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LOGGERHEAD SEA TURTLE DENSITY
IN THE MEDITERRANEAN SEA

1. INTRODUCTION

The United States (U.S.) Department of the Navy requires spatially explicit estimates of
species distribution and abundance to assess the impacts associated with training and testing
activities in the Mediterranean Sea. To conduct this analysis, the Navy compiles density and
abundance estimates in the Navy Marine Species Density Database (NMSDD), which is the
authoritative source of marine species density data for the Navy.

In the Mediterranean Sea, the Navy is active at several installations, both U.S. and
foreign owned (figure 1), and training and testing occurs at both the unit level and in conjunction
with the navies of other nations. The U.S. Navy conducts risk assessments to evaluate impacts to
marine species on a per exercise basis, which assess the potential for negative interactions
between Navy assets using sonar and explosives and protected marine species prior to
conducting training and testing activities.
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Figure 1. Navy Active Locations in the Mediterranean Sea

Risk assessments consider marine species listed under U.S. domestic law, the Endangered
Species Act (ESA) and the Marine Mammal Protection Act (MMPA), and the International
Union for the Conservation of Nature’s (IUCN) Red List of Threatened Species. Risk
assessments consider the number of U.S. platforms using sonar or explosives, the type of sonar
(frequency and source level), visibility, probability of surface ducting, habitat structure, potential
for limited egress, and animal presence. The Navy uses density models as the best available
science for estimating abundance and distribution of these species in the Mediterranean Sea.

The Navy requires density data used in permitting and risk assessments to predict
absolute density/abundance of animals, have a spatial resolution of 10 kilometers ( 6.2 miles) or
less where possible, represent a long-term average of density/abundance, and have the finest
scale temporal and taxonomic resolution scientifically supportable. The models are generally
derived from line transect data, both aerial and shipboard, and relate animal presence to
environmental covariates. This allows animal density to vary in response to the underlying
environmental conditions. Other data types, such as satellite telemetry data coupled with a
population estimate, can be used, but these alternate data types are less preferable.



Previous work funded by the Navy produced spatial density models for eight taxa of
marine mammals in the Mediterranean Sea, but the Navy has not produced models for the two
extant species of sea turtles, loggerhead (Caretta caretta) and green (Chelonia mydas), that nest
in the Mediterranean Sea. This report partially fills that gap by developing a spatial density
model for loggerhead sea turtles in the Mediterranean Sea.

The Naval Undersea Warfare Center (NUWC) Division, Newport, RI, followed the
general approach to fitting spatial density models outlined by Miller (2013) and included an
extrapolation assessment similar to Mannocci et al. (2018a) to assess the amount of spatial,
temporal, and environmental extrapolation that occurred. NUWC was also able to include
estimates of availability bias that were stratified spatially and temporally.

2. BACKGROUND

2.1 THE MEDITERRANEAN SEA

The Mediterranean Sea is a large, semi-enclosed body of water, located between southern
Europe and Northern Africa. It is connected to the Atlantic Ocean by the Strait of Gibraltar, to
the Black Sea by the Bosphorus Strait, and to the Red Sea by the Suez Canal. Connected to the
Mediterranean are several other semi-isolated water bodies that NUWC included as part of the
Study Area; the Adriatic Sea, the Aegean Sea, and the lonian Sea—that will referred to
collectively as the Mediterranean Sea for the sake of convenience.

The Mediterranean Sea is characterized by narrow continental shelves, steep slopes, and
extensive abyssal plains. It includes many bathymetric features known to influence the
distribution of marine megafauna, such as submarine canyons and hundreds of seamounts (Mussi
et al. 2014, Tepsich et al. 2014, and Fiori et al. 2014). The waters of the Mediterranean Sea are
generally salty and nutrient-poor (Longhurst 2007), due in part to its enclosed nature.

Water temperature and primary productivity move in seasonal cycles in the
Mediterranean Sea, driven by insolation, inflow from the Atlantic Ocean and major rivers in the
eastern Mediterranean Sea, and wind stress. Winter is characterized by lower sea surface
temperatures but higher productivity, and summer has higher sea surface temperatures and lower
productivity. In general, productivity is higher in the western Mediterranean Sea than the
Eastern Mediterranean Sea (Lazzari et al. 2012). The two major basins are separated by an
undersea ridge system between the island of Sicily and the Tunisian/Libyan coast.

2.2 SEA TURTLES IN THE MEDITERRANEAN SEA
There are seven extant species of sea turtles globally, all listed as vulnerable, threatened,

or endangered by the IUCN, except for the flatback turtle (Natator depressus) that is listed as
data deficient (Marine Turtle Specialist Group 2020). In the Mediterranean Sea, two species of



sea turtles, the loggerhead and green are resident, in that they have nesting colonies within the
Mediterranean Sea (Wallace et al. 2010). Other species of sea turtles, including leatherback
(Dermochelys coriacea), Kemp’s ridley (Lepidochelys kempii), and olive ridley (Lepidochelys
olivacea), are periodically sighted in the Western Mediterranean Sea, having migrated into the
basin via the Strait of Gibraltar (Casale et al. 2003, Tomés and Raga 2008, Carreras et al. 2014
and Revuelta et al. 2015). However, they are considered infrequent visitors to the region.

The Mediterranean loggerhead population is listed as least concern by the IUCN, though
the species is globally listed as vulnerable (Casale 2015, and Casale and Tucker 2017). Green
turtles are listed as endangered globally by the IUCN (Seminoff 2004). No regional assessment
for the Mediterranean has been made for green turtles.

The primary nesting sites for loggerhead sea turtles in the Mediterranean Sea are found
along the coasts of Greece, Turkey, Cyprus, and Libya (Casale and Margaritoulis 2010),
although loggerhead nesting sites can be found elsewhere in the Eastern Mediterranean in lower
concentrations. In the Western Mediterranean, loggerhead nesting is much more sporadic, but
limited nesting does occur in Spain, France, and Italy (Casale and Margaritoulis 2010).

Green turtle nesting is more strictly limited to the Eastern Mediterranean, and major
rookeries are found in Turkey, Cyprus, and Syria, with more limited nesting in Egypt, Lebanon,
and Israel (Casale and Margaritoulis 2010). There are far fewer green turtles than loggerheads
nesting in the Mediterranean. Estimates of adult female populations are approximately 15,000
for loggerheads and approximately 4,000 for green turtles in the entire Mediterranean Sea
(Casale and Heppell 2016), although this is likely an underestimate given the lack of
comprehensive surveys of all potential nesting habitat. The best demographic estimates for the
resident populations, including pelagic juveniles, range from 0.8 to 3.4 million for loggerheads
and 176,000 to 2.2 million for green turtles. The loggerhead estimate does not include pelagic
juveniles of Atlantic origin.

Juveniles of both species are largely pelagic, recruiting to neritic foraging areas as sub-
adults (Casale and Marini 2014, Carreras et al. 2006, Clusa et al. 2014, Cardona and Hays 2018,
Snape et al. 2016 and Casale et al. 2018). Green turtle distribution is limited to the Eastern
Mediterranean (figure 2), while loggerheads range throughout the entire basin (Wallace et al.
2010). In the Western Mediterranean, pelagic loggerheads from multiple populations mix (figure
2). Juveniles from the Northwest and Northeast Atlantic populations entrain in the
Mediterranean, entering via the Strait of Gibraltar, and they stay for as many as ten years (Eckert
et al. 2008, Revelles et al. 2008, and Clusa et al. 2014). The proportion of juvenile loggerheads
of Atlantic origin can be higher than 30 percent in some areas (Carreras et al. 2006 and 2011).
Because of this mixing, demographic modeling alone is not enough to estimate the full
population of loggerhead sea turtles in the Mediterranean Sea.



Figure 2. Primary Range of Sea Turtle Populations in the Mediterranean Sea

Note: In figure 2, the Regional Management Units show the primary
range of populations of sea turtles found in the Mediterranean Sea
(Wallace et al. 2011). (a) Northeast Atlantic Loggerheads, (b)
Northwest Atlantic Loggerheads, (c) Mediterranean Loggerheads, and
(d) Mediterranean Greens.

The following section describes the methods used to generate spatial density models for
loggerhead sea turtles of all age classes and origins present in the Mediterranean Sea. Models
for green turtles were not attempted because there was limited survey coverage in the Eastern
Mediterranean, where they are distributed. This, coupled with their lower population, led to too
few confirmed sightings to fit a spatial density model or discriminate unidentified hardshell turtle
sightings using machine learning methods as done by Roberts et al. (2018).

This study builds off previous work performed by the Marine Spatial Ecology Lab at
Duke University, which was funded by the U.S. Navy (Roberts et al. 2018 and Mannocci et al.
2018b). This previous work collected line transect survey data from multiple organizations in
the Mediterranean Sea that were appropriate for inclusion in a density modeling framework,
established a workflow for producing density models, and predicted density and associated
uncertainty for several taxa of marine mammals in the Mediterranean Sea.

NUWC reached out to these same organizations to request their permission to use the
data gathered and prepared by Duke for this follow-on effort modeling loggerhead density.
NUWC generally followed the modeling framework previously used by Duke with some
methodological improvements detailed in the following sections. NUWC believes that this is



appropriate given that loggerhead turtles are a wide ranging, diving marine taxa, like marine
mammals. Appropriate adjustments for sea turtle ecology and life history were made where
appropriate. The resulting loggerhead density model is methodologically consistent with models
previously funded by the Navy and is the first basin-wide loggerhead density model for the
Mediterranean Sea.

3. MATERIALS AND METHODS

3.1STUDY AREA

The Study Area for this project (e.g., the area over which density predictions were made)
was the same as that established by Mannocci et al. (2018b). The authors of that study worked
with the Navy to delineate an appropriate study area for marine mammal models in the
Mediterranean Sea that covered biologically important areas for marine mammals and areas that
were of interest to the Navy.

This study area eliminated many inland waters that would be difficult to model due to
poor performance of remotely sensed covariates close to shore and that were not covered by
surveys. Given the cosmopolitan distribution of loggerhead sea turtles in the Mediterranean Sea
and our model sharing many candidate covariates with previous marine mammal models,
NUWC felt that using the same study area was appropriate. This also promoted consistency with
density data already included in the NMSDD, the Navy’s repository for spatial density models
for protected species.

NUWC was able to successfully fit a spatial density model to all portions of the Study
Area. No areas contain stratified estimates derived from the literature or extrapolation of values
taken from another area, though other forms of extrapolation are present (see section 3.5.2).

3.2 SURVEY DATA PROCESSING AND INGESTION

Previous gap analyses and Navy-funded modeling efforts identified over 300,000 km
(186,411 mi) of line transect surveys in the Mediterranean from 2003 to 2016 that were
appropriate for inclusion in density spatial modeling efforts (Mannocci et al. 2018a, 2018b).
These surveys came from 12 different organizations and spanned most regions within the
Mediterranean Sea. Seven of them were willing to contribute their data to the creation of Navy-
funded marine mammal spatial density models.

The Duke University modeling team took these data and ensured that they contained all
the requisite components to perform distance sampling; time, location, species, group size, and
perpendicular distance to the animal(s) from the trackline (Buckland et al. 2001), which is a
prerequisite for spatial density models. Most collaborators also included sighting and survey



level covariates, such as sea state or weather conditions, that might influence the probability of
sighting an animal and, therefore, the detection functions.

The Duke team split the on effort portions of the shared survey data into 5-km (3-mi)
segments, the same resolution as the finest scale candidate covariates for the spatial density
model. Abundance was predicted for each of these segments, which then formed the response
variable for the subsequent spatial density model. Not all transects could be split into perfectly
even 5-km (3-mi) segments, so the Duke team developed an algorithm to split the segments as
close to 5-km (3-mi) as possible (Mannocci et al. 2018b). The exception was the
Alnitak/Alnilam shipboard surveys, which had pre-made segments that the Duke modeling team
opted to use.

All seven organizations that shared survey and sightings data with the Duke team for the
marine mammal models also shared sea turtle sightings, though Duke was not contracted to
produce any sea turtle models. NUWC reached out to these organizations and received
permission to use these data to create a loggerhead spatial density model for the Mediterranean
Sea.

One set of surveys from EcoOcean did not include perpendicular distances for their sea
turtle sightings and, therefore, were not included in the NUWC model. The Duke team shared
the already processed survey data and sightings from the other six organizations. NUWC then
reviewed the sightings data for quality control purposes and linked them to the survey data
segments. Section 4.1 has more detail on quality control of sightings for individual survey
programs. See Mannocci et al. (2018b) for more details on how survey transects were processed
into segments.

In addition to the data provided by the Duke team, there was a survey in the summer of
2018 that covered almost the entire Mediterranean Sea using both aerial and shipboard platforms.
The survey was performed under the Agreement for the Conservation of Cetaceans of the Black
Sea, Mediterranean Sea, and Contiguous Atlantic Area (ACCOBAMS). NUWC received
permission to use these data in their model.

NUWC split the ACCOBAMS shipboard survey data into segments using the methods
laid out in Mannocci et al. (2018b) and linked sightings to segments. The ACCOBAMS aerial
surveys did not collect perpendicular distances to turtle sightings, which normally would exclude
them from use in distance sampling analyses. After discussion with data providers and regional
experts, NUWC decided that it would be reasonable to treat the ACCOBAMS aerial survey line
transects as strip transects that allowed them to be incorporated into the modeling framework.
They subsequently split the ACCOBAMS aerial survey transects into 5-km (3-mi) segments and
linked segments to sightings as was done with the surveys that included perpendicular distances.
More details on how these data were treated can be found in the subsequent sections.



3.3 SURVEY DATA SUMMARY
3.3.1 Overview of Effort Data

NUWC received permission to use data from eight different organizations, seven of
which were usable in a distance-sampling framework. Line transect surveys from those eight
organizations covered 229,598 linear km (142,666 linear mi) of effort, split between 56,171 km
(34,903 mi) of shipboard surveys and 173,427 km (107,763 mi) of aerial surveys (table 1).
These surveys occurred from 2003 to 2018 and covered all seasons, though there are major
differences in survey coverage between months. There were data from Alnitak/Alnilam surveys
that occurred during the 1990s, but NUWC opted to drop these data from the analysis (see
section 4.1).
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Surveys covered all major regions within the Mediterranean Sea, but coverage was sparse

in the Eastern Mediterranean and absent in a few Southern areas. Figure 3 shows the geographic
coverage of incorporated surveys and associated sightings. Figures of survey effort segregated
by month are in the appendix. Figure 4 shows regions referenced in this study.
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Figure 3. Survey Coverage by Organization (a) and with Sightings Overlaid (b)
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Figure 4. Designated Sub-Areas of the Mediterranean Sea

Note: In figure 4: (1) Alborén Sea/Strait of Gibraltar, (2) Algero-
Provencal Basin, (3) Tyrrhenian Sea/Eastern Ligurian Sea, (4) Adriatic
Sea, (5) Strait of Sicily/Tunisian Plateau/Gulf of Sirte, (6) lonian
Sea/Central Mediterranean, (7) Aegean Sea, and (8) Levantine Sea.
Throughout this document, references to the Eastern Mediterranean,
refer to (6) and (8) Combined.

3.3.2 Overview of Sightings Data

Sightings for marine turtles in the available survey data were given as either loggerhead,
green, leatherback, or an unidentified hardshell turtle. There was only one confirmed
leatherback sighting and less than ten confirmed green turtle sightings.

NUWC used all confirmed loggerhead sightings as well as unidentified hardshell turtle
sightings in the model. This decision was made because green turtles are limited to the Eastern
Mediterranean, other hardshell turtle species are rare, and unidentified sightings could
reasonably be assumed to be mostly loggerhead sea turtles.

The BWI ISPRA survey located in the Adriatic Sea gave all sightings as hardshell turtles,
but NUWC can assume that the majority were loggerheads based on previous studies (Fortuna et
al. 2015). TETHYS ISPRA and PELAGIS observations were given as hardshell turtles but can
all be assumed to be loggerheads given their location in the north-Central Mediterranean. Most
shipboard survey sightings were unidentified, but because of the low coverage in the Eastern
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Mediterranean, most can be assumed to be loggerheads. The ASI aerial surveys had the most
sightings in the Eastern Mediterranean of any survey and reported all sightings as unidentified
hardshell turtles. Because this is where green turtles can be found, it is likely that some of the
ASI aerial survey sightings are of green turtles.

There were too few confirmed sightings of green turtles (less than 10) to attempt to use
machine learning to assign unidentified turtles to be either green or loggerhead sea turtles. The
likely inclusion of green turtles in some of the surveys that cover the Eastern Mediterranean is a
source of overestimation of the number of loggerheads in the Eastern Mediterranean (treating
green turtles as loggerheads). A more detailed discussion of possible sources of over- and under-
estimation can be found in section 5.

Some sightings were dropped because they were missing detection function covariates or
perpendicular distances. Any survey segments with dropped sightings were dropped from all
subsequent analyses. This generally amounted to less than two percent of the segments of any
given survey.

Group size was predominately one, though larger groups were detected. Groups larger
than one accounted for two to seven percent of sightings depending on the survey, and the largest
group size detected was 10. Aside from mating aggregations, sea turtles are generally solitary
(Bolten 2003), so this trend was unsurprising. Table 1 has a summary of sightings by survey and
percent of sightings with a group size greater than one.

3.4 DETECTION MODELING
3.4.1 General Approach to Detection Function Fitting

The first step in spatial density modeling, after preparing survey data and sightings, is to
model detectability by fitting detection functions. Detection functions are derived from
perpendicular distances and, in some cases, associated covariates. Histograms of perpendicular
distances were generated for each survey to explore the need for truncation. Buckland et al.
(2011) recommend that distant sightings are truncated (right truncation) to maintain a minimum
probability of detection of 0.15. Left truncation, e.g., removing sightings near the trackline, is
generally only used in special circumstances and was only necessary here for one survey (see
section 3.4.2).

The ability to sight animals generally varies by survey platform and protocol. As such, it
is desirable to fit separate detection functions by platform and survey if there are enough
sightings to meet the recommended 60 sightings threshold for fitting robust detection functions
(Buckland et al. 2011). While this threshold is not a hard and fast rule, detection functions with
fewer sightings can be less robust, and it can be difficult to include covariates in the model.

All surveys had more than the recommended 60 sightings, so no pooling was required

between surveys or platforms. NUWC pooled multiple years of the same survey program in
order to be able to fit more complex detection functions, unless there was good reason not to
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pool. All surveys had associated survey condition covariates (table 2) that allowed NUWC to
attempt multi-covariate distance sampling (Marques and Buckland 2004).

Table 2. Survey Platform Height, Speed, and Covariates Collected

Mean
speed
Survey Platform Altitude (m) | (knots) Covariates collected
Britten Norman
aircraft with bubble Beaufort sea state, cloud cover,
PELAGIS windows 183 90 glare, turbidity, subjective conditions
Partenavia P-68
TETHYS aircraft with bubble Beaufort sea state, cloud cover,
ISPRA windows 213 100 glare, turbidity, subjective conditions
Partenavia P-68
aircraft with bubble Beaufort sea state, cloud cover,
BWI ISPRA windows 198 100 glare, turbidity, subjective conditions
152 (2010,
University of Cessna 337 aircraft 2011); 213
Valencia with flat windows (2013) 90 Beaufort sea state, visibility
18 m motor sailboat 3.5 (deck); 11
Alnitak/Alnilam | R/V Toftevaag (mast) 4.5 Douglas sea state, swell, sight ability
Motor sailboats with Beaufort sea state, cloud cover,
IFAW/MRC 21 and 14 m lengths 5.3 6.5 glare, swell, wave height, visibility
Motor sailboats with Beaufort sea state, cloud cover,
ASI shipboard 21 and 14 m lengths 5.3 6.5 glare, swell, wave height, visibility

The ASI aerial surveys used a strip transect methodology and so are not included in this table.

All combinations of survey condition covariates were attempted for both half-normal and
hazard rate functions, which are the two most common base functions for detection functions.
Other tested covariates included year (for surveys with multiple years), month, and observer
position. Group size was not included as a covariate because there was little variation in group
size. Ordinal variables such as Beaufort sea state were also tested as factors. The two base
functions—hazard rate and half-normal-were also tested on their own and with cosine

adjustments.

Model selection was based on Akaike Information Criteria (AIC), which is used to assess
the trade-off between goodness of fit and model simplicity. NUWC selected the model with the
lowest AIC. If more than one best model had similar AIC (within 2), NUWC would choose
between them based on goodness of fit statistics. For all selected models, NUWC examined
guantile-quantile (Q-Q) plots, detection plots, and goodness of fit statistics to make sure models

were reasonable.

3.4.2 Special Cases

3.4.2.1 Alnitak/Alnilam shipboard surveys. The pre-2006 Alnitak/Alnilam surveys were
missing perpendicular distance data. Previously, analyses of these data made assumptions about
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the detectability of these sightings based on similar segments from later surveys (Cafiadas pers.
comm. 2019). NUWC decided to drop the pre-2006 data rather than extrapolate the detection
function because there were still more than 60 sightings in the post-2006 data to fit detection
functions and this area was well covered by both the ASI aerial surveys and various Song of the
Whale surveys in later years.

The Alnitak/Alnilam surveys also had detections from two platforms of different heights
(table 2). Ideally, different detection functions would have been fit to each of these platforms.
However, there were too few sightings from the mast to fit a reasonable detection function on its
own. This was true even if the pre-2006 sightings were included. Because of this, the two sets
of sightings were combined and observer position was included as a potential covariate in the
detection function.

3.4.2.2 ASI aerial survey. The ASI aerial survey did not record perpendicular distances to sea
turtles. They adopted a strip transect approach for sea turtles and seabirds. Discussing with the
survey data providers, they assumed all sea turtles and seabirds within a 200-meter (656 feet)
strip on either side of the plane were detected (Panigada and Cafiadas pers. comm. 2019). With a
strip transect methodology, no detection function is fitted, so no additional covariates are used.
Density per segment is calculated by dividing the number of individuals sighted by the area
covered.

3.4.2.3 University of Valencia aerial surveys. The University of Valencia aerial surveys
occurred at different heights in different years (table 2). That can affect detection distance and
detectability. NUWC attempted to fit different detection functions to these years, but the
resulting detection functions were not satisfactory. The Q-Q plots were skewed, and no
covariates were able to be fit because there were too few sightings. Because of this, the decision
was made to combine all years of the surveys to fit a detection function and include year as a
potential covariate.

These surveys were also performed in an aircraft with flat windows, limiting visibility of
the trackline. A histogram of observations versus distance (figure 5) shows sightings dropping
off close to the trackline. This causes problems in fitting the detection function because a core
assumption of distance sampling is that all animals on the trackline are detected. While not
desirable, this is a special circumstance where left truncation is merited. The left truncation
distance of 104 m (341 ft) previously reported by the Duke team in Mannocci et al. (2018b) was
used.
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Figure 5. University of Valencia Pooled Aerial Survey
Observations versus Perpendicular Distance

Lastly, there was one sighting where the reported group size was 18. NUWC felt this
was erroneous and confirmed with the original data providers that this was likely a typo and
should be changed to a group size of one. The second largest group size for any other survey
was 10.

3.4.3 g(0) Correction for Availability and Perception Bias

The probability of detecting an animal on the trackline (i.e., at a perpendicular distance of
0), or g(0), is affected by two factors: (1) availability bias, which is failing to detect animals
because they are unavailable to be seen (e.g., hidden or submerged) and (2) perception bias,
where observers fail to detect animals present at or near the surface (Pollock et al. 2006).
Distance sampling assumes that g(0) = 1, but this is rarely the case in practice. This means g(0)
is actually less than 1, and density and abundance will be underestimated because detectability
will be assumed to be higher than it actually is unless correction factors are applied. Discussion
of the g(0) adjustments applied to the density and abundance estimates follow.

3.4.3.1 Perception bias. No surveys obtained for this study had the requisite information to
assess perception bias. None of the aerial surveys had a double observer protocol (aircraft lacked
belly windows or two windows per side) which is required to assess perception bias in situ. The
shipboard surveys did have two observer platforms (deck and A-frame) that could, in theory, be
used for calculating perception bias; however, none of them had enough sightings on one
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platform to confidently assess perception bias. Sightings for shipboard surveys were low overall
(see truncation distances in section 4.1), most likely due to sea turtles’ low profile in the water.

Perception bias is generally low for animals that surface frequently or in large groups.
Perception bias for large whales and small delphinids is generally close to one for shipboard
surveys, though it is lower for aerial surveys given the higher speeds at which the aircrafts
operate and the consequently shorter time available to sight animals (Palka et al. 2017 and
Mannocci et al 2018b). Perception bias can be larger for animals that surface quickly or in small
groups, like beaked whales and sea turtles. Because incorporating perception bias was not
possible for this study, it is likely abundance/density is being underestimated. See section 5 for
more detail on possible sources of over- and under-estimation of abundance.

3.4.3.2 Availability bias. From collaborators in the region, NUWC received three datasets of
loggerhead sea turtles tagged with satellite-linked, time depth recorders that could be used for
calculating dive and surface intervals appropriate for making g(0) adjustments (Oceanographic
Turtles Project 2020, Hochscheid 2020, Chimienti et al. 2020, Hochscheid et al. 2013,
Hochscheid et al. 2010, Hochscheid et al. 2007, Broderick et al. 2007, and the Society for the
Protection of Turtles 2020). These tags recorded dive and surface intervals and were
georeferenced, allowing for linking dives to specific locations. Because shipboard surveys are
included in this study, it is important to calculate surface and dive intervals, rather than just the
percent of time spent below the surface. Calculating surface and dive intervals is necessary
because the relatively slow speed of survey ships results in longer time periods when areas are in
view, allowing for a greater opportunity to sight animals when they come up for air. Aerial
surveys, with their higher speed, can be treated as close to instantaneous, and a percent time
below surface can be an appropriate adjustment.

Tagged animals from the three datasets were deployed in waters off Cyprus, Italy, and
Spain. Animals ranged across all regions of the Mediterranean Sea included in this study except
for the Adriatic Sea and Aegean Sea (figure 4). Because some of the data are unpublished,
NUWC has agreed with the data providers not to show animal tracks and limit the reported
results to the dive data summaries used to generate availability bias estimates. Table 3
summarizes the available data.
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Table 3. Summary of Available Dive Data for Generated Availability Bias Estimates

Number | Number | Years Primary
Dataset | of tags of dives | deployed | Life stages Sex Source regions
Alboran
Sea/Strait of
Gibraltar,
Cyprus | 7 3,110 2002- Adult Female Post-nesting Algero-
2008 Provencal
Basin
Tyrrhenian
Mix of adults, Sealeastern
juveniles, and | 9 females, | 2 post- Ligurian Sea,
sub-adults 4 males, nesting, 16 Strait of
Italy 31 11,985 2005- (length, not 18 rehabilitated, | Sicily/Tunisian
2017 age class, unknown | 13 wild- Plateau/Gulf
reported) caught of Sirte, lonian
Sea/Central
Mediterranean
1 adult, 15 14 wild- lonian
Spain 17 36,279 2017- juveniles, 1 2 female, | caught, 3 Sea/Central
2020 unknown 2 male, 13 | rehabilitated Mediterranean,
unknown Levantine Sea

The Italy and Cyprus dive datasets had similar formats with dive duration and surface
intervals given in seconds along with dates and times for the start and end of the dives.
Georeferenced locations, a combination of global positioning system (GPS) and Argos satellite
system locations, were provided separately along with dates and times. Argos locations of
location classes 3, 2, 1, and 0 were considered valid locations as were all GPS locations. Dives
were matched to the closest location within six hours. Dives that could not be georeferenced to a
location within six hours were removed from the analysis.

For both of these datasets, tags were configured to consider a dive to have started when
the turtle dove below 4 m (13 ft). In good viewing conditions (low turbidity, low Beaufort sea
state, etc.) turtles can be seen as deep as 3 m (10 ft), though the chances of detecting turtles
decreases as depth increases (Fuentes et al. 2014 and Barco et al. 2018). Because of this
decreased detection chance, this likely overestimates the amount of time animals are available to
be seen because some portion of the animals will be deeper than can be seen or will be harder to
detect by observers. This would have the effect of underestimating density and abundance.
NUWC did not try to quantify this additional source of perception bias, as was done in Fuentes et
al. (2014) and Barco et al. (2018), because it is very condition specific.

Any surface intervals longer than four hours were removed. Surface times of this length
could be indicative of a nesting event or a failure of the saltwater switch that indicated when the
turtle was below the surface. Even though sea turtles are known to bask (Mrosovsky 1980), it
was felt that this was a conservative measure given that underestimating availability bias was
likely already occurring. These long surface intervals were less than one percent of all dive
records.
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Tags for the Spain dataset were formatted differently. Tags recorded depths over five-
minute intervals and reported the average depth of the five-minute period. Each five-minute
average depth was georeferenced to a location generated from a state-space switching model
track of animal locations. These five-minute averages were then used to generate dive profiles.
If there were gaps in the dive record, a new dive sequence was considered to have started.
Surface and dive intervals were created from these dive profiles. Based on tag configuration,
dives were defined to start when the turtles went below 3 m (10 ft), slightly shallower than the
Italy and Cyprus datasets. Dives with surface intervals greater than four hours were eliminated
to be consistent with the Italy and Cyprus datasets.

The way the Spain tags were formatted, short surfacing events of a few minutes or less
may be missed. This is likely not an issue for aerial surveys, which can generally be treated as
instantaneous snapshots of the surface, but this could be underestimating how long turtles are
available at the surface for shipboard surveys (overestimating density and abundance). Despite
not being formatted ideally for calculating availability bias, this dataset was included because the
average dive and surface intervals were similar to the Cyprus and Italy datasets and it covered
two regions of the Mediterranean Sea not covered by the other datasets (the Alboran Sea and the
Algero-Provencal Basin).

The final combined dive dataset had 51,373 georeferenced dives. This dataset was then
stratified spatially and temporally in three ways to determine if significant differences in dive
behavior existed. First, turtles have diurnal changes in dive behavior (Hochscheid 2014), so
NUWC identified daytime versus nighttime dives based on location, the time the dive was
initiated, and local dawn/dusk times. Second, temperature changes substantially over the course
of the year in the Mediterranean (Lazzari et al. 2012), that may change basking behavior for
turtles. Neritic (coastal) turtle behavior in the Mediterranean also has been noted to increase in
the summer as temperatures increase (Hochscheid et al. 2007). Therefore, dives were split into
two seasons, winter and summer, based on major climatic shifts in temperature and observed
increases in neritic turtle activity. Summer was defined as May through October and winter as
November through April. Finally, differences in neritic versus deep water dives were assessed,
where animals would presumably be feeding on different prey and exhibiting different dive
behavior. Larger juvenile and adult loggerheads recruit to benthic foraging habitats where they
feed primarily on benthic invertebrates while pelagic juveniles feed in the water column
(Revelles et al 2007, Hochscheid et al. 2010, and Casale et al. 2018). This also partially
addresses differences in behavior between larger, neritic adults and smaller, oceanic juveniles
(Hochscheid 2014). Neritic areas were defined as regions shallower than 200 m (656 ft) (figure
6).
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- deep
neritic

Figure 6. Regions within the Study Area Defined as Deep Water versus Neritic Habitat

Note: In figure 6, deep-water habitat is defined as waters greater than
200 m (656 ft) and neritic habitat is defined as waters less than 200 m
(656 ft).

Significant differences in dive duration and surface interval were found by all three
stratifications (t-test, p value < 0.05) (table 4). Based on this finding, to generate availability bias
estimates, daylight dives only were used, which is when turtles would have been sighted in any
case, and stratified by season and depth. This approach yielded four different availability bias
adjustments based on the mean dive and surface intervals (table 5). There was high variability
among the dives, and standard deviations of the intervals often exceeded the mean. This
variability is not accounted for in the final model and bears more exploration in the future,
including the possibility of creating a spatial model of availability. Instantaneous g(0)
availability bias adjustments (surface interval/surface interval + dive duration) ranged from 0.48
for deep water areas in the summer to 0.27 in neritic areas in the winter (table 5).
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Table 4. Surface and Dive Interval Means and t-Test
p Values for Different Stratifications of Dive Data

Test Mean 1 (s) Mean 2 (s) p value
Surface Interval by Diurnal Period day - 1092 night - 1168 <0.001
Dive Duration by Diurnal Period day - 1332 night - 1586 <0.001
Surface Interval by Depth neritic - 549 deep - 1300 <0.001
Dive Duration by Depth neritic - 1098 deep - 1535 <0.001
Surface Interval by Season summer - 1105 winter - 1157 0.02

Dive Duration by Season summer - 1151 winter - 2010 <0.001

Table 5. Stratified Availability Bias g(0) Estimates for the Mediterranean Sea

Mean Surface
surface interval Dive duration
interval Mean dive | standard standard No. of | g(0)
Season Depth | (s) duration (s) | deviation (s) | deviation (s) dives instantaneous
summer | deep 1215 1306 2229 831 17102 | 0.48
winter deep 1365 1781 2408 1412 5707 0.43
summer | neritic | 551 716 2054 841 6549 0.43
winter neritic | 681 1868 1582 3413 1903 0.27

3.4.4 Per Segment Abundance Estimation

Abundance for each segment was calculated using a Horvitz-Thompson-like estimator:

Rj

Ny =) 50/6(z;)8(0)
r=1

where Rj was the number of observed groups in segment j, sjr was the size of the rth group in
segment j , and p(4r) was the estimated probability of detection given observation level
covariates, zjr, and g(0) was the probability of detection on the trackline, here the availability
bias estimate (Marques et al. 2007).

Availability bias was applied per segment, using mean surface and dive intervals specific
to that location/season combination, and adjusted for the unique viewing properties and speed of
the survey platform. For aerial surveys with bubble windows, the Caretta et al. (2000) formula
was applied:
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BB+t
Q(D)apmmbfffry - E[s] + E[d]

where E[s] was the mean time spent at or near the surface, t was time when an animal was within
visual range of the observer, and E[d] was the mean dive duration. This approach is appropriate
when the observer has a clear view of the trackline, as is afforded by bubble windows, and the
viewing area can be assumed to be square. Following Carretta et al. (2000), t = 10 seconds was
used given the similarity in aircraft height and speed.

For aerial surveys that used flat windows, visibility was assumed to be impeded. Forcada
et al. (2004) and Gomez de Segura et al. (2006) reported on this effect and the angles at which
visibility became obstructed. Based on this, the Laake et al. (1997) equation (7) was applied
using a mean effective strip width over the entire survey:

E[s] w(x) — w{x)zﬂ.E{ﬁ)
9(0) avaitapitiey = +
E[s] + E[d] E[s] + E[d]

’

where E[s] was the mean time spent at or near the surface, E[d] was the mean dive duration, and
the w(x) parameter was the amount of time the ocean was in the observer’s view at a
perpendicular distance X, given the vertical and lateral angles of obstruction. The w(x) parameter
was calculated based on the aircraft properties reported in Gomez de Segura et al. (2006) for the
Cessna 337 aircraft (the same aircraft used in the University of Valencia flat windows surveys).

For shipboard surveys, the Laake et al. (1997) equation (4) was applied to derive g(0) for
each survey following Cafiadas and Vazquez (2014):

| E[s] - e (~ gy /s)
9(0) avaitabiticy = E[s] + E[d] + Ed]( E[s] + E[d] )

7

where E[s] was the mean time spent at or near the surface, E[d] was the mean dive duration, r
was the maximum forward distance at which animals could reasonably be expected to be
detected (assumed to be the 90th percentile of radial distances, as in Cafiadas and Vazquez
2014), and s was the mean vessel speed. r and mean speed were calculated for each aerial
survey.

3.5 SPATIAL MODELING
3.5.1 Environmental Covariates

Covariates that could be associated with marine turtle habitat derived from ocean models
and remotely sensed data were included as possible explanatory covariates for the model. Six

static covariates and ten dynamic covariates (three physical and seven biological) that were
available at a monthly resolution, were analyzed as candidate covariates for the density models
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(table 6). Only contemporaneous environmental dynamic covariates were included in the
models, rather than climatological covariates, on the assumption that turtle distribution is more
closely related to ephemeral conditions than long-term averages of conditions (Howell et al.
2015).

In addition to the below listed covariates, a seabed habitat map was explored as a
candidate covariate (Populus et al. 2017) but was ultimately not included in the analysis after
initial model fitting and prediction. While its inclusion offered minor improvements to deviance
explained and slightly lower relative maximum likelihood (REML) scores than other models, it
greatly increased uncertainty. NUWC staff did not feel this was a worthwhile tradeoff, and it
was eliminated from consideration.

All covariates were processed to a 5 x 5 km (3 x 3 mi) grid using a nearest neighbor
resampling method and projected into a regional coordinate system using ArcGIS (version 10.7),
the Marine Geospatial Ecology Tools software (Roberts et al. 2010), and custom Python and
command prompt scripts. No interpolation or extrapolation was required as all covariates
covered the entire Study Area.

A spatial smooth was not included as a covariate in the model. Including spatial smooths
IS a common practice in density spatial modeling to account for variability not captured by the
available environmental covariates. It was not used here because a spatial smooth cannot be
extrapolated, which would necessitate using separate models for any areas of geographic
extrapolation, and because a spatial smooth requires even survey coverage.

Table 6. Candidate Environmental Covariates for Inclusion in Density Spatial Models

Candidate environmental covariates Source
Biological
Chlorophyll Monthly mean chlorophyll concentration at the ocean surface

derived from the Mediterranean Sea Biogeochemical Reanalysis
ocean model (Teruzzi et al 2019)

Net Primary Productivity Monthly mean primary production at the ocean surface derived from
the Mediterranean Sea Biogeochemical Reanalysis ocean model
(Teruzzi et al 2019)

Phytoplankton Carbon Biomass Monthly mean phytoplankton carbon biomass at the ocean surface
derived from the Mediterranean Sea Biogeochemical Reanalysis
ocean model (Teruzzi et al 2019)

Vertically Integrated Chlorophyll Monthly mean of depthwise integration of chlorophyll
concentration through the photic zone (Teruzzi et al 2019)

Vertically Integrated Net Integrated Primary | Monthly mean of depthwise integration of net primary productivity
Productivity across the water column (or photic zone) (Teruzzi et al 2019)
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Table 7. Candidate Environmental Covariates for
Inclusion in Density Spatial Models (Cont’d)

Candidate environmental covariates

Source

Biological

Vertically Integrated Phytoplankton Carbon
Biomass

Monthly mean of depthwise integration of phytoplankton carbon
biomass across the water column (or photic zone) (Teruzzi et al
2019)

Vertically Generalized Production Model
(VGPM)

Monthly net primary productivity across the water column by the
VGPM model (Behrenfeld & Falkowski 1997)

Physical

Sea Surface Temperature

Monthly mean sea surface temperature at the ocean surface derived
from the Mediterranean Forecasting System ocean models (Nucleus
for European Modeling of the Ocean (NEMO) (Simonceli et al.
2019)

Bottom Temperature

Monthly mean temperature at the ocean bottom derived from the
Mediterranean Forecasting System ocean models (NEMO)
(Simonceli et al. 2019)

Salinity Monthly mean salinity at the ocean surface derived from the
Mediterranean Forecasting System ocean models (NEMO)
(Simonceli et al. 2019)

Static

Depth Depth of seafloor derived from Shuttle Radar Topography Mission
(SRTM)15 and SRTM30 bathymetry (Becker et al. 2009 and Olson
et al. 2016)

Slope Slope of seafloor derived from SRTM15 and SRTM30 bathymetry

(Becker et al. 2009 and Olson et al. 2016)

Distance to Canyon

Distance to closest submarine canyon derived from the
International Hydrographic Organization-International
Oceanographic Commission’s General Bathymetric Chart of the
Oceans Gazetteer (IHO-IOC Commission 2018).

Distance to Seamount

Distance to closest seamount derived from Wurtz and Rovere (2015)

Distance to Shore

Distance to shore derived from National Oceanic and Atmospheric
Administration (NOAA 2016)

Seabed Habitat Map

Seabed habitat derived from Europe SeaMap (Populus et al. 2017)

3.5.2 Extrapolation Assessment

There are three types of extrapolation to consider for spatial density models: (1)
geographic extrapolation, where predictions are made in unsurveyed areas, (2) temporal
extrapolation, where predictions are made in unsurveyed time periods, and (3) environmental
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extrapolation, where predictions are made into novel environmental conditions. Areas that are
not extrapolated are interpolations. Knowing where and when one is extrapolating is important
as one has more confidence in the results of interpolations.

Previous work by the Duke team assessed the extent of environmental extrapolation in
the Mediterranean Sea based on surveys from 2003 through 2016 (Mannocci et al. 2018a). In
this study, the ASI surveys were added, necessitating a reassessment of the extent of
extrapolation for the study.

Environmental extrapolation can be either univariate or combinatorial (i.e., multivariate).
Univariate extrapolation occurs when the researcher predicts outside the environmental envelope
of a single covariate. Imagine the researcher has sampled temperature ranging from 25 to 30° C
(77 to 86° F) but made a prediction in an area of 32° C (90° F). This would be univariate
extrapolation. Combinatorial extrapolation occurs when the researcher predicts two novel
combinations of covariates.

Environmental extrapolation was evaluated using the R package dsmextra (Bouchet et al.
2019). Specifically, the dsmextra implementation of the ExDet (Mesgaran et al. 2014) tool to
assess the extent of univariate and combinatorial extrapolation. Gower’s distance calculations
were not implemented to assess how near extrapolated locations were to interpolated locations.
When running the Gower’s distance tool in dsmextra on a single month of their dataset, it took
an unreasonably long time to process, making calculations for all 192 months of the study period
infeasible.

Extrapolation was assessed both seasonally and annually. Seasons were defined as May
through October for summer and November through April for winter. See section 3.5.3 for a
more detailed discussion on how seasons were defined. About 77 percent of the survey effort
was expended during summer months and 23 percent during winter months.

For annual models, geographic extrapolation occurred over 16 percent of the Study Area
and was largely limited to territorial seas and Exclusive Economic Zones (EEZs) in the Southern
Mediterranean (figure 7(a)). The political climate in many countries that border the Southern
Mediterranean Sea precludes safely entering those areas with survey platforms.

In summer, geographic extrapolation was also 16 percent, which was unsurprising given
that most surveys occurred in summer months. In winter, geographic extrapolation was 79
percent of the Study Area. Available winter survey data were limited to the central and North-
central Mediterranean and some limited areas in the Western Mediterranean. Survey coverage
was completely absent from the Eastern Mediterranean, Adriatic Sea, and Aegean Sea in the
winter (figure 7(b)).
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Figure 7. Extent of Geographic Extrapolation

Note: In figure 7, the extent of extrapolation is shown for Annual
Models in the Summer Models (a) and Winter Models (b).
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The temporal resolution of density predictions for this project is monthly; therefore, the
finest scale at which temporal interpolation was assessed was monthly. Out of the 192 months
covered by the study, 135 months (70 percent) did not have any survey coverage anywhere in the
Mediterranean. Aggregating by year, there were three years without any survey coverage, seven
years if the aggregate is by year and season combined (table 7). When aggregating by month, all
months of the year contained survey data.

Table 8. Temporal Interpolation and Extrapolation Summary

Year Annual | Summer | Winter
2003 219 219 0
2004 231 139 92
2005 0 0 0
2006 1141 975 166
2007 1857 1489 368
2008 686 563 123
2009 3950 2316 1634
2010 6257 6033 224
2011 2245 228 2017
2012 5194 3655 1539
2013 4053 3584 469
2014 1338 0 1338
2015 0 0 0
2016 1415 0 1415
2017 0 0 0
2018 11494 11494 0
Years
without 3 5 5

data

Years without data (extrapolations) are

highlighted. Values are linear km of

survey effort.

Environmental extrapolation when using all survey data was low (annual models). On
average, less than two percent of areas had univariate extrapolation in any month. The
maximum was six percent, and there was no combinatorial extrapolation, which is reasonable
given the low amount of univariate extrapolation. To visualize extrapolation over the entire
study period, monthly rasters were reclassified into areas with and without extrapolation, one and
zero, respectively. All the rasters were then summed for the entire study period. The result was
a single raster showing the number of months in the study period where there was extrapolation
(figure 8). The area of high extrapolation North of Libya was driven by the distance to canyon
covariate, and the area in the North Adriatic Sea was driven by low salinity values. Areas with
outflows near other major rivers showed similar patterns.
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Figure 8. Months with Environmental Extrapolation for Annual Models

For summer months (77 percent of survey data), mean univariate extrapolation was 18
percent per month, with a maximum of 72 percent. There was no combinatorial extrapolation.
Extrapolation was driven by distance to canyon and sea surface temperature and was generally
highest in the Western Mediterranean Sea (figure 9). Eliminating distance to canyon and sea
surface temperature as candidate covariates dropped the mean extrapolation per month to less
than one percent, with salinity contributing the most to extrapolation. Extrapolation remained
high in the Northern Adriatic Sea but was low elsewhere except for a few coastal areas (figure
9).
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Figure 9. Number of Months with Extrapolation during Summer

Note: In figure 9, the number of months is shown for all candidate
covariates (a) and all candidate covariates except distance to canyon

and sea surface temperature (b).
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For winter months (23 percent of survey data), mean univariate extrapolation was 75
percent per month and there were 28 months with 100 percent extrapolation, meaning at least
one covariate in each grid cell was unsampled by the available survey data. There was a small
percentage of cells in each month with combinatorial extrapolation. Extrapolation was driven by
distance to canyon, distance to seamount, and sea surface temperature. Extrapolation was 100
percent in the Eastern Mediterranean Sea in all months. No surveys occurred in the Eastern
Mediterranean in the winter (figure 10).

Eliminating distance to canyon, distance to seamount, and sea surface temperature as
candidate covariates improved the situation to some extent; however, mean univariate
extrapolation remained high at 49 percent, with salinity then contributing the most to
extrapolation. Extrapolation remained at 100 percent in some areas of the Eastern Mediterranean
and in the Northern Adriatic Sea (figure 10). This high level of extrapolation in winter made
fitting winter models challenging and caused low confidence in results for that season.
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Figure 10. Number of Months with Extrapolation during Winter
Note: In figure 10, the number of months is shown for all candidate

covariates (a) and all candidate covariates except distance to canyon,
distance to seamount, and sea surface temperature (b).
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3.5.3 Density Modeling

A generalized additive model (GAM) framework as used for all models with the following
general form:

[E(I\A{,-) = Ajexp

Bo + Zﬁ\' (3.,#\')]

7

Nj was the estimated abundance in segment j. The response variable was assumed to follow a
Tweedie distribution (Foster & Bravington 2013), which handles zero-inflated distributions well.
This is useful because most segments had zero sightings and, therefore, an abundance of zero. E
indicates expectation; Aj was the model offset, the area of segment j calculated as 2(wR-wL)lj,
where WR was the right-truncation distance, wL was the left-truncation distance (0 if data were
not left truncated), and [j was the segment length; fk were smooth functions of the sampled
environmental covariates zjk; and S0 was the model intercept. All models were fit with the R
package mgcv (version 1.8-31; Wood 2011).

Models were fit to all segments from survey data between 2003 and 2018. Two different
modeling approaches were attempted. First, modeling was done with unlimited numbers of the
available covariates and allowing maximum degrees of freedom, or wiggliness, for their
relationship to the response variable. Thin-plate regression splines with shrinkage were used to
allow the effect of non-significant variables to shrink away to zero (Wood 2003). Second, more
parsimonious models were run, limited to four covariates and four degrees of freedom that
capture dominant abundance-environmental relationships but not fine-scale detail in the data
(Elith et al. 2010). The second type of model is useful for situations where extrapolation occurs.

In both modeling approaches, many models were fit, with all possible combinations of
available covariates attempted. The exception was covariates that were highly correlated.
Correlation was examined using Spearman’s correlation coefficient, and if covariates had a score
of 0.5 or higher, only one was retained. Selection between correlated covariates occurred by
fitting single covariate models to the data and performing model selection. Model selection was
accomplished by choosing the model with the lowest REML score for both the single and multi-
covariate models. REML was selected as the criterion for estimating smooth parameters and
discriminating between models because it penalizes overfitting and leads to more pronounced
optima (Wood 2011).

All the productivity covariates were correlated with each other. Chlorophyll a had the
best performance. The different versions of bathymetry and slope covariates were also
correlated. Between the bathymetry options, SRTM15 was selected, and SRTM30 derived slope
was selected from the slope covariates.

Models were checked by examining Q-Q plots, residuals, utilized degrees of freedom,

and by qualitatively assessing models for unrealistic artifacts or predictions. A qualitative
assessment of the relative merits of the unlimited versus parsimonious predictions was also
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made. Covariates in the parsimonious suite of models were limited to those that minimized
extrapolation.

Predictions were made on a monthly basis, as that was the finest temporal scale of the
selected covariates. Between 2003 and 2018, there were 192 monthly predictions. Both annual
and seasonal models were fit, as there is evidence that animals migrate seasonally from the
Eastern to Western basins and from the Eastern basin to the Adriatic (summarized in Casale et al.
2018). Seasons were defined as summer, May through October, and winter, November through
April. This definition was based on the predominant warming and cooling cycles in the
Mediterranean Sea, which also track wind driven productivity cycles (Lazzari et al. 2012), and
when larger neritic turtles become more active as temperatures warm (Broderick et al. 2007 and
Hochscheid et al. 2007). A four-season model was not attempted as there was no evidence that
turtles have four distinct behavioral states segregated by seasons in the Mediterranean Sea.

Annual models were averaged into a single prediction covering the time span of the study
period, creating a densitology prediction of long-term density and abundance over the 16 years.
Seasonal models were aggregated by averaging all the months in the seasonal definition over the
16-year study period. Inter- and intra-annual variability were assessed by examining plots of
monthly predicted abundance over time.

3.5.4 Uncertainty Estimation

Because there are many components that contribute to the density and abundance
prediction, there are many sources of uncertainty and variability in the model. There is no
simple way to account for and combine all sources of uncertainty in the model, but it is important
to acknowledge their existence and estimate uncertainty, where feasible. Sources of uncertainty
and variability include; uncertainty in the detection functions, measurement error in distances to
sightings, variability in dive behavior, environmental variability, uncertainty in covariate
measurements, and uncertainty in model parameter estimation.

For this project, two sources of uncertainty were accounted for explicitly: model
parameter uncertainty and environmental variability, expanding on Becker et al. (2014). After
model fitting and selection, parameter estimates from the selected model were resampled based
on their associated uncertainty and new predictions were made from the resampled parameters.
The process was repeated 200 times for each month, creating a set of 200 predictions for each
month that varied based on the uncertainty of the parameter space of the selected model relative
to the underlying environment. The coefficient of variation (CV) was calculated based on these
predictions, which combined the model parameter uncertainty and environmental variability.
These CVs were averaged into both a single value and a surface (similar to the densitologies) so
that how uncertainty varied spatially could be examined.

Work is underway by the Navy-funded DenMod working group to incorporate more
types of uncertainty into density models like the ones here (e.g., multiple surveys, detection
functions, long-term averages of density). Currently, the only available methods are prohibitive
from a time and computation perspective. In the interim, it must berecognized that uncertainty
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and variability in the predictions are being underestimated and that any reported CV only
accounts for a portion of the variability in the model. In particular, the data used for availability
bias were highly variable (table 5).

4. RESULTS
4.1 DETECTION FUNCTIONS
Table 8 summarizes the selected detection function, covariates, and truncation distances

for all surveys, Further details and considerations for each survey are also provided.

Table 9. Summary of Selected Detection Functions

Selected
Survey” Platform function Covariates Truncation distance
ASI Aerial N/A N/A N/A
Glare, Beaufort sea
BWI ISPRA Aerial Hazard rate state, month Right truncation at 343 m
Beaufort sea state,
PELAGIS Aerial Half-normal month Right truncation at 200 m
Half-normal
with cosine
TETHYS ISPRA Aerial adjustment None Right truncation at 300 m
University of Right truncation at 450 m, left
Valencia Aerial Half-normal Month truncation at 104 m
Month, observer
Alnitak/Alnilam Shipboard | Hazard rate position Right truncation at 400 m
Song of the Whale
(IFAW/MCR) Shipboard | Hazard rate Beaufort sea state Right truncation at 100 m
Song of the Whale
(ASI) Shipboard | Hazard rate Month Right truncation at 100 m
“Full names of survey providers were provided in table 1.

ASI aerial survey: As mentioned previously, the ASI aerial survey recorded sea turtle
and seabird sightings using a strip transect methodology. Therefore, no detection function was
fit for these data.

BWI ISPRA aerial survey: 25 sightings were removed that were missing perpendicular
distances and one sighting that was missing detection covariates. Associated segments were
removed from the analysis. Initally, separate detection functions were fit to each year of the
survey as there were enough sightings in each year to support this. However, the histograms of
sightings versus perpendicular distance showed some heaping and potential guarding of the
trackline. The Q-Q plots for individual years bore this out.
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The histogram for all years combined improved the heaping issue near the trackline,
resulting in a histogram where sighting probability decreased away from the trackline as
expected, especially once the data were right truncated (figure 11) at 343 m (1,125 ft) to maintain
a 15 percent probability of detection threshold. The selected detection function was the hazard
rate with glare, Beaufort sea state, and month as covariates. Year was included as a possible
covariate in the combined detection function to account for effects between surveys, but it was
not selected.
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Figure 11. Detection Function for the BWI ISPRA Aerial Survey

Note: In figure 11, the fitted hazard rate detection function with glare,
Beaufort sea state, and month as covariates (a) and associated Q-Q plot (b).

PELAGIS aerial survey: All on effort sightings had data for all environmental covariates
and perpendicular distances. The data were right-truncated at 200 m (656 ft) to maintain a 15
percent probability of detection threshold. The selected detection function was the half-normal
with month and Beaufort sea state as covariates.

There were only two sightings in Beaufort sea state 4, so when Beaufort sea state was
selected as a covariate, it was decided to eliminate these segments (83 segments out of 6,442) as
there were too few sightings in these conditions to create a functional relationship for that
category. Figure 12 shows the selected detection function and Q-Q plot.
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Figure 12. Detection Function for the PELAGIS Aerial Survey

Note: In figure 12, the fitted half-normal detection function with
month and Beaufort sea state as covariates (a) and associated Q-Q
plot (b).

TETHYS ISPRA aerial survey: 16 sightings were missing perpendicular distances, and
those sightings, as well as their segments, were eliminated. The maximum sightings distance
was 2.5 km (1.5 mi). The data were right-truncated at 300 m (984 ft) to maintain a 15 percent
probability of detection threshold. Of the available covariates, only turbidity was not included in
the analysis as there were only 10 non-zero values, not enough to fit a relationship.

A half-normal model with a cosine adjustment performed better than all attempted
models that included covariates. There was some potential heaping/guarding on the trackline
(see the spike at distance zero in figure 13) and there was no clear way to address this heaping.
However, detection functions are generally robust to this kind of heaping, and the normal model
selection process was used.
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Figure 13. Detection Function for the TETHYS ISPRA Aerial Survey

Note: In figure 13, the fitted half-normal detection function with
cosine adjustment (a) and associated Q-Q plot (b).

University of Valencia aerial survey: Four sightings without perpendicular distances and
their associated segments were removed. Surveys were flown at different heights in 2010/2011
and 2013, so initially an attempt was made to fit separate models to these surveys. There were
only 34 sightings in the 2010/2011 surveys. The Q-Q plots for models fitted to those surveys
indicated poor fit and were unable to include any covariates, so the decision was made to
combine them and include the survey as a potential covariate.

The selected detection function was the half-normal, left truncated at 104 m (341 ft) and
right truncated at 450 m (1,476 ft), with month as the only covariate. See section 3.4.2 for an
explanation of the need for left truncation. The Q-Q plot (figure 14) was not as good as in other
aerial surveys, but this was unsurprising given the relatively lower number of sightings, the need
for left truncation, and the different altitude between years.
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Figure 14. Detection Function for the University of Valencia Aerial Surveys

Note: In figure 14, the fitted half-normal detection function with month
as a covariate (a) and associated Q-Q plot (b).

Alnitak/Alnilam shipboard surveys: One sighting and associated segment was deleted
that did not have a location for the sighting. Though Beaufort sea state was collected, a decision
was made not to include it as a potential covariate as there were many missing values associated
with the sightings.

All data pre-2006 where perpendicular sightings were not recorded for turtles were
removed from the analysis. Section 3.4.2 details why these decisions were made. The selected
detection function was the hazard rate with month and observer position as covariates and right
truncated to 400 m (1,312 ft) to meet the 15 percent probability of detection threshold. Observer
position was included as the deck and A-frame observer positions were at different heights,
which could affect detectability. These two sets of sightings were combined as there were not
enough A-frame sightings to fit a separate detection function (figure 15).
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Figure 15. Detection Function for the Alnitak/Alnilam Shipboard Surveys

Note: In figure 15, the fitted hazard rate detection function with month
and observer position as covariates (a) and associated Q-Q plot (b).

Song of the Whale (IFAW/MCR) shipboard survey: Three sightings without
perpendicular distances, along with associated segments, were removed. There was missing data
for the cloud cover, observer, cue, and behavior covariates, so these were not included as
possible covariates.

Sightings dropped off sharply with distance, necessitating right truncation at 100 m (328
ft). Even this sharp truncation yielded only a 10 percent probability of detection threshold. A
decision was made not to truncate further as only 43 sightings were left after truncating at 100 m
(328 ft). Because of this limitation, for this survey no more than one covariate was included in
the detection function. The hazard rate function was selected with Beaufort sea state as a
covariate (figure 16).

38



E — 3] o O o o0 o]
o]
© | o °
[aw]
=)
Z
B o || 8
§ ° . °| B
5 i g
5T L
@ [om ]
5 A
0
™
o
o =] |
o ——
o]
o | o
[aw]
T T T T T T T T T T T T
0 20 40 60 80 100 00 02 04 06 08 10
Distance Empirical cdf
a

Figure 16. Detection Function for the Song of the
Whale (IFAW/MCR) Shipboard Surveys

Note: In figure 16, the fitted hazard rate detection function with
Beaufort sea state as a covariate (a) and associated Q-Q plot (b).

Song of the Whale (ASI) shipboard survey: Even though the ASI shipboard survey was
performed by the same group as the IFAW/MCR shipboard survey, a separate detection function
was fit because the ASI shipboard survey was paired with the ASI aerial survey and represented
one of the most recent surveys in the Mediterranean Sea.

Similar to the other Song of the Whale survey, the data needed to be right-trucated at 100
m (328 ft) to maintain a 15 percent probability of detection threshold. This retained more than
80 sightings, so the normal model fitting and selection process was used. There were A-frame
versus deck sightings, and though there were not enough deck sightings to fit a separate detection
function, observer position was included as a potential covariate. The detection function selected
was hazard rate with month as a covariate (figure 17).
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Figure 17. Detection Function for the Song of the Whale (ASI) Shipboard Surveys

Note: In figure 17, the fitted hazard rate detection function with month
as a covariate (a) and associated Q-Q plot (b).

4.2 SPATIAL MODELS

Annual Models: The best unlimited model retained all covariates. It had the best
deviance explained (34 percent) and lowest REML and AIC of all candidate models. Assessing
model performance, the Q-Q plot was somewhat skewed at high values, but this was expected
given the poor sampling at covariate extremes such as salinity and distance to shore (figure 18).
Plots of residuals did not show evidence of systematic bias (figure 18).
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Figure 18. Q-Q Plot and Residual Analysis for the Best Annual Unlimited Model

Figure 19 shows the functional relationships to covariates fit by the model. Extreme
values of chlorophyll a, depth, slope, and salinity were poorly sampled (see rug plots in figure
19) and had higher associated uncertainty, even though overall environmental extrapolation was
low for annual models. Though most of the covariate relationships look relatively flat, there
were many samples allowing for complex relationships to be fit. Small changes in covariate
values can be significant. For dynamic covariates, there were apparent preferences for warmer
temperatures, higher productivity, and lower salinity. The relationships with static covariates
were less clear, but reviewing the predictions, there was higher predicted abundance in offshore
areas.
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Figure 19. Functional Relationships of Covariates to
Abundance for Best Annual Unlimited Model

Note: For figure 19, NEMO_CHL = Chlorophyll a; NEMO_TEMP =
Sea Surface Temperature; NEMO_SAL = Salinity; NEMP_BTEMP =
Bottom Temperature; SRTM15 = Bathymetry; SRTM30_SL = Slope;
DisCan = Distance to Canyon; DisShore = Distance to Shore; and
DisSeam = Distance to Seamount.

The best parsimonious model retained sea surface temperature, distance to canyon,
distance to shore, and distance to seamount. It had the best deviance explained (28 percent) and
lowest REML and AIC of all candidate models.

Figure 20 shows the functional relationships to covariates fit by the selected model. The
U-shaped relationships for sea surface temperature and distance to seamount are difficult to
interpret. It is unlikely these relationships represent different preferences of neritic versus
oceanic turtles given the disparity in sightings and population numbers between those two groups
and the physiological requirements of loggerhead sea turtles. It is more likely an artifact of
limiting the wiggliness of the relationship than a true ecological relationship.

Distance to canyon and distance to shore showed more classical bell-shaped

relationships, but they also are challenging to interpret ecologically. Spatial patterns of
abundance and overall predicted abundance were similar to the unlimited model. Because of
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this, the lower deviance explained compared to the unlimited model, the limited amount of
geographic extrapolation, and the difficult to interpret environmental relationships, This model
was eliminated from consideration as the recommended model.
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Figure 20. Functional Relationships of Covariates to
Abundance for Best Annual Parsimonious Model

Note: For figure 20, NEMO_TEMP = Sea Surface Temperature;
DisCan = Distance to Canyon; DisShore = Distance to Shore; and

DisSeam = Distance to Seamount.

Seasonal models: Both unlimited and parsimonious models were attempted for the
summer and winter seasons, using only segments from those seasons and the same methodology
as the annual models, but limiting covariates to those that minimized environmental
extrapolation.

The best summer model was the unlimited model, which retained all covariates. Sea
surface temperature and distance to canyon were dropped prior to model fitting to limit
environmental extrapolation. Deviance explained was 26 percent. This model was fit using 77
percent of the entire dataset and geographic extrapolation was 16 percent. Assessing model
performance, the Q-Q plot was somewhat skewed at high values, but this was expected given the
poor sampling at covariate extremes, such as salinity and distance to shore (figure 21), which
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were retained. Plots of residuals did not show evidence of systematic bias. Functional
relationships were largely flat, and chlorophyll a, salinity, slope, and depth were poorly sampled
at extreme values (figure 22).
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Figure 21. Q-Q Plot and Residual Analysis for the Best Summer Unlimited Model
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Figure 22. Functional Relationships of Covariates to
Abundance for Best Summer Unlimited Model

Note: For figure 22, NEMO_CHL = Chlorophyll a; NEMO_SAL =
Salinity; NEMP_BTEMP = Bottom Temperature; SRTM15 =
Bathymetry; SRTM30_SL = Slope; DisShore = Distance to Shore; and
DisSeam = Distance to Seamount.

Fitting a reasonable winter model was not possible. Available survey data in the winter
was only 23 percent of the total dataset and was geographically limited, occurring mostly in the
central Mediterranean Sea. While initial models seemed reasonable, there were runaway
predictions with extremely high-density values (many orders of magnitude higher than any other
grid cells) in some coastal areas. This was likely a combination of the largest availability bias
adjustment occurring in the neritic zone in winter and extreme extrapolation. This occurred even
when eliminating covariates that were the worst offenders for causing environmental
extrapolation. This meant that the model was trying to predict the highest abundance in poorly
sampled environments that contained many outlier values.

Possible solutions to combat these runaway predictions include limiting predicted density
to the maximum value that was not extrapolated or by limiting the functional relationships
themselves, but this was unsatisfying given the overall good performance of the annual model
and the limited data in winter.
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Because fitting a winter model was unsuccessful, using an annual average density is
recommended, specifically the unlimited model, which is presented below. Seasonal models can
be revisited if more winter surveys occur over a broader area or when there is more time to
explore possible solutions.

4.3 PREDICTED DENSITY AND UNCERTAINTY

The total predicted abundance was 1,201,845 (CV=0.22; figure 23) for the annual
unlimited model. The CV estimate includes both GAM parameter uncertainty and
environmental variability. The abundance in the areas of geographic extrapolation was 192,826
(figure 23). The extent of geographic extrapolation was 16 percent, and the percent of the total
predicted abundance that was in the geographic extrapolation areas was also 16 percent. The
highest predicted densities were in the Southeastern Mediterranean off the coast of Egypt, the
Northern Adriatic Sea, the Southern Algero-Provencal Basin, and the Tunisian Plateau.
Predicted density was low in most coastal areas, the Aegean Sea, and the Eastern Mediterranean
Sea (except for the hotspot off Egypt). Note that environmental covariates were poorly sampled
close to shore, and there were many grid cells where predictions were not made within 5 to 10
km (3-6 mi) of shore. NUWC chose to not extrapolate the model into these unsampled grid cells
as they were also poorly sampled by surveys. This is a source of underestimation of abundance
in the model, though generally predicted density was lower close to shore and the missing cells
represent 0.05 percent of the area of the Mediterranean Sea. If estimates are needed close to
shore for management purposes, extrapolating values from nearby cells is recommended as the
best solution. However, caution should be used when relying on estimates from individual cells
for fine scale management. This is a broad scale model intended for basin-wide and regional
density/abundance estimation and conservation action.

There were some extremely high values of CV (greater than 1) located around areas of
low salinity, far distances to canyon, and extremely deep areas that were poorly sampled by
surveys. For example, the Northern Adriatic Sea, the Libyan coast, and off the coast of Crete all
had high values of CV (figure 24). Average CV was moderate (0.22) and was generally low in
well-sampled areas, which was expected.
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Figure 23. Abundance Prediction for the Unlimited Annual Model

Note: In figure 23, the prediction is an average of 192 monthly
predictions. Units are in animals per 25 square km (9.6 square mi).
Areas of geographical extrapolation are shaded grey.
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Figure 24. CV Prediction for the Unlimited Annual Model

Note: In figure 24, the CV is derived from 38,400 predictions (200
simulations for each month). Areas of geographical extrapolation
are shaded grey.

Inter- and intra-annual variability were both high for abundance predictions (figure 25).
Mean predicted abundance ranged from 3,600,000 to 560,000 in the monthly predictions.
Predictions were high in winter and low in summer. The population abundance should not
change this drastically between seasons, as the population is generally constrained within the
Mediterranean Sea and does not migrate in and out seasonally.

The partial exceptions are juvenile turtles of Atlantic origin in the western basin that
entrain in the Mediterranean Sea via the Strait of Gibraltar. These juvenile turtles come from
two other loggerhead populations (Wallace et al. 2010) that can entrain in the Mediterranean Sea
for 8 to 10 years (Carreras et al. 2006, Revelles 2007, and Eckert et al. 2008) and comprise a
large percentage of the population of juvenile loggerheads in some Western Mediterranean
regions. However, because they remain in the Mediterranean Sea for such long periods of time,
one would not expect their entrance and departure from the Mediterranean to cause large
seasonal changes in abundance.

This means that the intra-annual variability in NUWC’s predictions may be linked to the
predicted relationships to environmental covariates and their seasonal changes, rather than
seasonal changes in population abundance. Another possible explanation for the large predicted
intra-annual variability is poor sampling in winter months. Because of this, it is recommended to
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use a single prediction over the entire study period, rather than seasonal averages, even though
this may miss seasonal movement between the basins.

Fitting a simple linear trendline to the monthly abundance data, there was a slight
downward trend in predicted abundance (figure 25) throughout the time of the collected survey
data that was used for this study. The R2 value was only 0.04, so the trend was not strong. The
best available data for the loggerhead population trends in the Mediterranean Sea came from
counts of nesting females, which shows a slight increasing trend (Casale 2015 and Mazaris et al.
2017). Nesting females represent a small proportion of the total loggerhead population, so
increasing nesting female populations and decreasing juvenile populations may be occurring
concurrently. Juvenile loggerheads, which comprise most of the population, may be decreasing
while nesting females are increasing. However, given the weak trend and no other evidence that
the population is decreasing, the apparent downward trend in abundance may be an artifact of
changing environmental conditions, as the predictions are based in part on environmental
conditions, rather than actual population change.

More research is needed to determine if changes in population abundance are occurring,
such as repeated, stratified density estimates covering the same area. This study, which
combines multiple surveys over different time periods, geographic areas, and abundance varying
with environmental covariates, is not the best study design for detecting trends.
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Figure 25. Monthly Abundance for the Unlimited Annual Model

Note: In figure 25, the 5 percent and 95 percent confidence interval (CI)
values in this figure are based only on the GAM parameter uncertainty
and do not include environmental variability and other sources of

uncertainty. The trend line (dotted blue line) is a linear regression of
mean abundance.

5. CONCLUSIONS

While most of the spatial density predictions appear reasonable based on the sightings
data (figure 23) and satellite telemetry data from the region, the hotspot off Egypt is concerning
given that there is no survey coverage in that area. The hotspot has the highest predicted density
values in the model. Examining differences in the covariates in the hotspot versus the rest of the
Eastern Mediterranean Sea, it appears that the high prediction is driven by distance to seamount,
as the means of the other covariates were similar. The model predicts abundance increasing both
close to and far from seamounts, which is challenging to interpret ecologically. Previous work
by Fiori et al. (2016) found sea turtles to be attracted to seamounts.

Rabia and Attum (2015) found evidence of loggerheads stranding on the Egyptian coast,
and Rabia and Attum (2020) observed sea turtles foraging in Lake Bardawil in Egypt.
Additionally, the southern coast of the Eastern Mediterranean is a migratory corridor for turtles
traveling from Cyprus to the East coast of Tunisia (Snape et al. 2016). Lastly, a recent shipboard
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survey (Panigada 2020) did detect two loggerhead sea turtles off the coast of Egypt. Despite this
evidence that turtles are present in the waters off Egypt and migrate through the area, this hotspot
should be treated with skepticism until a more formal density/abundance estimate can be made
using line transect data. A model without the distance to seamount covariate was attempted, but
it created more possible erroneous hotspots elsewhere. This bears more exploration in the future
as the model appears to be sensitive to the inclusion of distance to seamount as a covariate.

With a few exceptions, the selected model predicted lower abundance in coastal and
neritic areas, where large juveniles and adult turtles are known to forage, particularly in the
Eastern Mediterranean. These neritic foraging areas have been confirmed by multiple lines of
investigation (Casale 2018). Exceptions in this model were the Tunisian Plateau, the Northern
Adriatic Sea, and the hotspot off Egypt. While most loggerheads in the Mediterranean Sea are
juveniles (Casale and Heppell 2016), the model fails to show some important neritic foraging
areas. The model can best be considered a model of oceanic loggerheads, which represent most
loggerheads in the Mediterranean Sea. However, if this model is used for management purposes,
some important segments of the population may be overlooked. Coupling this model with other
data sources such as satellite telemetry and stable isotope analyses will be critical for holistic
management of the loggerhead sea turtle population in the Mediterranean Sea.

Satellite telemetry data featured in the State of the World’s Sea Turtle Report (SWOT
Team 2019) showed loggerheads to be distributed almost throughout the entire Mediterranean
Sea, though fewer locations were recorded in the North-central Mediterranean and Eastern
Mediterranean. Higher densities of satellite telemetry data were found in the Alboran Sea,
Tunisian Plateau, Adriatic Sea, and Tyrrhenian Sea. These areas of relatively higher and lower
density of satellite telemetry location correlate well with the selected model’s predicted density
distribution, though caution must be taken when comparing spatial density models to density of
satellite telemetry locations. There are significant biases associated with satellite telemetry, such
as deployment bias, individual behavior, and the age classes tagged. Despite these biases, the
SWOT Team (2019) report featured hundreds of tagged animals, and the general concurrence of
the NUWC model and the tag data is good.

The model’s population estimate can be compared to other population estimates from the
region. Casale and Heppell (2016) presented a demographic model of the Mediterranean
loggerhead sea turtle population based on the number of adult females, reproductive output, and
assumptions about age of sexual maturity. That study represented a completely independent
population estimate from its spatial density model. Casale and Heppell (2016) made three
estimates of population, assuming age of sexual maturity at 21, 25, and 34 years old. The
estimates were 1,197,087 (CI 805,658-1,732,765), 1,521,107 (Cl 1,034,839-2,178,790), and
2,364,843 (CI 1,611,085-3,376,104) respectively. The selected model’s population estimate of
1,201,845 (CV 0.22) was statistically similar (e.g., estimates overlapped when considering
uncertainty) to the 21- and 25-year old scenarios but not the 34-year old scenario, though it is
likely that the selected model is underestimating both abundance and its own uncertainty. This
independent verification lends credence to both estimates as being valid.

Abundance estimates from the density predictions in the Adriatic Sea were similar to
previously published density spatial models derived from the BWI ISPRA surveys (Fortuna et al.
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2018). Both the Navy and Fortuna et al. (2018) models predicted high nearshore density in the
Northeast Adriatic and the central Southern basin of the Adriatic. Predicted abundance was also
statistically similar.

It is important to remember sources of potential bias in the selected model, even though
the estimate is statistically similar to independent demographic population estimates. Possible
sources of underestimation include the following: not accounting for perception bias,
overestimating the amount of time animals are at the surface based on the depth at which dives
were assumed to be started (3-4 m (10 to 13 ft) for dive data)), missing cells close to shore due to
missing environmental covariates, and not detecting small animals. Aerial surveyors have
indicated an ability to detect animals as small as 40 centimeters (16 inches) (Barco et al. 2018);
however, animals of that size may be several years old already. Given the age structure of sea
turtle populations, those missed animals represent a large fraction of the total population
(Mazaris et al. 2005; Casale and Heppell 2016).

Possible sources of overestimation of population include the following: including
sightings reported as hardshell turtles that may actually be green turtles and including the dive
data from Spain that may be missing some surfacing events because the data were collected as
average depths over five-minute time intervals. Overall, the model is probably underestimating
density because missing small turtles is likely the largest effect, given the size of those age
classes relative to the total population. Additionally, there are more sources of possible
underestimation than overestimation. However, because the magnitude of these effects cannot
be quantified, this is supposition only.

This spatial density model can be used by the Navy to estimate impacts to loggerhead sea
turtles during its training and testing activities, and the model conforms to the requirements of
the NMSDD. NUWC’s hope is that it is useful for other marine spatial planning and
conservation efforts in the Mediterranean Sea.

6. RECOMMENDATIONS

While the model presented here represents an excellent first attempt at a basin-wide
spatial density model for the Mediterranean Sea and appears to match abundance estimates
derived from demographic data, there are improvements that can be made.

There are additional survey data that could be added to the survey dataset, mostly from
the University of Valencia as well as from new winter shipboard surveys in the Eastern
Mediterranean associated with the ASI that were not available when this study was undertaken.
The Eastern Mediterranean is data poor already, and winter surveys are a critical data gap.
Inclusion of the new survey and any future surveys may allow winter models to be fit
successfully.
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Seasonal models could be explored in more depth to see if seasonal movements between
the Eastern and Western basins can be captured. This will require either significantly more data
in the winter season (and broader spatial coverage) or limiting winter predictions in some way to
combat runaway extrapolation. As mentioned previously, while animals move between basins
seasonally, the population would not be expected to vary significantly between seasons as all
animals are either resident to the Mediterranean or entrain in the western basin for a significant
period of time. The total abundance could also be limited to be equivalent in both seasons.

A major criticism of the selected model is that it is weighted heavily towards predicting
the density distribution and abundance of oceanic juveniles at the expense of larger neritic
turtles. While oceanic juveniles are the largest population segment, their importance, or lack
thereof, in the selected model limits its use in management efforts that want to target adult
populations and foraging areas. Two possible solutions exist, (1) fit separate models to neritic
and deep areas, given that larger loggerhead sea turtles in the Mediterranean Sea spend most of
their time in neritic waters (Mazor et al. 2016, review in Casale 2018), or (2) fit a single model to
all the data but use a hierarchical GAM framework where one could include habitat as a factor
(Pederson et al. 2019). Unfortunately, these options were outside the scope of this project.

Stratified availability bias estimates were used to better reflect changing dive behavior
over time and space. However, a more complex treatment may be possible given the amount of
available data. Modeling availability spatially in response to environmental covariates would
allow for smooth relationships over time and space, unlike the current stratified estimates that
have distinct boundaries spatially and temporally.

Lastly, it would be a major improvement to include more sources of uncertainty (e.qg.,
dive data and detection function) in the model’s overall estimate of CV. This should be possible
given the initial results of the DenMod working group, but methods need to be peer-reviewed,
published, and incorporated into R packages or otherwise be made available.

NUWC’s ability to pursue any updates and improvements will depend on future funding.
Research priorities will be dependent on available data, funder priorities, and available time.
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APPENDIX
SURVEY EFFORT BY MONTH

Figure A-1. Available Survey Effort for the Month of January




A-2

Figure A-3. Available Survey Effort for the Month of March




Figure A-5. Available Survey Effort for the Month of May

A-3



Figure A-6. Available Survey Effort for the Month of June

Figure A-7. Available Survey Effort for the Month of July




Figure A-8. Available Survey Effort for the Month of August

Figure A-9. Available Survey Effort for the Month of September
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Figure A-11. Available Survey Effort for the Month of November




Figure A-12. Available Survey Effort for the Month of December

A-7 (A-8 blank)






NUWC-NPT Technical Report 12,360

DISTRIBUTION LIST

External
Defense Technical Information Center

Internal
Code: 1033 (Corporate Research and Information Center)

Total: 2



	NUWC-NPT Technical Report 12,360
	27 November 2020
	Loggerhead Sea Turtle Density in the Mediterranean Sea
	Laura M. Sparks
	NUWC Division Newport
	Andrew D. DiMatteo
	McLaughlin Research Corporation
	Naval Undersea Warfare Center Division
	Newport, Rhode Island

