
RESEARCH REVIEW 2019

Scott McMillan | smcmillan@sei.cmu.edu
CMU collaborators: Elliott Binder, Mark Blanco, Paul Brower, Franz Franchetti, James C. Hoe, Tze Meng Low, 

Peter Oostema, Fazle Sadi, Daniele Spampinato, Upasana Sridhar, and Jiyuan Zhang

[DISTRIBUTION STATEMENT A] 
Approved for public release and unlimited distribution

P16

  1 2 3 4 5 6 
1 – 1 1 – – – 
2 1 – – 1 1 – 
3 1 – – – 1 – 
4 – 1 – – – – 
5 – 1 1 – – 1 
6 – – – – 1 – 

1, 2, 3, 4, 5, 6, 3

  1 2 3 4 5 6 
1 – 1 – – – 1 
2 1 – 1 1 – – 
4 – 1 – – – – 
5 – 1 – – 1 1 
6 – – – 1 – – 
3 1 – – – – – 

Monotonic walk down the matrixNon-uniform walk through the matrix

Permute A
OR

2 2

3

1 5

B

C

DA

Spiral/AIML: Frontiers of Graph Processing in Linear Algebra

Introduction
Graph algorithms can be expressed as 
sequences of linear, algebra-like operations 
through the use of the adjacency matrix. 
Adjacency matrices are used to represent graphs 
instead of vertices and edges. 

Our work extends the use of linear algebra 
beyond simple graph traversal.

Writing Graph Algorithms in LA
Many graph primitives can be cast in terms of LA 
operations.  

• Neighbors of a vertex v—vector 
matrix products. 

• Filtering—Hadamard products. 
• Semi-rings—to represent Matrix Multiplication 

like operation (Single-Source Shortest Path 
uses the min-plus semiring). 

This mapping gets rid of the need for “experts” to 
formulate graph algorithms in LA.

• Formally derived algorithms

Families of Graph Algorithms
Multiple graph algorithms can be enumerated for 
the same specifi cation.

Our LA approach uses triangle counting:

𝚫=𝟏/𝟔 𝚪(𝑨^𝟑)

This approach allows us to analyze graph 
algorithms for individual performance 
characteristics. The algorithm that best-fi t the 
situation is chosen.

Busting Myths about Linear 
Algebraic Approach
Unifying Edge and Vertex Centric Algorithms

Both classes of algorithms can be expressed 
using a single linear algebraic framework.

Depth-First Search in Linear Algebra
First look at expressing depth-fi rst traversal 
of graphs in LA.

Linear Algebraic Approach can Yield 
Good Performance

2019 Graph Challenge Champion
2018 Graph Challenge Finalist
2017 Graph Challenge Honorable Mention

References
Low, Tze Meng, et al. “First look: Linear algebra-based triangle counting without matrix multiplication.” 2017 IEEE High 
Performance Extreme Computing Conference (HPEC). IEEE, 2017.

Lee, Matthew, and Tze Meng Low. “A family of provably correct algorithms for exact triangle counting.” Proceedings of 
the First International Workshop on Software Correctness for HPC Applications. ACM, 2017.

Low, Tze Meng, et al. “Linear Algebraic Formulation of Edge-centric K-truss Algorithms with Adjacency Matrices.” 2018 
IEEE High Performance extreme Computing Conference (HPEC). IEEE, 2018.

Sridhar, Upasana, et al. “Delta-stepping SSSP: from vertices and edges to GraphBLAS implementations.” 2019 IEEE 
International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2019.

Spampinato, Daniele G., Upasana Sridhar, and Tze Meng Low. 2019. “Linear algebraic depth-fi rst search.” In 
Proceedings of the 6th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array 
Programming (ARRAY 2019). ACM, New York, NY, USA, 93-104. DOI: https://doi.org/10.1145/3315454.3329962

Our linear algebraic 
approach to graph 
algorithms provides a 
fl exible framework
that enables high 
performance code 
generation for faster 
network analysis.

Operation Linear Algebra

Vertex bucketing

Edge Filtering

Neighborhood Traversal
with Relaxation

Writing Graph Algorithms in LA

5220_16_Resource-Constrained_Co-Optimization_for_High-Performance_Data-Intensive_Computing_Poster_7.indd   1 10/10/19   5:20 PM



Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR 
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT 
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.  Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be 
directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1045


	Blank Page

