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Executive Summary 

In support of a US/UK Technical Exchange Meeting on Artificial Intelligence & 
Autonomy Collaboration, the Institute for Defense Analyses (IDA) was asked to prepare a 
summary of academic work related to Test and Evaluation, Verification and Validation 
(TEV&V) of autonomous or artificial intelligence (AI) systems. This paper enumerates 
TEV&V challenges that have been identified by the commercial, academic, and 
government autonomy research communities, describes the focus of current academic 
research programs, and highlights areas where current research leaves unaddressed gaps in 
capability.  

The academic research currently relevant to defense issues is concentrated in work on 
formal methods.  For reasons ranging from development efficiency to operator trust, it will 
be essential to understand the inner workings of AI systems. “Explainable AI” has become 
a goal, and the US Defense Advanced Research Projects Agency (DARPA) has recently 
started a program by that name. “Cognitive instrumentation”—the ability to see into the 
inner working of the decision engines—will be essential, and work in this area is beginning 
as well. This instrumentation will also be needed to support run-time monitoring, which 
will now need to extend to monitoring the decision space as well as the physical envelope. 
Finally, adversarial testing is receiving increasing attention. This will be of special 
importance to the Department of Defense; rare but catastrophic failures are harder to avoid 
in this context than they are in commercial settings.  

There is a brief discussion of the TEV&V tools that are being developed to facilitate testing 
of autonomous capabilities. 
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1. Introduction 

Both the US Department of Defense and the UK Ministry of Defence have stated 
publicly that future defense capabilities are expected to depend heavily on autonomous 
systems—systems that make sophisticated judgments about the world, choose appropriate 
courses of action, and perhaps even adapt and learn over time. Developing and deploying 
such systems poses more than just a technical challenge in robotics and artificial 
intelligence (AI)—it also poses many challenges to the acquisition processes and 
workforces of the respective nations. From cost estimation to sustainment planning, every 
aspect of acquisition will be affected. In particular, test, evaluation, verification, and 
validation (TEV&V) of systems with autonomous capabilities may require not only novel 
methodologies and resources, but organizational and process changes as well. 

This memorandum enumerates TEV&V challenges that have been identified by the 
commercial, academic, and government autonomy research communities; describes the 
focus of current academic research programs; and highlights areas where current research 
leaves unaddressed gaps in capability.  
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2. A Taxonomy of Challenges 

Training materials currently in development by the US Department of Defense 
identify 10 recurring challenges for TEV&V that are specific to or exacerbated in 
autonomous systems. 

1. Instrumenting machine thinking 
To diagnose the causes of incorrect behavior or inadequate performance, it will 
be necessary determine whether the problem lies in the Perception, Reasoning, 
or (course of action) Selection functions of the autonomous system—even after 
it has been established that the problem is not in the sensor hardware or signal 
processing. It will also be necessary to distinguish coding errors from inadequate 
algorithms or bad training data. Without the ability to instrument and monitor 
internal states of the autonomy, diagnosing problems will be slow at best and 
impossible at worst. 

2. Linking system performance to autonomous behaviors 
In complex collaborative activities, it can be very difficult to determine what 
enables (or hinders) success. For example, on a soccer or basketball team it can 
be very difficult to pinpoint which players (and which behaviors) are leading to 
wins and losses. To design and improve autonomous systems, it will be 
necessary to understand how the system’s various autonomous capabilities 
interact to enable (or hinder) mission execution. The requirements specification 
for autonomous behavior is often a problem here due to incomplete 
specifications based on an analogy with human behavior.  

3. Comparing AI models to reality 
Autonomous systems represent reality through stylized internal models. 
Perception provides inputs for these models; Reasoning allows them to be 
expanded and corrected. The ability of an autonomous system to do its mission 
will depend on the degree to which the internal modeling of reality supports 
accurate Perception, valid Reasoning, and effective Selection. This will not 
generally be a function of how detailed the models are (“high resolution”) or 
even of how closely the models mirror reality (“high fidelity”)—it will be a 
function of whether the right kind of information is incorporated into the model 
and that the resolution and fidelity be enough to support the mission needs. 
TEV&V will necessarily include prototyping and experimentation to determine 
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what kind of internal model, using what kind of representation, is needed to 
achieve both performance and dependability. 

4. CONOPS and training as design features 
To date, the paradigm for designing systems has been to make a reasonable 
guess about how the operator(s) will use that system and what the user interface 
should look like, and then work out the details of the Concept of Operations 
(CONOPS), tactics for effective employment, and training of future operators 
long after the basic design has been decided. For autonomous systems, where 
the system operates itself to some extent and interacts autonomously with 
humans, the details of CONOPS and tactics (and corresponding training) are 
part of the system design, at least on the machine side (and probably on the 
human side as well), and will have to be identified, verified, and validated much 
earlier in the development process. This will pose organizational and personnel 
challenges to T&E, as well as methodological challenges. 

5. Human trust 
In human-machine teaming (HMT) contexts, how the humans behave (and thus 
how well the team performs) depends in part on the humans’ psychological 
attitudes toward the autonomous systems. “Trust” is the term generally used to 
describe those attitudes, though in practice those attitudes are generally more 
nuanced and multi-dimensional than simply asking “how much do I trust it?” In 
order to design, debug, and assure performance, TEV&V will need to be able to 
measure the various dimensions of trust, to support understanding of how trust 
affects team performance. 

6. Elevated safety concerns and asymmetric hazard 
Traditionally, TEV&V personnel have relied on the training and common sense 
of equipment operators to provide many kinds of safety assurance, both in the 
field and on the test range. Autonomous systems potentially take many of the 
decisions underlying routine safety out of the hands (and minds) of operators, 
and depend instead on complex software that allows the system to “operate” 
itself. During Developmental Test and Evaluation and into Operational Test and 
Evaluation, it is likely that the software will still contain major bugs and that the 
algorithms and training data being used might not be the final choices. This 
creates a potential for various kinds of mischief—especially for weapon 
systems, highly-mobile systems, or other systems that could be dangerous in the 
hands of an unreliable operator. 
Similarly, the most striking successes of AI, machine learning, and autonomous 
systems to date have occurred in contexts where the cost of error is low. For 
autonomous military systems, this will not generally be the case—designating 
incorrect targets, responding to spurious cyber attacks, misidentifying 
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individuals or objects, crashing unmanned vehicles into obstacles, and other 
potential failure modes of autonomous systems are all potentially very costly. 
Apart from driverless car efforts, there are few active research programs today 
for applications with highly asymmetric hazard functions. 

7. Exploitable vulnerabilities 
When systems operate themselves, they can be vulnerable to modes of attack—
cyber, electronic, or physical—that would not be as much of a concern for a 
human-operated system. For example, a cyberattack that compromised the 
ability of an autonomous unmanned aircraft system (UAS) to recognize other 
aircraft or physical proximity illusions that repeatedly triggered the UAS’s 
collision avoidance subroutine might be much more effective than they would 
be against a human-piloted aircraft. AI based on machine learning has its own 
set of potential vulnerabilities, both during training of the AI and in operation. 
TEV&V of autonomous systems will need to be aware of this expanded attack 
surface. 

8. Emergent behavior 
US DoD Directive 3000.09 specifically warns against the possibility of 
“unanticipated emergent behavior resulting from the effects of complex 
operational environments on autonomous or semi-autonomous systems.” 
Developing T&E methods to analyze the potential for emergent behavior in 
order to avoid it will be central to providing assured dependability for 
autonomous systems. 

9. Post-fielding changes 
Systems that employ unsupervised learning or other adaptive control algorithms 
during operations will continue to change their behavior over time. This creates 
a need not only for periodic regression testing, but also for predictive models of 
how post-fielding learning might affect system (or team) behavior. Traditional 
TEV&V is concerned with the effectiveness and suitability of the system as it is 
today. Needing to be able to predict the effectiveness and suitability of the 
system as it might become is a new challenge. 

10. Verification and validation of training data  
Machine learning—especially supervised or reinforcement learning—depends 
critically on the data used to train the AI. It is an axiom of computer scientists 
working in this area that “the intelligence is in the data, not the algorithm.” 
Supervised learning data must not only be representative of the range and type 
of data the system will take as input during operations, but must also be 
correctly and completely labeled. This leads to a need for verification, 
validation, and accreditation (VV&A) of the data used to train the AI that is 
similar to the need for VV&A of modeling and simulation. 
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3. Potential Approaches to Overcome These 
Challenges 

Academic and government researchers have begun work on a number of techniques 
and methodologies that might help to overcome these core challenges. Current efforts fall 
into four primary categories: formal methods, cognitive instrumentation, adversarial 
testing, and run-time monitoring. We discuss each of these below, then consider the 
question of how well they cover the full set of capability gaps implied by the challenge list. 

A. Formal Methods 

1. Summary 
Formal methods in software development allow developers to specify certain 

properties that the software should have, produce the software, and verify that it does have 
those properties without needing to confirm that empirically by testing for them. Properties 
to be specified might be things like: 

Property 1: the weapon cannot fire while turret is still rotating 
Property 2: the course-of-action selector can never get into an infinite loop 

There are two approaches to formal methods for autonomous systems verification: 
(1) formal methods can be used after the fact as an analytic tool to verify some properties 
of existing software, or more importantly, (2) formal methods can be used as a design and 
development process that can assure much more about the behavior of the software to be 
developed.  

Formal methods of the second kind are most commonly used in the development of 
complex safety-critical or security-critical systems or for expensive one-time development 
efforts (e.g., deep space probes). Applying formal methods to complex AI and autonomous 
systems is a natural extension of this. 

2. Limitation 
Although formal methods can be extremely useful, there are significant constraints 

on the current state of the art. These include the following: 
Scalability: There are currently fairly tight bounds on the size of 
development effort (or state space) that the techniques can be applied to. 
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Scope: Not all desired properties can be assured through formal methods, 
and there may be performance trades associated with achieving assurance. 
Rigidity: Any change to a system developed using formal methods risks 
invalidating the assurance proofs, unless the formal methods are reapplied 
to the new specification. 

Given that not all desired behaviors can be assured using formal methods, there are 
also open research questions concerning how to combine formal methods with empirical 
TEV&V techniques or run-time monitoring strategies. 

B. Cognitive Instrumentation and Explainable AI 

1. Summary 
The key distinguishing feature of autonomous systems is that they make decisions, 

when interpreting their environments and selecting courses of action. Test and evaluation 
of autonomy will depend critically on the ability to assess the quality of this decision-
making capability. In general, observed high-level system performance in limited test 
scenarios will not be sufficient to validate and verify autonomous decision-making in the 
ways necessary for successful development and deployment, especially for systems 
designed to team with humans. Instead, novel instrumentation approaches will be required 
to diagnose and characterize: 

• Adequacy of architectures and algorithms (including machine learning). 

• Adequacy and appropriateness of training data. 

• Effectiveness of operational concepts for HMT.  

2. Why Explanations Are Needed 
Explanations of system behavior support at least four distinct goals for military 

systems: 

1. Diagnosis: Knowing why the system is exhibiting undesired behavior is the first 
step toward fixing it. 

2. Prediction: Being able to forecast how the system will behave in given 
circumstances is essential to effective employment of the system. 

3. Bounding: Understanding the limits of dependable performance allows 
formulation of tactics/techniques/procedures for how the system is to be used 
and identification of where run-time monitoring of system state may be the only 
way to avoid undesirable behaviors. 



 

3-3 

4. Trust: If humans are teaming with autonomous machines, the overall 
performance of the human-machine system may depend on how well the 
humans feel they understand the reasons behind the machine’s behaviors.  

For traditional software employing procedural algorithms, the logic of the algorithm 
traditionally serves as the explanation. Describing the flow of control (e.g., using 
pseudocode or flowcharts) at various levels of description could “explain” the behavior of 
the system. As systems have grown in complexity, the ability of humans to understand the 
logic of the systems in a way that counts as an “explanation” has eroded.  

Machine learning breaks this paradigm completely by replacing comprehensible 
procedural logic with a trained ability to generate outputs from inputs in a manner that 
looks much more like an intuition or hunch than like reasoning. The relationship between 
input and output is fundamentally opaque; there is no procedural logic to be traced. 
Producing surrogate procedural descriptions that summarize how the system is reaching its 
conclusions in ways that can function as explanations for purposes of diagnosis, prediction, 
bounding, and trust requires additional work and access to the internal states (and possibly 
the training algorithm) of the machine-learning module. (Note that different explanatory 
frameworks will generally be needed for each of these goals—the explanation appropriate 
for diagnosis may be very different from the explanation required for bounding or trust.) 

The US Defense Advanced Research Projects Agency (DARPA) has recently 
launched a funded research program in “Explainable Artificial Intelligence” (XAI). The 
four goals mentioned above (diagnosis, prediction, bounding, and trust) are all represented 
in the Explainable AI program. “Explainability” in the XAI program involves multiple 
measures of effectiveness, depending on which of the goals is being pursued. These 
measures can include human satisfaction with the explanation, how helpful the explanation 
is in choosing how to interact with the autonomous system, how well the explanation 
supports diagnosis of unexpected behaviors, or how well the explanation predicts future 
system behavior. 

3. Cognitive Instrumentation 
The phrase cognitive instrumentation refers to any measurement of internal system 

states of the software modules that provide the autonomous capabilities of a system. There 
is an obvious analogy with physical measurement of internal system state (e.g., 
temperature, pressure, voltage, torque) during development, test, and evaluation of 
hardware systems. As with those physical analogues, the measurements may be only for 
TEV&V purposes, or they may be incorporated into the design of the system as run-time 
monitors on behaviors that cannot be adequately assured through other means. 

One area of explainability research involves designing autonomous systems to self-
report their reasons for their behaviors. This is a promising approach, but it does not avoid 
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the need for instrumenting the internal states of the system. At a minimum, verification and 
validation of the self-reporting system will involve the same diagnosis, prediction, and trust 
issues as the mission behavior of the system, with an associated need to look inside the 
black box and make sense of what is happening there. At some point, all system 
development requires knowing the truth about what is happening inside the system. 

In the special case of HMT, where the machines have significant autonomous 
capabilities, cognitive instrumentation will include measurements of both the machines and 
the humans, as well as the interface between them. Measurement and characterization of 
trust by humans is already a rich area of academic research. Measurement and 
characterization of machine understanding of human intent is also receiving increasing 
attention. There are also active research programs exploring the design of HMT protocols. 
Some of these focus on the optimal allocation of work between humans and machines in 
various contexts. Others are concerned with optimal communications protocols—under 
what circumstances should humans or machines volunteer information (and which 
information), make suggestions, or ask for guidance? Without cognitive instrumentation, 
those optimization programs could easily devolve into guesswork and trial-and-error. 

Cognitive instrumentation is a necessary condition for Explainable AI; any valid 
explanation of how the AI is thinking or why it is behaving a certain way must be based 
on accurate measurements of its internal states. However, the measurements themselves 
are not the explanation. A complete state description will generally be so complex that it 
is not understandable, whereas too small a subset of measurements will generally not be 
sufficient to support explanation. Additional effort will be required to identify a minimal 
sufficient set of measurements that can be used as inputs to explanatory models that can be 
understood in human terms for diagnosis, prediction, bounding, and developing 
appropriate operator trust. There are many tricky steps between “the weights in layer 17 of 
the neural network are as follows” to “the system seems to be recognizing cats by their ears 
and coloration.” As noted above, different explanatory models will be needed for the 
different goals—an explanatory model supporting useful diagnosis for developers may be 
much more complex (and unwieldy) than a model that produces explanations of mission 
behavior for operators or commanders. 

C. Adversarial Testing 
As noted in Challenge 6, many defense applications will require very low 

probabilities of high-cost events occurring. For systems with extremely large and highly 
nonlinear state spaces, it will not be possible to provide that assurance statistically using 
traditional Design of Experiments techniques. Adversarial testing, especially when 
combined with machine learning and automated test design methods, provides a potentially 
more efficient means to identify and eliminate potential failure modes. In this approach, 
analytical techniques are used to identify test scenarios in which the system is most likely 
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to perform unacceptably and focuses testing in those portions of the state space to 
maximize diagnostic information and inform robust design. 

As a specific example, one could apply reinforcement learning to the selection of 
environmental factors as input to the test cases in a modeling and simulation driven test 
bed that included the AI software running the autonomous systems. The environment could 
be treated as a “thinking adversary” in an asymmetric game. The environment would learn 
optimal strategies to defeat the autonomous system, even as the autonomous system learned 
improved strategies to counter the environment. This would both maximize the chance of 
finding key vulnerabilities and weaknesses and help discover ways to mitigate or avoid 
those vulnerabilities.  

The vulnerabilities need not be isolated within the autonomous system itself—they 
might also arise from the proposed CONOPS, especially in the case of significant HMT. 
They could also be associated with bias or incompleteness in the training data used in 
supervised learning to develop the autonomous capabilities. Cognitive instrumentation 
would be needed to distinguish inadequate algorithms or models from inadequate 
CONOPS or flawed training. 

Finally, we note that this approach requires domain expertise as well. The operating 
environment and mission must be well enough understood so that the apparent 
“weaknesses” are not associated with impossible circumstances. If the weakness occurs 
only during heavy rainfall at temperatures below –40° C, it will be a weakness we can live 
with. More subtly, the domain expertise will need to be sufficient to estimate probability 
of occurrence of the conditions that exposed the weakness. As mentioned before, utilization 
in the defense sector will require attention to the likelihood of seriously adverse outcomes. 

D. Run-Time Monitoring 
Given the difficulty of assuring that a system will not exhibit specific undesired 

behaviors, a natural thought is to instead monitor the system during operations and 
intervene when bad behavior is imminent. This approach is already common in engineering 
practice for safety-critical systems. It is mentioned explicitly in the recent US Unmanned 
Systems Integrated Roadmap 2017-2042: 

For the most demanding adaptive and non-deterministic systems, a new 
approach to traditional TEVV will be needed. For these types of highly 
complex autonomous systems, an alternate method leveraging a run-time 
architecture that can constrain the system to a set of allowable, predictable, 
and recoverable behaviors should be integrated early into the development 
process. Emergent behaviors from large-scale deployment of interacting 
autonomous systems poses a difficult challenge. The analysis and test 
burden would thereby, be shifted to a simpler, more deterministic run-time 
assurance mechanism. The effort for new approaches to TEVV endeavors 
to provide a structured argument, supported by evidence, justifying that a 
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system is acceptably safe and secure not only through offline tests, but also 
through reliance on real-time monitoring, prediction, and fail-safe 
recovery.1 

Although this mechanism might indeed be simpler than avoiding unpredictable 
behaviors in the first place, it is not without its own challenges. In general, any behavior 
whose dependability cannot be adequately assured through system design and training 
would need to be monitored, with a robust intervention standing by. This means not only 
intervening when the system is about to execute some undesired physical action (e.g., one 
that might risk harm to the system or to humans), but also intervening in any case where 
the system is making a bad decision or misinterpreting its environment. Detecting such 
cases and handling them gracefully will not always be easy. Research is required into 
architectures to support this concept, instrumentation needs and control algorithms to 
predict and avoid specific failure modes, systematic identification of conditions to be 
monitored for, robustness against attacks designed to invoke fail-safe behaviors, and so 
forth. It goes without saying that the fail-safe systems would themselves need to be verified 
and validated as well. 

 

 

 

 

 

 

                                                 
1 Unmanned Systems Integrated Roadmap 2017-2042, US Department of Defense, 28 August 2018, p. 10 



 

4-1 

4. Resources and Tool Development 

The exploding state space requires far more efficient and more intrusive testing of 
machine decision making than is currently the norm in defense software testing. The goal 
of the Science and Technology (S&T) programs will ultimately be to enable the 
development of tools. Some prototype tools have already been developed, such as the 
Range Adversarial Planning Tool (RAPT), a system that embeds the autonomous software 
in a virtual environment, then uses advanced optimization techniques to identify portions 
of the state space that exhibit either poor performance or high sensitivity to inputs. The 
outputs are then used to prioritize physical tests of the actual system; the results of those 
tests are used to update and improve the simulation models and to inform design changes. 

Though RAPT is an example of an adversarial testing approach, we anticipate that 
many tools will be hybrid applications. For example, RAPT could be augmented with 
cognitive instrumentation, which would help to identify not only where in the performance 
space there are shortfalls, but why. Some work is underway using formal methods to design 
a base decision engine. This can be used as a starting point for performance optimization 
with machine-learning techniques. This in turn could be combined with run-time 
monitoring (including monitoring of the decision algorithms via cognitive instrumentation) 
to trigger a fail-safe recovery when things go awry. Alternatively, formal methods could 
be used to reduce the dimensionality of the test space, leading to more efficient coverage 
in either Modelling and Simulation (M&S) or open air testing. 

Beyond specific tools, facilities able to mix live, virtual, and constructive (LVC) 
elements in the TEV&V of the AI elements driving autonomous systems will be essential 
elements in both design and TEV&V. The use of modeling and simulation in support of 
these efforts will have critical differences from the traditional uses of M&S. In particular, 
the M&S will have to support rapid exploration of a decision space, rather than high 
resolution modeling of a physical space. TEV&V of machines intended for active teaming 
with humans will probably require the creation of simple models of both the machine and 
the human.  

As tools focused on TEV&V of autonomous systems and their AI drivers develop, 
and LVC facilities to support autonomous system development are built, S&T efforts that 
support their development or enable extension or integration of existing tools will be of 
particular value. 
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5. Data 

The most impressive recent advances in AI have been driven by extremely data-
intensive machine learning techniques, especially those involving neural network 
architectures. The increasing dominance of these techniques is such that “the intelligence 
is in the data, not the code” has become an axiom for many researchers. Although this is 
an oversimplification—the neural network architecture also matters—it is a reasonable 
characterization of the current philosophy of machine learning. 

If the intelligence is in the data, then so too are the bugs. At best, the weights in a 
trained neural network accurately summarize the data used to train them. If the training 
data set is not perfectly representative of what actual operational data will look like, over- 
or under-represents certain cases, or contains unnoticed spurious correlations, those flaws 
will be perpetuated (and perhaps magnified) in the outputs of the trained system. Examples 
of this abound in the literature, including visual imagery analysis systems that “learned” to 
distinguish US from Russian military equipment based on whether the image was brightly 
lit or not, and job search systems that “learned” to recommend lower-paying jobs to 
women. 

This suggests that verifying and validating the data used to train an AI system will be 
a critical part of TEV&V of the overall system. There is a useful analogy here with VV&A 
of modeling and simulation used during system development and testing. There are also 
important unresolved questions involving data labeling, reuse of training data across 
applications, incremental or supplemental training (as opposed to retraining from a clean 
slate) when additional data become available, production of synthetic training data, 
adversarial data, data security, proprietary rights to training data, and many other related 
issues. Research in these areas is just beginning; it is not clear that all of the important 
questions have yet been identified. 
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6. Summary 

AI is widely expected to transform the defense enterprise. Defense will need to meet 
the challenge of how it can be utilized and accepted into service across the broad terrain of 
the defense enterprise. Defense-specific fundamental research is needed to underpin this 
utilization and acceptance. Although many techniques can be borrowed from the 
commercial sector, there are key recurring differences in the nature of the applications.  

One of these is the basic difference between the costs of error in commercial and 
defense applications—particularly for modern weapons systems. For autonomous systems, 
especially those with advanced AI capabilities, the extensive decision space to be explored, 
coupled with the potentially catastrophic consequences of error, will naturally lead to some 
resistance to adoption. If TEV&V is not to be one of the barriers to AI entry into service, 
new and novel approaches to TEV&V will be needed.  

A second major difference is in the nature of the data available in commercial and 
military applications. Because of the potential for serious consequences, training data for 
military AI systems will need a level of TEV&V much more stringent than in commercial 
settings where the costs of error are small. This represents a new or expanded role for 
TEV&V, similar to current VV&A of modeling and simulation. 

Despite these important differences, it is prudent, if not essential, to capitalize on the 
academic work to date to the maximum extent possible. We have discussed several current 
academic research thrusts relevant to the challenges of TEV&V of autonomous systems: 

• Formal methods for ensuring correctness and proving properties of software 
where possible. 

• Cognitive instrumentation to diagnose flaws in Perception/Reasoning/Selection, 
evaluate the effectiveness of CONOPS, and provide evidence for assurance 
cases. 

• Explainable AI, using information from cognitive instrumentation to establish 
assurance (among responsible authorities) and calibrated trust (among 
operators/teammates) of developed AI/machine learning/autonomous systems.  

• Adversarial testing of decision engines to rapidly identify vulnerabilities and 
weaknesses. 

• Run-time monitoring of key outcomes to be avoided. 
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These will prove essential in making safety and dependability assurance cases to users 
and certifiers. The possibility of seriously adverse outcomes requires an element of testing 
that preferentially seeks adverse outcomes and is able to assess the associated risks: 
probability and consequence. It is likely that successful fielding of autonomous systems 
will frequently involve deliberately trading away some mission capability in favor of 
higher robustness against worst-case outcomes and higher understandability of machine 
behaviors by humans. 

Science and technology investment in these areas will be important. It will be of 
special value when it can lead to tools that either make TEV&V more efficient, or make 
critical information more available. This will address the challenges of the state space 
explosion and of the need to ensure that highly adverse outcomes will be sufficiently 
unlikely. In addition, ensuring the effectiveness and suitability of training data is more 
challenging and potentially much more important for defense applications than for 
commercial ones. A new science of training data management, involving not just TEV&V 
in specific applications but also reuse, configuration management, and synthetic data 
generation, may be required.
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