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1 Introduction 

The DARPA CHESS program seeks to increase the speed and efficiency with which software vulnerabilities 
are discovered and remediated, by integrating human knowledge into the automated vulnerability discovery 
process of current and next generation Cyber Reasoning Systems (CRS). As with most technological 
advancements that seek to supplant what was once the exclusive domain of human expertise, the best and 
the most convincing way to measure success is against a human baseline. 

Combining Hacker Expertise Can Krush Machine Assisted Target Exploitation (CHECKMATE), the 
CHESS Technical Area 4 (TA4) Control Team, focuses on providing the CHESS program with a team of 
expert hackers with extensive domain experience as a consistent baseline against which the TA1 and TA2 
performers will be measured. Vulnerability research is a constantly evolving area of cyber security, which 
means that the baseline for measuring the success of the CHESS program is a moving target. The control 
team must keep pace with the most recent advancements to remain an effective baseline for comparison. 
The CHECKMATE team not only needs to stay on top of the state-of-the-art research and technology 
solutions, but also capture the most emerging and trending techniques across all relevant vulnerability 
classes, tools, and methodologies. This Edge of the Art report aggregates the most recent advances in 
vulnerability research (VR), reverse engineering (RE), and program analysis tools and techniques that the 
CHECKMATE team considers when planning for the next CHESS evaluation event. 

Staying current with the ongoing advancements of such fast-moving fields requires constant engagement 
with the cyber security community. The contents of this report are drawn from four specific areas of 
engagement: 

1. Social Media - Participating in social media platforms, including online forums and chat
applications, to identify key influencers, build relationships, and identify new research
directions.

2. Online Code Repositories - Monitoring code repositories for new tools and deciding when a
tool has reached a baseline level of maturity for our team to evaluate and include in our toolset.

3. Top Security Conferences - Attending a selected set of top cyber security conferences that
focus on VR, RE, and program analysis to provide a formal venue for learning and exchanging
new techniques.

4. Academic Literature - Surveying academic literature frequently to ensure complete
coverage of novel algorithms and approaches driven by academic research.

To stay on the Edge of the Art, this report will be updated every six-months with enhancements in the current 
state-of-the-art and new tools and techniques emerging in the cyber security community. 
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2 Scope of the Document 

The purpose of this second Edge of the Art (EotA) report is to document those things that have come into 
existence (or significantly matured) since the last report. 

 
The EotA reports are produced using an “aggregate and filter” approach. The CHECKMATE team constantly 
monitors many different sources to aggregate all known and emerging tools and techniques. This 
information is then filtered into what the CHECKMATE team considers worth reporting. The definition of 
the “edge” is governed by the filter criteria, which differ across tools and techniques. It is anticipated that 
these criteria, and therefore the definition of “edge,” will evolve over the life of the CHESS program. 

 
2.1 Tools Criteria 

The following criteria govern which tools are included in this report. 
 

Year Released – “Cutting edge” has an obvious temporal component, but it is less obvious where the cut-
off should lie. Every tool in this report has been introduced within the last five years (i.e. first released in 
2015 or later). Most of the tools were released in or after 2018, and most of those were released in or after 
2019. Those released earlier are included because they have significantly matured since their initial release 
and now contain notable features. 

 
Capability – New tool capabilities, and how they compare to the current state-of-the-art, are a primary 
consideration for inclusion in this report. The novel aspect of a new tool is dependent on the category of 
tool, and each section of this report starts with an introduction that lays out its specific considerations. 

 
Theory and Approach – Tools which offer novel ideas, approaches, or new research are important even 
when the tools have poor implementations or do not necessarily outperform the current state-of-the-art. 

 
Usability – In contrast with Theory and Approach, Usability considers tools which may not represent 
groundbreaking research, but enable the user to harness existing capabilities more effectively. 

 
Current State-of-the-Art – The line between edge-of-the-art and state-of- the-art is hazy. There is rarely 
a single moment where a tool or technique definitively transitions from one category to another. In some 
cases, including a tool that one might consider state-of-the-art is necessary to compare to the edge-of-the-
art. In other cases, the tool has new capabilities which keep it on the edge-of-the-art. 

 
2.2 Technique Criteria 

Most techniques are implemented by at least one tool and are documented in that tool’s description. 
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2.3 Tool and Technique Categories 

There are many ways to categorize the tooling and techniques used for vulnerability discovery and 
exploitation. Cyber Reasoning Systems (CRS) tend to view the problem as a combination of analytical 
techniques, such as dynamic analysis, static analysis, and fuzzing. These are a bit too broad to use as tool 
categories because each technique summarizes a set of actions that are performed by different tools. Some 
tools may utilize multiple techniques and thus fall in multiple categories. Alternatively, existing tool 
categorizations, like the Black Hat Arsenal tool repository, are both too specific (e.g., “ics_scada”), or 
include categories that are irrelevant to VR, RE, and exploit development (e.g., “phishing”). 

 
The CHECKMATE team has adopted a tool categorization that encompasses the VR and exploit 
development process followed by most researchers. Broadly, this process involves three overarching steps: 
1) find points of interest (PoI) that may contain a vulnerability; 2) verify the existence of a vulnerability at 
each PoI; and 3) build an input that triggers the vulnerability to generate a specific effect (e.g., crash, info 
leak, code execution, etc.). As part of this process, the researcher will typically engage in six types of 
activities: Comprehension, Translation, Instrumentation, Analysis, Fuzzing, and Exploitation. These 
activity classes form the basis for the tool categorization used in this report. 

 
This version of the Edge of Art report describes tools in the categories of Static Analysis, Dynamic Analysis, 
Fuzzing, and Exploitation. 

 
3 Static Analysis 

3.1 Technical Overview 

Static analysis investigates a program without ever running it, either as source code or a binary executable. 
The most common forms of static analysis in reverse engineering and vulnerability research start with 
disassembling and/or decompiling a binary executable. These transformations utilize several static program 
analysis techniques, which also underlie many of the other techniques discussed in this report. One of the 
most fundamental forms of static analysis is lifting a program to an intermediate representation (IR). IRs 
are used in many of the tools and techniques discussed throughout this report. Static analysis can be used 
for reverse engineering compiled programs, statically rewriting and instrumenting a binary executable, 
performing static vulnerability discovery on either source or binary code, etc. 

 
Disassembly 

 
Relevant EotA Tools: IDA Pro, Ghidra, Binary Ninja, Miasm, BAP 2.0 

 
An assembler converts a program from assembly language to machine code, and a disassembler performs 
the reverse: it converts machine code to assembly language. Since there is often a one- to-one 
correspondence between machine instructions and assembly instructions, this translation is much less 
complicated than decompilation. However, disassembly can pose challenges, especially 
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with architectures like x86 which have variable length instructions. When overlapping sequences of bytes 
could themselves be valid instructions, instruction cannot be disassembled at random. Several approaches 
to disassembly address this challenge, including linear sweep (which disassembles instructions in the order 
they appear starting from the first instruction) and recursive descent (which disassembles instructions in the 
order of their control flow) [1, p. 2]. Many popular disassemblers including IDA Pro [2] and Binary Ninja 
[3] use the latter technique. 

 
Disassembling machine code is often the first step in binary analysis, and most binary analysis tools rely 
on some type of disassembler. There are currently a variety of disassemblers available, ranging from simple 
command line utilities to proprietary platforms with capabilities far beyond basic disassembly. A simple 
example is objdump [4], a standard tool on Linux operating systems which will output the disassembly of 
a given binary. Tools like debuggers often rely on more sophisticated disassembly frameworks like 
Capstone [5] which has features complementary to its core disassembler and is designed to be used via an 
API. Capstone is a dependency of many tools in this report, such as angr [6], Qiling [7] and Frida [8]. The 
disassembly framework Miasm [9] (discussed in the second version of this report) can be used similarly to 
Capstone. 

 
In contrast to frameworks, disassembly platforms are designed primarily for humans to analyze 
disassembled code through a graphic user interface (GUI). These are often sophisticated user applications 
which offer a significant range of features beyond disassembling code. For example, many of these 
applications have built-in APIs that can be used as frameworks for custom, automated analyses. Several of 
these tools were discussed in the first version of this report: IDA Pro [2], Ghidra [10] and Binary Ninja [3]. 

 
Reassembleable Disassembly 

 
Relevant EotA Tools: DDisasm, Retrowrite, angr (Ramblr) 

 
The disassembly techniques discussed to this point are only concerned with moving from machine code to 
assembly. However, reassembly (automatically reassembling disassembled code) has recently become an 
area of academic interest, in part to support static instrumentation. A 2015 paper, Reassembleable 
Dissassembling [11], claims that at the time “no existing tool is able to disassemble executable binaries into 
assembly code that can be correctly assembled back in a fully automated manner, even for simple programs. 
Actually, in many cases, the resulted disassembled code is far from a state that an assembler accepts, which 
is hard to fix even by manual effort. This has become a severe obstacle [11, p. 1].” The paper presented a 
tool that could disassemble a binary using a set of rules that made the resulting disassembly relocatable, 
which they assert is the “key” to reassembling [11, p. 1]. Since 2015, this technique has been improved, 
notably by the creators of angr who built a reassembling tool called Ramblr [12]. More recently, the tool 
DDisasm 
[13] was introduced and was discussed in the first version of this report. 

 
Static Binary Rewriting and Static Instrumentation 

 
Relevant EotA Tools: Retrowrite, LIEF 
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Binary rewriting modifies a binary executable without needing to change the source code and recompile. 
One use case is for binary instrumentation, which is often thought of as a dynamic technique. While many 
dynamic binary instrumentation (DBI) techniques exist, there are also methods for statically instrumenting 
binaries. Many of these rely on reassembling or relinking the binary. Retrowrite [1], a tool designed to 
statically instrument binaries for dynamic analysis like fuzzing and memory checking, also uses a 
reassembleable disassembly technique that builds on previous research in reassembleable disassembly and 
static binary rewriting. The tool LIEF [14], discussed in the first version of this report, allows the user to 
statically hook a binary, or statically modify it in a variety of other ways. 

 
Intermediate Representation (IR) 

 
Relevant EotA Tools: IDA Pro, Ghidra, Binary Ninja, Miasm, BAP 2.0, GTIRB, Fuzzilli 

 
An intermediate representation is a form of the program that is in-between both its source language and target 
architecture representations. The semantics and human intelligibility of an IR often fall between the source 
language and target architecture. IRs may be expressed using a variety of formats, however most often they 
take the form of an Intermediate Language (IL), defined by a formal grammar. IRs are designed to enable 
analyses and operations that would be more difficult to perform on the original representation by converting 
it to an architecture agnostic form. Different IRs have different attributes and features, depending on their 
intended use. For example, some transform machine code to make it human readable, others layer on 
additional operations making the resulting representation less readable but amenable to analyses and 
optimizations. 

 
Intermediate Representations are commonly used in compilers. A familiar example is LLVM [15], the IR 
used in the Clang compiler [16]. LLVM is helpful as an example not just because it is well known, but 
because it demonstrates the range of features a well-designed IR can offer. The instruction set and type 
system for LLVM is language independent, which means there are no high- level types and attributes. This 
allows LLVM to be ported to many architectures. While the type system is low-level, providing type 
information enables LLVM to be optimized through various analyses [17]. Unlike machine code, LLVM is 
designed to be human readable [17]. 

 
LLVM uses a technique called Single Static Assignment (SSA), which means each variable is assigned a 
value only once. SSA enables analysis such as variable recovery because it inherently maps one instruction 
to many and generates output not intended for human consumption. 

 
These traits are not specific to LLVM but are attributes of many IRs discussed in this report. Clang’s 
compiler works by translating source code languages to LLVM, performing optimizations, and then 
translating the LLVM bitcode to a specific architecture [18]. The Ghidra’s decompiler does something 
similar but in reverse: a binary program is first lifted (converted to a higher-level representation) to an IR 
called P-Code [19], on which Ghidra can perform analyses and then decompile by converting the program 
to pseudo source code. Therefore, Ghidra can decompile anything it can lift to P-Code, because 
decompilation is performed on a language agnostic IR and not the original machine language [20]. 
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Ghidra uses SSA in its decompilation, but unlike LLVM, P-Code is not in SSA form by default [20]. Other 
IRs also have SSA and non-SSA forms. For example, Binary Ninja’s IRs offer the ability to toggle between 
non-SSA and SSA form [3]. SSA demonstrates one of the trade-offs that inform IR design. The developers 
of Binary Ninja created the charts in Figure 1 and Figure 2 to show the tension between different features 
of IRs. 

 

 

  

 
 

  
 

 
 

 

Figure 1: Tradeoffs of IRs, Pt. 1 [21, p. 29] 

 
Easy to parse 

 
Easy to lift 

 
Verbose 

 
Concise (readable) 
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Figure 2: Tradeoffs of IRs, Pt. 2 [21, p. 30] 

 
 

Intermediate Representations, each with their own mix of features, are used extensively throughout the tools 
in this report. Decompilers such as IDA Pro, Ghidra and Binary Ninja (which has developed a decompiler 
that is not yet released) each have their own IRs. These are used not just for decompilation, but also exposed 
via APIs that allow the user to utilize it for their own analyses. IDA Pro only recently documented their API 
[22], whereas the public release of Ghidra’s P-Code included an API. However, out of these three platforms, 
Binary Ninja’s IRs are designed with the greatest degree of user capability. They offer three levels of IRs 
each with an optional SSA-form and a feature-heavy API [23]. Their third level is decompilation. 

 
Other IR frameworks discussed in the second version of this report can be used in the same manner, but each 
offer their own set of features. Binary Analysis Platform (BAP) [24] is a framework designed for program 
analysis and built around the BAP Intermediate Language (BIL), which has a formally defined grammar 
[25]. Miasm has an expression-based IR that facilitates tracking memory and registry values [26]. Miasm 
also has a JIT engine for emulation and has built in support for symbolic execution [27]. 

 
Certain IRs are tailored for specific use cases. For example, Fuzzilli, a fuzzer which targets JavaScript JIT 
engines, uses a custom IR called FuzzIL [28]. Seeds are constructed and mutated in FuzzIL then translated 
into JavaScript before being fed into the engine [28]. This approach has the benefit of being able to 
theoretically explore all possible patterns given enough computing power, unlike a JIT fuzzer working from 
hardcoded JavaScript samples. 

 
By contrast some tools in this report use existing IRs rather than creating their own. The symbolic execution 
tool angr uses Vex, which is the IR implemented by the memory debugger Valgrind [29]. WinAFL, a version 
of the AFL fuzzer for the Windows operating system, uses DynamoRIO, a dynamic binary instrumentation 
engine with its own IR [30]. 

 
The variety of IRs discussed thus far show the versatility of IRs and their applications. They can be used 
for decompilation, semantic analysis, emulation, symbolic execution, fuzzing seed generation, and more. 
The abundance of intermediate representations offers a range of choices and 

 
Typed 

 
Un-typed 

 
Explicit flags 

 
Deferred flags 

Can adapt to problematic 
architectures 

 
Much easier to lift 
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satisfies differing use cases, but also results in compatibility issues. GTIRB [31], which is discussed in the 
previous version of this report, is an IR designed to convert between different IRs. It is also the IR used in 
DDisasm. 

 
Decompilation 

 
Relevant EotA Tools: IDA Pro, Ghidra, Binary Ninja 

 
A disassembler translates a program’s machine code into assembly language instructions, whereas a 
decompiler converts a program’s machine code into pseudo-code resembling a high-level language, such as 
C or C++. The goal of both is to transform a compiled program into a more human readable form, but the 
output of a decompiler is far closer to the original source code. It is significantly more difficult to create a 
semantically faithful representation of the underlying binary instructions in high-level pseudo-code. 

 
Whereas compiler theory has been a popular area of computer science for decades, its reverse has received 
far less attention. In 1994 Christina Ciafuentes published her PhD thesis on the subject, Reverse Compilation 
Techniques [32]. This work went on to inform the development of multiple decompilers, including Hex-
Rays, the decompiler of choice for over a decade. This tool is part of IDA Pro, a disassembler which has 
been commercially available since 1996. However, Hex-Rays was not released until 2005 [33]. Until 
recently, it was one of the few decompilers available, and the most technically sophisticated. 

 
As of 2019, the United States National Security Agency (NSA) released Ghidra, a disassembler and 
decompiler with comparable performance to IDA Pro [34]. In March 2020, Vector35 released a decompiler 
for their tool, Binary Ninja. Binary Ninja not only exposes its IRs to the user, but makes them a fundamental 
part of its design, with this new decompilation acting as a third layer in their three-tiered IR system. Their 
decompilation is available in both SSA and non-SSA form. 

 
Each decompiler has its respective strengths and weaknesses. Although IDA Pro is now experiencing 
significant competition, it is still considered the most effective decompiler available in many cases. Ghidra 
and IDA Pro each have over a decade of development, whereas Binary Ninja is a newer tool that still has 
room to grow when compared to its more mature competitors. Ghidra has comparable performance to IDA 
Pro, but for certain constructs like jump tables and no return functions, IDA Pro clearly performs better than 
Ghidra. 

 
In contrast, Binary Ninja arguably offers the best scripting capabilities, intermediate representations, and 
functionality for program analysis. Both Binary Ninja and IDA Pro make scripting with their decompiler 
and their intermediate representations far easier than IDA Pro. Binary Ninja exposes both a low-level IR and 
a medium-level IR (in both SSA and non-SSA form) in addition to their decompilation. Ghidra also makes 
its P-Code IR readily available to the user. In the case of IDA, although it has an IR, its less publicly 
accessible and easily scriptable. This divide is also reflected in these tools’ respective methods of 
decompilation. Ghidra and Binary Ninja both decompile from their respective IRs in an architecture-
independent manner, meaning that any architecture that can be lifted to their IRs and subsequently 
decompiled. Although there 



 

Approved for Public Release; Distribution Unlimited.  
13  

is less publicly available information on the internals of the IDA Pro decompiler, it requires a separate 
decompiler to be purchased for each architecture. 

 
Ghidra is a completely free open-source tool, whereas both Binary Ninja and IDA Pro are closed- source 
and cost different amounts of money. An IDA Pro license with decompilers for just x86 and x86-64 costs 
several times that of a Binary Ninja license (which can decompile any architecture which lifts to its IR). 

 
 

Static Vulnerability Discovery 
 

Relevant EotA Tools: Crix 
 

There are a number of tools and techniques designed to statically discover vulnerabilities. Many target 
source code analysis, including tools such as Coverity [35], CodeSonar [36], and Semmle [37]. These use 
static analysis algorithms to find possible vulnerabilities and common vulnerability patterns in the code base. 
Additionally, there exist program analysis techniques designed to statically identify vulnerabilities in binary 
code, like graph-based vulnerability discovery and value-set analysis (VSA) [29, p. 5]. The tool Crix, which 
is discussed in this section, is a static analysis tool designed to find memory-check errors. 

 
Static Program Analysis 

 
Relevant EotA Tools: IDA Pro, Binary Ninja, Ghidra, angr, BAP 2.0, Retrowrite, etc. 

 
Disassembly and decompilation, as well as static vulnerability discovery methods, are predicated on several 
program analysis techniques. One of the most basic forms of static analysis is pattern matching, simply 
scanning through code to find known vulnerabilities (e.g., using the C library function gets()). However, 
many of these techniques rely on far more sophisticated forms of program analysis, to include: 

 
• Control Flow Recovery:  A binary program can be broken into basic blocks separated by 

branches: a basic block is a sequence of instructions that contains no jumps, except at the entry 
and exit. A control flow graph (CFG) models a program as a graph in which the basic blocks of 
the program are represented as nodes, and the jumps, or branches, are represented as edges. A 
CFG is instrumental to many forms of static program analysis and vulnerability discovery. 
Recovering it is done by disassembling the program and identifying the basic blocks and the 
jumps between them (both direct and indirect) [29, p. 4]. 

 
• Variable and Type Information Recovery: Variable and type information is used by the 

compiler but is not present in final binary executable form (unless the binary is compiled to 
explicitly include this information for debugging purposes). Therefore, it is often necessary to 
recover this information when analyzing a binary [1, p. 5]. One attribute of many IRs is that 
their lifters will recover variable and type information and 
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include it in the IR. This is also necessary for decomplication. 
 

• Function Identification: Function information is also often left out of the final binary form 
of a computer program, and it is also necessary in various forms of analysis. Methods have 
been developed to identify distinct functions within a binary [1, p. 5]. 

 
• Value Set Analysis (VSA): VSA is a form of static analysis which attempts to track values and 

references throughout a binary [29, p. 5]. This analysis has a variety of uses, including 
identifying indirect jumps or finding vulnerabilities like out of bound accesses. 

 
• Graph-based vulnerability discovery: This form applies graph analysis to a CFG to 

identify vulnerabilities [29, p. 5]. 
 

• Symbolic Execution: Symbolic execution replaces program inputs with symbolic values, and 
then symbolically executes over the program. Symbolic execution be done either statically or 
dynamically. 

 
• Abstract Interpretation, data-flow analysis, etc.: There are many types of formal static 

analysis which apply mathematical approaches to program analysis. These include abstract 
interpretation and data-flow analysis. The tools BAP has implemented support these forms of 
analysis, including in a recent update [38]. 
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3.2 Decompilation Frameworks 
 

3.2.1 Binary Ninja - High Level IL 
 
 

Reference Link https://binary.ninja/ 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Windows: PE (Portable Executable); etc. 

macOS/iOS: Mach-O; etc. 
Linux: ELF; etc. 
Other: COFF (Common Object File Format); Raw Binary; etc. 

Host Architecture x86 (32, 64) 
Target Architecture  

 
Supported Architectures [35] 

Initial Release 2016 
License Type Proprietary 
Maintenance Maintained by Vector 35 

 
Overview 

 
Binary Ninja is built for contemporary reverse engineering and ease of use, while also incorporating complex 
program analysis techniques. It lacked a decompiler until March 2020, when Vector35 finally released one. 
Their decompiler is an extension of their three-tiered intermediate representation (IR) family and is termed 
HLIL. It is also accompanied by a HLIL in SSA form. The HLIL and its SSA form are deeply integrated with 
Binary Ninja’s scripting engine, which facilitates development of automated analyses and plug-ins. [3] [21] 

 
With the introduction of Ghidra in in March 2019, there are now three actively developed, high quality 
decompilers available. This represents a significant disruption to a market that has for years had few viable 
options for effective decompilation. These three reverse engineering platforms are, in some respects, 
complementary, each having their own benefits and drawbacks. 
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High Level IL SSA 
) 

 
Intermediate Representations 

 
One of the most useful capabilities of Binary Ninja are its intermediate languages. Binary Ninja offers an 
entire family of IRs, at low, medium and high levels. The user can easily switch between these IRs in both 
Linear and Graph view. In contrast with IDA Pro’s IR, and to a lesser extent Ghidra’s P-Code IR, the IRs 
designed for Binary Ninja are meant to be human-readable. Binary Ninja’s IRs are also more sophisticated 
in that they are optionally SSA, have deferred flag calculation and the ability to transform assembly 
instructions to generic ones. These IRs, and their SSA forms, are easily available with Binary Ninja’s 
verbose Python scripting engine. 

 
Figure 3 shows a diagram of the Binary Ninja IRs in relation to one another. 

 

 

 
 

 
 

Figure 3: Binary Ninja's Intermediate Representation Family [21] [3] 
 

HLIL 
 

HLIL is the highest level of Binary Ninja’s IRs and serves as its decompiler. As Ryan Stortz writes in [39], 

Low Level IL 
(Flags resolved, nops removed) 

Low Level IL SSA 

Medium Level IL 
(Stack resolved to variables, dead 

stores eliminated) 

Medium Level IL SSA 

High Level IL 
(Decompilation: expression 

folding, high level constructs) 

Lifted IL 
(Initial Stage from Architecture 

Plugin) 
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“HLIL has aggressive dead code elimination, constant folding, switch recovery, and all the other things 
you’d expect from a decompiler, with one exception: Binary Ninja’s decompiler doesn’t target C.” 

 
Unlike other decompilers Binary Ninja’s tiered IRs are the core of their decompilation. This makes it 
architecture independent because anything that can lift to the LLIL can then be decompiled. However, using 
heuristics can help create more readable decompilation. 

 
Code 1 is an example function to be compiled and then decompiled to Binary Ninja’s HLIL. 

 

Code 1: Example function source code 

Figure 4 shows the HLIL for Code 1, displayed in Linear mode. 
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Figure 4: Binary Ninja HLIL of Code 1 

Figure 5 shows the HLIL in SSA for Code 1, also displayed in Linear mode. 
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Figure 5: Binary Ninja HLIL SSA Form of Code 1 

Figure 6 shows the HLIL for Code 1, displayed in Graph view. 
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Use Cases and Limitations 

Figure 6: Binary Ninja HLIL of Code 1 

 
Although a side by side comparison of each tools’ decompilation of only one test file is not an absolute 
measure of quality, it is helpful to understand the differences between the three tools. Figure 7 and Figure 
8 show IDA Pro’s and Ghidra’s decompilation of Code 1, respectively. 
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Figure 7: IDA Decompilation of Code 1 
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Figure 8: Ghidra decompilation of Code 1 

Each decompiler has its own strengths and weaknesses. Although IDA Pro is now experiencing significant 
competition, for now it is still considered the most effective decompiler available. While Ghidra and IDA 
Pro have each been in development for over a decade, for certain constructs like jump tables and no return 
functions, IDA Pro clearly outperforms Ghidra. Binary Ninja is a newer tool that still has room to grow but 
has features that IDA Pro and Ghidra do not. 
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Binary Ninja arguably offers the best scripting capabilities, intermediate representations, and functionality 
for program analysis. Both Binary Ninja and IDA Pro make scripting with their decompiler and their 
intermediate representations far easier than IDA Pro. Binary Ninja exposes both a low-level IR and a 
medium-level IR (in both SSA and non-SSA form) in addition to their decompilation. Ghidra also makes 
its P-Code IR, easily accessible to the user. In the case of IDA, although it has an IR, it’s less publicly 
accessible and easily scriptable. This divide is also reflected in these tools’ respective methods of 
decompilation. Ghidra and Binary Ninja both decompile from their respective IRs in an architecture-
independent manner, meaning that any architecture that can be lifted to their IRs and subsequently 
decompiled. Although there is less publicly available information on the internals of the IDA Pro 
decompiler, it requires a separate decompiler to be purchased for each architecture. 

 
Ghidra is a completely free open-source tool, whereas both Binary Ninja and IDA Pro are closed- source 
and cost different amounts of money. An IDA Pro license with decompilers for just x86 and x86-64 costs 
several times that of a Binary Ninja license (which can decompile any architecture which lifts to its IR). 

3.2.2 IDA Pro - Updates 
 
 

Reference Link https://www.Hex-Rays.com/ 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Windows: PE (Portable Executable); 

MS DOS/MS DOS Driver/MS DOS Com; Windows Crash Dump; 
etc. 
macOS/iOS: Mach-O; etc. 
Linux: ELF; etc. 
Android: DEX Format; etc. 
Other: JAR Format; COFF (Common Object File 
Format); Raw Binary; etc. 

Host Architecture x86 (32, 64) 
Target Architecture IDA Pro Disassembler: x86 (16, 32, 64); ARM (32, 64); PPC (32; 

64); 
MIPS (32, 64); SPARC (32, 64); PIC (12, 16, 17, 18, 24); 
Java bytecode; DEX bytecode; etc. 
Hex-Rays Decompiler: x86 (32, 64); ARM (32, 64); PPC (32; 64); 
MIPS (32, 64); etc. 

Initial Release Disassembler Release (Commercial): 1996 
Decompiler Release: 2007 

License Type Proprietary 
Maintenance Maintained by Hex-Rays SA 

 
Updates 
In May 2020, Hex-rays released the 7.5 release of IDA Pro, which incorporated many new features, including 
some UI changes that seem to have been inspired by Ghidra. IDA Pro now offers folders across many of its 
views to help categorize names and types more clearly. IDA Pro also introduced decompiler support for 
multiple MIPS variants including big-endian MIPS32, little-endian 

http://www.hex-rays.com/
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MIPS32, MIPS16e, and microMIPS. Type libraries for macOS and iPhone SDKs have been included as 
well, and Lumina has been updated to support MIPS and PPC. There are several major instruction 
enhancements as well, including decompiler support for ARM atomic instructions, the Intel Control-flow 
Enforcement Technology instructions, and improvements for better decomplication of optimized MOVW 
and MOVT instruction pairs. [40] 

Figure 9 Folder View of Program Imports 

In October 2019, Hex-rays released IDA pro 7.4. The update included Python 3 support, added the S390, 
Renesas M16C/80, M32C, and R32C processor modules, along with various improvements to the 
decompiler, structure editor, and other features. [41] 

3.2.3 Ghidra - Updates

Reference Link https://ghidra-sre.org/ 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Windows: PE (Portable Executable); etc. 

macOS/iOS: Mach-O; etc. 
Linux: ELF; etc. 
Android: DEX Format; etc. 
Other: COFF (Common Object File Format); Raw Binaries; etc. 

Host Architecture x86 (32, 64) 
Target Architecture Disassembler and Decompiler: x86 (16, 32, 64); ARM (32, 64); 

PPC (32; 64); MIPS (32, 64); SPARC (32, 64); PIC (12, 16, 17, 18, 
24); 
Java bytecode; DEX bytecode; etc. 

Initial Release March 2019 
License Type Open-Source 
Maintenance Maintained by the National Security Agency (NSA) 
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Updates 
Ghidra has had one major update and 2 minor updates since the last EotA report. The 9.1 release in October 
2019 added bit-field support to data types, Eclipse integration for the Sleigh Editor, and various GUI 
improvements. Additionally, Ghidra now has a MachO executable file format importer, can preserve the 
imported program’s original memory map, and added support for the following processors: [42] 

• Intel MCS-96 
• SH1/2/2a/SH4 
• Tricore 
• HCS12X 
• HCS05/HCS08 
• MCS-48 

 

3.3 Binary Differentiation 

3.3.1 Hashashin 
 
 

Reference Link https://github.com/riverloopsec/hashashin 
Target Type Binary 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release 2019 
License Type Open-Source 
Maintenance Maintained by River Loop Security 

 
Overview 

 
Hashashin is a tool for Binary Ninja which detects function similarities between two binaries, and ports 
these basic block annotations from one to another. Hashashin is implemented as Python tool that generates 
tags for each of the functions within a program’s Binary Ninja database file, which can then be applied to a 
different program by generating a Binary Ninja database file with those tags. Hashashin uses Locality 
Sensitive Hashing (LSH) and graph hashing to identify similarities between binaries even if they are not 
identical. This is useful for comparing different versions of the same software, comparing different software 
which performs the same function, patch inspection, etc. [43] [44] [45] 

 
Design and Implementation 

 
There are two different kinds of hashing used in Hashashin. The first is basic block hashing, which is done 
using Locality Sensitive Hashing (LSH). Unlike other kinds of hashing (i.e., cryptographic hashing), LSH is 
designed to generate the same hash for similar but not necessarily identical inputs. LSH is used to generate a 
signature for each basic block in the binary. Those signatures act as the 
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label for the corresponding basic blocks in the function’s CFG. Then, graph-based hashing is used (i.e., 
Weisfeiler Lehman Isomorphism Test) to check for similarities between graph structures. 

 
To generate signatures for a Binary Ninja database file, the user runs the generate_signatures.py 
script as follows: 

 
./src/generate_signatures.py <input_binary_ninja_db_file> 

<signature_file> [43] 
 

To apply signatures, the apply_signatures.py file is used. 
 

./src/apply_signatures.py <input_binary> <signature_file> [43] 
 

Use Cases and Limitations 
 

Riverloop developed this tool while they were participating in the DARPA program SafeDocs, in which 
was intended “to develop new methods for understanding and simplifying complex document formats (e.g., 
PDF) to safer, clearly understandable, and ‘verification-friendly’ subsets [44].” Hashashin was developed 
in order to compare distinct parsers that had similar behavior. However, there are many use cases for a tool 
which ports Binary Ninja tags between binaries, including patch comparison, comparison between different 
version of the same library or program, and comparing different programs which perform the same function. 

 
Riverloop found that this tool was most limited when porting tags between different architectures, but it was 
highly effective doing so between programs of the same architecture. A benchmarking table for Hashashin 
is shown in Figure 10. Using a benchmarking script, Riverloop performed an analysis of their tool on 
different PDF parsers. 

 

Figure 10 - Benchmarking Hashashin on PDF parsers [44] 
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3.3.2 DeepBinDiff

Reference Link https://github.com/deepbindiff/DeepBinDiff 
Target Type Binary (C/C++) 
Host/Target Operating 
System 

Linux, Windows 

Host/Target Architecture x86 (32, 64) 
Initial Release January 2020 
License Type Open-Source 
Maintenance Maintained by Cornell University 

Overview 

DeepBinDiff is a tool to perform static binary differentiation, or ‘diffing,’ of compiled programs. This 
technique was presented in the 2020 NDSS paper DeepBinDiff: Learning Program-Wide Code 
Representations for Binary Diffing [46] by Duan et al. Like Zynamic’s BinDiff [47], a mature, popular tool 
for the same purpose, this tool is designed to be used by reverse engineers, security researchers, and 
vulnerability analysts to accurately identify salient differences between two binaries. DeepBinDiff 
distinguishes itself by using an unsupervised neural network pattern recognition approach to analyze 
binaries. [46] [48] [49] 

DeepBinDiff performs its analysis on the basic blocks of an interprocedural CFG (ICFG). Like BinDiff, 
DeepBinDiff is designed to use an ICFG generated by IDA Pro. DeepBinDiff can also use angr to generate 
the ICFG. The authors describe their approach as follows, 

“We propose an unsupervised deep neural network-based program-wide code representation 
learning technique for binary diffing. In particular, our technique first learns basic block embeddings 
via unsupervised deep learning. Each learned embedding represents a specific basic block by 
carrying both the semantic information of the basic block and the contextual information from the 
ICFG. These embeddings are then used to efficiently and accurately calculate the similarities 
among basic blocks. [46, p. 2]” 

Design and Implementation 

The operational stages for DeepBinDiff are shown in Figure 11. 
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Figure 11: Stages of Operation of DeepBinDiff [46, p. 4]. 

The system is divided into three components: 
1. Pre-processing: For each input binary, Interprocedural Control Flow Graphs (ICFG) are created

to describe the program functional flow. Next, tokens consisting of opcodes and operands are
generated using the Word2Vec unsupervised learning model [46, p. 3]. These are then used to
create feature vectors for each basic block in the program [ [46, p. 4].

2. Embedding Generation: The ICFGs and basic block feature vectors are used as inputs to the
Text-Associated DeepWalk (TADW) unsupervised graph learning algorithm to generate
embeddings of the basic blocks [46, p. 5]. These embeddings describe the basic blocks and the
vertices between them (i.e. code flow) as vectors, meaning that similar embeddings will have
values close to each other [46, p. 5].

3. Code Diffing: The final stage is to perform the actual code diffing to identify changes
between the two binaries. The basic block embeddings are fed to a k-hop greedy matching
algorithm proposed by the paper’s authors [46, p. 6]. The output of this final stage is three
sets: the matched pairs, inserted blocks, and deleted blocks [46, p. 6].

Implementation: DeepBinDiff is written in Python3 and has a number of dependencies, including 
TensorFlow [50] for the machine learning component and angr [6] or IDA to generate the ICFG. 

Use Cases and Limitation 

The use cases for DeepBinDiff are generally the same as those of BinDiff: security patch analysis, malware 
analysis, patch-based exploit generation, and plagiarism detection. The authors assert that their approach 
results in higher accuracy, and when used with GPUs, faster performance. 

To judge the efficacy of their approach, the authors use source code to determine the ground truth for all 
matching basic blocks in two versions of the program (the set G). The result M is the set of matching basic 
blocks found by DeepBinDiff. Then, a correct match, Mc, is the intersection of the result M and the ground 
truth G, or Mc = M ∩ G. A “better” performing tool has a larger set Mc than another. 
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In their evaluations, the authors found that DeepBinDiff outperformed BinDiff on average. However, 
DeepBinDiff is a far more computationally and memory intensive tool, due to the needs of the neural net. 
The authors note, and we witnessed, a correlation between runtime and binary size, since embedding 
generation and matching are bounded by the size of the ICFG. C++ programs can also introduce problems 
generating complete ICFGs, which would have a direct impact on the accuracy performance of 
DeepBinDiff since it relies on these to provide contextual information for basic block embedding. Finally, 
the technique requires training the model in order to identify tokens of opcodes and operands, which is not 
required by BinDiff. This can add a significant runtime that is not incurred by traditional diffing approaches. 

 
When we first evaluated DeepBinDiff in early April 2020, the documentation for the author’s 
implementation of DeepBinDiff, found in [49], was sparse. We encountered a number of difficulties when 
attempting to run DeepBinDiff against the OpenSSH client [51], versions 8.1 and 8.2, and were ultimately 
unsuccessful in obtaining useful results. Since our initial evaluation, the authors have added more 
documentation, as well as modified their source code to fix our build errors. As of mid-May 2020, the 
authors appear to be still actively updating the GitHub project with additional documentation and source 
code updates. 

 

3.4 Kernel Static Analysis 

3.4.1 Crix 
 
 

Reference Link https://github.com/umnsec/crix 
Target Type Source (Linux kernel) 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release October 2019 

License Type Open-Source 
Maintenance Maintained by University of Minnesota 

 
Overview 

 
Crix (Criticalness and constraints Inferences for detecting missing-cheCKS) is a static analysis tool that 
analyzes Linux kernel source code and detects a software error known as missed-check. The tool was 
presented in the USENIX 2019 paper, Detecting Missing-Check Bugs via Semantic- and Context-Aware 
Criticalness and Constraints Inferences [52], which addresses the need for a systematized approach to 
identify absent validation checks in OS kernels. These missed-check errors are a bug class that arises when 
intended security checks are not, or are incorrectly, enforced. Crix is a static analysis tool for detecting these 
missing checks in a scalable fashion. Crix [52] is related to the tool CheQ [53] which was created by the 
same authors at the University of Minnesota. The authors claim to have successfully identified over 200 
missing check bugs by using Crix to evaluate the Linux kernel. [52] [54] [55] 
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Design and Usage 
 

Missed-check errors are a class of semantic bugs that arise when an intended security check is not enforced 
on a critical variable (CV) (i.e., those variables that are validated by a security check). Concrete examples 
of this include making a kmalloc() system call and then failing to examine the return value to ensure it 
completed successfully. Or checking that the size parameter to memcpy() is not larger than the destination 
buffer. These checks will be missed in various locations in the code, but present in others. An example of a 
missing-check error found by Crix is shown in Figure 12. 

 
 

Figure 12: Missing-check error in the Linux kernel found by Crix 

Crix’s stages of operation are shown in Figure 13. Using LLVM compiled bitcode, control flow and call 
graphs are constructed and used to identify critical variables. For each CV, “peer slices of source code are 
constructed that share similar semantics and contexts” [52, p. 2]. Next, it “models the constraints of 
conditional statements [(e.g., if, switch)] in each slice” and cross checks them with each peer slice to 
detect deviations [52, p. 2]. These deviations are then reported as potential missed-check bugs. 
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Figure 13: Overview of the Crix operation [52, p. 5] 

There are several inherent challenges in detecting missing-check bugs: 

1. CVs that require checking take many forms. For example, return values that are not used in
arithmetic operations, a parameter of a critical function, or global variables.

2. Identifying security checks requires semantic understanding. About 70% of conditional
statements are not security checks but normal execution branching.

3. Missing-check bugs are context dependent. For example, the error code might be used in a
debugging function and so is not needed for error checking.

4. OS kernels are large and analyzing every variable will not scale.

Crix solves these problems with the introduction of four new techniques: 

1. A two-layer type analysis to identify indirect call targets. LLVM does provide targets of
indirect calls, and Crix requires them in order to augment the LLVM control and call flow
graphs to identify peer slices and critical variables.

2. An automated method for finding CVs by identifying security checked variables, which
significantly narrows the analysis scope and allows large complex code bases, such as the Linux
kernel, to be analyzed.

3. For each CV, Crix looks for slices of program code that share similar semantics and constraints
with the code path that checks the current CV. It finds these peer slices by identifying sources
and uses of the CV and data flow analysis to find the program slices for each source and use.
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4. Crix extracts the constraints from the conditional statements in the slices in a way that preserves 
the semantics. It then cross-checks them, via statistical analysis, to calculate the relative 
frequency of the source or use in its peer slices. “If significant, not having a constraint would be 
identified as a deviation, and a slice that does not have the constraint is identified as a potential 
missing-check bug and reported [52, p. 5].” 

 
Implementation: Crix is implemented in C++ and targets kernel files compiled to LLVM bitcode. 

 
We ran Crix (kanalyzer -mc) against the Linux kernel networking files that the authors provided 
precompiled to LLVM bitcode. An example of the output from the tool is shown in Figure 14. We randomly 
chose several of the files identified as possible issues, and they did show function calls that were not 
explicitly checked for an error in the return value. In one case, the value was checked with a macro that was 
bitwise XORing it with another variable, and then raised an error if the result was zero. In another, the value 
was a pointer cast to a struct, and “checked” via a function that returns the VLAN ID, if present. In those 
cases, Crix found potential missing checks. However, upon closer inspection the values were being checked 
but in a non-standard way. 

 
 
 

Use Cases and Limitation 

Figure 14: Sample Output for CRIX 

 
The current use case for Crix is detecting missing-check errors in the Linux kernel. This target was chosen to 
demonstrate the scalability of the author’s fast CV detection and slice construction features. The authors 
envision it to be portable, with some effort, to other software targets, but that goal has not yet been 
demonstrated. They note specific porting issues (described below) that would need to be addressed in order 
to use Crix with another source code base. 

 
Other tools that detect missing-check bugs only analyze specific critical operations, such as arithmetic 
division and array indexing, and are therefore limited in what they can detect. Other approaches use machine 
learning, statistical cross-checking, and inconsistency analysis, but are limited in that they do not 
differentiate on what conditions are security checks versus another type of conditional statement (i.e., they 
are not semantically aware). They also rely on manual specification of critical variables, and therefore are 
susceptible to a high false negative rate. 
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Crix contains an RF (relative frequency) threshold value that is used to determine whether a deviation from 
a constraint should be classified a potential bug. The authors have tuned this value for the Linux kernel, but 
it may not be appropriate for other software targets. Also, Crix contains code that looks specifically for Unix 
style error codes and handling functions. In Unix-like kernels, these patterns are the same, but other software 
may follow different conventions. Before using Crix against these other types of software projects, the 
header files containing these error codes and function prototypes need to be identified and Crix must be 
able to analyze them in order to create error control flow graphs. Depending on the code base of the target 
application and its complexity, this could be a non-trivial task for porting Crix for other targets. 

 
While the source code is available on Github, there is no interface or API for extension or customization. 
As an academic research project, the source was written with a particular goal in mind and was not designed 
to be applied to source targets other than the Linux kernel. Additional work would be needed to evaluate 
Crix's use against source code for other OS’s or software tools. Since it is dependent on the bitcode generated 
by LLVM, any source that can be built successfully this way should be amenable to Crix’s analysis. 

 

3.5 Trends 

Recent trends in static analysis tools have improved upon existing ideas. The competition between IDA Pro, 
Binary Ninja, and Ghidra sees them adopting features from each other in order to further their own usability. 
Additionally, there’s been a notable move to improve APIs to enable easier and more powerful tool 
development, as seen with the major reverse engineering platforms. Additionally, tools like Hashashin, 
DeepBinDiff, and Crix are modernized takes on existing ideas, furthering the state of the art for binary 
analysis tools by incorporating new analytics and machine learning. 

 
4 Dynamic Analysis 

4.1 Technical Overview 

Whereas static analysis examines a binary without running it, dynamic analysis observes a binary as it 
executes. Dynamic analysis allows the user to inspect actual runtime information about program state, 
including register and memory values, but it cannot provide code coverage guarantees. Both approaches 
provide valuable insights into a program. Dynamic analysis techniques range from empirical observations 
of program execution to crafted instrumentation approaches that support a wide range of analyses. 

 
This section discusses debuggers (drgn [56]), instrumentation frameworks (Qiling [7]), and dynamic binary 
analysis frameworks (Triton [57]). Triton can be used for a range of analyses, including taint analysis and 
symbolic execution. BAP and Miasm are two analysis frameworks that are often used for symbolic 
execution and other dynamic techniques. They were discussed in the static analysis section because of their 
heavy dependence on their IR’s. This section also includes constraint solving (JFS [58]), because of its use 
in symbolic/concolic execution tools. 
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Debuggers 

Relevant EotA Tools: WinDbg, Binary Ninja, rr, drgn 

Among other uses, interactive debuggers can pause a program during execution and step through one 
instruction at a time, to inspect the current state of registers and memory. Debuggers can be used to reverse 
engineering a program to determine how it operates, to inspect a crash found by a fuzzer, or to debug an 
exploit. Like many dynamic analysis tools, debuggers utilize both static and dynamic techniques. For 
example, the popular debugger GDB uses a disassembler and the tracing utility ptrace [59]. 

Recordable, replayable debugging is one of the most powerful additions to modern debugging tools. This 
allows a user to record and replay program execution while debugging the process. In addition to forward 
debugger actions like step and continue, replayable debugging allows the user to step backwards and 
continue backwards. TTD is a tool discussed in this section that allows for replayable debugging from within 
the Windows debugger Windbg [60]. rr [61], enables recordable and replayable debugging on Linux and 
was discussed in the first version of this report. 

Dynamic Binary Instrumentation (DBI) 

Relevant EotA Tools: Frida, Qiling 

DBI, which underlies many dynamic binary analysis techniques, entails modifying the binary, either before 
or during execution, often by hooking the binary and injecting code. DBI frameworks implement custom 
instrumentation which the user can access through an API. These include Intel Pin [62] and DynamoRIO 
[63], which underlie many of the tools discussed in these reports. Both can be used to drive the Windows 
fuzzer WinAFL [64]. The dynamic binary analysis tool Triton is built around Intel Pin [57]. DBI 
frameworks are implemented in a variety of ways. Intel Pin works by intercepting instructions before they 
are executed and recompiling them into a similar Intel Pin-controlled instruction [62]. It is analogous to Just-
In-Time (JIT) compilers. DynamoRIO operates similarly in that it sits in between the application and the 
kernel, like a “process virtual machine,” to observe and manipulate each instruction prior to execution [63]. 
Other DBI options are less granular and intrusive, and rely on hooking the program through dynamically 
loaded libraries (e.g., this is how the tool Frida [8] operates). 

Dynamic Fuzzing Instrumentation 

Relevant EotA Tools: Frida, Qiling, 

Although fuzzing is discussed at length in the next section, fuzzing often requires dynamic binary 
instrumentation to feed input quickly and easily to the program. This can be done with various tools (e.g., 
Frida, Qiling, etc.) that allow the user to hook and redirect the input to the binary. 
These tools can hook the binary and redirect execution around the problematic code like checksums, or 
other functionality that can inhibit fuzzing. The fuzzer Frizzer uses Frida to instrument it. 
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Memory Checking 
 

Memory checking, whether to find memory bugs or analyze them is a valuable form of dynamic analysis in 
vulnerability research. To do this, a program is instrumented such that if a memory error is triggered during 
runtime (e.g., an out of bounds access, null pointer dereference, or segmentation fault) it will be recorded, 
along with additional contextual information. Several tools that do this are Valgrind [65], Dr. Memory (a 
part of the DynamoRIO framework) and LLVM’s Sanitizer Suite which includes Address Sanitizer (ASAN) 
[15]. 

 
Dynamic Taint Analysis 

 
Relevant EotA Tools: Triton, angr 

 
Dynamic taint analysis is a form of dynamic binary analysis that ‘taints’ data (often some kind of input) 
such that its flow throughout the program can be traced. This can be done on the byte or bit- level with a 
tradeoff between the fidelity of the analysis and the time and memory resources required. Dynamic taint 
analysis is often built on top of dynamic binary instrumentation. Data transfer instructions are hooked to 
check whether the source memory or register value is tainted and then taint the subsequent destination (or 
conversely, remove a taint from a destination if the source lacks a taint). Dynamic taint analysis is not just 
useful for tracking values throughout a program. It is also helpful in concolic execution because it can 
identify which instructions are not affected by user input. Triton is particularly effective at dynamic taint 
analysis and discussed in this section. 

 
Symbolic and Concolic Execution 

 
Relevant EotA Tools: angr, Triton, Miasm, BAP 2.0, Manticore, QSYM 

 
Symbolic analysis is a type of program analysis which abstracts a program’s inputs to symbolic values. A 
symbolic execution engine “executes” the program with these symbolic values, and records the constraints 
placed on them for each possible path they could take. Subsequently, a constraint solver takes these 
constraints for a specific path and attempts to find a value which satisfies them. Consider a program which 
takes an input as an integer and exits if it is less than 10. That input would be assigned a symbolic value, a, 
and then the symbolic execution engine would record a constraint of a < 10 for the path that reached that 
exit call. Then a constraint solver would find a value for a that satisfied the path constraints, a < 10. 

 
Symbolic execution can be performed “dynamically,” and this is called dynamic symbolic execution (DSE). 
However, throughout the symbolic execution literature there are generally two competing definitions of 
DSE. The first kind of DSE refers to any form of symbolic execution which “explores programs and 
generates formulas on a per-path basis [66, p. 1]”. This does not mean that only one path is followed, just 
that a distinct formula is generated for each path. When a branch condition is reached, and both branches 
are feasible, execution will “fork” and follow both possible paths [66, p. 3]. In the paper (State of) The Art 
of War: Offensive Techniques in Binary Analysis [29], Shoshitaishvili et al. describe this kind of DSE: 
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“Dynamic symbolic execution, a subset of symbolic execution, is a dynamic technique in the sense 
that it executes a program in an emulated environment. However, this execution occurs in the 
abstract domain of symbolic variables. 
… 
“Unlike fuzzing, dynamic symbolic execution has an extremely high semantic insight into the target 
application: such techniques can reason about how to trigger specific desired program states by 
using the accumulated path constraints to retroactively produce a proper input to the application 
when one of the paths being executed has triggered a condition in which the analysis is interested. 
This makes it an extremely powerful tool in identifying bugs in software and, as a result, dynamic 
symbolic execution is a very active area of research. [29, p. 6]” 

 
Symbolic execution can be combined with concrete execution in a variety of ways and this is often referred 
to by the portmanteau “concolic” execution. “Concolic” is another term with competing definitions but is 
often used as a synonym for DSE. Concolic execution can refer to the kind of DSE described in the previous 
excerpt, in which symbolic (not concrete) inputs are used, and all possible paths are explored, but the 
program execution will switch between concrete and symbolic emulation, depending on whether the 
instruction handles symbolic values [6]. 

 
The other common definition of DSE and concolic execution refers solely to symbolic execution as “driven 
by a specific concrete execution [67, p. 6].” A program will be executed both concretely and symbolically 
using a chosen concrete input, and the symbolic execution will only follow the specific path taken by the 
concrete input [68] [67, pp. 5-6]. After doing this, additional paths can be explored by negating one (or more) 
of the collected branch conditions for the path of the concrete input, and then solve for the new path with 
these negated conditions using an SMT solver in order to generate a new input [67, p. 6]. This kind of DSE 
or concolic execution is often used in symbolic assisted fuzzing, also known as hybrid fuzzing, which use 
symbolic techniques to gain semantic insight while fuzzing a program. QSYM [69] (discussed in the first 
version of this report) is an example of hybrid fuzzing. 

 
There are many tools for symbolic execution, including Triton and Miasm. angr [6] (discussed in the first 
version of this report) is one of the best [70], publicly available tools, and uses emulation to perform 
symbolic execution. 

 
While symbolic execution does provide powerful insights into program semantics, it is greatly limited by 
space and time complexity issues. Path explosion is one of the challenges in symbolic execution. Unbounded 
loops might result in an exponential number of new paths. Symbolic execution is also hindered by the 
memory needed to store a growing number of path constraints. It is also difficult to apply to real-world 
systems, because system calls and library calls can be hard to manage with symbolic values [67]. 
Additionally, constraint solving is a difficult and time- consuming task. As such, symbolic execution is in 
many cases not a feasible option or must be constrained to a small area of the program. 
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Constraint Solving 
 

Relevant EotA Tools: JFS (Constraint Solver), angr, Triton, Miasm 
 

Symbolic execution relies on the ability to solve for the collected path constraints, which is a challenging 
problem. These constraints can be modeled by satisfiability modulo theories (SMT) which generalize the 
boolean satisfiability problem (SAT). SAT is an NP-complete problem that looks for a set of values which 
will satisfy the given boolean formula. An SMT formula models a SAT problem with more complex logic 
that involves constructs like inequalities or arrays. A SAT formula is a boolean expression made up of 
boolean variables, and the boolean operators AND, OR and NOT. 

 
One major limitation of SMT solvers is their performance. These solvers are hindered by time complexity 
and the difficulty of determining satisfiability. The second version of this report discussed the SMT solver 
JFS which used fuzzing to solve floating point SMTs. 

 
4.2 Debuggers 

4.2.1 Windbg Preview - Time Travel Debugging 
 
 

Reference Link https://docs.microsoft.com/en-us/windows- 
hardware/drivers/debugger/debugging-using-windbg-
preview 

Target Type Binary 
Host Operating System Windows 
Target Operating 
System 

Windows 

Host Architecture x86 (32, 64), ARM 
Target Architecture LLVM IR 
Initial Release December 2019 

License Type Proprietary - Free 
Maintenance Microsoft 

 
Overview 

WinDbg Preview is Microsoft’s updated version of WinDbg, their veteran Windows debugger. As described 
in the announcement, WinDbg Preview improves on its predecessor with “more modern visuals, faster 
windows, a full-fledged scripting experience, built with the easily extensible debugger data model front and 
center [72]” while using the “same underlying engine [72].” Excitingly, Preview now offers users a ‘Dark 
Mode.’ 

WinDbg comes with all the capabilities of a standard debugger, including memory inspection, symbol 
loading, breakpoint setting, and instruction stepping. But the most notable new feature of WinDbg, and that 
which merits its inclusion in this report, is its Time Travel Debugging (TTD) capability. TTD allows the 
user to record an execution and then replay it in the debugger, enabling backwards debugging features like 
step backwards and continue backwards. WinDbg preview also includes the Debugger Data Model which 
enables querying UI elements and scripting. WinDbg can also be used to debug kernels, as well as user 
space binaries. [60] [73] [72] 
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Time Travel Debugging (TTD) 

TTD records a trace of a program execution and then allows the user to ‘replay’ this recording while 
debugging. The program initially executes without the user debugging it, and debugging begins once 
recording has finished. 

TTD can be enabled when WinDbg Preview is run as a process or attached to an already running process. 
This differs from the Linux-based recordable-replayable debugger rr, which cannot attach to an already 
running process and begin recording. Figure 15 shows attaching to an already running Calculator.exe process 
with TTD enabled. Figure 16 shows launching calc.exe directly from Windbg Preview. 

Figure 15: Attaching to an already running Calculator application with TTD enabled 
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Figure 16: Launching Calculator application directly from WinDbg Preview with TTD enabled 
 

Once a recording has finished can be replayed. An example of this using a toy Hello World program is 
shown in Figure 17. 

 

 

Figure 17: HelloWorld program, hw.exe, running with TTD 



 

Approved for Public Release; Distribution Unlimited.  
40  

In addition to the usual commands such as Go, Step Out, Step Into, and Step Over, there are the 
corresponding commands Go Back, Step Out Back, Step Into Back, and Step Over Back. These can be seen 
in the upper left corner of Figure 17 and can also be input as commands in the Command window (bottom 
right corner of Figure 17). 

 
Figure 17 shows a recording of the program hw.exe being executed. A source code window shows execution 
stopped at the beginning of the main function, on line 9 of hw.c. The program also has a stack-buffer 
overflow on line 5, which was triggered during the original execution, resulting in an exception when vuln 
returns on line 6. 

 
The Timelines window is one of the most useful features of TTD. This is shown in the bottom left corner of 
Figure 17. The blue line shows the current execution point (stopped at main). Underneath the timeline is an 
Exceptions timeline, which displays where the exception will eventually be thrown. The user can add 
specialized timelines for three other events: Function Calls, Memory Accesses, and Breakpoints. Hovering 
over the events on each of these timelines will show additional information. Double-clicking will transfer 
execution to the instruction that initiated the event. 

 
There is a breakpoint on vuln, which can be seen not just in the Timelines window but also in the Source 
Code window. Executing a few instructions past that, Figure 18 shows the program about to execute the 
read libc function call. 

 

 

Figure 18: TTD execution of hw.exe stopped at the read function call 



 

Approved for Public Release; Distribution Unlimited.  
41  

This function call has been given a Function Call Timeline, with the green arrows representing the start and 
finish of the function. Hovering over them shows additional information about the function, including the 
original time it was executed, its arguments, and return value. Double- clicking the latter green arrow would 
take execution to the end of the read call. However, before that occurs the third memory access is reached, 
as depicted in Figure 19. 

 

 

Figure 19: TTD execution of hw.exe reaches third memory access 

The memory access being watched is the stack return address for vuln which previously held the address of 
its caller, main. Figure 19 shows that this value now holds 0x41, which is reflected in the adjacent Stack 
window. If this were a normal debugging session and ASLR enabled, then the address on the stack where 
the return address is held would change with every execution. One of the benefits of replayable debugging 
is that the execution is deterministic, and all the addresses remain the same for the execution recording. 
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Figure 20: TTD execution of hw.exe hits exception 
 
 

Finally, Figure 20 shows the TTD execution having hit the exception. Hovering over the exception point on 
its timeline shows that a corrupted program counter is the reason. 

 
Use Cases and Limitations 

 
The TTD feature makes it easier to trace and analyze the conditions and events of a bug by providing 
information about the state of the executable both before and after the crash. Replayable debugging is one of 
the most powerful additions to modern debugging. TTD allows a user to deterministically inspect an 
execution with static addresses. A user can execute to the end of a long sequence of loops before a crash, and 
then replay to reach the last iteration of the loop. These examples are only a few use cases for replayable 
debugging. Unlike rr, Windbg Preview with TTD has a rich user interface, and more functionality. 

 
However, both tools require significant storage. Since WinDbg tracks all data during each execution step, 
there can be large overhead in the form of huge data files. Another major downside to replayable debugging 
is that a memory or register value cannot be dynamically modified. Replayable debugging is also limited to 
user space code. Even though Windbg has built-in kernel debugging functionality, it is currently 
incompatible with TTD. 
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4.2.2 Binary Ninja Debugger Plugin 
 
 

Reference Link https://github.com/Vector35/debugger 
Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Linux; macOS; Windows; Android 
Host Architecture x86 (32, 64); 
Target Architecture x86 (32, 64); ARM (32; 64) 

Initial Release 2020 
License Type Open-Source 
Maintenance Maintained by Vector 35 

Overview 
 

The Binary Ninja Debugger (BNDP) is an official Binary Ninja plug-in, developed by Vector 35. However, 
unlike its parent software, BNDP is wholly open source. Depending on the selected target’s operating 
system BNDP integrates with GDB, LLDB, or dbeng. BNDP has the general functionality of a typical 
debugger, such as stepping through a process and inspecting registers and memory as they are executed. All 
functionality is completely integrated with the Binary Ninja GUI, allowing the user a far more verbose and 
interactive process than a command line debugger. Additionally, BNDP can dynamically update 
information within the binary’s Binary Ninja Database (BNDB). [74] [75] 

 
Design and Implementation 

 
BNDP is implemented on top of three different debuggers: 

 
• GDB: This has been tested for x86 Linux (in both 32 and 64 bit but tested mainly for the latter) 

and for ARM Android binaries (in both 32 and 64 bit). 
 

• LLDB: This has been tested for x86 (in both 32 and 64 bit but tested mainly for the latter) 
macOS binaries. 

 
• dbgeng: This has been tested for x86 (in both 32 and 64 bit but tested mainly for the latter) 

Windows binaries. In this case, BNDP is linked to the Windows debugger engine at runtime. 
 

Figure 21 shows a diagram of how BNDP is implemented. 
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Figure 21: Implementation diagram of BNDP with tested targets 

An example of BNDP debugging a MacOS binary is shown in Figure 22. 
 

 
Figure 22: BNDP debugging a macOS binary [75] 

As discussed in [74], BNDP allows a user to perform typical debugging operations, such as pause/resume, 
step into/step over/step return, detach, inspect memory, see register/memory state, and disassemble regions 
of memory as they are being executed [74]. BNDP also allows the user to incorporate dynamic analysis 
discoveries back into the BNDB. This is particularly useful for areas of the binary that are resistant to static 
analysis. Jump tables can be difficult for static analysis, so if the BNDP discovers a new case of a jump 
table at runtime, then the BNDB’s CFG is updated to reflect this. A ‘before and after’ example of this is 
shown in Figure 23 and Figure 24, 
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respectively. Before the jmp rdx instruction was reached, the graph showed four outgoing edges from the 
source basic block. After the jmp rdx instruction is reached however, the value in rdx shows that there’s 
actually a fifth location. Figure 24 shows the CFG that displays the newly discovered destination basic 
block. 

 

 
Figure 23: Debugging jumptable in macOS binary before new jump location is dynamically 

discovered [74] 

 
 

Figure 24: Debugging jump table in a macOS binary after a new jump location is dynamically 
discovered [74] 

This functionality is not limited to switch statements. For example, if an instruction that performs a call on 
a dynamically determined address identify an address that the BNDB previously considered data, then that 
address would now be rendered as instructions. BNDP also can append annotations to functions. In the case 
of Indirect Jumps this means dynamically discovered context and target information will be logged. 
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Use Cases and Limitations 
 

Although there are likely ways that BNDP is more cumbersome and less versatile than running a lightweight 
command-line debugger, these debuggers lack the comprehensive GUI-based experience that Binary Ninja 
provides. BNDP has a somewhat symbiotic relationship with the BNDB. The BNDB allows the user to 
debug a program with the full force of an interactive GUI, in some ways mimicking the experience of an 
IDE’s debugger when debugging source code. In turn, the information gleaned from BNDP relays useful 
information back to the BNDB, making the BNDB more accurate and useful. 

 
Releasing BNDP as an open-source plugin allows the user to not only build on top of it but use it as a model 
for their own Binary Ninja plug-ins. 

 
4.2.3 Plutonium-dbg 

 
Reference Link https://blog.deepsec.net/tag/plutonium-dbg/ 

https://vimeo.com/307238462 
http://www.roots-conference.org/2018accepted.html 
https://github.com/plutonium-dbg/plutonium-dbg 

Target Type Linux user-space applications, anti-debugging targets 
Host Operating System Linux 
Target Operating System Linux (preferably under QEMU KVM) 
Host Architecture X86 (64) 
Target Architecture X86 (64) 

Initial Release 2018 
License Type Open-Source 
Maintenance Not currently maintained - last updated January 2019 

 
Overview 

 
plutonium-dbg is a debugger for Linux written by Tobias Holl, et. al. at Technical University of Munich 
and presented at ROOTS 2018. Unlike almost all other Linux debuggers it does not use ptrace. This is useful 
for cases where a ptrace-debugger like GDB cannot be used, as often happens with malware or closed-source 
applications attempting to armor themselves against reverse engineering. plutonium-dbg also aims to 
improve on other limitations of GDB such as debugging multiple threads in a thread group at once without 
suspending all of them. 

 
The goal is to make it impossible for an application to detect that it is being debugged by plutonium-gdb 
through techniques like PTRACE_TRACEME, environment variables, manual SIGTRAP/int3, etc. 
plutonium-dbg comes close to defeating all these techniques, but still has a few detectable tell-tale signs. 
For instance, it cannot prevent detection of single stepping because of how x86 handles the Trap Flag. 

https://blog.deepsec.net/tag/plutonium-dbg/
https://vimeo.com/307238462
http://www.roots-conference.org/2018accepted.html
https://github.com/plutonium-dbg/plutonium-dbg


 

Approved for Public Release; Distribution Unlimited.  
47  

Design and Implementation 
 

plutonium-dbg’s primary component is a Linux kernel module. It uses modern (i.e., added in the last 10 
years) kernel APIs. Breakpoints in plutonium-dbg are implemented with uprobes, a Linux kernel feature 
that allows tracing of user space code. The advantage of uprobes is that they do not have to halt all threads 
to maintain consistency when replacing a breakpoint. plutonium-dbg uses tracepoints to handle clone, 
exit and exec. Lastly, it uses kprobes to suppress SIGTRAPs sent to the application when using the 
kernel’s single stepping. 

 
plutonium-dbg only replaces the backend and uses a custom gdbserver-like Python script as a front-end that 
is compatible with GDB clients. 

 
Use Cases and Limitations 

 
The primary use case for this tool is for debugging of malware or applications attempting to protect their code 
from dynamic analysis. If the debugger cannot be detected, the reverse engineer does not need to perform 
the laborious process of patching out the anti-debugging code. 

 
There are several limitations noted in the author’s paper [76]: 

 
• Breakpoints can only be placed into locations within mapped files. However, the authors have 

an experimental patch that bypasses this uprobes limitation. 
 

• Some GDB server commands, such as memory watchpoints, are not supported. 
 

• The primary limitation, given that this tool’s raison d'être is to be undetectable by the debugee, 
is that it is still detectable by a specially designed debugee in most common cases. As the 
authors note in their ROOTS 2018 talk [77], a program that scans for breakpoints or examines 
the Trap Flag (TF) can detect the software breakpoints inserted by plutonium-dbg or single-
stepping, respectively. 

 
Given requirements that including running on QEMU-KVM, patching the Linux kernel, and debuging 
remotely, plain GDB (or a variant such as pwndbg) remains a more convenient choice. plutonium-dbg 
should be used only if the target application has anti-debugging tricks that are not easily to patch out. The 
additional features in plutonium-dbg such as memory read speed are not worth the additional effort to setup 
the environment. However, it does achieve the goal of providing a GDB-like option for target binaries with 
anti-debugging code. 

 
Without much trouble plutonium-dbg debugging was setup in a Debian QEMU-KVM instance running 
Linux kernel 4.17.0, as shown in Figure 25. 
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Figure 25: Using plutonium-dbg 
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4.3 Coverage Analysis 

4.3.1 Lighthouse - Version 9.0 Release 
 

Reference Link https://github.com/gaasedelen/lighthouse 
https://blog.ret2.io/2020/04/29/lighthouse-v0.9/ 

Target Type Plugin: IDA Pro; Binary Ninja 
Coverage Data: DynamoRIO; Intel Pin; Frida 

Host Operating System IDA Pro Plugin: Windows; Linux; macOS 
Binary Ninja Plugin: Windows; Linux 

Host Architecture X86 (64) 
Initial Release March 8, 2017 
License Type Open-Source 
Maintenance Maintained by Ret2 Systems 

4.3.1.1 Updates 
Lighthouse was covered previously in the December 2019 EOTA report. On April 29, 2020 a major update 
was released, which included full Python 2/3 compatibility, new coverage file formats, cross referencing 
coverage, user-defined themes, and official support for Binary Ninja 2.0 [78]. 

 

 
Figure 26 New theming support in Binary Ninja and IDA Pro 

https://github.com/gaasedelen/lighthouse
https://blog.ret2.io/2020/04/29/lighthouse-v0.9/
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New Coverage Formats 
Prior versions of Lighthouse relied on the DynamoRIO coverage format (drcov), which had the unintended 
consequence of forcing supporting tools to standardize around this format [78]. Lighthouse now supports 
simple formats that are easier to generate from custom tooling in module name + offset format 
(modoff) and absolute address formats. The advantages are that these are simple to implement, human 
readable, and portable, with each line of the trace representing either an instruction address or a basic block 
address. 

 

Figure 27 Absolute address format coverage file. 

 
 

Figure 28 Modoff format coverage file. 

Coverage Cross-references (xref) 
The new version of lighthouse now adds a context menu entry, “Coverage Xref.” This will show all 
currently loaded coverage files that executed the selected code and allow quick switching to that coverage 
set. 

 
4.3.2 bcov 

 
Reference Link https://github.com/abenkhadra/bcov 

https://blog.formallyapplied.com/2020/05/function- 
identification/ 
https://arxiv.org/pdf/2004.14191.pdf 

Target Type Binary 
Host Operating System Linux; macOS; Windows 
Target Operating System Linux; ELF Binaries 
Host Architecture x86 (64); 
Target Architecture x86 (64) 

Initial Release June 2020 
License Type Open-Source 
Maintenance Maintained by Formally Applied 

https://github.com/abenkhadra/bcov
https://blog.formallyapplied.com/2020/05/function-identification/
https://blog.formallyapplied.com/2020/05/function-identification/
https://arxiv.org/pdf/2004.14191.pdf
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Overview 
bcov is a tool for efficient binary-level coverage analysis. It statically instruments x86-64 binaries to provide 
coverage reporting via patching. The data output for coverage will include the address, instruction count, 
whether it was executed, and if the basic block is a fall through or a branch. For a given function bcov is 
also able to dump the CFG, the predominator tree, the postdominator tree, and the superblock dominator 
graph [79]. The primary innovations in bcov are in techniques to improve the efficiency of coverage 
analysis. This includes porting Agrawal’s probe pruning technique to binaries, a jump table CFG analysis 
technique called sliced microexecution, and optimized detour patching [80]. 

 
Design and Implementation 
For an executable with symbols, identifying functions relies on reading the symbol table. For a stripped 
binary, various heuristics are used to identify functions. Many tools rely on control flow graph (CFG) based 
identification techniques because they provide better results than searching for common function prologs 
and epilogs. The basic mechanisms of CFG-based techniques include collecting the targets of direct calls 
to identify function entries, traversing a function’s CFG to determine its end address, and tail-call analysis 
to look at jumps outside the current function to identify additional functions. There are some cases where 
CFG analysis techniques struggle, such as adjacent functions that have been merged into a single function if 
a tail-call from one function goes into an adjacent function. Another case is functions that do not return but 
end in some other way, such as a call to exit or abort. There is also undefined compiler behavior that may 
generate branching code where a branch is never intended, such as the llvm_unreachable assertion [81]. 

 
The bcov tool uses trampolines to statically insert probes into a binary in order to track basic block coverage. 
The probes are implemented as detours which redirect execution to a trampoline, which updates coverage 
data using a single pc-relative mov instruction. To make this work efficiently, transparently, and without 
compiler support required addressing the problems of probe pruning, precise CFG analysis, and static 
instrumentation. [80] 

 
Probe Pruning 
Instrumenting all basic blocks is both challenging and inefficient. Instead, bcov adopted Agrawal’s 
probe pruning technique, where basic blocks are grouped into superblocks by using their dominator 
relationships. Any single basic block executed within a superblock implies that all basic blocks 
within the superblock have been executed. This drastically reduces instrumentation overhead and 
coverage data. [80] 

 
Precise CFG Analysis 
In order to avoid false positives, bcov employs several techniques to improve the precision of CFG 
analysis. bcov uses a novel technique called sliced microexecution for jump table analysis. bcov 
also implements a non-return analysis to eliminate CFG edges that are extraneous. Sliced 
microexecution works by testing each indirect jmp in a function according to the hypotheses in 
Figure 29. If the conditions fail, then the analysis is aborted and the jmp is categorized as a tail-call. 
Sliced microexecution works by backwards slicing to determine the boundary conditions, and then 
testing index values to determine if the jmp is bounded, and thus likely to be using a jump table, as 
invalid values should hit a default case within a jump table. [80] 
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Figure 29 Sliced microexecution hypotheses [80] 

Static Instrumentation 
For efficiency and ease of instrumentation, bcov will patch a single basic block within a super block. 
It make this decision based on the expected overhead of restoring control flow. Where possible, bcov 
will make use of padding bytes to insert detours, instrument jump table entries, and use larger 
neighboring basic blocks to host the detour of a smaller basic block [80]. 

 
bcov’s design is optimized to provide program transparency, performance, and flexibility. It does not 
aggressively alter the program state, such as the stack, heap, and general purpose registers. The use of a single 
mov instruction to track coverage also means it has low overhead [80]. 

 
Use Cases and Limitations 
bcov can be used as a stand-alone binary for some functionality, but it’s primary functionality of dumping 
coverage data requires linking against the bcov-rt runtime or using LD_PRELOAD to inject it in at runtime. 
Coverage data is output on process exit or when the application receives a user generated signal. bcov is a 
viable and efficient tool to statically instrument binaries for code coverage, with less overhead than a DBI 
based tool like DynamoRIO. All instrumented binaries tested by the bcov authors were able to pass the test 
suites associated with those binaries, with no noticeable regressions. Additionally, it took about 30 seconds 
to instrument a 25MB binary. In testing, bcov had an average performance overhead of 14%, memory 
overhead of 22%, and file size overhead of 16%. This is a significant advantage over DBI based coverage 
tools like Pin and DynamoRIO, that can have a performance overhead of more than 10x, while bcov has 
roughly equal coverage tracking. [80] 

 
The bcov paper also compared the effectiveness of its jump table analysis, and noted that BAP does not 
have built-in support for jump table analysis, while angr (v8.18.10) crashed on opencv 
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and llc binaries, and otherwise was less successful at identifying jump tables than bcov and IDA Pro. Test 
results indicated bcov is equal to or better than IDA Pro in jump table recovery. [80] 

 
 
 
 

 
Figure 30 bcov workflow [80] 

 
 

 

Figure 31 bcov compared to other coverage tools [80] 
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bcov does have some limitations. It is not always successful at patching binaries without modifying the build. 
The bcov paper noted that a small linker change was sufficient to accommodate the programs that otherwise 
could not be patched. Additionally, bcov only supports x86-64, relies on invasive ELF file modification, 
and does not support other executable file formats. It is likely that bcov could be implemented for other 
architectures and file formats without much issue. The bcov jump table reconstruction is also not perfect, 
and neither is the non-return analysis, which can cause it to miss some coverage. Lastly, bcov does not work 
with self-modifying code. [80] 

 
4.4 Frida 12.9 (Stalker update) 
Reference Link https://frida.re/docs/stalker/ 
Target Type Binary, Java bytecode 
Host/Target Operating System Linux, Android, macOS, iOS, Windows, BlackBerry QNX 
Host/Target Architecture x86 (32, 64), ARM (32, 64) 
Initial Release September 2012 
License Type Open-Source 
Maintenance Maintained by @oleavr and NowSecure 

 
Overview 

 
Frida is a toolkit for dynamic instrumentation of binaries using code injection and hooking. Instrumentation 
commands are typically written in JavaScript and C when high performance injection is needed [82]. Most 
users of Frida will make use of the Interceptor API to do inline hooking of functions and methods to analyze 
function arguments and return values. A lesser known component of Friday is its Stalker engine, which 
enables researchers to answer questions about what actions a function is taking. For example, Stalker can be 
used to answer the common question “what other APIs are called for a given input?” Stalker can also be used 
to support fuzzing, measuring code coverage, and watching when execution diverges for specific inputs 
[83]. While Stalker was created years ago and did not get heavy use until Frida 10.5 (released late 2017). 
In December 2019, Stalker was given additional capabilities to follow native function calls, Objective-C 
methods, and Android Java methods [84]. The May 2020 release added support for ARM32 binaries, 
opening Stalker for use on more mobile and embedded platforms [85]. 

 
Design 

 
The Frida Stalker engine was designed to be a code tracer that provides high granularity while minimizing 
its impact to the traced process. Stalker dynamically makes a copy of the original machine code and adds 
instrumentation between instructions. 

 
 

Figure 32 Stalker Instrumentation [86] 
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The researcher can specify whether they are interested in calls to a specific function, return values, or other 
highly granular specifications. The recompilation of modified code is done lazily to minimize the impact to 
the process being examined [83]. Doing the recompilation as necessary also allows Stalker to only 
instrument the instructions that the user is interested in, supporting Stalker’s goal of minimizing impact to 
the traced process. When making a copy of the code, instructions are copied in batches up to the next branch 
instruction to limit how much code is modified at a time. [86] 

 
Stalker was also written to trace programs containing anti-debugging features. The author, Ole André Vadla 
Ravnås, argues that software and hardware breakpoints can both be easily defeated by applications with 
anti-debugging code in them. Stalker leaves the original instructions unmodified, helping to defeat many 
anti-debugger techniques. Another Stalker feature for dealing with anti-debugger techniques is the ability 
to set a trust-threshold parameter on a per application basis. This parameter is used to decide whether a 
block needs to be recompiled and patched each time it is executed or if it can be permanently branched 
without causing problems to self-modifying code, a common feature seen in programs that implement anti-
debugging techniques. [86] 

 
Below is an example of using Stalker to gather a listing of all calls being made by a thread of interest. It 
shows how little JavaScript needs to be written to begin using Stalker. onCallSummary still requires printing 
and display code to show the user the enrichedSummary. 

 

Figure 33 Stalker Example [87] 
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Use Cases and Limitations 
 

Use cases mentioned by the Frida developers include in process fuzzing, code coverage analysis, hooking 
inline system calls, fault injection, and examining private APIs [84]. In process fuzzer capabilities are 
already provided by the frida-fuzzer. 

 
There appear to be few specific limitations. Stalker has been tested on all of the supported platforms and 
has been programmed to deal with platform-specific problems, such as Pointer Authentication Codes (PAC) 
on iOS [88]. The large amount of API documentation [89], instructions [88], detailed blog write-ups [86], 
and regular updates suggest that Frida, and in particular Frida Stalker, is a mature tool that can help 
researchers try to quickly examine the inner workings of a thread of interest. 

 
4.5 Trends 

Dynamic analysis has seen a lot of innovation and maturity in recent years. The tools are becoming more 
powerful, transparent, and efficient. At the same time, they are becoming better integrated with platforms, 
such as Binary Ninja, and are optimizing for interoperability. There have been major updates to existing 
tools, such as Windbg, Lighthouse, and Frida, as well as the introduction of entirely new tools, such as the 
Binary Ninja Debugger Plugin, Plutonium-dbg, and bcov. Given the power of dynamic analysis, there is 
likely to be continued rapid improvements in this area. 

 

5 Fuzzing 

5.1 Technical Overview 

Fuzzing is a form of software testing which feeds semi-random inputs into a computer program to trigger a 
crash or other unintended behavior. While fuzzing could be considered just another form of dynamic 
analysis, the plethora of available fuzzers and fuzzing techniques warrants a category all its own. Although 
simple in concept, an entire field of research has formed around finding more effective and faster methods to 
mutate or generate input. 

 
Fuzzers and fuzzing techniques have evolved in the past three decades, and many modern fuzzers are 
sophisticated automatic input generators and instrumentation engines which draw upon an active field of 
academic research. Every year scores of new fuzzers and fuzzing research emerge, promising better 
performance using novel techniques. Fuzzing has proven to be an extremely effective method of finding 
flaws that consistently produces verified vulnerabilities (e.g., CVEs). 

 
There are a variety of ways to fuzz program inputs, but these methods largely fall into two categories: 
mutation-based and generation-based. Mutation-based fuzzing, as the name suggests, mutates input based 
on coverage metrics from previous inputs or other information. Generation- based fuzzers generate inputs 
using a grammar, or some other generator. 
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White-Box, Grey-Box, and Black-box Fuzzing 
 

A black-box fuzzer is one which lacks any knowledge of program internals. These fuzzers are easy to 
construct but are not the most effective at bug-finding. The most common type of fuzzer discussed in this 
report is called grey-box. It is driven by instrumentation, whether compiled in from source code or 
instrumented into the binary. A white-box approach is one which leverages knowledge of the program 
derived from its source code and uses program analysis techniques, such as symbolic execution and 
constraint solving. 

 
Mutation-based Fuzzing 

 
Relevant EotA Tools: TortoiseFuzz, IJON, Frizzer, Redqueen, Eclipser, honggfuzz, Angora, 
AFLGo, AFLFast 

 
Mutation-based fuzzing does not require input to be formatted based on some predetermined grammar. 
Instead, it takes example inputs as seed values, and mutates them to create input for the program. In a black-
box scenario mutation is done blindly. In a grey-box scenario the program binary is instrumented to glean 
coverage and other information, which the fuzzer then uses to mutate the seeds, often to find new paths. 
White-box fuzzing also works this way, but can also take advantage of other program analysis techniques. 

 
One well-known mutation-based fuzzer is AFL [90]. AFL’s operations are instructive for understanding 
mutation-based fuzzers more generally. Its instrumentation consists of inserting instructions which record 
branch decisions and allow AFL to collect path coverage information. These are used to watch for 
interesting behavior such as new paths traversed. AFL is seeded with a corpus of possible inputs that are 
then mutated based on the coverage information gained from the instrumentation. Inputs which perform 
‘interestingly’ are then saved to be used as new seeds. Seeds are mutated in several ways, including bit-
flipping, inserting ‘interesting’ integers such as INT_MAX and adding and subtracting small integers from 
the seed. AFL’s overall workflow can be seen in Figure 34. 
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Figure 34: Diagram of AFL workflow [91, p. 2] 
 
 

Several mutation-driven fuzzers are included in this section, including TortoiseFuzz [91], which is a variant 
of AFL. 

 
Generation-based Fuzzing 

 
Relevant EotA Tools: Nautilus, F1 Fuzzer, Fuzzilli, CodeAlchemist 

 
Generation-based fuzzing uses a generator, often in the form of a grammar, to generate fuzzer inputs. 
Generation-based fuzzers are useful for fuzzing programs with complex input formats. In the case of 
grammar-based fuzzers, a grammar is designed to model and randomly generate syntactically correct inputs. 
An example grammar is shown in Figure 35. 
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Figure 35: Example of a grammar used with a grammar-based fuzzer [94] 

Generation-based fuzzers are not simply limited to using grammars. The first version of this report 
highlighted two JavaScript Just-In-Time (JIT) Engine fuzzers that adopted different techniques towards 
generating semantically and syntactically correct JavaScript inputs [28], [95]. Fuzzilli [28] is one such fuzzer 
that is built on a custom IR (i.e., FuzzIL) that can be lifted to JavaScript. 

 
Generation-based fuzzing differs from mutation-based in both operation and intent. Whereas mutation-
based fuzzers are intended to find crashes caused by any input, regardless of whether that input is formatted 
correctly for the program, generation-based fuzzers look for errors caused by inputs that are formed 
correctly. Generation-based fuzzers do not receive any coverage-based feedback, or other instrumentation 
information. Their advantage is that they do not have to search for correctly formatted inputs, and they can 
more easily target programs with complicated protocols or input formats. 

 
As discussed further in Trends, grammar-based fuzzers can be incredibly slow, which limits their 
effectiveness. Generation-based fuzzers also lack the code coverage benefits of mutation-based fuzzer. 
Nautilus [96] is a fuzzer discussed in this section that attempts to bridge that divide. 

 
Hybrid Fuzzing 

 
Relevant EotA Tools: QSYM 

 
Hybrid fuzzing leverages the benefits of fuzzing (less time and memory complexity) with those of symbolic 
execution (knowledge of the program, such as path constraints). This is a form of white- box fuzzing, in 
which the fuzzer is assisted by symbolic execution. This method has been implemented in a variety of 
fuzzers, many of which competed in the DARPA Cyber Grand 
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Challenge (CGC) [98]. However, hybrid fuzzing often suffers from the same performance issues as symbolic 
execution. A recent, and arguably successful, implementation of the technique can be seen in the QSYM 
fuzzer [69], which was discussed in the first version of this report. 

 
Platform-Specific Fuzzing 

 
Often, the greatest barrier to fuzzing is not the fuzzer itself but instrumenting the target program. Certain 
targets, such as kernels and hypervisors, present hurdles to fuzzing due to their program structure and 
runtime behavior. Two recent attempts at kernel fuzzing are kAFL [99] (discussed in the second version of 
this report) and HFL [100] (discussed in this section). This section also covers the recent hypervisor fuzzer, 
Hypercube [101]. Other targets with non-x86 architectures present issues due to their lack of 
standardization. This is something addressed by AFL’s QEMU mode and fuzzers like AFLUnicorn 
(discussed in the first version of this report). 

 
Measuring Fuzzer Performance 

 
How to best measure the efficacy of a fuzzer has been a frequent discussion among fuzzing researchers, 
especially with respect to mutation-based fuzzers. The ability to effectively determine the performance of a 
fuzzer relative to others has been limited by the variance and lack of consensus on fuzzer metrics. Many 
fuzzing papers will test on different software, for different amounts of time, and count different kinds of 
results as a success. The 2018 paper, Evaluating Fuzz Testing [102], examined how a spate of recent fuzzing 
research was evaluated, and recommended certain testing standards. Many subsequent fuzzing papers have 
followed this paper’s advice, including tools discussed in this report. However, more work is required to 
determine how best to measure the performance of fuzzers, and there is far from a consensus in the 
community. 

 
5.2 Mutation-based Fuzzing 

5.2.1 TortoiseFuzz 
 
 

Reference Link https://github.com/TortoiseFuzz/TortoiseFuzz 
Target Type Binary 
Host Operating System Linux 
Target Operating 
System 

Linux 

Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release Tool not yet released; Paper released Jan 2020 

License Type N/A - Not yet released 
Maintenance N/A - Not yet released 
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Overview 
 

TortoiseFuzz is a grey-box fuzzer designed to find memory corruption vulnerabilities by prioritizing 
coverage with security sensitive operations. This fuzzer is based on the NDSS 2020 paper, Not All Coverage 
Measurements Are Equal: Fuzzing by Coverage Accounting for Input Prioritization [91]. 

 
This research addresses the fact that current coverage-based fuzzers treat all paths equally, regardless of 
whether they have exploitable characteristics. TortoiseFuzz proposes a method of coverage accounting that 
privileges inputs that generate coverage with sensitive memory operations. 

 
TortoiseFuzz is a simple modification to AFL that culls the queue based on their coverage accounting 
method. The author’s eschewed memory intensive techniques like taint analysis and symbolic execution, 
to focus on several coverage accounting heuristics that evaluate which paths are more vulnerable than 
others. In evaluating TortoiseFuzz, the authors found it had comparable performance to state-of-the-art 
fuzzers, including QSYM. However, TortoiseFuzz’s scope is specifically limited to memory corruption 
vulnerabilities, which introduces certain biases that more general fuzzers lack. 

 
Design and Implementation 

 
TortoiseFuzz is designed to direct fuzzing towards memory sensitive regions by adding queue culling AFL. 
TortoiseFuzz uses three metrics to determine what inputs to cull and how to prioritize the ones that are left: 

 
1. Function Calls: Using the Common Vulnerabilities and Exposures (CVEs) information for 

disclosed vulnerabilities over the last four years. The top 10 functions included the glibc functions 
memcpy(), malloc(), free(), memmove(), and memset(). Edges are measured by how many 
vulnerability-involved functions are in the edge’s destination basic block. 

 
2. Loops: Loops are identified as being closely associated with memory vulnerability due to their 

propensity for overflows, among other errors. The authors use CFG-level instrumentation to 
identify loops by searching for back edges. Once the loops have been identified, inputs that
encounter them are prioritized. 

 
3. Basic Blocks: Edges are also evaluated by the number of instructions with memory operations in 

their destination basic block. 
 

TortoiseFuzz modifies AFL in two ways. Instrumentation allows the fuzzer to evaluate edges on the metrics 
previously discussed. The queue culling then happens at runtime. Figure 36 shows the AFL algorithm with 
the functions modified by TortoiseFuzz in grey. 



 

Approved for Public Release; Distribution Unlimited.  
62  

 

 
 

Figure 36: Algorithm of AFL with TortoiseFuzz modifications in gray [91, p. 6] 

Use Cases and Limitations 
 

TortoiseFuzz was evaluated in an exhaustive process that tested it against 6 others fuzzers, including grey-
box fuzzers like AFLFast and AFL, and hybrid fuzzers like QSYM and Angora. They ran each fuzzer on 
30 different applications for 140 hours and repeated all experiments 10 times. This is a total of 42,000 hours 
per fuzzer, or almost 300,000 hours total. The thoroughness of this testing reflects positively on the validity 
of their results. From the evaluations, the authors found that TortoiseFuzz outperformed the grey-box 
fuzzers and achieved a comparable result to QSYM. 
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TortoiseFuzz has a narrower scope and relies solely on heuristics, unlike the general fuzzers it was evaluated 
against. The identification of vulnerable functions is purely empirical and done with inexact methods like 
scraping CVE descriptions and then parsing them for call-stacks for vulnerable functions. The limitation of 
this approach is that many CVEs do not have call-stacks in their descriptions. The authors chose not to 
investigate the efficacy of each of their metrics independently, which makes it difficult to identify which 
were more useful. However, they do recognize the limitations of their approach and state that their plan is 
to perform coverage accounting in a more systematic and quantifiable way. 

5.2.2 IJON 
 
 

Reference Link https://github.com/RUB-SysSec/ijon 
Target Type Source; Binary 
Host Operating System Linux 
Target Operating System -- 
Host Architecture X86 (32, 64) 
Target Architecture x86 (32, 64); ARM (32, 64); MIPS (32, 64); MIPS (32, 64) 
Initial Release 2020 

License Type Open-Source 
Maintenance Ruhr University Bochum – Systems Security 

 
Overview 

 
IJON is an extension for AFL-based fuzzers to facilitate exploration of difficult to reach code through hints 
provided by an analyst. With the insertion of one to two annotations in the source code of a target program, 
hints influence a fuzzer’s feedback loop to navigate program states more effectively [103]. New program 
states are realized as additional code coverage, rewarding a fuzzer’s advancement of each new state in 
addition to branch traversal code coverage. Analysts can leverage IJON’s feature set to overcome difficult 
to reach code by specifying the importance of specific values of the internal state of a program within a new 
AFL instance. Once the hard to reach code is found, the new AFL-IJON instance communicates the 
additional code coverage and inputs used to reach it to the main AFL session. 

 
Design and Implementation 

 
IJON is designed to be used as a “human in the loop” fuzzer extension. To date, there are IJON 
implementations for AFL, AFLFAST, LAF-INTEL, QSYM, and ANGORA. The modifications are to 
support two human interactions: 1) observe a stuck fuzzing job 2) and then intervene appropriately. The 
workflow for the analyst is to identify relevant portions of the code, store additional and relevant values in 
AFL’s bitmap, modify the fuzzer’s feedback function with annotations, and minimize space exploration 
through goal creation [103]. 
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Figure 37: Example annotations of IJON_DISABLE and IJON_ENABLE 

For an analyst to guide the fuzzer, annotations are directly inserted into the source code, as demonstrated in 
Figure 37. Here, two annotations are used to direct the feedback loop to focus on coverage to a specific 
code region. With the IJON_ENABLE() annotation inside the if condition, fuzzing input is restricted to only 
values that satisfy the condition, reducing the search space of uninteresting paths [104]. If a value to a 
reference variable in the program is determine to be interesting when changed, then the IJON_INC() 
annotation can be used to track and reward the fuzzer’s feedback loop. Likewise, the IJON_SET() annotation 
rewards the fuzzer for new coordinates achieved in a maze game as shown in Figure 38 [103]. This maze 
contains 4 different branches that are easily exhausted by control flow graph code coverage, but that 
encompass many states needed to solve for the correct path. Moreover, the IJON_STATE() annotation is 
used to create a virtual state for exploring combinations of variables, and the IJON_MAX() allows for 
rewarding the fuzzer to maximize one or more values. 

 

 
Figure 38: IJON annotate maze game 
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Use Cases and Limitations 
 

For targets with source code, IJON enabled fuzzers perform better than the corresponding unmodified 
versions [103]. In Figure 39, the Trusted Platform Module (TPM) library called LIBTPMS is fuzzed with 
both AFL and AFL-IJON. The figure illustrates how much more exploration coverage IJON is able to 
achieve with up to 32x improvement using two annotations 
[104] [103]. An advantage of IJON is that there is no loss of features over the unmodified AFL fuzzer. 
IJON can be used as a supplement for the difficult to overcome roadblocks that fuzzing often encounters 
and introduces a mechanism for analyst to focus on interesting paths. 

 

Figure 39: Exploration comparison of AFL and AFL-IJON on a LIBTPMS (Trusted Platform 
Module) [104] 

 
5.3 Generation-based Fuzzing 

5.3.1 Nautilus 
 
 

Reference Link https://github.com/nautilus-fuzz/nautilus 
Target Type Source 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release 2020 

License Type Open-Source 
Maintenance Not Actively Maintained 

Overview 
 

Nautilus is a fuzzer that attempts to combine the benefits of tailored inputs from grammar-based fuzzers 
with the code coverage information of mutation-based fuzzers. The paper NAUTILUS: Fishing for Deep 
Bugs with Grammars [96], describes it as a grammar-based fuzzer that initially generates inputs based on a 
grammar and then performs mutations based on code coverage and the grammar. Nautilus has won several 
bug-finding plaudits, including against Microsoft Edge’s ChakraCore and Ruby. 
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Nautilus is an actively maintained project that recently released Version 2.0. It is implemented in Rust and 
can also be used in combination with AFL, where AFL will import Nautilus inputs as it runs. A grammar 
can also be defined in Python. [96] [105] [106] 

 
Design and Implementation 

 
Nautilus employs a multistep process that generates inputs from a grammar and then mutates them based on 
coverage feedback. Figure 40 presents an overview of Nautilus. The numbered steps in the diagram are 
described below. 

 

 
Figure 40: Nautilus Overview [96, p. 4] 

 
 
 

0. Nautilus Inputs: The source code and the input grammar are input into the fuzzer. 
1. Compile Target Code: In order to get coverage feedback, the code has to be compiled with 

Nautilus’s compiler. 
2. Grammar Parsing: Nautilus parses the input grammar given. 
3. Input Generation: Nautilus generates 1000 initial random inputs and sends them to the 

scheduler. 
4. Checks Code Coverage: Nautilus checks if these initial inputs generate new code 

coverage, using the instrumented binary compiled in step 1. 
5. Minimization: Any input that covers new paths is then minimized into a new grammar and 

added to the queue of inputs for mutation. 
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6. Scheduler Decision: The scheduler decides whether the inputs in the queue can continue to be 
mutated and produce new paths, if it can’t it triggers new input generation, and goes back to step 3. 

7. Mutation: If new inputs can be mutated, it performs mutations based on the grammar. 
8. Mutated Input: The mutated input is added to the queue. 
9. Fuzzing: The queue is used to fuzz the instrumented binaries. 

 
Compilation: In step 2, Nautilus uses an AFLPlusPlus to compile the source code. 

 
Grammars: Grammars can be written in Python. An example grammar for generating XML code is shown 
in Code 2. This can be found in the repository along with examples for JavaScript, Lua, PHP, and Ruby. 

 

Code 2: Example grammar for XML, written in Python [106, p. README.md] 

Generation can be done either through naïve generation or uniform generation. In the former, rules are picked 
randomly. For example, if there are two rules at a branch each will be picked approximately 50% of the 
time. In the latter, all possible trees of a certain depth are constructed and used for generation. Uniform 
generation allows CFG bias to be mitigated. 

 
Minimization: After a newly generated input is shown to find new paths (Steps 1- 4) it is minimized in 
Step 5. There are two minimization strategies used: 

• Subtree Minimization: Subtree minimization happens by sequentially visiting each node in the 
input’s Abstract Syntax Tree (AST) and replacing its subtree with the smallest possible subtree. If 
an input generated from this still causes the new paths to be taken, it is kept. Otherwise, it is reverted 
to the original subtree. 

 
• Recursive Minimization: This is performed after Subtree minimization and works to reduce the 

number of recursions that happen in an input. An example of recursive minimization given in the 
paper can be seen in Figure 41. 



 

Approved for Public Release; Distribution Unlimited.  
68  

 
 

Figure 41: Example of Recursive Minimization [96, p. 5] 

Mutation: There are several kinds of mutation that Nautilus performs at Step 8: 
 

• Random Mutation: Randomly identifies a node in the AST of the input and generates a new 
subtree at that node. 

• Rules Mutation: “Sequentially replaces each node of the input tree with one subtree 
generated by all other possible rules.” 

• Random Recursive Mutation: Randomly identifies a recursion of an input’s AST and repeats 
that recursion 2𝑛𝑛𝑛𝑛 times. An example of this kind of mutation can be seen in Figure 42. 

• Splicing Mutation: This mutation “combines inputs that found different paths by taking a 
subtree from one interesting input and placing it in another input.” 

• AFL Mutation: Performs AFL mutations. 
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Figure 42: Example of Random Recursive Mutation [96, p. 5] 
 

Fuzzing: Fuzzing is performed on the instrumented binary. Figure 43 show the workflow of the fuzzing 
phase. 
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Figure 43: Nautilus Fuzzer [96, p. 7] 

Implementation: Nautilus is written in Rust and requires Cargo and the Rust nightly build to run 
properly. It also requires AFLPlusPlus. When run, Nautilus has a similar terminal output as AFL, an 
example of which is shown in Figure 44. 
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Use Cases and Limitations 

Figure 44: Nautilus Terminal Stats Screen 

 
Nautilus has already been used to find bugs in several major projects like the JavaScript JIT engine 
ChakraCore, which is part of Microsoft’s Edge browser. Generation-based fuzzers are particularly applicable 
to Just-In-Time Compilers and other parsing, compilation, and rendering engines. The ability to specify a 
grammar is useful to fuzz for bugs that are not the result of malformed inputs. 

 
The Python-based grammar specification and the integration with AFL are nice usability features of this 
tool. However, Nautilus requires relatively new features of Rust which may not be available in the current 
stable Rust release, a fact that is absent from Nautilus’s build instructions. Compiling and running on a newly 
installed Ubuntu 18.04 distribution required several adjustments to the given instructions (including running 
with the Rust nightly release). 



 

Approved for Public Release; Distribution Unlimited.  
72  

Input generation is time-intensive and slower that just random input mutation. However, the tight integration 
with AFL will somewhat mitigate this issue. If the user needs only inputs generated from a grammar, and 
not mutated ones, they should use a different grammar based fuzzer. The F1 fuzzer (or the Rust version, the 
FZero fuzzer) are grammar-based fuzzers that produce very fast inputs but do not include the specific 
mutation strategies used in Nautilus. 

 
5.4 Platform Specific Fuzzing 

5.4.1 HFL 
 
 

Reference Link https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-
fuzzing- on-the-linux-kernel/ 

Target Type Source (Linux Kernel) 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release Tool not yet released; Paper released Jan 2020 

Overview 
 

Hybrid Fuzzing on the Linux Kernel (HFL) implements novel methods to bring hybrid (concolic) fuzzing 
to the Linux kernel. Described in the NDSS paper HFL: Hybrid Fuzzing on the Linux Kernel, seeks to take 
a technique that has been successfully applied to user space, to the far more complicated kernel space. Here, 
concolic fuzzing describes an approach that combines symbolic execution with fuzzing. Concolic analyses 
have been applied to user space programs, but thus far, have been limited to subsections of the Linux kernel. 
This due to three kernel specific characteristics: indirect control flow resulting from system calls and 
module interfaces, system state maintained by dependencies between system calls, and nested structures 
passed as arguments to the system calls. HFL introduces novel techniques that unravel indirect control flow, 
as well as maintain proper kernel state and argument structures during execution. It leverages modified 
versions of Syzkaller and QEMU as the concrete execution engine, S2E as the symbolic execution engine, 
GCC for compiler instrumentation, and LLVM Linux for static analysis on LLVM bitcode. [100] 

 
Design and Usage 

 
HFL must mitigate the above characteristics to increase concolic analysis efficacy. Each of the 
characteristics and their mitigations are described below. 

http://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-
http://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-
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Indirect Control Flow: The Linux kernel uses function pointers to modularize system calls and hardware 
modules. This indirect control flow proves difficult for concolic analysis because the concrete engine cannot 
efficiently select the correct function pointer, while the symbolic engine cannot efficiently constrain any 
specific pointer. HFL addresses this by translating indirect control flow to direct control flow by converting 
table look ups into branching conditionals. The translator “keeps track of how syscall parameters are 
propagated by performing inter-procedural dataflow analysis [100, p. 1],” subsequently inserting 
conditionals based on feasible function pointer values. An example of changes to kernel source code is in 
Code 3. 

 
 

Code 3: Changes to kernel source code before and after translation [100, p. 6] 

System State Maintenance: System calls transition the kernel through various states that may be order 
dependent. Inappropriate transitions between states prevent efficient exploration of the kernel code space. 
HFL infers the order of system calls through a two-step process. The first is inter-procedural analysis to 
identify candidate dependency pairs that operate on the same data (e.g., reading and writing to the same 
memory). The second is concolic analysis of these candidate dependency pairs to generate sequence rule 
sets. HFL “symbolically executes [the] instructions of a candidate dependency pair, [then] checks if these 
access the same address [100, p. 8].” If so, HFL marks these as true dependency pairs and infers an order. 
This approach has the added benefit that true dependency pairs operate on a common object in different 
contexts, allowing for greater constraint and relationship definition between the object and its members. 
Figure 45 describes the system call dependency inference system. 
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Figure 45: HFL system call dependency interference system [100, p. 9] 

Algorithm for Figure 45: 
1. Concolically analyze system call invocation
2. Identify which instructions pair to the same memory addresses
3. If they share the same address, mark this as a true dependency pair
4. Use the symbolized memory to identify dependencies on memory regions
5. Collect more constraints and relationships between structure and members
6. Define a dependency rule set
7. Infer order from the rule set

Nested Structures in Arguments: System calls that operate on user data may transfer information using 
dynamic structures and variables. Further, there may be relationships between these argument structures 
and variables - a dynamically allocated buffer may also define a length attribute. The kernel handles these 
cases by looping through the arguments and individually copying each from user to kernel space. Concrete 
and symbolic fuzzing engines struggle to generate complex nested structures. 

HFL addresses nested structures by monitoring data transfer functions between kernel and user space. The 
key pieces of information are “memory locations [that connect] nested … structures and the length of 
[those] arguments [100, p. 8] .” Figure 46 and the following algorithm describe how system call arguments 
are retrieved in the case of ioctls. 
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Figure 46: "Workflow of nested syscall argument retrieval [100, p. 9]” 

Algorithm for Figure 46: 
 

1. Monitor execution at the data transfer routine 
2. Copy the ctrl data structure into symbolic memory, keeping buffer and size constraints 
3. Copy the buffer containing the data, keeping symbolic relationship between ctrl and tbuff 
4. Construct a final memory view describing the structure 
5. Define new argument rules for the invoked system call 

 
Use Cases and Limitations 

 
HFL is designed to fuzz the Linux kernel. It leverages Linux specific patterns for transitioning system call 
arguments from user to kernel space. Its analyses are limited to the x86-64 architecture (at the time of writing) 
because of its dependencies on Syzkaller and S2E. No public implementation currently exists, and the 
available information is limited to performance metrics. 

 
Performance Metrics: HFL outperformed Syzkaller and other kernel fuzzing tools - “the coverage 
improvement of HFL over Moonshine and Syzkaller is 15% and 26% respectively, [and four times 
improvement over] kAFL, TriforceAFL and S2E [100, p. 12]”. It  found “24 vulnerabilities previously 
unknown [of which] 17 were confirmed [100, p. 12]”, the majority being 
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“integer overflow and memory access violation, followed by uninitialized variable access [100, p. 12].” HFL 
found the same bugs as Syzkaller in 15 hours, compared to the latter’s 50 hours, and exceed many other 
tools’ coverages. 

 

Figure 47: "Comparison of bug-finding time for 13 known crashes [100, p. 10] " 
 
 

 
 
 

Figure 48: "Coverage results during a [50-hour] run [100, p. 12] " 
 

The overall coverage efficiency compared to a variety of other tools is below, “the line indicates averages 
while the shaded area represents 95% confidence interval over three runs [of 50 hours each] [100, p. 12].” 
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The results demonstrate that hybrid fuzzing is most useful, followed by system call inference and argument 
retrieval, then resolution of indirect system calls to direct. However, the authors “emphasize that all of 
HFL’s features, rather than exclusive application of each feature, are essential for maximizing coverage 
[100, p. 13]” 

5.4.2 Hypercube 
 
 

Reference Link https://www.ndss-
symposium.org/wp- 
content/uploads/2020/02/23096.pd
f 

Target Type Binary (Hypervisor) 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release Tool not yet released; Paper released Jan 2020 

License Type Not yet available, license that will be used not stated 
Maintenance Tool not yet released 

 
Overview 

 
HYPER-CUBE is a hypervisor fuzzer implemented as a custom OS that boots inside one of several 
hypervisors/virtual machine monitors and attempts to crash it. HYPER-CUBE was presented in the 2020 
NDSS paper HYPER-CUBE: High-Dimensional Hypervisor Fuzzing [101]. HYPER- CUBE is not guided 
by past execution traces or instrumentation. Instead it takes a fast and “dumb” brute-force approach. Despite 
the lack of coverage-guidance, HYPER-CUBE states it has found the same bugs as other, more complicated 
approaches, in much less time. As of two months after the conference, the source code has not yet been 
released despite it being linked to in the paper and the authors criticizing its nearest competitor VDF [107] 
for not releasing their tool. [101] 

 
Design and Implementation 

 
The goal of HYPER-CUBE is to expand on “two-dimensional fuzzing [108]” where two different interfaces 
were fuzzed in sequence. The authors describe their high-dimensional approach as fuzzing an “an arbitrary 
number of interfaces in any order [101]”. In HYPER-CUBE the interfaces are primarily memory areas 
accessed by emulated devices to perform privileged actions that may not be properly handled by the 
hypervisor, such as Memory Mapped IO (MMIO). Figure 49 shows the architecture of HYPER-CUBE. 

http://www.ndss-symposium.org/wp-
http://www.ndss-symposium.org/wp-
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Figure 49: HYPER-CUBE Architecture from paper 

HYPER-CUBE is composed of three parts: 
 

1) A small OS that boots in 10% quicker than the Linux kernel. HYPER-CUBE OS 
enumerates the hardware interfaces and helps avoid costly reboots due to crashes. 

 
2) “TESSERACT” which is a bytecode interpreter that executes instructions manufactured from a 

PRNG. 
 

3) Various supporting scaffolding programs to manage tasks such as monitoring the VM’s 
behavior and feeding the TESSERACT interpreter byte-strings. 

 
Use Cases and Limitations 

 
HYPER-CUBE can find bugs in hypervisors at a high-rate due to the speed at which it brute forces memory 
regions and instructions. The authors found 54 bugs, yielding 43 CVEs. One example cited was a bug in 
BSD’s bhyve hypervisor when executing a rep movs instruction targeting the Advanced Programmable 
Interrupt Controller (APIC) MMIO region. The memory accesses were incorrectly emulated, leading to a 
crash of the hypervisor. 

 
HYPER-CUBE’s authors contrast it favorably with VDF [107] due to HYPER-CUBE’s far higher 
instruction throughput. HYPER-CUBE purports to make up for intelligent path selection with raw scale. The 
authors state that they found almost all the same crashes as VDF in less time. However, it is not clear from 
the paper how HYPER-CUBE manages to avoid the complexity of device initialization that VDF took pains 
to handle through extensively tracing concrete boots of the kernel. HYPER-CUBE could be missing crashes 
that require a more complicated initialized device state. 
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HYPER-CUBE appears straightforward and flexible enough to handle many hypervisors, but it has two 
primary platform limitations. First, HYPER-CUBE cannot fuzz Hyper-V because it did not implement a 
64-bit UEFI bootloader. Second, HYPER-CUBE does not support para- virtualized devices and so does not 
support Xen or VMware ESXi. 

 
5.4.3 Syzkaller 

 
Reference Link https://github.com/google/syzkaller 

Target Type Binary (Kernel) 
Host Operating System Linux 
Target Operating 
System 

Akaros, Android, Darwin/XNU, FreeBSD, Fuchsia, NetBSD, 
OpenBSD, Windows, gVisor 

Host Architecture x86 (32, 64) 

Target Architecture x86 (32, 64), ARM (32, 64) 
Initial Release 2015 
License Type Open-Source 
Maintenance Maintained by Google 

Overview 
 

syzkaller is an open-source multi-platform kernel fuzzer that uses a combination of generation- based 
fuzzing and mutation to discover a wide range of kernel bugs. As an unsupervised fuzzer, syzkaller 
leverages code coverage to guide and maximize code paths for achieving a significant amount of bug 
discoveries. To date, thousands of bugs have been found using syzkaller, spanning 7 different operating 
systems and bug classes, to include memory corruption, General Protection Fault (GPF), deadlocks, and 
kernel “warnings” that sometimes result in memory leaks [109]. Written in Golang, syzkaller has been 
actively maintained and publicly available for many years. Designed as a “structure-aware” fuzzer, kernel 
system calls are targeted by leveraging source code to extract system call descriptions and then micro 
programs are generated for execution within a closely monitored QEMU virtual machine instance [110]. 

 
Design and Implementation 

 
Like other fuzzers, syzkaller can parallelize and run several jobs at once using multiple VMs. It achieves 
this through a configurable component call syz-manager (shown in Figure 45). The syz- manager acts as a 
dispatcher and orchestrator for each VM. It will reboot QEMU images as necessary, start processes on the 
VM, and monitor for new code coverage while maintaining a catalog of crashes and storing the corpus of 
micro programs viewable from the web GUI’s main page (Figure 52). 
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Figure 50: syzkaller System Architecture 

The syz-fuzzer component is responsible for fuzzing system calls, specifically the generation and mutation 
of micro programs consisting of “syscall descriptions.” Syscall descriptions are created from the kernel’s 
source code using regular expressions and are made into programs by stringing a random set of system calls 
in a sequence while also verifying all call dependencies are satisfied. Figure 51 shows an example of a 
generated program with arguments mutated. 

 

 
Figure 51 Example syscall description program created by syzkaller 
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Once a program is generated, syz-fuzzer will begin to manipulate various parts of the program using 5 
different types of functions. 

• squashAny: Preforms AFL mutations by picking a random complex pointer and 
squashes the arguments into an ANY, randomizing blobs if they exist. 

• splice: Joins another program from the corpus of programs at a random system call index. 
• insertCall: Inserts an additional system call at a random point, however weighted for 

inserting calls to the end of the program. 
• mutateArg: Mutates the argument(s) of a random system call. 
• removeCall: Removes a randomly selected system call. 

 
 

 
Figure 52 Syzkaller web GUI 
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To increase code coverage reliably, syzkaller uses KCOV to track runtime executions per thread [112]. 
When a program is run, the coverage is recorded for that particular program and then executed again to 
identify possible “code flakes” – parts of code that show up in one KCOV coverage map but fail to be 
reported within the same program in a sequential run. This is an important feature since the kernel is a 
complex ecosystem of multiple processes, background threads, and scheduling variabilities that can result in 
indeterministic execution, thwarting accurate code coverage. Syzkaller’s additional executions remove false 
code coverage flakes and only add verified coverages to the program corpus. 

 
Use Cases and Limitations 

 
Originally designed for targeting Linux kernels, syzkaller has grown to be a highly extensible fuzzing 
platform supporting numerous operating systems through additional syscall descriptions. In a recent 
security conference, Windows syscall descriptions were successfully added to a modified version of 
syzkaller using leaked source code from past Windows operating systems and verified using IDA and 
WinDbg. Although several system call description extractors are packaged with syzkaller, they are not all 
encompassing. Missing syscall descriptions attribute to the main limitation of syzkaller, as syscall 
descriptions are the foundational layer used for supporting program generation through the system call 
grammar. Without a complete system call description, syzkaller is unable to generate syscall descriptions 
for every part of the kernel, a problem magnified for closed sourced operating systems or undocumented 
APIs. 

 
5.5 Trends 
The primary trends with fuzzers as of late have been maturation and improvements upon existing ideas, 
combined with trying to fuzz targets that are traditionally hard to fuzz. TortoiseFuzz, IJON, and Nautilus 
build upon AFL, trying to create strategies that improve fuzzing performance in a quantitative and 
measurable manner. Additionally, tools are being created to specifically focus on kernel and hypervisor 
fuzzing. In general, the field of fuzzing is becoming more mature, and research is focusing fuzzer 
weaknesses. 
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6 Exploitation 

6.1 Technical Overview 
 

Program bugs come in many forms, but ones which could potentially be exploited to generate unintended 
effects are considered vulnerabilities. NIST SP 800-30 defines a vulnerability as “a weakness in an 
information system, system security procedures, internal controls, or implementation that could be exploited 
by a threat source [113].” In vulnerability research, once a vulnerability has been identified, the next step is 
to effectively leverage that vulnerability with an exploit (i.e., to cause unintended behavior in the target). 
This is often a more challenging task than finding the original vulnerability. Almost all the tools discussed 
in the first two sections of this report are useful for both vulnerability discovery and exploitation. For 
example, a researcher might use a debugger to determine exactly how many ‘A’ characters to pad their 
payload with so that their exploit is correctly situated. By contrast, this section focuses on tools and 
techniques explicitly intended for exploitation. For example, shadow is a debugger designed specifically for 
exploiting heap vulnerabilities in programs that use the jemalloc allocator. It is common for exploitation 
tools or techniques to be designed for a specific kind of target. 

 
Mitigations 

 
Over the years, numerous defensive techniques have been developed to mitigate the danger of 
vulnerabilities. Techniques are tailored for different classes of vulnerability, and some have proven more 
successful than others. At the edge of the art, offensive techniques are often developed to circumvent these 
mitigations. Common exploit mitigations for binary exploitation include: 

 
• Stack Canaries: Values placed on the stack to prevent accessing memory past the end of the 

buffer. 
 

• DEP/NX: This marks regions of memory (like the stack) as not executable, to prevent 
malicious code from being written and then executed. 

 
• RELRO: This prevents the Process Linkage Table (PLT) and the Global Offset Table (GOT) 

from being abused by making either part or all of it Read-Only. 
 

• Position Independent Executable (PIE): This constructs the code portion of an 
executable with relative addressing to make it position independent. This is used in 
conjunction with ASLR. 

 
• Address Space Layout Randomization (ASLR): This randomizes the position of areas within 

the virtual address space of the program, including the positions of the executable code (if PIE is 
enabled), the stack, heap, and various libraries. 

 
• Control Flow Integrity: This kind of mitigation attempts to ensure that the intended control 

flow of the program is followed, to prevent attacks like ROP. 
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Other mitigations and security practices have also proved useful, such as include privilege separation, 
privilege revocation, and proper sanitization of data input into a program. The following discusses types of 
exploit tools and techniques that are actively being researched and developed. 

 
Shellcode 

 
Related EotA Tools: SynesthesiaYS 

 
Shellcode is a set of binary instructions that will perform an exploitative task, such as spawning a shell. 
However, while the name is derived from that example, shellcode can generate any number of effects. 
Shellcode often must be constrained to a certain input format consistent with the target program, such as 
using only alphanumeric bytes. 

 
Control Flow Attacks 

 
Related EotA Tools: DOP, BOPC, KEPLER 

 
Code reuse attacks like return-oriented programming (ROP) are often used to circumvent mitigations like 
non-executable stacks (DEP/NX). ROP is a technique in which existing code is reused for malicious 
purposes. In its most basic form, small snippets of instructions that end in a branching instruction can be 
chained together by pushing their addresses onto the stack. With the right chain of instructions, an attacker 
can gain control by spawning a shell or some other task. These snippets of instructions are known as 
“gadgets.” There has been significant research into static analysis techniques to identify them within 
program binaries and libraries. ROP can be thought of as a technique to build a weird machine [114] in 
which valid parts of the program are manipulated to produce unintended behavior. 

 
Mitigations have emerged to stymie the effectiveness of ROP. Address Space Layout Randomization 
(ASLR) can make it difficult to determine the location of ROP gadgets at runtime. Control Flow Integrity 
(CFI) was specifically intended to prevent control flow attacks like ROP by ensuring that the control flow 
of the program is not circumvented. However, techniques and exploits which bypass CFI have emerged. 

 
In addition to basic ROP, there are variations on the technique that have emerged over the years, to include: 

 
• Blind ROP (BROP): BROP is a technique for attacking remote proprietary services for which 

the binary is not available [115]. 
 

• Sigreturn-oriented programming (SROP): SROP manipulates signal handling in Unix 
systems to construct a ROP-like weird machine [116]. 
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• JIT-ROP: JIT-ROP is a technique to use ROP with a Just-In-Time (JIT) compiler for 
JavaScript in browsers. JIT-ROP makes the JIT compiler produce gadgets that can then be used 
for ROP [117]. 

 
• Data-oriented programming (DOP): A technique which creates a ROP-like weird machine 

only with non-control data in memory. This avoids CFI mitigations [118]. 
 

• Block-oriented programming (BOP): This technique builds on DOP [119]. 
 

• Jump-oriented programming (JOP): Creates a ROP-like weird machine with jump 
instructions rather than return instructions [120]. 

 
• Counterfeit object-oriented programming (COOP): A technique developed to avoid CFI 

mitigations by chaining together existing C++ virtual functions [121]. 
 

Data-Oriented/Data-Only Attacks: A variant of control flow or code reuse attacks, these attempt to 
circumvent control flow protections like CFI by manipulating a program’s memory and register values, 
rather than its control flow. The end goal is to use instructions already within a valid control flow that perform 
reads, writes, and other useful operations on corrupted memory to create a ‘weird machine.’ The tools DOP 
[122] and BOPC [123], discussed in this section, address these kinds of attacks. 

 
Heap Exploitation 

 
Related EotA Tools: Gollum, SEIVE and SHRIKE, HeapHopper, SLAKE, shadow 

 
Bugs related to dynamic memory make the heap a target for exploitation. There are a variety of techniques 
and vulnerabilities for heap exploitation. These include: 

 
• Use After Free (UAF): When free is called on a heap object but the remaining pointer to it is 

still in use. 
 

• Heap Overflow: Like a stack overflow, this is enabled by a vulnerability that allows an attacker 
to write past the end of the intended buffer on the heap and overwrite other heap buffers. 

 
• Heap Spraying: This is a technique in which a payload is “sprayed” onto the heap to 

increase the likelihood that it is in the correct place for the exploit to work. 
 

• Double-free: This is a vulnerability in which a heap object is freed twice. An attacker can then 
possibly control a pointer to that area of memory in a malicious way. 

 
There are many other ways to attack the heap. These kinds of exploitation techniques are often more 
complicated than stack-based attacks and can require knowledge of the internals of a specific allocator. 
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The tools HeapHopper, and SHRIKE and SEIVE, which were discussed in the second version of this report, 
are Automatic Exploit Generation (AEG) tools for heap-based attacks. The tool Gollum (discussed in this 
section) builds on the research for SHRIKE and SEIVE to construct a full heap- based AEG. The tool 
SLAKE, also discussed in this section, targets the Linux kernel space dynamic memory allocator, the 
SLAB/SLUB. 

 
Automatic Exploit Generation (AEG) 

 
Related EotA Tools: BOPC, KEPLER, SLAKE, Gollum, SEIVE and SHRIKE, Revery, angr 

 
AEG techniques are an area of research which has existed for a decade but gained notoriety in 2016 during 
the DARPA Cyber Grand Challenge (CGC) [98]. As the name suggest, AEG involves automatically writing 
an exploit for a vulnerability. Sometimes the AEG tool is given a known vulnerability, but an end-to-end 
AEG machine is designed to automatically discover the vulnerability and then exploit it. Often, this can be 
conceived as a two-step process. First, discover an input that triggers the vulnerability, and then generate a 
‘payload’ to exploit that vulnerability [124, p. 11]. Many of the tools and techniques discussed elsewhere in 
this report are applicable to AEG, especially symbolic execution and fuzzing. 

 
This section focuses on the second step, automatic exploitation after vulnerability discovery. AEG 
techniques have been applied to the stack, heap, kernel, etc. The tools HeapHopper, SHRIKE, and SEIVE 
are AEG tools for heap-based attacks. Gollum builds on the research for SHRIKE and SEIVE. The first 
version of this report discussed FUZE [125], which is an AEG tool designed to exploit the Linux kernel. 
Two additional AEG tools for the Linux kernel are discussed in this section, KEPLER and SLAKE [126]. 
BOPC [123] automates Data-Oriented Programming (DOP) attacks. 

 
6.2 Data-Oriented Attacks 

6.2.1 DOP 
 
 

Reference Link https://huhong-nus.github.io/advanced-DOP/ 
Target Type Binary 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release 2016 

License Type Open-Source 
Maintenance Maintained by 
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Overview 
 

DOP is a tool for data-oriented programming, an exploitation method which manipulates a program’s 
memory (rather than its control flow) to achieve some level of control of the program, ideally turning it into 
a Turing machine. Presented in the paper Data-Oriented Programming: On the Expressiveness of Non-
Control Data Attacks [122], DOP is described as a way “to construct expressive non-control data exploits 
for arbitrary x86 programs.” The significance of these methods is that they bypass Control Flow Integrity 
protections because they manipulate the data flow instead of the control flow. Although less powerful, and 
more difficult to construct than a control flow attack, the authors show that programs often have the building 
blocks for these attacks, and given a well-placed vulnerability, these attacks can be effective. The authors 
demonstrate this on two real world programs, constructing a Turing machine in both examples. [122] [127] 
[128] 

 
Design and Implementation 

 
DOP formalizes a language, called MINDOP, of data-oriented “gadgets” which can be chained together 
using a data-oriented dispatcher. A gadget takes the form of an instruction or set of instructions that 
performs some operation (i.e., arithmetic, assignment, load, store, jump or conditional jump) on an attacker-
controlled value. A dispatcher is typically some form of loop which allows a gadget to be called arbitrarily 
by the attacker. Figure 53 shows the semantics of MINDOP, which the authors show to be Turing complete. 

 

 
Figure 53- MINDOP Language [122, p. 4] 

DOP includes an LLVM-based tool which can identify gadgets in a program. Once gadgets have been 
discovered, they are semi-manually chained together. It is in this way that this tool is not a fully automatic 
generator, but a method to automate parts of the process. One might consider it analogous to tools such as 
ROPGadget which automatically find gadgets for ROP and other control flow-oriented attacks. Figure 54 
shows the interaction between gadgets and dispatchers. 
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Figure 54 - Diagram of gadget and dispatcher interaction [122, p. 5] 

Example: Consider the “micro-operations” described in Figure 55. 
 

 
Figure 55 - Example of gadgets in code [122, p. 3] 

 
 

“The line 12 is an assignment operation on memory locations pointed by two local variables (srv and type), 
which are under the influence of the memory error. Line 10 has a dereference operation, the source pointer 
(srv) for which is corruptible. Similarly, Line 13 has a controllable addition operation. We can think of each 
of these micro-operations in the program as data-oriented gadgets. If we can execute these gadgets on 
attacker-controlled inputs, and chain their execution in a sequence, then an expressive computation can be 
executed.” 

 
Using the while loop, the behavior described in the code in Figure 56 can be simulated by manipulating the 
inputs into the code in Figure 55. 
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Figure 56 - Behavior simulated by code in Figure 55 [122, p. 3] 

“Notice that the loop in line 6 to 15 allows chaining and dispatching gadgets in an infinite sequence, since 
the loop condition is a variable (i.e., connect_limit) that is under the memory error’s influence. We call such 
loops gadget dispatchers. A sequence of data-oriented gadgets in [Figure 41] would allow the remote 
adversary to simulate the function shown in [Figure 56], which maintains a linked list of integers in memory 
and increments each integer by a desired value.” 

 
Use Cases and Limitations 

 
The authors describe DOP’s usability as follows, 

 
“We identified 7518 data-oriented gadgets from 9 programs. 8 programs provide x86 data-oriented gadgets 
to simulate all MINDOP operations. In fact, there are multiple gadgets for each operation. These gadgets 
provides [sic] the possibility for attackers to enable arbitrary calculations in program memory… This result 
implies that real-world applications do embody MINDOP operations and are fairly rich in DOP 
expressiveness…Our programs contain 5052 number of gadget dispatchers in total, such that each program 
has more that one dispatcher … 1443 of these dispatchers contain x86 gadgets of our interest …This means 
that the dispatchers are abundant in real-world programs to simulate MINDOP operations.” 

 
However, their definitions of gadgets and dispatchers is such that these numbers account for many basic 
operations or loops in a program, things which one would expect to be ubiquitous. What matters is how 
many gadgets they were able to identify that are within the scope of a vulnerability and act on the memory 
controllable by the user due to the vulnerability. That number is far lower. However, the authors were able 
to use their technique to create Turing machines for two of the vulnerabilities they looked at, in one case 
leaking the private key of a server. This is the kind of attack for which DOP is most useful. 
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6.2.2 BOPC 
 
 

Reference Link https://github.com/HexHive/BOPC 
Target Type Binary 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release November 2019 

License Type Open-Source 
Maintenance Maintained by HexHive 

 
Overview 

 
The Block Oriented Programing Compiler (BOPC) is a tool designed to automate Block-Oriented 
Programming (BOP) attacks on vulnerable binaries. Described in the paper Block Oriented Programming: 
Automating Data-Only Attacks [129] by Ispoglou et al., BOPC, and their technique, BOP, are closely 
associated with the related work on Data-Oriented Programming (DOP) [122] and the tool DOP (also 
discussed in this section). BOPC builds on the idea of DOP and data-only attacks to avoid control-flow 
mitigations like CFI and shadow stacks. Rather than leveraging any sequence of instructions, as DOP does, 
BOPC leverages basic blocks, hence the name. Assuming an attacker already has the ability to write 
anywhere in memory, BOPC takes as input a sequence of operations (i.e. payload) that the attacker wishes 
to execute but cannot due to control flow protections, written in their SPloit Language (SPL). BOPC then 
“finds execution traces in the binary that execute the desired payload while adhering to the binary's Control 
Flow Graph (CFG)”. The authors call their tool “code reuse under CFI.” The tool is written in Python and 
is accompanied by a well-documented README. It is, however, a paper artifact so its usability has not 
thoroughly tested or accounted for. [129] [123] 

 
Design and Implementation 

 
The core assumption of BOPC is that the attacker already has a write-anywhere primitive. In the case of a 
control flow attack, the attacker might use this to overwrite a function pointer. In the presence of CFI, an 
attack such as this might become more difficult. A data-only attack, however, removes the need to work 
around CFI, since it bypasses it entirely. 

 
BOPC takes in three inputs: 

• A target binary with this write-anywhere primitive. 
• The desired exploit expressed as a sequence of operations to be carried out via a data- only 

attack. This ‘payload’ is written in the SPloit Language (SPL), a high-level, Turing complete 
language the authors developed to be like C. These could be anything from initializing registers 
with arbitrary values to spawning a shell. An example of an SPL payload can be found in Code 
4. 

• An ‘entry point,’ which is the first instruction in the binary at which the payload can be 
executed. This allows the attacker to first complete the part of the exploit that allows 
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them the write-anywhere primitive, as well as any other operation that needs to be done before 
the payload is executed. Multiple entry points can be given. 

 
 

Code 4: Example of an SPL payload for execve(‘/bin/sh’) [123, p. BOPC/payloads/execve.spl] 

Once an SPL payload has been constructed and input along with entry points and the target binary, BOPC 
can begin to automatically find basic blocks in the target binary which implement individual SPL statements 
within the payload. These are called functional blocks. To do this, BOPC generates a Block Constraint 
Summary for each basic block, which records the changes in registers and memory which occur when this 
block is executed, as well as any “any potential system, library call, or conditional jump at the end of the 
block [129, p. 6].” These summaries are generated using symbolic execution and for this the authors use the 
symbolic execution tool angr [130]. 

 
Functional blocks are then identified by iteratively identifying and then reducing a set of candidate basic 
blocks using an algorithm which creates a graph that maps the ‘virtual’ registers and variables in the payload 
to hardware registers and memory addresses, respectively, and then finding a maximum bipartite match in 
these graphs, such that the necessary memory addresses and registers can be properly reserved for the SPL 
execution. If this mapping is found, a set of functional blocks can be selected. 

 
Once functional blocks have been determined, they are chained together using dispatcher blocks which are 
basic blocks that can be used to chain together these functional blocks in order to execute the payload. These 
dispatcher blocks must adhere to CFI and other control flow protections, as well as not clobber the register 
and memory state needed to execute the payload (this is called the SPL State). This is done using a method 
like the k-shortest path algorithm [129, p. 8]. 

 
A functional block, chained with a dispatcher block that allows it to reach the next functional block in the SPL 
execution, is called a BOP Gadget. A diagram of this is shown in Figure 57. 
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Figure 57: Diagram of a BOP Gadget [129, p. 4] 

Once BOP gadgets have been constructed, they can be stitched together and used to execute the payload. 
A high-level overview of the BOPC process can be seen in Figure 58. 

 

 
Figure 58: High-level overview of BOPC [129, p. 3] 

The BOPC implementation provides the user with a number of useful features, like the optimizer (-O option) 
which can make it easier to identify gadgets for SPL payloads by rearranging the order execution of the 
payload with the out of order execution option (-O ooo), or by rewriting the payload with the statement 
rewriting option (-O rewrite). In the rewrite case, an execve() in a payload might be replaced by an execv() 
if the former was not called by the target binary but the latter was. 
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Use Cases and Limitations 

 
This tool has several requirements which do constrain its usage. It requires that the attacker already have an 
arbitrary write primitive, which in turn requires a vulnerability for which a partial exploit, which can write 
anywhere in memory, has been developed. However, this requirement makes this tool perhaps more useful 
than DOP, which focuses on memory immediately controllable by a vulnerability. While it is true that the 
generalizations provided by DOP can be abstracted for BOPC’s attack model, which is exactly what makes 
BOPC useful. It has built on the work of DOP in an effective way by applying that research to an arbitrary-
write primitive and automated it. BOPC is also more robust and better documented and maintained than 
DOP. 

 
Like MinDOP, BOPC is designed for avoiding control flow mitigations like Control Flow Integrity (CFI) and 
shadow stacks. Its authors refer to its capability as “code reuse under CFI.” BOPC’s SPL language is Turing 
complete, and like MinDOP, the authors here have shown that many programs have gadgets that can be 
coupled with a vulnerability to simulate a Turing machine. However, this is less powerful than remote code 
execution as the Turing machine’s ‘tape’ is limited to this program’s virtual memory space. Also, although 
this tool can be used “automatically,” in practice it would at best be a helpful tool during manual data-only 
exploitation. 

 
This paper’s implementation is higher quality and better documented than most paper artifacts, however the 
authors urge caution: “It's not a product, so do not expect it to work perfectly under all scenarios. It works 
nicely for the provided test cases, but beyond that we cannot guarantee that will work as expected [123, p. 
README.md].” 

 
6.3 Heap 

6.3.1 Gollum 
 
 

Reference Link http://www.cs.ox.ac.uk/tom.melham/pub/Heelan-2019-GMG.pdf 
Target Type Binary 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release October 2019 
License Type Open-Source 
Maintenance Paper artifact with little to no maintenance 

http://www.cs.ox.ac.uk/tom.melham/pub/Heelan-2019-GMG.pdf
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Overview 
 

Gollum is an automatic heap exploitation tool based on the paper Gollum: Modular and Greybox Exploit 
Generation for Heap Overflows in Interpreters by Heelan et al. Building on the paper Automatic Heap 
Layout Manipulation by Heelan et al., Gollum incorporates the tools SEIVE and SHRIKE into an end-to-
end automatic exploit generation tool for heap overflows in interpreters. Gollum is directed at the PHP and 
Python interpreter and works by breaking heap generation into several distinct components and then 
chaining together modular generation tools for each (with layout manipulation being one of these 
components). [131] 

 
Design and Implementation 

 
Gollum is implemented in six stages: 

 
1. Importing the Vulnerability Trigger 
2. Injecting the Vulnerability Trigger into Tests 
3. Exploring Heap Layouts 
4. Determining Input-Output Relationships 
5. Generating an Exploit Modulo a Heap Layout 
6. Solving the Heap Layout Problem 

Figure 60 is a full workflow diagram. 

 
Figure 59 - Workflow diagram for Gollum [131, p. 3] 

Gollum takes as input a vulnerability trigger for a heap overflow and a set of test cases (e.g., regression test 
suite for the interpreter). As output, it returns full exploits, and primitives that can be used in manual exploits. 
Rather than one single tool, Gollum is made up of several modular tool components which are chained 
together to create an exploitation tool. Shapeshifter is a custom memory allocator which allows the user to 
specify a heap layout to determine if that layout would facilitate exploitation. SEIVE is augmented by a 
genetic algorithm. Then there is the component which searches for exploit primitive, and the component 
which constructs the exploit. 
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In steps 1 and 2, the vulnerability trigger is injected into the testcases. Step 3 executes those test cases with 
Shapshifter to explore what heap objects are allocated at that point. Step 4 uses fuzzing to determine what 
level of control the user has over the heap at the point of vulnerability. Step 5 uses Shapeshifter to determine 
if an exploit is possible for some layout of the heap. Steps 3-5 result in primitive discovery, which works as 
follows. 

 
1. Discover a data structure to target and corrupt. 
2. Ensure instance of structure adjacent to source of overflow. 
3. Ensure post-overflow corrupted data is used by the attacker. 

 
Step 6 uses SEIVE, however this time augmented with a genetic algorithm rather than a random search, to 
find inputs which would result in this exploitable layout. 

 
Figure 61 shows example code for various points throughout Gollum’s process. 
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Figure 60 - Example code for stages of Gollum [131, p. 4] 

Use Cases and Limitations 
 

The most immediate use of this tool is on vulnerabilities for the Python and PHP interpreter, but the most 
interesting aspect of this tool is its applicability to the problem of automatic exploit generation (AEG) for 
heap exploits. Whereas there has been significant research into AEG for stack-based vulnerabilities and 
exploitation methods like ROP, heap exploits present a much more 
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challenging problem. Gollum, and Heelan et al.’s previous work on SEIVE and SHRIKE are promising 
forays into this area, however these tools themselves remain significantly constrained in their abilities. One 
interesting contribution here is the modularity of this tool, which seems to be an effective way to combine 
AEG components into an end to end exploit generator. 

 
6.4 Kernel Exploitation 

 
Reference Link https://github.com/ww9210/kepler-cfhp 
Target Type Binary 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release 2019 

License Type Open-Source 
Maintenance Not Actively Maintained 

Overview 
 

KEPLER is a suite of tools for exploiting the Linux kernel that focuses primarily on gadget identification 
and gadget chain identification. It is described in the paper Kepler: Facilitating Control-flow Hijacking 
Primitive Evaluation for Linux Kernel Vulnerabilities [132] which was presented at USENIX 2019. This 
can essentially be thought of as analogous to a ROP gadget tool for Linux kernels, and fits within both the 
control flow hijacking attacks and automatic exploit generation in kernels research areas. This tool uses 
symbolic execution to identify gadgets and evaluate them. It is designed to generate a kernel ROP chain 
bootstrapped to the exploit primitive that the user input. [132] [133] 

 
Design and Implementation 

 
KEPLER is a ROP chain gadget tool for Linux kernels, which will take an exploit primitive and theoretically 
return a full exploit using symbolic execution to find ROP gadgets and string them together in a control 
flow which will allow the attacker to exploit the program using the primitive. Figure 62 shows KEPLER’s 
overall design. 
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Figure 61: KEPLER's design [132, p. 1193] 
 
 

KEPLER takes in 3 inputs: 
1. A kernel binary image 
2. A control flow hijacking primitive (CHFP). This is a “is a machine state that potentially deviates 

from the legal control-flow graph. In the context of symbolic analysis, a control- flow hijacking 
primitive is usually identified by applying a heuristic which queries the backend constraint solver 
to check whether the number of possible control flow jump target is beyond a threshold when the 
control flow jump target contains symbolic bytes.” 

3. An arbitrary return-oriented programming (ROP) payload. Code 6 below shows an 
example of this payload. 

 

Code 5: Example kernel ROP payload [132, p. 1204] 
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KEPLER uses a technique called ‘single-shot’ exploitation. They describe this as follows: 
 

“We present a code reuse exploit technique which converts a single ill-suited control-flow hijacking 
primitive into arbitrary ROP payload execution under various constraints posed by modern Linux 
kernel mitigations and the primitive itself….Our approach to calculate exploitation chain is 
automatable because the gadget stitching problem could be cast as a search problem over a search 
space of reasonable size. In addition, the "single-shot" nature of this technique makes it suitable for 
the vulnerabilities prone to unexpected termination because it avoids stressing a control-flow 
hijacking primitive for multiple times. [132, p. 1188]” 

 
KEPLER uses symbolic execution to identify potential exploit paths and implements this using the 
symbolic execution tool angr. First KEPLER performs a depth first search of the binary to identify gadgets, 
and then uses symbolic execution to identify the memory accesses surrounding the gadget and performing 
constraint solving. Figure 63 displays a kernel exploit primitive which could be fully exploited by KEPLER. 
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Figure 62: Example of a kernel exploit that could be exploited by KEPLER [132, p. 1191] 
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Use Cases and Limitations 
 

KEPLER is useful for Linux kernel hijacking attacks. As the authors stated in their paper, 
 

“Our experiment utilizes KEPLER to explore  the aforementioned kernel image with the vulnerabilities 
inserted. In this process, we exhaustively search gadget chains useful for exploitation and mitigation 
circumvention… As we can observe, KEPLER could automatically pinpoint tens of thousands of unique 
kernel gadget chains to perform exploitation without triggering kernel protections. Since we implement 
KEPLER to perform gadget chain exploration in parallel, we also discover that these gadget chains could 
typically be identified within 50 hours. These observations together imply that KEPLER could diversify the 
ways of performing kernel exploitation in an efficient fashion. Given that some commercial security 
products pinpoint kernel exploitation by using the patterns of exploits, the ability to diversify exploitation 
has the potential to assist an adversary to bypass the detection of commercial security products. [132, pp. 
1199- 1200]” 

 
However, as is the case with many of these tools, the efficacy of it is relegated to a more academic and 
theoretical context. This requires very specific primitives, as well as the time and desire to work with not 
well documented paper artifacts, as opposed to a well-documented tool like ROPGadget. However, given 
that there are few ROP gadget identifiers for the Linux kernel, that may make it worth the required time and 
effort. 

 
6.4.1 SLAKE 

 
 

Reference Link https://github.com/chenyueqi/SLAKE 
Target Type Binary 
Host Operating System Linux 
Target Operating System Linux 
Host Architecture x86 (32, 64) 
Target Architecture x86 (32, 64) 
Initial Release 2019 

License Type Open-Source 
Maintenance Not Actively Maintained 

 
Overview 

 
SLAKE is an Automatic Exploit Generation (AEG) tool presented in the paper SLAKE: Facilitating Slab 
Manipulation for Exploiting Vulnerabilities in the Linux Kernel. A slab is a memory structure analogous to 
the Linux heap used in the Linux kernel. This research builds on userland heap AEG research, such as 
SEIVE, SHRIKE, and Gollum. They first “use static and dynamic analysis techniques to explore the kernel 
objects, and the corresponding system calls useful for exploitation.” Then they “model commonly-adopted 
exploitation methods and develop a technical approach to facilitate the slab layout adjustment.” The authors 
assert that their paper not only generated exploits for 27 SLAB vulnerabilities, but also found novel ways 
to do so. 
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Design and Implementation 
 

SLAKE is made up of a range of tools, including a fuzzer, tracer and static analyzer. 
 

Their technique uses both static and dynamic analysis. In the former case, they use LLVM to compile the 
Linux kernel using the tool KINT, which reconstructs the Linux kernel call graph. In the latter case they 
use the kernel fuzzer Syzkaller integrated with the tool Moonshine to fuzz the kernel. SLAKE first uses 
static analysis to model the kernel as a call graph and reconstruct the layout of the SLAB and then by 
fuzzing the SLAB via Syzcaller. 

 
SLAKE relies on several assumptions: 

• A kernel vulnerability with a working POC that results in a kernel panic 
• Controlling PC will result in exploitation 

 
Figure 64 is an illustration of three of the four kinds of kernel exploitation approaches that SLAKE attempts 
to achieve. 

 

 
 
 

Figure 63: Example kernel exploitation approaches given in [126] 

In (a), an out-of-bounds (OOB) write is an exploit in which there is an overflow vulnerability allows the 
attacker to overwrite some object adjacent to where the overflow occurs. If objects are aligned correctly (in 
userland heap exploitation this is commonly known as ‘heap grooming’ or ‘heap feng-shui’), the attacker 
may be able to overwrite a powerful object such as a function pointer or data pointer. Even overwriting 
heap metadata just by one null-byte can be powerful (called a null-byte overflow). 

 
In (b), an attacker is able to free an object twice, which, if done with the right heap manipulation, will be 
added to some free list twice, and then when reallocated once, will persist on that freelist meaning that there 
are multiple avenues for exploitation. 
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In (c), an attacker is able to do the same thing as in (a) but specific to heap metadata. 
 

Not mentioned in Figure 64 are Use-After-Free (UAF) vulnerabilities, which occur when an object is freed 
(and thus added to a freelist) and subsequently ‘used’ by dereferencing a pointer to the heap chunk which 
is now sitting in a bin. This allows an attacker to allocate another object to that chunk, and then use the first 
reference which was erroneously not nullified to manipulate the second, valid object’s data. 

 
Static Analysis: SLAKE first performs static analysis to identify objects and syscalls, then it triages these 
for objects and sites of interest. SLAKE’s static analysis is implemented on top of LLVM IR using the tool 
KINT. 

 
There are two types of interesting kernel objects: 

 
• Victim Objects: “We deem an object as a victim object if, through its enclosed object 

pointers, we could perform multi-step dereference and eventually identify a function pointer 
dereference (e.g. objA֒→ objB->objC->fptr) [126]” 

• Spray Objects: “The usages of a spray object include (1) taking over the slot of a freed object - 
still referenced by a dangling pointer - as well as (2) overwriting the content of that freed object. 
As a result, a spray object does not have to contain a function or object pointer but provides an 
adversary with the ability to copy arbitrary data from userland to kernel slab [126].” 

• 
There are also two kinds of sites of interest: 

 
• Allocation Sites: “We examine the def-use chain of the return value for each allocation 

function and deem the site of an allocation call as a site of allocation if and only if that return 
value is cast to the type identified [126].” 

• Deallocation sites: “For the kernel functions associated with deallocation (e.g., kfree()), they 
typically take as input the pointer of an object. Similar to the way to pinpoint allocation sites, 
we can, therefore, track down the deallocation sites tied to victim object by looking at the type 
of the object pointer passed to the deallocation function [126].” 

 
Dynamic Analysis: After the above have been identified, SLAKE then uses fuzzing to identify systems 
calls of interest. This is done via the kernel fuzzer syzkaller, in conjunction with the kernel tool Moonshine, 
QEMU and GDB. 

 
There are three types of system calls of interest: 

• Syscalls for allocation: “To identify the system calls tied to critical object allocation, we 
perform fuzz testing against a Linux kernel. When a test case triggers an anchor site tied to 
object allocation, we profile each of the system calls by recording the kernel objects that every 
individual system call (de)allocates on the slab [126].” 

• Syscalls for deallocation: “When a deallocation site is triggered by a test case generated by 
kernel fuzzer, we check whether the address of that deallocation object matches the address 
logged previously, and preserve the corresponding system calls only if a match is identified 
[126].” 
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• Syscalls for dereference: “To identify the system calls that could dereference a function pointer 
through a target victim object, we first allocate that target victim object through the system calls 
identified. Under that context, we then perform kernel fuzzing and explore the system calls that 
can reach to the corresponding dummy dereference site [126].” 

 
After all of these have been identified, SLAKE then performs SLAB manipulation to properly utilize the 
objects it has selected. For each exploitation technique, a different way of manipulating the SLAB is utilized. 
An example of this can be seen in Figure 65. 

 

 
Figure 64: Example of SLAKE manipulating the SLAB [126] 

 
Once exploitable layouts have been identified, SLAKE reorganizes the SLAB’s occupied slots, as shown in 
Figure 66. 

 
 

 
 

Figure 65: SLAKE reorganization algorithm 

After performing reorganization, SLAKE outputs the payload needed to achieve the exploit it has identified. 
However, this is only the case if SLAKE has been successful. 
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Use Cases and Limitations 

Linux kernel exploitation techniques like this one are not only useful on Linux systems. They can also be 
applied to other operating systems with similar kernels, such as Android. SLAKE builds on existing work 
both in the area of heap manipulation and kernel exploitation. Given the novelty of the research, it provides 
an interesting addition to the area and a good paper for future research to build on. 

SLAKE, like many academic papers, proposes interesting and novel ideas, but lacks useable artifacts. The 
released code is entirely undocumented, making it difficult to use. As a generalized method for 
conceptualizing heap and SLAB manipulation, and kernel exploitation, it could prove practically useful 
given difficult kernel SLAB vulnerabilities to exploit. 

6.5 Trends
Once again, there is a lot of focus on automated or partially automated exploit generation. This is an area 
that has seen a lot of research since the DARPA Cyber Grand Challenge (CGC) in 2016. Recently, there has 
been an increased focus on automated heap exploitation, as well as kernel exploitation, two areas that have 
traditionally been a bit harder to automatically generate exploits. 

There has also been significant focus on various Data Oriented Programming (DOP) exploitation 
techniques. These come in response to exploit mitigations that have reduced the effectiveness of Return 
Orient Programming (ROP), necessitating new types of exploitations. However, the current automated DOP 
exploitation tools are still more theoretical than practical and are hard to apply to real vulnerabilities. 

7 Conclusion 

This Edge of the Art report has presented new and novel tools and techniques developed since the previous 
versions of this report. It also summarizes common techniques in each tool category to provide the necessary 
background to understand the nuances and differences of each tool. As with previous reports, the intent is 
to effectively keep pace with the ever-expanding boundary that is the “edge” of the vulnerability discovery 
and exploitation discipline. 
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