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1. Introduction 

Many first-principles calculations of the electronic 
structure and total energy of solids have been carried out 
since the development of high-speed computers (Pickett, 
1985). In our group, these calculations have been used 
to determine equations of state of ionic materials 
(Feldman et al., 1987, 1988; Mehl et al., 1988) and 
metals (Sigalas et al., 1990, 1992; Papaconstantopoulos 
and Singh, 1990; Singh and Papaconstantopoulos, 
1990), the pressure at which structural phase transitions 
occur (Feldman et al., 1988; Mehl et al., 1988), phonon 
frequencies (Mehl and Pickett, 1989), and new structures 
(Boyer et al., 1991). The calculations demonstrated the 
reliability of the technique for predicting ground-state 
properties of solids. 

From the perspective of materials physics, the elastic 
constants Cu contain some of the more important 
information that can be obtained from ground-state 
total-energy calculations. A given crystal structure 
cannot exist in a stable or ·metastable phase unless its 
elastic constants obey certain relationships. The Cu 
also determine.the response of the crystal to external 
forces, as characterized by the bulk modulus, shear 
modulus, Young's modulus, and Poisson's ratio, and 
so play an important part in determining the strength 
of a material. There is also a tendency toward 
correlation between the elastic constants and the melting 
temperature of a solid (Fine et al., 1984; Fleischer, 
1991a). Experimentally, the individual. Cu can only be 
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determined from single-crystal samples. If only poly­
crystalline samples are available, then only two 
independent elastic constants (such as the bulk modulus 
and isotropic shear modulus) may be measured 
(Schreiber et al., 1973). 

First-principles calculations that use periodic boundary 
conditions assume the existence of a single crystal; so 
all elastic constants can be determined by direct 
computation. The calculated Cu can then be used to 
check the experimental bulk and shear moduli, if 
available, and to calibrate model calculations. In 
addition, the elastic constants can be used to check the 
pjiase stability of proposed compounds. For example, 
it has been shown that Bl (cF8) MoN (Chen et al., 1988), 
b.c.c. aluminum (Mehl and Boyer, 1991), and b.c.c. 
iridium (Mehl and Boyer, 1991; Wills et al., 1992) do 
not exist in Nature because they are elastically unstable. 
A new metastable phase of Si with fivefold coordination 
has also been predicted (Boyer et al., 1991). First­
principles calculations can thus be used to predict the 
existence and properties of new materials and phases. 

In a theoretical search for new materials, an 
interesting and important area of research is to study 
binary compounds that exhibit high melting tem­
peratures and large elastic constants (which roughly 
correlate with 'strength'). These alloys might be 
good candidates for new structural materials, were 
they not brittle. By small ternary additions to these 
materials, one might hope to improve their ductility 
while maintaining the high melting temperature and 
strength. The traditional way to do this is to use 
quantum structure maps (see Chapter 18 by Pettifor in 
this volume) to attempt to find appropriate ternary 
materials for alloying, or brute-force experiments, trying 
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many possible candidate ma~erials. This may take a long 
time, as one must search through many materials, using 
different experimental techniques to properly prepare 
multiple compounds. In contrast, computer 'experiments' 
can 'prepare' and analyze the samples quickly. One 
simply decides where the atoms will sit in the lattice and 
performs calculations, which will determine whether the 
initial choice of positions was appropriate. The atoms 
may then be moved until one finds a mechanically stable 
system. Of course, the final result of the calculations 
may be a metastable state that cannot be realized by 
experiment. Computations and experiments should 
work hand-in-hand to achieve the goal of fabricating 
a new alloy. 

Even using the largest supercomputers, current first­
principles calculations are limited to approximately 100 
atoms per unit cell because of computer speed and 
memory limitations. This can be traced to the fact that the 
size of the secular equation used in solving the Schrodinger 
equation by traditional means must be proportional to 
the number of atoms in the unit cell. For most algorithms 
currently in use for transition-metal systems, the storage 
required is proportional to the square of the secular 
equation set size, while the computational time increases 
as the cube, quickly limiting the number of atoms that 
can be treated. Improvements in the performance of 
scalar or vector computers do not help appreciably, since 
an order-of-magnitude increase in the speed of a 
computer would allow only a doubling of the number 
of atoms that could be handled. Recent advances in 
numerical techniques indicate that this bottleneck can 
be removed (Baroni and Giannozzi, 1992; Galli and 
Parrinello, 1992), but this will require not only new 
algorithms but also massively parallel computers. 

As noted earlier, first-principles calculations can 
reliably determine a number of basic material properties, 
including the elastic constants. This provides an estimate 
of the mechanical stability, strength, and, indirectly, the 
melting temP,erature (Fine et al., 1984; Fleischer, 1991a) 
of alloys that have not been experimentally produced. 
The calculations also aid in the · development of 
computationally tractable models, which can be used 
to study thousands of atoms. For example, some of the 
RuAl data presented below were used to determine an· 
embedded-atom potential to study defects in the RuAl 
lattice (Rifkin ei al., 1992; Becquart, 1992). 

We have computed the elastic constants of many 
intermetallic alloys (Mehl et al., 1990, 1991; Osburn et 
al., 1991). In this chapter we will describe the techniques 
used to do the first-principles calculations, the analysis· 
that leads to the calculation of the elastic constants, and 
present the results of our calculations. We will also 

discuss the relationship between the elastic constants and 
the melting temperature, and finally discuss other 
possible applications of first-principles calculations to 
materials physics. 

2. Theoretical and Computational Details 

2.1 Density-Functional Formalism 

Modern first-principles electronic-structure calculations 
in solids are almost always based on the density­
functional theory (DFT) of Hohenberg and Kohn 
(1964). Their theorem states that, for a given external 
potential (here the Coulomb potential created by the 
nuclei in the solid), the total energy of an electronic 
system is a functional of the density of the electrons in 
the solid, and that the total energy is variational, i.e. 
small deviations of the density away from the ground 
state produce positive-definite changes in the total 
energy which are proportional to the square of the 
change in the charge density. Thus, in principle, we can 
calculate the ground-state energy of a system of 
electrons by searching through possible electronic 
densities n(r) until we find some minimum energy E. 
Kohn and Sham (1965) showed how to reduce this to 
practice. They assumed that the electron density n(r) 
could be constructed from single-electron orbitals, all 
of which were eigenstates of a local potential vKS(r). 
The total energy of a solid can then be written in the form 

E[n(r)] = T0 [ n(r)] +EH [n(r)] + 

U0x1[n(r)] +Exc[n(r)] +Eion 

where 

n(r)= ~l<f>,{r)l 2 

occ 

(1) 

(2) 

is the density of electrons in the solid, the </>,{r) are the 
occupied single-particle states, 

T0 [n(r)] = -(h 2/2m)~J <f>7(r) V 2q,,{r) d3r (3) 

is the kinetic energy of a non-interacting set of electrons 
of density n(r) in the non-relativistic approximation, 

EH [ n(r)] = (e 2/2) 1 1 n(r)n(r')/lr-r' I d3r d3r' (4) 

is the Hartree interaction, or the self-Coulomb 
interaction of the electron density, 

U0x1 [ n(r) l = - e i n(r) V0x1(r) d
3r (5) 



Calculations of Elastic Properties 197 

is the interaction between the electrons and the Coulomb 
field <Vexi<r)) of the nuclei, Exe [ n(r)] i~ the exchange­
correlation energy of the electrons, discussed below, 
and Eion is th_e Coulomb interaction between the bare 
nuclei. . 

The functional Exe [n(r)] appearing in equation (1) 
has not been exactly determined. It includes the 
exchange energy, defined as the energy obtained because 
the single-particle wavefunctions cP!(r) obey the Pauli 
principle; and the correlation energy, which includes 
the energy that accounts for the fact that the actual 
solution of·the Schrodinger equation in this problem 
is not a collection of single-particle states, as well 
as that part of the kinetic energy that is not accounted 
for by the term T0 [n(r)]. The most widely used 
approximation for Exe is founded on the observation 
that, if the charge density n(r) is slowly varying, then 
the local contribution to the exchange-correlation 
energy should be identical to the contribution from 
the uniform electron gas of the same density. This leads 
to the major approximation in our version of the 
DFf, the local-density approximation (LDA), which 
yields 

Exe[n(r)] ::::E;~A[n(r)] = I n(r)exe[n(r)] d3r (6) 

where fxe[n] is the exchange-correlation energy per 
electron in the uniform electron gas of density n. There 
are many approximate expressions for Exe• In this paper 
we use the parametrization of Hedin and Lundqvist 
(1971). As we shall see a posteriori, this is adequate for 
our purposes. Currently there is, however, no systematic 
way to improve upon the LDA; and so this is the only 
uncontrolled approximation in this method. 

If we now substitute expressions (2)-(5) into equation 
(1) and minimize the total energy subject to the con­
straint that the <J,1 are orthonormal, we find that the 
wavefunctions satisfy the Schrodinger-Iike equation 

-(II 2/2m) V 2<J,,{r) + vKS(r)<J,,(r) = e;<J,1(r) (7) 

where vKS, the Kohn-Sham potential, is the functional 
derivative of all of the terms in (1) except T0[n(r)]: 

vKS(r)=e2 I n(r')/lr~r'l d3r' + V0x1(r)+vxc(r) (8) 

The exchange-correlation potential Dxe(r) is the func­
tional derivative of Exe with respect to the density n(r). 
In the local-density approximation (6), it takes the form 

vxc<r) = Exe [ n(r) ] + n(r)E~e [ n(r)] (9) 

where the prime on the last term denotes the derivative 
with respect to n(r). 

Given the positions and charges of the nuclei in the 
system, we can solve for the ground-state charge density 
(the n(r) that minimizes (1)) by making an initial guess 
for n(r), using (8) and (9) to calculate the Kohn-Sham 
potential, and then solve the Schrodinger equation (7) 
subject to the boundary conditions of the problem (see 
below) to obtain a new charge density (2). In principle, 
we could use this new charge density to start the cycle 
over again, but in practice this is numerically unstable, 
so we must mix the new and old charge densities 
together. This mixing can be as simple as a linear 
combination of the old and new charge densities, or as 
complicated as the use of the Broyden method (Singh 
et al., 1986; Johnson, 1988), which accelerates con­
vergence. The mixed charge density is used to calculate 
a new Kohn-Sham potential (8) and the process begins 
again. After a number of iterations, typically on the 
order of 10, the input and output charge densities will 
be essentially equal, the total energy will have converged, 
and the solution is self-consistent. 

It should be emphasized that the DFf provides an 
exact relationship only between n(r) and the ground­
state energy. Thus the use of the Kohn-Sham formalism 
that we have outlined here, and particularly the LDA, 
may not accurately describe excited-state properties. In 
particular, the eigenvalues e1, which are often inter­
preted as single-particle excitation energies, yield band 
gaps for insulators that are smaller than those found 
by experiment (Pickett and Wang, 1984). In addition, 
some quantities that can be computed from LDA 
ground-state properties may be in error. For example, 
the LDA usually overestimates the cohesive energy of 
solids. This is thought to occur because the LDA does 
a poor calculation of the total energy in isolated atoms 
(Perdew et al., 1992). The Kohn-Sham formalism often 
fails to describe adequately highly correlated systems 
such as the Mott insulators (Terakura et al., 1984). 
These problems tell us that we should be very careful 
to test the LDA-DFf method on systems with known 
properties before we attempt to predict properties of 
new materials. The following sections describe some 
of these tests and some predictions. 

2.2 The General-Potential Linear Augmented 
Plane-Wave Method 

Finding solutions of the Schrodinget equation (7) for 
a given vKS is the major computational problem in 
determining the ground-state charge density n(r). In one­
dimensional and quasi-one-dimensional problems, such 
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as spherically symmetric atoms, the boundary conditions 
are easily specified, and equation (7) may be solved by 
standard numerical methods for determining eigenvalues 
and eigenstates (Press et al., 1986). In three dimensions 
this approach is difficult because the boundary con­
ditions are non-trivial. The most widely used approach 
is to specify a set of basis functions to restrict the region 
of Hilbert space that must be searched to determine a 
solution. The basis functions are constructed to reflect 
the appropriate symmetry and to satisfy the boundary 
conditions of the problem. We can formally expand the 
eigenfunctions cf,1 in terms of the basis functions ,f/, 
which need not be orthonormal: 

#.,r) = LJ<l1Jy,/r) (10) 
j 

Substituting (10) into (7), multipiying both sides by 
v,f (r), and integrating over all space, we find that the 
a/J and e; form solutions of the generalized eigenvalue 
problem, 

(11) 

· where 

Hki= I y,f(r)[-(h 2/2m)V 2 +vKS(r)]v,j(r) d3r (12) 

is the Hamiltonian matrix and 

Ski= 1 v,t(r)v,,{r) d3r (13) 

is the overlap matrix. The resulting eigenstates (10) 
can be made orthonormal in real space. If the 
basis set y,i(r) is complete, the solution of (11) will 
provide an exact solution for (7). In practice the 
basis set is truncated at a finite number of wave­
functions, and the states with the lowest eigenvalues 
are used as an approximate solution of (7). The 
variational principle assures that adding more linearly 
independent basis functions to the set will improve the 
accuracy of the . solution, so this is a controlled 
approximation. 

The first step in picking a set of basis functions is to 
determine the boundary conditions that they must 
satisfy. In a solid crystal the external potential Vext(r) 
arid the density n(r) have the periodicity of the lattice, 
so by (8) the Kohn-Sham potential vKS(r) must have 
the same period. In this case, the eigenfunctions ¢; 
must satisfy Bloch's theorem (Kittel, 1986), 

'PIJJ(r) = u-1,,J(r) exp(ik · r) (14) 

where k is a vector in the first Brillouin zone of 
the reciprocal lattice, uk.l{r) has the periodicity of the 
lattice, and j represents the remaining quantum 
numbers, including spin. The eigenfunctions with 
different values of k are orthogonal, so that performing 
a block diagonalization of the Hamiltonian allows us 
to concentrate on one k value at a time. The sums in 
(2) and (3) are then replaced by an integral in k over 
the first Brillouin zone and a sum over the remaining 
quantum numbers. In practice, we approximate the 
integral by the special k-point method of Monkhorst 
and Pack (1976), modified to handle the case of strained 
lattices when we calculate elastic constants (Mehl .et al., 
1990). Although not variational, the error in this method 
decreases as the number of special k points increases, 
so this is another controlled approximation. 

We are now ready to make a choice of basis set. 
Although many types of basis sets have been tried in 
DFI' calculations, our experience shows ~hat one of the 
best choices is the linear augmented plane-wave (LAPW) 
basis developed by Andersen (1975). In this method the 
basis functions are indexed by k + G, where G is a 
reciprocal lattice vector. We will describe the method 
as it is implemented by Wei and Krakauer (1985), which 
forms the basis of the program we now use. Space is 
divided into two types of regions: (1) non-overlapping 
spherical muffin tins surrounding each nucleus in the 
lattice; and (2) the interstitial region, covering all space 
not spanned by the muffin tins. In region (1) we would 
expect the wavefunctions to be rapidly varying and 
almost atomic-like, while in (2) we expect the potential 
and the wavefunctions to be slowly varying, and so may 
be approximated by plane waves. Inside the muffin tins, 
the wavefunctions have the forin · 

cf>k+dr) 

= I; [a1mau,"(e,", t,a) + b1mau1aCe1a,t1a) l Y1m(0a,'Pa) (15) 
Im 

ta=r-ra, Ital <Ra 

where the muffin tin centered on site ex, located at the 
position ra, has radius Ra. In the interstitial region, the 
basis function has the simple plane-wave form 

cf>k+G(r) = exp [i(k + G)·r] (16) 

The radial wavefunctions u1c,(e1a,l;) are solutions of the 
radial part of Schrodinger's equation (7) with angular 
momentum I at the energy e,a and with the potential 
vK8(r) replaced by its spherical average inside the 
muffin tin. The u1" are normalized to integrate to unity 
inside the muffin tin. The function u1chia,l;) is the 

~. 
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derivative of Uta with respect to the energy parameter 
and evaluated at Eta• The parameters atma and btma are 
chosen so that its gradient will be continuous at the 
muffin-tin boundaries. 

The choice of the energy parameters Eta is crucial 
to the success of the method, With a proper selection 
of these parameters, the basis functions mimic the 
valence eigenstates inside the muffin tins, reducing 
the number of basis functions required to achieve con­
vergence. The ideal values would be those which 
minimize the total energy of the system. As this is 
difficult to determine, in general we place these para­
meters within the range of eigenenergies of the band 
under investigation. The exact location is not crucial. 
For example, in a 1 Ry (13.6 eV) wides band, we can find 
all eigenvalues to within an accuracy of 1 mRy with a 
single energy parameter (Koelling and Arbman, 1975). 
If the width of the band becomes too large, or if it is 
necessary to include some of the lower-lying 'core' states 
in the problem, we can break the calculation into 
'windows', with different energy parameters in each 
window. This is usually successful, but using a different 
set of. basis functions for each window means that 
eigenstates in different windows will not be orthogonal 
to one another. A newer approach recognizes that these 
low-lying states are nearly localized within the muffin 
tins and adds a set of specially constructed localized 
orbitals which relax the linearization of the LAPW 
method and thereby aid in the representation of these 
states (Singh, 1991). 

Now we are almost ready to set up the Hamiltonian 
Hand overlap matrix S. A few technical details remain: 
First, we represent the potential vK8(r) by a Fourier 
expansion into plane waves in the interstitial region, and 
by an expansion in spherical harmonics inside the muffin 
tin. The charge density n(r) has a similar representation. 
In both cases we make use of the symmetry of the lattice 
to reduce the amount of storage needed. In the 
calculations presented here, we expand the potential to 
angular momentum/= 4 inside the muffin tins, and the 
density to.I= 8. These cutoffs are, of course, ·control­
lable. Second, we must specify the number of basis 
functions <I> we are going to use. Typically, we use all 
wavefunctions for which lk+GIRmm<RKinax• where 
Rm1n is the smallest muffin-tin radius, and the constant 
RKmax is chosen so that the basis set includes 50-100 
functions for each atom in the unit cell when the 
lattice is small enough that the muffin tins are 
touching. Typically, RKmax is in the range 7.5-8.5, For 
larger lattices we keep the same size muffin tins and 
RKmax• so the number of basis functions will increase. 
By making RKmax larger, we may increase the number 

of basis functions, and monitor the convergence of 
calculated quantities. Note, however, that the com­
putational time taken to solve (11) by traditional 
methods is proportional to the cube of the number of 
basis functions. Since the size of the basis set is 
proportional to RK~ax, the computational time grows 
as RK~ax• Thus traditional methods of finding the 
solution of (11) are rather severely limited by the size 
and speed of the computer. Fortunately the systems 
presented here can be solved with quite modest matrix 
sizes (all use less than 300 basis functions). Finally, we 
add relativistic corrections, including an averaged spin­
orbit term, by replacing (7) by the so-called semi­
relativistic approximation (Koelling and Harmon, 1977). 
The neglected part of the spin-orbit interaction is 
important for materials with large Z, but it should not 
affect the calculations presented here. 

3. Calculation of the Elastic Constants 

3,1 The Equation of State and the 
Bulk Modulus 

Now that we have described our method of calculation, 
all we need do is to specify a lattice, the charges on the 
nuclei, and a starting charge density. We then solve the 
equations (1)-(9) self-consistently, stopping when we 
have found an accurate total energy (1) and charge 
density (2). If we limit ourselves to simple lattices, such 
as the NaCl or Bl structure (Pearson symbol cF8) and 
the CsCl or B2 ( cP2) structure, then the internal lattice 
parameters will be fixed once we specify the volume of 
the system. We can thus determine a set of total energies 
E1=E(V;). In practice, we use several volumes which 
are within 10-20% of the expected equilibrium volume. 
If the minimum is not within this range we extend the 
range until we have the minimum bracketed. We then 
make a least-squares fit of the set (V;,Et) to a form 
proposed by Birch (1978): · 

EBirch =Eo+}Bo Vo [(Vo/V)213 ..:..1] 2+tc;B0 V0(B0-4) X 
. N (17) 

[ <Vo/V)213 - 1 ]3 + ~ 'Yn [ (Vo/V)2/3 - 1] n 
n=4 

where E 0, V0 , B0, and B0 are, respectively, the 
equilibrium energy, volume, bulk modulus, and pressure 
derivative of the bulk modulus, while N is the order of 
the fit. For a second-order fit, it is obvious that B0 = 4. 
In most cases we find that B0 is between 3 and 5. The 
choice of the Birch cutoff N is rather important. If we 
have only N + 1 pairs (V;,Et) then equation (17) will 
exactly track the input, E 8(Vi)=Et, Unfortunately, 
there will be numerical errors in the calculation of E;, 

. i 
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, .• caused by such things as the change in basis set with 
;;; changing lattice constant and errors in the Brillouin-zone 

integrations. This noise might cause E8(V) to oscillate 
in the region of the equilibriu!ll, and so the bulk 

~ : modulus, which is computed from 

(18) 

' .· ,may oscillate rapidly and unphysicaliy. We must there­
}: fore truncate Nat some value less than the total number 
\of points in the calculation. The method we use to 
': determine the value of N is outlined in the appendix 

(Section 7.1). In most of the computations presented 
here we found N=: 3 to be adequate. 

In this chapter we consider two classes of lattices. The 
first is cubic and contains the monatomic b.c.c. and 
f.c.c. lattices as well as the diatomic Bl (cF8), B2 (cP2), 
and Ll 2 (cP4) structures. The second is the tetragonal 
L10 (tP4) structure. The cubic structures are completely 
specified by one parameter, the volume of the unit cell 
V, or alternatively the cube side a. 

The only member of the second class we study here 
is the L10 (tP4) lattice, which is completely specified by 
two lattice parameters. In the traditional representation 
of this lattice, the two lattice parameters are a and c 
(see Figure 1), and the primitive vectors are 

. a1 = (a/2, - a/2, 0) 

a2 = (a/2, a/2, 0) 

a3 =(0, 0, c) 

(19) 

There are two atoms in the basis, located at the points 

b1 =(0, 0, 0) 

b2 =(a/2, 0, c/2) 
(20) 

If c = al·h, then the Llo lattice reduces to the B2 
structure, while if both atom types are identical and 
c=a, it becomes an f.c.c. lattice. 

When dealing with the tetragonal lattice we must 
specify what we mean.by E1=E(V;), the energy of the 
lattice at the volume V;, If we let E(a,c) denote the 
energy of the lattice (19)-(20), and fix a2c/2= V;, then 
E(V;) is the minimum of all of the E(a,c) at this 
volume. 'J;'o approximate E1, at each V; we choose five 
different cl a ratios, which we will denote by the symbol 
.i, around cla= 1. We fit the total energy R(V;, r) to 
a third-order polynomial in .i. The minimum of energy 
of this polynomial is assumed to be E;, and the 
associated cla ratio is called ,i1• We can then specify 
the volume behavior of the energy by fitting the 
pairs (V;,E;) to the Birch form (17), and the volume 

I 
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Figure 1. The L10 (tP4) structure of Nblr and TiAI. This is 
an f.c.c.-based structure where the two types of atoms alternate 
in [001] planes. The distances a and c describe the lattice in 
terms of the vectors (19), while the distances a' and c define 
the lattice in terms of the primitive vectors (32). The broken 
lines show the position of the primitive unit cell, which contains 
one atom of each type 

behavior of the c/a ratio by fitting the pairs (V;, .i;) to 
the Birch-like form · 

(21) 
n=O 

The function .i(V) then represents the c/a ratio that 
minimizes the total energy at the volume V. 

3.2 Calculation of the Remaining Elastic 
Constants 

If we strain the lattice by distorting the primitive vectors 
and relax all of the internal parameters to minimize the 
total energy (1), we may obtain all of the elastic constants 
Cii (Ashcroft and Mermin, 1976). Define a strain tensor 
t such that the primitive vectors a1 are transformed 
to the new . vectors 

(22) 

where I is the 3 X 3 identity matrix. We need only 
consider non-rotating strains, so we represent the.strain 
by a symmetric tensor with six independent components: 

(23) 

e/2 

--------·--~------ ---· ________ .. 



Calculations of Elastic Properties 201 

Then the total energy changes by an amount 
6 6 

E(e1)=_E0 -P(V)llV+ V~ ~ Cue1e/2+O[ef] 
/=I J=I (24) 

where Vis the volume of the undistorted lattice, P( V) 
is the pressure of the undistorted lattice at volume V, 
A Vis the change in the volume of the lattice due to the 
strain (23), and O [el] indicates that the neglected 
terms in the polynomial expansion are cubic and higher 
powers of the e1• 

There are 21 independent elastic constants Cu in 
(24). Symmetry reduces this number to three for the 
cubic lattices, and six for the tetragonal Ll0 lattice. At 
any volume V, the bulk modulus B (18) can be related 
to these constants by the formula 

(25) 

for cubic lattices and 

B= [ (Cu +C,z}C33-2Ct3]/(C11 + c,2+2C33-4C13) 
(26) 

for any tetragonal lattice, in part~cular the Ll 0 lattice. 
The remaining constants must be calculated by other 

means. For cubic lattices, we need two more constants 
to complete the set. The logical choices are the shear 
modulus (C11 - C12)/2 and the modulus C44 • These are 
the physically important combinations, since a cubic 
material will not be mechanically stable (to O [x2 j ) 
unless 

(27) 

at the equilibrium of the equation of state. 
Although the obvious method of computing C11 - C12 

uses the tetragonal strain (Mehl et al., 1990), we now 
prefer the volume.:_<:__~s_erv~_:~train, 

('.) -·] \ ::=~-e2=X \ bi-~~ G~:,:~::;) i (28) 

This has the advantage i:ha.Ci:he-eJergy is an even 
function in the strain x, changing by an amount 

M(x)=AE(-x}= V(C11 -Cdx2 +O[x4J (29) 

and we need only half as many computations as are 
required using the tetragon~! symmetry. Although the 

orthorhombic strain has lower symmetry and thus needs 
more independent k points for Brillouin-zone averages 
than the tetragonal strain, we prefer this method because 
of the reduction in the number of self-consistent 
calculations needed. 

We perform a similar trick for the C44 modulus, 
where we use a volume-conserving monoclinic strain, 

(30) 
e1 =e2=e4 =e5=0 

Again the total energy is an even function of the strain x: 

(31) 

The tetragonal Ll0 (tP4) lattice has six independent 
constants. As noted above, the bulk modulus is related 
to these constants via (26). In principle it would be 
possible to find five independent strains and to use these 
and the bulk modulus to determine the constants. In 
practice, we used six independent strains, listed in Table 
I, to calculate all six of the constants, and checked our 
results by comparing the two sides of (26). Notice that 
the first three strains in Table 1, while not volume­
conserving, al! have the symmetry of the Ll0 lattice and 
so can be calculated from our original data E(V,,n 
(or E(a,c)). These are also the only constants needed 
to compute the bulk modulus (26). The remaining 
strains conserve the volume but no longer have full 
tetragonal symmetry. In these cases we chose the strains 
so that the energy was an even function of the strain. 

The choice (19)-(20) to represent the L10 structure 
is not unique. This selection corresponds to taking an 
f.c.c. lattice and stacking (00 I) planes of atom type B 
upon (00 I) planes of atom type A, then letting the lattice 
parameters a and c relax to minimize the energy. 

Table 1. Strains and energy changes for the tetragonal LI 
(tP4) phase. Unlisted e1 are set to zero 

0 

Strain Parameters t:i.EIV 

e1=e2=x (Cu +C1i)x
2+0[x3 ] 

2 e1=e2=x 
e3 = -x(2+x)l(I +x)2 (Cu+C12 +2C13 

-4C13)x2+0[x3 J 

3 e3=X C3~ 2/2+0[x3
] 

4 e1 = [ (I +x)/(1-x)] 112 - 1 
e2= [ (l -x)/(1 +x) ]112 - I (Cu -C1i)x

2+ O[x4] 

5 e4=e5=x Cw2+0[x4] 
e3=x2l4 

6 e6 =x 
e. =e2= (1 +x2/4)112 _ 1 c~212+o[x'J 
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An alternative view considers the LI 0 structure as a 
bqdy-centered tetragonal lattice (see Figure 1). In this 
case the primitive vectors take the form 

with basis vectors 

a{=(a', 0, 0) 

al=(0, a', 0) 

al=(0, 0, c) 

b{=(0, 0, 0) 

bl= (a' /2, a' /2, c/2) 

(32) 

(33) 

where a' =a/.,/2. Note that both (19)-(20) and (32)­
(33) describe the same unit cell, indicated by the broken 
lines in Figure 1. The later representation can be 
obtained from the former by a 45° rotation about the 
z-axis. Since the Cu are actually components of a 
fourth-order tensor, the components in the old 
(unprimed) and new (primed) frames are related by the 
linear transformations: 

C{ 1 + C{2 = Cu + C12 

C66 = (Cu -Ciz)/2 

C{1 - Cl2 = 2C66 

C{3=C13 

C44=C44 

(34) 

We will present our results in both coordinate systems. 
Note that the bulk modulus (26) is independent of the 
choice of coordinate system. 

Once the elastic constants are determined, we would 
like to compare our results with experiment, or predict 
what an experiment would yield for the elastic constants. 
A problem arises when single-crystal samples cannot be 
obtained, for then it is not possible to measure the 
individual elastic constants Cy, Instead, the isotropic 
bulk modulus B and shear modulus G are determined. 
These quantities cannot in general be calculated directly 
from the Cu, but we can use_ our values to place 
bounds on the isotropic moduli. Reuss (1929) found 
lower bounds for all lattices, while Voigt (1928) 
discovered upper bounds. For the specific case of cubic 
lattices, Hashin and Shtrikman (1962) fopnd stricter 
bounds. We will list the formulas for these bounds in 
the appendix (Section 7.2). For now, we merely·note 
that the width of the bounds on the shear modulus is 
related to the anisotropy constant 

(35) 

As A approaches unity, the crystal becomes isotropic, 
and the gap between the bounds vanishes. 

We also list some auxiliary quantities that are often 

quoted in the literature. The Young's modulus for an 
isotropic solid is related to B and G by the formula 
(Schreiber et al., 1973) 

E=9BG/(3B+G) (36) 

Poisson's ratio is also of interest: 

v = (3B- E)/(6B) (37) 

Now that we have the formalism, it remains to 
calculate the moduli. We begin by selecting the elastic 
modulus to study and then compute the total energy E; 
as a function of the strain x1• Generally we obtain five 
or six points (Xi, E1), iiicluding the origin, and take x 
ranging between O and 0.1. In the general case, when 
we strain the primitive vectors by (22) we must adjust 
the basis vectors to minimize the total energy. However, 
in the case of every lattice type discussed here, all of 
the atoms are at inversion sites in the high-symmetry 
structure. The inversion sites still exist when the lattice 
is strained according to (22), and we assume that these 
inversion sites remain stable under strain, i.e. the 
potential seen by each atom has a local minimum at 
the inversion site. This is certainly the case for small 
strains. At larger strains the inversion site may become 
a saddle point or a local maximum, but this will not 
affect the behavior for small strains, or our taking the 
limit as the strain x • 0, 

Once we have the strain, given by (28), (30), or one 
of the formulas in Table 1, we can compute the 
,corresponding linear combination of the Cu by fitting 
the data pairs (x;, Ek) to a polynomial in x using the 
least-squares fit outlined above. For most of the strains 
outlined here the odd powers of x vanish identically 
because b.E( -'-x) = AE(x). For the other cases (the first 
three strains listed in Table 1) we can eliminate the odd 
powers of x by defining an average energy, 

E(x) =E(-x) = [E(x)+E(-x)] /2 (38) 

Then all energies may be fitted to a polynomial in x 2
, 

eliminating the possibility of numerical noise driving the 
minimum of the fit away from x = O. The order of this 
polynomial is selected in the same manner as the order 
of the Birch fit for the E(V) curve, by choosing 
the order N that gives the largest value of q 
(appendix, Section 7.1). The coefficient of the x2 term 
is proportional to the elastic constant times the 
volume of the system, and we can estimate the error 
in the modulus using the technique outlined in the 
appendix. 
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4. Results 

4.1 Monatomic Systems 

We begin by testing our method on several simple 
monatomic metals. Our first calculations will be to 
determine the equation of state and equilibrium 
parameters, V0, B0, and B&, and to compare the results 
with experiment. The simple metals we choose include 
three f.c.c. materials, Ca, Al, and Ir, and b.c.c. Mo. 
We also look at two phases of Li, the b.c.c. phase, 
observed at room temperature, and the f.c.c phase, 
which is sometimes observed as Li is cooled toward its 
ground-state h.c.p. phase (Donohue, 1974). The 
resulting equilibrium parameters are shown in Table 2, 
along with the experimental room-temperature lattice 
constants (Donohue, 1974), and low-temperature bulk 
moduli where available (Simmons and Wang, 1971). We 
will compare the bulk modulus with experiment when 
we discuss the elastic constants. In all cases we find that 
the experimental lattice constant is larger than the 
predicted a0• In part this is due to thermal expansion 
and zero-point motion (see below), which are not 
considered in our calculations, but the major part of the 
error is due to the LDA. In particular, the large error for 
calcium is typical of errors made using the LDA for alkali 
and alkaline earth metals (Sigalas et al., 1992; Perdew 
et al., 1992). The errors for the other materials are also 
typical of other LDA calculations (Moruzzi et al., 1978). 
For example, a set of calculations of the total energy 
and bulk modulus for all 3d, 4d, and 5d elements in 
both the f.c.c. and b.c.c. structures is given by Sigalas 
et al. (1992). These calculations give the correct energy 
ordering between f.c.c. and b.c.c. across the periodic 
table, except for iron, where the magnetic structure is 
not treated correctly by the LDA (Moroni, 1992). 

We next calculated the elastic constants of these 
materials, using the strain (28) to determine C11 - C12 

and the strain (30) to find C44• The number of k points 

used in these calculations varied with the choice of 
materials. For Li and Al, where the energy changes 
t:.E(x) are small, we were forced to use many k points 
(up to 7000 k points in the irreducible orthorhombic and 
monoclinic cells)·to reduce the numerical noise in the 
calculations so that we could reliably. extract the elastic 
constants. For Mo, which has large C11, we used up to 
400 k points in the irreducible part of the Bril!own'zone, 
and we probably could have used fewer points. The 
calculations described here, however, need relatively few 
basis functions for convergence (approximately 100 for 
Mo, 50 for Al and Li) and so may be run quickly on 
a deskside workstation even with a larger number of k 
point.s. In general, a large number of basis functions 
is needed for transition metals such as Mo because the 
valence states have major d components, which tend to 
be localized around the nucleus. 

Since experimental data are usually presented at room 
temperature and pressure, we calculated the elastic 
constants of the cubic materials at the experimental 
lattice constants. There are two sources of error in the 
calculation. The first is the error caused by our neglect 
of thermal and .zero-point vibration. This has been 
studied by Moruzzi et al. (1988). Their method uses a 
Debye model to approximate the phonon spectra of 
monatomic cubic metals. Comparing their predicted 
room-temperature bulk modulus with the static bulk 
modulus evaluated at the same volume, we find that the 
vibrational contribution changes the bulk modulus by 
less than 2 0Pa in Li, Al, and Mo. This is on the order 
of the error in our estimates of the elastic constants and 
so can safely be neglected. 

The second, and possibly serious, error is the 
inaccuracy caused by the LDA. As seen in Table 2, 
the LDA underestimates the equilibrium lattice constants. 
Only part of this error can be attributed to thermal and 
zero-point motion. For example, Moruzzi et al. (1988) 
found that vibrational motion increased the equilibrium 
lattice constant by 0.5% over the static lattice constant, 

Table 2. Calculated LDA equation-of-state parameters for some simple monatomic metals 

Theory 

Element Structure a0 (A) B0 (0Pa) B' 0 

Li f.c.c. 4.28 15.0±0.1 3.4±0.2 
Li b.c.c. 3.36 15.1 ±0.2 3.1 ±0.5 
Ca f.c.c. 5.34 19 3.4 
Al f.c.c. 3.99 82± I 4.3 
Mo b.c.c. 3.12 291±5 4 
Ir f.c.c. 3.82 402 4.7 

"Room-temperature experimental lattice constants from Donohue (1974). 
bLow-temperature experimental moduli from Simmons and Wang (1971). 

a (A>" 
4.39 
3.48 
5.5882 
4.04953 
3.15 
3.8391 

Experiment 

B0 (GPa)b 

13.3 (78 K) 

79 (0 K) 
265 (0 K) 

B'b 
0 

4.42 
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compared to the 0.4% increase in the experimental 
lattice constant from absolute zero (but including zero­
point motion) to room temperature (Simmons and 
Wang, 1971). Applying this 0.5% increase to our Al 
calculations, we predict a room-temperature equilibrium 
lattice constant" of 4.01 A, which is still substantially 
smaller than the experimental value of 4.05 A. Thus 
our LDA calculations will not be in equilibrium at the 
experimental room,temperature lattice constant even if 
we were to include thermal and zero-point vibration in 
our calculations. The errors introduced by this approxi­
mation can be reduced with the use of improved density 
functionals (Perdew et al., 1992). The good agreement 
we obtain with experiment may be regarded as an 
empirical demonstration that the resulting error in the 
C/J is not serious. 

We present our results for the elastic constants in 
Table 3. For comparison, the static lattice results for Al 
and b.c.c. Li are also included. Where available, we also 
present the experimental measurements (Simmons and 
Wang, 1971; Featherstone !lnd Neighbors, 1963). The 
results are quite encouraging. Of the elements for which 
there are experimental values of the elastic constants, the 
largest error (22%) is in the calculated C44 of molyb­
denum. The error in C12 of aluminum is'l8o/o, but the 
error in the actual computed and measured quantities, B 
and C11 - C12, are 12% and 9%, respectively. All other 
constants are within 110/o of the experimental numbers. 
This indicates that the errors in the LOA do not signifi­
cantly alter the curvature of the potential surface in most 
of these compounds. In fact, we might conclude that all 
of these effects are linear in the volume over the small 
volume range from the LDA equilibrium volume to the 
experimental volume, and ~o have negligible effect on 
the Cu, which are seconct··order in the strain. 

Table 3. Experimental and calculated elastic constants for some 
cubic monatomic metals 

Element Structure ao(A) C11 (0Pa) C12 (0Pa) C44 (0Pa) 

Li f.c.c. 4.39 14.1 ±0.5 7.8±0,3 8.6±0.5 
Li b.c.c. 3.36 15.6±0.3 , 14.8±0.3 11,2±0.2 

3.48 11.4±0.3 10.2±0.2 10±1 
(Exp.)" 13.5 11.4 8.8 

Ca f.c.c. 5.59 16.7±0.8 9.7±1. 14.2±0.2 
Al f.c.c, 3.99 121±2 63±1 33±5 

4.05 100±3 50±2 31 ± 1 
(Exp,)" 107 61 28 

Mo b.c.c. 3.15 468±10 149±6 98±9 
(Exp.t 450 172.9 125 

Ir f.c.c. 3.84 621 ±7 256±6 260±5 
(Exp.)• 590 249 262 

"Experimental data from Simmons and Wang (1971). 
hExpcrimental data from Featherstone and Neighbors (1963). 

One consequence of our use of the experimental 
equilibrium volume to calculate the elastic constants is 
that the bulk modulus calculated from Table 3 will not 
in general be equal to the bulk modulus in Table 2. For 
example,· in Table 2 the bulk modulus of Mo is given 
as 291 0Pa, while calculating B from Table 3 yields 
255 0Pa. The difference reflects the change in bulk 
modulus with volume. This change is characterized by 
Bl,, the pressure derivative of the bulk modulus at 
equilibrium. In most cases Bl, is between 3 and 5, with 
Bo= 4 for the second-order. Birch fit (17). Thus a 
10 0Pa change in pressure will change the bulk modulus 
by about 40 GP a. Both theorists and experimentalists 
should be very careful to specify the conditions under 
which the bulk modulus was computed or measured. 

4,2 Ordered Binary Intennetallics 

We began our work in this area with the explicit goal 
of using first-principles· methods to calculate the elastic 
constants of ordered binary intermetallic alloys. As 
mentioned in the introduction, we are particularly 
interested in those alloys which exhibited high melting 
temperatures. For this reason our calculations are not 
a systematic study of all possible binary alloy systeD,1s 
(although there is a large amount of work on aluminum 
alloy systems). 

We begin with the ordered cubic intermetallics with 
composition A)3y, and with all atoms sitting on in­
version sites. For the present we have limited our 
calculations to the Bl (cF8), B2 (cP2), and Ll2 (cP4) 
structures. Since all atoms sit on inversion sites, there 
is no requirement to relax the internal parameters as we 
strain the crystal. Again, the calculations were per­
formed at the experimental lattice constant. 

The equilibrium equation-of-state parameters for the 
cubic binary intermetallics are shown in Table 4, and 
the calculated elastic constants are shown in Table 5. 
The equilibrium lattice constants are 0.6-30/o smaller 

Table 4. Calculated LDA equation-of-state parameters for 
several ordered cubic intermetallic alloys 

Compound Structure a0 (A) B0 (0Pa) B' 0 aexp (A) 

FeAI B2 (cP2) 2,82 195 4 2.91° 
CoAI B2 (cP2) 2.80 207±2 4.4±0.3 2.8619" 
NiAI B2 (cP2) 2·.84 186±7 4.2±0.5 2.8864° 
Ni3Al L1 2 (cP4) 3.49 229±2 4.4±0.7 3,58° 
RuAI B2 (cP2) 2.96 230±3 4.5±0.2 2.99b 
RuZr B2 (cP2) 3.22 228±3 3.6±0.1 3.253° 
SbY Bl (cF8) 6.12 65±3 4 6.155° 

"Experimental lattice constant from Pearson (1967). 
hExperimental lattice constant from Fleischer (1993b). 

1 
t 
t 
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Table 5, Calculated and experimental LDA elastic constants for several ordered intermetallic alloys. In most cases the experimental 
room temperature lattice constants are used. NiAI and RuAl have two lattice constants listed, as explained in the text. Note 

. the large variation in the Cu with lattice constant for these stiff materials 

Compound Structure . a0 (A) C11 (0Pa) C12 (0Pa) C44 (0Pa) 

FeAl B2 (cP2) 2.94 182± l 78± l 
101±3 
155±8 
124+4 

45±7 
134± l 
132±5 
114±8 

CoAl B2 (cP2) 2,86 251 ±4 
NiAl B2 (cP2) 2.84 237 ± 10 

2.89 193±5 
143.2 

148±5 
(Exp.)• 2,89 211.5 112.l 

120±2 
123.6 

122± 10 
125 ± l 
78± l 
23± l 

Ni3AI L1 2 (cP4) 3.58 227±5 
(Exp.t 3.58 220,l 146.0 

144+5 
118+1 
154+2 

RuAl B2 (cP2) 2.99 308±6 
3.03 258±2 
3.22 375±3 RuZr B2 (cP2) 

14+ 11 SbY Bl (cF8) 6.11 175±11 

"Experimental data from Simmons and Wang (1971). 
bExperimental data from Wallow et al. (1987). 

Table 6. Computed LDA equilibrium lattice constants for the Ll 0,compounds. Experimental data are from Pearson (1967) 

a (A) c (A) c/a 

Compound 

rw 
Nblr 

Theory 

3.90 
3.99 

Experiment 

4.005 
4.027 

than experiment (Pearson, 1967), as is typical of the 
LDA. To show the variation of elastic constants with 
a, we show the LDA equilibrium elastic constants for 
NiAl as well as the constants evaluated at the experi­
mental value. The increase in volume decreases the 
elastic constants by 15-25%. At present, we have 
performed calculations on only two systems where. all 
of the Cu have been measured experimentally, B2 NiAl 
(Simmons and Wang, 1971) and L12 Ni3Al (Wallow et 
al., 1987). The modulus with the worst relative error 
is C12 in NiAl, which has an error of 14%. The error 
in NiAl's C11 is 9%, and all other constants are closer 
to experiment. The polycrystalline bulk and shear 
moduli have been measured for other systems, so we will 
be able to make other comparisons with experiment when 
we calculate the shear modulus in Section 4.3 below. 

Table 5 lists two sets of values for the elastic constants 
of RuAI. Our original calculations (Mehl et al., 1991) 
assumed the lattice constant of 3.03 A listed in Pearson 
(1967). However, recent experimental work by Fleischer 
(1993b) indicates that the correct lattice constant is 
2.99 A. We present calculated elastic constants for both 
lattice dimensions. 

We next discuss two tetragonal systems with L10 
(tP4) symmetry, TiAl and Nblr. TiAl was actually one 
of the first binary intermetallics to have its constants 
calculated (Chubb et al., 1988). As we noted above, 
there are six independent elastic constants Cu in these 
systems. Since some of these are calculated via volume-

Theory 

4.05 
3,86 

· Experiment 

4.070 
3.863 

Theory 

1.037 
0.967 

Experiment 

1.016 
0,958 

changing strains (the first three in Table 1), we calculated 
the Cu at the LDA equilibrium to avoid the appearance 
of the pressure term in (24). Table 6 lists the equilibrium 
lattice constants predicted by the theory and compares 
them with experiment. The theoretical value of c seems 
to be closer to experiment than a, so the cla ratio is 
overestimated by 1-2% while the equilibrium volume 
is underestimated by about 2-6%, a value similar to 
the above calculations for cubic systems. Table 7 gives the 
elastic constants for both systems, in both the frame 
of primitive vectors (19) (unprimed) and the alternative 

Table 7. LDA equilibrium elastic constants for the Ll 0 

compounds 

Unprimed frame Primed frame 
lattice (19) lattice (32) 

Compound Modulus (0Pa) (GPa) 

TiAI Cu 188±5 243 ± 10 
C,2 98±5 43± 10 
C13 96±9 96±9 
C33 190± 10 190± 10 
C44 126±2 126±2 
c66 100±5 45±3 

Nblr Cu 430±20 580±20 
c,2 270±20 120±20 
Cn 250±20 250±20 
C33 490±20 490±20 
C44 175±5 175±5 
c66 230± 10 80±10 
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b.c.t. vectors (32) (primed). Single crystals of these 
compounds have yet to be grown. Although we cannot 
compare our Cq to experiment, in the next section we 
will be able to compare the isotropic bulk and shear 
moduli to measurements. 

and Reuss bounds. In this case the difference between 
. the two values of G is rather large, so we quote the error 
as one-half the difference between the bounds. 

4.3 Predictions for Polycry_stalline Phases 

As mentioned earlier, many of the intermetallic alloys 
are not available as single crystals, but the isotropic bulk 
and shear moduli can be measured from polycrystalline 
samples. We use our elastic constants to predict bounds 
on these moduli as outlined in the appendix (Section 
7.2). We can also calculate the expected Young's 
modulus (36) and Poisson's ratio (37) for these materials. 
Table 8 presents these results, including the experimental 
measurements, when they are available (Featherstone 
and Neighbors, 1963; Gilmore, 1968; Simmons and 
Wang, 1971; Fleischer et al., 1989; Fleischer, 1991b, 
1993a). We also list the anisotropy factor A (35). For 
the cases where Table 5 lists the Cq at two different 
lattice constants (NiAl and RuAl), we use the data from 
the experimental lattice constant. For the cubic materials 
we take the average of the Hashin and Shtrikman 
bounds (appendix, Section 7 .2). The difference between 
the two bounds is on the order of the errors in the 
inidividual Cv shown in Tables 3 and 5, reaching a 
maximum of 3.5 0Pa in SbY, so the error in G will be 
on the order of the error in the Cq. For the tetragonal 
materials TiAl and Nblr we take the average of the Voigt 

In comparing experiment and theory, we note that 
we do very well in predicting the bulk moduli and shear 
modulus. Of particular note is the value of G for CoAl, 
which was predicted before we obtained the experi­
mental data (Fleischer, 1993a). Also of interest are the 
predictions for RuAl. Using our old calculations at 
the experimental volume listed in Pearson (1967), we 
found B = 165 0Pa, G = 99 0Pa, E = 248 0Pa, and 
v=0.25. The predicted bulk modulus is then 20% 
smaller than the experimental value. However, when we 
use the correct lattice constant of 2.99 A (Fleischer, 
1993b), we find that the predicted bulk modulus is only 
40/o smaller than experiment. 

The major discrepancies between theory and experi­
ment in Table 8 are the bulk modulus of Ca ( 40% error, 
but an error of only 8 0Pa) and the shear modulus for 
Nblr (16-75% error, dependng on the location of G 
within the Reuss-Voigt bounds). The errors in Band 
G for Nblr would decrease if we expand the lattice from 
the LDA equilibrium lattice parameters to the experi­
mental parameters. All other calculations are within 
12% of experiment. 

4.4 Predictions of Melting Temperature 

As we remarked earlier, Fine et al. (1984) showed that 
there is a rough cQrrelation between'the average elastic 

Table 8. Predicted isotropic moduli and anisotropy constants. All calculations· are at the experimental volume except TiAl and 
Nbir, which are evaluated at the LDA equilibrium volume. The moduli B, G and E are in 0Pa 

Theory Experiment 

Material B G E p A B G E p A 

Li (f.c.c.) 9.9 5.8 14 0,35 2.7 
Li (b.c.c.)" 10.6 3.4 9.3 0.40 16.7 12.l 3.9 10.5 0.36 8.38 
Cab 12 8.1 20 0.22 4.1 20 8.9 23.3 0.30 
Al" 67 28 75 0.31 1.24 76 26 70 0.35 1;22 
Moc 255 119 310 0.30 0.61 265 130 336 0.29 0.90 
Ir" 378 226 564 0.25 1.42 363 221 550 0.25 1.54 
FeAl 113 48 126 0.31 0.87 
CoAld 151 106 258 0.21 l.78 162 114 277 0.22 
NiAl" 147 71 184 0.29 3.29 166 70 184 0.31 3.28 
Ni3Al' 174 77 202 0.31 3.04 171 79 205 0.30 3.49 
RuAY 199 104 266 0.28 1.49 208 106 271 0.28 
RuZr 228 90 237 0.33 0.70 
SbY' 68 38 96 0,26 0.28 66 40.5 101 0.25 
TiAl 127±7 80±10 198 0.24 
Nbir' 320±30 145+30 378 0,30 301 99.3 268 0.35 

Experimental data from: 'Pleischer (1993a). 
•Simmons and Wang (1971). 'Wallow et al. (1987). 
bGilmore (1968). 1Fleischer et al. (1991b). 
'Featherstone and Neighbors (1963). ifleischer et al. (1989). 
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constant ( Ci 1 + C22 + C33)/3 and the melting temperature. 
Fleischer (1991a) found a similar relationship between 
Tm and G. For cubic metals Fine et al. find 

Tm= [553 K + (5,91 K/GPa)C11 ] ± 300 K (39) 

· while for tetragonal materials 

Tm= [254 K + (4.50 K/GPa)(2C11 + C33)/3] ± 300 K 
(40) 

In Table 9 we show the predicted melting temperatures 
for these systems and compare them with experiment 
(Ashcroft and Mermin, 1976; Massalski et al., 1986). 
While the predictions are reasonably accurate for many 
materials, the high-melting-temperature materials such 
as Mo, Ir, and Nb Ir fall well outside of the 300 K error 
bars of the prediction. However, the rough correlation 
between Cu and Tm still holds. The substance with the 
largest error, however, is Sb Y, which simply has elastic 
constants too small to be consistent with the measured 
high melting temperature. This is also substantiated by 
Fleischer (1991a), who found a correlation between Tm • 
and the shear modulus G. The measured value of Gin 
Sb Y is also low compared to its melting temperature. 

A recent paper (Willis et al., 1992) studying the 
monatomic transition metals noted that, when one 
changes a lattice from f.c.c. to b.c.c. by use of a large 
tetragonal shear, the elastic constant Cu - C12 was 
related to the difference in energy between the f.c.c. and 
b.c.c. phases. This work is reminiscent of the work of 
Boyer and others (Boyer et al., 1991; Mehl and Boyer, 
1991) on 'magic strains' (Boyer, 1989; Van de Waal, 

Table 9. Predicted melting temperatures 

Tm (K) 

Material Theory Experiment 

Li (b.c.c.) 620 454• 
Ca 650 1124• 

. Al 1150 933• 
Mo 3320 2890-
Ir 4230 2683· 
FeAl 1630 1583b 
CoAI 2040 1921b 
NiAl 1700 1911b 
Ni3Al 1890 1668b 
RuAI 2380 2193b 
RuZr 2770 2373b 
SbY 1590 2583b 
TiAl 1370 1746b 
Nblr 2830 2113b 

"Experimental data from Kittel (1986). 
bExperimental data from Massalski et al. (1986). 

1990). Mehl and Boyer (1991) showed that the 'magic 
strain' barrier in an f.c.c. material was related to the 
energy as a function of the tetragonal shear, the 'Bain's 
path' mentioned by Wills et al. (1992). It was also 
speculated that it is the height of this barrier that 
determines the melting temperature, not any linear 

. combination of elastic constants. We may speculate on 
a resolution of the problem of SbY as follows: As there 
is no simple b.c.c.-based structure for Sb Y that can be 
reached by a tetragonal shear, consider a strain along 
the [ 111 ] axis that will transform B 1 Sb Y into B2 Sb Y. 
It is possible that it is the barrier height in this direction, 
which is related to C44, that controls the melting 
temperature in SbY. Note that Table 5 shows that C44 

in SbY is much smaller than it is for the other high~ 
melting-temperature alloys, so the answer is not a simple 
one. If the correlation between the 'magic strain' barrier 
height and the melting temperature is to hold in this 
case, there must be an anomalous relationship between 
the elastic constants and the barrier height. 

5. Summary 

We have shown that it is possible to use the formalism 
of density-functional theory and the local-density 
approximation to calculate the equation of state and 
elastic constants of simple metals and ordered binary 
intermetallic alloys. In most cases the equilibrium lattice 
constants are underestimated by 1-2%, which is typical 
of other LDA calculations. A small portion of this error 
represents the error in neglecting zero-point motion and 
thermal expansion, and the remaining error is from the 
LDA. We have also shown that we can successfully 
predict the elastic constants of these materials, typically 
to within 10% of experiment, with a maximum error 
of about 20%. These elastic constants can be used to 
estimate the shear modulus in polycrystalline materials, 
where we again successfully compared our results with 
experiment. Finally, we showed that the elastic constants 
are roughly correlated with the melting temperature of 
the solid. 

What is the future of first-principles calculations? In 
addition to 'predicting' the melting temperature using 
(39) and. (40), we have also looked at the barriers that 
prevent the lattice from 'hopping' between various 
phases with the same structure but different orientations. 
There is some indication that this 'magic strain barrier 
height' is correlated to the melting temperature (Mehl 
and Boyer, 1991). Simple. models of defects· have also 
been studied. In particular, first-principles calculations 
have been used to determine the vacancy formation 
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energy in aluminum (Dentenerr and Soler, 1991; Mehl 
and Klein, 1991; Benedek et al,, 1992). This number is 
important for studying defects in solids and the motion 
of dislocations, which can be pinned by defects. The 
firs~-principles calculations required to do further work 
in this area are rather complex and computer-intensive, 
but are within the range of calculations that can 
be handled by the current generation of workstation 
computers. 

Computer limitations inhibit the use of first-principles 
calculations to study large systems (thousands of atoms) 
using the DFf but, as the work of Rifkin et al. (1992) 
indicates, such calculations can be used to fit model 
many-body potentials for materials that do not exist in 
Nature or whose experimental parameters are difficult 
to obtain. These potentials can then be used to predict 
the behavior of large numbers of atoms, including defect 
energies, dislocations and their motion, and interface • 
effects. Although the current generation of first­
principles algorithms cannot handle these problems, the 
new generation of parallel computers and new algorithms 
that are being developed (Baroni and Giannozzi, 1992; 
Galli and Parrinello, 1992) indicate that in the future we 
may be able to handle these systems more accurately. 
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7. Appendix 

7.1 Detennination of Errors in the 
Elastic Moduli 

As noted in the discussion in Section 3 .1, the numerical 
noise in the total-energy calculations sometimes makes 
it difficult to determine the proper order iv we should 
take for the Birch expansion (17), and to determine the 
possible range in values for the parameters E0, V0, B0, 

and B0. A similar problem arises in Section 3.2, where 
we wish to fit our data to a polynomial in x2 and to 
estimate the errors in the corresponding elastic constant. 
In this appendix we outline the procedure we use in 
fitting the Birch equation (17). The procedure for fitting 

the elastic constants is similar, and simpler, because we 
are only interested in the error bars in one quantity, the 
appropriate linear combination of the CIJ, 

In fitting (17), we are given a set of volume-energy 
points, (Vi, E1). To determine the best point N to 
choose for a given set of data, we follow a procedure 
outlined in Press et al. (1986). We firstestimate the error 
for each E1• In these calculations we do this by 
computing E1 for several k-point meshes, average the 
energy weighted by the number of k points in each mesh, 
and use the similarly weighted standard deviation, u;, 
as the error estimate. We then choose the parameters 
in (17) to minimize the quantity 

M 

x2 .;_ ~ [E1-Ea(Vi) ] 2/o; (Al) 
i=l 

where Mis the number of (Vi, E1) pairs. Assuming the 
errors are normally distributed, the probability that 
inserting another set of energies E1 (perhaps calculated 
in a slightly different manner, or from a different 
starting density) and the just calculated parameters E 0 , 

V0, B0, B0, and 'Yn into (Al) will produce an error no 
worse than x2 is given by 

. q= ( t<M-N-J)l2e- 1dtir«M-N-1)/2) (A2) J x'12 

We therefore choose the value Nthat gives the largest 
value of q. For a good fit q will be on the order of O .1. 
If our estimated u1 are too large, as sometimes happens 
with the k-point averaging method, then q will be 
around 0.9. Of course, it is likely that some of the errors 
in our calculations are systematic instead of normally 
distributed, in which case the value of q is not quite 
accurate, but this procedure gives a convenient way of 
choosing the cutoff N. 

We can also estimate the errors in the equilibrium 
parameters. As an example, consider the equilibrium 
bulk modulus B0• We can refit the Birch equation (17) 
by freezing the 'equilibrium' ·modulus at some value {30 

and then let all of the other parameters change to 
minimize the new error x2({30) > x2(B0). If the errors in 
our calculation are normally distributed, then there is 
a 68.3% probability that the true equilibrium modulus 
is within the range of {30 values that satisfy the 
condition 

x2(/30) < x2(B0) + 2. 3 (A3) 

The. error bars on B0 quoted in Tables 2 and 4 show 
the range of {30 values that satisfy (A3). The procedures 
for the other parameters of (17) and the elastic constants 
in Section 3.2 follow the same rules. 
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7.2 Polycrystalline Bounds on the Bulk and 

Shear Moduli 

As we noted in Section 3.2, our calculated single-crystal 
elastic constants can be used to compute bounds on the 
bulk and shear moduli observed in isotropic poly­
crystalline samples of the material. We use this appendix 
to list the equations that construct these bounds. 

For cubic systems the results are rather simple. The 
isotropic bulk modulus B is given exactly by (25), 
The shear modulus, which would obey the relationship 
(Schreiber et al., 1973) G1 = c'44 = ( q 1 - qz)/2 in an 
isotropic solid, is bounded from below by the Reuss 
(1929) modulus GR, and from above by the Voigt 
(1928) modulus Gy: 

GR<G<Gv · 

GR= 5(Cu - C12)C44/ [ 4C44+3(C11 - C12)] (A4) 

Gv = (Cu - C12 + 3C44)/5 

There are analogous, although more complicated, 
expressions for the tetragonal lattice. The isotropic bulk 
modulus B is bounded by: 

(AS) 

BR= [(Cu+ C12)C33 - 2CU /(C11 + C12 + 2C33 -4Cn) 

Bv = (2C11 + C33 + 2C12 + 4C13)/9 

Note that BR has exactly the form (26). The 
bounds on the shear modulus are given by: 

GR= 15C(Cu - C12)C44C66/(2(C11 - C12) [2(C11 + 

C1z) +4C13 + C33 ] C44C66 + 

3C[2C44C66 + (C11 - C1z)(C44 + 2C66)] I 

Gv = (2C11 + C33 - C12 -2C13 + 6C44 + 3C66)/15 

where 

(A6) 

For the cubic case, stricter bounds were derived by 
Hashin and Shtrikman (1962). The bulk modulus Bis 
given by (25), as before. However, the shear modulus 
G is bounded by 

G1 =Gt+ 3/[5/(Gf-Gt)-4/31] 

G2 = Gf + 2/ [5/(Gt- Gt)-6(32 ] 
(AS) 

where 

and 

/31 = - 3(B + 2Gf)/ [ 5Gt(3B + 4Gt)] 

/32 ;= - 3(B + 2Gf)/ [ SGf (3B + 4Gr) ] 

(A9) 

(AlO) 

We will use the term Hashin modulus (GH) for the 
larger of G1 and G2, and the Shtrikman modulus (Gs) 
for the smaller. The shear modulus G in cubic systems 
is thus bounded by 

(All) 

One should note that in cubic systems the range of 
the bounds Gv - GR or GH - Gs depends upon the 
anisotropy parameter A (35). When A= 1 the system 
is isotropic, the.bounds vanish, and G is given by either 
of the relationships in equation (A9). 
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