝐷𝐷,𝜓𝜓𝐷𝐷𝐷𝐷,𝜓𝜓𝐷𝐷𝐷𝐷 in Figure 1). In this context, content validity evidence 
should be accumulated to help support both inference 2 and inference 3. As Binning and 
LeBreton (2014) noted, “Inference 2 is supported by evidence that a given predictor adequately 
samples from a specific psychological [construct domain]” (p. 490). 

• When accumulating content validity evidence for selection tests designed to measure 
predictor constructs, researchers should evaluate the items/tasks to ensure they are 
representative of their respective construct domains (inferences 2 and 3). 

In contrast, when a predictor test has been designed to more directly assess aspects of the 
criterion construct domain, then accumulating evidence to support inference five becomes the 
focus of any content validation effort. Within the context of employee selection, evidence of 
content validity is accumulated by demonstrating (logically or empirically) that the items, tasks, 
or questions comprising the test are closely related to the actual work activities/tasks and work 
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outcomes comprising the criterion construct domain (Binning & Barrett, 1989; Binning & 
LeBreton, 2009; Principles, 2018). For example, if a job analysis results in the identification of 
criterion constructs including accuracy of data entry and customer service orientation (denoted 
C_DA  and C_DC in Figure 1), then a researcher might build a selection test that directly 
measures behaviors identified as part of this construct domain (e.g., walk-through performance 
tests; assessment centers; other work simulations). 

• When researchers are accumulating content validity evidence for selection tests designed 
to measure criterion constructs, they should evaluate the items/tasks to ensure they are 
representative of the actual work activities/tasks/outcomes comprising the criterion 
construct domain. 

Statistical tools for evaluating evidence of content validity. Colquitt, Sabey, Rodell, and 
Hill (2019) distinguished between two aspects of content validity. Definitional correspondence 
refers to the “degree to which a scale’s items correspond to the construct’s definition” (p. 1243). 
Definitional distinctiveness refers to “the degree to which a scale’s items correspond more to the 
focal construct’s definition than to the definitions of other orbiting constructs” (p.1243). 
Essentially, definitional correspondence gets at the correct mapping of items onto constructs, 
whereas definitional distinctiveness is the ability of the items to discriminate/distinguish between 
the focal construct and other constructs. Colquitt et al. (2019) reported the results of a large study 
designed to evaluate two approaches for accumulating content validity evidence associated with 
both definitional correspondence and definitional distinctiveness. 

Both approaches involve judges reviewing the definitions of multiple constructs and a set of 
items designed to measure these constructs. The judges, typically laypersons, not subject matter 
experts, are then tasked with sorting the items into the correct construct definition. The first 
approach, introduced by Anderson and Gerbing (1991), allows researchers to estimate two 
statistics. The proportion of substantive agreement (𝑝𝑝𝑠𝑠𝑠𝑠) provides an index of definitional 
correspondence and is computed by taking the number of judges who correctly match the item 
with the construct and by the total number of judges: 

𝑝𝑝𝑠𝑠𝑠𝑠 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

  (1) 

The 𝑝𝑝𝑠𝑠𝑠𝑠 index assumes values ranging from 0 to 1, with higher scores indicating greater degrees 
of definitional correspondence. 

The substantive validity coefficient (𝑐𝑐𝑠𝑠𝑠𝑠) provides an index of definitional distinctiveness and is 
computed by taking the number of times the judges correctly match an item with the construct 
and subtracting the maximum number of times the item was incorrectly matched to any other 
construct. The difference is then divided by the total number of judges: 

𝑐𝑐𝑠𝑠𝑠𝑠 =  (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑒𝑒𝑒𝑒)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑓𝑓 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

 (2) 
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As Colquitt et al. noted, “The 𝑐𝑐𝑠𝑠𝑠𝑠 statistic ranges from -1 to 1, achieving the former value when 
no judges classify an item correctly and all do so incorrectly and the latter value when all judges 
classify an item correctly and none do so incorrectly” (p. 1244).  

The second approach to estimating content validity that Colquitt et al. (2019) reviewed was 
derived from early research by Hinkin and Tracey (1999). This approach also relies on non-
expert judges matching items with construct definitions. However, rather than sorting items into 
separate construct silos, the Hinkin and Tracey approach has judges rate the degree of item-
construct correspondence using a Likert-type response scale. Building off this work, Colquitt et 
al. offered two content validity indexes paralleling the indexes of Anderson and Gerbing (1991). 
The first index is referred to as the Hinkin-Tracey correspondence index and is computed by 
taking the average judges rating and dividing by the number of points on the rating scale: 

ℎ𝑡𝑡𝑡𝑡 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (3) 

Thus, higher scores indicate greater definitional correspondence (e.g., when all judges select the 
maximum rating of correspondence, the ℎ𝑡𝑡𝑡𝑡 willl be equal to 1). 

Colquitt et al.’s (2019) second statistic was referred to as the Hinkin-Tracey distinctiveness index 
and is estimated by computing the signed differences between the correspondence rating for the 
intended construct and the correspondence rating for the orbiting constructs. These signed 
differences are averaged and then divided by the number of scale points minus 1. This statistic, 
denoted htd, “would have a positive value when items received higher ratings on the intended 
construct than on the orbiting constructs and a negative value when items received lower ratings 
on the intended construct than on the orbiting ones” (p. 1248): 

ℎ𝑡𝑡𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−1

 (4) 

Colquitt et al. (2019) reported the results of a large content validation study that used both the 
Anderson and Gerbing (1991) and Hinkin and Tracey (1999) statistics. Data was collected from 
a total of 6,240 participants who evaluated subsets of 112 different scales. The authors provided 
descriptive statistics on these indexes of content validity and examined how various aspects of 
the scales were associated with these indexes (e.g., number of items, number of reverse coded 
items, magnitude of reliability coefficient, etc.). The authors concluded by providing a set of 
evaluative guidelines that could be used in future test development and validation studies (see 
especially their Table 5 on page 1257). 

• Researchers should compute and interpret indices of definitional correspondence and 
definitional distinctiveness (Colquitt et al., 2019) when seeking to accumulate validity 
evidence based on the content of the test. 

1.2.2.4 Evidence Based on the Internal Structure of the Test 

Validity evidence may also be accumulated by examining the internal structure of a selection 
test. In doing so, researchers will likely examine the patterns of covariance between test items to 
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determine whether the pattern is consistent with the proposed constructs. For example, 
exploratory (or confirmatory) factor analyses may be used to explore (or confirm) the covariance 
structures in a set of items. However, as noted in the Principles (2018), “Inclusion of items in a 
selection procedure should be based primarily on their relevance to a construct or content domain 
and secondarily on their intercorrelations” (p.32). Essentially, different items based on different 
construct models will likely require different statistical analyses when seeking validity evidence 
based on the internal structure of the test. For example, when the construct model used to 
develop a test posits a single, unidimensional construct, researchers would focus on an analysis 
of item homogeneity and the presence of a single, dominant factor. When the construct model 
used to develop a test posits multiple dimensions or second order factors, then the analyses used 
to accumulate validity evidence would necessarily differ. 

The Standards (2014) suggested that another way to accumulate evidence based on internal 
structure is to examine whether tests (or the items comprising them) are psychometrically 
equivalent or invariant across different groups of test takers (e.g., gender; race; age). These 
issues will be revisited later in the report when discussing tests of psychometric bias (e.g., 
differential item functioning/differential test functioning; measurement equivalence/invariance). 

1.2.2.5 Evidence Based on Response Processes 

Another form of validity evidence may be accumulated by verifying the processes individuals 
use when completing the test (Principles, 2018; Standards, 2014). This form of evidence is 
relevant for constructs that “involve more or less explicit assumptions about the cognitive 
processes engaged in by test takers” (Standards, 2014, p. 15). Evidence based on response 
processes may be collected directly from test takers by asking them about their response 
strategies or asking them to engage in a verbal protocol analysis as they complete the test. This 
approach may be particularly useful for tests designed to measure phenomena such as generating 
novel or creative solutions to problems, evaluating and weighting the quality and quantity of 
information prior to making a particular decision, and other cognitively loaded tasks.  
Alternatively, for tests measuring more overt behaviors (e.g., flight simulator), it may be possible 
to observe individuals as they complete the test. Other ways to accumulate evidence may include 
an examination of response times to computerized assessments or extracting information about 
the pattern and duration of visual attention using eye tracking software. 

1.2.2.6 Evidence Based on the Consequences of Testing 

Finally, validity evidence may also be provided by an examination of the consequences or 
outcomes (intended and unintended) that result from the use of a test. As noted in the Principles 
(2018), “Although evidence of negative consequences may influence policy or practice decisions 
concerning the use of predictors, the Principles and the Standards take the view that such 
evidence is relevant to inferences about validity only if the negative consequence can be 
attributed to the measurement properties of the selection procedure itself” (p. 8). Thus, using a 
test of physical strength would likely result (on average) in men receiving higher test scores than 
women, resulting in the unintended consequence of hiring many more men than women. This 
unintended consequence would only be relevant to the evaluation of validity if these group 
differences were driven by measurement properties of the test (i.e., psychometric bias) rather 
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than true, group mean differences. Strategies for identifying psychometrically biased items are 
discussed later in the chapter. 

1.3 Steps/Stages in the Test Development and Validation Process 

The development and validation of a personnel test for use in selection or classification is a 
multi-stage, iterative, process. Contemporary recommendations for scale development and 
validation closely mirror the five stages of test validation referred to by the Air Force as the 
Selection and Classification Test Acquisition Process. These five stages are summarized based 
on information contained in the Air Force Examining Activities Overview-FY10‐11 (AFEAO, 
2010) and are used as an organizing framework for integrating additional recommendations 
offered by other psychometric sources (see Table 2). 

1.3.1. Level 1 Validation-Determination of Mission Need 

“The initial phase of validation is determining whether there is a need or problem that requires 
more than a “quick fix” but could potentially be solved by a specific test or measure. At this 
level of validation the test or measure is developed or fine-tuned in an attempt to solve the 
identified problem or meet the need that was identified” (p. 25; AFEAO, 2010). 

This stage of validation encompasses several sub-stages including: needs/job analysis, construct 
specification/definition, test development, and pilot testing. 

1.3.1.1 Level 1a: Needs analysis/job analysis 

The first step in test validation to determine the purpose of the test. In doing so, it will be 
important to determine what knowledge, skills, and abilities (KSAs) are necessary for the 
mission, so that a test can capture and measure those that are relevant. Conducting a thorough 
and comprehensive job analysis can tell you just that, since the goal of a job analysis is to 
“[discover, understand, and describe] what people do at work” (Brannick, Levine & Morgeson, 
2007, p. 1). Whereas there are many methods of conducting a job analysis, the basic building 
blocks are as follows (see also Table 3): 

• Researchers should determine the preferred type or form of job data to collect. 

The first step before conducting a job analysis is to determine which descriptors (i.e. type of job 
data) to collect. This is largely dependent on the purpose of conducting the job analysis. For 
example, if the purpose is to identify those who might be successful on some mission, it might be 
important to collect descriptors that tell us about employee characteristics on the job (Brannick et 
al., 2007). These might include responsibilities (how much authority or accountability an 
employee has), personal job demands (physical demands), worker activities (focusing on what is 
going on inside of a worker’s mind, how decisions are made, how problems are solved, etc.), 
work activities (observable behaviors performed on the job) or critical incidents (stories about on 
the job successes or failures). 
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Table 2. Summary of the Recommended Steps and Phases Associated with Test Development and Validation 

Allen & Yen 
(1979) 

Ghiselli, 
Campbell, & 
Zedeck (1981) 

Crocker & Algina 
(1986) 

Hambleton, 
Swaminathan, & 
Rogers (1991) Hinkin (1998) 

Air Force SCTAP 
(2010) Standards (2014) 

1. Plan the test 1. Defining a test 1. Identify the 
purpose of the test  

1. Define Target 
Information 
Function 

1. Item generation Level 1: Determination 
of mission need 

Phase 1: Test 
specifications 

2. Write items 2. Specify test 
objectives 

2. Identify behaviors 
representing the 
construct or  

2. Iteratively 
select items to 
reproduce target 
curve 

2. Questionnaire 
administration 

Level 2: Concept 
exploration 

Phase 2: Item 
development and 
review 

3. Collect data 3. Item analyses 3. Prepare a set of 
test specifications 

3. After adding 
each new item, 
estimate test 
information 
function. 

3. Initial item 
reduction 

Level 3: Program 
definition and risk 
reduction 

Phase 3: 
Administration 
and scoring 
protocols 

4. Item analysis 4. Empirical vs 
rationale keying  

4. Construct initial 
item pool 

4. Select items 
until test function 
approximates 
target function 

4. Confirmatory 
factor analysis 

Level 4: Engineering and 
manufacturing 
development 

Phase 4: Test 
revisions 

5. Finalize & 
norm the test 

5. Weight items 5. Review & revise 
items  

 5. Convergent & 
divergent validity 

Level 5: Production, 
deployment, operational 
support, and on-going 
monitoring 

 

 6. Cross-validate 6. Initial item 
tryouts  

 6. Replication   

 7. Advanced 
analysis (IRT) 

7. Field-test items      

  8. Item analysis & 
item revision 

    

  9. Validities studies 
for the final test  

    

  10. Guidelines for 
test administration 
& use 
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• Researchers should determine the method or methods used for collecting the relevant job 
data. 

A wide array of data collection modalities or methods exist for collecting job analysis data. As 
we saw the descriptors depend on the purpose of the job analysis, so to does the degree to which 
one job analysis method is preferred over the other (e.g., develop criterion measures; develop 
predictor measures; develop compensation model; etc.) and context-specific factors related to the 
job and the organization. As noted in Table 3, the types of methods used to collect job analysis 
information may range from observing incumbents working in the job, to group interviews, to 
standardized questionnaires asking about job or worker characteristics, to retrieving information 
from the existing literature or archival sources, to job analysts actually performing the job 
(Brannick, et al., 2007; Cascio & Aguinis, 2019; Gatewood, Feild, & Barrick, 2015). 

Table 3. Summary of Job Analysis Building Blocks 
Descriptor Method of Data Collection 
1. Organization philosophy and structure 
2. Licensing and other government-

mandated requirements 
3. Responsibilities 
4. Professional standards 
5. Job context 
6. Products and services 
7. Machines, tools, work aids, and checklists 
8. Work performance indicators 
9. Personal job demands 
10. Elemental motions 
11. Worker activities 
12. Work activities 
13. Worker trait requirements 
14. Future changes 
15. Critical incidents 

1. Observing 
2. Interviewing individuals 
3. Interviewing groups 
4. Technical conferences 
5. Questionnaires 
6. Diaries 
7. Equipment-based methods 
8. Reviewing records 
9. Reviewing literature 
10. Studying equipment design specifications 
11. Doing the work 

Sources of Job Analysis Data Units of Analysis 
1. Job analyst 
2. Job holder’s supervisor 
3. High-level executive 
4. Job holder 
5. Technical expert 
6. Organizational training specialist 
7. Clients or customers 
8. Other organizational units 
9. Written documents (for example, records, 

equipment specifications) 
10. Previous job analyses 

1. Duties 
2. Tasks 
3. Activities 
4. Elemental motions 
5. Job dimensions 
6. Worker characteristic requirements 
7. Scales applied to units of work 
8. Scales applied to worker characteristic 

requirements 
9. Qualitative versus quantitative 

considerations 
Note. Reproduced from “Job and work analysis: Methods, research, and applications for human resource 
management”, Brannick, Levine, & Morgeson, 2007, Table 1.3, p. 19. 
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• Researchers should determine the sources for obtaining relevant job information. 

Related to the previous point, it is important to ascertain where the job-relevant data will be 
obtained (e.g., from incumbents, supervisors, subordinates, trained observers, organizational 
archives; see Table 3 for summary). When the job analysis sources are human beings, it is 
important that researchers are mindful of the various social-cognitive biases that may distort the 
quality of the job analysis data. Table 4 was reproduced from Morgeson and Campion (1997) 
and provides a summary of how 16 different social-cognitive biases could impact the quality of 
job analysis information (for a detailed discussion, the reader is directed to Morgeson & 
Campion, 1997). Often, the source of data will be a function of the method of data collection 
(e.g., if you are interviewing job incumbents, your method is interviewing, your source is job 
incumbents). 

• Researchers should determine the unit of analysis for the job analysis. 

• Researchers should seek to minimize the impact of social-cognitive biases when 
collecting data as part of a job analysis. 

o When possible, collect and score data using systematic and structured protocols. 

o When possible, collect and score data using multiple sources of information. 

Finally, one needs to determine the unit of analysis in which to report the data we have collected 
(i.e., how we report the work activities that we collected via interviews with incumbents). Like 
building blocks 1-3, this will be dependent on the choices we have made thus far. For example, 
one way to summarize, analyze and report the data on work activities is to break down the 
activities into their elemental motions. Another way to summarize work activity data might be to 
report the requirements needed to perform such work activities. Additionally, instead of just 
reporting the list of work activities gathered, job analysts may apply scales to these lists. For 
example, a common scale used is to ask how important an activity is and how frequently it is 
performed (Brannick et al., 2007). These scales can help determine how central each activity is 
to the job (usually those that are either very important, very frequent, or very important and 
frequent). 
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Table 4. Social and Cognitive Sources of Potential Inaccuracy and Their Hypothesized Effects on Job Analysis Data 
 Likely Effect on Job Analysis Data 

Source of Inaccuracy 
Interrater 
Reliability 

Interrater 
Agreement 

Discriminability 
between Jobs 

Dimensionality 
of Factor 
Structure 

Mean 
Ratings 

Completeness 
of Job 
Information 

Social sources       
 Social influence processes       
  Conformity pressures       
  Extremity shifts       
  Motivation loss       
 Self-presentation processes       
  Impression management       
  Social desirability       
  Demand effects       
Cognitive sources       
 Limitations in information 
processing systems       
  Information overload       
  Heuristics       
  Categorization       
Biases in information processing 
systems       
 Carelessness       
 Extraneous information       
 Inadequate information       
 Order and contrast effects       
 Halo       
 Leniency and severity       
 Methods effects       

Note. Reproduced from “Social and cognitive sources of potential inaccuracy in job analysis,” Morgeson &  Campion, 2005, Journal of Applied Psychology, 
82(5), Table 1, p. 629. Copyright 1997 by the American Psychological Association. 
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1.3.1.2 Level 1b: Competency Model 

Although job analysis has historically served as the cornerstone of any selection test 
development process, more recently, competency modeling has started to come into practice. A 
competency model (CM) is a collection of the KSAs, which are relevant for successful 
performance on a job. In a competency model, these individual KSAs are what define the range 
of job-related competencies (Campion, Fink, Ruggeberg, Carr, Phillips, & Odman, 2011). Table 
5 summarizes several of the important differences that exist between job analysis and 
competency modeling. 

The movement toward competency models is based, in part, on the observation that specific 
behavioral requirements for any given job may change over time. Thus, to avoid constantly 
revising job analyses and job descriptions, it may be more useful to focus on a slightly higher 
level of abstraction (i.e., competencies). The idea is that individuals with the requisite 
competencies are also likely to meet the more specific behavioral requirements that might be 
derived from any given job analysis. 

In addition, where a job analysis is likely to yield a list of KSAOs hypothesized to underlie 
successful levels of job performance, a CM is typically designed to distinguish “star performers” 
from “average performers.” Thus, in critical missions, it may be more important to identify 
individuals likely to ‘greatly exceed’ expectations vs. ‘likely to exceed’ minimum expectation 
thresholds. Another important distinction is the process of developing a CM. Instead of starting 
on the front-line and asking those previously in missions what tasks they performed, those at the 
top, perhaps officers, might first develop the competencies deemed important (i.e. top-down 
versus bottom-up approach to decomposing the job). Table 6 provides a list of best practices in 
competency modeling (Campion et al., 2011). After the job analysis or competency model is 
complete, this information should be used to inform the constructs of interest to be measured. 
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Table 5. Description of Competency Models and Key Differences between Competency 
Models and Job Analysis 

1. Executives typically pay more attention to competency modeling. 
2. Competency models often attempt to distinguish top performers from average performers. 
3. Competency models frequently include descriptions of how the competencies change or 

progress with employee level. 
4. Competency models are usually directly linked to business objectives and strategies. 
5. Competency models are typically developed top down (start with executives) rather than 

bottom up (start with line employees). 
6. Competency models may consider future job requirements either directly or indirectly. 
7. Competency models may be presented in a manner that facilitates ease of use (e.g., 

organization-specific language, pictures, or schematics that facilitate memorableness). 
8. Usually, a finite number of competencies are identified and applied across multiple 

functions or job families. 
9. Competency models are frequently used actively to align the HR systems. 
10. Competency models are often an organizational development intervention that seeks broad 

organizational change as opposed to a simple data collection effort. 
Note. Reproduced from “Doing competencies well: Best practices in competency modeling,” Campion, Fink, 
Ruggeberg, Carr, Phillips, & Odman, 2011, Personnel Psychology, 64(1), Table 1, p. 227. 
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Table 6. Best Practices in Competency Modeling  
Analyzing Competency Information (Identifying Competencies) 
1. Considering organizational context 
2. Linking competency models to organizational goals and objectives 
3. Start at the top 
4. Using rigorous job analysis methods to develop competencies 
5. Considering future-oriented job requirements 
6. Using additional unique methods 
Organizing and Presenting Competency Information 
7. Defining the anatomy of a competency (the language of competencies) 
8. Defining levels of proficiency on competencies 
9. Using organizational language 
10. Including both fundamental (cross-job) and technical (job-specific) 
11. Using competency libraries 
12. Achieving the proper level of granularity (number of competencies and amount of detail) 
13. Using diagrams, pictures, and heuristics to communicate competency models to employees 
Using Competency Information 
14. Using organizational development techniques to ensure competency modeling acceptance 

and use 
15. Using competencies to develop HRs systems (hiring, appraisal, promotion, compensation) 
16. Using competencies to align the HR systems 
17. Using competencies to develop a practical “theory” of effective job performance tailored 

to the organization 
18. Using information technology to enhance the usability of competency models 
19. Maintaining the currency of competencies over time 
20. Using competency modeling for legal defensibility (e.g., test validation) 

Note. Reproduced from “Doing competencies well: Best practices in competency modeling,” Campion, Fink, 
Ruggeberg, Carr, Phillips, & Odman, 2011, Personnel Psychology, 64(1), Table 2, p. 230. 
 

1.3.1.3 Level 1c: Construct Specification/Definition 

As noted above, test validation begins with the purpose of testing and the proposed interpretation 
of test scores. Any such interpretation of test scores necessitates “specifying the construct the test 
is intended to measure” (p. 11; AERA et al., 2014). Thus, test development and validation efforts 
should be built upon a strong foundation, one anchored to a good construct definition. Strong 
construct definitions are essential to validation efforts because they are important to developing 
our operationalizations (i.e. our measurement) of our focal constructs (Podsakoff, MacKenzie, & 
Podsakoff, 2016). 

As previously discussed, one crucial step in the validation of a test or assessment is divergent (or 
discriminant) validity with tests designed to measure dissimilar constructs. However, when 
construct definitions are not clear, and thus the construct one intends to measure may actually be 
more similar than intended to other constructs, it is more difficult to gather this evidence 
(Podsakoff et al., 2016). Thus, a good construct definition explains what is unique about this 
construct (i.e., what the construct “is”), but also what differentiates it from similar constructs 
(i.e., what the construct “is not”). Similarly, we know that gathering evidence for criterion 
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validity is a key step in this process. However, if the construct was not well defined when 
developing the test, the test may not adequately sample from the relevant construct domain (i.e., 
measurement deficiency) or it may inappropriately sample from irrelevant domains (i.e., 
measurement contamination). Any construct irrelevant variance in our measures may attenuate 
(i.e., when the irrelevant variance is error) or systematically bias (i.e., when the irrelevant is 
systematic) relationships with external variables (Podsakoff et al., 2016). 

Podsakoff and colleagues (2016) offered practical suggestions for developing good conceptual 
definitions (see Table 7). These suggestions span for four steps (albeit sometimes iterative and 
overlapping): 

1. The first step is to “identify potential attributes by collecting a representative set of 
definitions” (Podsakoff et al., 2016, p. 169). 

As an example, let’s say that one is trying to develop a measure of “grit” because it might be a 
good predictor of performance outcomes in certain missions. In specifying the construct “grit”, 
the first step might be to survey relevant literature for existing definitions of grit (and related 
constructs). One may also want to interview relevant officers or personnel who have had 
experience on similar missions and ask what “having grit” means to them or ask them to identify 
instances where they saw grit in action. 

2. The second step is to “organize the potential attributes by theme and identify any necessary 
and sufficient or shared ones” (Podsakoff et al., 2016, p. 169). 

In order to be able to identify similarities and differences across definitions, one must do a 
sufficiently thorough initial search. Continuing with the previous example, one might notice 
themes around being careful, or being organized, or being thorough. Thus, one may determine 
that conscientiousness is a key attribute of grit (Duckworth, Peterson, Matthews, & Kelly, 2007). 
After attributes like these have been identified; it is useful to examine the list of attributes to 
determine which are necessary and which are sufficient for “grit”. Did the attribute 
“conscientiousness” come up in every definition? What attributes are sufficient when combined 
with one another? Once this step is complete, one might look for a set of attributes that are most 
important for the construct of interest and ensure that these are used in the definition. Note that 
the term theme is used to emphasize the inductive nature of the exercise (i.e., reading and 
reflecting on extant definitions of grit to identify themes that emerge across definitions). When 
multiple definitions seem to triangulate on a common theme, then it probably makes sense to 
consider that theme as a possible defining attribute of the construct. For example, definitions of 
grit might include descriptions of behavior that reflect tendencies to be dependable, organized, or 
persistent. A psychologist might look across various conceptualizations of “grit” that include 
these types of behavior and identify a “theme” around conscientiousness. This process would 
likely reveal additional themes linked to the grit construct. The psychologist could then formally 
consider the extent to which these themes should be considered key attributes of the 
hypothesized grit construct. For example, attributes may be evaluated to determine which ones 
are sufficient for adequately representing the grit construct.   
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3. The third step is to “develop a preliminary definition of the concept (Podsakoff et al., 2016, 
p. 169). 

Once the key attributes of the construct have been determined, the third step is to develop a 
preliminary definition. This stage is made up of various substages. The first step Podsakoff and 
colleagues (2016) recommended was to specify the “type of property the concept represents and 
the entity to which that property applies” (p. 184). In regards to our example, grit would be an 
intrinsic characteristic (the property) of a person (the entity). The authors give various examples 
of properties including intrinsic characteristics, thoughts, feelings, perceptions, actions or 
performance metrics. Other entities might include tasks, processes, relationships, teams, 
organizations etc. One important note, if we are continuing with the grit example, is that each 
subdimension, should be clearly defined. So, whereas you might define grit as being made up 
conscientiousness and other facets, conscientiousness needs also be defined specifically as 
related to grit. Another step in this stage of the process is to make explicit if the construct is 
stable (both over time and across situations; Podsakoff et al., 2016). Because grit, is considered 
an intrinsic characteristic, like other personality traits, we would assume it should remain stable 
over time and across situations. The next substage is to differentiate the construct of interest from 
related constructs. Using grit, for example, it would be important to establish how grit is different 
from achievement motivation. Finally, one should start to consider the construct’s antecedents 
and consequences. 

4. The final step is to “refine the conceptual definition of the concept” (Podsakoff et al., 2016, 
p. 169). 

Once a preliminary definition has been constructed, it must be refined. The main way that 
Podsakoff and colleagues (2016) suggest doing this is to rid the definition of any ambiguity. 
Specifically, “continue to ask the question about more specific aspects of the definition until no 
more ambiguity exists” (p. 187). During this stage, one may also want to consult subject matter 
experts for opinions on the current form of the definition. Again, this is an iterative process, so 
one may need to work back through these stages even after this stage is complete. 
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Table 7. Summary of Stages for Developing Good Conceptual Definitions  
Stage 1. Identify 
potential attributes by 
collecting a 
representative set of 
definitions 

Stage 2. Organize the 
potential attributes by 
theme and identify 
any necessary and 
sufficient or shared 
ones 

Stage 3. Develop a 
preliminary 
definition of the 
concept 

• Stage 4. Refine the 
conceptual 
definition of the 
concept 

• Search the 
dictionary 

• Survey the 
literature 

• Interview experts, 
colleagues and/or 
practitioners 

• Conduct focus 
groups 

• Use direct 
(structured) 
observation 

• Use case studies 
• Compare the 

concept with its 
opposite pole 

• Examine current 
operationalizations 
of the concept or 
think about how 
the concept might 
be operationalized 

• Condense the 
attributes in Step 1 
into a reduced set 

• Identify any 
attributes that are 
necessary and 
sufficient to the 
definition of the 
concept or 
(alternatively) 
identify shared 
attributes across 
subsets of cases 

• Try to identify: (a) 
a theoretical 
framework that 
helps organize the 
attributes along 
their defining 
dimensions; and/or 
(b) the criteria that 
should be used to 
decide which 
attributes to 
include (and which 
to exclude) in the 
concept’s 
definition 

• Describe the type 
of property the 
concept represents 
and the entity to 
which it applies 

• Describe the 
necessary and 
sufficient attributes 
of the concept 

• Specify the 
dimensionality of 
the concept 

• Specify the 
stability of the 
concept 

• Specify how the 
attributes of the 
focal concept differ 
from the attributes 
of other, related 
concepts 

• If possible, identify 
some of the 
antecedents and 
consequences of 
the concept 

• Ask “What do we 
mean by that?” 
until all of the 
ambiguity in the 
words used to 
define the focal 
concept have been 
resolved 

• Reduce jargon by: 
(a) playing the role 
of a journalist who 
is asked to write a 
description of the 
focal concept; 
and/or (b) 
imagining trying to 
explain the concept 
to someone 
learning English 

• Solicit feedback 
from peers 

Note. Adapted from “Recommendations for creating better concept definitions in the organizational, behavioral, and 
social sciences,” Podsakoff, MacKenzie & Podsakoff, 2016, Organizational Research Methods, 19(2), Figure 1, 
p.182. 

1.3.1.4 Level 1d: Test Development 

After the focal construct has been identified and defined, researchers can begin writing items (or 
building tasks) that they believe adequately sample the relevant construct domain. The specific 
form that an item takes will largely depend on the nature of the latent construct. Items designed 
to measure specific knowledge, skills, or abilities may written in a manner that lends itself to 
dichotomous scoring (e.g., correct-incorrect). In contrast, items designed to measure needs, 
motives, values, interests, attitudes, personality traits, and/or “other” characteristics could be 
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written in a manner that lends itself to either dichotomous scoring (e.g., yes-no; accurate-
inaccurate; true-false) or polytomous scoring (e.g., 5 or 7 point Likert-type scales). A detailed 
summary of best practices for all item types is beyond the scope of the current report. However, 
the following resources may prove as useful starting points: Hinkin (1998), Lievens and Sackett, 
2007; Lozano, Garcia-Cueto, & Muniz (2008), McDonald (2000; especially chapter 2), Schwarz 
(1999), and Wakita, Ueshima, and Noguchi (2012). As these, and other sources document, the 
nature of the underlying construct, the purpose of the test, and the format of the item will directly 
impact any recommendations for writing “optimal” items. Nevertheless, irrespective of the 
specific construct or item format that is being used, it is possible to make a few general 
recommendations concerning item construction: 

• Researchers should be sure to evaluate the reading-level of their items to confirm that 
they are appropriate for members of the target population. 

• Researchers should be sure to avoid using language that may viewed as inappropriate or 
offensive by prospective test takers. 

• Researchers using self-report surveys should take care to avoid “double-barreled” items 
(e.g., I don’t trust my squad members or my platoon leader). 

• Researchers building tests that reliably measure the entire range of the construct 
continuum, θ, should include items with a range of difficulty levels. 

• It is possible to adjust item-level difficulty by adjusting the attractiveness of the 
“incorrect” (or distractor) solutions when items are used to measure cognitive traits. 

• Researchers building tests to discriminate at a specific level of the construct continuum 
(i.e., a specific cut-score) should include items with difficulty levels in the vicinity of the 
desired cut-score. 

• Researchers develop a sufficiently large pool of initial items. 

• It is not uncommon for 1/2 to 1/3 of the items comprising an initial item pool to be 
problematic and require revision or removal based on initial item analyses; 
especially, if this is the first-time items are being written to measure the focal 
construct. 

1.3.1.5 Level 1e: Pilot Testing 

Once an initial set of items has been developed, researches should undertake a preliminary pilot 
testing of the items (Hinkin, 1998). The purpose of this pilot study is a) to verify that the items 
have sufficient variability to warrant inclusion in subsequent studies, b) provide an opportunity 
to collect some initial content validity evidence, and c) to confirm that the test is clear and 
accessible to members of the population(s) of interest. 

• After an initial draft of the test has been built, researchers should submit the test items to 
a content validity analysis (see Validity Evidence Based on Test Content). 
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• Researchers should also verify that the items are written at a level that will be clear 
and understandable to members of the target population. 

• Researchers should also verify that items are free from biased or offensive language 
or themes. 

• Researchers may wish to interview or debrief the pilot study sample to obtain information 
about problematic, confusing, or offensive items. 

• Researchers interested in obtaining validity evidence based on response processes may 
also ask members of the pilot study sample to engage in a verbal protocol analysis as 
they complete the test. This verbal protocol analysis represents a “think out loud” 
exercise that enables researchers to better understand how respondents approached and 
completed the test. 

• Finally, researchers should revise or remove items that were flagged as problematic 
(little if any variability in response patterns; confusing to test takers; etc.). 

1.3.2. Level 2 Validation-Concept Exploration 

“At this stage the test or measure is directly utilized on the problem source (i.e. - specific career 
field attrition problem, AFSC specific training gap) in order to see if it has any positive effect at 
reducing the problem or meeting the need. This level is about “proof of concept” on pre-existing 
samples/sources within the affected pipelines-typically training programs.” (p. 25; AFEAO, 
2010). 

This stage of validation encompasses several sub-stages including data collection, formal 
item/test analysis, and accumulation of validity evidence based on relationships with other 
variables. Data should be collected on a sufficiently large sample that is representative of the 
focal population (Hinkin, 1998). 

1.3.2.1 Level 2a: Sample Size Determination 

At this stage in the process, data should be collected on a large enough sample to permit the 
accurate estimation of statistics to evaluate the items/test. Specifically, researchers will be 
conducting a formal item analysis based on classical test theory, item response theory, or some 
combination thereof. The specific sample sizes needed to obtain stable point estimates will vary 
as a function of the different statistics being estimated. However, irrespective of whether CTT, 
IRT, or some hybrid are used, researchers will likely compute a combination of estimates: a) 
item and test means, b) item and test variances, c) inter-item covariances, d) item difficulty, e) 
item discrimination, f) item-total correlations, g) item-criterion correlations, h) factor loadings 
and factor intercorrelations, i) test-criterion correlations, j) convergent/divergent correlations 
between test scores and external variables, k) item characteristic curves, and l) item information 
curves, and/or m) estimates of reliability. 

A number of heuristics have been developed concerning sample sizes needed to conduct a 
particular analysis. For example, Hinkin (1998) reviewed heuristics related to sample sizes 
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needed for conducting factor analysis, while de Ayala (2009) included suggestions for IRT item 
calibration sample sizes for each of the different IRT models that were reviewed. Alternatively, 
researchers might ask how large of a sample is needed to provide precise and stable estimates of 
the relevant statistics (see Tonidandel, Williams, & LeBreton, 2015 for a review for correlation, 
regression, and factor analysis). More recently, Mair (2018) suggested that the ideal approach to 
estimating minimum sample sizes for IRT analyses involves the use of Monte Carlo simulations 
and he provided an example in R. 

• Researchers should consult with appropriate sources (see previous paragraph for 
references) when determining the minimum sample sizes necessary for conducting item 
and test evaluations. 

1.3.2.2 Level 2b: Evaluation of Items and Development of the Initial Test 

Once data has been collected from a large and representative sample, researchers should conduct 
item analyses based on Classical Test Theory (CTT) or Item Response Theory (IRT) (see 
subsequent sections of this report); or, researchers may opt to undertake an item/test analysis that 
is based on an integration or combination of CTT and IRT (see, for example, Smith, Hoffman, & 
LeBreton, 2020). 

• Researchers should conduct an item analysis to identify both problematic and non-
problematic items. The latter set of items will be used to form an initial (developmental) 
version of the test. 

After using item analysis to develop the initial (developmental) version of test, researchers 
should then accumulate additional validity evidence based upon how test scores correlate with 
other variables (see previous section of the report concerning sources of validity evidence). At a 
minimum: 

• Researchers should accumulate initial evidence for inferences linking test scores with 
measures of both related and unrelated constructs (i.e., evidence of convergent and 
divergent validity). 

• Researchers should accumulate initial evidence for inferences linking test scores with 
organizationally valued outcomes/criteria (e.g., performance, attrition, attitudes, other 
job-relevant behaviors). 

1.3.3. Level 3 Validation-Program Definition and Risk Reduction 

“Level 3 involves exploring test utility in a broader context and, at the same time, ensuring that 
the predictive validity of this proposed test is not already covered by other existing or 
operational tests” (p. 25; AFEAO, 2010). 

1.3.3.1 Incremental Importance/Validity 

During this stage of validation, the focus is on continued efforts to accumulate validity evidence 
by collecting data from broader contexts/samples. A particular emphasis is placed on 
establishing the incremental predictive validity of the test by demonstrating it explains unique 
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variance in an outcome or criterion measure. As noted above, incremental validity is typically 
tested using hierarchical regression analysis where existing measures are included in Step 1 and 
the new measure is added in Step 2. The significance test for incremental validity is obtained 
either by examining p-value for the t-test associated with the unstandardized regression 
coefficient for the new measure or by examining the p-value for the F test associated with the 
change in R2 estimated by subtracting the R2 from Step1 from the R2 obtained in Step 1– these 
two significance tests (and the accompanying p-values) are equivalent. Establishing incremental 
validity is useful because it allows researchers to verify that the new measure is not statistically 
redundant with the existing set of measures. As LeBreton, Hargis, Griepentrog, Oswald, and 
Ployart (2007) noted: 

“…I-O psychologists often statistically evaluate new variables by examining the 
importance of those new variables compared to an existing set of variables. One 
definition of variable importance emphasizes the incremental validity of the new 
measure, which we call incremental importance. This definition of importance was 
suggested by Darlington (1968) with his usefulness statistic. Incremental importance is 
valuable because it ensures that the variable of interest is tapping unique variance in the 
criterion variable above and beyond that of the other variables in the regression model 
(Cronbach & Gleser, 1957; Sechrest, 1963)” (p.476). 

Thus, by estimating incremental importance, researchers are able to confirm that a new measure 
is not statistically redundant with an old measure. However, any variability that the new measure 
shares with the criterion and the existing test battery is credited to the tests in that battery 
(LeBreton et al., 2007). Typically, researchers do not strive to build new tests that will be highly 
correlated with existing elements of a test battery. However, a new variable may nevertheless be 
partially correlated with elements of a test battery due to measurement similarities or 
nomological proximity between the new and existing tests. LeBreton et al. summarized: 

“…any criterion variance predicted by both the new variable and the existing set of 
variables is automatically “credited” toward the latter. Thus, an incremental validity 
analysis might lead one to make incorrect or misinformed decisions about the relative 
efficacy of the new variable. As such, it is possible that a new measure [of a new 
construct] might yield relatively small increments in prediction (e.g., ΔR2 = .02) but that 
the overall contribution that this new [measure] makes to the R2 is as high as (or higher 
than) the other predictors in the model” (p. 477). 

1.3.3.2 Relative importance/validity 

To address this concern, LeBreton et al. (2007) recommended that researchers supplement any 
tests of incremental importance/validity with additional tests of the new measure’s relative 
importance, which they defined as “the contribution each predictor makes to the R2, considering 
both its unique contribution and its contribution in the presence of other predictors” (p. 477). 
There are multiple indices of relative importance, but the most commonly used measures are 
dominance analysis and relative weight analysis (see Johnson & LeBreton, 2004; Krasikova, 
LeBreton, & Tonidandel, 2011; Tonidandel & LeBreton, 2011) for reviews of relative 
importance statistics. 
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By reanalyzing data from several published articles, LeBreton et al. (2007) demonstrated how 
small changes in incremental validity could mask more meaningful contributions to the overall 
prediction of the criterion. For example, they demonstrated that new biodata measures 
“accounted for small-to-moderate increases in the model R2. However, the relative importance 
analyses revealed that not only did these scales add increments to the regression, they repeatedly 
emerged as the most important predictors of performance” (p. 488). Over the last 15 years, 
substantial progress has been made in the development and refinement of tests of relative 
importance (e.g., extension to multivariate criterion spaces; dichotomous criterion variables; 
significance testing; etc.). The interested reader is directed to: LeBreton, Ployhart, and Ladd 
(2004); LeBreton and Tonidandel (2008); LeBreton, Tonidandel and Krasikova (2013); 
Tonidandel and LeBreton (2010, 2011, 2015); and Tonidandel, LeBreton, and Johnson (2009). 

• Researchers should establish the incremental validity/importance of new measures using 
traditional hierarchical regression analyses. 

• Researchers are encouraged to supplement tests of incremental importance with tests of 
relative importance-namely relative weight analysis or dominance analysis. 

• The combination of such tests is likely to provide a more thorough and complete 
understanding of the value that a new measure has when predicting relevant criteria. 

1.3.4. Level 4 Validation-Engineering and Manufacturing Development 

“This level involves giving the test or measure at the broadest level of testing which is the 
general applicant population. Showing that the test or measure can improve selection or 
classification (reduce or solve the identified problem or need) on the applicant population means 
time and money can be saved by implementing the test at the earliest stage of the personnel life 
scores are developed through data collection and analysis” (p. 26; AFEAO, 2010). cycle. At this 
level, normative data is collected and potential cutoff/qualification 

This stage of validation involves the continual accumulation of validity evidence by using the 
test to predict relevant organizational criteria. At this stage, researchers collect data from 
sufficiently broad and representative samples, so as to allow the creation of potential cutoff 
scores or minimum qualification scores on the test. However, it is important that any cutoff 
scores are coherently developed and clearly documented. It is also important that researchers be 
mindful of how cutoff scores may adversely impact members of protected classes. 

• Researchers may develop cutoff values for test scores, but care should be taken to avoid 
values that will likely engender adverse impact. 

1.3.5. Level 5 Validation-Production, Deployment, Operational Support, and 
Monitoring 

“This level means the test or measure is now in operational use and personnel decisions can be 
made based upon the test or measure. Initial Operational Test and Evaluation (IOT&E) with the 
initial norms developed in Level 4 are validated and ongoing monitoring and evaluation occurs 
throughout the operational life cycle of the test or measure” (pp. 26-27; AFEAO, 2010). 
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In this final stage of development, researchers will actively monitor the use of the test, and the 
performance of any established test norms and cutoffs. Researchers are also encouraged to 
continue accumulating validity by examining correlations between the test scores and other, 
external variables (i.e., criterion validity; convergent/divergent validity). 

• After a test has been developed, subjected to substantial validation efforts, and is in 
operational use, researchers should continue to monitor the performance of the test 
(including any test norms or cutoffs) and continue to accumulate validity evidence. 

• The continued monitoring and validation of the test ensures that there is no “drift” 
over time in the validity of the inferences being drawn from test scores. 

1.4 Using Classical Test Theory to Evaluate Items and Build Tests 

1.4.1. Symbols and Notation 

The following symbols and notation, based largely on Gulliksen (1950); will be used throughout 
the remainder of this report. 

• X, Y, Z = observed/raw scores 
• x, y, z = observed/raw scores in deviation score format; observed/raw scores minus the mean 
• i and j = subscripts denoting different examinees 
• g and h = subscripts denoting different items or tests 
• N = total number of examinees 
• n = number of examinees in a subgroup 
• K = total number of items or number of tests in a test battery 
• k = number of items in subtest 
• T = unobserved/latent true score 
• t = unobserved/latent true score in deviation score format; true score minus the mean 
• E = unobserved/latent score corresponding to random measurement error 
• e = unobserved/latent error score in deviation score format 
• M, X ̅,Y ̅  = mean or expected value 
• S, sd = sample standard deviation 
• r = sample correlation coefficient 
• μ = population mean 
• σ = population standard deviation 
• ρ = population correlation coefficient 
• θ  = latent construct being measured by a particular set of items or tests 

1.4.2. Overview of Classical Test Theory 

1.4.2.1 Primary Assumptions of Classical Test Theory 

Classical test theory (CTT) rests upon a set of important assumptions concerning the patterns of 
relationships that are presumed to exist (or not) between observed scores, true scores, and error 
scores. The first assumption is given by: 
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𝑋𝑋𝑖𝑖 = 𝑇𝑇𝑖𝑖 + 𝐸𝐸𝑖𝑖 (5), 

where, 𝑋𝑋𝑖𝑖 refers to the observed score of person i on test (or item) X, 𝑇𝑇𝑖𝑖 refers to the unobserved 
true score for person i on this test, and 𝐸𝐸𝑖𝑖  refers to the unobserved error score for person i on this 
test. Thus, the first assumption of classical test theory is that any given person’s observed score 
may be represented as a unit-weighted linear composite of his or her true score and error score. 
This equation introduces the impossible task of trying to solve for two unknown values (𝑇𝑇𝑖𝑖 and 
𝐸𝐸𝑖𝑖) using only a single equation with one known value (𝑋𝑋𝑖𝑖; Gulliksen, 1950). However, by 
collecting additional data from other individuals and imposing additional assumptions, we are 
able to develop items using CTT. The additional assumptions include: 

M(X) = T (6), 

𝜌𝜌𝐸𝐸𝐸𝐸 = 0 (7), 

𝜌𝜌𝐸𝐸1𝐸𝐸2= 0 (8), and 

𝜌𝜌𝐸𝐸1𝐸𝐸2= 0 (9). 

Briefly, equation 6 states that observed scores have a mean or expected value equal to the true 
score. Equation 7 states that error scores are uncorrelated with true scores. Equation 8 states that 
random errors on two parallel tests will be unrelated to one another; and finally, equation 9 states 
that the errors on one test will be uncorrelated with the true scores on another test (see Allen & 
Yen, 1979; Lord & Novick, 1968). 

1.4.2.2 Psychometric Item Types 

Two items (or tests) are defined as parallel measurements of a construct when they share a 
common true score (T1=T2), their errors are linearly independent of one another (𝜌𝜌𝐸𝐸1𝐸𝐸2= 0), and 
the error variances are equivalent (𝜎𝜎𝐸𝐸12 = 𝜎𝜎𝐸𝐸22 ; Lord & Novick, 1968). Relaxing the assumption 
that these two items must have equivalent error variances yields tau-equivalent measurements 
(i.e., true score equivalent measurements). Finally, relaxing both the assumptions that the error 
variances are equivalent and the true scores are equivalent yields congeneric measurements. 
Ideally, one has parallel (or at least tau-equivalent items). When we meet this assumption, we are 
able to compute traditional estimates of internal consistency reliability (e.g., Coefficient Alpha).  
However, when we have congeneric items, alpha will underestimate reliability. With congeneric 
items, one is advised to compute a reliability estimate that does not make the strict assumption of 
true-score equivalence (e.g., MacDonald’s Coefficient Omega). Most of classical test theory 
assumes access to parallel items or tau equivalent items.  

1.4.2.3 Conclusions Drawn from Classical Test Theory 

Using equations 5-9, it is possible to derive the following: 
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M(E) = 0 (10), 

which means that the mean or expected value of random errors is zero (i.e., errors are just as 
likely to be positive as negative, and in the expectation, will equal zero). 

𝜎𝜎𝑋𝑋2 = 𝜎𝜎𝑇𝑇2 + 𝜎𝜎𝐸𝐸2  (11). 

If g and h are parallel measures, then 

M(Tg) = M(Th)        (12), 

S(Tg) = S(Th)        (13), and 

𝑟𝑟𝑇𝑇𝑔𝑔,𝑇𝑇ℎ = 1.0        (14). 

Equation 11 states that the total observed variance of X is equal to a unit-weighted composite of 
the true score variance and the error score variance. Equations 12 and 13 state that true scores on 
parallel tests have equal means and equal variances. Finally, equation 14 states that true scores 
on parallel tests will be perfectly correlated with one another. 

1.4.2.4 Reliability Index, Reliability Coefficient, and the Standard Error of Measurement 

Reliability refers to the consistency or stability of measurements. Under CTT, information about 
the reliability of items and tests is provided by the reliability index, reliability coefficient, and the 
standard error of measurement. 

Reliability index. The correlation between observed scores and true scores is referred to 
as the reliability index. Using equations 5 through 14, it is possible to show: 

𝜌𝜌𝑋𝑋𝑋𝑋 = 𝜎𝜎𝑇𝑇
𝜎𝜎𝑋𝑋

 (15). 

Thus, the correlation between true scores (T) and observed scores (X) is equal to the ratio of the 
true score standard deviation to the observed score standard deviation. Although the reliability 
index is psychometrically interesting, it is practically useless because true scores are unobserved 
and thus cannot be used to estimate this correlation coefficient (Crocker & Algina, 1986). 

Reliability coefficient. A more practical correlation may be obtained using scores from 
two parallel measures, g and h. This correlation is referred to as a reliability coefficient and is 
equal to: 

𝜌𝜌𝑋𝑋𝑔𝑔𝑋𝑋ℎ = 𝜎𝜎𝑇𝑇
2

𝜎𝜎𝑋𝑋
2  (16), 
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indicating that that reliability is equal to the ratio of true variance to total variance. Recall that 
the total variance is equal to the sum of the error variance and true variance. Thus, equation 16 
may be rewritten as: 

𝜌𝜌𝑋𝑋𝑔𝑔𝑋𝑋ℎ = 𝜎𝜎𝑇𝑇
2

𝜎𝜎𝑇𝑇
2+𝜎𝜎𝐸𝐸

2 (17). 

The reliability coefficient may simply be denoted 𝜌𝜌𝑋𝑋𝑋𝑋. When 𝜌𝜌𝑋𝑋𝑋𝑋= 1, the test is perfectly reliable 
indicating that true observed scores provide perfect approximations of true scores (i.e., 100% of 
the observed score variance is attributed to variance in true scores). When 𝜌𝜌𝑋𝑋𝑋𝑋= 0, the test is 
perfectly unreliable, suggesting that 100% of the observed variance is attributed to random error 
variance. Finally, we see that the reliability coefficient is equal to the square of the reliability 
index: 

(𝜌𝜌𝑋𝑋𝑋𝑋)2 = 𝜌𝜌𝑋𝑋𝑋𝑋 (18). 

Standard error of measurement. Although we typically think of reliability coefficient as 
the ratio of true variance to total variance, we can use equations 5 through 14 to show that the 
reliability coefficient is also equivalent to: 

𝜌𝜌𝑋𝑋𝑋𝑋 = 1 − 𝜎𝜎𝐸𝐸
2

𝜎𝜎𝑋𝑋
2  (19). 

Solving equation 19 for 𝜎𝜎𝐸𝐸2 yields: 

𝜎𝜎𝐸𝐸2 =  𝜎𝜎𝑋𝑋2(1 − 𝜌𝜌𝑋𝑋𝑋𝑋) (20). 

Taking the square root of equation 20 yields the standard error of measurement (i.e., standard 
deviation of the error scores): 

𝜎𝜎𝐸𝐸 =  𝜎𝜎𝑋𝑋�1 − 𝜌𝜌𝑋𝑋𝑋𝑋 (21). 

Under the CTT model, the standard error of measurement is a single (i.e., constant) value is 
uniformly applied to all examinees and may be used to build confidence intervals around 
examinees’ observed scores. Such confidence intervals may be useful for estimating “how far the 
true score may lie from an observed score for an average examinee in the population” (Crocker 
& Algina, 1986, p.124). 

1.4.3. Psychometric Evaluation of Items and Tests 

1.4.3.1 Item-Level Evaluations 

Item difficulty. In classical test theory (CTT), item difficulty is defined as the relative 
frequency of individuals endorsing the “correct” or “keyed” item response alternative (Allen & 
Yen, 1979; Ghiselli, Campbell, & Zedeck,1981; Lord & Novick, 1968). The label, item 
difficulty, is a bit of a misnomer as higher item difficulty values actually imply an easier item. 
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For example, an item difficulty of .10 indicates that only 10% of the sample endorsed the correct 
response, thus indicating a relatively difficult item. In contrast, an item difficulty of .90 indicates 
that 90% of the sample endorsed the correct response, thus indicating a relatively easy item. As 
Allen and Yen (1979) noted, “The words difficulty and correct are best suited for discussions of 
ability or achievement tests. If a personality test is being developed, a “correct” response is a 
response that counts toward the trait and the “difficulty” of an item reflects the popularity of the 
“correct” response-that is, the proportion of examinees who chose this response” (pp. 120-121). 
With dichotomously scored items, the difficulty values are simply the item means, labeled as p-
values, to denote the probability of endorsing the correct or keyed item response. In addition, the 
phrase “item split” is used to denote the likelihood of endorsing the correct response relative to 
the incorrect response. For example, an item with a .05-.95 split, indicates 5% of the sample 
endorsed the “correct” answer and 95% selected the incorrect answer. 

Item discrimination. In CTT, item discrimination is defined as the extent to which an item 
is effective at distinguishing between different levels of the focal construct (e.g., relatively high 
levels of cognitive ability vs. relatively low levels of cognitive ability). There are several ways to 
estimate item discrimination. The item-discrimination index for a given item, g, is given by the 
differences in p-values between individuals with high scores (i.e., upper end of the distribution) 
and individuals with low scores (i.e., lower end of the distribution): 

dg = pu – pl (22), 

where pu is the proportion of individuals in the upper group who correctly answered item g, and 
pl is the proportion of individuals in the lower group who incorrectly answered item g. In order 
to compute dg, researchers must identify cut-points that will be used to create the groups 
comprising the upper and lower score groups. As Allen and Yen (1979) noted, “Upper and lower 
ranges generally are defined as the upper and lower 10% to 33% of the sample, with examinees 
ordered on the basis of their total test scores.” If test scores are normally distributed, it is 
recommended that researchers set cut-points to include the upper 27% and lower 27% of 
examinees. 

An alternative index of discrimination is provided by the correlation between an item and the 
total test score-the item-total correlation. A positive correlation indicates a properly functioning 
item (i.e., as scores on the test increase, so too does the probability of endorsing the correct 
item). For dichotomously scored items, there are two options for computing item-total 
correlations: point-biserial correlations and biserial correlations. The item-total point-biserial 
correlation is simply a product-moment correlation and represents the appropriate statistic to 
compute when one has a continuous variable (e.g., total test score) and a truly dichotomous 
variable (e.g., sex). One limitation of this statistic is that it does not assume a typical range of 
values, but rather is constrained to take on values between -.80 and +.80. The maximum 
correlation of ~.80 is only observed when the dichotomously scored variable has a p-value (i.e., 
item difficulty) near .50 (Nunnally & Bernstein, 1994). As the p-values (i.e., item difficulties) 
become more extreme, the functional range of item-total point-biserial correlations becomes 
further restricted. For example, items with a p-value of .10, have a maximum point-biserial 
correlation of ~.50. 
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In contrast, if one is able to assume that the underlying construct distribution is normally 
distributed, it is appropriate to estimate the item-total biserial correlation, which assumes the 
typical range of values for correlation coefficients (i.e., -1.0 to +1.0). Some researchers believe 
that the added benefits of the biserial correlation are offset by it having greater sampling error, 
which is less of a concern with access to large samples. Lord and Novick (1968) summarized the 
coefficients thusly, “The point biserial correlation gives the actual product moment correlation 
between test score, or external criterion, and item. We may view the biserial simply as another 
measure of association, one different from the product moment correlation. The biserial is widely 
used because it is hoped that the biserial will demonstrate a type of invariance from one group of 
examinees to another not provided by the point biserial” (p. 341). Ultimately, it comes down to 
the comfort level of the researcher. If there is a continuous, but skewed, latent distribution then 
using the point-biserial will potentially yield a biased estimate because it assumes the latent 
distribution is not continuous. However, so too would using the biserial correlation, because it 
assumes the latent distribution is normal. In summary, if a researcher has a dichotomously scored 
item (e.g., correct vs. incorrect) and the underlying latent construct is presumed to be 
continuously and normally distributed, the biserial correlation is preferred. In contrast, if a 
researcher has a dichotomously scored item (e.g., White vs. Black) and the latent construct is 
presumed to be dichotomous, then the point-biserial correlation is preferred. When in doubt, one 
could always compute and report both types of correlations. 

Another concern with item-total correlations is that estimates will be larger whenever the focal 
item is included as part of the overall composite (i.e., total) score. Thus, some researchers prefer 
to compute the “corrected” item-total correlation between an item, g, and a total test score 
computed after first excluding the focal item from the total test score. 

Finally, with multiple choice tests, it is useful to examine how examinees in different ability 
groups endorse each of the item responses. For cognitive tests, the incorrect answers are referred 
to as distractors. By endorsement patterns for both the keyed responses and the distractor 
responses, it is possible to identify response options that may require revisions. For example, if a 
distractor is regularly endorsed by members of the upper ability group but rarely endorsed by 
members of the lower ability group, then it is in need of revision. 

Item reliability index. In CTT, the item reliability index is defined as the product of the 
correlation between the focal item and the total score (i.e., item-total correlation) and the 
standard deviation of the focal item. The item reliability index essentially weights item 
discrimination by the magnitude of item variability. 

• When the goal is to select items for a test that will maximize estimates of internal 
consistency reliability, then researchers should select items with a range of standard 
deviations and positive item-total correlations (see pp. 125-126; Allen & Yen, 1979). 

Item validity and item validity index. In CTT, item validity is defined as the extent to 
which item responses predict some relevant criterion variable. The simplest estimates of item 
validity are simply bivariate correlations between each item and the criterion variable, denoted 
item-criterion correlations. Different types of coefficients are appropriate when estimating item-
criterion correlations, conditional on the type of item and type of criterion variable involved 
(e.g., biserial, point-biserial, polyserial, polychoric, tetrachoric, phi). In addition, researchers may 
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also compute the item validity index which is defined as the product of the correlation between 
the focal item and the criterion variable (i.e., item-criterion correlation) and the standard 
deviation of the focal item. The item validity index essentially weights item validities by the 
magnitude of item variability. 

• When the goal is to select items that will maximize the predictive validity the test, then 
researchers should select items with a wide range of item-reliability index values and 
positive values for item-criterion correlations (see pp. 125-126; Allen and Yen, 1979). 

1.4.3.2 Test-Level Evaluations 

In addition to undertaking item analyses, researchers will want to examine the psychometric 
quality of the items as a set, that is researchers should also plan to undertake psychometric and 
validity analyses as part of the test level evaluation process. Under the CTT framework, test-
level evaluations may include the estimation of reliability coefficients, fitting data to exploratory 
and/or confirmatory factor analyses, and the accumulating validity evidence for the test by 
examining patterns of correlations with external variables. 

Internal consistency. In evaluating the internal consistency reliability (i.e., item 
interrelatedness; Cho & Kim, 2015) of a test, the most frequently used estimate has been 
Cronbach’s coefficient alpha (Cronbach, 1951). However, a number of researchers have long 
lamented the misuses and misinterpretations of coefficient alpha (Cho & Kim, 2015; Cortina, 
1993;  McNeish, 2018). There is growing consensus that coefficient alpha should only be used 
when its accompanying statistical assumptions are likely to be met. As McNeish (2018) noted, 
there are four basic assumptions that must be met in order to justify the use of coefficient alpha 
as an estimate of internal consistency reliability. First, the items should be considered tau-
equivalent, implying that “each item on a scale contributes equally to the total scale score” (p. 
415). Analytically, the tau equivalence assumption could be tested by examining the factor 
loadings in an exploratory factor analysis by extracting a single factor and examining the 
standardized loadings to ensure they are all roughly equivalent. Alternatively, if researchers were 
conducting a confirmatory factor analysis, they could simply compare two nested models. Model 
1 would freely estimate all factor loadings and Model 2 would constrain all loadings to be fixed 
to a common estimate. A chi square difference test could be used to determine whether there was 
a statistically significant difference in the fit between the data and Model 1 (i.e., the congeneric 
item model) versus Model 2 (i.e., the tau-equivalent item model). If the chi square test is 
statistically significant, then the researcher may infer the congeneric item model was a better fit 
to the data than the more restrictive tau-equivalent item model.  If the chi square test is non-
significant, then the researcher may infer that the tau-equivalent model is a statistically 
reasonable/plausible model for explaining the data covariance structure.. 

The second assumption underlying the use of coefficient alpha is that the items are measured on 
a continuous scale that is normally distributed (McNeish, 2018). Given that most items used in 
psychological research are, at best, measured on an interval scale (e.g., Likert-type response 
scales), it is possible to base estimates of coefficient alpha using “a polychoric covariance (or 
correlation) matrix rather than a Pearson covariance matrix” (p. 415). Use of the polychoric 
matrices is predicated on the assumption that the latent construct that is the target of 
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measurement is normally distributed. If this assumption is tenable, then use of the polychoric 
matrices provides a more accurate estimate of alpha when the item scaling is discrete. 

The third assumption of coefficient alpha is that the errors on a test are pairwise uncorrelated 
(McNeish, 2018). Unfortunately, there are many instances where researchers may unknowingly 
violate this basic assumption. For example, correlated errors may be engendered by “…the order 
of items on the scale (Cronbach & Shavelson, 204; Green & Hershberger, 2000), speeded tests 
(Rozeboom, 1966), transient response where feelings or opinions may change over the course of 
the scale (Becker, 2000; Green, 2003), or unmodeled multidimensionality of a scale (Steinberg & 
Thissen, 1996)” (McNeish, 2018). It is possible to examine the extent to which this assumption 
may be violated by requested modification indices when fitting data to a single factor 
confirmatory factor analysis. Researchers can examine these indices to determine whether 
violations of this assumption seem likely. 

The fourth and final assumption underlying the use of coefficient alpha is that that the items are 
measuring a single, unidimensional construct (McNeish, 2018). As Cortina (1993) convincingly 
demonstrated, it is possible to obtain high estimates of coefficient alpha, even when the 
underlying data are multidimensional. Thus, the assumption of undimensionality must be met 
prior to using coefficient alpha to estimate internal consistency reliability. This assumption may 
be tested using factor analysis. 

• Researchers should only estimate internal consistency reliability using coefficient alpha 
after first confirming that the data appear to meet the requisite assumptions. 

When the data do not support the use of coefficient alpha, researchers are encouraged to estimate 
internal consistency reliability using more appropriate statistics. The most commonly 
recommended alternative is composite reliability based upon coefficient omega (McDonald, 
2000). McNeish (2018) reviewed several different variants of omega that are appropriate when 
items are congenric (i.e., omega total) and when the items are not truly unidimensional but rather 
may be measuring “additional minor dimensions” (i.e., omega hierarchical). For additional 
details on when alpha or alternatives may be most appropriate, the reader is directed to Cho 
(2016), Cho and Kim (2015), Cortina (1993), McDonald (2000), and McNeish (2018). For a 
discussion of how to select appropriate estimates of reliability as a function of item type (i.e., 
parallel vs. tau-equivalent vs. congeneric) and scale dimensionality (i.e., unidimensional vs. 
multidimensional), the reader is strongly encouraged to consult Cho (2016); see also alternative 
statistics discussed in McNeish (2018). 

• When the assumptions of coefficient alpha are not tenable, internal consistency reliability 
should be estimated using appropriate alternatives. 

• When data are multidimensional, researchers should consider estimating the 
multidimensional version of omega (Cho & Kim 2015; McDonald, 2000; McNeish, 
2018) or stratified alpha (Cho & Kim, 2015). 

• When data are congeneric, researchers should consider estimating the 
unidimensional version of omega (Cho & Kim, 2015) or coefficient H (McNeish, 
2018). 
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Temporal Stability. Whereas internal consistency reliability is concerned with the 
relatedness of each item on a test (Cho & Kim, 2015), temporal stability/reliability is concerned 
with the consistency of test scores across repeated testings (Allen & Yen, 1979). Estimating 
temporal stability presumes that the focal construct should be relatively stable/invariant over the 
time frame being examined. There is not a single, recommended time lag to use in a test-retest 
design.  As Crocker and Algina (1986) noted, “There is no single answer. The time period should 
be long enough to allow effects of memory or practice to fade but not so long as to allow 
maturational or historical changes to occur in the examinees’ true scores” (p. 133).  In some 
instances, a lag of two or three weeks may be sufficient, in other instances the researcher may 
decide to implement a longer time lag.   

Historically, temporal stability has been estimated by administering the same test to the same 
group of examinees at different points in time. However, DeSimone (2015) identified several 
problems with this strategy. First, this approach is effectively ignoring item-level psychometric 
information. Because the test-retest correlation is a function of the total test score (i.e., composite 
of all items), it could be masking individual items that may be problematic. Second, this 
approach to estimating reliability may be considered a form of the logical fallacy called 
“affirming the consequent” (see DeSimone, 2015, p. 135). Specifically, a high estimate of 
temporal stability could be obtained because the item-level relationships are consistent across 
time or the estimate could be engendered by different response patterns that result in a similar 
total score. To illustrate this problem, DeSimone (2015, p. 135) used the following example: 

If a respondent’s item responses on a sum-scored, five-item, five-option, Likert-based 
questionnaire are 2, 2, 3, 5, 4 at Administration 1 (A1) and 5, 4, 4, 1, 2 at Administration 
2 (A2), the scale score remains identical (16) across both administrations. 

Thus, to rectify both of these problems, DeSimone (2015) recommends examining both the 
scale-level and item-level patterns of stability. At the item level, researchers may compute a 
variant on the standardized root mean-square residual (SRMR) focused on temporal consistency 
(TC): 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇 = �∑ (𝑟𝑟𝑔𝑔1−𝑟𝑟𝑔𝑔2)2

𝐾𝐾
𝐾𝐾
𝑔𝑔=1   (23), 

where rg1 and rg2 refer to the g=1 to K diagonal item-level diagonal correlations at time 1 and 
time 2. Estimates may range “from zero to one, with lower values indicating more similarity 
between inter-item correlation matrices” (p.135, DeSimone, 2015). Alternatively, researchers 
could compare the temporal stability of items and test scores using methods that have 
traditionally been applied to tests of factor invariance or equivalence (see DeSimone, 2015 for a 
more detailed discussion). 

• Researchers interested in obtaining estimates of temporal stability should compute 
estimates at both the scale and item level (e.g., SRMRTC; DeSimone, 2015) and/or 
examine temporal stability using tests of measurement invariance/equivalence. 

Finally, DeSimone (2015) discusses a new statistic developed to identify respondent-level 
temporal inconsistency, denoted Dptc. Importantly, this new statistic can account for examinees 
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who put forth insufficient effort when responding to tests (e.g., provide the same answer to 
multiple items without reading the items), even when tests do not include items specifically 
designed to capture this phenomenon. 

• Researchers are encouraged to estimate Dptc when there are concerns examinees may 
have exerted insufficient effort during the testing process. 

Standards for reliability. Many researchers invoke a minimum threshold for acceptable 
reliability of .70 and reference Nunnally (1978) as support for using this threshold. However, as 
Lance, Butts, and Michels (2006) noted, this threshold and reference represent a form of 
methodological urban myth that, unfortunately, has been perpetuated over the last 40 years. 
Instead, when discussing standards for reliability, Nunnally’s (1978) actually stated: 

“In the early stages of research…one saves time and energy by working with instruments 
that have only modest reliability, for which purpose reliabilities of .70 or higher will 
suffice…In contrast to the standards in basic research, in many applied settings a 
reliability of .80 is not nearly high enough. In basic research, the concern is with the size 
of correlations and with the differences in means for different experimental treatments, 
for which purposes a reliability of .80 for the different measures is adequate. In many 
applied problems, a great deal hinges on the exact score made by a person on a test…In 
such instances it is frightening to think that any measurement error is permitted. Even 
with a reliability of .90, the standard error of measurement is almost one-third as large as 
the standard deviation of the test scores. In those applied settings where important 
decisions are made with respect to specific test scores, a reliability of .90 is the minimum 
that should be tolerated, and a reliability of .95 should be considered the desirable 
standard.” (pp. 245-246) 

This guidance was reiterated in Nunnally and Bernstein (1994) (see. p. 265) and is consistent 
with other recommendations concerning the use of tests and measures that will be used in 
practice. For example: 

• “[desirable reliability coefficients] usually fall in the .80s or .90s” (p. 78; Anastasi, 1968). 
• “If a procedure is to be used to compare one individual with another, reliability should be 

above .90” (p. 145; Cascio & Aguinis, 2019). 
• “Following the leadership of T. L. Kelley there has been general agreement that to be 

sufficiently reliable for discriminating very accurately between individuals, a test should 
have a minimum reliability coefficient of at least .94. Some have been more liberal in this 
regard, allowing a minimum of .90.” (Guilford & Fruchter, 1973, p. 91). 

• “the minimum acceptable level of reliability for psychological measures in the early 
stages of development is .70 (Nunnally, 1978). Higher levels may be required of 
measures . . . used in advanced field research and practice.” (LeBreton & Senter, 2008, p. 
839) 

• Researchers who will be using test scores to draw inferences about specific individuals in 
applied settings (e.g., whom to hire, fire, promote, reward, or punish) should strive to 
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draw those inferences from highly reliable tests-estimates of reliability should be .90 or 
higher. 

• Researchers who will be using test scores to draw general inferences about group 
differences or who will be drawing inferences from tests that are in the early stages of 
development (i.e., basic research) should strive to draw those inferences from tests with 
at least moderate levels of reliability-estimates should exceed .65. 

Factor analysis. Factor analysis is a term used to refer to a broad set of statistical 
procedures that are applied to the correlations or covariances between variables (i.e., items or 
preferably, between tests or subtest comprised of multiple items). The purpose of factor analysis 
is to determine whether the covariances between the set of variables may be represented using a 
smaller number of latent variables or dimensions, denoted factors. Essentially, factor analysis 
involves decomposing the observed covariance matrix into component matrices representing 
different sources of variance: error (co)variance and factor (i.e., true score) (co)variance. The 
fundamental equation of factor analysis is given as follows: 

Σ = ΛΦΛ′ + Θ  (24), 

where, Σ is a K by K covariance or correlation matrix for the observed items, Λ is a K by P matrix 
of factor loadings where P < K, Φ is a P by P covariance or correlation matrix for the P latent 
factors, Λ′ is simply the transpose of the original Λ matrix, and Θ is a K by K matrix with error 
variances on the major diagonal and zeros in the off-diagonal elements (Long, 1983; Mulaik, 2009). 
Although a number of different heuristics have been offered for guiding the interpretation of 
factor/component loadings, Tabachnick and Fidell (2013) provided a nice discussion of interpreting 
factor loadings: 

“As a rule of thumb, only variables with loadings of .32 and above are interpreted. The 
greater the loading, the more the variable is a pure measure of the factor. Comery and Lee 
(1992) suggest that loadings in excess of .71 (50% overlapping variance) are considered 
excellent, .63 (40% overlapping variance) very good, .55 (30% overlapping variance) 
good, .45 (20% overlapping variance) fair, and .32 (10% overlapping variance) poor. 
Choice of the cutoff for size of loading to be interpreted is a matter of researcher 
preference” (p. 654). 

If the items being analyzed were designed to measure a single factor, then the Φ matrix is expected  
to drop from the equation-but this can be tested empirically by extracting different numbers of  
factors and comparing the fit of single factor and multifactor models. If the items being analyzed  
were designed to measure multiple factors, then the Φ matrix is likely to be retained. In addition,  
when multiple factors are measured, one hopes that the estimated Λ matrix conforms to a pattern  
known as simple structure (i.e., when each item has a strong loading on a single factor a zero or  
near zero loadings on all remaining factors). 

Exploratory factor analysis. In the early stages of test development and validation, it is 
common for researchers to conduct an exploratory factor analysis (EFA) on the items 
comprising the test. An EFA is so named because it contains minimum constraints and thus 
involves estimating nearly all of the elements comprising the right-hand side of equation 24. The 
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only constraints placed on the model are the number of factors extracted and diagonal structure 
of the error matrix, Θ. EFA is typically used in the early stages of scale development and 
validation by researchers striving to identify items that fail to load on the appropriate factor, or 
that might load on multiple factors (Allen & Yen, 1979; Hinkin, 1998). 

Fabrigar, Wegener, MacCallum, and Strahan (1999) identified five methodological decisions or 
issues that must be addressed by researchers opting to use EFA. Below these issues are 
summarized, and where appropriate, additional guidance is offered. 

1. Researchers must determine the variables to include and the sample to analyze. 

The reader is directed to earlier portions of this report discussing variable and sample selection. 
In addition, Velicer and Fava (1998) provide excellent suggestions concerning the impact of 
variable and subject sampling on the accuracy of EFA results. 

2. Researchers must determine whether EFA is really the most appropriate analysis. 

Fabrigar et al. (1999) noted that researchers sometime incorrectly use EFA when other 
procedures might be more appropriate. Recall that the purpose of EFA is to discover the number 
of latent factors underlying an observed covariance matrix and to estimate the pattern of factor 
loadings. In doing so, researchers are functionally partitioning the observed covariance matrix, Σ, 
into a portion engendered by a (common) set of latent constructs, ΛΦΛ^', and a portion that may 
be attributed to (unique) item-specific measurement error, Θ. 

In contrast, principal component analysis (PCA) does not distinguish between common 
(construct) and unique (error) sources of variance. Instead, this approach strives to create a set of 
observed “components” that are mathematically defined as a weighted linear combination of the 
observed items. Thus, PCA is optimally suited for creating variance maximizing weighted linear 
composites (Fabrigar et al., 1999; Tatsuoka & Lohnes, 1988). Thus, researchers interested in 
(exploring or testing) the factor structure of a measure are encouraged to stay away from PCA 
and instead explore whether whether EFA or a confirmatory factor analysis (CFA) may be more 
appropriate. CFA is briefly discussed in the next section of the report. 

3. Researchers must determine the specific procedures that will be used to fit the model. 

A number of different methods exist for extracting latent factors from the observed covariance 
matrix, including: principal axis with prior estimation of communalities, iterative principal axis, 
maximum likelihood, alpha, minimum residual, image, generalized least squares, and 
unweighted least squares. Each of these methods seeks to extract factors by minimizing or 
maximizing some target function. For example, alpha factoring extracts factors with the goal of 
maximizing coefficient alpha and unweighted least squares strives to minimize the squared 
differences between the original sample covariance matrix and the covariance matrix that is 
estimated (i.e., reproduced) after estimating the elements on the right-hand side of equation 24. 
More detailed discussions of these methods are available in Fabrigar et al. (1999), Tabachnick 
and Fidell (2013), Mulaik (2009), Tatsuoka and Lohnes (1988), and Velicer and Fava (1998). 

4. Researchers must determine how many factors to extract. Although multiple 
approaches exist, parallel analysis likely offers the most accurate results. 
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Prior to using the above methods to extract factors and compute factor loadings, researchers must 
first determine how many factors they wish to extract. Multiple methods exist including: scree 
plots, Kaiser’s criterion, and parallel analysis. Although each of these techniques have their 
strengths and limitations, there is growing consensus that parallel analysis (Horn, 1965) provides 
the most accurate conclusions regarding the number of factors to retain. Hayton, Allen, and 
Scarpello (2004) provided a brief review of the criteria used to determine the number factors and 
offer a step-by-step guide to undertaking a parallel analysis. 

5. Determining the method used to rotate the initial factor solution. 

After determining how many factors to extract and how to estimate the loadings of the items onto 
those factors, researchers may also wish to rotate the initial factor solution. Rotations are a tool 
that researchers can use to help improve the interpretability of the factor analysis. Functionally, 
rotations involve redefining the latent factor, and thus the relationship between the latent factor 
and the observed items. Thus, rotation serves to change the magnitude and pattern of the initial 
factor loadings, with the goal of improving the interpretation of the loading matrix. Rotations 
may allow the latent factors to correlate (oblique) or constrain them to be uncorrelated 
(orthogonal; see Mulaik, 2009; for a less technical treatment see Tabachnick & Fidell, 2013). For 
example, the first unrotated component from a PCA applied to a set of cognitive tests (e.g., 
ASVAB scores) will often yield evidence for a single dominant component – sometimes 
denoted, “g” to represent general mental ability. However, rotating the original solution is likely 
to result in an alternative representation of the data. For example, applying rotations to a set of 
cognitive tests is likely to reveal clusters of tests that are designed to measure common attributes 
(e.g., verbal ability, quantitative ability, spacial ability).  

Confirmatory factor analysis. As noted earlier, researchers may also opt to estimate a 
confirmatory factor analysis or CFA. A CFA is similar to an EFA, but rather than allowing the 
computer to “explore” the data to determine the number of latent factors and the pattern of factor 
loadings, researchers impose a series of constraints on the elements comprising equation 24. 
Thus, researchers create an a priori model based on a set of restrictions or constrains applied to 
equation 24 and then test (i.e., confirm or disconfirm) the fit of that model to the data. 
Constraints that may be imposed included: number of factors to extract, pattern of factor 
loadings, equivalence (or lack thereof) of factor loadings or error variances, and pattern of inter-
factor correlations (see Long, 1983). Because of the degree of specificity needed when 
identifying the constraints for a CFA, this procedure is typically invoked later in the scale 
development and validation process (Fabrigar et al., 1999)-after researchers have a better 
conceptual and empirical understanding of how their items are related to the latent construct(s). 

Statistically, a CFA involves estimating the elements of equation 24 after the researcher has 
imposed the necessary constraints on Λ, Φ, and Θ. Those matrices are then used to compute a 
reproduced (or estimated) covariance (or correlation) matrix, Σ ̂. This matrix is then compared to 
the original covariance (or correlation) matrix to determine whether the constrained model is 
consistent with the data. If there is a strong “fit” between the reproduced matrix and the original 
matrix, then one may conclude that the constrained model is consistent with the data. It is 
important to recognize that multiple models may engender similar levels of “fit.” Thus, if there is 
strong fit between the model and the data, one can only infer that the model is consistent with the 
data, not that the model is proven to be the one, correct model. A number of fit statistics are 
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available to researchers. For a detailed review and critique, the interested reader is directed to: 
Benter (1990), Browne and Cudeck (1993), Hayakawa (2018), Mulaik, James, Van Alstine, 
Bennett, Lind, and Stilwell (1989), Widaman and Thompson (2003); for a discussion 
surrounding the accurate interpretation of model fit statistics see Lance et al. (2006). 

• Researchers should report the multiple goodness-of-fit indexes when using CFA. 

• Researchers should report corrected goodness-of-fit indexes when the number of manifest 
indicators (i.e., items/tests) is large relative to the sample size (see Hayakawa, 2019). 

1.5 Using Item Response Theory to Evaluate Items and Build Tests 

1.5.1. Overview of Item Response Theory  

1.5.1.1 Typical Assumptions of Item Response Theory 

Unidimesionality. Most Overview of Item Response Theory (IRT) models are predicated 
on the assumption that a set of items is designed to measure a single latent construct (i.e., the 
correlations between items may be accounted for by a single construct; Crocker & Algina, 1986). 
This assumption of unidimensionality is rarely met in practice because responses to any given 
set of items is likely to be influenced by a host of secondary constructs including cognitive, 
personality, and test-taking factors. However, Hambleton, Swaminathan, and Rogers (1991) 
suggested that one may conclude that the unidiminsionality assumption has been satisfied when 
there is “the presence of a “dominant” component or factor that influences test performance” (p. 
9). Although it is important to test for unidimensionality, researchers have concluded that “IRT 
model parameter estimation is fairly robust to minor violations of unidimensionality, especially 
if the latent-trait dimensions (factors) are highly correlated or if secondary dimensions are 
relatively small” (p. 231; Embretson & Reise, 2000). 

• Researchers should test the assumption of unidimensionality to ensure that there is a 
“dominant” latent factor that appears to strongly influence test performance. 

• Undimensionality may be tested using EFA, CFA, parallel analysis, modified parallel 
analysis, (see prior sections on EFA/CFA for references) or categorical principal 
components analysis (Mair, 2018). 

Local independence. IRT models also assume that when the constructs “influencing test 
performance are held constant, examinees’ responses to any pair of items are statistically 
independent” (Hambleton et al., 1991, p. 10). This assumption of local independence essentially 
states that after accounting for the latent construct of interest, there should be no residual 
covariance remaining between pairs of items. If one’s data are unidimensional, then, by 
definition, they are locally independent and these concepts become one in the same (Lord & 
Novick, 1968). However, it is possible to achieve local independence when data are 
multidimensional, given that the complete set of latent constructs influencing test performance 
has been identified/specified (de Ayala, 2009; Hambleton et al., 1991). 

Several authors have suggested that Yen’s (1993) Q3 statistic is a reasonable statistic to use 
when testing for local independence (de Ayala, 2009; Embretson & Reise, 2000; This statistic is 
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essentially “the correlation between the residuals for pairs of items” (de Ayala, 2009, p. 132). It 
is computed by first estimating the item-level residuals by subtracting the estimated item 
responses from the actual item responses: 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑋𝑋𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑔𝑔(𝜃𝜃�𝑖𝑖) (25), 

𝑑𝑑𝑖𝑖ℎ = 𝑋𝑋𝑖𝑖ℎ − 𝑝𝑝ℎ(𝜃𝜃�𝑖𝑖) (26), 

where, 𝑑𝑑𝑖𝑖𝑖𝑖and 𝑑𝑑𝑖𝑖ℎ refer to the residuals for person i on obtained difference observed scores on 
items g and h from the predicted scores, 𝑝𝑝𝑔𝑔�𝜃𝜃�𝑖𝑖� and 𝑝𝑝ℎ(𝜃𝜃�𝑖𝑖). The Q3 statistic is estimated by 
pairwise correlating these residuals across the g = 1 to K items on the test: 

𝑄𝑄3𝑔𝑔ℎ=𝑟𝑟𝑑𝑑𝑔𝑔𝑑𝑑ℎ  (27). 

As Embretson and Reise (2000) noted, “the expected value of Q3 under the hypothesis of local 
independence is -1/(N-1). Thus, in large samples a researcher would expect Q3 to be around zero 
and large positive values indicate item pairs that share some other factor that may be a cause for 
concern” (p. 232). Chen and Thissen (1997) found that the Q3 statistic was more powerful to 
detect underlying local dependence compared to several alternative statistics, including the Local 
Dependence square (𝐿𝐿𝐿𝐿 − 𝜒𝜒2), and was equally powerful for detecting surface local dependence. 
Item pairs with 𝐿𝐿𝐿𝐿 − 𝜒𝜒2 > 10 should be examined for possible violations of the local 
independence assumption (Cole & Paek, 2020). 

• Researchers are encouraged to formally test the assumption of local independence using 
statistics such as Q3 or 𝐿𝐿𝐿𝐿 − 𝜒𝜒2. 

Item characteristic curves. As Embretson and Reise (2000) noted, in addition to the 
assumption of local independence, IRT models are predicated on the assumption that “the item 
characteristic curves have a specified form” (p. 45). The item characteristic curve (or ICC) may 
be thought of as the “basic building block of item response theory” (Baker & Kim, 2017, p. 3). It 
represents the foundation upon which all aspects of IRT are built. ICCs provide a graphical 
depiction of the relationship between the latent construct, denoted θ, and the probability of 
selecting a particular response alternative on the focal item, 𝑝𝑝𝑔𝑔. Whereas CTT assumes that the 
relationship between an item and the latent construct is linear, IRT relaxes this assumption to 
allow for non-linear relationships between items and the latent construct. Visually, ICCs may be 
represented as the nonlinear regression of the probability that a response option is selected (pg) 
onto the latent trait (𝜃𝜃; which is typically assumed to have M= 0 and sd = 1). Different IRT 
models invoke distinct assumptions about the nature of the item-construct relationship. As a 
result, different models yield different ICCs. However, irrespective of the particular model 
selected, all ICCs are a function of at least two item parameters: item difficulty and item 
discrimination. Although these labels were used in CTT, they are defined differently in IRT. 

1.5.1.2 Item Difficulty 

In IRT, item difficulty is defined as the level of the latent trait where the probability of endorsing 
the correct or keyed item response is .50 (Hambelton, Swaminathn, & Rogers, 1991) and for any 
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given focal item, Xg, this parameter may be denoted bg. Thus, item difficulty serves as a 
“location” parameter that shifts the ICC left or right along the construct continuum (Embretson 
& Reise, 2000). 

1.5.1.3 Item Discrimination 

In IRT, item discrimination provides information about the steepness of the ICC when θ = bg. 
This value is denoted ag and is not exactly equal to the slope, but is proportional to it (Hambleton 
et al., 1991). The steeper the slope, the more effective the item is at discriminating between 
examinees falling at different levels of the construct continuum. Here, researchers are looking for 
items with positive item discrimination parameters with larger values indicating that the item is 
more effective at discriminating between individuals falling on different levels of the latent 
construct. Negative item-discrimination parameters, are typically interpreted as indicating that 
the item is miskeyed or simply a problematic item. Negative values indicate that the probability 
of endorsing the keyed item response decreases as levels of the latent construct increase. For 
example, if an item comprising the ASVAB had a negative item discrimination parameter, it 
would indicate that individuals with higher levels of cognitive ability were more likely to 
endorse the incorrect item response. Bear in mind that slopes represent discrimination. The item 
difficulty represents the location on the construct continuum. So, researchers would want to vary 
item difficulty levels if they were building a general test designed to tell them about a wide range 
of scores. In contrast, if they were only interested in maximizing the discrimination of a single 
point on the construct continuum, then they would only want to select items with difficulty levels 
near that level of the construct. 

1.5.1.4 Examples of Item Characteristic Curves 

To illustrate how item difficulty and item discrimination parameters impact ICCs, several 
illustrative example ICCs were computed and are described below. Figure 3 contains the ICCs 
for three items with a common (i.e., fixed) level of item difficulty, bg = 0, but with varying levels 
of item discrimination. The common item difficulty indicates that all items have a 50% chance of 
being correctly answered by individuals with a latent trait score of θ = 0. However, these items 
differ in the degree to which they are effective at discriminating between levels of the latent 
construct. The flat line represents an ICC where the item discrimination parameter was set to 0. 
The two remaining ICCs were estimating using discrimination parameters set to values of 1 and 
2. As the magnitude of the item discrimination parameter increases, so too does the slope of the 
curve. Thus, ceteris paribus, an item with a discrimination parameter of 2 does a better job of 
distinguishing between levels of the latent construct compared to an item with a discrimination 
parameter of 1. Figure 4 contains the ICCs for three items with a common discrimination 
parameter, ag = 1, but with varying levels of item difficulty of -2, 0, and +1.5. Thus, each of 
these items provides similar levels of discrimination between levels of the construct, but they 
differ in terms of where this discrimination is going to be optimized.  The item with a difficulty 
of -2.0 provides the greatest discrimination at low levels of the construct.  In contrast, the item 
with a difficulty of 0 provides maximum discrimination in the middle of the construct continuum 
(i.e., at the mean).    
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Figure 3. Three ICCs with Fixed Item Difficulty and Varying Levels of Item Discrimination 

 

 

Figure 4. Illustrative ICCs with Varying Levels of Item Difficulty and Fixed Item 
Discrimination 
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1.5.2. Item Response Models for Dichotomously Scored Items 

1.5.2.1 1-Parameter Logistic Model 

The simplest IRT model for the analysis of dichotomously scored items is the 1-parameter 
logistic model (1PL), which is so named because it only estimates a single item parameter-item 
difficulty. ICCs for the 1PL are based on: 

𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔� = 𝑒𝑒(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔)

1+𝑒𝑒(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔) (28) 

where, 

𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔� = conditional probability that examinee i will endorse the correct or keyed 
response on item g, bg = the difficulty parameter for item g, e = base of the natural logarithm  
𝜃𝜃𝑖𝑖 = score on the latent trait for examinee i. The distribution of 𝜃𝜃𝑖𝑖 is typically assumed to have a 
mean of 0 and standard deviation of 1. 

Although not apparent in equation 28, there is a constant item discrimination parameter, a, which 
is fixed to a value of 1 across all items. An alternative presentation of the 1PL model includes an 
estimated, but fixed item discrimination parameter (i.e., a is estimated rather than constrained to 
unity, but the estimated value is applied to all items). The absence of item-specific subscripts 
indicate the a parameter is fixed to a common value across each of the g items: 

𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔� = 𝑒𝑒(𝑎𝑎(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))

1+𝑒𝑒(𝑎𝑎(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))  (29). 

Some researchers distinguish between equations 28 and 29 using the labels of the Rasch model 
and the 1PL model, respectively. Although the models may be thought of as statistically 
equivalent, there are some conceptual differences between these models. The interested reader is 
directed to pp. 11-19 in de Ayala (2009). 

1.5.2.2 2-Parameter Logistic Model 

One of the most popular models for the analysis of dichotomously scored items is the 2-
parameter logistic model (2PL), which is so named because it yields estimates of two item 
parameters-item difficulty and item discrimination. ICCs for the 2PL are based on: 

𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔,𝑎𝑎𝑔𝑔� = 𝑒𝑒(𝑎𝑎𝑔𝑔(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))

1+𝑒𝑒(𝑎𝑎𝑔𝑔(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))  (30), 

where, 𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔,𝑎𝑎𝑔𝑔� = conditional probability that examinee i will endorse the correct or 
keyed response on item g, bg = the difficulty parameter for item g, ag = the discrimination 
parameter for item g, e = base of the natural logarithm 𝜃𝜃𝑖𝑖 = score on the latent trait for examinee 
i. The distribution of 𝜃𝜃𝑖𝑖 scores is typically assumed to have a mean of 0 and standard deviation of 
1. Because each item is allowed to have a unique discrimination parameter, the steepness of the 
ICCs is allowed to vary across items. 
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1.5.2.3 3-Parameter Logistic Model 

Another popular model for analyzing dichotomously scored items is the 3-parameter logistic 
model (3PL), which is so named because it yields estimates of three item parameters-item 
difficulty, item discrimination, and a lower asymptote or guessing parameter. ICCs for the 3PL 
are based on: 

𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔,𝑎𝑎𝑔𝑔, 𝑐𝑐𝑔𝑔� = 𝑐𝑐𝑔𝑔 + (1 − 𝑐𝑐𝑔𝑔) 𝑒𝑒(𝑎𝑎𝑔𝑔(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))

1+𝑒𝑒(𝑎𝑎𝑔𝑔(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))  (31), 

where, 𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔,𝑎𝑎𝑔𝑔, 𝑐𝑐𝑔𝑔� = conditional probability that examinee i will endorse the 
correct or keyed response on item g,  bg = the difficulty parameter for item g, ag = the 
discrimination parameter for item g, cg = the lower-asymptote or guessing parameter for item g, e 
= base of the natural logarithm, and 𝜃𝜃𝑖𝑖 = score on the latent trait for examinee i. Again, the 
distribution of 𝜃𝜃𝑖𝑖 scores is typically assumed to have a mean of 0 and standard deviation of 1. 

Like ICCs based on the 2PL, the ICCs derived from the 3PL allow each item to assume a unique 
difficulty and discrimination parameter. In addition, the 3PL also allows researchers to adjust the 
floor for the range of conditional probabilities by allowing each item to assume a unique 
guessing parameter.  These guessing parameters provide an estimate of the likelihood of 
endorsing the correct (or keyed) response option, even for examinees with extremely low trait 
levels. For example, if a researcher is using a test that combines multiple choice questions with 
four response alternatives (e.g., A, B, C, D) with multiple choice questions having only two 
response alternatives (e.g., True, False), he or she will likely want to adjust the range of lower 
guessing parameters. In the first instance, respondents have a 25% chance of correctly guessing 
the answer; whereas, in the second instance, respondents have a 50% chance of correctly 
guessing the answer.   

1.5.2.4 4-Parameter Logistic Model 

Another model that may be used with dichotomously scored items is the 4-parameter logistic 
model (4PL). Whereas the 3PL model includes a lower-bound guessing parameter for low ability 
examinees (i.e., a lower asymptote parameter), the 4PL model adds an upper-bound slip 
parameter designed to “accommodate high ability examinees’ mistakes (incorrect answers) due 
to their carelessness or some other reasons” (Paek & Cole, 2020, p. 88): 

𝑃𝑃�𝑋𝑋𝑔𝑔𝑔𝑔 = 1|𝜃𝜃𝑖𝑖 , 𝑏𝑏𝑔𝑔,𝑎𝑎𝑔𝑔, 𝑐𝑐𝑔𝑔,𝑑𝑑𝑔𝑔� = 𝑐𝑐𝑔𝑔 + (𝑑𝑑𝑔𝑔 − 𝑐𝑐𝑔𝑔) 𝑒𝑒(𝑎𝑎𝑔𝑔(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))

1+𝑒𝑒(𝑎𝑎𝑔𝑔(𝜃𝜃𝑖𝑖−𝑏𝑏𝑔𝑔))  (32). 

The item response function for the 4PL model is essentially the 3PL model but instead of setting 
the upper asymptote value to 1, it is estimated as the slip parameter-dg (see also Loken & 
Rulison, 2010). 

1.5.2.5 Other Models 

Polytomous item response models. A number of IRT models are available for modeling 
items with more than two response categories (i.e., polytomously scored items) including: the 
partial credit model (Masters, 1982), the rating scale model (Andrich, 1979), the generalized 
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partial credit model (Muraki, 1992), the graded response model (Samejima, 2010), and the 
nominal response model (Bock, 1972). Due to space constraints, these models are not reviewed 
in the current report. The interested reader is directed to original citations noted above, as well 
as, more recent treatments of these models by: de Ayala (2009), Baker and Kim (2017), 
Embretson and Reise (2000), Mair (2018), or Paek and Cole (2020). The latter book includes the 
R code used to calibrate these models. 

Multidimensional item response models. As the name implies, multidimensional IRT 
models are used when a researcher believes that more than one latent construct is needed to 
describe examinees’ item responses (de Ayala, 2009; Paek & Cole, 2020). Basically, these 
models assume that the latent construct space is multidimensional, or as de Ayala (2009) 
summarized, “…in some situations it may be more realistic to hypothesize that a person’s 
response to an item is due to his or her locations on multiple latent variables” (p. 275). 

Paek and Cole (2020) noted that there are two general families of multidimensional IRT models-
between-item and within-item models. Between-item models are appropriate when each item on 
a test is thought to be influenced by one of several different latent traits. Between-item models 
are sometimes referred to as simple structure models because items are expected to form distinct 
clusters or factors reflecting the different constructs. In contrast, within-item multidimensional 
IRT models are appropriate when responses to the item may be simultaneously influenced by 
multiple latent traits. As such, Paek and Cole (2020) suggested that within-item models might be 
conceptualized as having a “cross-loading item structure” (p. 198). 

A large number of multidimensional IRT models are available. Paek and Cole (2020) provide 
illustrative examples using models based on between-item multidimensionality. Specifically, 
these authors provide the R code for calibrating multidimensional extensions of the 1PL, 2PL, 
3PL, partial credit model, generalized partial credit model, and the grade response model. The 
authors also provide an illustrative example using a multidimensional 2PL model to calibrate 
items based on within-item multidimensionality. The interested reader is directed to de Ayala 
(2009), Mair (2018), and Paek and Cole (2020). 

1.5.3. Evaluating Items and Building Tests 

1.5.3.1 Standard Error of Estimate and Item information 

Standard error of estimate. Under IRT models, researchers are able to generate estimates 
of examinees’ true scores-that is, their standing on the latent construct. Any sample estimate of a 
person’s location on the construct continuum will be subject to error. As de Ayala (2009) noted, 
“…in IRT our uncertainty about a person’s location can be quantified through the estimate’s 
standard error of estimate (SEE), 𝜎𝜎𝑒𝑒(θ�) …the SEE specifies the accuracy of θ�  with respect to 
the person location parameter, 𝜃𝜃” (p.27; italics & bold type added). The SEE is quantitatively 
and qualitatively different from the standard error of measurement from CTT. The latter assumes 
a single, fixed value that is applied to all persons across all levels of the construct continuum. In 
contrast, the SEE varies across different levels of 𝜃𝜃. Thus, it is possible to have very accurate 
estimates of a person’s trait level for some levels of 𝜃𝜃 and less accurate estimates for other levels 
of 𝜃𝜃 (de Ayala, 2009; Embretson & Reise, 2000; Hambleton et al., 1991). 
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Item and test information. Rather than ask about how the degree of variability or error in 
our estimates of a person’s location on the trait continuum changes as we move up or down the 
continuum, we could ask “how much information do we have about a person’s location [on the 
trait continuum]?” (de Alaya, 2009, p. 29). The concept of item information is best understood 
by examining the equation used to estimate item information under the 3PL model: 

𝐼𝐼𝑔𝑔(𝜃𝜃) = 2.89𝑎𝑎𝑔𝑔2(1−𝑐𝑐𝑔𝑔)

�𝑐𝑐𝑔𝑔+𝑒𝑒
1.7𝑎𝑎𝑔𝑔�𝜃𝜃−𝑏𝑏𝑔𝑔��[1+𝑒𝑒−1.7𝑎𝑎𝑔𝑔�𝜃𝜃−𝑏𝑏𝑔𝑔�]2

 (33). 

As Hambleton et al. (1991) noted, “…it is relatively easy to infer the role of the b, a, and c 
parameters in the item information function: (a) information is higher when the b value is close 
to 𝜃𝜃 than when the b value is far from 𝜃𝜃, (b) information is generally higher when the a 
parameter is high, and (c) information increases as the c parameter goes to zero” (p. 91). The 
information function for a set of items (i.e., a test) is simply a unit-weighted sum of the item 
information functions: 

𝐼𝐼(𝜃𝜃) = ∑ 𝐼𝐼𝑔𝑔(𝜃𝜃)𝐾𝐾
𝑔𝑔=1  (34). 

It is important to note that these values are conditional on the level of the latent trait, 𝜃𝜃. Thus, a 
set of items will furnish different levels of information at different levels of the latent trait. 
Figure 5 graphs the item information curves for four items with a common discrimination 
parameter of 1.5 and difficulty parameters with values of -2.0, 0.0, 0.5, and 1.5. From this figure 
it is possible to see the small “humps” in the levels of information correspond exactly to the 
location of the item on the theta continuum (i.e., difficulty parameters). Note that if you wanted 
to build a test that was designed to measure a wide range of theta levels, then you would want to 
include items with varying difficulty levels (i.e., b parameters), because information is 
maximized when the theta level is close to the b parameter.  So, if you want to maximize 
information across the range of theta, you would need to include items that varying in their 
difficulty/location on theta. 
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Figure 5. Item Information Curves for Items with Fixed Discrimination and Varying 
Levels of Difficulty 
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Figure 6 illustrates the inverse relationship between test information and the SEE. This 
relationship is given by (Embretson & Reise, 2000; Hambelton et al., 1991): 

𝑆𝑆𝑆𝑆�𝜃𝜃�� = 1
�𝐼𝐼(𝜃𝜃)

 (35). 

 

Figure 6. Relationship between Test Information Curve and Standard Error of Estimate 

 

Target information function. Prior to calibrating IRT models, researchers should first 
articulate the purpose of testing and develop a target information function (Lord, 1977) 
consistent with that purpose and that will guide item evaluations using item information curves. 

• If the purpose of testing is to generally discriminate across all levels of the construct 
continuum, then researchers should specify a uniform (i.e., quasi-rectangular) target 
information function. 

• If the purpose of testing is a fine-grained distinction at a specific level of the construct 
(e.g., at a particular cut-point), then researchers should specify a target information 
function that maximize information around the desired cut-point (i.e., a peaked) target 
information function) 
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1.5.3.2 Item Parameters 

As illustrated in equation 33, item information is a direct function of the item parameters. Thus, 
decisions concerning which items should be included as part of a test will depend largely on the 
target information function that researchers are trying to approximate. This is especially the case 
for item difficulty parameters. For example, if a researcher is seeking to maximize information at 
+2 θ (e.g., because this level of θ was determined to represent an important cut-point or 
threshold), then the items selected will differ appreciably from those that would be selected if the 
goal of the researcher was to have similar levels of information across all levels of θ. In contrast, 
Baker and Kim (2017) provided heuristics for interpreting item discrimination (see Table 8). 
Some additional (general) recommendations for interpreting item parameters include: 

• Item difficulty: researchers should select items with a range of bg values if the goal is to 
develop a test that provides information across the entire continuum; if researchers wish 
to maximize information at a particular point on the trait continuum (e.g., +2 θ), then 
they should select items with bg values close to this level of θ. 

• Item discrimination: researchers should select items with positive discrimination values. 
Items with negative discrimination should be examined to determine if a coding error has 
occurred; if no error has occurred, the item should be removed. Ceteris paribus, larger 
values for item discrimination are preferred over smaller values. 

• Item guessing: Ceteris paribus, items with smaller values for the guessing parameter are 
preferred over items with larger values. 

 

Table 8. Standards for Interpreting Item Discrimination Parameters 
Verbal label Range of values Typical values 
None 0 0.00 
Very low 0.01-0.34 .18 
Low 0.35-0.64 .50 
Moderate 0.65-1.34 1.00 
High 1.35-1.69 1.50 
Very high >1.70 2.00 
Perfect +∞ +∞ 

Note. Reproduced from “The basics of item response theory using R,” F. B. Baker & S. Kim, 2017, Table 2.4, p. 26, 
Copyright 2017 by Springer International Publishing. 
 

1.5.3.3 Omnibus Tests of Model-Data Fit 

An additional consideration when selecting items for retention as part of a test is whether the 
specified IRT model is consistent with the data-that is, the extent which there is evidence of 
model-data fit. Embretson and Reise (2000) and de Ayala (2009) reviewed a number of different 
statistics used to test the degree of model-data fit. 
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Likelihood ratio test. The first statistic “is based on the likelihood ratio (G2) test statistic 
for comparing the relative fit of hierarchically nested models” (de Ayala, 2009, p. 140). For 
example, a researcher could use a 2PL model to calibrate a 15-item survey and then compare the 
fit of that model to one obtained using the 3PL model. The relative fit would be tested using: 

Δ𝐺𝐺2 = −2 ln(𝐿𝐿𝑅𝑅) − �−2ln(𝐿𝐿𝐹𝐹)� = 𝐺𝐺𝑅𝑅2 − 𝐺𝐺𝐹𝐹2 (36), 

where, LR is the maximum of the likelihood function for the restricted model and LF is the 
maximum of the likelihood for the unrestricted or full model. The resulting difference in 
likelihood ratios is distributed as a chi-square statistic with degrees of freedom equal to the 
difference in the number of parameters estimated in the restricted and unrestricted models. 
Returning to our example, the restricted model would be the 2PL model because all item 
guessing parameters are essentially constrained to zero in this model. (Note that the 1PL model 
would be more restricted as it forces all items to assume a common slope.) The unrestricted 
model would be the 3PL model because item guessing parameters are now being freely 
estimated. Thus, the difference in likelihood ratios obtained using equation 36 would be tested 
against the critical value for a chi square with 15 degrees of freedom (i.e., 24.996 for p < .05). 

Change in variance explained. The second model-data fit statistic is analogous to testing 
changes in R2 using hierarchical regression analysis (de Ayala, 2009). This approach is 
essentially examining whether the unrestricted model accounts for more variance relative to the 
restricted model: 

𝑅𝑅Δ2 = (𝐺𝐺𝑅𝑅
2−𝐺𝐺𝐹𝐹

2)
𝐺𝐺𝑅𝑅
2  (37). 

Because the unrestricted model will almost always have better fit to the data, one should 
remember to interpret this statistic through the lens of an effect size (i.e., the proportion of 
additional variance that is accounted for by using the more complex model). 

Information criteria. Given that the unrestricted models will tend to have better fit than 
the restricted models, some researchers have advocated for the third type of model-data fit 
statistic-information criterion measures-that adjust model fit estimates by considering the 
complexity of the model. de Ayala (2009) reviewed two statistics in this information criterion 
tradition: the Bayesian information criterion (BIC) and the Akaike information criterion (AIC) 
and researchers typically report either or both of them. These statistics essentially correct the log 
likelihood estimates of model-data fit: 

𝐵𝐵𝐵𝐵𝐵𝐵 =  −2𝑙𝑙𝑙𝑙𝑙𝑙 + ln(𝑁𝑁) ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (38), and 

𝐴𝐴𝐴𝐴𝐴𝐴 =  −2𝑙𝑙𝑙𝑙𝑙𝑙 + 2 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (39), 

where, Nparm refers to the total number of parameters estimated by the model and N refers to the 
number of participants in the sample. BIC and AIC are both interpreted such that, smaller values 
indicated better model-data fit. 

M2. A final test of omnibus model-data fit is provided by the limited information 
goodness of fit statistic introduced by Maydeu-Olivares and Joe (2006) and denoted, M2. As de 
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Ayala (2009) noted, this “statistic maintains appropriate Type I error rates under varying degrees 
of model misspecification” and is also distributed as a chi-square statistic. This statistic is 
growing in popularity and is being recommended with greater frequency (cf. Paek & Cole, 2020; 
Tay, Meade, & Cao, 2015). 

• Researchers are encouraged to triangulate conclusions about the degree of model-
data fit using multiple tests of fit (e.g., changes in LR, changes in R2, information 
criteria, M2). 

1.5.3.4 Item-Level and Person-Level Tests of Model-Data Fit 

In addition to computing the omnibus measures of model-data fit, it is also recommended that 
researchers estimate the fit between the model and individual items and between the model and 
individual examinees. 

Item-fit. There are a large number of statistics available to test model-data fit at the level 
of individuals items, denoted item fit. These statistics include: 𝜒𝜒2( Bock, 1972) and the Q1 
variant offered by Yen (1981), 𝑆𝑆 − 𝜒𝜒2 (Orlando & Thissen, 2000), Zh (Drasgow, Levine, & 
Williams (1985), and G2 (McKinley & Mills, 1985). Although there is no universally agreed 
upon statistic, several authors have recommended computing the Q1 statistic or the 𝑆𝑆 − 𝜒𝜒2 
statistic (Mair, 2018; Orlando & Thissen, 2003; Paek & Cole, 2020). In addition, it is possible to 
visually compare the fit between estimated ICCs and empirical ICCs (see pp. 234-235 in 
Embretson & Reise, 2000 for additional information). 

• Researchers should supplement omnibus tests of model-data fit with tests of item-fit. 

• Items flagged as problematic should either be removed from the test and the analyses 
repeated. 

Person-fit. As Embretson and Reise (2000) noted, “There are several dozen published 
and researched person-fit statistics…[but all of these indices] are based, in some way, on the 
consistency of an individual’s item response pattern with some proposed model of valid item 
responding” (p. 238). A slightly tweaked interpretation of these person-fit statistics is that they 
are assessing the extent to which a person’s item response pattern is inconsistent with the model 
that is being used to estimate their pattern of item responses. Person-fit statistics consider 
whether the proposed model (e.g., 1PL) does a good job representing each individual person’s 
data. If there is significant mis-fit, it suggests that the IRT model is not working for that person. 
It is normal to have a few extreme scores on person-fit statistics when dealing with large 
samples. However, if a great many examinees have large person-fit statistics, then this provides 
additional evidence that the wrong IRT model is being fit to the data. When framed in this light, 
person-fit statistics may be thought of as providing an index of appropriateness measurement –
whether the IRT measurement model is an appropriate representation of the individual’s 
response pattern (de Ayala, 2009). One of the most effective indices of person-fit is Drasgow, 
Levine, and McLaughlin’s (1987) lZ statistic (see also Levine & Drasgow, 1983). Zh is the 
standardized version of lZ. It has a conditional null distribution that is standard normal (i.e., mean 
of 0 and standard deviation of 1). Thus, scores on the Zh index may be compared against the Z 
values in a standard normal table to identify individuals with particularly unusual (i.e., 
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problematic) response patterns. As de Ayala (2009) noted, “In general, a “good” lZ is around 0.0. 
An lZ that is negative reflects a relatively unlikely response vector (i.e., inconsistent responses), 
whereas a positive value indicates a comparatively more likely response vector than would be 
expected on the basis of the model (i.e., hyperconsistent responses)” (p. 143). Likewise, Paek 
and Cole (2020) suggested that individuals with Zh values greater than 3 “needs attention for a 
possibility of important aberrant response patterns” (p. 57). 

• Researchers should supplement omnibus tests of model-data fit with tests of person-fit. 

• Individuals whose item response pattern is identified as having poor-fit should be 
closely examined to determine the cause of misfit and removed if necessary, as would 
be seen with a group by construct interaction that would suggest differential item 
functioning. 

1.5.3.5 Estimating Latent Traits 

Typically, maximum likelihood estimation (MLE) is used to generate the parameter estimates 
corresponding to the models described above (Baker & Kim, 2017; de Ayala, 2009; Embretson 
& Reise, 2000). After researchers have confirmed the fit between the data and their IRT model, 
they may proceed to estimate person latent trait scores for each of the examinees. Several 
estimation options exist including: MLE, maximum a posteriori (MAP), and expected a 
posteriori (EAP). de Ayala (2009) notes that “All three approaches for estimating a person’s 
location (MLE, EAP, MAP) treat the item parameters’ estimates as “known” and ignore their 
estimation error when estimating 𝜃𝜃” (p.77). One limitation associated with using MLE is that it 
is not able to provide estimates of 𝜃𝜃 for examinees with scores of 0 or perfect scores. In contrast, 
both EAP and MAP are able to compute person trait estimates (𝑖𝑖. 𝑒𝑒. ,𝜃𝜃�), even when examines 
obtain these extreme scores. For a more thorough discussion of the different estimation methods, 
the reader is directed to de Ayala (2009) and Embretson and Reise (2000). 

• Researchers should estimate latent trait scores using MLE, EAP, or MAP. 

• When examinee response patterns include a pattern where all items were incorrectly 
answered or all items were correctly answered, one of the Bayesian estimators should 
be used: EAP or MAP. 

1.5.3.6 Item-Person Maps 

Because item parameters and person latent trait scores are scaled using a common metric, it is 
possible to visually examine the joint distribution of examinees and items using item-person 
maps (de Ayala, 2009). Specifically, these plots map the item difficulty parameters and the 
estimates of the latent traits onto a common metric. This allows researchers to better understand 
the distribution of the latent trait and item difficulties. These maps, along with the item 
information curves, may be used to help guide decisions about the inclusion or omission of 
particular items from the test battery. For example, item-person maps help to identify portions of 
the latent trait distribution that could benefit from additional items. Figure 7 contains an item-
person map based on a sample of N = 1000 individuals who completed 5 items from the Law 
School Admissions Test. By examining this figure, we see that all of the items had location 
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parameters greater than 0.  However, the majority of respondents appear to have theta values less 
than 1. If the goal of this test was to estimate a broad range of theta levels, then researchers 
should consider adding additional items, especially items with difficulty values (i.e., location 
parameters) falling between +1 and -2 theta. 

 

 

Figure 7. Example of Item-Person Map 

 

As noted above: 

• When the target information function is uniform, researchers should strive to include 
roughly equal numbers of items from across the difficulty/theta continuum. 

• When the target information function is peaked around a particular ability location (e.g., 
perhaps to increase the reliability of measurement around a specific cut score), 
researchers should strive to sample more items with difficulties matching the desired 
ability level. 
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1.6 Item Bias and Test Bias 

1.6.1. Definition of Bias 

The term bias is typically interpreted by statisticians as implying the systematic over-or under-
estimation of some focal parameter (e.g., means) as a function of group membership (e.g., 
majority vs. minority). Within the context of psychometrics, two forms of bias have been 
identified: structural bias and measurement bias. 

1.6.1.1 Structural bias 

When scores on a test (or item) have differential relationships with external variables across 
different groups, the test (or item) is said to be displaying structural bias (Embretson & Reise, 
2000), which is also discussed under the rubric of differential validity (group differences in 
criterion-related validity correlations) or differential prediction (group differences in regression 
coefficients; predictive bias; Berry, 2015). Differential validity may be examined by computing 
correlations between the test and the criterion for each group and then testing whether those 
correlations differ from one another. Differential prediction may be examined using moderated 
multiple regression. In step 1, the criterion is regressed onto the test and group membership 
(either as a single dichotomous variable or as dummy/effect/contrast codes applied to a multi-
category variable).  

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1(𝑋𝑋𝑖𝑖) +  𝛽𝛽2(𝐺𝐺𝑖𝑖) +  𝑒𝑒𝑖𝑖  (40), 

where the 𝛽𝛽𝛽𝛽 denote unstandardized regression coefficients and 𝑌𝑌𝑖𝑖, 𝑋𝑋𝑖𝑖, and 𝐺𝐺𝑖𝑖, represent person 
i’s scores on the criterion, test, and group (0=White, 1 = Black) identifying variables, 
respectively.  

In step 2, the cross-product between the test variable and the group membership variable(s) is 
added.  

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1(𝑋𝑋𝑖𝑖) +  𝛽𝛽2(𝐺𝐺𝑖𝑖) +  𝛽𝛽3(𝑋𝑋𝑖𝑖𝐺𝐺𝑖𝑖) +  𝑒𝑒𝑖𝑖   (41). 

A significant main effect for group membership indicates intercept differences whereas a 
significant cross-product(s) indicate slope differences. This form of bias may, or may not, be 
deemed problematic. For example, Berry’s (2015) review of differential prediction of cognitive 
ability tests predicting performance revealed some limited evidence of prediction bias.  However, 
this bias favored minority group members (e.g., Blacks) by overestimating their performance on 
the criterion and disfavored majority group members (e.g., Whites) by underestimating their 
performance on the criterion.  In addition, Embretson and Reise (2000) noted that “…differential 
validity or lack of structural invariance may or may not be of concern depending on the context 
of test use. In many research contexts, the differential predictiveness of a measure is anticipated 
by a substantive theory, and may form the heart of a research program” (p. 250). However, 
absent a strong theory, items/tests displaying structural bias should be revised to eliminate this 
form of bias. 
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• Researchers should test for differential validity (correlation coefficients) and differential 
prediction (regression coefficients) to determine if items/tests are displaying structural 
bias. 

• Problematic items/tests should be revised or removed, unless there is a compelling 
substance theory that justifies retaining the items. 

1.6.1.2 Measurement Bias 

The second form of bias occurs when “…a test’s internal relations (e.g., the covariances among 
item responses) differs across two or more groups of examinees” (Embretson & Reise, 2000, p. 
250). More formally, measurement bias may be defined as: 

“When individuals who are identical on the construct measured by the test but who are 
from different subgroups have different probabilities of attaining the same observed 
score” (p. 438; Berry, 2015) 

This form of bias is problematic because it suggests that the scale of measurement is not 
equivalent or invariant across groups. de Ayala (2009) summarized the process for determining 
whether an instrument suffers from measurement bias (see p. 324): 

1. Examine the instrument at the item-level to identify potentially problematic items using tests 
of differential item functioning (DIF). 

2. Items flagged as DIF should be reviewed by a panel of experts to ascertain the extent to 
which the DIF is relevant or irrelevant to latent construct. Such a review is referred to as the 
“logical evidence of bias.” 

3. Based on the panel’s review, items may be revised or removed to eliminate measurement 
bias. 

As noted above, the first step in evaluating items for measurement bias is to conduct a test of 
DIF. Under CTT, measurement bias is tested under the rubric of measurement 
invariance/measurement equivalence tests using confirmatory factor analyses (Vandenberg, 
2002; Vandenberg & Lance, 2000). Under IRT, measurement bias is tested under the rubric of 
differential item/test functioning using a number of different test statistics (de Ayala, 2009; 
Embretson & Reise, 2000; Hambelton et al., 1991; Mair, 2018). 

From an applied standpoint, consider measurement bias as a psychometric issue that indicates the 
test is actually measuring more than it is designed to test; for example, scores on a test might be a 
function of both the target construct (i.e., extroversion) and contaminated by construct irrelevant 
variance (i.e., race or gender). Think of structural bias as reflecting a statistical and theoretical 
issue that indicates the (purely measured) predictor construct has a different relationship with the 
criterion that is conditional on group membership. For example, I could have a test measuring 
depression that is psychometrically unbiased across a number of different demographic groups 
(e.g., race, gender, disability, veteran status, religion, etc.).  However, I could find that this test 
has a stronger association with attempted suicide for certain groups (e.g., veterans with multiple 
combat tours). The test isn’t biased for or against any group.  However, the usefulness of the test 
differs across groups. 
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1.6.2. Testing for Measurement Bias: Choosing Between CTT and IRT Approaches 

As noted above, frameworks exist for testing measurement bias using both the CTT and IRT 
psychometric models (Raju, Laffitte, & Bryne, 2002). Although some early research suggested 
these two frameworks may yield discrepant results, more recent research has suggested that 
discrepancies were likely engendered by the differential sequencing of the constraints/restrictions 
used to test for measurement bias rather than the reliance on CTT vs. IRT frameworks. Indeed, 
as Stark, Chernyshenko, and Drasgow (2006) concluded, when the pattern of constraints was 
held constant across the CTT and IRT frameworks, “…results indicated that CFA [CTT] and 
IRT were remarkably similar in their DIF detection accuracy” (p. 1303). 

Given the potential for these two frameworks to yield similar results, this report will focus on 
tests of measurement bias under the IRT framework. Readers interested in additional resources 
on conducting tests of measurement invariance/measurement equivalence under the CTT model 
using CFA are directed to Stark et al., (2006), as well as earlier work by Vandenberg (2002), and 
Vandenberg and Lance (2000). 

• Researchers interested in testing for measurement bias under the CTT model are 
encouraged to follow the strategies presented in Vandenberg and Lance (2000), 
Vandenbeg (2002), and further clarified/refined in Stark et al. (2006). 

1.6.3. Important Considerations Using IRT to Test for Measurement Bias 

There is a fundamental indeterminacy in the scale or metric of the latent constructs used in IRT 
models. This indeterminancy is of limited concern when researchers are analyzing data sampled 
from a single group (e.g., men). In such instances, the scale of the latent construct is typically 
(arbitrarily) set to have a mean of 0 and variance of 1. However, when transitioning to an 
analysis based on comparing data that are sampled from two or more groups (e.g., men and 
women) the scaling of the latent construct becomes a critical concern. As noted by Meade and 
Wright (2012): 

“For both IRT and confirmatory factor analytic [CTT] methods of invariance testing, 
there is an inherent indeterminancy associated with the metric of the latent 
variable…setting the metric is crucial for invariance analyses as there is an implicit 
assumption that the items selected as anchors are invariant across samples” (p. 1017). 

1.6.3.1 Anchor Items 

In order to conduct IRT-based DIF analyses, researchers must equate the metric of the latent 
construct across groups. This process of equating is accomplished by identifying an item (or 
ideally, a set of items) that are known to be free from DIF (i.e., items that are known to display 
measurement equivalence across groups). This set of DIF-free items, referred to as anchor items, 
is used by researchers to equate the metric of the latent constructs across groups. Because the 
metric of the latent construct is used to measure both people and items, the equating process 
typically involves a rescaling of item parameters prior to comparing the equivalence (or lack 
thereof) across groups. 
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In situations where solid anchor items are not known a priori, researchers must undertake an 
extra step to first identify and select items that will be used as the anchor items. Meade and 
Wright (2012) reviewed and compared several different strategies for identifying anchor items 
including: 

1. All Other items As Anchors (AOAA) 
a. A baseline model is computed that constrains all item parameters to be equal across 

groups. 
b. Next, the equivalence constraints are relaxed for one item, while retaining all other items 

as anchors. The fit of this model is compared to the fit of the fully constrained model in 
step a. If the relaxed model shows better fit to the data, then the item is flagged as 
showing DIF. If the relaxed model fits the data as well as the fully constrained model, 
then it is said to be invariant across groups. This process is repeated separately for each 
of the K items. 
 

2. Significance-based two-stage approach 
a. The items judged to be invariant using the AOAA approach described above are used as 

anchor items. 
b. The remaining items (i.e., those flagged as DIF using AOAA) are retested for DIF using 

likelihood ratio tests (LRTs). 
 

3. Fully iterative approach 
a. This approach also builds off the AOAA approach. First, the AOAA approach is used and 

the item with the largest significant G2 statistic is removed from the pool of items. 
b. The remaining items are then used in a new AOAA analysis. The item with the largest 

significant G2 statistic is removed from the pool of items. 
d. The remaining items are then used again in a new AOAA analysis. This process 

continues until all items with significant G2 statistics have been removed from the pool. 
e. The remaining items serve as anchor items and all previously discarded items are retested 

for DIF using LRTs. 
 

4. maxA approach (two-stage approach based on item discrimination) 
a. This two-stage approach conducts a preliminary DIF analysis using AOAA to identify a 

set of items free from DIF. 
b. From this set of DIF-free items, researchers select the items with the largest 

discrimination (a) parameter to serve as the anchor items and the remaining items are 
retested for DIF using LRTs. 
 

5. minG2 approach (two-stage approach based on items with smallest DIF statistic) 
a. This two stage approach conducts a preliminary DIF analysis using AOAA to test for DIF 

(using the G2 statistic). 
b. Items with the smallest G2 statistic are selected to serve as anchor items and the 

remaining items are retested for DIF using LRTs. 
 

6. minUIDS approach (two-stage effect-size based approach) 
a. This two-stage approach conducts a preliminary DIF analysis using AOAA to test for 

DIF. The unsigned item difference in the sample (UIDS; Meade, 2010) is then computed 
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for all DIF-free items. This statistic is an effect size interpreted as the average absolute 
difference in expected scores across the sample of focal group respondents. 

b. The non-significant items with the smallest effect sizes are then retained as anchor items 
and the remaining items are retested using LRTs. 

Meade and Wright (2012) conducted a large Monte Carlo simulation to compare these strategies 
for identifying anchor items. They included three variations on each of the two-stage approaches. 
Specifically, using the decision heuristic for each of the two-stage approaches, they selected 1, 3, 
or 5 items to serve as the anchor items. Across their simulations, they found that larger sets of 
anchor items were associated with greater statistical power for detecting DIF. Across their initial 
simulation, they concluded that the maxA5 approach (i.e., two-stage approach that retains the 5 
non-DIF items from the AOAA that have the largest discrimination parameter values) and the 
significance-based two-stage approach were most preferable. They then conducted a follow-up 
simulation to more closely scrutinize the performance of these two statistics. This led Meade and 
Wright (2012) to conclude, “…we unequivocally recommend” the maxA5 approach to 
identifying anchor items (p. 1028). 

• Researchers should use the maxA5 approach to identify anchor items when such items 
are not known on an a priori basis. 

1.6.3.2 Patterns of DIF 

A large number of statistics are available to test items for DIF. Some statistics are able to detect 
uniform DIF, others, nonuniform DIF, and some both forms of DIF. When DIF is described as 
uniform, it implies that the graphs of the group ICCs do not crossover one another. Thus, 
uniform DIF is the IRT equivalent of an ordinal statistical interaction between group members 
and the latent construct in the prediction of item responses. Uniform DIF is engendered by 
similar discrimination parameters, but different difficulty parameters. As a result, the ICC for 
one group will be uniformly shifted up or down on the construct continuum relative to the ICC 
for the other group. In contrast, when DIF is described as nonuniform, it implies that the group 
ICCs do crossover one another. Nonuniform DIF is engendered by differences in discrimination 
parameters across groups. 

1.6.3.3 Tests of DIF 

A complete review of these statistics is outside the scope of this report However, Magis, Beland, 
Tuerlinckx, and De Boeck (2010) provided a nice overview of both IRT and non-IRT methods 
for detecting both uniform and non-uniform DIF, as presented in Table 8. In addition to 
reviewing these statistics, Magis et al. (2010) also provided a review of the difR package, which 
is an R package capable of implementing most of the statistics included in their review. A 
general summary of DIF tests was included in Table 1 of Magis et al. (2010), which is 
reproduced in Table 9. For additional information about the various tests of DIF, the reader is 
directed to the primary resources cited in Magis et al. (2010), as well as more general overviews 
in de Ayala (2009), Embretson and Reise (2000), Mair (2018), and Tay, Mead, and Cao (2015). 
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Table 9. Summary of DIF Tests  
  Number of Groups 

Framework DIF Effect 2 >2 
Non-IRT Uniform Mantel-Haenszel* 

Standardization* 
SIBTEST 
Logistic regression* 

Pairwise comparisons 
Generalized Mantel-Haenszel* 

Non-IRT Nonuniform Logistic regression* 
Breslow-Day* 
NU.MH 
NU.SIBTEST 

Pairwise comparisons 

IRT Uniform LRT* 
Lord* 
Raju* 

Pairwise comparisons 
Generalized Lord* 

IRT Nonuniform LRT* 
Lord* 
Raju* 

Pairwise comparisons 
Generalized Lord* 

Note. NU.MH, modified Mantel-Haenszel for nonuniform DIF; NU.SIBTEST, modified SIBTEST for nonuniform 
DIF, LRT, likelihood ratio test. * Implemented in difR package (Version 2.2). 
 
Reproduced from “A general framework and an R package for the detection of dichotomous differential item 
functioning”, Magis, Beland, uerlinckx, and De Boeck (2010), Table 1, p. 849. 
 

Although there are a number of different DIF statistics available, researchers have typically 
selected DIF statistics one of two ways. The first approach is to select a single DIF statistic that 
will serve as the tool used to judge items. One of the most commonly recommended statistics is 
the likelihood ratio test (cf. Meade & Wright, 2012; Tay et al., 2015). A second approach is to 
select a handful of tests (often combing both IRT and non-IRT based tests) and identifying 
problematic DIF items as those showing DIF across a majority of the tests. For example, Galic, 
Scherer, and LeBreton (2014) tested the Conditional Reasoning Test for Aggression for DIF by 
comparing samples from the US and Croatia. Each item was evaluated for DIF using 4 different 
tests: Lord’s Chi-Square, Raju’s Unsigned Area, Mantzel-Haenszel, and logistic regression. The 
authors noted that “it is common for different DIF criteria to lead to somewhat different 
conclusions (Borsboom, 2006), [thus] we decided to define as "true" DIFs those items for which 
the results of the four procedures converged” (p. 206). 

• Researchers are encouraged to test for DIF using either LRTs or a convergence based 
approach using multiple DIF tests drawn from both IRT and non-IRT traditions. 

1.6.3.4 Effect Sizes for DIF 

Finally, researchers are encouraged to supplement statistical tests of DIF with estimates of DIF 
effect size. Meade (2010) provides an excellent review of the various effect size metrics that are 
available for use with tests of DIF. Specifically, he reviews six effect sizes applicable for use at 
the item-level and 9 effect sizes applicable for use at the test level-that is, differential test 
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functioning examined using all items. Meade (2010) organized these statistics into a taxonomy 
of effect sizes based on the following factors (see Table 10): 

• Is DIF allowed to cancel across items? Yes vs. No 
• Is DIF allowed to cancel across respondents/theta? Yes vs. No 
• What theta distribution is used? Sample distribution vs. assumed distribution 

 

Table 10. Taxonomy of Item- and Scale-Level DIF Effect Sizes 
 DF cancels across items? 
 Yes No 

 DF cancels across 
respondents/thetas? 

DF cancels across 
respondents/thetas? 

Theta Used Yes No Yes No 
Sample STDS 

 
ETSSD a 

UETSDS 
Test D-Max 
Region of 
disadvantage 
Flowers et al.’s 
(1999) DTF 

SIDS 
 
ESSD a 

UIDS 
Test D-Max 
UTDS 

     
Assumed 
Distribution 

Stark’s DTFR 
Stark’s dDTF 

a 
UETDSN SIDN UIDN 

UDTFR 
Note. Italics indicates an item-level index; normal font indicates a scale-level index. DF = differential functioning; 
STDS = signed test difference in the sample; UETSDS = unsigned expected test score difference in the sample; 
SIDS = signed item difference in sample; UIDS = unsigned item difference in sample; Test D-Max = maximum 
difference in expected test score for sample; ETSSD = expected test score standardized difference; DTF = 
differential tax functioning; ESSD = expected score standardized difference; UTDS=unsigned test difference in the 
sample; Stark’s DTFR=Stark et al.’s (2004) DTFR; UETSDN = unsigned expected test score difference in normal 
distribution; SIDN = signed item difference in normal distribution; UIDN = unsigned item difference in normal 
distribution; Stark’s dDTF = Stark et al.’s (2004) dDTF; UTDFR = unsigned DTFR. 
a Indicates that index is standardized; other indices are in the metric of observed scores. 
Reproduced from “A taxonomy of effect size measures for the differential functioning of items and 
scales”, Meade (2010, Table 3, p. 734. 
 

1.6.3.5 Recommended Steps in DIF Analysis 

Based on a large review of the existing literature, Tay, Meade, and Cao (2015) summarized 
existing trends using IRT-based frameworks to test for measurement equivalence /differential 
item functioning. Following that review, the authors presented a set of general 
recommendations/steps researchers are encouraged to follow when testing for DIF. These 
general recommendations were then supplemented with specific recommendations for 
researchers relying on two specific IRT software programs-IRTPRO and Latent GOLD. Below I 
have summarized their general recommendations and I have also included specific 
recommendations (based on the work of Tay et al., 2015) that are also readily implemented using 
the R statistical package. Finally, as part of Appendix D, I have included an illustration of how to 
use an IRT framework to test for DIF using R. 
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1. Researchers should begin by assessing model-data fit and unidimensionality. 
a. Include a test of dimensionality (e.g., EFA, parallel analysis). 
b. Include an overall test of absolute model-data fit across all groups using the M2 statistic 

and/or the Root Mean Square Error pf Approximation (RMSEA) statistic computed using 
the M2 statistic (Maydeu-Olivares & Joe, 2006). 

c. Include a test of item-fit using the S-χ^2 (Orlando & Thissen, 2000) statistic and test the 
local dependence assuming using standardized LD-χ^2 (Chen & Thissen, 1997); tests 
should be conducted within each group. 

d. Include a test of relative model-data fit (e.g., 1PL vs. 2PL) using likelihood ratio tests or 
information criterion measures such as AIC and BIC 

2. Researchers should conduct an iterative DIF analysis 
a. When anchor items are not known a priori, researchers should use empirical tests to 

identify DIF-free items to use as anchors (see Tay et al., 2015 for suggestions on 
identifying anchor items using IRTPRO and Latent GOLD; see previous section of the 
current report for general discussion of identifying anchor items). 

3. Estimate latent group mean differences 
a. Researchers should constrain anchor items and freely estimate all DIF items prior to 

computing and interpreting latent group mean differences. 
4. Estimate effect sizes 

a. Heuristic approach consists of 4 steps 
i. Estimate a fully constrained model; this model contains True mean level differences 

and Bias (Model TB) 
ii. Estimate a model with all DIF items freely estimated; this model contains True mean 

level differences only (Model T) 
iii. Examine the estimated latent trait difference between Model TB and Model T 
iv. Examine whether inferences about latent group mean differences vary across Model 

TB and Model T 
b. In addition, researches are encouraged to review Meade (2010) and compute additional 

item- and test-level effect sizes for DIF/DTF. Many of these effect sizes are readily 
implemented in the mirt package in R. 

1.6.3.6 Conclusion 

As is evident from this section, there exists a wide range of strategies that could be used to 
examine items and tests for evidence of differential item/test functioning using IRT-based 
models. As noted previously in the report, similar tools exist for examining measurement 
invariance/measurement equivalence using CTT-based models. As de Ayala (2009) suggested, 
evidence of DIF does not always imply measurement bias. There are some instances where DIF 
would be predicted by psychological theory. However, within the context of employment 
selection, items/tests displaying DIF are generally problematic and should be revised or 
eliminated from operational use. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

1PL 1-parameter logistic 
2PL 2-parameter logistic 
3PL 3-parameter logistic 
4PL 4-parameter logistic 
A ASVAB Administrative composite 
AERA American Educational Research Association 
AF/A1PT Air Staff, Air Force Testing Policy 
AFEAO Air Force Examining Activities Overview 
AFECD Air Force Enlisted Classification Directories 
AFHRL Air Force Human Resources Laboratory 
AFOCD  Air Force Officer Classification Directories  
AFS Air Force Specialty 
AFSC Air Force Specialty Code 
AFMAN Air Force Manual 
AFOQT Air Force Officer Qualifying Test 
AFPC//DP3SP Air Force Personnel Center, Promotions, Evaluations, and Recognition 

branch 
AFPC/DSYX Air Force Personnel Center, Strategic Research and Analysis branch 
AFPD Air Force Policy Directive 
AFRS Air Force Recruiting Service 
AF-WIN Air Force Work Interest Navigator 
AIC  Akaike information criterion 
AOAA All Other items As Anchors 
ASVAB Armed Services Vocational Aptitude Battery 
ATC Air Traffic Control 
ATST Air Traffic Scenarios Test 
BIC Bayesian information criterion 
CFA confirmatory factor analysis 
CFM career field manager 
CM competency model 
CTT classical test theory 
DIF differential item functioning  
DoD Department of Defense 
E ASVAB Electronics composite 
EAP expected a posteriori 
EDPT Electronic Data Processing Test 
EFA exploratory factor analysis 
EPQT Enlisted Pilot Qualifying Test 
FY Fiscal Year 
G ASVAB General composite 
ICC item characteristic curve 
I/O industrial/organizational 
IRT item response theory 
KSA knowledge, skills, and abilities 
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KSAO knowledge, skills, abilities, and other characteristics 
LF maximum of the likelihood for the unrestricted or full model 
LR maximum of the likelihood function for the restricted model 
LRT likelihood ratio test 
M ASVAB Mechanical composite 
MEPS Military Entrance Processing Station 
METS Military Entrance Test Site  
MAP maximum a posteriori 
MLE maximum likelihood estimate 
MTT Multi-Tasking Test 
OA occupational analysis 
PCA principal component analysis 
PCSM Pilot Candidate Selection Method 
RPA Remotely Piloted Aircraft 
RMSEA Root Mean Square Error of Approximation 
SDI Self-Description Inventory 
SEE standard error of estimate 
SME subject matter expert 
SRMR standardized root mean-square residual 
TAPAS Tailored Adaptive Personality Assessment System 
TBAS Test of Basic Aviation Skills 
UIDS unsigned item difference in the sample 
USAF United States Air Force  
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APPENDIX A: Steps in Item Analysis and Test Evaluation Using CTT 

Step 1 – Data management 

• Open RStudio and load relevant packages 

• Read data into R & verify integrity of data 

• Include relevant variables (e.g., demographics; subject ID; criteria; other predictors) 

• Format data:  each row is a distinct examinee; each column is a distinct item or variable 

• Identify columns with focal items 

Step 2 – Item Analysis 

• Item difficulty, Item discrimination and item-total correlations, Item validity 

Step 3 – Scale Level Analysis 

• Estimate reliability 

• Exploratory and/or Confirmatory Factor Analysis; if the latter, be sure to use appropriate cutoffs for fit 

statistics (see Lance, Butts, and Michels, 2006).  

• Modification Indices 

Step 4 – Decide which items to retain as part of the test  

• Using the results of item analyses in step 3, select items from the item bank that will address goals/purpose 

of the test (e.g., items that will maximize reliability vs. maximize validity vs. optimally discriminate at a 

particular point on the construct continuum). 

• After removing items, iteratively re-compute relevant statistics (e.g., item-total correlations; convergent 

validity correlations). 

Step 5 - Test for differential item/test functioning  

• Use confirmatory factor analysis and tests of measurement equivalence/invariance to test for differential 

item functioning. 

• For detailed suggestions the reader is directed to Vandenberg & Lance (2000); Vandenberg 

(2000); Raju, Laffitte, & Byrne (2002); Stark, Chernyshenko, & Drasgow (2006) 

• Remove problematic items from the item bank 

Step 6 – Collect Additional Data & Accumulate Validity Evidence for Test (see Section II and III in report) 

Step 7 – Replication/Cross-Validation 

Step 8 – Develop norms, etc. 
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APPENDIX B: Steps in Item Analysis and Test Evaluation Using IRT 

Step 1 – Data management 

• Open RStudio and load relevant packages 

• Read data into R & verify integrity of data 

• Include relevant variables (e.g., demographics; subject ID; criteria; other predictors) 

• Format data:  each row is a distinct examinee; each column is a distinct item or variable 

• Identify columns with focal items 

Step 2 – Item Analysis: Test for Unidimensionality 

• Parallel Analysis; modified parallel analysis; factor analysis; very simple structure analysis 

Step 3 – Select IRT Model based on Fit Between Model and Data  

• Run relevant IRT models 

• Test-level evaluations of absolute fit: M2; SRMSR; etc. 

• Test-level evaluations of relative model fit: -2LL test for nested models 

• Item-level evaluations of fit: chi square test (with and without Bonferroni corrections) 

• Person-level fit: lz  

• Pairwise test of local independence: LD-chi square  

Step 4 – Select & Use Model 

• Calibrate the model – estimate parameters 

• Generate person ability estimates (e.g., factor scores) 

• Generate graphs of ICCs, TCC, IICs, TIC, and SEE 

Step 7 – Decide which items to retain as part of the test  

• Using IICs, select items from the item bank that will address the most difficult aspects of the target. 

• After adding each item, iteratively re-compute the test information function. 

• Continue adding items until the estimated test information function closely approximates the desired target 

information function. 

Step 8 - Test for differential item/test functioning  

• Use existing anchor items or identify anchor items using maxA5 

• Test for differential item functioning using LRT 

• Compute effect sizes for DIF/DTF 

• Remove problematic items from the item bank 

Step 9 – Collect Additional Data & Accumulate Validity Evidence for Test (see Section II and III in report) 

Step 10 – Replication/Cross-Validation 

Step 11 – Develop norms, etc. 
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APPENDIX C: Examples of CTT Item Analysis in R 

############################# 
###CTT Part 1 
############################# 
#Step 1 load  data 
#Note: I tried analyzing the data John sent, but there were only n=74 
#####  I duplicated the data to create a larger dataset, but encountered problems 
##### when trying to use that data in the item analysis.  
#####  Thus, I am going to illustrate the use of R for item/test analysis using 
#####  cognitive data included in the psych package  
getwd() 
setwd("D:/Users/James/Dropbox/James Work Files/professional - consulting/PDRI/James' Chapter Drafts") 
 
#Step 1a: Load relevant packages 
install.packages("psych") #download the psych package to computer 
library(psych) #load psych package into library of active resources 
 
#Step 1b: load data from the psych package 
data(package="psych")  #lists the data sets included in the psych package 
 
#get information about the lsat6 dataframe 
?lsat6  
 
#read dataframes into r 
lsat6=data.frame(lsat6) 
lsat7=data.frame(lsat7) 
 
#combine dataframes 
df=cbind(lsat6,lsat7) 
 
#add a subject ID number to data frame 
df$id <- seq.int(nrow(df))  
 
#The id variable now appears in column 11 
names(df)  
 
#This ID variable was created as an integer variable, but we want it to be a nominal variable 
class(df$id)  
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#Overwrite the original integer version of id with correct nominal version, by converting it using 
"as.factor" function;  
df$id=as.factor(df$id); class(df$id) 
 
#Change the names of the variables 
names(df)[1] <- "q01" 
names(df)[2] <- "q02" 
names(df)[3] <- "q03" 
names(df)[4] <- "q04" 
names(df)[5] <- "q05" 
names(df)[6] <- "q06" 
names(df)[7] <- "q07" 
names(df)[8] <- "q08" 
names(df)[9] <- "q09" 
names(df)[10] <- "q10" 
 
head(df);tail(df) #print the first 6 rows and last 6 rows of the dataframe to verify things look okay 
str(df) #request the structure of the df  
 
#simulate criterion variable 
df$y=rnorm(1000,m=50, sd=1) 
df$y=df[,'y']+.5*df$q01+.5*df$q02+.5*df$q03+.5*df$q06+.5*df$q08 
names(df) 
head(df) 
str(df) 
cor(df[,c(12,1:10)]) 
#reorder columns in df 
df=df[,c(11,12,1:10)]; names(df) 
rm(lsat6,lsat7) #remove the original lsat dataframes from the global environment 
 
write.table(df,file="df.csv",sep = ",", row.names=F) #write the dataframe to a csv file so results can be 
compared using other software 
 
# create a list containing variable namesAdded a couple of new keys that are based on fewer items 
keys.list = list( 
  all=c("q01","q02","q03","q04","q05","q06","q07","q08","q09","q10"), 
  lsat6=c("q01","q02","q03","q04","q05"), 
  lsat7=c("q06","q07","q08","q09","q10")) 
#Open the next code file: Appendix C-CTT Final Part 2.R 
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############################# 
###CTT Part 2 
############################# 
library(psych) 
 
############################################################################ 
#Step 1: Read in data/Data Managaement  (see Appendix D-IRT Final Part 1.R) 
############################################################################ 
library(psych) 
 
### Create a list containing variable namesAdded a couple of new keys that are based on fewer items 
keys.list = list( 
  all=c("q01","q02","q03","q04","q05","q06","q07","q08","q09","q10"), 
  lsat6=c("q01","q02","q03","q04","q05"), 
  lsat7=c("q06","q07","q08","q09","q10")) 
 
### Descriptive statistics for all variables in the dataframe 
describe(df[,]) 
 
### Or just the columns with the items 
names(df) 
(item.descriptives=describe(df[,c(3:12)])) 
 
### Use the keys to score the data and create scale scores 
help(scoreItems) #provides information about the function scoreItems 
help(make.keys) 
keys=make.keys(df,keys.list) 
 
### scoreItems will create composite scores, estimate item analysis statistics, & impute missing data 
### scoreFast just scores the items with or without imputing missing data, but omits item-analysis 
statistics 
### scoreVeryFast only scores items -- no item analysis or imputation of missing 
scores=scoreItems(keys,df,totals=TRUE) 
 
### Basic summary of scores 
scores 
 
### List the elements stored in the scores object 
names(scores) 
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### Merge scale scores back with original data file 
# Note: cbind should only be used when you know the order of the files is identical 
# If merging dataframes with different order of cases or different numbers of cases, use "merge" & select 
the appropriate key variable 
# help(merge) 
data=cbind(df,scores$scores) #performs a column bind by adding scores to the right columns of the data 
frame 
 
#Verifying that scale scores were computed and added to the last 2 columns of data 
names(data) #Verify that the last 3 columns now contain the scale scores 
#Step 2: Item-Level Analyses  
############################################################### 
 
### Item-Total Correlations: From this point foward will just focus on the set of lsat6 items 
### Examine Structure of the elements in the scores data object 
scores$item.cor  
 
### From the above we see that column 1 contains correlations between the 10 items and the scale score 
based on "all" (i.e., 10) items 
### Column 2 contains correlations between the 10 items and the scale score based on the "lsat" scale score 
(i.e. item 1-5); thus, 
### only the first 5 correlations are relevant for the lsat6 item-total correlations; Column 3 contains 
correlations for lsat7; thus, only 
### the last 5 correlations are relevant for the lsat7 item-total correlations 
 
scores$item.cor[c(1:5),2] #Item-total point-biserials; just pulling the relevant correlations from column 2 
(lsat6 with q01 to q05) 
scores$item.corrected[c(1:5),2] #Corrected item-total point-biserials for math items 
(lsat6.biserials=biserial(data$lsat6, data[,keys.list$lsat6])) #Item-total biserials for the lsat6 items 
 
###ITEM DISCRIMINATION INDEX 
# Identify the individuals in the upper and lower 10th percentiles on lsat6 (not really meaningful with 
only 5 items, but included for illusration) 
quantile(data$lsat6,c(.10, .90)) 
 
# Create data frames containing only the examinees with verbal scores >= 90th percentile  
lsat6.upper=data[which(data$lsat6>=5),] 
 
# Create data frames containing only the examinees with verbal scores >= 90th percentile  
lsat6.lower=data[which(data$lsat6<=2),] 
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# Compute the p-values within the upper and lower groups 
lsat6.upper.mn=colMeans(lsat6.upper[,c(3:12)]) # Compute means for items (columns 3-12) for upper group 
lsat6.lower.mn=colMeans(lsat6.lower[,c(3:12)]) # Compute means for items (columns 3-12) for lower group 
 
#Estimate the item discrimination index (p_upper - p_lower) for each item 
(lsat6.disc.index=lsat6.upper.mn-lsat6.lower.mn) 
 
# Compute the ITEM-CRITERION CORRELATION (Biserials) 
(lsat6.item.criterion=biserial(data$y, data[,keys.list$lsat6])) 
 
###ASSEMBLE ITEM ANALYSIS SUMMARY 
#Just pulling the statistics that are relevant to the math items 
#Pulling some data from the item.descriptives dataframe; only need info for items in rows 1 - 5 (q01 to 
q05) 
item.descriptives 
lsat6.summary=data.frame(item=keys.list$lsat6, 
                          n=item.descriptives[1:5,2], 
                          item.difficulty=item.descriptives[1:5,3], #Column 3 contains means/difficulties 
                          item.variance=item.descriptives[1:5,4], #Column 4 contains variance 
                          item.skew=item.descriptives[1:5,11], #Column 11 contains skew 
                          item.kurtosis=item.descriptives[1:5,12], #Column 12 contains kurtosis 
                          item.total.pbs=scores$item.cor[1:5,2], #Column 2 contains lsat6 correlations 
                          item.total.pbs.corrected=scores$item.corrected[1:5,2], # Column 2 = contains 
lsat6 correlations 
                          item.total.biserials=lsat6.biserials, 
                          item.disc.index=lsat6.disc.index[1:5], 
                          item.criterion.biserial=lsat6.item.criterion) 
 
### Review Summary of Item-Level Anaysis 
print(lsat6.summary) 
#Proceed to Scale Level Analyses...Appendix C-CTT Part 3.R 
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############################# 
###CTT Part 3 
############################# 
 
###Part 3: Scale-Level Analysis 
install.packages("GPArotation") 
library(GPArotation) 
 
#Reliability Estimates for each scale 
scores$alpha #Cronbach's Coefficient Alpha 
scores$G6 #Guttman's Lambda 6 
 
#splitHalf function in psych package provides a number of additional estimates of reliability 
help(splitHalf) 
lsat6.reliability=splitHalf(data[,keys.list$lsat6]); lsat6.reliability 
 
#Estimate omega using function in psych package 
#Assuming there is a single dominant factor; warnings b/c I copied & pasted small dataset to create large 
data set 
lsat6.omega=omega(data[,keys.list$lsat6],nfactors=1) 
lsat6.omega #Look at the estimate of omega total if specifying 1 factor 
 
#Correlations with external variables included in dataframe (e.g., Class Rank) 
names(data) 
cor(data[,c("y","lsat6")]) 
 
#Exploratory Factor Analysis 
lsat6.parallel <- fa.parallel(data[,keys.list$lsat6], fm = 'pa') 
 
# Examine the output and the graph - probably 2-5 factors 
help(fa) #Details about the fa function 
 
# Estimating principal axis factor analysis with a single factor 
lsat6.efa1=fa(data[,keys.list$lsat6], nfactors=1,SMC=T,rotate="oblimin",fm="pa", n.iter=1000) 
 
# Pattern of factor loadings  
lsat6.efa1 
 
#Confirmatory Factor Analysis 
#For tests that already have some prior validity & psychometric evidence, one could use CFA rather than EFA 
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install.packages("lavaan") 
library(lavaan) 
 
#Specified an arbitary 3 factor model using 9 items from previous EFA 
#This is for illustrative purposes of the R code 
#It is not appropriate to run CFA on same data as EFA 
#Need to use EFA to refine scale, collect new data, then run CFA on new data 
 
### Factors are allowed to correlate (could constrain correlations to zero using, F1 ~~ 0*F2  
cfa.2f= ' 
F1_lsat6 =~ q01+q02+q03+q04+q05 
F2_lsat7 =~ q06+q07+q08+q09+q10  
F1_lsat6 ~~ F2_lsat7 
' 
 
### Estimate CFA and include constraint of factor variances to unity 
fit.cfa.2f=sem(cfa.2f, data[,keys.list$all],std.lv=T); fit.cfa.2f 
 
### Review model parameters and fit statisics 
summary(fit.cfa.2f,fit.measures=T) 
 
### Review modification indices 
modindices(fit.cfa.2f) 
 
### OTHER CONSIDERATIONS: Test Item Types 
### Parallel Items within each of the three factors 
 
### To constrain parameters, simply multiple them by the same constant/constraint 
 
cfa.2f.par= ' 
F1_lsat6 =~ a*q01+a*q02+a*q03+a*q04+a*q05 
F2_lsat7 =~ b*q06+b*q07+b*q08+b*q09+b*q10  
F1_lsat6 ~~ F2_lsat7 
q01~~c*q01 
q02~~c*q02 
q03~~c*q03 
q04~~c*q04 
q05~~c*q05 
q06~~d*q06 
q07~~d*q07 



 

85 
Distribution Statement A: Approved for public release.              

AFRL/PA  AFRL-2021-0247, cleared on 2 February 2021 

q08~~d*q08 
q09~~d*q09 
q10~~d*q10 
' 
 
fit.cfa.2f.par=cfa(cfa.2f.par, data[,keys.list$all],std.lv=T); fit.cfa.2f.par 
summary(fit.cfa.2f.par,fit.measures=T) 
### Tau Equivalent Items within each of the three factors 
cfa.2f.tau= ' 
F1_lsat6 =~ a*q01+a*q02+a*q03+a*q04+a*q05 
F2_lsat7 =~ b*q06+b*q07+b*q08+b*q09+b*q10 
F1_lsat6 ~~ F2_lsat7' 
 
fit.cfa.2f.tau=cfa(cfa.2f.tau, data[,keys.list$all],std.lv=T); fit.cfa.2f.tau 
summary(fit.cfa.2f.tau,fit.measures=T) 
 
#Compare Fit of Parallel Items vs. Tau Equivalent Items 
anova(fit.cfa.2f.tau,fit.cfa.2f.par) 
 
#Compare Fit of Tau Equivalent to original (Congeneric) 
anova(fit.cfa.2f,fit.cfa.2f.tau) 
 
#Tests of measurement equivalence/invariance are easily implmented using the lavaan package 
#Excellent tutorial is available at: http://lavaan.ugent.be/tutorial/tutorial.pdf 
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APPENDIX D: Examples of IRT Item Analysis in R 

############################# 
###IRT Part 1 
############################# 
 
#Step 1 load  data 
#Note: I tried analyzing the data John sent, but there were only n=74 
#####  I duplicated the data to create a larger dataset, but encountered problems 
##### when trying to use that data in the item analysis.  
#####  Thus, I am going to illustrate the use of R for item/test analysis using 
#####  cognitive data included in the psych package  
getwd() 
setwd("D:/Users/James/Dropbox/James Work Files/professional - consulting/PDRI/James' Chapter Drafts") 
 
#Step 1a: Load relevant packages 
install.packages("psych") #download the psych package to computer 
library(psych) #load psych package into library of active resources 
 
#Step 1b: load data from the psych package 
data(package="psych")  #lists the data sets included in the psych package 
 
#get information about the lsat6 dataframe 
?lsat6  
 
#read dataframes into r 
lsat6=data.frame(lsat6) 
lsat7=data.frame(lsat7) 
 
#combine dataframes 
df=cbind(lsat6,lsat7) 
 
#add a subject ID number to data frame 
df$id <- seq.int(nrow(df))  
 
#The id variable now appears in column 11 
names(df)  
 
#This ID variable was created as an integer variable, but we want it to be a nominal variable 
class(df$id)  
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#Overwrite the original integer version of id with correct nominal version, by converting it using 
"as.factor" function;  
df$id=as.factor(df$id); class(df$id) 
 
#Change the names of the variables 
names(df)[1] <- "q01" 
names(df)[2] <- "q02" 
names(df)[3] <- "q03" 
names(df)[4] <- "q04" 
names(df)[5] <- "q05" 
names(df)[6] <- "q06" 
names(df)[7] <- "q07" 
names(df)[8] <- "q08" 
names(df)[9] <- "q09" 
names(df)[10] <- "q10" 
 
head(df);tail(df) #print the first 6 rows and last 6 rows of the dataframe to verify things look okay 
str(df) #request the structure of the df  
 
#simulate criterion variable 
df$y=rnorm(1000,m=50, sd=1) 
df$y=df[,'y']+.5*df$q01+.5*df$q02+.5*df$q03+.5*df$q06+.5*df$q08 
names(df) 
head(df) 
str(df) 
cor(df[,c(12,1:10)]) 
#reorder columns in df 
df=df[,c(11,12,1:10)]; names(df) 
rm(lsat6,lsat7) #remove the original lsat dataframes from the global environment 
 
write.table(df,file="df.csv",sep = ",", row.names=F) #write the dataframe to a csv file so results can be 
compared using other software 
 
# create a list containing variable namesAdded a couple of new keys that are based on fewer items 
keys.list = list( 
  all=c("q01","q02","q03","q04","q05","q06","q07","q08","q09","q10"), 
  lsat6=c("q01","q02","q03","q04","q05"), 
  lsat7=c("q06","q07","q08","q09","q10")) 
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#Open the next code file: Appendix D-IRT Final Part 2.R 
############################# 
###IRT Part 2 
############################# 
 
########## Item Response Theory: Item Analysis and Test Evaluation 
###Part 2: Item Analyses 
library(psych) 
install.packages("GPArotation") 
library(GPArotation) 
 
### ITEM ANALYSIS: UNIDIMENSIONAL IRT MODELS 
 
############################################################### 
#Step 1: Read in data (see Appendix D-IRT Final Part 1.R) 
############################################################### 
 
 
############################################################### 
#Step 2: Test for Unidimensionality 
############################################################### 
 
###Traditional parallel analysis 
all.parallel <- fa.parallel(df[,keys.list$all], fm = 'pa') 
lsat6.parallel <- fa.parallel(df[,keys.list$lsat6], fm = 'pa') 
lsat7.parallel <- fa.parallel(df[,keys.list$lsat7], fm = 'pa') 
 
###Modified parallel anlaysis available as part of the ltm package 
install.packages("ltm") 
library(ltm) 
 
###Note: Modified PA requires first estimating an IRT model that can be used as comparison in simulation  
all.ltm= ltm(df[,keys.list$all]~z1) 
all.ltm.2fac= ltm(df[,keys.list$all]~z1+z2) 
anova(all.ltm,all.ltm.2fac) 
unidimTest(all.ltm) #This will take a while to run 
 
lsat6.ltm = ltm(df[,keys.list$lsat6]~z1) 
lsat6.ltm.2fac = ltm(df[,keys.list$lsat6]~z1+z2) 
anova(lsat6.ltm,lsat6.ltm.2fac) 
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unidimTest(lsat6.ltm) #This will take a while to run 
 
# Examine the output and the graph - looks like a single dominant factor within each of lsat6 and lsat7 
# Combined might be multidimensional, but for our purposes we will assume a single dominant factor 
underlies these 10 items 
 
############################################################### 
#Step 3: Model-Data Fit 
############################################################### 
# Going to run models in mirt package 
install.packages("mirt") 
library(mirt) 
mirtCluster(4) #speeds things up 
 
# Rasch Model using mirt (discrimination constrained to unity; difficulties freely estimated) 
lsat6.rasch=mirt(df[,keys.list$lsat6],model=1,itemtype="Rasch",SE=T) 
lsat6.rasch 
coef(lsat6.rasch,IRTpars=T,simplify=T) 
coef(lsat6.rasch,IRTpars=T) 
 
#1PL using mirt (discrimination estimated and constraiend across items; difficulties freely estimated) 
spec<-'all = 1-5  
CONSTRAIN=(1-5,a1)' #estimating, but then constraining the slope across all items  
lsat6.1pl<-mirt(df[,keys.list$lsat6], model=spec, itemtype="2PL", SE=T) 
lsat6.1pl 
 
# 2PL using mirt 
lsat6.2pl=mirt(df[,keys.list$lsat6],model=1,itemtype="2PL",SE=T) 
lsat6.2pl 
 
# 3PL using mirt 
lsat6.3pl=mirt(df[,keys.list$lsat6],model=1,itemtype="3PL",SE=T) 
lsat6.3pl 
 
# Examine Test-Level Model-Data Fit using -2LL Test, M2, RMSR, BIC, AIC, etc.  
 
anova(lsat6.1pl,lsat6.2pl) 
anova(lsat6.2pl,lsat6.3pl) 
 
M2(lsat6.1pl) 
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M2(lsat6.2pl) 
M2(lsat6.3pl) 
 
# Examine Item-Level Evaluations of Fit 
itemfit(lsat6.1pl) 
itemfit(lsat6.2pl) 
itemfit(lsat6.3pl) 
 
# Examine Person-Level Fit 
lsat6.1pl.pfit=personfit(lsat6.1pl) 
lsat6.1pl.pfit=cbind(1:nrow(df),df,lsat6.1pl.pfit) 
names(lsat6.1pl.pfit) 
 
lsat6.2pl.pfit=personfit(lsat6.2pl) 
lsat6.2pl.pfit=cbind(1:nrow(df),df,lsat6.2pl.pfit) 
names(lsat6.2pl.pfit) 
 
lsat6.3pl.pfit=personfit(lsat6.3pl) 
lsat6.3pl.pfit=cbind(1:nrow(df),df,lsat6.3pl.pfit) 
names(lsat6.3pl.pfit) 
 
# Now sort the new person-fit data frame by Zh and examine dataframe for extreme scores 
head(lsat6.1pl.pfit[order(lsat6.1pl.pfit[,18] ),]) #Zh is is column 18 of new dataframe b/c additional fit 
stats are computed for 1PL 
tail(lsat6.1pl.pfit[order(lsat6.1pl.pfit[,18] ),]) 
 
head(lsat6.2pl.pfit[order(lsat6.2pl.pfit[,14] ),]) #Zh is in column 14 for 2PL 
tail(lsat6.2pl.pfit[order(lsat6.2pl.pfit[,14] ),])  
 
head(lsat6.3pl.pfit[order(lsat6.3pl.pfit[,14] ),]) #Zh is in column 14 for 3PL 
tail(lsat6.3pl.pfit[order(lsat6.3pl.pfit[,14] ),])  
 
# Test of Pairwise Local Independence 
# Compute LD-X2 using model residuals (Chen & Thissen, 1997) 
lsat6.1pl.res=residuals(lsat6.1pl, type ="LD") 
lsat6.2pl.res=residuals(lsat6.2pl, type ="LD") 
lsat6.3pl.res=residuals(lsat6.3pl, type ="LD") 
 
# Using residuals, compute LD-X2 (see the lower diagnoal of these matrices) 
# Item pairs with values > 10 may 



 

91 
Distribution Statement A: Approved for public release.              

AFRL/PA  AFRL-2021-0247, cleared on 2 February 2021 

(abs((lsat6.1pl.res)-1)/sqrt(2)) 
(abs((lsat6.2pl.res)-1)/sqrt(2)) 
(abs((lsat6.3pl.res)-1)/sqrt(2)) 
 
# Q3 may also be estimated 
residuals(lsat6.1pl, type ="Q3") 
residuals(lsat6.2pl, type ="Q3") 
residuals(lsat6.3pl, type ="Q3") 
 
############################################################### 
#Step 4: Select & Use Model  
############################################################### 
# All models had good fit to the data 
# I will retain 2PL for rest of this section  
 
# Calibrate the 2PL 
lsat6.2pl=mirt(df[,keys.list$lsat6],model=1,itemtype="2PL",SE=T) 
 
# Examine overall results 
lsat6.2pl 
 
# Examine parameter estimates (some different options for viewing results) 
# Note: a = discrimination; b= difficulty; g = guessing (lower asymptote); u = upper asymptote 
#       for the 2PL, a & b are estimated, g is set to 0 and u is set to 1 
coef(lsat6.2pl, IRTpars=T, simplify=T) 
coef(lsat6.2pl, IRTpars=T) 
coef(lsat6.2pl, IRTpars=T, printSE=T) 
 
# Estimate latent trait scores 
lsat6.2pl.scores=fscores(lsat6.2pl, method = "EAP", full.scores=T, full.scores.SE=T) 
head(lsat6.2pl.scores); tail(lsat6.2pl.scores) 
 
# Merge factor scores with original data 
# cbind function will do the trick, assuming that the order of the original df has not be changed since the 
2pl was estimated 
df.final=cbind(df,lsat6.2pl.scores) 
names(df.final) 
 
# Generate plots of ICCs, TCC, IICs, TIC, SEE 
# Plot a single ICC for item #4 
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itemplot(lsat6.2pl,4) 
 
# Generate separate ICC plots for each item in lsat6 
for (i in 1:length(keys.list$lsat6)) 
  {p=itemplot(lsat6.2pl,i) 
print(p) 
  } 
# Generate a single plot of the ICCs for the items in lsat6 
plot(lsat6.2pl,type="trace") 
 
# Generate the Test Characteristic Curve 
plot(lsat6.2pl) 
 
# Generate a single Item Information Curve for item #4  
itemplot(lsat6.2pl,4,type="info") 
 
# Generate separate IIC plots for each item in lsat6 
for (i in 1:length(keys.list$lsat6)) 
{p=itemplot(lsat6.2pl,i,type="info") 
print(p) 
} 
 
# Generate Test Information Curve 
plot(lsat6.2pl,type="info") 
 
# Determine maximum information available by extracting info for theta=b) 
coef(lsat6.2pl,IRTpars=T, simplify=T) 
iteminfo(extract.item(lsat6.2pl,1), -3.361) 
iteminfo(extract.item(lsat6.2pl,2), -1.370) 
iteminfo(extract.item(lsat6.2pl,3), -0.280) 
iteminfo(extract.item(lsat6.2pl,4), -1.866) 
iteminfo(extract.item(lsat6.2pl,5), -3.123) 
 
# Generate Person-Item Map 
install.packages("WrightMap") 
library(WrightMap) 
names(df.final) 
thetas.2pl <- df.final$F1 # create a new object containing estimates of theta 
difficulties.2pl <- coef(lsat6.2pl,simplify=T)$items[1:5,2] # create a new object containing item 
difficulties 



 

93 
Distribution Statement A: Approved for public release.              

AFRL/PA  AFRL-2021-0247, cleared on 2 February 2021 

 
wrightMap(thetas.2pl, difficulties.2pl, 
          main.title = "Person-Item Map of LSAT6", 
          axis.persons = "Distribution of Person Theta Scores", 
          axis.items = "Set of 5 Items", 
          show.thr.lab = F, 
          show.thr.sys = F, 
          item.side=itemModern, 
          person.side=personHist) 
 
wrightMap(thetas.2pl, difficulties.2pl, 
          main.title = "Person-Item Map of LSAT6", 
          axis.persons = "Distribution of Person Theta Scores", 
          axis.items = "Set of 5 Items", 
          show.thr.lab = F, 
          show.thr.sys = F, 
          item.side=itemModern, 
          person.side=personDens)  
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############################# 
###IRT Part 3 
############################# 
 
########## Item Response Theory: Item Analysis and Test Evaluation 
###Part 3: ME/I DIF 
library(psych) 
library(GPArotation) 
 
### MEASUREMENT EQUIVALENCE/INVARAIANCE; DIFFERENTIAL ITEM FUNCTIONING 
 
############################################################### 
#Step 1: Read in data (see Appendix D-IRT Final Part 1.R) 
############################################################### 
### I will use the data from the previous IRT appendices 
### I will append a group variable to this data set 
df$sex = rep(seq(0,1),500) 
 
### Create separate dataframes for males and females 
df.m = df[sex==0,] 
df.f = df[sex==1,] 
############################################################### 
#Step 2: Test for Unidimensionality 
############################################################### 
# Will focus on the combined set of items (lsat6 + lsat7) 
 
###Traditional parallel analysis 
all.parallel <- fa.parallel(df[,keys.list$all], fm = 'pa') 
 
###Modified parallel anlaysis available as part of the ltm package 
install.packages("ltm") 
library(ltm) 
 
###Note: Modified PA requires first estimating an IRT model that can be used as comparison in simulation  
all.ltm = ltm(df[,keys.list$all]~z1) 
all.ltm.2fac = ltm(df[,keys.list$all]~z1+z2) 
anova(all.ltm,all.ltm.2fac) 
unidimTest(lsat6.ltm) #This will take a while to run 
 
detach("package:ltm", unload = TRUE) 
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### The modified parallel tests suggests unidimensionality 
 
############################################################### 
#Step 3: Model-Data Fit 
############################################################### 
 
library(mirt) 
mirtCluster(6) #speeds things up 
# Assuming that the 2PL model is the appropriate model 
 
### Overall model fit across groups (using M2) 
 
### 2PL using mirt 
all.2pl=mirt(df[,keys.list$all],model=1,itemtype="2PL",SE=T) 
all.2pl 
 
M2(all.2pl) 
 
### Model fit within group S-X2 
all.2pl.m = mirt(df.m[,keys.list$all],model=1,itemtype="2PL", SE=T) 
all.2pl.f = mirt(df.f[,keys.list$all],model=1,itemtype="2PL", SE=T) 
 
itemfit(all.2pl.m) 
itemfit(all.2pl.f) 
 
# Test of Pairwise Local Independence 
# Compute LD-X2 using model residuals (Chen & Thissen, 1997) 
all6.2pl.res.all=residuals(all.2pl, type ="LD") 
all.2pl.res.m=residuals(all.2pl.m, type ="LD") 
all.2pl.res.f=residuals(all.2pl.f, type ="LD") 
 
# Using the above residuals residuals, compute LD-X2 (see the lower diagnoal of these matrices) 
# Item pairs with values > 10 may 
(abs((all.2pl.res.all)-1)/sqrt(2)) 
(abs((all.2pl.res.m)-1)/sqrt(2)) 
(abs((all.2pl.res.f)-1)/sqrt(2)) 
 
# Q3 may also be estimated 
residuals(lsat6.2pl, type ="Q3") 
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residuals(lsat6.2pl.m, type ="Q3") 
residuals(lsat6.2pl.f, type ="Q3") 
 
############################################################### 
#Step 4: ITERATIVE DIF ANALYSIS  
############################################################### 
### Assume: 2PL model is appropriate 
### Assume: No information is avaialble on anchor items 
### Plan: use Mead and Wright's (2012) suggestion to us the maxA5 approahc to get anchors 
 
#################Freely Estimated Parameters############### 
help(multipleGroup) 
model.free <- multipleGroup(df[,keys.list$all], 1, as.factor(sex)) 
coef(model.free, simplify = TRUE) # for the manuscript 
 
###Baseline Model 
################## Baseline Model ############################ 
model.constrained <- multipleGroup(df[,keys.list$all], 1, as.factor(sex), 
                                   invariance = c(colnames(df[,keys.list$all]), 'free_means', 'free_var')) 
(constrained.parameters <- coef(model.constrained,simplify = TRUE)[[1]][[1]]) 
 
###First Round of LRTs 
#################### First round of DIF analyses - All Others As Anchors ################# 
dif.drop <- DIF(model.constrained, c('a1','d'), scheme = 'drop', seq_stat = .05) 
 
################################################################################################# 
### RUN THE FOLLOWING FUNCTION TO FACILIATE ORGANIZING THE OUTPUT 
get.dif.items <- function(f.data,p.val=.05,parms){ 
  r.warnings = "" 
  keep.vars <- c("X2", "df", "p") # just keep these variables 
  f.data <- f.data[keep.vars] 
  f.data$p = round(f.data$p,3) 
  if(missing(f.data)) return('Missing model output out.list') 
  f.data$sig <- ifelse(f.data$p < p.val,'dif','no_dif') 
  if(!missing(parms)){ 
    if(nrow(f.data) == nrow(parms)){ 
      f.data <- cbind(f.data,parms) 
    }else{ 
      r.warnings = "There number of item parameters doesn't match the number of items " 
      r.warnings = paste(r.warnings,"given to get.dif.items. Item parameters omitted.") 
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    } 
  } 
  dif.items <- subset(f.data, sig == 'dif') 
  no.dif.items <- subset(f.data, sig == 'no_dif') 
  if(!missing(parms) && nrow(f.data) == nrow(parms)){ 
    if(nrow(no.dif.items)>1){ 
      no.dif.items <- no.dif.items[order(-no.dif.items$a1),] 
    } 
  } 
  r.list <- list(dif_items = dif.items, no_dif = no.dif.items, warnings = r.warnings) 
  return(r.list) 
} 
############################################################################################## 
 
## The above function let's us run the next line of code 
get.dif.items(f.data=dif.drop,p.val=.05,parms=constrained.parameters) 
 
###Specify a New Baseline Model using Anchor Items 
###We will use the A5 method from Meade and Wright (2012) in which we will choose five anchor items with 
###the largest A parameters. Note that the get.dif.items function will sort non-dif items by the A 
parameter if 
###supplied.  
# q06 
# q01 
# q02 
# q07 
# q08 
 
itemnames <- colnames(df[,keys.list$all]) 
anc.items.names <- itemnames[c(6,1,2,7,8)] #selected 5 non-dif items with largest a1 parameter  
test.items <- c(3,4,5,9,10) 
model_anchor <- multipleGroup(df[,keys.list$all], model = 1, group = as.factor(sex), 
                              invariance = c(anc.items.names, 'free_means', 'free_var')) 
(anchor.parms <-coef(model_anchor,simplify = TRUE)[[1]][[1]]) 
 
###Run the Final Invariance Tests 
(dif.anchor <- DIF(model_anchor, c('a1','b'), items2test = test.items, plotdif = TRUE)) 
 
#################### Final round of DIF analyses ################# 
## use the optional function to table the output 
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get.dif.items(f.data=dif.anchor,p.val=.05) 
 
 
###Step 7: Compute Effect Sizes 
#The last step is to compute effect size estimates, as described in Meade (2010). 
#Test-Level Effect Sizes 
empirical_ES(model_anchor, DIF=FALSE,ref.group=1) # test-level effect sizes 
 
empirical_ES(model_anchor,ref.group=2) # item-level effect sizes 
 
empirical_ES(model_anchor, ref.group=2,DIF=FALSE, plot=TRUE) # expected test score plot 
 
empirical_ES(model_anchor, ref.group=2,plot=TRUE) 
 
itemplot(model_anchor, 9) # Plot item 9 
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