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As the line between clinical and personal health devices is blurred with new
personal health technologies, there is a need for secure and reliable integration
between enterprise Internet of Things (IoT) networks, private cloud networks,
and personal connected health devices. This chapter lays out foundational IoT
and cloud information-sharing requirements for healthcare, reviews existing and
potential approaches to facilitate this integration, and analyzes methodologies
for achieving heterogeneous data interoperability between various IoT sensor
ecosystems. We describe the information-sharing requirements for a healthcare
system infrastructure, and the corresponding security effects on infrastructure-
as-a-service (IaaS) and private cloud solutions for data management. The inte-
gration of data from personally used IoT sensors, such as smartwatches and
fitness trackers, with clinically collected information accessed by medical profes-
sionals introduces further security challenges and ethical issues regarding data
ownership, efficient data sharing, and privacy. Many of these challenges emerge
from traditional medical record access patterns, such as allowing delegation of
data access controls during emergency care and the sheer number of personnel
accessing medical data for consultations and support, potentially without the full
awareness of the patient. The information sharing requirements for a modern
healthcare infrastructure, based on IoT endpoints for data collection and cloud
computation and storage, include efficient data sharing, access auditing, data
filtering and transformation, as well as customizable delegation of data access
management responsibilities. We then enumerate various information-sharing
approaches to meet these unique demands for IoT and cloud integration in the
healthcare field, along with the associated efficiency, availability, security, and
ethical consequences of each approach. IoT devices add to data sharing chal-
lenges that exist today, starting with inconsistent connectivity interfaces, such as
WiFi, Bluetooth, and emerging communication interface technologies, like 5G.
The efficiency and adequacy of these approaches will be examined in further
detail through the lens of scenarios and dilemmas that may be common in future
integrated IoT and cloud healthcare environments. This review includes both
existing and potential implementation approaches for IoT and cloud data sharing,
providing specific examples of proposed and established systems with their ben-
efits and limitations. Finally, we analyze approaches for achieving interoperability
† Work submitted in this manuscript was done by the authors as independent researchers. The
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between various ecosystems of IoT sensors to facilitate heterogeneous sharing
of relevant IoT-derived health data between patients, healthcare providers, pay-
ers, and other authorized parties. The sharing of big data collected from IoT
sensors in real-time will require specialized approaches to achieving this data
ubiquity beyond requirements necessary for traditional medical records. With
existing interoperability challenges between electronic health record (EHR) plat-
forms, IoT sensor data must integrate with public cloud environments to enable
improved clinical decision-making and oversight. This analysis will specifically
discuss the data ubiquity, availability, and performance consequences for each
interoperability approach while enumerating general best practices for integrat-
ing, aggregating, and sharing heterogeneous data across multiple IoT ecosystems
and cloud environments.

9.1 Introduction
With the advent and proliferation of Internet of Things (IoT)-based health

devices around the world, the distinction between clinical and personal devices
is becoming increasingly blurred, resulting in unique information-sharing chal-
lenges. The global infrastructure of IoT-based health devices consists of a large
number of connected legacy medical sensors, IoT-based personal health devices,
and software applications that generate vast amounts of medical data that need
to be processed, correlated, and analyzed in near real-time. Given the extensive
amounts of data, collecting and aggregating the appropriate data from these sys-
tems and performing required data processing and computation requires secure
and reliable integration of enterprise IoT networks, public and private cloud
networks, and personal-connected health devices.

Healthcare is a relevant case study of IoT-cloud network management because
it poses several relevant challenges:

1 the existing legacy of medical records and electronic medical records
2 the blurring distinction between medical devices and consumer devices

used in healthcare
3 the balance between privacy and decentralized immediate access to data

across healthcare providers.
In this chapter, we detail requirements for secure and reliable data management
and the integration of IoT-enabled healthcare.

The chapter is presented as follows. Section 9.2 and Section 9.3 discuss two
related efforts that inspire requirements for improved interoperability and con-
tribute to the changing paradigm within healthcare: mobile health (mHealth) and
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precision medicine. Section 9.4 presents and discusses the challenges to address
regarding the ownership of healthcare IoT data, and other integrated medical data
sources. Section 9.5 presents the challenges and strategies necessary for data
sharing in an IoT-enabled healthcare ecosystem. Finally, Section 9.6 provides a
general architecture for interoperability, and then discusses the current state of
health record interoperability standards.

9.2 Mobile Health and the Internet of Medical Things
In today’s world, mobile technology is ubiquitous. Handheld devices such

as smartphones and tablets provide access to information and communications
across the world. According to the Pew Research Center, an estimated 94% of
adults living in advanced economies own a mobile phone, with the numbers
expected to increase within the next few years [357]. This growth in both users
and the use of mobile and wireless technologies over the last few years promises a
rise in new opportunities for the integration of mobile health technologies. Mobile
health, or mHealth, provides users with mobile self-care through the use of
consumer apps, devices, and connections that enable users to capture their own
health data [246] and receive personal health interventions. Currently, mHealth
provides a broad range of services to users, including survey and questionnaire
delivery [359], real-time habit recognition and adherence support [63, 138, 276,
374], and pervasive sensor data collection [299, 376]. Although there is no
standardized definition of mHealth, we have adopted the definition proposed by
the World Health Organization in this chapter:

mHealth is the use of mobile and wireless technologies to support
the achievement of health objectives [257].

In addition to mobile technology, the emergence of affordable, wearable
devices has continued to create new opportunities for mHealth. These wearable
devices (commonly referred to as “wearables”) provide users with a conve-
nient means to monitor and manage personal health and connect to healthcare
providers via telehealth (e.g., remote patient monitoring) [263]. Although a vast
majority of general-purpose wearables lack specialized health sensors, they have
technology components that can provide functionality akin to that of health
sensors, such as motion measurement, body tracking, body balance assessment,
and pattern recognition [152]. In a broad sense, this ecosystem of connected IoT-
based health devices has been termed the “Internet of Medical Things” (IoMT).

Research studies regarding the efficacy of mHealth interventions and out-
comes are limited with current evidence showing mixed results [251]. Thus, con-
tinued initiatives to conduct systematic studies on the effectiveness of mHealth
are essential in determining whether health-related IoT devices are engaging and
providing actual value to users, rather than simply collecting data. If mHealth
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devices are failing to provide tangible value outside of data collection, adherence
may not be sustainable for the general population [99, 263]. Only after overcom-
ing this challenge in future mHealth deployments can these devices provide users
with low-cost and real-time mechanisms for the assessment of personal, clinical,
and public health through the collection and analysis of movement, imaging,
behavior, social, environmental, and physiological data [99].

9.3 Enabling Precision & Personalized Medicine
Evidence-based medicine is the practice of integrating the experiences and

knowledge of a healthcare provider with external clinical evidence and patient
needs [317, 318]. This integrated evidence comes in many forms with the respon-
sibility for seeking out the best external evidence falling, at least partially, on
healthcare providers. The “gold standard” source of external evidence is the
randomized controlled trial (RCT) [318, 349], that often evaluates treatment
effectiveness on the population scale through clinical epidemiology. Integration
of external data is practiced by many healthcare providers today and has short-
ened the gap for new clinical research to be widely utilized in medical practice
[252]. However, a significant challenge remains as healthcare providers must
still decide how new studies pertain to their individual patients at the time of
care [252]. Eric Topol uses the example of widely prescribed statin drugs for
preventing endpoints, such as stroke and heart attack, to illustrate this challenge
[4]:

Instead of identifying the 1 person or 2 people out of every 100 who
would benefit, the whole population with the criteria that were tested
is deemed treatable with sufficient, incontrovertible statistical proof.

At the time of Topol’s writing, common evidence-based practice often involved
prescribing statins for large portions of the population, such as elevated calculated
LDL cholesterol levels [4]. In the future, this approach could expand with the
widespread use of polypills, such as those containing a statin along with aspirin
and folic acid [234]. While this approach could be considered better than the
alternative of a non-evidence-based practice, providing care based on population
risk factors determined from a limited set of data can expose a population to
unnecessary side effects (the use of statins has been associated with diabetes
mellitus, liver damage, muscle damage, and central nervous system complaints
[358]) while adding financial burden to the healthcare system.

A simplified practice of personalized medicine has been commonly deployed
through pharmacogenetics to tailor drug prescriptions based on genetic markers
[211]. However, it is the integration of IoT and mobile data sources that will allow
for the inclusion of behavioral (e.g., activity patterns, habit detection) and envi-
ronmental (e.g., noise exposure, air quality) data into this process. For example,
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Joshi et al. [184] describe the integration of IoMT data sources into the neonatal
sepsis prediction process.

Current clinical practice has utilized coarse population models to improve
patient care. One such example is antibiograms, which identify local patterns of
antibiotic resistance. Clinicians currently apply these localized resistance profiles
to best identify the antibiotics to prescribe to patients [208], such as within a
hospital setting. A precision medicine approach that improves upon this practice
might incorporate additional features, such as social network and location check-
ins, and provide these insights for the individual patient. Another example of such
a clinical model is the Breast Cancer Risk Assessment Tool (BCRAT), which is a
model used clinically to determine breast cancer risk based on factors such as age,
race, and family history [268]. This BCRAT risk score can be used to determine
recommendations, such as secondary prevention screenings. Precision medicine
approaches can yield similar models that can be applied on a more individualized
basis, and are an area of current research [268].

The additional real-time data collection and processing enabled by mHealth
and IoMT devices will make it increasingly possible to quantify human beings
such that the practice of evidence-based medicine can be individualized. Human
quantification and data integration will present healthcare providers with addi-
tional tools to scientifically determine which patients are the most similar to their
own, and thus perform “real-time” epidemiological research to decide on the
best treatment using N-of-1 trials [224]. With the aforementioned tools, health-
care providers may be able to identify smaller segments of the population that
need particular treatments with higher confidence. When data is integrated on
large scales (e.g., the entire population of the United States), over long periods of
time, it could potentially become practical to evaluate endpoints of interest (e.g.,
heart attack) rather than surrogate endpoints (e.g., blood cholesterol levels) to
more effectively evaluate treatments. This practice of integrating large sources of
genetic (e.g., DNA sequencing), behavioral, and environmental data for develop-
ing precise personalized treatment plans is known as precision medicine.

Inclusion of heterogeneous big data sources has the potential to have a
transformative effect on evidence-based medical practice and allow for improved
healthcare delivery [176]. However, this must be preceded by studies of the
efficacy and sustainability of precision medicine interventions [176]. Enabling
precision medicine to advance evidence-based medical practice is therefore a
significant motivating factor for the deployment of IoT and cloud integration in
healthcare.

9.4 Health Data Ownership in IoT and the Cloud
Technological advances within the healthcare industry (e.g., mHealth) have

created an unprecedented amount of user-generated, health-related data [199,
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257]. Data ownership and the implications on personal and data privacy from
third parties attempting to connect to these devices in order to access, capture,
analyze, and share this data remains an under-explored area from a policy and
regulatory perspective [199, 237]. Thus, there is a clear need for transparent
regulations and requirements for health-related data ownership and sharing.

9.4.1 IoT Data Ownership Challenges
Although ownership and protection of health data is an obvious concern

within the healthcare field, the use of IoT-based health devices makes the issue
more complex. In particular, some of the factors that further complicate estab-
lishing data ownership include the unobtrusive nature of the IoT device and its
portability, and users’ mobility, patterns, and preferences. Further, a vast major-
ity of IoT devices feature unconventional user interfaces, which increases the
difficulty of performing a large number of tasks (e.g., user consent and authen-
tication). Given the diverse nature of IoT user interfaces, there currently is no
“one size fits all” solution. Developing unique solutions for each IoT device
further complicates the endeavor of developing standardized data ownership
regulations.
9.4.1.1 Consent for Data Capture

A multitude of IoT-based health devices are continually capturing data from
the outside environment. Due to the nature of continuous data collection, the
data resulting from this process has the potential to include data sourced from
nonconsensual collection, i.e., data collected from individuals without authoriza-
tion or informed consent, or data collected from individuals unaware of the data
collection. In these scenarios, it is difficult to designate the data owner: should
the data belong to the owner of the IoT device, or should it belong to the individ-
ual whose data is being captured? While traditional IoT devices, such as smart
doorbells, are in use, the owner of the device is often responsible for ensuring
that any captured data is not violating privacy laws, irrespective of whether or not
they are operating the device. Depending on these local laws, the owner might
need to obtain authorized or informed consent from all individuals before they
are captured by the device.

However, the ability to obtain authorized or informed consent through an IoT
device is especially challenging due to its inherent characteristics (e.g., ubiquity,
transparency). As an example, placing a physical sign regarding the data collection
policies of an IoT device could easily go unnoticed, thereby not constituting
authorization or informed consent from the recorded individual [101]. Whether
or not an individual or user were to observe a physical sign, notice, or warning, the
unique interfaces used in a vast number of IoT devices may prevent the individual
from providing authorized consent. For example, audio interfaces used by voice
assistants (e.g., Siri, Google Assistant) may not have a visual interface for the user
to provide consent in a trivial manner. The ubiquity of IoT devices makes this
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process impractical since a user may need to authenticate and provide consent
in a location with a large number of devices. Furthermore, multiple requests for
consent have the potential to create user fatigue, thereby making user consent
invalid and impractical [101].

In a healthcare setting, several of the challenges associated with obtaining
authorized and informed consent of data collection from IoT devices can be
resolved as part of the registration process for new patients. Similarly, in clinical
research, researchers can obtain informed consent for all data collected by any
IoT device used within a study as part of the standard informed consent process
approved by their Institutional Review Board (IRB). In addition, IoT devices that
collect clinically-relevant data outside of healthcare settings should be designed
to only collect identifiable data from their consenting subject. Enabling real-time,
on-device data processing may help to overcome this challenge. As an example,
the Apple Watch provides a Noise app that performs local audio processing to
enable users to understand the sound levels in environments that could negatively
impact hearing. The Noise app performs local processing without recording
audio content and thus does not currently require consent from inadvertently
recorded bystanders in areas where it is available [14]. Additional frameworks
for obtaining consent from IoT devices where these methods are impractical
have been proposed, such as implementing informed consent through gateway
devices– either directly from users or indirectly through a centralized registry
[101]. For example, The Privacy Coach [76] scans RFID tags within IoT devices
to compare the device’s specifications to the user’s privacy preferences.
9.4.1.2 Verifying Data Ownership: Local Identity Management and

Authentication
Many IoT devices used in healthcare are primarily used as sensor devices

to collect data. Since the data collected from these devices is being used in an
increasing number of clinical decision-making processes, the sensor data can be
manipulated in an adversarial manner to change clinical practice. In a potential
future clinical situation without a human in the loop, these data integrity issues
can lead to significant security gaps, as studied in the field of adversarial machine
learning [171]. Even with a human in the loop, healthcare providers will rely on
IoT-collected data to make clinical decisions that may be impacted by false data.
This data integrity issue requires mechanisms for local user identity management
and authentication in healthcare regardless of whether or not the device can
provide direct access to clinical data. In practice, these adversaries could be third
parties looking to cause harm, or patients looking to alter data for personal gain,
such as a patient working to manipulate his data in order to be prescribed a
controlled substance.

The distinct interfaces of IoT devices can make local authentication challeng-
ing. Even if alternative devices can be used to authenticate IoT devices through
proximity, it can create enormous user burden and fatigue with ubiquitous IoT
deployment. Developers of IoT devices that collect healthcare-relevant data must
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therefore balance the need for authentication with user burden to promote device
compliance and limit security risks.

In addition to IoT devices that produce clinically-relevant data, some devices
may consume produced data and provide feedback to users. Secure authenti-
cation is increasingly vital for these devices because of their potential to leak
personally identifiable clinical data. In particular, these devices could reveal per-
sonally identifiable information (PII) that is traditionally respected as sensitive
both within and outside of healthcare environments.

In order to assist in securing patient information, several IoT device authen-
tication schemes have been proposed. Although these schemes are not widely
accepted, they support the non-traditional interfaces of many IoT devices and
could be applied to health devices. These authentication mechanisms vary in
their overhead and burden to the user, and therefore may need to be considered
on a device-by-device basis. These authentication mechanisms may also need
to be used in conjunction with other mechanisms (either as an additional or
alternative factor) to meet specific device requirements.

A non-comprehensive overview of several authentication mechanisms rele-
vant to healthcare is listed below:

• Proximity-based Authentication: Several IoT device authentication
approaches rely on the device’s proximity to other user-owned devices,
often acting as a physical authenticator. Relying on the prevalence of
mobile devices such as smartphones, these mechanisms can require vary-
ing degrees of interaction with the user. At the simple extreme, proximity-
based authentication might involve automatically authenticating devices
within a specific range of proximity. On the more stringent extreme, when
user attention is deemed necessary, proximity-based authentication mech-
anisms can require specific user action. Move2Auth [394] is an example of
an interactive authentication scheme, wherein it requires users to perform
specific hand gestures with a smartphone near the IoT device in order to
authenticate. Because of their potential security vulnerabilities, proximity-
based authentication schemes must be carefully evaluated before adoption
in healthcare environments. Although elliptic curve cryptography (ECC)-
based radio-frequency identification (RFID) IoT authentication schemes
have been deployed in healthcare environments, all implementations might
not have security requirements that are suitable for healthcare deploy-
ment [160]. Proximity-based and other physical authenticators may also
be used to de-authenticate after proximity or physical contact has ended.

• Biological Authentication: Other IoT devices, especially those that already
incorporate biometric sensors, may rely on biological authentication. Some
biological factors that are used for authentication include fingerprints, face,
heartbeat, iris, or voice [166]. Similar to proximity-based authenticators,
some biological authentication mechanisms, in combination with other
biological or non-biological factors, can also be used to de-authenticate
after the biological factor changes or is removed. For example, IoT fitness
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devices can use heartbeat or capacitive sensors to detect when the device is
removed and thus should be de-authenticated [368]. Because these factors
themselves may be considered personal data, storing them directly on
devices for authentication is highly discouraged. Instead, the configuration
of IoT devices for biological authentication should utilize raw sensor data to
train a mathematical model such that the original personal data cannot be
reconstructed. Apple’s TouchID technology used in select iPhones, iPads,
and computers utilizes a similar approach [1].

• Proxy-Based Authentication: Proxy-based authentication relies on a
secure channel between a specific proxy and the IoT device [86]. In this
approach, a proxy (e.g., a clinician) would verify the user’s identity and
authenticate the device to the user. This proxy access could be granted to
the clinician for a specific device to limit the possibility of this privilege
being misused. Generally, when proxy-based authentication is required,
devices should not de-authenticate with other factors in order to decrease
burden on both the users and the proxies (often healthcare providers).

• Behavioral Authentication: The less commonly deployed strategy of
behavioral authentication relies on non-biological behavior data to identify
a user [286]. By relying on behavioral data, the user authentication process
can often be implicit, with limited user burden. Although challenging, the
development of novel secure behavioral identification techniques would
have payoffs that could significantly improve the usability, and, therefore,
the adoption of IoT device authentication. Current implementations have
been developed that identify habits based on user data such as phone calls
and locations, but are currently only suitable as secondary factors within
multifactor authentication architectures [179, 328].

9.4.2 Healthcare Data Ownership
Much of the data currently used by healthcare providers is stored within

health information technology systems. This data often takes the form of an elec-
tronic medical record (EMR), electronic health record (EHR), or personal health
record (PHR). While these terms are often used interchangeably, there are some
significant differences to these terms with regards to health data ownership.
EMRs are traditionally owned by a single office or organization and are mainly
a digital version of a traditional paper medical record [15]. EHRs are similar to
EMRs in that they are owned by a healthcare organization, yet differ in the context
that EHRs are designed to enable sharing with providers across healthcare orga-
nizations [15]. In contrast, PHRs defer ownership to the patient who collects and
stores information across healthcare systems [4]. While EHRs are in widespread
use today in the United States, personally owned records may become more
widespread as patients begin sharing data collected by their own IoT devices
with healthcare providers. These record systems are examined in further detail
in the remainder of this subsection.



Interoperability and Information-Sharing Paradigm for IoT-Enabled Healthcare 161
9.4.2.1 Electronic Health Record (EHR)

EHRs have achieved widespread adoption within the United States with 84%
of hospital [292] and 53.9% of office-based physicians [11] adopting a basic EHR.1
Adoption of fully functioning systems with additional features is lower. While
the ideal EHR would allow for complete data federation across all healthcare
providers, this is far from the case in many current isolated deployments. While
there is limited work estimating EHR fragmentation, several studies have explored
the extent of incomplete health data in EHR systems [70, 240], which can lead
to patient harm such as medication errors [61].

The EHR is a healthcare organization-owned system in which patients have
limited ownership of their own data. Although regulation, such as the Health
Information Technology for Economic and Clinical Health (HITECH) Act in the
United States [66], provides incentive for allowing electronic patient access to
EHRs, some data remains unavailable. These restrictions can be beneficial, as
direct access to test results has been shown to lead to anxiety and increased
rates of patient visits [305]. However, allowing direct patient access has also
been linked to increased patient engagement and is highly valued among patients
[339, 361].

Although electronic health data is not widely used in research, their use in the
clinical decision making process is increasing [167], and patients may be willing
to share such data for research purposes [192]. With universal interoperability,
the EHR can theoretically enable research leading to significant public-health
benefits when fully adopted. For example, data trends can be used to

1 increase accuracy in influenza strain predictions for vaccinations,
2 evaluate treatment effectiveness in specific sub-populations, and
3 identify emerging drug resistance.
However, attempts at EHR interoperability face familiar barriers such as

missing data [203]. In scenarios where complete interoperability has not been
achieved, the EHR remains a healthcare organization-owned record. This can
lead to a lack of efficiency but could also have harmful patient effects, such as
redundant imaging [210], as patients visit healthcare providers using different
EHR systems. Finally, there is prevailing belief that patients should have a right to
accept the consequences to access and manage their own data [361], regardless
of the potential risks [305]. This belief is related to the ethical principle of patient
autonomy, and accepted practice of informed consent.
9.4.2.2 Personal Health Record

The PHR is a patient-centered form of medical record in which data is stored
on a patient-owned portable device, or cloud service that the patient is able to

1A basic EHR, as defined by DesRoches et al. [110], includes support for patient demographics,
patient problem lists, medication lists, clinical notes, prescription order entry, viewing laboratory
results, and viewing imaging results.
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access. This ensures that a patient’s personal medical records are always available
to them. When the patient moves from their primary care provider, to an urgent
care clinic, to a medical testing facility, they are able to bring their record with
them to be populated regardless of the record system used by the practice.

The PHR can also solve many of the data federation concerns associated with
EHRs, as the patient is responsible for maintaining a single record which can
be accessed by all care providers. Two well-known PHR systems were Google
Health [232, 233] (closed in 2011) and Microsoft HealthVault [10] (closed in
2019), both of which originated from the Personal Internetworked Notary and
Guardian (PING) or Indivo systems [12, 247, 332]. These PHR systems provided
users with a single portal through which they could access their health infor-
mation by linking with existing EHRs via interoperability standards such as the
Continuity of Care Record [132]. Beyond that, these systems provided functional-
ity for fine-grained data sharing as well as integration with personal health devices
and health apps [10]. Unfortunately, the universal PHR systems have waned in
favor of fragmentation, reminiscent of the current state of EHR [52]. In this frag-
mented model, users are connected to healthcare provider-owned EHRs as well
as siloed commercial PHR systems such as the ones provided by pharmacies or
fitness trackers. This fragmentation has occurred in context of a trend toward
patient-driven self-care, including quantified self-tracking (e.g., PatientsLikeMe,
23andMe, Fitbit) [350], resulting in many, often data type-specific, PHR systems.
Beyond the inconvenience of maintaining several record systems, the integra-
tion of these systems could limit patient harm by decreasing the prevalence of
incomplete medical records [70].

However, the tide may be turning back toward a universal PHR system as
tools such as Apple Health continue to gain in popularity and achieve high user
satisfaction [7, 103, 283]. Apple Health is significantly different from Google
Health and Microsoft HealthVault, in that it is a product of the smartphone era
with the interface and data localized to an owner’s device rather than an Internet
portal. The obvious consequence of this is privacy: by retaining health data
encrypted locally on a user’s device, a user does not need to be as concerned
about data misuse or the compromise as with an Internet-hosted portal. However,
by hosting the PHR locally on an owner’s device, Apple Health is also less able to
provide two-way data transport: the app is able to collect data from healthcare
providers, rather than currently providing data to providers. While the two-way
data transport does not solve the problem of incomplete EHRs, Apple’s CareKit
[2], a developer framework for applications that allow patients to share health data
with healthcare providers is touted as the potential solution. Apple Health utilizes
an improved interoperability standard for accessing EHR data from participating
healthcare providers [62], which is discussed in detail in Section 9.6.
9.4.2.3 Bridging Medical Data Ownership: Combining EHR and PHR

Currently, healthcare providers continue to maintain and collect patient data
within EHRs, and patients collect personal data within (perhaps fragmented)
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PHRs. It therefore follows that EHR-PHR interoperability will be an important
step for mHealth and personal IoMT data utilization in healthcare. A simplified
model of EHR-PHR interoperability that federates data sharing between both
healthcare provider and personally owned IoMT devices is shown in Figure 9.1.

Personal IoMT Sensor

EHR

mHealth 
Sensor

Enterprise IoMT Sensor Care Provider Interface

Personal Device & Interface

Universal 
PHR

Figure 9.1: A simplified model of interoperability between an EHR and PHR
system that can be used to integrate personal and enterprise IoMT devices. The

PHR hosted locally on a user’s smart phone can be replaced with a
cloud-hosted PHR without modifying the model.

While this simplified model directly shows only a single EHR and univer-
sal PHR, additional EHRs could connect with the universal PHR via the same
mechanism. By linking multiple EHR systems through a single universal patient-
owned PHR, interoperability of both healthcare provider-owned and personally
owned health records can, in effect, be achieved to prevent gaps in medical data.
Additional architecture details for enabling health information exchange, such as
cloud-hosted PHRs and 5G IoMT sensors, are discussed in Section 9.5.

In addition to mitigating EHR silos, combining EHR and PHR systems in
this fashion also addresses a significant limitation associated with PHRs. As
discussed previously, EHRs provide repositories of aggregated patient data that
can be mined for public health and precision medicine research. Unless PHRs
are hosted together, the PHR may lack the ability to serve as a research data
repository [369]. While many EHR systems share only basic amounts of data,
some large EHR networks, such as Epic [6], maintain interoperability between
their EHR systems by including medical data that may be derived from IoMT
devices. The integration of PHRs with these large connected EHR systems can
produce data that would allow for public health research. It should be noted that
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access to care from providers that are part of these EHR network-based data
warehouses may be limited for some populations, such as those with unequal
access to care. Until universal access to these systems is established, clinical use
of this data must therefore account for this skew.

9.5 Enabling IoMT Information Sharing in Healthcare
This section examines the strategies necessary for the federation of IoMT

data in healthcare. The section starts by focusing on strategies for the health
information exchange of traditional medical records. The section then discusses
several challenges with federating IoMT data via similar mechanisms as well as
current solutions, where available.

9.5.1 Collecting Data from IoMT Devices
Logically, the first step in being able to use data from IoMT devices is to

collect the data generated by the IoMT devices and sensors. Since the IoMT
devices used for support operations in hospitals are entirely enterprise owned,
we will focus on IoMT devices operating within their ‘clinical’ use case.

At a high level, the collection of healthcare data from IoMT devices, whether
the devices are enterprise owned or personally owned, has broad similarities.
In both cases, there are two main considerations that need to be addressed for
effective data collection. First is managing the enormous amounts of data that
IoT devices are capable of generating. Decisions need to be made on what data
is collected and the frequency of data collection. Several aspects of personalized
medicine depend on integrating vast amounts of collected medical data for clinical
research. However, this need should be balanced with identifying the important
pieces of data since the amount of data collected also directly ties into the
network resources required to transmit the data to the cloud or an alternate
data storage location. Data thinning techniques should be applied to retain only
essential data, so as to help reduce overhead in transport and data processing
needs at a later stage. Second, and more important, is security. Personal data
transmitted by devices that monitor health must be secure to protect personal
privacy.

However, the primary differentiation between enterprise IoT devices as
opposed to personal healthcare devices and Mobile IoT sensors is the user.
The average user is not knowledgeable enough to make decisions on the magni-
tude of determining the collection frequency for personally owned IoT devices.
Users also tend to be more at-risk for security exploits than enterprises practicing
good software hygiene.
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9.5.2 Traditional Health Record Information Exchange for Informa-

tion Federation
Health information exchange is the sharing of patient-level electronic health

information for assessment, cost reduction, and quality improvement in health-
care [369]. The HITECH Act mandates a limited level of health information
exchange to be eligible for incentive payments in the United States [369]. Tra-
ditional information formats for medical record information exchange are dis-
cussed in Section 9.6.2. While healthcare provider relationships can enable
exchange without significant technological access control requirements, addi-
tional considerations must be made when sharing data between patients and
healthcare providers. The methodologies for traditional medical record informa-
tion exchange can vary across emergency and non-emergency situations, and
provide insights for the integration of personal IoMT and mHealth data into EHR
systems [344].
9.5.2.1 Regulating Provider Access to PHR Data

Multiple fine-grained access control methods for PHR data have been
described to provide secure information sharing of health data. Such an approach
would allow for patients to have control over which users are able to access
specific information contained within the patient’s encrypted PHR. In order to
enforce such control over their health records, patients would have the authority
to generate and provide decryption keys based on the information they wish to
provide to the receiving party. This method of access control would enable the
secure sharing of PHR data with authorized healthcare providers while protecting
the patient’s personal data from unauthorized parties. However, many of these
fine-grained access control methods result in high overhead costs when applied
to scenarios involving multiple users, and thus impacting system usability. A fine-
grained access control framework for PHR data with reduced overhead has been
proposed by Li et al. [220]. This approach involves users generating their own
sets of attribute-based encryption (ABE) keys. To account for the linearity of ABE
encryption, the system is divided into multiple domains which are associated
with various user subsets.
9.5.2.2 Providing Emergency Data Access

Although access control of medical records can be achieved through the pre-
viously discussed methods, in the case of required emergency access to data
contained within the PHR and EHR, personal health data may become avail-
able without prior authorization. Currently, emergency data access to protected
records within a single EMR system often follows a “break the glass” procedure.
This procedure involves a healthcare provider self-granting access to a patient’s
medical record and protected health information (PHI) that can be utilized in
the event of an emergency. Each instantiation of the “break the glass” procedure
is documented and is later audited and reviewed to ensure that the patient’s
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medical record and PHI were accessed under justifiable circumstances. Because
an auditing, review, and accountability process exists under the “break the glass”
procedure, it is not clear how this approach can be implemented for the shar-
ing of health records across organizations using separate EMR systems or for
granting access to PHRs in the case of emergencies.

The current practice of utilizing the “break the glass” procedure in emergency
circumstances presents the risk for providing unnecessary access to patient infor-
mation. One method of differentiating between users who should be granted
emergency access to patient data and users who should be denied access inte-
grates both Role Based Access Control (RBAC) and Experience Based Access
Management (EBAM) strategies [398]. In order to test the effectiveness of this
approach, the resulting algorithm, “Roll-Up”, was applied to log data collected
from Northwestern Memorial Hospital Center. Results from this case study indi-
cate that a combination of RBAC and EBAM strategies is able to predict the
conceptual position of a user requesting access to a patient’s EMR data with
82.3% accuracy [398].

In the case of Li et al.’s proposed fine-grained access control framework, the
issue of handling the security risks associated with providing data access dur-
ing an emergency is handled using decryption keys [220]. This trapdoor method
involves the patient selecting which parts of their PHR data they wish to be acces-
sible in advance of a health emergency. The patient is able to delegate access of
this data to the emergency department by providing a decryption key for each
part of the pre-selected PHR data. These decryption keys would be stored within
the emergency department’s database of patient information. If an emergency
occurs, a staff member would be able to query the database and obtain the
patient’s decryption keys from the emergency department. Once the patient’s
medical condition has returned to normal, the patient’s PHR system could then
compute re-keys for their PHR data and submit this update to the emergency
department for future use. Although naturally supported by the framework pro-
posed by Li et al., it remains unclear if this “break the glass” method would be
able to scale and work across multiple hospital locations, given that the patient
must be able to provide decryption keys to a particular emergency department
in advance of any emergency incident. In order for this emergency data access
method to be used across hospitals, the decryption keys provided by the patient
would have to be stored in a centralized database, causing a host of other security
and scalability issues.

Digital Rights Management (DRM) schemes can also be considered as a way
to secure PHR and EHR data from unauthorized insider access. Kunzi et al. pro-
pose a data-centric model for the protection of health records in which encrypted
health data is able to be accessed in an emergency with use of an emergency
license [194]. Under such circumstances, an emergency key is issued in order
to decrypt the patient’s health data. Similar to the “breaking the glass” proto-
col, emergency access is documented and audited to ensure appropriate record
access. However, in order to prevent against system compromise, a compro-
mised emergency key will have a limited effect on the system. Additionally, the
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system design of this approach also ensures the dependability of the system
while operating offline.

9.5.3 Ensuring Data Integrity from IoMT Sensors
Unlike traditional EHR-integrated sensors, the collection of data from mHealth

and IoMT devices involves connections to large numbers of devices outside of the
control of the healthcare organization. These devices may integrate via local gate-
ways, connect directly to the EHR, or connect to cloud-hosted data warehouses.
Regardless of the connection mechanism, the data collected from these devices
will integrate with a health record system (likely an EHR or PHR). With potentially
numerous connected devices, it is important to maintain a device inventory and
validate that unaltered sensor data is being transmitted and received.

A simple mechanism to mitigate integrity risks for direct sensor device trans-
missions would be to utilize cryptographic encryption and signing, with validation
performed based on public keys stored within a centralized device inventory. In
this model, an mHealth or IoMT device would periodically be registered with the
health record system, in which the device generates a key pair and shares the
public key with the system’s sensor device inventory. The mHealth or IoMT sen-
sor would also receive a public key to encrypt the data sent to the health record
system. The sensor could then encrypt and sign traffic to the health record sys-
tem, which could be decrypted and then validated. The health record system
would then tag the data source for each piece of received data. This method
would help to ensure only data from valid, inventoried sensors is shared with
the health record system, and provide a basic method for tracking the sources of
received sensor data.

9.5.4 Privately Replicating and Sharing Large Datasets
In the EHR-PHR interoperability mechanism discussed previously, data is

replicated and stored across numerous health record systems. As collected data
sources become larger, such as when dealing with genome sequences, repli-
cating data in its entirety across several cloud systems becomes impractical. A
more efficient solution would be for record systems to use a “link” to a sin-
gle instance of the data. The record systems which do not store the data in its
entirety could initially download the data and compute any summary statistics
necessary to store locally, before deleting the data. These calculated summary
statistics might be used directly by the organization, such as common single
nucleotide polymorphisms (or SNPs) from genomic data, or the number of steps
traveled from motion data. Future calculations or analysis could be performed
by simply downloading the file from the “link” again, or utilizing an application
programming interface (API) provided by the file host.

This solution for enabling the sharing of large datasets does not address the
ownership of the large file that is linked to by other sources. Naively, it could be
proposed that the owner of the connected device that provides the data must also
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host these files. For example, if a patient received a genetic test from 23andMe,
then 23andMe would be responsible for hosting the results indefinitely. While
it is clear how this would work with tests from 23andMe or imaging from a
healthcare provider, certain other scenarios aren’t quite so straightforward. For
example, how would motion data from personally owned devices be stored?
What would happen if the company hosting the data went out of business?
Would a user be responsible for paying to host their own data in order to receive
the best care? Furthermore, when a single entity is responsible for hosting a data
file, ensuring redundancy and availability can be prohibitively expensive.

An alternate solution is for these data files to be hosted using a consensus
mechanism, in which small pieces of data are stored in a distributed fashion
across several source hosts. These data pieces can be stored redundantly and
in fault-tolerant fashion, such that if a single data host becomes unavailable, its
shards would remain available from other hosts [59]. As a single file is replicated
across additional sources, these sources would individually need to store less of
the overall data. These data hosts can include EHR providers, commercial data
providers or device manufacturers (e.g., 23andMe or Fitbit), and user-owned
cloud storage that may be reimbursed by insurance providers or governments.
Some published mechanisms for achieving this distributed data storage method
would be suitable for this application in healthcare. The Security-Aware Efficient
Distributed Storage (SA-EDS) model proposed by Li et al. requires data packets
to be retrieved from a set of cloud storage providers before yielding the original
data [219]. Similarly, Shafagh et al. propose a blockchain-based mechanism for
secure distributed storage and sharing of time series data [325] that can also be
modified to include genomic or other large non-time series data.

9.5.5 Maintaining Consensus in Large-Scale Federated Systems
Not all IoMT data is large enough to require efficient distributed storage. For

smaller data sets that can be replicated across several medical records, there
is an opportunity for maintaining consensus. Today, much of this burden falls
on the patient. For example, although vaccination records are shared between
healthcare providers, it is likely to be the patient who would catch a healthcare
provider mistakenly administering a vaccination that they have already received.
Often, these small mistakes may go unchecked, but, when caught, may lead to
changes in treatment. For example, in a 2004 study of a computerized medication
reconciliation tool, physicians changed the discharge orders for 94% of patients
when discrepancies were identified by nursing staff [308].

Traditional software-only consensus solutions are inadequate in such sit-
uations as patients may report or present different information to different
providers. For example, a patient might not take a medication prescribed by
one physician and might not report (intentionally or unintentionally) taking the
medication to another. In situations such as these, having the medical records
retain a history of change would be a welcome feature. This would allow medi-
cation reconciliation software to automatically detect the discrepancy and allow
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healthcare providers to clarify information with the patient to update the record,
which will retain the complete history of the reconciliation.

In medical records, retaining complete history is a necessary step for medical
record reliability as allowing for the free deletion of medical records can allow
patients to significantly affect the behavior of healthcare providers [381]. To
ensure record reliability, changes to medical record values should not be allowed
in EHR systems. In patient-controlled PHR systems, updated records should be
assigned a new identifier such that they are shared with EHR systems as a new
value. While some laws may locally require that patients are able to delete medical
data stored in EHR systems [381], these deletions do not need to propagate– thus
requiring patients to request their records be deleted across all EHR providers.
This limitation would help prevent against the compromise of medical records
within a large-scale federated health record system.

9.5.6 Providing Emergency Access to Real-Time IoMT Data
The collection and access of real-time IoMT data currently presents a potential

challenge in the event of an emergency. IoMT devices are able to collect a variety
of health data from users, including biometric data such as a user’s heart rate,
physical activity, and sleep cycle. Due to the high sampling rates of IoMT health
monitoring services and applications, personal health monitoring devices have
the ability to produce large sets of health data for each user. In the case that
emergency access to this data is required for medical treatment, the volume of
available patient data could result in finding the discernible ‘signal’ within this
big data noise to be a challenging problem requiring the retrieval, sorting, and
selection of relevant data.

Among these challenges is the issue of ensuring that the real-time data
retrieved by the emergency department is the most up-to-date data collected
from the patient’s IoMT device. Currently, these devices may not sync to pro-
vide updates to a patient’s EHR on a timely basis. Thus, the IoMT data retrieved
under emergency circumstances may not be an accurate representation of the
patient’s current (or near-current) state of health. In order to obtain access to the
patient’s real-time IoMT data, the Emergency Department would likely have to
be able to physically access the patient’s personal IoMT collection device. This
alternative access method may not be feasible in emergency situations as it relies
on the assumption that a patient is conscious and able to give consent to allow
for the emergency department to access to their IoMT device. Even if consent for
emergency access to a personal device is granted, such access poses the risk of
creating additional patient privacy concerns.

A potential path forward is for IoMT devices to enhance data availability by
having the user select an interval where the device would update the user’s real-
time health data and offer a selected subset to emergency departments. This data
update interval could include a range of data transfer periods for user selection.
For example, when initially setting up their IoMT device, a user could decide
to have their IoMT device automatically send their collected data to a selected
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emergency department(s) in hourly, daily, or weekly intervals. The emergency
departments could then choose the interval in which previously received, and
now out-of-date, data is discarded.

9.6 Achieving Heterogeneous Data Interoperability
Data interoperability in healthcare is a challenging problem even without the

added complication of incorporating IoMT devices as data sources. While this
interoperability is simpler in some countries which utilize nationally standardized
EHR systems, interoperability challenges can still exist between jurisdictions.
Outside of these areas, EHR fragmentation is exacerbated by enterprise-hosted
deployments of proprietary and custom software that makes interoperability a
significant challenge, as discussed earlier in this chapter. While interoperability
standards do exist, these standards are often a subset of the data stored within a
single EHR system. The integration of personal IoMT devices into this system only
adds to the problem, requiring more comprehensive, flexible, and centralized
integration standards.

This section will provide a general architecture for interoperability, and then
discuss this current state of health record interoperability standards. Finally, it
will describe potential alternative approaches for the interoperability of health
data that can more directly enable IoT-cloud information sharing in healthcare.

9.6.1 Interoperability Architecture Overview
Compilers used in software development have a challenging interoperability

task– to convert human-understandable source code to executable machine code
that can be run on multiple target machines. At a high level, this process is bro-
ken into a front-end and a back-end, with the front-end yielding an intermediate
representation of the source code, and the back-end converting that intermediate
representation to machine code. It is this intermediate representation that pre-
vents the need for a 1:1 match of compilers for every combination of languages
and target computers, allowing the front-end to focus on the programming lan-
guage and the back-end to make optimizations for the target machine.

Similarly, it would be problematic if promoting interoperability in healthcare
required a specific tool to provide interoperability between each set of systems.
The sheer magnitude of this task would make it impossible to enforce widespread
interoperability via policy or encourage interoperability through market forces.
Thus, IoT-cloud information sharing in healthcare would require a set of interme-
diate standards for interoperability. Such interoperability standards would need
to be flexible enough to support the variety of data that can be made available
through IoMT and mHealth devices.
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While there are several more comprehensive models of interoperability, two

commonly discussed variants of interoperability include syntactic interoperability
and semantic interoperability [81]. Syntactic interoperability refers to the format
and encoding used when data is transferred [81], such as the eXtensible Markup
Language (XML) format used by Health Level 7’s Clinical Document Architecture
(CDA) [62]. The syntactic interoperability format would not help interpret the
data, but provides the basic foundation structure necessary for interoperability.
A set of modern, commonly accepted formats for syntactic interoperability, such
as XML and JavaScript Object Notation (JSON), are already being used in similar
applications and have additional widespread use outside of healthcare.

Semantic interoperability solidifies the meaning of data such that the meaning
is not ambiguous as it is transferred, either between systems or humans [81].
This can be a challenge as health information can be represented both through
different names or via a different structure in different systems. For example, one
EMR system may represent a heart rate reading as a diagnostic event, while a
PHR system might include heart rate information in a different structure designed
for fitness data. Interoperability between these systems could be achieved by
ensuring that they could both read and write to a comprehensive and flexible
intermediate file format with its own representation and designation for heart
rate data [356].

9.6.2 Current Interoperability Standards
Two commonly used examples of interoperability standards which dictate

the formatting and exchange of health data are The American Society for Testing
and Materials’ Continuity of Care Record (CCR) and Health Level 7’s Clinical
Document Architecture (CDA). The purpose of both the CCR and CDA was to
support healthcare data management and transfer between healthcare providers.
Although the CCR and CDA were both created with the purpose of facilitating
the collection and transfer of medical documentation between providers, and are
specified in XML, they differ enough that they continue to co-exist.

The CCR was created specifically as a way for healthcare providers to col-
lect patient information in an organized format that can easily be transferred
between multiple care providers [132]. The resulting set of standards focuses on
the patient’s current state of health and other information, such as health insur-
ance, care documentation, and practitioners. A key aspect of the CCR is its focus
of presenting patient information in an easily human-readable format. A CCR
document is divided into six sections including: an XML header, patient identify-
ing information, patient financial and insurance information, the patient’s health
status, care documentation, and care recommendations. Although uncommon,
IoMT providers are able to allow for the use of CCR data with their devices. Prior
to the discontinuation of Google Health and Microsoft’s HealthVault in 2011 and
2019, respectively, users of these services were able to integrate both personal
health devices, health apps, and CCR data [3, 16].
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As noted, the CDA was created to serve a similar purpose: to provide a

method of standardization for the storage and transfer of healthcare documents.
However, the CDA differs from the CCR on the aspect that the CDA was created
to include different levels of machine readability in order to facilitate the transfer
of documents between devices. In total, three distinct CDA levels exist: Level 1
is considered to be the most suitable formatting for older systems as it allows
for an unstructured free text to be transferred between systems, Level 2 adds
structure to the transferred documents by requiring the body of the document to
be specified in XML, and Level 3 allows for the highest level of machine readability
by requiring an encoded XML document [132]. Simply put, the interoperability
of CDA specified documents increases with each subsequent CDA level.

9.6.3 Future Standards and Alternative Methods
Today, there are an increasing number of health-related mobile applications

and IoMT devices being produced and used by consumers. Although these
devices encourage users to take responsibility for the storage and use of their
medical data, these personal devices may require both their users and healthcare
providers to access brand-specific applications in order to retrieve health data.
In addition to personal IoMT and mHealth devices, prescribed connected med-
ical devices (e.g., remote cardiac monitoring portfolio from Abbott) also utilize
web-based portals for healthcare provider access [9]. While some manufacturers
provide health record integration solutions, such as Abbott’s EHRDirect export
[9], these integrations might not be feasible for some healthcare providers. This
use of custom interfaces creates additional work for clinicians who wish to access
patient data for use in treatment processes, serves as a barrier to data analysis
tools, and emphasizes the growing need for updating the current interoperability
standards.

To account for the rapid advances of the mHealth and IoMT device industry,
interoperability standards need to be revised to allow for a greater degree of
flexibility. As discussed in previous sections, the current interoperability stan-
dards do not allow for the easy addition of new healthcare data collected from
personal devices. Future alterations to current standards could allow for mHealth
and IoMT devices to automatically add recently collected data to a patient’s med-
ical record. This approach could introduce a standard way for both current and
new device companies to provide updated user data to healthcare professionals
without the use of custom applications for data access and retrieval. In addition,
allowing for the device to update a patient’s record automatically would remove
the responsibility of providing a personal device’s collected data to emergency
departments from the patient. Such revisions to current interoperability stan-
dards could include methodologies that focus on incorporating a flexible editing
and update process, or could take a more iterative approach.

Altering current interoperability standards to permit editing and updating of
processes could allow for data to be added from mHealth and IoMT devices
without the use of explicit standard updates being released. In this case, a newly
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released device would be able to add the user’s data to their health record in the
form of a device-specific field, which could then be updated with the user’s most
recent data in the future. These fields would ideally follow a standard format
and could include information about the device itself in addition to the user’s
data such as: device manufacturer, device name, and date and time of last data
update. Previously, larger companies such as Google and Microsoft have been
able to provide integration of their devices with commonly used health record
standards [3, 16]. An increase in flexibility which allows a way for mHealth and
IoMT devices to add to and update a user’s EHR in a standardized way has
the potential to provide the same level of data sharing support to health device
companies regardless of reputation, popularity, and size.

Similarly, the development of a universal, accepted set of standards would
enable additional semantic interoperability of data for new IoMT and mHealth
devices, and enable integration with EHRs. Lopez and Blobel have defined a devel-
opment framework that could serve as a starting point for the design of such a
standard relying on the Rational Unified Process (RUP) framework [235]. As such
a semantic standard would be required to be comprehensive; an iterative frame-
work similar to RUP may be able to allow for expansion during the development
process. Despite their intended comprehensiveness, semantic interoperability
models developed during these processes should be flexible to allow for the
integration of new data types that may be similar to data already designed to be
incorporated into the model. An example of such flexibility might be allowing
a new fitness measurement recorded by a novel IoMT device to be recorded
along with other fitness measurements in the interoperability format, along with
a name and description of the previously unknown measurement type. Eventu-
ally, if this device and new fitness measurement become popular, this data can
be added to future iterations of the standardized format. Reconciling data stored
in this way with expanded standardized formats can be achieved using thesauri
or word embedding, similar to the MetaNet technique developed for metadata
domains [173].

9.7 Challenges & Opportunities
Precision medicine, as made possible by the advent and proliferation of IoMT

devices and widely available genomic data sharing, holds great promise. How-
ever, success in being able to provide individualized evidence-based medical care
is dependent on several key issues being addressed. Primary amongst these are:

1. Secure and reliable integration of data from clinical and personal health
devices between enterprise IoT networks, private cloud networks, and
personal connected health devices.
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2. Since research regarding efficacy of mHealth interventions and outcomes

is limited, continued initiatives to study the effectiveness of mHealth is
essential to determining whether health-related IoT devices are engaging
and providing actual value to users, rather than simply collecting data.

3. Settling ownership of data generated from IoMT devices is paramount to
getting buy-in from customers wary of privacy violations.

4. A wide variety of IoMT devices makes achieving interoperability between
these sensors to facilitate heterogeneous sharing of relevant IoT-derived
health data between patients, healthcare providers, payers, and other
authorized parties absolutely essential.


