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Abstract

This paper examines how Abstract Meaning Representation (AMR) can be utilized for finding
answers to research questions in medical scientific documents, in particular, to advance the study
of UV (ultraviolet) inactivation of the novel coronavirus that causes the disease COVID-19. We
describe the development of a proof-of-concept prototype tool, InfoForager, which uses AMR
to conduct a semantic search, targeting the meaning of the user question, and matching this to
sentences in medical documents that may contain information to answer that question. This
work was conducted as a sprint over a period of six weeks, and reveals both promising results
and challenges in reducing the user search time relating to COVID-19 research, and in general,
domain adaption of AMR for this task.

1 Introduction

UV light can inactivate viruses by making them unable to infect cells, thereby reducing the transmission
of viral diseases. While a wealth of literature pertaining to UV inactivation of viruses exists, searching
this literature for trustworthy and relevant information can be difficult and inefficient. This difficulty
can be especially evident when focusing on diseases such as COVID-19 (caused by the novel coron-
avirus, SARS-CoV-21), which can be transmitted via aerosols or droplets in a complex process spanning
disciplines ranging from physiology to optics to fluid mechanics. There are many unknowns, poorly
quantified parameters, and even confusions resulting from differing terminology used. Nonetheless, ef-
ficiently finding needed information may be critical in discovering improved methods, such as the use of
germicidal UV,2 to reduce the transmission of COVID-19 and other diseases.

This paper identifies an opportunity for NLP tools to aid in automatically sifting through this mass of
documents to find relevant answers to specific and targeted questions from subject matter experts working
in the space of UV inactivation of viruses. We introduce InfoForager, a proof-of-concept prototype tool
that utilizes semantic understanding and search, going beyond the words in a user question to focus on
its meaning. By employing a semantic search, we hypothesize that the user will more easily search
through medical documents because they do not need to rephrase their questions (for example, into
keywords) to conform to the system’s search limitations and capabilities. InfoForager first parses a user
research question into Abstract Meaning Representation (AMR) (Banarescu et al., 2013), then compares
the resulting AMR query to a collection of medical research papers already parsed into AMR. All AMR
query-sentence pairs in each paper are scored for their semantic similarity, and InfoForager returns the
highest-ranking answer sentence and the source document.

Given the urgent nature of this research, we allotted six weeks during which four NLP researchers worked
with two UV inactivation researchers to perform a shallow pass through the semantic searching problem
space. Additionally, we worked with test users to obtain an understanding of the system requirements

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2, first identified in 2019.
2Germicidal UV: Also known as UVC, relating to the UV spectrum between 200 - 280 nm.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


68

and developed a prototype framework to address those needs. Section 2 describes the UV inactivation
problem space. Our semantic search approach is described in Section 3, and Section 4 details a Wizard-
of-Oz prototyping user study of the framework and the initial development of the prototype system. An
evaluation of the prototype and the results are discussed in Section 5.

2 Background: UV Inactivation Research

Virus particles (virions) can remain infectious on surfaces (e.g., walls, doorknobs, and masks), and may
be contained within sneezed or coughed droplets of airway (e.g., mouth, nose, throat) fluids. Such virions
can be inactivated by treating them and particles containing them with sufficient UV light (Sagripanti and
Lytle, 2011); however, it remains unclear whether, and to what extent, the virions within dried droplets,
or particles, are shielded from UV. Researchers need to know how the optical properties of a particle
of such respiratory fluids affect the intensity of UV in a virion within that particle. If the particle of
dried respiratory fluids actually protects virions within it from UV, then how much more intense does
the UV source need to be to achieve adequate inactivation of the virions? Furthermore, what techniques
could be used to increase the effectiveness of UV light for inactivation of SARS-CoV-2 in such particles?
Given the tremendous variation in sizes, shapes, and compositions of dried respiratory particles, answer-
ing these questions by experimentation alone is far too expensive. Having a computational model to
accurately represent intensities within UV-illuminated respiratory particles would be beneficial for test-
ing multiple use-cases, and may be critical in discovering improved methods for using germicidal UV
to reduce the transmission of COVID-19 and other diseases. Such modeling requires knowledge of the
optical properties of airway fluids, which can be estimated from the concentrations and optical properties
of the materials in these fluids. However, to date and to our knowledge, there are no medical papers or
reports that include all the optically relevant materials in any airway fluids to create such a model.

We designed InfoForager with the aforementioned challenges in mind. The UV researchers and NLP
researchers iteratively refined the general topic of UV inactivation of coronavirus into two main research
questions of interest, which were used in developing and testing InfoForager:
Q1 Which (bodily) fluids have higher concentrations of SARS-CoV-2 particles?
Q2 What is the range of sizes of respiratory droplets, specifically from coughing and sneezing?

For the purposes of training participants in our Wizard-of-Oz user study, we introduced a basic question:
Qt What types of UV light are used in coronavirus research?

The UV researchers made clear that they were not seeking a system that returned a single answer to
their research questions, as there are often multiple, even conflicting answers in cutting-edge medical
research. Instead, they desired a system that returns all relevant results and that also clearly points to
where the relevant content is in the document, allowing them to quickly assess where the information
they are searching for is discussed in the approach, background, or results section of a paper.

This approach stands in contrast to search systems that the UV researchers have become accustomed to
and use primarily for building their initial pool of medical documents, or abstracts when the documents
are behind paywalls. For example, PubMed is as an extensive, publicly available, online, searchable
database of medical and life sciences research abstracts.3 In this study, we rely on it as a benchmark
resource, given its broad and updating coverage of research papers, and make use of its keyword search,
wherein terms from the user query are matched against subject designations for articles, the title, abstract,
and author names. If no matches are made, the search terms are broken apart and the search process
is repeated with the individual terms. This, indirectly, has led researchers away from posing natural
language questions. When backing off to break such questions into keywords, PubMed may return either
too many results for very general keywords or no results for more targeted combinations. For example,
Q1 yields zero results, and subsequent alterations of the question, e.g., Which fluids higher SARS-CoV-2
particles and Which fluids higher concentration particles, yield 1 and 1,157 individual research papers
respectively. This approach places the burden on the user to determine which terms in the query are the
most important for the system to function.

3https://pubmed.ncbi.nlm.nih.gov

https://pubmed.ncbi.nlm.nih.gov
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3 InfoForager Approach: Semantic Parse and Search

InfoForager was designed with the UV researchers’ goals, criteria, and the current tool limitations in
mind. Given that they expect to conduct an iterative search process (to “forage”), where they may
find partial information, including different and possibly discrepant values (especially as new findings
emerge), we start with the following working hypothesis: an AMR-based approach can assist in identi-
fying such partial information based on where their questions share semantics with sentences within the
documents in their collection. Thus, we aim to create a system that accepts natural language questions,
interprets their underlying meaning as AMR, detects a range of answers, and finally points to where that
information was found in research papers. Our semantic search interaction is presented in Figure 1. First,
a user provides a question, which is semantically parsed into AMR (left panel of Figure 1). Second, a
semantic search is conducted that matches the parsed query against a collection of medical research pa-
pers that had also been semantically parsed (center panel). Finally, the results are scored and ranked, and
the top responses along with the source papers are returned (right panel). The remainder of this section
describes the parsing, and search and rank processes.

Figure 1: InfoForager overview—(1) User question is automatically parsed into AMR (parsed-query); (2)
Parsed-query is compared to a collection of research papers already parsed into AMR (parsed-answers);
(3) Matches are ranked and highest ranking sentence is returned with its source document.

3.1 Semantic Parse Using AMR
AMR is a directed, acyclic graph (DAG) representation of the meaning of a sentence, in which nodes
map to words in the sentence, and edges map to the relations between them. Figure 2 shows the AMR
in the text-based Penman notation (a) and the graph notation (b). There is a relatively large and active
body of research surrounding AMR, such that there are a variety of parsers for automatically converting
natural language text into AMR, including our own work to retrain and adapt various AMR parsers for
dialogue systems (Bonial et al., 2019; Bonial et al., 2020). AMR has demonstrated value in biomedical
NLP applications in the past (see Section 6), so we elected to explore the use of AMR in the development
of a research framework that has the potential to match not only the concepts within a research AMR
query, but also the relations between those concepts for more efficient “semantic search.”

To obtain AMR parses of our user questions and the medical research document collection, we leverage
the parser from Lindemann et al. (2019) based on its high performance after retraining within a new
domain in previous research. The parser was retrained on the Linguistic Data Consortium’s AMR 3.0
corpora (LDC2020T02) and the freely available Bio-AMR corpus,4 as well as our own manually an-
notated dataset of approximately 1,000 AMRs drawn from the Dial-AMR corpus (Bonial et al., 2020).

4https://amr.isi.edu/download/2018-01-25/amr-release-bio-v3.0.txt

https://amr.isi.edu/download/2018-01-25/amr-release-bio-v3.0.txt
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(a) (c / concentrate-02
:ARG1 (v / virus)
:location (s / saliva)
:quant (a / amr-unknown))

(a) AMR in Penman notation (b) AMR in directed, a-cyclic graph notation

Figure 2: The utterance What is the concentration of the virus in saliva? represented in (a) Penman
notation and (b) its equivalent, in directed, a-cyclic graph notation.

Given time constraints of this six-week research effort, we opted to rely on our prior evaluations of sev-
eral AMR parsers in selecting this parser and worked with a limited set of manual ground-truth AMRs
for the project assessments.

Once the document collection was tokenized and segmented, we used the retrained parser to obtain a set
of AMR graphs for each sentence of the collection. In addition, we parsed Qt, Q1, and Q2, defined in
Section 2, into AMR to have automatically-obtained AMRs of the questions. An experienced AMR an-
notator also provided gold standard, ground-truth AMRs for the questions and portions of the document
collection with information relevant to answering the questions. This resulted in a collection of gold-
standard AMR parses for the user questions and answers, as well as automatically-obtained AMR parses
for the same user questions and answers, henceforth referred to as “gold-queries” and “gold-answers,”
and “parsed-queries” and “parsed-answers,” respectively.

3.2 Semantic Search and Rank Using Graph Matching
To leverage the structured semantic information of AMR for determining if a document contains an
answer to a question, we explored how adequately graph matching could serve to find a sentence that best
addresses a particular question. We used the Smatch (semantic match) metric (Cai and Knight, 2013),
which converts two input AMRs into two sets of node/edge triples, and measures the overlap between
two resulting sets of triples. In our study applying Smatch, the AMR parsed-query was compared to all
AMR parsed-answers in the document collection, then a list of the sentences ranked by Smatch scores
was returned with IDs of documents containing those sentences for the top matches.5

To our knowledge, this is the first application of Smatch for semantic overlap of AMRs for a question
and a sentence, as it was originally designed to find the closest match between AMRs for two sentences,
one a ground-truth and the other a system output. We hypothesized that a strength of our novel appli-
cation of Smatch would be in its ability to locate relevant information in other sentences that contain
not only the same words and concepts as the original question, but also the same semantic relations
between those concepts. However, a conceptual shortcoming is that Smatch is not necessarily finding
answers, but finding the sentences with content most similar to that in the question, as it was designed
to do. For example, were the question itself written out in a research paper, then it, and not an answer,
would be returned as the best match.6 Thus, we sought to identify the range or threshold of Smatch
scores that would indicate when the AMRs of a question and document sentence were similar enough
to capture shared semantics of a question-answer (Q-A) pair. For example, if we compare the parsed-
query in Figure 1 for What is the concentration of the virus in saliva? to a parsed-answer (The virus
is highly concentrated in saliva), this Q-A pair receives an Smatch F-score of 78%. Inspection of the
Q-A graphs underscores this level of matching: the Q-A graphs are identical, with the exception of the
amr-unknown node sitting in the position of the question word in the parsed-query; in the answer

5Smatch leverages smart initialization and 4 random restarts, where the highest overall score is reported as the final Smatch
score. As a result, we observed some variation in Smatch scores when the same graphs are compared in multiple runs.

6Given that the UV researchers also track who is working on problems like theirs, even a question match is valuable: the
document matched provides provenance to track the authors and institutions where relevant research is being conducted.
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graph, it appears as a concentration-quantity node with additional modifiers. Thus, we argue
that the graph-matching process is a suitable starting point for exploring the effectiveness of AMR in our
semantic search framework, and describe in Section 7 other possible approaches.7

4 User Studies and Proof-of-Concept Development

Having developed the initial framework for semantic search to address the needs of UV researchers,
we conducted a Wizard-of-Oz user study (Section 4.1) to explore how non-expert users interacted as
research assistants with the system, while we developed the proof-of-concept prototype (Section 4.2).

4.1 Wizard-of-Oz User Studies

We conducted user studies of InfoForager’s semantic search and PubMed, as noted in Section 2, for its
keyword-based search. To put both systems on equal footing while InfoForager was under development
and lacked a user interface, we deployed a simple chat interface and “Wizard-of-Oz” setup as the same
front-end to both. Participants placed their search input in a text box, and a “Search Engine” (a human
experimenter) retrieved a summary webpage listing the top five matching research papers from one of
the search systems. The participant could then ask to view the individual results for further information
in a listed research paper. Participants could remove or re-order words in the research question, but
could not add or change words. In this way, for PubMed, we controlled for possible permutations of the
research questions, enabling us to run the queries in advance, and return to participants actual PubMed
results (as if run in real time). Results were displayed in a ranked list with the article title and authors
displayed, along with a snippet of the abstract. This included returning no results when PubMed did
not find a match. Similarly, for InfoForager, the “Search Engine” returned a summary webpage listing a
ranked set of results with the title of the document, but also the relevant/matching text and what section
of the document that text comes from (e.g., abstract, approach, results, etc.). When a user asks to see the
source document for a particular summary result, the user is then shown only the abstract for the PubMed
system (in keeping with actual follow-on phase in PubMed8), whereas for the prototype InfoForager, the
user is shown the entire section that the result came from and the matching phrase is outlined in red.

Four subjects without a background in medicine or biology were recruited for the user study. They
were told they would be assisting subject matter experts in answering research questions related to the
coronavirus. Each participant underwent a training phase to become familiar with both search systems
as well as the subject area using Qt. During training, participants were given ten minutes to attempt to
answer the question by searching a collection of medical literature using InfoForager, and then given
another ten minutes to search for the answer to the same question using PubMed. Following that phase,
there were two main trials, up to twenty minutes each, for answering Q1 and Q2. For the main trials, we
alternated the order of which search engine was used first; two subjects started with InfoForager, while
the others started with PubMed, and then their systems were swapped on the next question.

From the user studies, we observed that participants were able to find answers to their questions more
quickly with the InfoForager framework—they felt more confident that they had looked through the col-
lection as extensively as they needed to and therefore tended to declare their task complete at an earlier
point. With InfoForager, participants could enter a natural language question, and the matches detected
were similar not only in the words used, but also the semantic relationship between those words. In con-
trast, after discovering that they might receive no results for natural language questions with the PubMed
system, participants would quickly turn to a keyword strategy, though this led, at times, to too many
results that were not relevant. As a keyword search system, PubMed did not offer explicit indicators for
where or why a match occurred. Overall, participants spent more time, in comparison to InfoForager,
in reading through the entire returned abstract to determine if it was relevant, or trying different permu-
tations of keywords to see if they could find the right combination to get their answer. Thus, the user
studies established motivating evidence for a prototype tool with semantic search, described next.

7Several new AMR measures now also exist (Anchieta et al., 2019; Song and Gildea, 2019; Opitz et al., 2020).
8For some documents, users may be able click an additional link to access the full text.
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4.2 Proof-of-Concept Prototype
After running user studies, we put the anticipated components together into an end-to-end, proof-of-
concept system that we could begin to formally evaluate. Prior to any real-time user interaction, the
medical document collection of papers are preprocessed, including conversion from PDF to text using
the Poppler PDF9 rendering library, and word tokenization and sentence segmentation using a toolkit
developed internally within our team. The documents in our collection had very different formats (e.g.,
multiple columns or one) which could result in the conversion to text being out of order. Furthermore,
the documents had a variety of abbreviations, parenthetical references to figures, and widespread use of
footnotes and end notes, all of which could cause errors in the tokenization and sentence segmentation.
Thus, it was necessary for us to make adjustments to these components for this medical domain. Then,
the document collection was parsed into AMR parsed-answers and the triple formalism required by
Smatch. This process is depicted in steps 1 - 6 in Figure 3. During real-time interaction, the user
question is parsed into an AMR parsed-query, subsequently converted into a triple representation, and
then compared against the triples of the preprocessed collection (steps 7 - 8 in Figure 3).

Figure 3: InfoForager Prototype Pipeline

5 Results and Discussion

To make an initial assessment of the validity of our approach, we evaluated the prototype system on
the three research questions, for which we had manually identified documents and sentences that best
answer the questions. Using these answers and documents as a ground truth, we compared the ranked list
of sentences output by our system, thus determining the extent to which our methodology would highly
rank and return the same answers as a human researcher.

To focus on the potential for this semantic search approach without introducing too much noise from
automatic parsing of the question at this stage, we conducted the evaluation using the manually anno-
tated AMR gold-queries, as opposed to the AMR parsed-queries. Note, however, that the target answer
documents are all automatically parsed. In the subsequent analysis, we compute both 1) gold-query vs.
parsed-answer, and 2) gold-query vs. gold-answer, to determine how effective the Smatch metric is in
capturing the shared semantic content between query and answer with and without AMR parsing error.

Q1 Which fluids have higher concentrations of SARS-CoV-2 particles?
As of June 2020, this research question was judged most urgent by the UV researchers and they found
very little supporting literature on the subject—only a single document with several informative sen-
tences in the results section, and one sentence summarizing the information sought:
A1 Overall, we found higher SARS-CoV-2 titers from saliva than nasopharyngeal swabs from hospital
inpatients (Wyllie et al., 2020).

9https://poppler.freedesktop.org/

https://poppler.freedesktop.org/
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We were encouraged to find that our system ranked this sentence as an answer third by Smatch F-
measure (23%) and fifth by recall (17%). Notably, this sentence has similar phrasing to the question,
and as a result, their AMR structures are more similar. The parsed-answer does have a variety of errors,
most arising from problems with the have-degree-91 argument assignment (this is the roleset used
to express comparatives in AMR, including “higher”). As noted above, to test for the noise introduced
by automatic parsing errors, we also scored the gold-query vs. gold-answer, shown in Figure 4. This
gold pair actually receives a slightly lower Smatch F-measure, at 20% (compared to 23% on gold-query
vs. parsed-answer). These results made clear that valid query-answer AMR pairs may vary widely in
Smatch scores, ranging from 20% to just under 80%, as found for the simple pair in Figure 1.
Q1. Which fluids had higher concentrations of virus particles ?

(h2 / have-degree-91
:ARG1 (a / amr-unknown

:domain (f / fluid))
:ARG2 (h / high-02

:ARG1 f
:ARG2 (v2 / virus

:consist-of (p / particle
:mod (v / virus)
:ARG1-of (c / concentrate-02))))

:ARG3 (m2 / more))

A1. Overall , we found higher SARS-CoV-2 titers from saliva than nasopharyngeal swabs
from hospital inpatients.

(f / find-01
:ARG0 (w / we)
:ARG1 (h / have-degree-91

:ARG1 (s3 / saliva
:source (i3 / inpatient

:location (h6 / hospital)))
:ARG2 (h5 / high-02

:ARG1 s3
:ARG2 (v / virus :name (n2 / name :op1 "SARS-CoV-2")

:quant (v2 / concentration-quantity
:unit (t2 / titer))))

:ARG3 (m / more)
:ARG4 (s5 / swab-01

:ARG2 (n3 / nasopharynx
:part-of i3)))

:mod (o / overall))

Figure 4: Gold-query Q1 compared with gold-answer A1

Q2 What is the range of sizes of respiratory droplets, specifically from coughing and sneezing?
This question had two target documents with several answers that provided information on different
aspects of this question. As discussed earlier, the expected InfoForager output need not be a single
answer, but rather might include various types of relevant information, which the experts would examine
further for source and approach used to obtain that data point. Answers to this question depend on, for
example, the methods used to detect the sizes and numbers of droplets, and the location of measurement
relative to the droplet source. Because definitions of “droplet” or “aerosol” can depend upon the user, it
was expected InfoForager may not find all relevant answers. Answers here include:
A2a And the geometric mean of droplet size of all the sneezes is 360.1 µm for unimodal distribution and
74.4 µm for bimodal distribution... (Han et al., 2013).
A2b ...while sneezing produces a greater number of particles than coughing, particles from both activities
are of a similar size (a sneeze produces 40,000 - 4,600 particles with 80% of these particles being smaller
than 100 µm compared with coughing which produced up to few hundred particles sized between 20 and
> 100 µm) (Gralton et al., 2011).
Although both answers mention “size,” they are more complex and distinctly phrased than the question.
As a result, our system rankings for this question were weak. For the first target document, two answer
sentences ranked in 55th and 128th positions (by Smatch F-measure) out of 1,056 possible matches. For
the second target document, one answer sentence ranked 156th of 850 possible matches, while the other
received a 0 Smatch score, placing it in the lowest rank where all sentences received a 0 Smatch score.
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Given that these low Smatch scores could reflect poor automatic parsing preventing a match, or that the
Smatch algorithm does not capture the overlap seen in a Q-A pair, we again examine the gold pair (gold-
query vs. gold-answer) for the two answers above (to compare against the gold-query vs parsed-answer).
When scored against the gold-query, the gold-answer A2a receives an Smatch f-score of 16%, whereas
the parsed-answer A1 scored significantly higher at 25.8%. For the far longer sentence A2b, its gold-
answer receives an Smatch score of 10%, due in large part to its length and complex structure relative to
the question. Curiously, the parsed-answer A2b fared far worse, receiving a score of 0. Thus, these A2a

and A2b scores for the gold pairs are, in a rough sense, about as challenging to interpret as the A2a and
A2b scores comparing the gold-query to their parsed-answers. Significantly more data will be needed to
ascertain all the factors in the scoring, but we can see that noise alone from the automatic parse is not the
primary cause of low Smatch scores.

Qt What types of UV light are used in coronavirus research?
For this user-study training question, one target answer document and the following answer sentence
were identified:
At In conclusion, air disinfection using 254 nm UV-C may be an effective tool for inactivating viral
aerosols (Walker and Ko, 2007).
As with Q2 above, the phrasing of Qt leaves open a variety of different answer types, with very different
phrasing from the question itself. Nonetheless, our system performed better with this Q-A pair, ranking
this parsed answer at the 29th position (Smatch F-measure 24%) out of 406 possible matches, compared
to the corresponding gold pair scoring an Smatch of 18%, indicating again, that noise alone from the
automatic parse is not bringing down the Smatch score.

To recap, we have seen that this approach using AMR and Smatch can be effective when an answer sen-
tence shares structured semantics with the question. However, when the question is more open-ended,
searching for “ranges” and “types,” the Smatch approach is much less likely to perform adequately.
While these words may on occasion be present in document collections with answers that the UV re-
searchers seek, we realize that InfoForager itself must be augmented to recognize such higher-order
questions and, more like a dialogue system with an intelligent agent, potentially engage the user in refor-
mulating their question.

6 Related Work

Previous research has leveraged AMR within the biomedical domain for applications that, like ours, en-
tail natural language understanding, such as information extraction. Garg et al. (2016) use AMR in a
graph kernel learning framework to extract biomolecular interactions and report that the use of AMR
significantly improves accuracy on this task over surface and syntax-based features, with the best per-
formance achieved by combining AMR and syntax-based features. Notably, this research also furnished
the Bio-AMR dataset of 400 manually annotated and 3k automatically annotated AMRs from PubMed
scientific articles, which were incorporated into retraining the AMR parser used in InfoForager. Rao et
al. (2017) use AMR to identify molecular events/interactions in biomedical text. The authors first de-
fine biomedical events of interest as subgraphs within AMR graphs, and develop a neural network-based
model that identifies such an event subgraph given an AMR. While the method shows promising results,
the authors find that improvements in AMR parsing are needed for further improvement on the task.
Wang et al. (2017) were the first to make use of AMR embeddings, in this case along with word and
dependency embeddings, to mine for otherwise hidden reports of drug-drug interactions (DDI) in the
textual biomedical literature. The best performance the authors report was obtained by combining these
three types of embeddings. They also noted that AMR embeddings alone, leveraging the JAMR parser
(Flanigan et al., 2014), did not perform adequately for this DDI task, and, like others, attributed this to
poor parser performance due to limited medical terms and documents in its training dataset.

Other research that leverages AMR in tasks similar to ours has focused on question-answering. Mitra
and Baral (2016) use AMR as an intermediate representation for question-answering tasks designed to
test an agent’s understanding. The authors find that the addition of a formal reasoning layer significantly
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increases the reasoning capability of an agent, and that AMR serves as an effective pivot from natural
language to the Answer Set Programming language used for reasoning and inductive logic. AMR is
leveraged for a machine reading comprehension (MRC) task for question-answering in Sachan and Xing
(2016). Here, the authors first convert a Q-A pair into a single AMR “hypothesis” graph. Additionally,
the authors create an AMR for an entire passage, as opposed to the standard single-sentence AMR, by
combining at coreference points. With these two AMR graphs, the authors transform the MRC task to a
graph containment problem. The authors use a max-margin approach for subgraph matching, reasoning
that the hypothesis graph aligns to the passage graph where the question is best answered, not unlike
the intuition in InfoForager of applying Smatch to find the best alignment of triples from the query
AMR DAG to triples from sentence AMR DAGs in a searched document. The authors obtain compet-
itive results and point out that this approach uniquely allows them to combine evidence from multiple
sentences. Although they do not use the AMR formalism per se, Du and Cardie (2020) achieve state-of-
the-art performance on the Automatic Content Extraction (ACE) 2005 benchmark event extraction task
by making use of template-based questions within a BERT-based question-answering model, suggesting
to us that an extension to AMR-based question templates might further improve their approach. The au-
thors experimented with several template strategies for forming the questions targeting the event and its
participants. Most relevant to our work, the authors found that the success of their approach was strongly
influenced by different questioning strategies, ranging from posing a single keyword as the question to a
multi-turn progression of structured questions, and conclude that more natural language questions lead
to significantly better performance.

7 Conclusions & Future Work

Our six-week sprint brought together researchers of different backgrounds (UV inactivation and NLP) to
identify research requirements, and design and test a prototype framework with software available from
other projects. We also identified facts about COVID-19 now more widely known: testing saliva is more
effective than nasopharyngeal swabs, given the concentration of the virus is higher in saliva.

We maintain our working hypothesis that the InfoForager framework is promising for facilitating a search
system that allows for natural language questions, and in finding answers matching not only on key-
words, but the semantic relations between those keywords. However, this process demonstrated that
using Smatch for graph matching does not allow us to take full advantage of the semantic structure that
AMR offers in this task—namely pinpointing the concept sought in an answer and its direct semantic
relations to other concepts. One path we are exploring in the short-term is to have users input their hy-
potheses in lieu of queries. For example, for Q1, a user might input a hypothesis like Saliva has a higher
concentration of coronavirus than nasopharyngeal fluid. Prompting an expert user for a hypothesis could
enable us to leverage Smatch more fruitfully to find other graphs more similar overall to the candidate
answer, following insights from Sachan and Xing (2016). Although this approach may prove useful, it
runs counter to our users’ stated preference for posing natural language questions, and would bias the
presentation of system results towards the hypothesis graph. This approach would also be inherently
limiting for non-expert users with insufficient background to formulate initial hypotheses. The longer-
term solution we are exploring follows the related work mentioned above more closely, searching for
subgraphs within larger passage graphs that match the query graph (as opposed to scoring the triples of
a full query graph against those of a full sentence graph), with supervision from ontological and lexical
resources to determine the categories of words in general that could fill certain semantic slots, thereby
augmenting what constitutes subgraph matches. For example, for Q1, we would search for matching
subgraph structures where the concepts in the graph could be filled with any phrase for bodily fluids in
the relationship of comparison of virus concentrations. Thus, the query would be expanded to a vari-
ety of paraphrase alternates, similar to the use of HyTER networks in past AMR research (Dreyer and
Marcu, 2012), supporting the full range of matching answer subgraphs. These avenues for future work,
in combination with our own findings, encourage us to continue this exploration of semantic search for
information foraging, and engage with users to rapidly adapt capabilities for such urgent and dynamically
changing situations as the coronavirus pandemic.
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