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Spiral/AIML: Frontiers of Graph Processing in Linear Algebra

Introduction
Graph algorithms can be expressed as 
sequences of linear, algebra-like operations 
through the use of the adjacency matrix. 
Adjacency matrices are used to represent graphs 
instead of vertices and edges. 

Our work extends the use of linear algebra 
beyond simple graph traversal.

Writing Graph Algorithms in LA
Many graph primitives can be cast in terms of LA 
operations.  

• Neighbors of a vertex v—vector 
matrix products. 

• Filtering—Hadamard products. 
• Semi-rings—to represent Matrix Multiplication 

like operation (Single-Source Shortest Path 
uses the min-plus semiring). 

This mapping gets rid of the need for “experts” to 
formulate graph algorithms in LA.

• Formally derived algorithms

Families of Graph Algorithms
Multiple graph algorithms can be enumerated for 
the same specifi cation.

Our LA approach uses triangle counting:

𝚫=𝟏/𝟔 𝚪(𝑨^𝟑)

This approach allows us to analyze graph 
algorithms for individual performance 
characteristics. The algorithm that best-fi t the 
situation is chosen.

Busting Myths about Linear 
Algebraic Approach
Unifying Edge and Vertex Centric Algorithms

Both classes of algorithms can be expressed 
using a single linear algebraic framework.

Depth-First Search in Linear Algebra
First look at expressing depth-fi rst traversal 
of graphs in LA.

Linear Algebraic Approach can Yield 
Good Performance

2019 Graph Challenge Champion
2018 Graph Challenge Finalist
2017 Graph Challenge Honorable Mention
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Our linear algebraic 
approach to graph 
algorithms provides a 
fl exible framework
that enables high 
performance code 
generation for faster 
network analysis.

Operation Linear Algebra

Vertex bucketing

Edge Filtering

Neighborhood Traversal
with Relaxation

Writing Graph Algorithms in LA
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