
Naval Research Laboratory 
Washington, DC 20375-5320 

NRL/MR/5344--21-10,228

Summary of Work Completed Under the 
6.1 Program: Development of Reliable 
Particle Filters

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

David F. Crouse

Surveillance Technology Branch
Radar Division

Codie Lewis

STEM Student Employment Program
Radar Division

February 2, 2021



i

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER
      
5e. TASK NUMBER
      EW021-05-43
5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Summary of Work Completed Under the 6.1 Program: Development of Reliable Particle 
Filters

David Frederic Crouse and Codie Lewis

 
Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/MR/5344--21-10,228

ONR

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Unclassified
Unlimited

Unclassified
Unlimited

Unclassified
Unlimited

6

David F. Crouse

(202) 404-8106

This summarizes the publications and work done under the 6.1 project entitled Development of Reliable Particle Filters.

02-02-2021 NRL Memorandum Report

1J47

Office of Naval Research
One Liberty Center
875 North Randolph Street, Suite 1425
Arlington, VA 22203-1995

61153N

Unclassified
Unlimited



This page intentionally left blank.

ii



CONTENTS

1. INTRODUCTION ......................................................................................................... 1

2. THE BENEFITS AND CHALLENGES OF PARTICLE-FLOW FILTERING ............................ 1

3. PUBLICATIONS AND HOW THEY ADDRESS THE PROBLEM ......................................... 2

4. CODE AVAILABLE TO THE DEFENSE COMMUNITY ..................................................... 3

REFERENCES .................................................................................................................. 7

iii



This page intentionally left blank.

iv



SUMMARY OF WORK COMPLETED UNDER THE 6.1 PROGRAM: DEVELOPMENT
OF RELIABLE PARTICLE FILTERS

1. INTRODUCTION

The objective of the project was to develop and implement improved methods in non-stochastic particle-
filter estimation techniques as well as to study and implement alternative, more traditional, and less com-
putationally complex algorithms for comparison. In addition to publishing the results of the investiga-
tions, the programmed algorithms were tested, commented and made available to the larger DoD and
intelligence community by incorporation into the Statement C supplement to the Tracker Component Li-
brary (TCL) [1]. The full library is posted on the Defense Intelligence Information Enterprise web site at
https://bitbucket.di2e.net/projects/TCL .

2. THE BENEFITS AND CHALLENGES OF PARTICLE-FLOW FILTERING

Originating in the seminal work of [2], modern particle filters enable computationally feasible Bayesian
estimation of very difficult nonlinear dynamic systems. For example, they were the only practicable ap-
proach considered when estimating the search region to find the missing Malaysian Airlines Jet MH370 [3].
Particle filtering techniques have shown performance superior to traditional methods in a number of areas
including dead reckoning of a car driving in a garage after losing a GPS signal [4], and appear to be a popu-
lar approach to acoustic inversion [5]. They have also found use in difficult track-before-detect applications
[6] including periscope detection [7].

Traditional stochastic resampling particle filters are subject to a  major potential p roblem: particle col-
lapse [8]. Particle collapse is a catastrophic failure of the filter to properly represent the uncertainty in the 
model. Particle collapse could call into jeopardy the ability to use a particle filter in many mission critical 
systems. However, in 2007 [9], a completely different new class of particle filters that is not subject to par-
ticle collapse was developed. These are called homotopy particle filters or particle-flow fil ters. Rather than 
stochastically resampling particles, the initial versions of the filter moved the particles using deterministic 
differential equations called “flows,” such as the exact flow of  [10, 11], the incompressible flow derived in 
[11], and the geodesic flow o f [ 12]. However, the best performing flow is based on a stochastic rather than 
a deterministic differential equation. This is the so-called “Gromov” flow [13].

However, the Gromov flow i s a  s tiff s tochastic differential equation and i t i s very difficult to  balance 
finite precision limitations and integration accuracy when choosing a step s ize. The inability to handle the 
stiffness of the equations can severely limit the utility of the algorithm. The work of [14] offers an adaptive 
step-size selection technique as an initial attempt to ameliorate this problem. However, the technique is not 
scale invariant. Thus, it is really only valid for the very specific problem they have c hosen. Changing the 
units of the quantities in the problem, for example, from kilometers to meters, changes the performance of 
the problem. Consequently, the two primary publications [15, 16] arising from this 6.1 project provide a
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scale-invariant automatic step-size selection algorithm. Additionally, the literature on particle-flow filtering
is very fragmented. Small advances in the field are strewn across a large number of conference papers and a
small handful of journal articles. Consequently, [15, 16] provide complete derivations of the particle-flow
filtering algorithms from the ground up.

3. PUBLICATIONS AND HOW THEY ADDRESS THE PROBLEM

Publications related to this 6.1 program both advance the state of the art in particle-flow filtering as
well as advance other, lower computational complexity algorithms and techniques related to the numeric
integration of general stochastic differential equations. These publications are:

1. [15] Particle-Flow Filters: Biases and Bias Avoidance
This paper, winner of the 2019 Jean Pierre Le-Cadre Second Place Best Paper Award at the 22nd
International Conference on Information Fusion, presents a scale-invariant adaptive step-size selection
heuristic for the implementation of particle-flow filters. Additionally, biases present when integrating
explicit and incompressible particle flows are derived and it is shown that such biases are not present
when considering the Gromov flow.

2. [16] Consideration of Particle-Flow Filter Implementations and Biases
This Naval Research laboratory (NRL) memo expands upon the conference paper of [15]. It provides
derivations for all aspects of the particle-flow filter that were used in [15], including a derivation of
the process noise-covariance matrix of the filter, which has not been previously published. Techniques
for integrating the stochastic flow are discussed and it is mentioned that techniques with a higher order
than the simple Euler-Maruyama method had poor performance.

3. [17] Ito-Taylor Expansion Moments for Continuous-Time State Propagation

Particle-flow filters can handle continuous-time nonlinear dynamic systems, but so can a number
of simpler continuous-discrete filtering algorithms [18], such as the continuous-discrete extended
Kalman filter [19, 20] and the cubature Kalman filter [21]. This paper takes the stochastic differential-
equation prediction formula described in [22] and provides all of the moments necessary to generalize
the cubature Kalman filtering algorithm of [21]. In total, this enables the implementation of nine
continuous-discrete cubature Kalman-filter variants, which can function as particle-filter alternatives
in some nonlinear dynamic scenarios.

4. [23] Basic Linear Cartesian Dynamic Models in Local Coordinates

In order to test nonlinear estimation algorithms such as particle filters and strong tracking filters, it
can be good to have a number of nonlinear dynamic models for practical systems available. This
paper derives expressions for the conversions of a linear dynamic model when converted into different
measurement coordinate systems. The change of coordinates makes these new systems nonlinear.
These systems are good for testing numerical-integration algorithms, because one can always compute
the exact solutions for comparison. This is because one knows how to integrate linear systems: the
solution is just a change of coordinates of the final linear answer.

This note derives local-coordinate dynamic models of constant-velocity problems in a variety of 2D
polar and r-u coordinate systems and in 3D spherical and r-u-v coordinate systems, thus sparing the
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reader tedious derivations for simple tracking problems. The conversions for r-u and r-u-v coordinate
systems do not appear to have been previously published.

5. [24] Strong Tracking Filters: Derivation and Improved Heuristic

A design choice when choosing a type of model-based estimation algorithm, is how well the algorithm
handles mismatches between the model for which it is designed and the real system that it is estimating,
which will never be a perfect match. This paper looks at strong tracking filters, which have been widely
used by authors in China, but which have been almost completely overlooked by Western researchers.
In addition to providing an English-language derivation, the paper offers a new method of adjusting
the innovation matrix that allows the filter to be used with measurements of varying dimensionalities
over time and analyzes the performance for differing degrees of model mismatch.

6. [25] An Approximate Bayesian Extended Target-Tracking Algorithm

Target-tracking algorithms are often developed under a point-target approximation. However, real
targets have a finite width, which can cause a mismatch between the assumed measurement distribution
and the true non-Gaussian measurement distribution. This paper looks at the common ellipsoidal
point-target approximation used in the Bayesian extended target-tracking algorithm of [26, 27]. A
new, simple approximation to the measurement-update step of an extended target-tracking filter as
well as a heuristic for track initialization. Like previous work, the filter uses a Gaussian approximation
for the center of the target ellipsoid and an inverse-Wishart distribution to represent the uncertainty in
the shape of the ellipsoid. A method of initializing the extended target state is provided, since such a
routine was hitherto missing from the literature.

4. CODE AVAILABLE TO THE DEFENSE COMMUNITY

As a result of this 6.1 effort, a number of algorithm implementations were made available to the defense
community in the full TCL, which is hosted on the Defense Intelligence Information Enterprise’s web site.
A subset of the most notable function additions shall be subseuqently listed.

Multiple variants of traditional stochastic resampling particle filters as well as particle-flow filters were
implemented. The function demoParticleFilters demonstrates a sampling-importance-resampling
(SIR) particle filter with a particle-flow filter and an extended Kalman filter on a simple track-filtering
problem. The individual filters themselves are implemented as separate functions, allowing them to be
easily used outside of the example. When considering the particle-flow filter, the functions

• particleFlowUpdateGauss

• particleFlowUpdateGaussStoch

implement not only the components of the particle-flow filter derived in [15, 16] under this 6.1 effort, but
also multiple particle-flow filter components from the literature than can be combined into numerous filter
variations based on various options given to the function. For example, the function particleFlowUpdateGauss
implements three different flows, three different step-size algorithms, and four methods of obtaining a nec-
essary covariance approximation, allowing one to make 36 different algorithm combinations. Similarly, the
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function particleFlowUpdateGaussStoch includes options for six initiation algorithms, three step-
size selection algorithms and four approximations of a necessary covariance matrix. This translates to 72
possible algorithm combinations. Many of the other functions added as part of this 6.1 endeavor offer such
a variety of choices for algorithm selection.

This 6.1 also added a number of functions related to traditional SIR particle-filter variants. These are

• logGaussOptImportFun

• particleFilterUpdate

• resampleParticles

• sampleGaussOptImportFun

which themselves include multiple options.

Particle-flow filters can be simulated forward through continuous-time stochastic dynamic models by
applying any routine for simulating continuous-time stochastic differential equations to each of the particles.
A number of routines for this. Stochastic Runge-Kutta variants do not require derivatives of the stochastic-
process components, whereas Taylor series approximations do. The functions implemented include:

• implicitWeakRungeKStep

• implicitWeakTaylorStep

• semiImplicitStrongRungeKStep

• semiImplicitStrongTaylorStep

• strongRungeKStep

• strongRungeKStepJump

• strongStochTaylorStep

• strongStochTaylorStepJump

• weakRungeKStep

• weakStochTaylorStep

Additionally, since one needs to test the above functions against some kind of “truth” to make sure that
they are functioning properly, a number of explicit solutions for the Black-Scholes model from finance are
implemented as:

• BlackScholesPred

• BlackScholesPredGaussPrior
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• BlackScholesStep

As a comparison to the particle-filter routines, moments of the stochastic processes from [17] which can
be used in continuous-discrete Gaussian prediction algorithms are implemented in:

• strongTaylorStepMeanCov

• weakTaylorStepMeanCov

and incorporated into actual state and covariance prediction functions as:

• sqrtStochTaylorCubPredAdd

• stochTaylorCubPred

• stochTaylorCubPredAdd

When considering the use of linear dynamic models in nonlinear coordinate systems for testing a tracking
algorithm, the drift functions derived in [23] are implemented as:

• aCVPolar

• aCVRu2D

• aCVRuv

• aCVSpherical

For considering tracking with mismatched dynamic models, variants of the prediction and measurement-
update step of the strong tracking filter, with multiple algorithmic options as described in [24], are imple-
mented in:

• cubSTFUpdate

• ESTFUpdate

• STFOptim

• STFUpdate

The extended target-tracking algorithms of [25] are implemented in:

• discExtendObjKalPred

• extendObjKalUpdate
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• extendObjOnePointCartInit

• region2TargetExtentProb

• targetExtentProb2Region

A number of algorithms from the literature related to tracking with correlated measurements and process
noise were implemented, though ultimately not compared with particle-filter performance. These include

• discKalPredSimulCorr

• infoFilterDiscPredSimulCorr

• infoFilterPredUpdateDiscCorrMeas

• KalmanPredUpdateDiscCorrMeas

• KalmanUpdateDiscCorr

As an alternative to particle filters for various estimation problems, one can attempt to use higher-
order Taylor series approximations than the first- or second-order ones that are typically considered. Thus,
measurement conversions and necessary derivatives for some standard conversions were implemented in
arbitrary-order form as

• calcCart2DArbPolarDeriv

• calcPolarArbDeriv

• calcSpherArbDeriv

• calcRuvArbDeriv

• elArbDerivs

• polarAngArbDerivs

• rangeArbDeriv

• singleDirCosArbDerivs

• spherAngArbDerivs

• spherAngArbDerivsRot

• uvArbDerivs

• uvArbDerivsRot

• pol2CartTaylorArbOrder
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Additionally, since there is little in the literature on constrained particle filtering, traditional algorithms
related to constrained filtering were implemented as part of an investigation. These are:

• adjProcNoise4Constraint

• constrainedStateProj

• KalmanUpdateConst

Finally, there is an overlap between problems relating to surface-wave direction of arrival (DOA)-only
localization of emitters and navigation. The uncertainty regions from such estimation problems are very
nonlinear and can be good for potential solutions using particle-flow filters. Related navigation routines
implemented include:

• rhumbIntersect

• greatCircleTDOALoc

• indirectGreatCircleProb

• indirectRhumbSpherProblem

• directRhumbProblem

• directRhumbProbGen

• indirectGeodeticProb

• geodesicIntersect

• nearestGreatCirclePoint

• greatCircleIntersect

• minTimeIntercept2DCart

• minTimeIntercept3DCart

• minTimeInterceptEllips

• minTimeInterceptSpher
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