
RESEARCH REVIEW 2019

We can make exact
predictions for 74.3%
of variable names in
decompiled executable
code by training a neural
network on a large corpus
of C source code from
GitHub.

Introduction
Conventional wisdom tells us that
when a compiler transforms a program
from source code to an executable file,
some information is lost and cannot be
recovered. For example, variable names
are not included in a compiled executable,
and we often assume they are lost.
Although state-of-the-art decompilers
can recover the presence of variables,
they make no attempt to recover their
original names. Instead, they name the
variables “v1,” “v2,” and so on. Renaming
the variables is unfortunate because, as
several studies have shown, programmers
carefully select variable names to make
the program easier to understand.

In this project, we showed that the
conventional wisdom that variable
names cannot be recovered is wrong.
Specifically, we showed that variable
names can largely be predicted based
on the context of code in which they
are used and accessed. We trained
a neural network to predict variable
names on a large corpus of C source
code that we collected from GitHub.

Corpus
To generate our corpus, we scraped
GitHub for projects written in C. We then
automatically built 164,632 binaries
from these project and extracted
1,259,935 functions. For each function,
we generated a corpus entry that
consisted of the original source code with
placeholder variables, as shown in the
code figure to the right.

Each corpus entry also included a
mapping from a placeholder variable to
the original identifier in the source code
and the decompiler’s identifier.

Results

Experiment Accuracy

Overall 74.3

Function in Training 85.5

Function not in Training 35.3

When evaluating a solution based on
machine learning such as ours, it is
important to consider the construction
of the training and testing sets. Each
binary was randomly assigned to
either the training or testing set. As
in real reverse-engineering scenarios,
library functions may be present in
multiple binaries and may therefore be
present in both the training and testing
sets. To better understand the effect
of the presence of library functions
on our system, we partitioned our
testing set into the set of functions
that were also in the training set and
those that were not in the training
set. As shown in the table above,
DIRE achieves 85.5% accuracy on
functions it has been trained on,
compared to 74.3% overall. For
functions that it has not encountered
in training, it yields 35.3% accuracy.

For more information, see: Jeremy Lacomis, Pengcheng Yin,

Edward J. Schwartz, Miltiadis Allamanis, Claire Le Goues,

Graham Neubig, and Bogdan Vasilescu. DIRE: A Neural

Approach to Decompiled Identifier Renaming, Procedings of

the 2019 IEEE/ACM International Conference on Automated

Software Engineering.

Bogdan Vasilescu | vasilescu@cmu.edu
Edward J. Schwartz | eschwartz@cert.org

[DISTRIBUTION STATEMENT A]
Approved for public release and unlimited distribution.

P1

Recovering Meaningful Variable Names in Decompiled Code

Decompiled Original Recovered

void *file_mmap(int v1|fd|fd, int v2|size|size)
{
void *ptr|ret|buf;
ptr|ret|buf = mmap (0, v2|size|size, 1, 2, v1|fd|fd, 0);
if (ptr|ret|buf == (void *) -1)
{ perror ("mmap"); exit(1); }

return ptr|ret|buf;
}

Key

01_Advancing_Assistance_Capabilities_for_Program_Analysts_Poster_5.indd 1 10/10/19 4:25 PM

Copyright 2019 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.
Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.
External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Requests for permission should be directed to
the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM19-1026

	Blank Page

