

Recording Human Operator Data in Cyber
Environments: User Activity Tracker (UAT) Technical
Report

by Alex Poylisher, Matthew Witkowski, Vladislav D. Veksler, Blaine E. Hoffman,
and Norbou Buchler

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

CCDC DAC-TR-2020-101
December 2020

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position
unless so specified by other official documentation.

WARNING

Information and data contained in this document are based on the input available at the time of
preparation.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of
the use of such commercial hardware or software. The report may not be cited for purposes of
advertisement.

Recording Human Operator Data in Cyber
Environments: User Activity Tracker (UAT) Technical
Report

by Alex Poylisher and Matthew Witkowski
Perspecta Labs

Vladislav D. Veksler
DCS Corp.

Blaine E. Hoffman and Norbou Buchler
CCDC Data & Analysis Center

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

CCDC DAC-TR-2020-101
December 2020

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for
Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
December 2020

2. REPORT TYPE
Technical Report

3. DATES COVERED (From - To)
November 2019–September 2020

4. TITLE AND SUBTITLE
Recording Human Operator Data in Cyber Environments: User Activity Tracker (UAT)
Technical Report

5a. CONTRACT NUMBER
W911NF-14-D-0006
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Alex Poylisher, Matthew Witkowski, Vladislav D. Veksler, Blaine E. Hoffman, and Norbou
Buchler

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Director
U.S. Army CCDC Data & Analysis Center
Human Systems Integration Division (FCDD-DAH-N)
6560 Surveillance Loop
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT
 NUMBER

CCDC DAC-TR-2020-101

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
To conduct evaluations of individual and team operations in computing environments, sensors are need in appropriate places to collect data
and provide it to researchers, experimenters, exercise leadership, and/or team leaders for analysis. Specifically, assessment of human
performance requires data from the actions and behaviors of human operators in these settings, such as data from keyboard and mouse use
and graphical-user-interface interactions including program launch, window manipulation, application focus, and commands executed. In
addition to collecting this data, there is a need for a defined and known logging format to enable the creation and use of tools and interfaces
that are capable of rapid parsing and visualizations of the data. In this report, we describe the User Activity Tracker (UAT) and the UAT
Live tools. The former is a configurable tool for capturing human–computer-interaction data at the system level and capturing it in log files
that can be preserved and analyzed both in real time and after the fact; the latter is a tool that capitalizes on UAT’s logging format to
provide automated analysis and data visualization.
15. SUBJECT TERMS
User Activity Tracker, UAT, automated data collection, human–computer interaction, HCI, cybersecurity, human behavior, logging
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Blaine E. Hoffman

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

UU 34 19b. TELEPHONE NUMBER
(include area code)
(410) 278-5175

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

iii

Table of Contents

List of Figures ..v
List of Tables .. vi

1. INTRODUCTION ..1
1.1 Bottom Line Up Front ..1
1.2 Motivation for a New User Activity-Tracking Tool ..2
1.3 Use Case for UAT ..3
1.4 PASS-CMF User Activity-Tracking Requirements ...5

2. USER MANUAL ...7
2.1 Prerequisites ...7

2.1.1 Linux ..7
2.1.2 MS Windows ..7

2.2 Installation ..7
2.2.1 Linux ..7
2.2.2 MS Windows ..8

2.3 Startup ..8
2.4 Configuration ..8

2.4.1 Event Configuration ...8
2.4.2 Window Events ..9
2.4.3 Mouse Events ...10
2.4.4 Keyboard Events ..10
2.4.5 Shell Events ..11
2.4.6 Pseudo Events ...11
2.4.7 Logging Configuration ...12
2.4.8 Local Logging ..12
2.4.9 Remote Logging ...15
2.4.10 Developer Logging ...15

2.5 Shutdown ..16
2.6 Resource Considerations ..16
2.7 Limitations ..16

3. ARCHITECTURE AND IMPLEMENTATION ...17
3.1 Architecture ..17
3.2 Implementation ...18

3.2.1 Starting Point ..18
3.2.2 Select Problems and Current Solutions ..18
3.2.3 X11 Display Detection and Authentication ..19
3.2.4 Shell Input Detection ..19
3.2.5 X11 Per-Window Process and Machine Attribution20

4. CONCLUSION AND FUTURE WORK ...21

5. REFERENCES AND DOCUMENTS..22

 List of Acronyms .. A-1

iv

Table of Contents

 Distribution List ... B-1

v

List of Figures

Figure 1. PASS-CMF’s goals .. 1
Figure 2. Screenshot of UAT Live data-analysis tool ... 2
Figure 3. Benign and malicious activity in UAT use case .. 4
Figure 4. Screenshot of defender workspace in the use case... 5
Figure 5. Sample local log showing fragments of event trace... 15
Figure 6. UAT architecture .. 17

vi

List of Tables

Table 1. Currently Supported Events and Configurable Attributes—GUI 9
Table 2. Currently Supported Events and Configurable Attributes—Mouse 10
Table 3. Currently Supported Event and Configurable Attribute—Keyboard 10
Table 4. Events and Attributes for MS Windows and Linux ... 11
Table 5. Currently Supported Attributes—Local Logging .. 12
Table 6. Event Types and Semantics ... 13
Table 7. Event-Specific Values: Type and Extra Parameters .. 14
Table 8. Currently Supported Attributes and Values—Remote Logging 15
Table 9. Currently Supported Attributes and Values—Developer Logging 15

1

1. INTRODUCTION

This report describes the motivation, requirements, operating instructions, and design of the User
Activity Tracker (UAT) developed at the U.S. Army Combat Capabilities Development
Command (CCDC) Data & Analysis Center (DAC) in support of the Performance Assessment
Suite for the Cyber Mission Force (PASS-CMF) project funded by the Office of Under Secretary
of Defense for Research and Engineering (OUSD(R&E)). As the Applied Research and
Engineering Partner for an Army cybersecurity collaborative research alliance bringing together
Army organizations, industry, and academics, Perspecta Labs has been the lead developer of the
tool over the course of the project. UAT has been created to serve the project goal of data-
collection streams that enable analytics by providing a high-resolution, comprehensive, and
timely recording of human–computer interaction (Figure 1). The latest version of UAT is 1.9.10
and has all of the features and capabilities described in this document. However development is
ongoing, and future versions may have additional functionality or revised logging formats.

Figure 1. PASS-CMF’s goals

The remainder of Section 1 gives the high-level motivation for UAT development and the set of
high-level requirements. Section 2 contains the UAT user manual, including prerequisites,
configuration, starting and stopping instructions, and current limitations for this tool. Section 3
describes the UAT architecture and implementation details.

1.1 Bottom Line Up Front

UAT is cross-platform software that runs a daemon process able to record user activity along
with the respective state of the operating system (OS). UAT collects human–computer
interaction events and stores these in compressible text format. Effectively, UAT records raw
data from human operation of a system into a standardized data stream that can be used in
analysis and exploration such as those used in performance assessment. The data logging
enables detailed playback and quantitative analysis of user activity without the need to resort to
large storage of images and video-screen recordings. For example, Figure 2 displays a sample
screenshot of the type of analysis made possible by UAT (screenshot is of a separate UAT Live
activity-analysis tool currently under development at CCDC DAC). In addition to a full Gantt
chart of user activity (Figure 2, top left), UAT-collected data enables detailed playback (Figure

2

2, bottom left) of most human–computer interactions, including which windows are open and
visible, where the windows are located, mouse location, clicks, and keyboard activity.
Additionally, UAT makes it possible to construct a histogram of user interactions and a summary
analysis of individual application use and between-application transition matrix (Figure 2, right).
This level of detail of desktop user activity enables rich behavioral experiments and analysis,
Human–Computer Interaction studies, and high-fidelity model and simulation development as
well as Machine Learning-based user and user-activity classification.

Figure 2. Screenshot of UAT Live data-analysis tool

1.2 Motivation for a New User Activity-Tracking Tool

The motivation for UAT originated from the impending end of support (in December 2020) of
TechSmith’s Morae usability testing tool, (TechSmith Corp., n.d.) widely used in the human-
factors research community and initially considered for the PASS-CMF project. At the start of
the project, PASS-CMF researchers formulated these key objectives of data collection for CMF-
related user activity:

1. Support for automated processing of collected data to enable development of third-party
analytics, post-experiment and near-real time.

2. Experiment goal and application-agnostic recording of all user activity, including
actions that produce no visually observable effects, to provide ground truth for
correlation with other cyber activity.

3

3. Attribution of user activity to cyber entities of interest (including machines, screens, and
processes).

4. Compact data storage.
5. Fine-grained time resolution for the recorded events.
6. Cross-platform collection for major OSs, including Microsoft (MS) Windows and Linux

variants.

Morae Recorder (the data-collection module of Morae) is only a partial match for the above
requirements, as it is essentially a video-recording tool with optional recording of key presses
and mouse activity, associated with processes, with the primary focus on manual event
recognition by the human observers. While Morae Recorder’s functionality can be extended via
user-written plugins, this is not easy for a typical user.

The possible event types, apart from key presses and mouse clicks/movements, are predefined by
the experimenter, so any automated post-processing is either limited to those, or requires
expensive human effort (not serving Objectives 1, 2, and 3). Video recording is storage-heavy
(not serving Objective 4). Event marking by human observers is subject to visibility, human
error, and imprecise timing (not serving Objectives 2 and 5). Finally, the Morae Recorder is
limited to MS Windows (not serving Objective 6).

The search for existing, publicly available alternative tools that would address all or most of
these six objectives was unsuccessful, and PASS-CMF researchers decided to develop a new
tool.

1.3 Use Case for UAT

PASS-CMF researchers constructed the first use case to drive UAT development around a
fragment of a Cyber Protection Team engagement with elements of Survey, Hunt and Protect
missions, taking place in an enterprise network where suspected adversarial Command and
Control (C2)/exfiltration activity has been detected by an intrusion-detection system.

Figure 3 shows a fragment of the enterprise network topology, and both benign (green) and
malicious (red) network flows. The dashed red line indicates the C2/exfiltration activity over
Domain Name Service (DNS) tunnels. The DNS tunneling traffic is detected as suspicious by
Security Onion sensors (Security Onion, n.d.), which is the starting point for the use case. The
defenders operate from an administrative workstation (Ubuntu Linux/X11) and interact with
multiple remote hosts via both graphical (remote desktop) and text-only (secure shell [SSH])
displays.

4

Figure 3. Benign and malicious activity in UAT use case

The defenders are alerted to the suspicious activity on the Security Onion console graphical user
interface (GUI), observed via a remote desktop. Based on the alert analysis, the defenders decide
to perform deep packet inspection on two firewalls (external and internal) and interact with the
firewalls via remote Linux command line. The defenders diagnose the suspicious activity as
exfiltration and decide to block the DNS tunnels used for exfiltration, via firewall rules, entered
via the remote command line. A snapshot of the defender workspace during this interaction is
shown in Figure 4.

5

Figure 4. Screenshot of defender workspace in the use case

The defenders then identify the source host of the exfiltration traffic (an MS Windows client
machine), and proceed to interact with that host (via MS Windows remote desktop) to find the
malicious process responsible for the exfiltration and its executable file, to be quarantined for
future examination.

The use case has been chosen to test realistic defender interaction via both GUI and command
line with multiple machines (local desktop and remote desktops and terminals) and OSs (Linux
and MS Windows variants).

1.4 PASS-CMF User Activity-Tracking Requirements

The following set of high-level requirements (Rs) grew organically while the tool was
developed, driven by the six objectives defined in Section 1.2), feature sets of other tools,
available instrumentation mechanisms, and user experience with the UAT prototype.

6

• R1: record user activity for graphical displays on a machine and all monitors (screens)
for each display, including relative position of monitors (screens).

• R2: attribute recorded user activity to display-unique, window-system-native window
identifiers.

• R3: attribute recorded user activity to machines and OS process identifiers.
• R4: record used activity time with millisecond resolution.
• R5: record window system events related to window creation and destruction.
• R6: record window system events related to window position, size, and visibility,

including minimizing and maximizing.
• R7: record window system events related to window focus.
• R8: record window system events related to mouse movement, scrolling, and mouse

button clicks, including event coordinates.
• R9: record window system events related to key presses, including key codes and

character representation, if applicable.
• R10: record shell commands (strings entered by the user).
• R11: record shell input—shell command strings after shell aliasing and substitutions

(i.e., the final form of the command about to be executed).
• R12: record shell commands and shell input for the shells that are not started from

graphical terminals (e.g., started from local consoles or via remote login such as SSH).
• R13: record window system events related to screen resolution or position changes.
• R14: record window system events related to window visibility.
• R15: enable user-configurable choice of which events to record.
• R16: record user activity to local files or to a remote Hypertext Transport Protocol

(HTTP) server.
• R17: enable user-configurable choice of the recording target (R15), and disable UAT

startup if none is configured.
• R18: generate a local log file per display and rotate log files.
• R19: record with minimal impact on user experience and system resources.
• R20: support modern 64-bit MS Windows and Linux OSs, with an easy extension path

for other OSs in the future.

7

2. USER MANUAL

2.1 Prerequisites

UAT collects information from low-level system events, and some prerequisites are required to
make this possible on all operating systems.

2.1.1 Linux

1. Bash Shell Version 4.2 and up

2.1.2 MS Windows

1. Install .NET Framework 4.5
2. Install Windows Management Framework 5.0

2.2 Installation

The User Activity Tracker is bundled into a single zip file containing a configuration file, readme
file, license file, Linux shared library, and an executable for each supported OS.

The following setup steps with administrative privileges are needed to run UAT. Most of the
steps are required only for shell command logging.

2.2.1 Linux

1. Required for shell command logging—run the following command as root:
 echo 0 > /proc/sys/kernel/yama/ptrace_scope

2. Required for shell command logging—update the user’s shell configuration file and
profile configuration file to include the following lines:

 set –x
 set -v

3. Required for window-to-process mapping—update /etc/ld.so.preload to include
the following line:

 <PATH_TO_LIBRARY>/libxcreatewindow.so

4. Required for shell command logging—comment out the following lines in
/etc/bash.bashrc:

 # enable bash completion in interactive shells
#if ! shopt -oq posix; then

 # if [-f /usr/share/bash-completion/bash_completion]; then
 # . /usr/share/bash-completion/bash_completion

8

 # elif [-f /etc/bash_completion]; then
 # . /etc/bash_completion
 # fi
 #fi

5. Required for shell command logging—move or rename the following files:
 /usr/share/bash-completion/bash_completion
 /etc/bash_completion

6. Required for shell command logging—append the following lines to
/etc/bash.bashrc:

 exec 5> /dev/null
 export BASH_XTRACEFD=5

2.2.2 MS Windows

1. Required for shell command logging—set the group policies within Administrative
Templates > Windows Components > Windows PowerShell (Dunwoody, 2016):

2. Set the group policies within Administrative Templates > Windows Components >
Windows PowerShell

3. “Turn on PowerShell Script Block Logging”: Enabled
4. “Turn on PowerShell Transcription”: Enabled

2.3 Startup

UAT is distributed as an executable that can be started from the command line or a shell script,
which could also be included in service configuration files (e.g., on MS Windows). It takes a
single mandatory argument to specify the configuration file; paths can be added to the executable
and config file names as needed:

UAT -c <config.json>

2.4 Configuration

The configuration file uses the standard JavaScript Object Notation schema (JSON Schema, n.d.)
to adjust event tracking. Configuration allows for different attributes to be set for events, and to
enable or disable them. The way these events are logged is also configurable. These different
configurable components are split into two sections labeled “events” and “logging”.

2.4.1 Event Configuration

The events configuration allows the user to enable/disable different events. The events section is
split up into different categories titled “window”, “mouse”, and “keyboard”. The rest of this

9

section describes each of the three categories. The enabled event configuration items will dictate
most of the logging behavior of UAT. Section 2.4.8 has details on the format of data logged.

2.4.2 Window Events

The window section configures logging for the events related to GUI windows. Table 1 lists the
currently supported events and their configurable attributes. Event-specific information logged
for window events contains window title, process information, coordinates, and/or window size
as appropriate.

Table 1. Currently Supported Events and Configurable Attributes—GUI

Event Type Event Semantics Attributes Value

create Creation of a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

destroy Destruction of a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

focus_in Focusing of a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

focus_out Focusing out of a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

resize Resizing of a GUI window.

enabled A Boolean JSON value to enable
or disable logging of the event.

pseudo_timeout A float JSON value that represents
the timeout value, in seconds, for
the pseudo timer. See the Pseudo
Events section for more info.

move Movement of a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

minimize Minimizing of a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

maximize Maximizing of a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

restore Restoring a GUI window. enabled A Boolean JSON value to enable
or disable logging of the event.

resolution Change in screen resolution or
position.

enabled A Boolean JSON value to enable
or disable logging of the event.

draw Drawing or undrawing of
windows. This event can assist
the UAT event consumer in
detecting window visibility.

enabled A Boolean JSON value to enable
or disable logging of the event.

10

2.4.3 Mouse Events

The mouse section configures logging for the mouse-related events. Table 2 lists the currently
supported events and their configurable attributes. The event-specific logging for a mouse event
contains the screen coordinates of the action.

Table 2. Currently Supported Events and Configurable Attributes—Mouse

Event Type Event Semantics Attributes Value
left_click Releasing the left mouse

button in a GUI window.
enabled A Boolean JSON value

to enable or disable
logging of the event.

left_click_down Pressing the left mouse
button down in a GUI window.

enabled A Boolean JSON value
to enable or disable
logging of the event.

right_click Releasing the right mouse
button in a GUI window.

enabled A Boolean JSON value
to enable or disable
logging of the event.

right_click_down Pressing the right mouse
button down in a GUI window.

enabled A Boolean JSON value
to enable or disable
logging of the event.

move The movement of the mouse
in a GUI window.

enabled A Boolean JSON value
to enable or disable
logging of the event.

delta A positive integer JSON
value. This sets the
distance in pixels, from
the previous logged
position, for the event
to fire.

scroll The scrolling of the mouse
wheel in a GUI window.

enabled A Boolean JSON value
to enable or disable
logging of the event.

2.4.4 Keyboard Events

The keyboard section configures logging for the keyboard events. Table 3 lists the currently
supported event and its configurable attributes. Each keyboard event will include the character
of the key and its integer value, as reported by the OS.

Table 3. Currently Supported Event and Configurable Attribute—Keyboard

Event Type Event Semantics Attributes Value
keypress Pressing a key on the keyboard. enabled A Boolean JSON value to enable or

disable logging of the event.

11

2.4.5 Shell Events

The shell section contains logging configuration for shell-related events. UAT currently
supports “command” for MS Windows PowerShell, and both “command” and “input” for
bash on Linux variants. The “command” event captures the shell input as typed, before any
unaliasing and variable expansion performed by the shell. The “input” event captures the shell
input after unaliasing and variable substitution and captures the command as it will actually be
executed. In both cases, the event-specific information logged will contain what each type
captures as a string.

Please see important OS-specific configuration notes in Sections 2.2.1 and 2.2.2. Table 4 lists
the events and their attributes.

Table 4. Events and Attributes for MS Windows and Linux

Event Type Event Semantics Attributes Value
command The command entered into a shell. enabled A Boolean JSON value to enable

or disable logging of the event.
input The expanded form of the command

entered into a shell.
enabled A Boolean JSON value to enable

or disable logging of the event.

 2.4.6 Pseudo Events

Pseudo Events are the synthetic events that UAT itself creates, and as such they do not
correspond to an actual event generated by the window system. These events will be prepended
with “P-”.

Currently, UAT creates six pseudo-event types, “P-N”, “P-WR”, “P-WM”, “P-WMAX”,
“P-WMIN”, and “P-WRES”, to immediately log the window size, location, and state for any
windows that exist at the time UAT starts. These pseudo-events are generated without waiting
for an actual resize event or move event. When a window creation event is detected, UAT starts
a timer using the configurable “pseudo_timeout” value (see Window Events configuration in
Section 2.4.2). UAT will then create a “P-WR”, “P-WM”, and a “P-WMAX”, “P-WMIN”, or
“P-WRES” event when all three of the following conditions have been met for the window: the
timer expires, a destroy event for that window has not been detected, and neither a window resize
event nor a window move event for that window has been detected.

In order to assist in detecting visibility, the UAT creates the pseudo-event type, “P-DR”. If the
UAT detects a cloak, show, or hide event for a window, then it generates a “P-DR” for the
triggering window. UAT then attempts to generate this event for each of the triggering
window’s child windows. A child window will only generate this event if their current draw
state does not match their previous state.

12

2.4.7 Logging Configuration

UAT supports local and remote logging. At least one of the logging types must be enabled for
UAT to start. These can be configured in the “local” and “remote” sections of the “logging”
configuration.

2.4.8 Local Logging

Local logging creates a directory that houses the logs for each display and a system log directory
used to track events that do not belong to a display. The first recorded event of each run of the
UAT will create a new log with the following format: (Configured Name)-Year-
Month-Day-Hour-Minute. The UAT has a built-in rotating logger, and it will
automatically roll logs over to a new file when the log file reaches the size of 1 MB. The
rollover index (“.#”) is append to the end of the “.tsv” extension.

Table 5 lists the currently supported attributes for local logging.

Table 5. Currently Supported Attributes—Local Logging

Attribute Value
enabled A Boolean JSON value to enable or disable local logging.
filename A string JSON value to name the logfile.
Directory A string JSON value that is used as the path to store local log files.

Local Log File Format

A tab-separated values (tsv) file will be generated that contains all of the events that have
occurred since UAT start. The first row of the log file will always contain the header record for
the data. Every row after the header is an event that has been received. Each row will have the
data for each of the following seven data elements, as applicable and when available:

1. The time the event occurred in milliseconds since the Epoch, in the time zone of the
machine running UAT.

2. The id (identification) of the window that the event took place in. A window id of –1
means the window does not exist and the event belongs to a session without a display.

3. The class of the window that the event took place in, as supplied by the underlying
window system.

4. The name of the window that the event took place in.
5. The event type.
6. The event-specific information in comma-separated values.
7. The name of the process the window belongs to.

13

Table 6 lists the event types’ fields and associated semantics. Table 7 lists event-specific
information.

Table 6. Event Types and Semantics

Event Type Field Semantics
C Left Mouse Click Up
CD Left Mouse Click Down
RC Right Mouse Click Up
RCD Right Mouse Click Down
M Mouse Move
S Scroll
K Keypress
N Window Creation
P-N Pseudo Window Creation
D Window Destruction
WM Window Move
WR Window Resize
P-WR Pseudo Window Resize
P-WM Pseudo Window Move
WMIN Window Minimize
WMAX Window Maximize
WRES Window Restore
P-WMIN Pseudo Window Minimize
P-WMAX Pseudo Window Maximize
P-WRES Pseudo Window Restore
R Screen Resolution/Position Change
FI Focus In
FO Focus Out
SC Shell Command
SI Shell Input
P-DR Pseudo Window Draw

14

Table 7. Event-Specific Values: Type and Extra Parameters

Event Type Extra Parameters
C Coordinates relative to the window’s top left corner in the format x,y.
CD Coordinates relative to the window’s top left corner in the format x,y.
RC Coordinates relative to the window’s top left corner in the format x,y.
RCD Coordinates relative to the window’s top left corner in the format x,y.
M Coordinates relative to the window’s top left corner in the format x,y.
S Direction of scroll, and coordinates relative to the window’s top left corner in the format

x,y.
K A positive integer keycode followed by the character representation.
N A positive integer representing the process id that the window belongs to, and a

Boolean representing if the window is drawn. If the pid belongs to a remote machine, it
will be prepended with the machine name.

P-N A positive integer representing the process id that the window belongs to, and a
Boolean representing if the window is drawn. If the pid belongs to a remote machine, it
will be prepended with the machine name.

WM The window’s new coordinates relative to the parent window’s top left corner in the
format x,y.

P-WM The window’s new coordinates relative to the parent window’s top left corner in the
format x,y.

WR The window’s new width and height represented by integers in the format:
width,height.

P-WR The window’s new width and height represented by integers in the format: width,
height.

R An integer for the screen’s width, integer for the screen’s height, integer for the screen
id, and integer x,y coordinates relative to the display’s top left corner.

FI The window’s coordinates relative to the parent window’s top left corner in the format
x,y.

SC An integer for the terminal process id, an integer for the shell process id, the name of
the shell, and the entered command.

SI An integer for the terminal process id, an integer for the shell process id, the name of
the shell, and the expanded command.

P-DR A Boolean representing if the window is drawn.

A sample local log fragment (captured on an MS Windows host) is shown in Figure 5.

15

Figure 5. Sample local log showing fragments of event trace

2.4.9 Remote Logging

Remote logging bundles several events data together and sends a POST request to the address
specified in the configuration. The first entry in the bundled data will always be the header data.
When the application closes any remaining events that have not been logged will be bundled and
sent. Table 8 shows the currently supported attributes.

Table 8. Currently Supported Attributes and Values—Remote Logging

Attribute Value
Enabled A Boolean JSON value to enable or disable remote logging.
Address A string JSON value that represents the address of the HTTP to send the POST request to.
buffer_size An integer JSON value that represents the number of events to be sent that are buffered

before a POST request is sent.

2.4.10 Developer Logging

Developer logging is used to record UAT debugging information. Table 9 lists the currently
supported attributes.

Table 9. Currently Supported Attributes and Values—Developer Logging

Attribute Value
level A string JSON value to alter the level of logging. The following values are supported:

VERBOSE, TRACE, DEBUG, INFO, WARNING, ERROR, and CRITICAL.
format A string JSON value to format the log messages.

16

2.5 Shutdown

UAT can be killed like any other process in the OS. The three most common ways to kill the
process are by closing the terminal UAT was started in, pressing <CTRL-c> in that terminal, or
sending a kill signal to the UAT process.

2.6 Resource Considerations

On computer systems with heavy user activity (e.g., multiuser shared systems), UAT local file
logging (Section 2.4.8) can create substantial disk load. Possible workarounds include a)
reducing the number of logged event types, b) reducing the resolution of recording for mouse
movement, c) switching to remote logging, and d) allocating dedicated resources.

2.7 Limitations

The current UAT implementation has a few limitations, including the following:

1. The MS Windows version supports only one display, and the logs will always have a
directory for “Display 0”. A system logs directory will also be created, but is not
populated with events.

2. Shell Input is not supported for the MS Windows version of UAT.
3. Shell Command and Shell Input are only supported by the Bash shell in the Linux

version of UAT.
4. Shell Command is only supported by 32-bit PowerShell in the MS Windows version of

UAT.
5. Entered commands (unexpanded) are echoed in Bash terminals.
6. In MS Windows, events are only tracked on OBJID_WINDOW objects (Microsoft

Corporation, 2018).
7. The local log file rotation limit is not configurable.

17

3. ARCHITECTURE AND IMPLEMENTATION

This section describes the current UAT architecture and implementation.

3.1 Architecture

Figure 6 shows the UAT architecture, interfaces, and window-system/OS-instrumentation hooks,
with the UAT code proper show in light blue. UAT is an event-driven daemon, reacting to the
window system events naturally produced by the window systems, and events produced
specifically by UAT instrumentation components (e.g., shell-related events).

Figure 6. UAT architecture

At the top level, the Controller reads in the UAT configuration file, starts and stops Services,
and outputs debugging information via the Debug Logger.

The Display Detection Service is responsible for start- and run-time detection of graphical
display creation and destruction events. The Shell Detection Service is responsible for start-
and run-time detection of shell startup and exit. The Shell Input Detection Service is

18

responsible for detecting shell input. The Pseudo Event Service is responsible for producing
pseudo-events (see Section 2.4.6).

The Monitor Service is responsible for detecting and recording events per display, including
window system events (window, keyboard, mouse, focus, and position/size) and shell-related
events, taken from the Shell Input Detection Service, as the latter are recorded per display.
Note the special “No Display” monitor, dedicated to processing shell events for the shells not
started via a graphical terminal.

The Log Service writes the UAT-detected events to a local log file and to a remote HTTP server,
if configured (Section 2.4.7).

The X11 Attribution Library is a Linux-specific component that ensures the X11 window
system records OS-related information of interest to UAT (currently machine and process
identifiers) in window attributes, for later extraction by Display Monitors.

Finally, the Event Filter ensures only the event types of interest to the user, as specified in the
UAT configuration file, are recorded.

3.2 Implementation

This section describes the starting point of our implementation and also a discussion of select
problems encountered during the UAT implementation along with the current solutions.

3.2.1 Starting Point

The majority of events of interest to UAT are naturally produced by the underlying window
systems, and can be subscribed to by a program other than the actual window system’s clients.
Given the cross-platform requirements, we chose the cross-platform (MS Windows, Linux,
MacOS) Python library PyUserInput (GitHub, 2013) as the starting point for UAT
development due to its open-source nature, existing mouse and keyboard event-handling
capabilities, extensibility, and a high-level, common implementation language. PyUserInput
is in turn based on PyXlib, (Python XLib, n.d) which wraps the most common X11 library,
Xlib.

Consequently, it was convenient to extend PyUserInput to subscribe to other window system
events of interest to UAT and route non-window system events via PyUserInput for
uniformity.

3.2.2 Select Problems and Current Solutions

This section documents several important implementation problems along with the current
solutions.

19

3.2.3 X11 Display Detection and Authentication

With the variety of X11 server implementations and OS-specific configurations, there is no
uniform way to detect the appearance and disappearance of X11 displays. We therefore address
the most common case of X11 server sockets (Unix domain sockets used to communicate
between the X11 server and its clients within one host), stored in the /tmp/.X11-unix
directory.

The Display Detection Service, on startup and then periodically, reads this directory and for each
socket file in the directory uses lsof and ps to obtain the command line of the process that
owns the socket (the X11 server). The Display Detection Service then parses the X11 server
command line to obtain the name of the server’s Xauthority file, with the credentials needed
to authenticate to that X11 server, in order for PyUserInput to be able to subscribe to the
window system events on that server.

If a new socket file is detected and the corresponding X11 server process exists, the Display
Detection Service declares the display created. If a known socket file disappears from the
directory, or its corresponding X11 server process is not found, the Display Detection Service
declares the display gone.

3.2.4 Shell Input Detection

The input of a command into a shell has no simple generic solution. There are multiple types of
shells and many different versions of each shell. A simple approach such as LD_PRELOAD
would not work unless we created a custom library for each type of shell and each version of the
shell to ever exist. We therefore had to develop our own strategy that could reliably obtain the
command for us.

The Shell Input Detection Service is started at UAT startup and is updated with process
identifiers as new shells are detected by the UAT. In the Linux version of the Shell Input
Detection Service, a separate thread is created for each process identifier so that they can safely
be monitored by the python-ptrace library (Stinner, n.d.). Meanwhile, the Windows
version attaches these to the winappdgb library (Vilas, n.d.) but does not create a thread for
each process identifier.

On Linux, the Shell Input Detection Service is notified by the debugger in the python-ptrace
library when a write system call is made. The service will then dictate if the write is from the
shell by parsing for a specific format that contains a “+” at the beginning of the text parameter.

On Windows, the Input Detection Service is notified by the winappdbg library using system
call hooks. We defined a “pre_WriteFile” hook, and our service receives all

20

“WriteFile” system calls that belong to the shells we attached. The input is then parsed, and
the service filters out system calls that do not contain the user’s input.

3.2.5 X11 Per-Window Process and Machine Attribution

There is no requirement for X11 clients to populate the process identifier window attribute
_NET_WM_PID, yet the UAT requires such attribution for all windows.

We therefore adapted the libxcreatewindow library (GitHub, 2016) that applies a post-
hook on XCreateWindow(), XCreateSimpleWindow() and XReparentWindow()
Xlib library calls, via the LD_PRELOAD mechanism used transparently with all X11 clients on
any system running UAT.

21

4. CONCLUSION AND FUTURE WORK

In this report, we covered the features and capabilities of the User Activity Tracker tool, an
application that records various data at the system level to capture human behavior within
computing environments. By taking advantage of OS integration, UAT can log not only the raw
data from input devices (keyboard and mouse) but also more high-level data such as commands
invoked in shells and task sequences in application and GUI interactions. Additionally, we
covered the format and structure of UAT configuration settings that support flexible deployment
and operation as well as the format of logged data recorded by UAT. The development and
evolution of UAT has led to more formal definitions and structuring of the data it logs and
exploration of its use in both human-driven and automated analyses.

The reader can use this report as a manual of UAT installation and configuration on a target
platform and a manual for its use and operation. As of this writing UAT is in Version 1.9.10 and
continuing to be improved and updated. As such, future work will include defining and outlining
additional features and capabilities aligned with the goals of the project and UAT development
as well as covering changes or additional details in UAT logging and operation. Alongside
UAT, this document also serves as a reference for the log files themselves to support the creation
of tools to parse and analyze UAT data, such as the UAT Live tool.

22

5. REFERENCES AND DOCUMENTS

GitHub, Inc. (2013, January 30). PyUserInput Library [Computer software].
https://github.com/PyUserInput/PyUserInput

GitHub, Inc. (2016, February 28). ld-preload-xcreatewindow-net-wm-pid [Computer software].
https://github.com/deepfire/ld-preload-xcreatewindow-net-wm-pid/blob/master/ld-
preload-xcreatewindow.c

Dunwoody, M. (2016, February 11). Threat research: greater visibility through PowerShell
logging. FireEye, Inc. https://www.fireeye.com/blog/threat-
research/2016/02/greater_visibilityt.html

JSON Schema. (n.d.). The JSON Schema. https://json-schema.org
Microsoft Corporation. (2018, May 31). Microsoft Active Accessibility object identifiers.

https://docs.microsoft.com/en-us/windows/win32/winauto/object-identifiers
Python XLib developers community. (n.d.). The python xlib library [Computer software].

https://github.com/python-xlib/python-xlib
Security Onion. (n.d.). https://securityonion.net.
Stinner, V. (n.d.). The python-ptrace library [Computer software].

https://github.com/vstinner/python-ptrace
TechSmith Corporation. (n.d.) Morae Tutorials. https://www.techsmith.com/tutorial-

morae.html.
Vilas, M. (n.d.). The winappdbg library [Computer software].

https://github.com/MarioVilas/winappdbg

https://github.com/PyUserInput/PyUserInput
https://github.com/deepfire/ld-preload-xcreatewindow-net-wm-pid/blob/master/ld-preload-xcreatewindow.c
https://github.com/deepfire/ld-preload-xcreatewindow-net-wm-pid/blob/master/ld-preload-xcreatewindow.c
https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html
https://json-schema.org/
https://docs.microsoft.com/en-us/windows/win32/winauto/object-identifiers
https://github.com/python-xlib/python-xlib
https://securityonion.net/
https://github.com/vstinner/python-ptrace
https://www.techsmith.com/tutorial-morae.html
https://www.techsmith.com/tutorial-morae.html
https://github.com/MarioVilas/winappdbg

A-1

 List of Acronyms

A-2

C2 Command and Control

CCDC U.S. Army Combat Capabilities Development Command

DAC Data & Analysis Center

DNS Domain Name Service

GUI graphical user interface

HTTP Hypertext Transport Protocol

JSON JavaScript Object Notation

MS Microsoft

OS operating system

OUSD(R&E) Office of Under Secretary of Defense for Research and Engineering

PASS-CMF Performance Assessment Suite for the Cyber Mission Force

R requirement

SSH secure shell

UAT User Activity Tracker

B-1

 Distribution List

B-2

Organization

 U.S. Army CCDC Data & Analysis Center
 FCDD-DAS-LBG/T Resetar-Racine
 6896 Mauchly Street
 Aberdeen Proving Ground, Maryland 21005-5071

 U.S. Army CCDC Data & Analysis Center
 FCDD-DAH-N/B E Hoffman
 FCDD-DAH-N/N Buchler
 6560 Surveillance Loop
 Aberdeen Proving Ground, MD

 U.S. Army CCDC Army Research Laboratory
 FCDD-RLD-DCI/Tech Library
 2800 Powder Mill Rd.
 Adelphi, MD 20783

 Defense Technical Information Center
 ATTN: DTIC-O
 8725 John J. Kingman Rd.
 Fort Belvoir, VA 22060-6218

	1. INTRODUCTION 1
	2. USER MANUAL 7
	3. ARCHITECTURE AND IMPLEMENTATION 17
	4. CONCLUSION AND FUTURE WORK 21
	5. REFERENCES AND DOCUMENTS 22
	List of Figures
	List of Tables

	1. Introduction
	1.1 Bottom Line Up Front
	1.2 Motivation for a New User Activity-Tracking Tool
	1.3 Use Case for UAT
	1.4 PASS-CMF User Activity-Tracking Requirements

	2. User Manual
	2.1 Prerequisites
	2.1.1 Linux
	2.1.2 MS Windows

	2.2 Installation
	2.2.1 Linux
	2.2.2 MS Windows

	2.3 Startup
	2.4 Configuration
	2.4.1 Event Configuration
	2.4.2 Window Events
	2.4.3 Mouse Events
	2.4.4 Keyboard Events
	2.4.5 Shell Events
	2.4.6 Pseudo Events
	2.4.7 Logging Configuration
	2.4.8 Local Logging
	Local Log File Format

	2.4.9 Remote Logging
	2.4.10 Developer Logging

	2.5 Shutdown
	2.6 Resource Considerations
	2.7 Limitations

	3. Architecture and Implementation
	3.1 Architecture
	3.2 Implementation
	3.2.1 Starting Point
	3.2.2 Select Problems and Current Solutions
	3.2.3 X11 Display Detection and Authentication
	3.2.4 Shell Input Detection
	3.2.5 X11 Per-Window Process and Machine Attribution

	4. Conclusion and Future Work
	5. References and Documents
	Appendix A – List of Acronyms
	Appendix B – Distribution List

