

AFRL-RH-WP-TR-2020-0099

NEXT-GENERATION ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

Adam S. Beatty Maura I. Burke Amanda J. Koch D. Matthew Trippe

Human Resources Research Organization (HumRRO)

October 2020 Interim Report

DISTRIBUTION A. Approved for public release.

AIR FORCE RESEARCH LABORATORY 711TH HUMAN PERFORMANCE WING, AIRMAN SYSTEMS DIRECTORATE, WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th Air Base Wing Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (<u>http://www.dtic.mil</u>).

AFRL-RH-WP-TR-2020-0099 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//signature//

THOMAS R. CARRETTA Work Unit Manager Performance Optimization Branch Airman Biosciences Division //signature//

LOGAN A. WILIAMS, PhD Core Research Area Lead Performance Optimization Branch Airman Biosciences Division

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting b existing data sources, this collection of inforr (0704-0188), 1215 Je any penalty for failing	urden for this collection gathering and maintair nation, including sugge ferson Davis Highway, to comply with a collect	of information is estim ning the data needed, a stions for reducing this Suite 1204, Arlington, tion of information if it d	ated to average 1 hour per res nd completing and reviewing th burden, to Department of Defe /A 22202-4302. Respondents oes not display a currently vali	ponse ne co nse, shou d OM	e, including the time t illection of information Washington Headqu uld be aware that not /B control number. F	for reviewing inst a. Send commer arters Services, l withstanding any PLEASE DO NOT	tructions, searching existing data sources, searching tts regarding this burden estimate or any other aspect of Directorate for Information Operations and Reports other provision of law, no person shall be subject to T RETURN YOUR FORM TO THE ABOVE ADDRESS .
1. REPORT DA	TE (DD-MM-YY)		2. REPORT TYPE				3. DATES COVERED (From - To)
31-10-202	0		Interim				February 2019 – October 2020
4. TITLE AND S	UBTITLE						5a. CONTRACT NUMBER
							FA8650-14-D-6500
Next-Gen	eration Armed	Services Vocati	onal Aptitutude Bat	nal Aptitutude Battery (ASVAB)			5b. GRANT NUMBER
							5c. PROGRAM ELEMENT NUMBER 62202F
6. AUTHOR(S)							5d. PROJECT NUMBER
							5329
Adam S. Bea	tty. Maura I. F	Burke, Amand	a J. Koch and D. N	/Iat	thew Trippe	*	5e. TASK NUMBER
	<i>(i)</i> , <i>(i)(ii)(ii)(</i>			140	ine (* mppe		09
							5f. WORK UNIT NUMBE
							H0SA (532909TC)
7. PERFORMIN	G ORGANIZATIO	ON NAME(S) AN	D ADDRESS(ES)				8. PERFORMING ORGANIZATION
*Human Res	ources Resear	ch Organizatio	on (HumRRO)				REPORT NUMBER
66 Canal Cer	ter Plaza. Sui	te 700	()				2020 No. 086
Alexandria, V	/A 22314-157	78					
	G/MONITORING			S)			
							AGENCY ACRONYM(S)
Air Force Material Command			4027 Colonel (4027 Colonel Glenn Highway, Suite 210 Dayton, OH 45431-1672			711 HPW/RHBC
711th Human Darformance Wing			Davton OH 44				
Airman Systems Directorate							AGENCY REPORT NUMBER(S)
Airman Diagoionaga Division							AFRI RH WP TP 2020 0000
Parformance	Optimization	Dranch		AI KL-KII-WI			
Wright_Patter	son AFB OH	1 45433					
Approved	for public re	lesse 88AB	W 2020 3628 cles	roc	d 18 Novemb	or 2020	
		Icase. 86AD	w-2020-3028, cica	nce		2020	
Report co	ntains color						
14. ABSTRACT	tas Air Faras (USAE) uses the	Armad Samiaaa Va	vaat	tional Antitud	Dottomy ()	ASVAD) to calcat reamuits and
classify them i	nto Air Force S	becialties (AFS	s) However a varie	otv a	of new assessi	e Datiery (7 ments have	been developed and proposed and
assessment tin	e at Military E	ntrance Process	ing Stations (MEPS)) is	limited. As a	result, the r	purpose of this project was to
examine the in	pact of change	s to the USAF	Mechanical, Admini	, stra	ative, General.	and Electr	onics (MAGE) ASVAB composites
to make the be	st use of testing	g time.	,				
This report des	scribes a series	of analyses to e	valuate the projected	1 in	npact of remov	ving technio	cal knowledge subtests from the
Mechanical an	d Electronics co	omposites, and	adding subtests to th	e A	Administrative	and Gener	al composites. Impact was primarily
investigated in	terms of predic	ctive validity an	d subgroup differen	ces.	. We found the	at for the M	fechanical and Electronics
composites, it	was possible to	choose alternat	ives that would like	ly d	lecrease subgr	oup differe	ences while not substantially reducing
predictive value	unity. For the Ac	iministrative an	a General composite	es, c	ninerences be	te potonti-1	alternative MACE composites that
could be imple	mented depend	ling on the taler	it management object	uis j etive	es and prioriti	es of the U	SAF
15 SUBJECT TERMS							
Personnel	selection. enlis	ted, prediction.	composites. training	g pe	erformance. at	trition	
16. SECURITY	CLASSIFICATIO	N OF:	17. LIMITATION	18	. NUMBER	19a. NAMI	E OF RESPONSIBLE PERSON (Monitor)
a. REPORT	b. ABSTRACT	c. THIS PAGE	OF ABSTRACT:		OF PAGES	T1	
Unalogaifiad	Unclassified	Unclassified	SAR		150	I hor	nas K. Carretta
Unclassified	Unerassified	Cholassined	~			19b. TELE	PHONE NUMBER (Include Area Code)
						N/A	

List o	of Figures	iii
List o	of Tables	iii
1.0	SUMMARY	1
2.0	INTRODUCTION	3
3.0	 Data Preparation and Screening	4 4 5 5 6
4.0	EVALUATING ALTERNATIVE MECHANICAL AND ELECTRONICS COMPOSITES 4.1 Predictive Validity 4.2 Subgroup Differences 4.3 Projected Impact 4.4 Overall Conclusions	8 8 .10 .12 .15
5.0	 EVALUATING ALTERNATIVE ADMINISTRATIVE AND GENERAL COMPOSITES	16 . 16 . 17 . 18
6.0	 EVALUATING OTHER ALTERNATIVE MAGE COMPOSITES: CONTENT-ORIENTED APPROACH	20 .20 .20 .21 .22 .22 .22
7.0	EVALUATING OTHER ALTERNATIVE MAGE COMPOSITES: OPTIMAL WEIGHTING APPROACH	26
8.0	CONCLUSION	29
9.0	REFERENCES	31
LIST	OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS	32
APP	ENDIX A – LIST OF CODED AFS AND ANALYSIS SAMPLE INCLUSION STATUS	34

TABLE OF CONTENTS

APPENDIX B – DESCRIPTIVE STATISTICS FOR ANALYSIS SAMPLES	
APPENDIX C – PREDICTIVE VALIDITY RESULTS BY AFS	42
APPENDIX D – OBSERVED PREDICTIVE VALIDITY RESULTS BY AFS	52
APPENDIX E – DIFFERENTIAL VALIDITY RESULTS BY AFS	65
APPENDIX F – PROJECTED IMPACT RESULTS BY AFS	76
APPENDIX G – CONTENT-ORIENTED APPROACH RESULTS	108
APPENDIX H – OPTIMAL WEIGHTING PREDICTIVE VALIDITY RESULTS BY	Y AFS119
APPENDIX I – OPTIMAL WEIGHTS BY AFS	129

LIST OF FIGURES

Figure 6.1. Summary Box Plot of Absolute Differences Between Empirical and Content-	
Oriented Approaches for Mechanical and Electronics Composites	23
Figure 6.2. Summary Box Plot of Absolute Differences Between Empirical and Content-	
Oriented Approaches for Administrative and General Composites	24

LIST OF TABLES

Table 3.1. Impact of Screening Rules on Sample Size	7
Table 4.1. Full Dataset Variance-Covariance Matrix of ASVAB Subtests	8
Table 4.2. Aggregated Predictive Validity Results for the Mechanical Composite and Alternatives	9
Table 4.3. Aggregated Predictive Validity Results for the Electronics Composite and Alternatives	10
Table 4.4. Population Mean Standardized Differences (Cohen's d) for the Mechanical Composite and Alternatives	. 11
Table 4.5. Population Mean Standardized Differences (Cohen's d) for the Electronics Composite and Alternatives	. 11
Table 4.6. Aggregated Projected Impact Results for the Mechanical Composite and Alternatives	. 14
Table 4.7. Aggregated Projected Impact Results for the Electronics Composite and Alternatives	. 14
Table 5.1. Aggregated Predictive Validity Results for the Administrative Composite and Alternatives	. 16
Table 5.2. Aggregated Predictive Validity Results for the General Composite and Alternatives	17
Table 5.3. Population Mean Standardized Differences (Cohen's d) for the Administrative Composite and Alternatives	17
Table 5.4. Population Mean Standardized Differences (Cohen's d) for the General Composite and Alternatives	. 18
Table 5.5. Aggregated Projected Impact Results for the Administrative Composite and Alternatives	. 19
Table 5.6. Aggregated Projected Impact Results for the General Composite and Alternatives	. 19
Table 6.1. Crosswalk of ASVAB subtest with O*NET Knowledge and/or Ability Category	. 21
Table 7.1. Aggregated Multiple Regression Results for the Mechanical Composite and Alternatives	26

Table 7.2. Aggregated Multiple Regression Results for the Electronics Composite and	
Alternatives	26
Table 7.3. Aggregated Multiple Regression Results for the Administrative Composite and Alternatives	27
Table 7.4. Aggregated Multiple Regression Results for the General Composite and Alternatives	27

Table 8.1. Summary of Key Results on Training Grade Criterion from Previous Sections....... 29

1.0 SUMMARY

The United States Air Force (USAF), along with all other Services, uses the Armed Services Vocational Aptitude Battery (ASVAB) to select recruits and classify them into occupations (known as Air Force Specialties (AFSs), in the USAF). However, a variety of new assessments recently have been developed and proposed, and assessment time at Military Entrance Processing Stations (MEPS) is limited. As a result, it is important to explore the potential for modifying the use of the ASVAB. Accordingly, the purpose of the *Next-Generation Armed Services Vocational Aptitude Battery* project was to examine the impact of changes to the USAF Mechanical, Administrative, General, and Electronics (MAGE) composites. Specifically, this involved evaluating the impact on predictive validity, subgroup differences, and other relevant metrics of removing technical knowledge subtests and supplementing composites with additional ASVAB subtests

The USAF provided us with a large (N = 259,359) database of predictor, criterion, and demographic information on accessions who were administered the ASVAB between October 1999 and November 2016. We prepared and screened this data to properly format variables and remove records that exhibited any irregularities to obtain final analysis samples for each criterion we investigated. Our criteria were (a) final training grade for the awarding course, and (b) Months of Mission-Ready Service (MMRS), a tenure variable.

For each MAGE composite, we evaluated the performance of the current operational composite and a series of integer-weighted alternative composites (removing technical knowledge subtests and/or adding additional subtests) on a variety of metrics including predictive validity, subgroup differences, and projected practical impact. We generally conducted analyses within each AFS, and aggregated results to obtain overall cross-AFS estimates. Results for the MMRS criterion were generally poor, and we largely focused on the training grade criterion.

We found that for the M and E composites, the current composite exhibited the largest predictive validity estimates. All alternative composites were generally close however, ranging from 1-20% decrements in predictive validity. Alternative composites including Armed Forces Qualification Test (AFQT) subtests generally performed better relative to those that included Assembling Objects (AO). For subgroup differences and projected adverse impact ratios, however, we found that substantial benefits resulted from the alternative composites, and that technical knowledge subtests appear to be a major driver of subgroup differences.

The results were less pronounced for the A and G composites. These composites do not contain technical knowledge subtests, so only other general subtests were added when evaluating alternatives. Predictive validity differences were generally low (.00-.03 in either direction) when comparing composites, and subgroup differences either increased or decreased depending on the subtests added. Nonetheless, there were some potential alternative composites for modestly reducing subgroup differences while maintaining predictive validity.

We also investigated two approaches to developing the weights used to construct composites. The first was a content-oriented approach that used Natural Language Processing (NLP) and databases of task information for each AFS to obtain alternate composite weights and estimate validity. These composites exhibited predictive validity reasonably close to the core empirical

estimates presented in the report. The second approach was using standard Ordinary Least Squares (OLS) regression to obtain weights. Although this resulted in higher predictive validity estimates than the integer weights, they were only 2-4% higher, and this advantage would likely decrease due to shrinkage.

Overall, this project identified drivers of predictive validity and subgroup differences within the MAGE composites. It also resulted in evidence of some promising alternative MAGE composites that could be used depending on the talent management objectives and USAF priorities.

2.0 INTRODUCTION

Matching USAF enlisted applicants to the right job is important. The right person-job match can influence (a) an applicant's decision to join; and (b) the likelihood an applicant will complete Initial Military Training (IMT) and persist through the first term of service. For 40+ years, the USAF and the other services have primarily relied on the ASVAB to assess and match (or classify) enlisted applicants to AFSs that fit their aptitudes and knowledge of job-relevant subject areas (e.g., electronics, mechanical knowledge, general science, auto and shop information). More recently, the USAF has developed and is exploring the potential of new, alternative assessments to enhance person-job matching (e.g., Tailored Adaptive Personality Assessment System (TAPAS); Air Force Work Interests Navigator (AF-WIN); and Cyber Test (CT)). However, administering the existing ASVAB currently requires over two hours, significantly limiting the time for new, alternative assessments at the MEPS. In sum, test administration time at the MEPS is at a premium. Accordingly, freeing up time to administer new, alternative assessments requires potential changes to the existing ASVAB.

Making smart, informed changes to the ASVAB requires knowing (a) which existing ASVAB subtests best contribute to person-job matching effectiveness; and (b) how best to combine scores on selected ASVAB subtests to maximize the information from the scores for person-job matching, as well as other talent management objectives, where feasible.

Accordingly, the objectives of the current research were to examine:

- the impact of eliminating the technical knowledge tests (Auto and Shop Information (AS); General Science (GS); Electronics Information (EI); and Mechanical Comprehension (MC)) from the operational USAF Mechanical (M) and Electronics (E) composites, along with the potential for supplementing composites with alternative subtests;
- (2) the impact of selected additions to the operational USAF General (G) and Administrative (A) composites; and
- (3) how best to combine scores on a reduced subset of individual ASVAB subtests to maximize the information extracted from the scores for person-job matching, as well as other USAF talent management objectives (e.g., minimizing subgroup score differences by gender, race, or ethnicity).

3.0 DATA PREPARATION AND SCREENING

The original dataset provided contained a large sample (N = 259,359) of USAF accessions (ASVAB score dates from October 1999 through November 2016). The dataset included both pre-accession data (e.g., ASVAB subtest scores, demographic variables) and post-accession data (e.g., AFS qualifying and awarding technical training grades, attrition). Preparing the data for analysis consisted of the following: (a) selecting and constructing the needed predictor, criterion, and demographic variables for analysis and (b) screening and defining the analysis samples.

3.1 Analysis Variables

ASVAB subtest scores. ASVAB subtests include Arithmetic Reasoning (AR), Assembling Objects (AO), Auto and Shop Information (AS), Electronics Information (EI), General Science (GS), Mathematics Knowledge (MK), Mechanical Comprehension (MC), Paragraph Comprehension (PC), and Word Knowledge (WK). The Verbal Expression (VE) composite score is comprised of PC and WK. In the current research, we evaluated PC and WK separately to account for the possibility that the subtests have different patterns of relationships with variables of interest.

Armed Forces Qualification Test (AFQT). The AFQT is used by all U.S. services to qualify applicants for entrance into the military. The AFQT is calculated as AR + MK + 2VE.

Mechanical, Administrative, General, and Electronics (MAGE) composite scores. Existing MAGE composites are calculated as follows:

- Mechanical (M) = AR + MC + AS + 2VE
- Administrative (A) = MK + VE
- General (G) = AR + VE
- Electronics (E) = GS + AR + MK + EI

Air Force Specialty Code (AFSC). AFSCs are occupation codes used by the USAF. Three variables in the dataset contained AFSCs: one reflecting the qualifying course AFSC, one reflecting the awarding course AFSC, and one reflecting the most recent AFSC associated with Skill Level 3. There was also a date associated with each of these that identified (a) when an Airman's completion status was recorded for the qualifying and awarding courses, and (b) when they were recorded as having reached Skill Level 3 for the most recent AFSC. Our goal was to determine one AFSC per case. In order to define the AFSC, we focused primarily on the most recent AFSC and awarding course AFSC, largely using the qualifying AFSC as a quality assurance check on the other two AFSC variables. When determining an AFSC, we prioritized the most recent AFSC variable, but for individuals with missing values on this variable, we used the awarding course AFSC if available. In a small number of cases (n = 354), the most recent AFSC and awarding course AFSC were not available, and we used the qualifying course AFSC.

Technical Training Grades. We focused on the final school grade from Airmen's AFSC awarding course as the primary criterion for technical training performance. The database contained a variable indicating the outcome of the awarding course, which we used to identify

individuals who had (a) graduated, and (b) had a valid end-of-course grade (176,679 out of the full 259,359 database fell into this category). Of this subset, we screened for valid percentage grades of 1-100 and used the resulting values as the final training grade criterion.

Months of Mission-Ready Service (MMRS). MMRS is a tenure-related criterion that also reflects Airmen's productive service. The dataset contained a variety of dates corresponding to tenure milestones including (a) date entered active duty, (b) the date at which Skill Levels 1, 3, 5, and 7 were reached, and (c) the date of separation. In line with previous research (Halper et al., 2010), we operationalized tenure as a function of the months of time spent in the USAF after reaching Skill Level 3 in the classified AFSC. Specifically, months spent at Skill Level 3 were assigned half-weight, and months spent at Skill Level 5 and beyond were assigned full weight. Specifically, MMRS was calculated as:

- MMRS = (months spent at Skill Level 3 * .5) + (months spent at Skill Level 5 and beyond)
- Because the focus for this research was on the initial term of enlistment, we instituted a ceiling of 48 months.

Gender. Gender was coded as Male or Female.

Race and Ethnicity. A variety of race categories were reported. In the current research, we included only the White and Black/African American categories as these were the only ones that had large enough sample sizes. Ethnicity was coded as Hispanic/Latino descent, not of Hispanic/Latino descent, or declined to respond. The combination of these variables resulted in the following three categories: Non-Hispanic White, Non-Hispanic Black, and Hispanic White.

3.2 Screening Rules for Analysis Samples

After identifying and preparing study variables, we constructed the analysis samples by screening the dataset. Due to the dataset being a compilation from multiple sources, there were several non-matching and/or inconsistent data patterns that we attempted to correct by instituting a variety of logical data cleaning rules.

3.2.1. General Sample Screening Rules

We began by verifying that the sample contained Airmen who had data for all ASVAB subtest, MAGE, and AFQT scores and no flags of prior service. We then conducted a series of screens using AFSC and training variables to ensure that (a) data points were logically consistent with each other, and (b) any potential indicators of prior service were identified and removed.

First, we screened out individuals whose qualifying course completion date was later than the awarding course completion date; because the awarding course date should be the most recent, it is possible that these individuals were prior service and had inadvertently been included in the dataset. Second, we removed Airmen where the most recent AFSC and the awarding AFSC differed, as these were potentially either prior service or reclassifications and it was unclear which AFSC they should be grouped with for analyses. Third, we screened out individuals where

the awarding course date was more than six months away from the most recent AFSC date, again due to concerns about possible prior service. Finally, we screened out cases where there was a very large gap between the qualifying course completion date and the awarding course completion date. For instance, if there is a gap of ten years between these completion dates, the odds are high that the record is an instance of prior service. Because training course length varies by AFS, we operationalized this screening procedure as removing any Airman with a gap 2.5 standard deviations longer than the average gap for that AFS.

We then mapped AFSCs to the most recent Air Force Enlisted Classification Directory (AFECD); Air Force Personnel Center, 2019) from April 30, 2019 to identify job titles and MAGE entry requirements. AFSCs that could not be matched to any of the AFECD entries were excluded from our analyses. Airmen were excluded from our analyses if they had a missing value for all of: (a) the most recent AFSC, (b) the awarding course AFSC, and (c) the qualifying course AFSC. Appendix A, presents the AFSCs included in our analyses after this process, and which set of analyses they were included in.

3.2.2. Sample Screening Rules by Criterion

The requirements for appropriately using the training grade and MMRS criteria were different, resulting in separate screening procedures and analysis samples for each criterion.

Training Grade Analysis Sample. To obtain the analysis sample for the training grade criterion, we applied the following rules:

- 1. Only individuals with a valid AFSC as defined above were included so their data could be applied to a particular MAGE composite.
- 2. Only Individuals with a valid awarding course grade were included.

MMRS Analysis Sample. To obtain the analysis sample for the MMRS criterion, we applied the following rules:

- 1. Only individuals with a valid AFSC, as defined above, were included so their data could be applied to a particular MAGE composite.
- 2. Airmen who had an awarding course completion code of "Medical Reasons" or "Unsuitability" were also excluded, as these reasons for non-completion would not be under the Airman's control and/or cognitively-based.
- 3. There were multiple dates indicating when an individual entered active duty. When these dates differed by more than six months, we screened these individuals out due to concerns about potential prior service and because the accuracy of dates was particularly important for the calculation of the MMRS variable.
- 4. Only individuals with a valid date of separation were included in the MMRS analyses. In order to reduce concerns about this date being provisional (i.e., the expected date of separation based on the enlistment term), we further screened out individuals whose date of separation was listed two months prior to when we received the separation data (i.e., a cap of October 1, 2019).

- 5. The sample was also screened based on a sequential longitudinal order of:
 - a. Date reached Skill Level 1
 - b. Date reached Skill Level 3
 - c. Date reached Skill Level 5
 - d. Date reached Skill Level 7
 - e. Date of separation

Airmen whose dates were in a different order (allowing for a one-month margin of error) were excluded from the sample.

6. Airmen without a valid Skill Level 3 date were also excluded. Without a Skill Level 3 date, their MMRS value would be either missing or 0 by default. The records of many of these cases indicate that they actually passed their awarding training course (and many of these had a separation date that was months, if not years, after passing their awarding training course). It was unclear why they would not have officially been recorded as having a date for progressing to Skill Level 3, and we did not want to potentially assign inaccurate values of 0.

Table 3.1 presents the sample sizes of Airmen screened out by using each of these screening rules, while descriptive statistics for key variables within these samples are reported in Appendix B. After the analysis variables and final analysis samples were created, we proceeded to analyses.

Screening Step	Resulting N	Final N
Initial Sample	259,359	
Invalid or Missing ASVAB Subtest, MAGE, and AFQT scores	258,687	
Qualifying Course After Awarding Course Date	255,081	
Most Recent AFSC and Awarding Course AFSC Differed	244,046	
Awarding Course Date more than Six Months Away from Most Recent AFSC Date	230,017	
Large Gap Between Qualifying Course and Awarding Course	228,915	
AFSCs could not be matched to AFECD Entries	200,466	
Training Grade Sample Screening		
Invalid or Missing Awarding Course Grade	149,495	
AFS Sample Size less than 100	149,050	
		149,050
MMRS Sample Screening		
Awarding Course Completion Code of "Medical Reasons" or "Unsuitability"	197,679	
Active Duty Dates Differed by more than Six Months	197,615	
No Valid Separation Date	125,513	
Separation Date After October 1, 2019	119,349	
Non-sequential Order of Skill Level, and Separation Dates	115,851	
Invalid/Missing Skill Level 3 Date	111,000	
AFS Sample Size less than 100	109,874	
		109 874

Table 3.1. Impact of Screening Rules on Sample Size

Note. Both the training grade sample and the MMRS sample start with the overall screened sample of 200,466. MMRS = Months of Mission-Ready Service.

4.0 EVALUATING ALTERNATIVE MECHANICAL AND ELECTRONICS COMPOSITES

The primary questions when investigating the Mechanical (M) and Electronics (E) composites were the extent to which (a) removing technical knowledge tests (i.e., Auto and Shop Information, AS, and Mechanical Comprehension, MC, from the M composite, and General Science, GS, and Electronics Information, EI, from the E composite) impacted predictive validity, subgroup differences, and other relevant metrics, and (b) whether the addition of more general ASVAB subtests (AO, MK, PC, and WK) could either offset or improve validity or reduce subgroup differences. The following sections present our analytic strategies for addressing these questions and results.

4.1 Predictive Validity

We first constructed the population (all 259,359 cases in the full dataset) variance-covariance (VCV) matrix among ASVAB subtests (all ASVAB subtests, including AO, and not limited to the ASVAB subtests that currently comprise the operational M and E composites) to allow for multivariate range restriction (MRR) corrections. This covariance matrix is presented in Table 4.1. We then estimated the observed (restricted) VCV matrix among ASVAB subtests and administrative criteria for each AFS that uses M or E for qualification and that had more than 100 cases in the cleaned final analysis sample. Each AFS-specific observed (restricted) VCV matrix was then corrected for MRR using the VCV ASVAB subtest matrix from the full dataset. This resulted in a corrected VCV matrix for each AFS that included covariances between the ASVAB subtests and the training grade and MMRS criteria.

	AO	AR	AS	EI	GS	MC	MK	PC	WK
AO	372.93	20.14	29.46	25.64	8.90	33.85	11.98	10.82	15.54
AR	20.14	39.04	12.31	18.45	17.88	22.59	21.31	12.19	12.00
AS	29.46	12.31	74.27	42.50	25.69	39.37	1.43	9.70	15.08
EI	25.64	18.45	42.50	68.84	34.01	38.49	10.37	15.84	23.13
GS	8.90	17.88	25.69	34.01	51.05	29.97	12.90	17.85	26.98
MC	33.85	22.59	39.37	38.49	29.97	59.85	13.12	14.74	19.24
MK	11.98	21.31	1.43	10.37	12.90	13.12	31.25	7.85	7.74
PC	10.82	12.19	9.70	15.84	17.85	14.74	7.85	31.02	17.63
WK	15.54	12.00	15.08	23.13	26.98	19.24	7.74	17.63	39.26

Table 4.1. Full Dataset Variance-Covariance Matrix of ASVAB Subtests

With the corrected VCV matrix for each AFS, we then applied composite algebra to create a series of composites, including different combinations of unit-weighted ASVAB subtests, adding AO, MK, PC, and WK (depending on whether they were in the original composite or not). This resulted in composite-level predictive validity estimates, keyed to each criterion. Next, we computed the delta in composite-level validity estimates between the operational M and E composites and the potential revised M and E composites for each AFS that currently uses M or

E scores for qualification¹. Finally, we computed an *n*-weighted average of the AFS-level predictive validity estimates and deltas, grouped by M/E composite, to obtain an overall, cross-AFS estimate of the validity of each composite.

Table 4.2 presents aggregated predictive validity results for the M composite. For both criteria, the best prediction is achieved by the current composite with technical knowledge tests. However, the alternative composites are not dramatically lower in validity, particularly for training grades (e.g., a decrement of around 5-14%). The best performing composite for training grades (AR+PC+WK+MK) contains the same more general subtests included in the AFQT and adding AO to composites generally hurts validity. Alternatively, for MMRS, AO appears to aid in prediction, with the best-performing composites being AR+PC+WK+AO and AR+PC+WK+AO+MK. However, given the small validities, differences between composites for the MMRS criterion are probably not very meaningful.

More detailed results broken down by AFS are presented in Appendix C. Overall, results at the AFS level exhibit the same patterns as the aggregated results (i.e., the current composite tends to perform the best, with composites including AO performing worse and composites resembling the AFQT performing better). There are some exceptions, where for instance, composites containing AFQT subtests perform better than the current composite, or the magnitude of differences between the current composite and the alternative composites is larger. However, it appears that the aggregated results are generally a fairly accurate summary of the predictive validities of the composite within AFS and there is not wide variance.

Additionally, observed predicted validities (not corrected for MRR) are presented in Appendix D. Patterns from observed predicted validities are very similar to the corrected results, so we focused on corrected validities in this report.

	Trainin	g Grade	MMRS		
	Validity	Delta	Validity	Delta	
Current Composite	.472		.073		
AR+PC+WK	.429	043	.046	028	
AR+PC+WK+MK	.447	025	.048	026	
AR+PC+WK+AO	.408	064	.057	017	
AR+PC+WK+AO+MK	.432	- 040	.057	- 017	

Table 4.2. Aggregated Predictive Validity Results for the Mechanical Composite and Alternatives

Note. Validities reported are sample-size weighted correlations between the composite and each criterion. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 53,764 across 37 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 38,359 across 40 AFS.

Table 4.3 presents these same results for the E composite. As with the M composite, the best prediction is achieved by the current composite with technical knowledge tests included.

¹ Some AFSs use multiple MAGE composite scores for qualification. For these AFS, we included them in analysis groups for all applicable composites.

However, some alternative composites approximate the current composite's validity, ranging from 1% to 20% decrements. Similar to the M composite, for the training grade criterion, AO generally harms validity, and the best-performing composites resemble the AFQT, whereas for the MMRS criterion AO tends to increase prediction slightly more than other subtests.

	Trainin	g Grade	MN	/IRS
	Validity	Delta	Validity	Delta
Current Composite	.472		.060	
AR+MK	.401	071	.047	013
AR+MK+WK	.452	020	.044	016
AR+MK+PC	.447	025	.050	010
AR+MK+AO	.376	095	.055	006
AR+MK+PC+WK	.467	005	.046	014
AR+MK+AO+WK	.429	043	.051	009
AR+MK+AO+PC	.427	044	.056	004
AR+MK+AO+PC+WK	452	- 020	052	- 008

 Table 4.3. Aggregated Predictive Validity Results for the Electronics Composite and Alternatives

Note. Validities reported are sample-size weighted correlations between the composite and each criterion. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 31,563 across 30 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 19,503 across 25 AFSs.

There are some common threads with the validity results for the M and E composites. First, in terms of predictive validity, the current composites that include technical knowledge tests provide the highest validity. This is not surprising given the technical tests likely also tap previous experience and interest in those domains. Dropping the technical knowledge tests does not eliminate validity, however, and some alternative composites perform relatively closely. Also, both M and E composites present similar magnitude disparities between the training grades and MMRS criteria; training grades are much more predictable with the ASVAB subtests. This also is not very surprising given that training grades are more conceptually related to cognitive constructs, and several non-cognitive and situational factors can play into tenure decisions.

Validity is not the only important metric by which to evaluate prediction. The impact of prediction on subgroups, and the practical impact of validity differences are also critical to examine. The next sections describe our analyses to pursue these questions.

4.2 Subgroup Differences

In addition to validity, it is also important to know what effect each of the composites has on measures of subgroup differences. We primarily addressed this by estimating the population-level standardized group mean score differences (Cohen's d) for each composite by (a) gender (Male compared to Female), (b) race (Non-Hispanic White compared to Non-Hispanic Black), and (c) ethnicity (Non-Hispanic White compared to Hispanic White) among the accession population.² Similar to predictive validity, we computed the delta in these Cohen's d estimates

² Cohen's d is calculated as (majority mean – minority mean)/pooled standard deviation

between the current operational composites and alternative M and E composites for each of the subgroup comparisons.

Tables 4.4 and 4.5 present these results for the Mechanical and Electronics composites, respectively. For both composite groups, the largest mean differences are between Non-Hispanic Whites and Non-Hispanic Blacks, followed by Males and Females, and finally Non-Hispanic Whites and Hispanic Whites. The trend for both of these composite groups is striking: subgroup differences are by far the largest for the operational composite, and generally smallest when incorporating AO in revised composites. The technical knowledge subtests appear to be a driver of subgroup differences. These differences can be reduced by as much as 98% when examining alternative composites without these subtests included.

Table 4.4. Population Mean Standardized Differences (Cohen's d) for the Mechanical Composite and Alternatives

	Male/Female		NHW/	NHB	NHW/HW	
	d	Delta	d	Delta	d	Delta
Current Composite	.841		1.147		.508	
AR+PC+WK	.343	498	.662	485	.316	192
AR+PC+WK+MK	.295	546	.586	561	.256	252
AR+PC+WK+AO	.235	606	.465	682	.137	371
AR+PC+WK+AO+MK	.227	614	.461	686	.127	381

Note. Values reported are mean standardized differences, computed as (majority mean – minority mean)/pooled standard deviation. They index the number of standard deviations units the majority group scores above the minority group. Deltas represent the difference between the *d*-value for the current composite and the alternative composite. NHB = Non-Hispanic Black, NHW = Non-Hispanic White, and HW = Hispanic White. Statistics were calculated based on the entire accession population included in the dataset.

Table 4.5. Population Mean Standardized Differences (Cohen's d) for the Electronics Composite and Alternatives

	Male/Female		NHW	/NHB	NHW/HW	
	d	Delta	d	Delta	d	Delta
Current Composite	.724		.870		.358	
AR+MK	.290	434	.423	447	.094	264
AR+MK+WK	.311	413	.573	297	.237	121
AR+MK+PC	.286	438	.491	379	.157	201
AR+MK+AO	.186	538	.316	554	.007	351
AR+MK+PC+WK	.295	429	.586	284	.256	102
AR+MK+AO+WK	.217	507	.420	450	.095	263
AR+MK+AO+PC	.203	521	.376	494	.051	307
AR+MK+AO+PC+WK	.227	497	.461	409	.127	231

Note. Values reported are mean standardized differences, computed as (majority mean – minority mean)/pooled standard deviation. They index the number of standard deviations units the majority group scores above the minority group. Deltas represent the difference between the *d*-value for the current composite and the alternative composite. NHB = Non-Hispanic Black, NHW = Non-Hispanic White, and HW = Hispanic White. Statistics were calculated based on the entire accession population included in the dataset.

In addition to subgroup mean differences, we also calculated differential validity for the Male/Female and Non-Hispanic White/Non-Hispanic Black groups for the training grade criterion, as that criterion had much higher base validity. Differential validity was analyzed for all AFSs where the minority group sample size was at least 100. These results are presented in Appendix E.

4.3 Projected Impact

Although predictive validity and subgroup difference results provide valuable information on the expected effect from implementing different composites, it can also be useful to estimate the practical significance of using these composites by referencing the predicted criterion scores and anticipated adverse impact ratios. This type of information can provide further context for broader validity and subgroup difference results, and aid decision-making. We therefore conducted person-job matching (projected impact) analyses, simulating the assignment of enlisted recruits using the operational M and E composites to match recruits to AFS, compared to the use of the revised composites (e.g., Horst, 1954, 1955; Trippe et al., 2011; Zeidner et al., 1997). Given the more promising validity results, we focused our projected impact analyses on the training grade criterion.

First, we estimated AFS-specific prediction equations for generating mean predicted Final School Grades (FSG) for all AFSs with a sample size of over 100, and not limiting to only the AFSs that currently use M or E, operationally. We then applied these equations to the enlisted accession population to generate a FSG for all AFSs with a prediction equation. We then generated pass/fail indicators for cut scores to represent qualification for each AFS. For the operational composites, we used the operational cut scores, whereas for the revised composites, we calculated cut scores to be percentile equivalent to the operational cut scores.

For each AFS-by-ASVAB composite combination, we computed the following metrics:

- 1. Qualification Rate (QR), overall and by subgroup (gender, race, and ethnicity): Percentage of USAF accessions that would qualify for that AFSC.
- 2. QR Adverse Impact Ratio (AIR) by gender, race, and ethnicity: Computed as the QR of the subgroup divided by the QR of the referent group.
- 3. Mean on predicted FSG among selected group

We then aggregated results by MAGE grouping.

Tables 4.6 and 4.7 present the results of these projected impact analyses for the M and E composites. As with the predictive validity and subgroup difference results, the overall trends are very similar for the M and E composites. First, even though the predictive validity ranges from 1-20% lower (depending on the alternative composite) when dropping technical knowledge subtests, this does not carry through to dramatic differences in the mean predicted FSG. Alternatively, the subgroup difference results contribute to more meaningful results in related projected impact outcomes. The majority group qualification rates drop slightly, but the minority group qualification rates tend to increase to a greater degree. The combination of these changes

results in substantial narrowing of the qualification rate adverse impact ratios (e.g., for the Female and Hispanic White subgroups, these differences are almost eliminated with some composites).

		Qualification Rate					QR A	t Ratio	FSG	
	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	150
Current Composite	.710	.771	.477	.806	.414	.646	.606	.501	.793	89.572
AR+PC+WK	.717	.740	.624	.772	.546	.672	.836	.695	.864	89.417
AR+PC+WK+MK	.718	.737	.645	.762	.565	.686	.868	.730	.895	89.451
AR+PC+WK+AO	.714	.731	.647	.750	.569	.711	.877	.745	.942	89.171
AR+PC+WK+AO+MK	.719	.733	.665	.747	.590	.722	.901	.777	.961	89.181

Table 4.6. Aggregated Projected Impact Results for the Mechanical Composite and Alternatives

Note. Aggregated projected impact results applying prediction equations and cut scores to the entire population included in the dataset. Qualification Rates represent the percentage of USAF accessions that would qualify for Mechanical AFS. QR Adverse Impact Ratios are the minority group QR/majority group QR. QR=Qualification Rate, NHW=Non-Hispanic White, NHB=Non-Hispanic Black, HW=Hispanic-White, FSG=Mean predicted Final School Grade of the qualified group.

 Table 4.7. Aggregated Projected Impact Results for the Electronics Composite and Alternatives

		Qualification Rate					QR A	Adverse Impact	t Ratio	ESC
	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F30
Current Composite	.743	.782	.589	.795	.564	.704	.715	.669	.867	89.497
AR+MK	.758	.772	.703	.774	.667	.758	.893	.836	.973	89.281
AR+MK+WK	.758	.774	.695	.789	.638	.734	.880	.776	.917	89.378
AR+MK+PC	.749	.762	.694	.772	.646	.740	.891	.804	.947	89.404
AR+MK+AO	.753	.764	.711	.767	.668	.767	.914	.840	.997	89.136
AR+MK+PC+WK	.752	.767	.693	.786	.632	.725	.883	.770	.907	89.430
AR+MK+AO+WK	.750	.762	.703	.773	.649	.750	.904	.803	.961	89.214
AR+MK+AO+PC	.745	.756	.702	.763	.654	.753	.909	.820	.979	89.228
AR+MK+AO+PC+WK	.748	.760	.702	.773	.645	.745	.904	.797	.952	89.261

Note. Aggregated projected impact results applying prediction equations and cut scores to the entire population included in the dataset. Qualification Rates represent the percentage of USAF accessions that would qualify for Electronics AFS. QR Adverse Impact Ratios are the minority group QR/majority group QR. QR=Qualification Rate, NHW=Non-Hispanic White, NHB=Non-Hispanic Black, HW=Hispanic-White, FSG=Mean predicted Final School Grade of the qualified group.

Full results broken down by AFS, are presented in Appendix F. Unlike the predictive validity results, where AFS-level analyses were largely similar, there is a wider variance in adverse impact ratios and predicted FSG across AFS because different AFS use different MAGE composite cut scores. However, comparing composite solutions within the same AFS, the patterns seen in the aggregated results tend to hold, and it is not the case that there are AFSs where the current composite results in better adverse impact ratios, for instance.

4.4 **Overall Conclusions**

Analyzing the cumulative projected impact of removing the technical knowledge subtests from the M and E composites, and potentially supplementing them with other ASVAB subtests, there are a few conclusions that can be drawn. First, maximal predictive validity (and face validity to some degree) is achieved by keeping the technical knowledge subtests as part of the composites. Second, inclusion of these technical subtests appears to lead to increased subgroup differences. Third, the projected impact of removing technical knowledge subtests seems likely to impact subgroup differences positively more than it negatively effects training grade outcomes, especially if other subtests, such as AO, are included in alternative composites. At the very least, results suggest that USAF has viable alternative composites to consider.

5.0 EVALUATING ALTERNATIVE ADMINISTRATIVE AND GENERAL COMPOSITES

The questions under investigation for the Administrative and General composites were similar to those for the Mechanical and Electronics composites. Our goal was to see how different composites would impact predictive validity, subgroup differences, and other relevant metrics. However, for these composites, rather than removing technical knowledge tests, we only investigated the potential impact of adding AO, AR, GS, and MK. Otherwise, the general methodology was identical.

5.1 Predictive Validity

We followed the same general method for estimating predictive validity of composites as described above for the Mechanical and Electronics composites (i.e., using MRR-corrected VCV matrices to construct composites and estimate predictive validity for each AFS, then aggregating within MAGE group).

Table 5.1 presents aggregated predictive validity results for the Administrative composite, while Table 5.2 presents these results for the General composite. Like with the M and E composite results, training grades were moderately predictable from the ASVAB composites, whereas MMRS exhibited very small correlations with the composites. Across both criteria, the impact of adding tests was minimal (i.e., around .00-.03 in either direction).³ This is likely due to the intercorrelations between the subtests, and the more general focus of both operational composites: information from another general subtest will largely be redundant with the information already provided by the composite. That being said, the alternative composites that appear to provide the largest benefit look more like the AFQT, whereas the least predictive composites tend to include AO.

	Trainin	ıg Grade	MMRS		
	Validity	Delta	Validity	Delta	
Current Composite	.398		.009		
MK+PC+WK+GS	.390	008	.004	005	
MK+PC+WK+AR	.415	.017	.012	.004	
MK+PC+WK+AO	.375	023	.022	.013	
MK+PC+WK+AR+GS	.409	.010	.009	.000	
MK+PC+WK+AO+GS	.381	018	.016	.007	
MK+PC+WK+AO+AR	.399	.000	.024	.015	
MK+PC+WK+AO+AR+GS	.400	.001	.019	.010	

 Table 5.1. Aggregated Predictive Validity Results for the Administrative Composite and

 Alternatives

Note. Validities reported are sample-size weighted correlations between the composite and each criterion. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 25,623 across 16 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 16,454 across 19 AFSs.

16

³ Note that even though tests are being added in all cases for the A and G composites, it is still possible for predictive validity to be reduced due to integer-weighting and the addition of less valid predictors.

	Trainin	ıg Grade	M	ИRS
	Validity	Delta	Validity	Delta
Current Composite	.429		.058	
AR+PC+WK+MK	.452	.024	.059	.001
AR+PC+WK+AO	.407	021	.066	.008
AR+PC+WK+GS	.441	.012	.057	001
AR+PC+WK+AO+MK	.434	.005	.067	.009
AR+PC+WK+GS+MK	.459	.030	.059	.001
AR+PC+WK+AO+GS	.427	001	.065	.007
AR+PC+WK+AO+GS+MK	.448	.020	.066	.009

 Table 5.2. Aggregated Predictive Validity Results for the General Composite and Alternatives

Note. Validities reported are sample-size weighted correlations between the composite and each criterion. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 76,469 across 37 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 58,277 across 46 AFSs.

5.2 Subgroup Differences

We also calculated subgroup differences for the A and G composites, which are presented in Tables 5.3 and 5.4. As with the M and E composite results, even though predictive validity differences were not dramatic, the addition of other ASVAB subtests resulted in more substantial differences with respect to subgroup differences. Some combinations increased subgroup differences, while others reduced them. Generally, the inclusion of AO tended to reduce subgroup differences. We also calculated differential validity results for training grades for the A and G composites, which are presented in Appendix E.

Table 5.3. Population Mean Standardized Differences (Cohen's d) for the Administrative Composite and Alternatives

	Male/I	Female	NHW	/NHB	NHW	//HW
	d	Delta	d	Delta	d	Delta
Current Composite	.154		.457		.224	
MK+PC+WK+GS	.337	.183	.662	.205	.350	.126
MK+PC+WK+AR	.295	.141	.586	.129	.256	.032
MK+PC+WK+AO	.146	008	.379	078	.107	117
MK+PC+WK+AR+GS	.400	.246	.701	.244	.327	.103
MK+PC+WK+AO+GS	.262	.108	.524	.067	.194	030
MK+PC+WK+AO+AR	.227	.073	.461	.004	.127	097
MK+PC+WK+AO+AR+GS	.321	.167	.579	.122	.202	022

Note. Values reported are mean standardized differences, computed as (majority mean – minority mean)/pooled standard deviation. They index the number of standard deviations units the majority group scores above the minority group. Deltas represent the difference between the d-value for the current composite and the alternative composite. NHB = Non-Hispanic Black, NHW = Non-Hispanic White, and HW = Hispanic White. Statistics are calculated based on the entire accession population included in the dataset.

	Male/	Male/Female		/NHB	NHW/HW	
	d	Delta	d	Delta	d	Delta
Current Composite	.405		.709		.299	
AR+PC+WK+MK	.295	110	.586	123	.256	043
AR+PC+WK+AO	.235	170	.465	244	.137	162
AR+PC+WK+GS	.448	.043	.771	.062	.381	.082
AR+PC+WK+AO+MK	.227	178	.461	248	.127	172
AR+PC+WK+GS+MK	.400	005	.701	008	.327	.028
AR+PC+WK+AO+GS	.337	068	.596	113	.218	081
AR+PC+WK+AO+GS+MK	.321	084	.579	130	.202	097

 Table 5.4. Population Mean Standardized Differences (Cohen's d) for the General Composite and Alternatives

Note. Values reported are mean standardized differences, computed as (majority mean – minority mean)/pooled standard deviation. They index the number of standard deviations units the majority group scores above the minority group. Deltas represent the difference between the d-value for the current composite and the alternative composite. NHB = Non-Hispanic Black, NHW = Non-Hispanic White, and HW = Hispanic White. Statistics are calculated based on the entire accession population included in the dataset.

5.3 **Projected Impact Results and Conclusions**

Finally, we conducted projected impact analyses for the A and G composites and their alternatives for the training grade criterion, which are presented in Tables 5.5 and 5.6. We excluded the MMRS criterion from these analyses since predictive validities were again very low. Unsurprisingly, given the low magnitude of predictive validity differences, we found that any differences in predictive validity did not translate to large differences on the predicted training grade criterion of those who qualify for these AFSs. However, whereas for the M and E composites it was possible to reduce qualification rate adverse impact ratios by considering alternate composites, the effects on the A and G composites were minimal, and often slightly harmful. Part of this effect is likely due to the already high qualification rates for AFSs that rely on the A and G composites for qualification. Additionally, the more dramatic results for M and E were also a result of dropping technical knowledge subtests. For the A and G composites, subtests were only added, and the ones that were added tended to be those more likely to be redundant. Those caveats aside, some composites with AO included (e.g., AR+PC+WK+AO and AR+PC+WK+AO+MK for the G composite) did appear to mildly reduce adverse impact ratios with minimal effects on predictive validity, so could potentially be considered as viable alternatives. As with the M and E composites, full results broken down by AFS are reported in Appendix F.

		Qualification Rate					QR Adverse Impact Ratio			ESC
	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	r50
Current Composite	.858	.861	.844	.873	.806	.841	.972	.902	.954	88.981
MK+PC+WK+GS	.861	.872	.818	.889	.778	.831	.923	.850	.921	88.936
MK+PC+WK+AR	.867	.875	.833	.887	.795	.852	.938	.873	.951	88.967
MK+PC+WK+AO	.863	.867	.846	.875	.809	.862	.966	.903	.978	88.819
MK+PC+WK+AR+GS	.862	.875	.808	.890	.768	.836	.905	.835	.928	88.966
MK+PC+WK+AO+GS	.862	.870	.829	.880	.794	.854	.940	.878	.961	88.825
MK+PC+WK+AO+AR	.860	.867	.833	.874	.798	.861	.948	.888	.978	88.853
MK+PC+WK+AO+AR+GS	.860	.871	.821	.880	.785	.854	.927	.866	.962	88.860

Table 5.5. Aggregated Projected Impact Results for the Administrative Composite and Alternatives

Note. Aggregated projected impact results applying prediction equations and cut scores to the entire population included in the dataset. Qualification Rates represent the percentage of USAF accessions that would qualify for Administrative AFSs. QR Adverse Impact Ratios are the minority group QR/majority group QR. QR = Qualification Rate, NHW = Non-Hispanic White, NHB = Non-Hispanic Black, HW = Hispanic-White, FSG=Mean predicted Final School Grade of the qualified group.

		Qualification Rate					QR	Adverse Impac	t Ratio	ESC
	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F50
Current Composite	.839	.854	.781	.868	.742	.820	.891	.820	.929	87.066
AR+PC+WK+MK	.844	.854	.807	.866	.766	.828	.927	.854	.942	87.072
AR+PC+WK+AO	.843	.851	.809	.860	.773	.840	.932	.865	.964	86.938
AR+PC+WK+GS	.842	.859	.777	.878	.736	.810	.880	.804	.906	87.059
AR+PC+WK+AO+MK	.841	.849	.813	.857	.777	.841	.940	.874	.972	86.964
AR+PC+WK+GS+MK	.844	.858	.788	.874	.746	.818	.895	.820	.920	87.079
AR+PC+WK+AO+GS	.842	.854	.797	.865	.760	.833	.910	.843	.948	86.963
AR+PC+WK+AO+GS+MK	.842	.852	.800	.863	.763	.835	.917	.850	.955	86.990

 Table 5.6. Aggregated Projected Impact Results for the General Composite and Alternatives

Note. Aggregated projected impact results applying prediction equations and cut scores to the entire population included in the dataset. Qualification Rates represent the percentage of USAF accessions that would qualify for General AFSs. QR Adverse Impact Ratios are the minority group QR/majority group QR. QR = Qualification Rate, NHW = Non-Hispanic White, NHB = Non-Hispanic Black, HW = Hispanic-White, FSG = Mean predicted Final School Grade of the qualified group.

6.0 EVALUATING OTHER ALTERNATIVE MAGE COMPOSITES: CONTENT-ORIENTED APPROACH

In an effort to combine ASVAB subtests while meeting other talent management objectives (e.g., reducing subgroup differences and increasing predictive validity), we explored a machine learning approach for constructing alternative MAGE composites. More specifically, NLP procedures were employed to predict mean importance ratings for knowledges and abilities that relate to ASVAB subtests for each AFS. The mean importance ratings were rescaled and used to calculate nominal weights for the current MAGE composites and candidate alternative ASVAB composites. These weights were then applied to ASVAB standard scores to construct alternate MAGE composites for evaluation. The contents of this section provide details about the procedures, summary results of those analyses, and a description of how this alternative approach compares to the integer-weighted composites described in previous sections.

The purpose for employing an alternative composite creation strategy was to capitalize on advances in NLP when large, text-based datasets are available. Similar investigations using text data in selection contexts have been implemented (Campion et al., 2016; Putka, 2018) and set a precedent for its application here. For the purposes of this effort, a text-based dataset, containing occupational information for military classifications (e.g., AFS), was available from the Department of Defense (DoD) Occupational Database (ODB). This NLP approach to analyzing occupational data is conceptually similar to a content validation perspective whereby meaningful expert ratings are generated as they relate to knowledge on ASVAB subtests.

Content validation is a process where expert judges evaluate a test's content with respect to the domain (e.g., knowledge) the test is used to assess (Fitzpatrick, 1983). Evidence to support content validation is often in the form of a Content Validation Ratio (CVR), a formula that considers subject matter expert (SME) evaluations of an item's essentialness. SME ratings are quantitative indicators of these domains or constructs that tend to contain very specific information about a specific construct. Alternatively, job descriptions and task lists are qualitative indicators of constructs, such as knowledge. These qualitative indicators are generally more nuanced and contain a broad array of information about an occupation. More specifically, a rating scale typically indicates only one targeted knowledge or ability whereas a high-quality job description and task list will usually reflect many different knowledges and abilities through text. Arguably, one NLP approach to establishing content-related evidence is the generation of meaningful quantitative indicators from job descriptions and task lists. By adjusting the quantitative indicators, one can pursue analyses as they relate to selection and talent management objectives.

6.1 Data Preparation

6.1.1. Model Development

Using 963 occupations from the U.S. Department of Labor's Occupational Information Network (O*NET), we were able to train a machine to accurately estimate knowledge, skills, abilities, and other (KSAO) ratings for jobs using job descriptions and task information as the only input to the model. Further, the KSAO predictions generated in that study cross-validated with SME ratings for knowledge and abilities of .74 and .75, respectively (Putka, 2018). Importantly, because the model developed using O*NET data was found to also produce meaningful results when applied to occupations *independent* of O*NET data, the use of this model is deemed applicable here.

20

6.1.2. DoD's Occupational Database

We used DoD's ODB to obtain AFS-level occupational task descriptions. In order to run NLPrelated analyses using this qualitative dataset, we conducted a series of data cleaning steps which included ensuring all AFS text information was one block of text for each occupation, removing job description headers and numbering, and filtering the file to only include Air Force enlisted occupations.

After completing the initial cleaning steps, each occupation's text was further processed using R's *koRpus* package to convert the text into a reduced set of language-based predictor variables. *koRpus* was first used to (a) remove "stop words" from each occupation's text. "Stop words," are words that serve only a functional purpose in a sentence, such as linking clauses together, occur with frequency in most texts, and include words such as "and", "for", "such", and "the". A complete list of stop words detected by R's *tm* text mining package and removed in this study is provided in Landers (2017).

Next, *koRpus* was used to convert remaining words into their lemmas (the base form of a word) through a process called lemmatization. This step is necessary because within task statements, several forms of a word appear that differ because they are variants of the same word root. Examples include, *investigate, investigates, investigated, investigating*. All of these variants concern the word root, *investigate*. To map each word within an AFS's occupational text block to its lemma, we used *TreeTagger* within R's *koRpus*. When no lemma could be identified, the original word was retained. Then, the relative frequency with which each remaining lemma (or word) appeared in each occupation's text (i.e., dividing the frequency of a lemma in text by the number of words in text) was computed and served as predictor information for input into the model.

Once the predictor variables were set up, we placed them into a model, described in the above Model Development section, to predict knowledge and ability ratings for each AFS. The generated knowledge and ability ratings range from 1 (not important) to 5 (extremely important). Because the model predicts importance estimates for knowledges and abilities, there was a need to cross-walk that information onto ASVAB subtests. Table 6.1 illustrates the rational linkage between knowledges and abilities and ASVAB subtests.

ASVAB Subtest	O*NET Descriptor
Assembling Objects (AO)	Visualization (Ability)
Arithmetic Reasoning (AR)	Mathematical Reasoning (Ability)
Auto and Shop Information (AS)	Mechanical (Knowledge); Computers and Electronics (Knowledge)
Coding Speed (CS)	Perceptual Speed (Ability)
Electronics Information (EI)	Computers and Electronics (Knowledge)
General Science (GS)	Biology (Knowledge); Chemistry (Knowledge); Physics (Knowledge)
Mechanical Comprehension (MC)	Mechanical (Knowledge)
Mathematics Knowledge (MK)	Mathematics (Knowledge)
Paragraph Comprehension (PC)	Written Comprehension (Ability)
Verbal Expression (VE)	Written Expression (Ability)
Word Knowledge (WK)	English Language (Knowledge)

Table 6.1. Crosswalk of ASVAB Subtest with O*NET Knowledge and/or Ability Category

Note. Knowledge refers to an organized set of principles and facts applying in general domains. Ability refers to enduring attributes of the individual that influence performance.

6.2 Analyses

In order to use the quantitative ratings resulting from the model for analysis purposes, the importance ratings were rescaled to generate equivalent integer weights and were treated as target effective weights. The rescaling process involved subtracting mean importance ratings by 3, which put them on a scale of 0 to 2. Specifically, this set mean ratings less than 3 to 0, and rescaled ratings greater than 3 to have a maximum value of 2. Using the target effective weights and Air Force population-level ASVAB subtest variance-covariance matrix, we generated nominal weights and applied them to the variables forming the composite (Wang & Stanley, 1970). When nominal weights are applied to ASVAB standard scores, the result is a weighted sum of standard scores for alternative MAGE composites. See Appendix G, Tables G.1 through G.4 for the resulting nominal weights by candidate composite. It is noteworthy to point out that the translation of rescaled importance ratings into nominal weights resulted in eighting for some ASVAB subtests. More specifically, this procedure resulted in some subtests that contribute to a composite receiving a weight of zero and therefore, impacting the contribution of the subtest's standard score in the resulting weighted sum of standard scores. We applied the resulting weights to ASVAB subset scores to generate scores on the content-oriented composites and then conducted the same validity analyses, documented in the preceding sections, to evaluate the composites.

6.3 Results

The original purpose of this effort was to explore whether alternative ASVAB composites could be identified using newer research methods (i.e., machine learning). Because there was a shift towards exploring multiple combinations of ASVAB subtests, a renewed purpose for this effort was determining the comparability of validity estimates using NLP with the empirical procedures covered in the previous sections.

In general, composites constructed using the content-oriented approach yielded predictive validity estimates with training grade that closely approximated those estimated using an empirical approach. More specifically, the average absolute differences in estimates between approaches were .13, .12, .12, and .10 for Mechanical, Administrative, General, and Electronics ASVAB subtest composites, respectively. The validity estimates resulting from this approach for each MAGE composite are illustrated in Tables G.5 through G.8. A box plot summary comparison of both approaches is illustrated in Figures 6.1 and 6.2.

Figure 6.1. Summary Box Plot of Absolute Differences Between Empirical and Content-Oriented Approaches for Mechanical and Electronics Composites

23

Figure 6.2. Summary Box Plot of Absolute Differences Between Empirical and Content-Oriented Approaches for Administrative and General Composites

In comparing approaches, there were fewer observable patterns with respect to alignment of validity estimates across alternative composites within a MAGE composite. Stated alternatively, the subtest composites with the lowest absolute difference in predictive validity across approaches generally differed across AFS. For example, within Mechanical, a composite validity coefficient that closely approximated the value estimated using a traditional approach for one AFS was not always consistent across other AFS. Within an AFS, in a majority of cases, the lowest absolute difference between both approaches was observed in the hundredths decimal place. This finding would suggest this alternative approach, when text-based data is available, is suitable for considering candidate composites at the AFS-level.

6.4 Conclusion

In summary, NLP procedures were employed to translate large datasets with qualitative occupational information into quantitative ratings that were used for constructing composites. In general, the application of these newer analytical procedures resulted in findings that generally aligned with those calculated from empirical data. This effort illustrates that when quantitative data is unavailable, text-based information can be used to estimate validity coefficients with close accuracy to a traditional approach at the AFS-level. However, this finding did not pan out at the composite level and within the broader MAGE groupings. Importantly, when it is the case that large-scale quantitative data are available for use in a validation effort, those data should take precedence over text-based analysis; although our results suggest that NLP-based results could be a viable starting point.

7.0 EVALUATING OTHER ALTERNATIVE MAGE COMPOSITES: OPTIMAL WEIGHTING APPROACH

We also constructed alternative MAGE composites with optimal, empirically-estimated weights. Data for estimation were identical to those described above (i.e., same starting sample, same corrected covariance matrices as input), except that we used multiple predictive modeling methods to estimate optimal weights. One of the predictive modeling methods we tried was standard OLS regression. We also tried applying several machine learning algorithms (e.g., CART, gbm, adaboost) in some of the larger sample-size AFSs to attempt to capitalize on interactions. However, this only resulted in validity increments over OLS at the thousandth place. We hypothesized that this was due to the high intercorrelations and similar construct space shared by the ASVAB subtests. As a result, we only present aggregated OLS results below in Tables 7.1 through 7.4.

	Training Grade		MN	/IRS
	Validity	Delta	Validity	Delta
Current Composite	.472		.073	
Current Composite - OLS	.495	.023	.117	.044
AR+PC+WK	.440	032	.074	.001
AR+PC+WK+MK	.451	021	.080	.007
AR+PC+WK+AO	.441	031	.088	.015
AR+PC+WK+AO+MK	452	- 020	093	020

Table 7.1. Aggregated Multiple Regression Results for the Mechanical Composite and Alternatives

Note. Validities reported are sample-size weighted multiple Rs for the composite predicting each criterion. The Current Composite row represents the current operational composite, whereas the Current Composite – OLS row presents results obtained from an OLS composite of the ASVAB subtests comprising the current composite. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 53,764 across 37 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 38,359 across 40 AFSs.

	Trainin	g Grade	MN	/IRS
	Validity	Delta	Validity	Delta
Current Composite	.472		.060	
Current Composite – OLS	.492	.020	.117	.057
AR+MK	.408	064	.073	.013
AR+MK+WK	.457	015	.084	.024
AR+MK+PC	.452	020	.083	.023
AR+MK+AO	.411	061	.091	.031
AR+MK+PC+WK	.472	.000	.093	.033
AR+MK+AO+WK	.459	013	.099	.039
AR+MK+AO+PC	.454	018	.098	.038
AR+MK+AO+PC+WK	473	001	107	047

Table 7.2. Aggregated Multiple Regression Results for the Electronics Composite and Alternatives

Note. Validities reported are sample-size weighted multiple Rs for the composite predicting each criterion. The Current Composite row represents the current operational composite, whereas the Current Composite – OLS row presents results obtained from an OLS composite of the ASVAB subtests comprising the current composite. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 31,563 across 30 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 19,503 across 25 AFSs.

26

Distribution A: Approved for public release.

88ABW-2020-3628, cleared 18 November 2020.

	Alternative	es s			
	Training	g Grade	MMRS		
	Validity	Delta	Validity	Delta	
Current Composite	.398		.009		
Current Composite – OLS	.409	.011	.075	.066	
MK+PC+WK+GS	.413	.015	.088	.079	
MK+PC+WK+AR	.421	.023	.084	.075	
MK+PC+WK+AO	.411	.013	.093	.084	
MK+PC+WK+AR+GS	.423	.025	.096	.087	
MK+PC+WK+AO+GS	.415	.017	.105	.096	
MK+PC+WK+AO+AR	.422	.024	.101	.092	
MK+PC+WK+AO+AR+GS	.424	.026	.112	103	

Table 7.3. Aggregated Multiple Regression Results for the Administrative Composite and Alternatives

Note. Validities reported are sample-size weighted multiple Rs for the composite predicting each criterion. The Current Composite row represents the current operational composite, whereas the Current Composite – OLS row presents results obtained from an OLS composite of the ASVAB subtests comprising the current composite. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 25,623 across 16 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 25,623 across 16 AFSs.

Table 7.4. Aggregated Multiple Regression Results for the General Composite and Alternatives

	Trainin	g Grade	MMRS		
	Validity	Delta	Validity	Delta	
Current Composite	.429		.058		
Current Composite - OLS	.439	.010	.091	.033	
AR+PC+WK+MK	.458	.029	.095	.037	
AR+PC+WK+AO	.441	.012	.102	.044	
AR+PC+WK+GS	.450	.021	.096	.038	
AR+PC+WK+AO+MK	.460	.031	.106	.048	
AR+PC+WK+GS+MK	.467	.038	.100	.042	
AR+PC+WK+AO+GS	.452	.023	.107	.049	
AR+PC+WK+AO+GS+MK	469	040	.111	0.53	

Note. Validities reported are sample-size weighted multiple Rs for the composite predicting each criterion. The Current Composite row represents the current operational composite, whereas the Current Composite – OLS row presents results obtained from an OLS composite of the ASVAB subtests comprising the current composite. Deltas represent the difference between the validity for the current composite and the alternative composite. MMRS = Months of Mission-Ready Service. Results for the Training Grade criterion are based on an aggregated sample size of 76,469 across 37 AFSs. Results for the MMRS criterion are based on an aggregated sample size of 58,277 across 46 AFSs.

Tables 7.1 through 7.4 present the aggregated current composite results (previously presented in Tables 4.2, 4.3, 5.1, and 5.2) and compares them to OLS results from (a) the ASVAB subtests making up the current operational composite, and (b) the previously investigated alternative composites. AFS-level results are presented in Appendix H. The comparison of aggregated results indicates that a modest improvement in predictive validity can be obtained from using optimal weights over integer weights. The most direct example can be seen by comparing the results from the current integer-weighted composite with the same subtests composited with OLS regression, where increments in training grade predictive validity range from 2% to 4%. However, as can be seen when examining the OLS weights (presented in Appendix I), this validity gain often is a result of some subtests being weighted near-zero or negatively.

Additionally, since OLS weights are empirically derived, they will be subject to shrinkage, reducing the validity increments. Given (a) conceptual difficulties with weighting a predictor negatively, (b) the operational simplicity and precedent for using integer weights, and (c) the likely reduction in validity as a result of shrinkage, optimal weighting seems unlikely to be an attractive alternative.

8.0 CONCLUSION

In sum, this report presents the results of a series of investigations to examine the effects of modifications to the operational MAGE composites used by the USAF. For the M and E composites, the question was what effects removing technical knowledge subtests would have on personnel management metrics, such as validity and subgroup differences, and what the effects of adding alternative ASVAB subtests would be. A summary of key, discriminating results for the training grade criterion is presented in Table 8.1

		Cohen's d			QR Adverse Impact Ratio			
	Validity	M/F	NHW/NHB	NHW/HW	M/F	NHW/NHB	NHW/HW	
Mechanical Composite								
Current Composite	.472	.841	1.147	.508	.606	.501	.793	
AR+PC+WK	.429	.343	.662	.316	.836	.695	.864	
AR+PC+WK+MK	.447	.295	.586	.256	.868	.730	.895	
AR+PC+WK+AO	.408	.235	.465	.137	.877	.745	.942	
AR+PC+WK+AO+MK	.432	.227	.461	.127	.901	.777	.961	
Electronics Composite								
Current Composite	.472	.724	.870	.358	.715	.669	.867	
AR+MK	.401	.290	.423	.094	.893	.836	.973	
AR+MK+WK	.452	.311	.573	.237	.880	.776	.917	
AR+MK+PC	.447	.286	.491	.157	.891	.804	.947	
AR+MK+AO	.376	.186	.316	.007	.914	.840	.997	
AR+MK+PC+WK	.467	.295	.586	.256	.883	.770	.907	
AR+MK+AO+WK	.429	.217	.420	.095	.904	.803	.961	
AR+MK+AO+PC	.427	.203	.376	.051	.909	.820	.979	
AR+MK+AO+PC+WK	.452	.227	.461	.127	.904	.797	.952	
Administrative Composite								
Current Composite	.398	.154	.457	.224	.972	.902	.954	
MK+PC+WK+GS	.390	.337	.662	.350	.923	.850	.921	
MK+PC+WK+AR	.415	.295	.586	.256	.938	.873	.951	
MK+PC+WK+AO	.375	.146	.379	.107	.966	.903	.978	
MK+PC+WK+AR+GS	.409	.400	.701	.327	.905	.835	.928	
MK+PC+WK+AO+GS	.381	.262	.524	.194	.940	.878	.961	
MK+PC+WK+AO+AR	.399	.227	.461	.127	.948	.888	.978	
MK+PC+WK+AO+AR+GS	.400	.321	.579	.202	.927	.866	.962	
	-	-			-			
General Composite								
Current Composite	.429	.405	.709	.299	.891	.820	.929	
AR+PC+WK+MK	.452	.295	.586	.256	.927	.854	.942	
AR+PC+WK+AO	.407	.235	.465	.137	.932	.865	.964	
AR+PC+WK+GS	.441	.448	.771	.381	.880	.804	.906	
AR+PC+WK+AO+MK	.434	.227	.461	.127	.940	.874	.972	
AR+PC+WK+GS+MK	.459	.400	.701	.327	.895	.820	.920	
AR+PC+WK+AO+GS	.427	.337	.596	.218	.910	.843	.948	
AR+PC+WK+AO+GS+MK	.448	.321	.579	.202	.917	.850	.955	

Table 8.1 Summary	v of Kev	Results on	Training	Grade C	'riterion '	from F	Previous	Sections
Table 0.1. Summar	y ul Key	Nesults off	Training	Graue		пошт	revious	Sections

Note. Validities are the aggregated cross-AFS predictive validity results for the training grade criterion. d = Cohen's standardized mean difference, QR = Qualification Rate, M = Male, F = Female, NHW = Non-Hispanic White, NHB = Non-Hispanic Black, and HW = Hispanic White.
We found that it was possible to remove the technical knowledge subtests and retain the majority of the validity from these composites, and that including alternate subtests, particularly AO, had the potential to reduce subgroup differences and adverse impact. For the A and G composites, the focus was the impact of adding other non-technical subtests to these composites. We generally found that the impact on validity and subgroup differences was minimal, though there were some composites, again involving AO, that would minimally harm validity, while having a small effect in reducing subgroup differences. The choice between the alternative solutions for any of the MAGE composites should be based on the goals and tolerance for trade-offs that the USAF has. The results of projected impact analyses, however, suggest that the validity differences would not result in very strong overall practical effects on the training grade outcome.

We also investigated alternative approaches to developing composites. First, we analyzed the viability of an NLP, or content-oriented, approach, using occupational textual data as input. In general, we found that this approach came reasonably close to replicating validity results from empirical data at the AFS level. This opens the possibility of using job-analytic data to gain an approximation of what validity would be in situations where there is not adequate quantitative data available for analyses. However, empirical data should generally be preferred over textual data if it is available.

Our second alternative approach was to examine the effects of differential weighting on composite development. The results of this investigation suggested that any validity gains from shifting from integer-weighting to optimal weighting would likely be minimal and there did not appear to be a compelling reason to shift from the status quo of integer weights.

There are a few limitations and considerations to note. First, the current MAGE composites, particularly M and E, have some degree of conceptual independence from one another. Many of the alternate composites investigated were more heavily overlapping;. To the extent that these were chosen, it could muddy distinctions between the composites. Second, the analyses largely focused on training grades as a criterion. MMRS was investigated as well, but did not appear to be highly related to the ASVAB composites, so it was excluded from many follow-up analyses and summaries. There may be other criteria of importance to the USAF that could be considered before any final decisions on composites are made. Third, we primarily focused on overall and/or aggregated results. In addition, we investigated AFS-specific results and found that patterns largely mirrored the aggregate conclusions. However, there was variance in the magnitude of the AFS-level results, and we recommend stakeholders review these results as well. Finally, our empirical investigation regarding weights was limited to (a) the current composite, (b) integer weights, and (c) OLS regression weights. It is possible there might be other weights that could improve metric performance depending on the USAF's goals (e.g., if minimizing subgroup differences was deemed paramount, AO could receive more weight in composites).

Despite these caveats, this project shed light on drivers of validity and subgroup differences within the MAGE composites. Alternate composites were investigated, which suggest that there may be viable alternatives to the operational MAGE composites. Future research could expand the criteria investigated, and the range of weights applied to composite development.

9.0 **REFERENCES**

Air Force Personnel Center (2019). Air Force Enlisted Classification Directory.

- Campion, M. C., Campion, M. A., Campion, E. D., & Reider, M. H. (2016). Initial investigation into computer scoring of candidate essays for personnel selection. *Journal of Applied Psychology*, 101, 958-975.
- Fitzpatrick, A. R (1983). The meaning of content validity. *Applied Psychological Measurement*, 7, 3-13.
- Halper, M. L., Goodman, T. M., & Alley, W. E. (2010). Months of Mission-Ready Service.
- Horst, P. (1954). A technique for the development of a differential predictor battery. *Psychological Monographs: General and Applied, 68*, 1-31.
- Horst, P. S. (1955). A technique for the development of an absolute prediction battery. *Psychological Monographs: General and Applied*, 69, 1-22.
- Landers, R. N. (2017, April). A crash course in natural language processing. *The Industrial-Organizational Psychologist*, https://www.siop.org/Research-Publications/TIP/TIP-Back-Issues/2017/April/ArtMID/20299/ArticleID/919/Crash-Course-in-I-O-Technology
- Putka, D. J. (2018, September). 10,000 job analyses per hour: A language-based approach to synthesizing KSA and Interest Ratings. Symposium conducted at the meeting of the Personnel Testing Council of Metropolitan Washington.
- Trippe, D. M., Caramagno, J. P., Allen, M. T., & Ingerick, M. J. (2011). Initial evidence for the predictive validity and classification potential of the TAPAS. In D. J. Knapp, T. S. Heffner, & L. White (Eds.), *Tier One Performance Screen initial operational test and evaluation: Early results* (Technical Report 1283, pp. 40-53). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences.
- Wang, M. W. & Stanley, J. C. (1970). Differential weighting: A review of methods and empirical studies. *Review of Educational Research*, 40, 663-705.
- Zeidner, J., Johnson, C. D., & Scholarios, D. M. (1997). Evaluating military selection and classification systems in the multiple job context. *Military Psychology*, *9*, 169-186.

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS

А	Administrative composite
AFECD	Air Force Enlisted Classification Directory
AFQT	Armed Forces Qualification Test composite
AFS	Air Force Specialty
AFSC	Air Force Specialty Code
AF-WIN	Air Force Work Interests Navigator
AIR	Adverse Impact Ratio
AO	Assembling Objects subtest
AR	Arithmetic Reasoning subtest
AS	Auto and Shop Information subtest
ASVAB	Armed Services Vocational Aptitude Battery
СТ	Cyber Test
CVR	Content Validation Ratio
d	Cohen's d – Standardized Mean Difference
DoD	Department of Defense
E	Electronics composite
EI	Electronics Information subtest
FSG	Final School Grade
G	General composite
GS	General Science subtest
HW	Hispanic, White
IMT	Initial Military Training
KSAO	Knowledge, Skills, Abilities, and Other
М	Mechanical composite
M/F	Male/Female
MAGE	Mechanical, Administrative, General, and Electronics
MC	Mechanical Comprehension subtest
MEPS	Military Entrance Processing Stations
МК	Mathematics Knowledge subtest
MMRS	Months of Mission-Ready Service
MRR	Multivariate Range Restriction
N	Sample Size in Full Dataset
n	Sample Size of Subset
NHB	Non-Hispanic, Black
NHW	Non-Hispanic, White
NLP	Natural Language Processing
O*NET	Occupational Information Network

ODB	Occupational Database
OLS	Ordinary Least Squares
PC	Paragraph Comprehension subtest
QR	Qualification Rate
SD	Standard Deviation
SME	Subject Matter Expert
TAPAS	Tailored Adaptive Personality Assessment System
USAF	United States Air Force
VCV	Variance Covariance
VE	Verbal Expression composite
WK	Word Knowledge subtest

AFSC	Job Title	MAG	E Quali	fication	Score	Sample	Training Grade	MMRS
7 H BC	300 1110	М	А	G	Е	Size	Sample	Sample
1A0X1	In-Flight Refueling Specialist			55		484	Y	Y
1A1X1	Flight Engineer			57		27		
1A2X1	Aircraft Loadmaster			57		1,487	Y	Y
1A3X1	Airborne Mission Systems Specialist				70	1,302	Y	Y
1A6X1	Flight Attendant		50			10		
1A8X1	Airborne Cryptologic Language Analyst			72		1,382	Y	Y
1A8X2	Airborne ISR Operator			72		285	Y	Y
1A9X1	Special Mission Aviator	60		57		93		
1B4X1	Cyber Warfare Operations			64		17		
1C0X2	Aviation Resource Management		50			1,553	Y	Y
1C1X1	Air Traffic Control			55		3,898	Y	Y
1C2X1	Combat Control	55		55		479	Y	Y
1C3X1	Command & Control Operations		55	57		871	Y	Y
1C4X1	Tactical Air Control Party (TACP)			49		1,106	Y	Y
1C5X1	Command & Control Battle Management Ops			55		932	Y	Y
1C6X1	Space Systems Operations				70	784	Y	Y
1C7X1	Airfield Management	40		50		710	Y	Y
1C8X3	Radar, Airfield & Weather Systems (RAWS)				70	1,011	Y	Y
1N0X1	All Source Intelligence		64			2,708	Y	Y
1N1X1A	Geospatial Intelligence - Imagery Analyst			66		2,370	Y	Y
1N2X1A	Signals Intelligence Analyst - Electronic		72			997	Y	Y
1N2X1C	Signals Intelligence Analyst - Communications		72			519	Y	Y
1N3X1	Cryptologic Language Analyst			72		2,672	Y	Y
1N4X1A	Fusion Analyst - Digital Network Analyst			62		963	Y	Y
1N4X1B	Fusion Analyst - Analysis and Production			62		503	Y	Y
1N7X1	Human Intelligence Specialist			72		3		
1P0X1	Aircrew Flight Equipment	40				1,719	Y	Y
1S0X1	Safety		57			19		
1T0X1	Survival, Evasion, Resistance, and Escape			55		260		Y
1T2X1	Pararescue			44		386	Y	Y
1U0X1	Sensor Operator			64	54	480		Y
1W0X1	Weather			66	50	2,121	Y	Y
1Z4X1	Special Reconnaissance			66	50	61		
2A0X1	Avionics Test Station and Components				70	951	Y	Y
2 A 2 V 1	SOF/PR Integrated				70	254	V	
ZAZAI	Communication/Navigation/Mission Systems				70	234	1	
2A2X2	SOF/PR Integrated Instrument & Flight Control Systems				70	191	Y	
2A2X3	SOF/PR Integrated Electronic Warfare Systems				70	160	Y	
2A3X3	Tactical Aircraft Maintenance	47				4,656		Y
2A3X3L	Tactical Aircraft Maintenance - F-15	47				591		Y
2A3X3M	Tactical Aircraft Maintenance - F-16	47				597		Y
2A3X4	Fighter Aircraft Integrated Avionics				70	1,406	Y	Y
2A3X5	Advanced Fighter Aircraft Integrated Avionics				70	1,081	Y	Y
2A3X7	Tactical Aircraft Maintenance (5th Generation)	47	ſ	Γ		355		Y

APPENDIX A – LIST OF CODED AFS AND ANALYSIS SAMPLE INCLUSION STATUS

34

AFSC	T L T AL	MAG	E Quali	fication	Score	Sample	Training	MMRS
AFSC	Job Litte	М	А	G	Е	Size	Sample	Sample
2A3X8	Remotely Piloted Aircraft Maintenance	47				150	Y	
2A5X1	Airlift/Special Mission Aircraft Maintenance	47				7,657	Y	Y
2A5X2B	Helicopter/Tiltrotor Aircraft Maintenance - H-60	56				445	Y	Y
2A5X2D	Helicopter/Tiltrotor Aircraft Maintenance - CV-22	51				216	Y	Y
2A5X4	Refuel/Bomber Aircraft Maintenance	47				1,433	Y	Y
2A6X1	Aerospace Propulsion	56				4,602	Y	Y
2A6X2	Aerospace Ground Equipment	47			28	3,464	Y	Y
2A6X3	Aircrew Egress Systems	56				517	Y	Y
2A6X4	Aircraft Fuel Systems	47				1,873	Y	Y
2A6X5	Aircraft Hydraulic Systems	56				1,813	Y	Y
2A6X6	Aircraft Electrical and Environmental Systems	41			61	3,159	Y	Y
2A7X1	Aircraft Metals Technology	47				648	Y	Y
2A7X2	Nondestructive Inspection	42				715	Y	Y
2A7X3	Aircraft Structural Maintenance	47				2,256	Y	Y
2A7X5	Low Observable Aircraft Structural Maintenance	47				410	Y	Y
2A8X1	Mobility Air Forces Integrated Comm/Nav/Mission Sys				70	279	Y	
2A8X2	Mobility Air Forces Integrated Instrument & Flt Control Sys				70	294	Y	Y
2A9X1	Bomber/Special Integrated Comm/Nav/Mission Sys				70	149	Y	
2A9X2	Bomber/Special Integrated Instrument & Flt Control Sys				70	143	Y	
2A9X3	Bomber/special Electronic Warfare & Radar Surveillance Integrated Avionics				70	263	Y	Y
2F0X1	Fuels	47		38		3,047	Y	Y
2G0X1	Logistics Plans		56			444	Y	Y
2M0X1	Missile and Space Systems Elect Maintenance				70	669	Y	Y
2M0X2	Missile and Space Systems Maintenance	47				457	Y	Y
2M0X3	Missile and Space Facilities PRECISION MEASUREMENT				70	353	Y	Y
2P0X1	Precision Measurement Equipment Laboratory				70	695	Y	Y
2R0X1	Maintenance Management Analysis			55		535	Y	Y
2R1X1	Maintenance Management Production			44		739	Y	Y
2S0X1	Materiel Management		41	44		5,595	Y	Y
2T0X1	Traffic Management		35			1,564	Y	Y
2T1X1	Ground Transportation	40				2,157	Y	Y
2T2X1	Air Transportation	47	28			4,151	Y	Y
2T3X1	Mission Generation Vehicular Equipment Maintenance	47				1,550	Y	Y
2T3X1A	Mission Generation Vehicular Equipment Maintenance - Firefighting and Refueling Vehicle & Equipment Maintenance	40				232	Y	Y
2T3X1C	Mission Generation Vehicular Equipment Maintenance - Material Handling Equipment (MHE)/463L Maintenance	40				263	Y	Y
2T3X7	Fleet Management and Analysis		41			470	Y	Y
2W0X1	Munitions Systems	60		57		5,844	Y	Y
2W1X1	Aircraft Armament Systems	60			45	5,756	Y	Y
2W2X1	Nuclear Weapons	60				654	Y	Y

AFSCSizeSizeGrade SampleSample3D0X1Knowledge Operations Management643,793YY3D0X2Cyber Systems Operations642,767YY3D0X3Cyber Systems Operations642,767YY3D0X4Computer Systems Programming64262YY3D1X1Client Systems Programming64262YY3D1X2Cyber Transport Systems702,400YY3D1X3RF Transmission Systems702,777YY3D1X7Cable and Antenna Systems5555499Y3E0X1Electrical Systems35351,093YY3E0X2Electrical Power Production564001,180YY3E1X1Heating, Ventilation, AC, & Refrigeration47281,329YY3E3X1Structural471,413YY3E4X3Pest Management38181YY3E5X1Engineering49805YY3E5X1Engineering49805YY3E5X1Erre Protection3838181Y3E5X1Erre Protection3838181Y3E5X1Erre Protection3836,627YY	AESC	L-1 T'41-	MAG	E Quali	fication	Score	Sample	Training	MMRS
3D0X1Knowledge Operations Management 64 $3,793$ YY $3D0X2$ Cyber Systems Operations 64 $2,767$ YY $3D0X3$ Cyber Surety 64 805 Y $3D0X4$ Computer Systems Programming 64 262 YY $3D1X1$ Client Systems 64 262 YY $3D1X1$ Client Systems 60 $1,970$ YY $3D1X2$ Cyber Transport Systems 70 $2,400$ YY $3D1X3$ RF Transmission Systems 70 $2,777$ YY $3D1X7$ Cable and Antenna Systems 55 55 499 YY $3E0X1$ Electrical Systems 35 35 $1,093$ YY $3E0X2$ Electrical Power Production 56 40 $1,180$ YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration 47 28 $1,189$ YY $3E2X1$ Pavements and Construction Equipment 40 $1,584$ YY $3E3X1$ Structural 47 28 $1,329$ YY $3E5X1$ Engineering 49 805 YY $3E5X1$ Engineering 44 4000 YY $3E5X1$ Engineering 444 400 YY $3E5X1$ Engineering 49 805 YY $3E5X1$ Engineering 444 400 YY	AFSC	Job Title	М	А	G	Е	Size	Sample	Sample
3D0X2Cyber Systems Operations 64 $2,767$ YY $3D0X3$ Cyber Surety 64 805 Y $3D0X4$ Computer Systems Programming 64 262 YY $3D1X1$ Client Systems 60 $1,970$ YY $3D1X2$ Cyber Transport Systems 70 $2,400$ YY $3D1X3$ RF Transmission Systems 70 $2,777$ YY $3D1X7$ Cable and Antenna Systems 55 55 499 YY $3E0X1$ Electrical Systems 35 35 $1,093$ YY $3E0X2$ Electrical Power Production 56 40 $1,180$ YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration 47 28 $1,189$ YY $3E2X1$ Pavements and Construction Equipment 40 $1,584$ YY $3E3X1$ Structural 47 28 $1,329$ YY $3E5X1$ Engineering 49 805 YY $3E5X1$ Engineering 44 400 YY $3E5X1$ Engineering 44 400 YY $3E5X1$ Engineering 28 $3,627$ YY	3D0X1	Knowledge Operations Management		64			3,793	Y	Y
3D0X3Cyber Surety64805Y $3D0X4$ Computer Systems Programming64 262 YY $3D1X1$ Client Systems60 $1,970$ YY $3D1X2$ Cyber Transport Systems70 $2,400$ YY $3D1X3$ RF Transmission Systems70 $2,777$ YY $3D1X7$ Cable and Antenna Systems5555499YY $3D0X4$ Electrical Systems35351,093YY $3E0X1$ Electrical Power Production56401,180YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration47281,189YY $3E3X1$ Structural471,413YY $3E4X1$ Water and Fuel Systems Maintenance47281,329YY $3E5X1$ Engineering49805YY $3E6X1$ Operations Management44400YY $3E6X1$ Operations Management3836.27YY	3D0X2	Cyber Systems Operations			64		2,767	Y	Y
3D0X4Computer Systems Programming 64 262 YY $3D1X1$ Client Systems 60 $1,970$ YY $3D1X2$ Cyber Transport Systems 70 $2,400$ YY $3D1X3$ RF Transmission Systems 70 $2,777$ YY $3D1X7$ Cable and Antenna Systems 55 55 499 YY $3D1X1$ Cleint Systems 35 35 $1,093$ YY $3D1X7$ Cable and Antenna Systems 35 35 $1,093$ YY $3E0X1$ Electrical Systems 35 35 $1,093$ YY $3E0X2$ Electrical Power Production 56 40 $1,180$ YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration 47 28 $1,189$ YY $3E2X1$ Pavements and Construction Equipment 40 $1,584$ YY $3E3X1$ Structural 47 28 $1,329$ YY $3E4X3$ Pest Management 38 181 YY $3E6X1$ Operations Management 44 400 YY $3E6X1$ Diperations Management 428 3627 YY	3D0X3	Cyber Surety			64		805		Y
3D1X1Client Systems601,970YY $3D1X2$ Cyber Transport Systems702,400YY $3D1X3$ RF Transmission Systems702,777YY $3D1X7$ Cable and Antenna Systems5555499YY $3D1X1$ Electrical Systems35351,093YY $3E0X1$ Electrical Systems35351,093YY $3E0X2$ Electrical Power Production56401,180YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration47281,189YY $3E2X1$ Pavements and Construction Equipment401,584YY $3E3X1$ Structural471,413YY $3E4X1$ Water and Fuel Systems Maintenance47281,329YY $3E5X1$ Engineering49805YY $3E6X1$ Operations Management44400YY $3E7X1$ Eire Protection383627YY	3D0X4	Computer Systems Programming			64		262	Y	Y
3D1X2Cyber Transport Systems702,400YY $3D1X3$ RF Transmission Systems702,777YY $3D1X7$ Cable and Antenna Systems5555499YY $3E0X1$ Electrical Systems35351,093YY $3E0X2$ Electrical Power Production56401,180YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration47281,189YY $3E2X1$ Pavements and Construction Equipment401,584YY $3E3X1$ Structural471,413YY $3E4X1$ Water and Fuel Systems Maintenance47281,329YY $3E5X1$ Engineering49805YY $3E6X1$ Operations Management44400YY $3E7X1$ Eire Protection383,627YY	3D1X1	Client Systems				60	1,970	Y	Y
3D1X3RF Transmission Systems70 $2,777$ YY $3D1X7$ Cable and Antenna Systems 55 55 499 YY $3E0X1$ Electrical Systems 35 35 $1,093$ YY $3E0X2$ Electrical Power Production 56 40 $1,180$ YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration 47 28 $1,189$ YY $3E2X1$ Pavements and Construction Equipment 40 $1,584$ YY $3E3X1$ Structural 47 $1,413$ YY $3E4X1$ Water and Fuel Systems Maintenance 47 28 $1,329$ YY $3E5X1$ Engineering 49 805 YY $3E6X1$ Operations Management 44 400 YY $3E7X1$ Fire Protection 44 400 YY	3D1X2	Cyber Transport Systems				70	2,400	Y	Y
3D1X7Cable and Antenna Systems 55 55 499 YY $3E0X1$ Electrical Systems 35 35 35 $1,093$ YY $3E0X2$ Electrical Power Production 56 40 $1,180$ YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration 47 28 $1,189$ YY $3E2X1$ Pavements and Construction Equipment 40 $1,584$ YY $3E3X1$ Structural 47 $1,413$ YY $3E4X1$ Water and Fuel Systems Maintenance 47 28 $1,329$ YY $3E5X1$ Engineering 49 805 YY $3E6X1$ Operations Management 44 400 YY $3E7X1$ Fire Protection 49 3627 YY	3D1X3	RF Transmission Systems				70	2,777	Y	Y
3E0X1Electrical Systems 35 35 35 $1,093$ YY $3E0X2$ Electrical Power Production 56 40 $1,180$ YY $3E1X1$ Heating, Ventilation, AC, & Refrigeration 47 28 $1,189$ YY $3E2X1$ Pavements and Construction Equipment 40 $1,584$ YY $3E3X1$ Structural 47 $1,413$ YY $3E4X1$ Water and Fuel Systems Maintenance 47 28 $1,329$ YY $3E4X3$ Pest Management 38 181 YY $3E5X1$ Engineering 49 805 YY $3E6X1$ Operations Management 44 400 YY $3E7X1$ Fire Protection 28 3627 YY	3D1X7	Cable and Antenna Systems	55			55	499	Y	Y
3E0X2Electrical Power Production 56 40 $1,180$ Y Y $3E1X1$ Heating, Ventilation, AC, & Refrigeration 47 28 $1,189$ Y Y $3E2X1$ Pavements and Construction Equipment 40 $1,584$ Y Y $3E3X1$ Structural 47 $1,413$ Y Y $3E4X1$ Water and Fuel Systems Maintenance 47 28 $1,329$ Y Y $3E4X3$ Pest Management 38 181 Y Y $3E5X1$ Engineering 49 805 Y Y $3E6X1$ Operations Management 444 400 Y Y $3E7X1$ Fire Protection 28 3.627 Y Y	3E0X1	Electrical Systems	35			35	1,093	Y	Y
3E1X1Heating, Ventilation, AC, & Refrigeration47281,189YY3E2X1Pavements and Construction Equipment401,584YY3E3X1Structural471,413YY3E4X1Water and Fuel Systems Maintenance47281,329YY3E4X3Pest Management38181YY3E6X1Operations Management44400YY3E7X1Fire Protection383,627YY	3E0X2	Electrical Power Production	56			40	1,180	Y	Y
3E2X1Pavements and Construction Equipment401,584YY3E3X1Structural471,413YY3E4X1Water and Fuel Systems Maintenance47281,329YY3E4X3Pest Management38181YY3E5X1Engineering49805YY3E6X1Operations Management44400YY3E7X1Fire Protection383627YY	3E1X1	Heating, Ventilation, AC, & Refrigeration	47			28	1,189	Y	Y
3E3X1Structural471,413YY3E4X1Water and Fuel Systems Maintenance47281,329YY3E4X3Pest Management38181Y3E5X1Engineering49805YY3E6X1Operations Management44400YY3E7X1Fire Protection383627YY	3E2X1	Pavements and Construction Equipment	40				1,584	Y	Y
3E4X1Water and Fuel Systems Maintenance47281,329YY3E4X3Pest Management38181Y3E5X1Engineering49805YY3E6X1Operations Management44400YY3E7X1Fire Protection383627YY	3E3X1	Structural	47				1,413	Y	Y
3E4X3Pest Management38181Y3E5X1Engineering49805YY3E6X1Operations Management44400YY3E7X1Fire Protection383627YY	3E4X1	Water and Fuel Systems Maintenance	47			28	1,329	Y	Y
3E5X1Engineering49805YY3E6X1Operations Management44400YY3E7X1Fire Protection283.627YY	3E4X3	Pest Management			38		181	Y	
3E6X1 Operations Management 44 400 Y Y 3E7X1 Fire Protection 38 3627 Y Y	3E5X1	Engineering			49		805	Y	Y
3E7X1 Fire Protection 29 2.627 V V	3E6X1	Operations Management			44		400	Y	Y
	3E7X1	Fire Protection			38		3,627	Y	Y
3E8X1 Explosive Ordnance Disposal 60 64 742 Y Y	3E8X1	Explosive Ordnance Disposal	60		64		742	Y	Y
3E9X1 Emergency Management 62 479 Y Y	3E9X1	Emergency Management			62		479	Y	Y
3F0X1 Personnel 41 3.352 Y Y	3F0X1	Personnel		41	-		3.352	Y	Y
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3F1X1	Services			24		3,997	Y	Y
3F2X1 Education and Training 62 27	3F2X1	Education and Training		62			27		
3F3X1 Manpower 66 11	3F3X1	Manpower		-	66		11		
3F4X1 Equal Opportunity 41 44 6	3F4X1	Equal Opportunity		41	44		6		
3F5X1 Administration 47 376 Y	3F5X1	Administration		47			376	Y	
3N0X2 Broadcast Journalist 72 354 Y	3N0X2	Broadcast Journalist			72		354		Y
3N0X5 Photojournalist 72 215	3N0X5	Photoiournalist			72		215		
3N1X1 Regional Band 21 24 31	3N1X1	Regional Band		21	24		31		
3N2X1 Premier Band 21 24 47	3N2X1	Premier Band		21	24		47		
3P0X1 Security Forces 30 32.656 Y Y	3P0X1	Security Forces			30		32.656	Y	Y
3P0X1A Security Forces - Military Working Dog Handler 33 25	3P0X1A	Security Forces - Military Working Dog Handler			33		25	-	-
3P0X1B Security Forces - Combat Arms 35 9	3P0X1B	Security Forces - Combat Arms	35				9		
4A0X1 Health Services Management 44 2.387 Y Y	4A0X1	Health Services Management			44		2.387	Y	Y
4A1X1 Medical Materiel 48 857 Y Y	4A1X1	Medical Materiel		48			857	Y	Y
4A2X1 Biomedical Equipment 60 70 404 Y Y	4A2X1	Biomedical Equipment	60			70	404	Y	Y
4B0X1 Bioenvironmental Engineering 49 765 Y	4B0X1	Bioenvironmental Engineering			49	, 0	765	-	Y
4C0X1 Mental Health Service 57 790 Y Y	4C0X1	Mental Health Service		57	12		790	Y	Y
4D0X1 Diet Therapy 44 260 Y	4D0X1	Diet Therany			44		260	Y	Y
4E0X1 Public Health 48 1.055	4E0X1	Public Health		48			1.055	*	Y
4H0X1 Cardiopulmonary Laboratory 44 277 Y	4H0X1	Cardiopulmonary Laboratory		10	44		277		Y
410X2 Physical Medicine 51 267 Y Y	410X2	Physical Medicine		51			267	Y	Y
4M0X1 Aerospace and Operational Physiology 48 207 1 1	4M0X1	Aerospace and Operational Physiology		48			207	1	V
4N0X1 Aerospace Medical Service 50 550 V	4N0X1	Aerospace Medical Service		70	50		5 550		Y
4N1X1 Surgical Service 50 533 V	4N1X1	Surgical Service		50	20		533		V
4N1X1D Surgical Service - Otolaryngology 44 8	4N1X1D	Surgical Service - Otolaryngology		50	44		8		1
4P0X1 Pharmacy 48 681 V	4P0X1	Pharmacy		48			681		Y

36

Distribution A: Approved for public release.

88ABW-2020-3628, cleared 18 November 2020.

AESC	Job Title	MAG	E Quali	fication	Score	Sample	Training	MMRS Sample	
AFSC	Job Title	М	А	G	Е	Size	Sample		
4R0X1	Diagnostic Imaging			44		630		Y	
4T0X1	Medical Laboratory			62		838		Y	
4T0X2	Histopathology			44		63			
4V0X1	Ophthalmic		57			158			
4Y0X1	Dental Assistant			44		1,753	Y	Y	
4Y0X2	Dental Laboratory			66		284	Y	Y	
5J0X1	Paralegal			51		348		Y	
5R0X1	Religious Affairs		35	44		39			
6C0X1	Contracting			72		1,213	Y	Y	
6F0X1	Financial Management & Comptroller			57		1,924	Y	Y	
7S0X1	Special Investigations			44		25			

APPENDIX B – DESCRIPTIVE STATISTICS FOR ANALYSIS SAMPLES

Table B.1. Descriptive Statistics for Full Sample	
Table B.2. Subgroup Frequencies for Full Sample	
Table B.3. Descriptive Statistics for Training Grade Analysis Sample	40
Table B.4. Subgroup Frequencies for Training Grade Analysis Sample	40
Table B.5. Descriptive Statistics for MMRS Analysis Sample	41
Table B.6. Subgroup Frequencies for MMRS Analysis Sample	41

	Mean	SD	1	2	3	4	5	6	7	8	9	10	11	12
1. AO	51.104	19.311												
2. AR	55.575	6.248	.167											
3. AS	50.206	8.618	.177	.229										
4. EI	54.132	8.297	.160	.356	.594									
5. GS	54.646	7.145	.065	.400	.417	.574								
6. MC	55.572	7.736	.227	.467	.591	.600	.542							
7. MK	56.967	5.590	.111	.610	.030	.224	.323	.303						
8. PC	55.391	5.569	.101	.350	.202	.343	.449	.342	.252					
9. WK	53.463	6.266	.128	.306	.279	.445	.603	.397	.221	.505				
10. MAGE_M	64.407	20.422	.225	.622	.704	.676	.682	.809	.356	.596	.696			
11. MAGE_A	70.106	15.351	.142	.599	.190	.419	.585	.446	.789	.634	.710	.694		
12. MAGE_G	67.826	17.311	.170	.838	.308	.482	.601	.532	.521	.652	.707	.833	.823	
13. MAGE E	70.150	18.067	.155	.732	.460	.758	.776	.639	.632	.446	.514	.796	.755	.797

Table B.1. Descriptive Statistics for Full Sample

Note. Sample sizes for ASVAB subtests are 259,359. Sample sizes for M, A, and G composites are 258,700. Sample size for E composite is 258,699. SD = standard deviation.

Gender	
Male	205,773
Female	53,586
Race/Ethnicity	
Non-Hispanic White	161,523
Non-Hispanic Black	37,801
Hispanic White	32,716

39

Table B.2. Subgroup Frequencies for Full Sample

	Mean	SD	1	2	3	4	5	6	7	8	9	10	11	12	13
1. AO	50.898	19.396													
2. AR	55.269	6.314	.164												
3. AS	50.076	8.660	.177	.241											
4. EI	53.790	8.325	.159	.365	.599										
5. GS	54.272	7.220	.060	.410	.427	.580									
6. MC	55.346	7.771	.225	.479	.595	.606	.551								
7. MK	56.812	5.565	.108	.606	.032	.225	.325	.305							
8. PC	55.148	5.609	.097	.359	.215	.356	.459	.353	.254						
9. WK	53.087	6.298	.125	.319	.294	.460	.612	.411	.227	.512					
10. MAGE_M	63.268	20.803	.219	.632	.710	.683	.689	.813	.356	.603	.705				
11. MAGE_A	69.200	15.476	.137	.602	.203	.431	.593	.457	.787	.639	.717	.700			
12. MAGE_G	66.576	17.721	.165	.842	.326	.496	.610	.547	.518	.656	.714	.841	.824		
13. MAGE_E	69.034	18.407	.150	.737	.471	.762	.781	.649	.629	.457	.528	.803	.760	.804	
14. Training Grade	87.303	6.135	.079	.316	.248	.309	.321	.304	.290	.283	.284	.397	.386	.384	.408

Table B.3. Descriptive Statistics for Training Grade Analysis Sample

Note. Sample size is 149,050. SD = standard deviation.

Subgroup i requencies for the	ining Grade rin
Gender	
Male	119,976
Female	29,074
Race/Ethnicity	
Non-Hispanic White	91,244
Non-Hispanic Black	22,815
Hispanic White	19,130

 Table B.4. Subgroup Frequencies for Training Grade Analysis Sample

	Mean	SD	1	2	3	4	5	6	7	8	9	10	11	12	13
1. AO	51.220	18.855													
2. AR	55.259	6.315	.171												
3. AS	50.018	8.605	.167	.230											
4. EI	53.754	8.271	.152	.358	.593										
5. GS	54.319	7.148	.066	.401	.419	.576									
6. MC	55.263	7.750	.223	.468	.588	.599	.539								
7. MK	56.644	5.637	.117	.615	.029	.223	.324	.306							
8. PC	55.259	5.564	.104	.353	.198	.345	.443	.337	.256						
9. WK	53.285	6.243	.124	.309	.280	.451	.604	.395	.228	.499					
10. MAGE_M	63.449	20.519	.221	.627	.704	.679	.681	.808	.363	.593	.697				
11. MAGE_A	69.219	15.529	.146	.604	.187	.420	.582	.445	.794	.632	.710	.695			
12. MAGE_G	66.909	17.530	.172	.842	.307	.485	.598	.530	.529	.650	.706	.834	.824		
13. MAGE_E	68.894	18.340	.156	.736	.459	.757	.776	.638	.637	.448	.520	.799	.759	.801	
14. MMRS	37.012	15.395	.049	.067	.082	.074	.050	.079	.054	.052	.037	.089	.062	.068	.080

Table B.5. Descriptive Statistics for MMRS Analysis Sample

Note. Sample size is 109,874. SD = standard deviation.

Gender	
Male	86,093
Female	23,781
Race/Ethnicity	
Non-Hispanic White	69,163
Non-Hispanic Black	16.096
Hispanic White	13,562

Table B.6. Subgroup	Frequencies for	MMRS Analysis	Sample
---------------------	-----------------	---------------	--------

APPENDIX C – PREDICTIVE VALIDITY RESULTS BY AFS

Table C.1. Predictive Validity Results for Training Grade Criterion by AFS for Mechanical Composite	
Table C.2. Predictive Validity Results for MMRS Criterion by AFS for Mechanical Composite	444
Table C.3. Predictive Validity Results for Training Grade Criterion by AFS for Electronics Composite	455
Table C.4. Predictive Validity Results for MMRS Criterion by AFS for Electronics Composite	466
Table C.5. Predictive Validity Results for Training Grade Criterion by AFS for Administrative Composite	477
Table C.6. Predictive Validity Results for MMRS Criterion by AFS for Administrative Composite	488
Table C.7. Predictive Validity Results for Training Grade Criterion by AFS for General Composite	499
Table C.8. Predictive Validity Results for MMRS Criterion by AFS for General Composite	

A FRO	a 1 a'		Criterion	Predictive Validity							
AFSC	Sample Size	Criterion Mean	SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK			
1C2X1	412	86.330	10.274	.148	.196	.226	.169	.203			
1C7X1	662	84.760	5.798	.405	.393	.426	.385	.420			
1P0X1	1,618	89.518	5.156	.475	.429	.456	.420	.451			
2A3X8	125	87.560	5.576	.499	.493	.501	.458	.476			
2A5X1	1,306	87.394	6.706	.455	.370	.374	.343	.355			
2A5X2B	420	90.719	5.325	.366	.359	.360	.348	.354			
2A5X2D	198	88.167	5.056	.320	.252	.232	.200	.194			
2A5X4	772	86.522	5.801	.582	.480	.499	.450	.477			
2A6X1	4,369	87.674	5.456	.468	.391	.401	.377	.392			
2A6X2	3,197	87.927	4.555	.549	.500	.517	.480	.504			
2A6X3	485	87.186	5.022	.301	.280	.309	.293	.320			
2A6X4	1,799	88.511	5.297	.486	.422	.444	.410	.436			
2A6X5	1,738	88.639	5.193	.446	.397	.410	.377	.396			
2A6X6	3,001	90.530	4.832	.570	.509	.537	.492	.525			
2A7X1	576	88.186	9.720	.215	.246	.266	.213	.240			
2A7X2	676	88.175	5.023	.488	.476	.514	.455	.499			
2A7X3	2,138	89.122	5.023	.520	.461	.471	.439	.456			
2A7X5	385	87.844	5.289	.545	.427	.440	.414	.433			
2F0X1	2,876	89.605	5.253	.430	.391	.415	.371	.400			
2M0X2	419	93.200	3.030	.436	.417	.434	.408	.429			
2T1X1	1,544	86.622	4.857	.444	.428	.436	.406	.422			
2T2X1	3,921	88.046	5.371	.448	.455	.476	.427	.455			
2T3X1	1,482	88.653	5.607	.414	.312	.319	.304	.315			
2T3X1A	219	87.082	5.536	.362	.329	.341	.318	.334			
2T3X1C	250	92.288	4.860	.308	.324	.334	.338	.348			
2W0X1	5,577	89.584	4.847	.463	.454	.478	.427	.458			
2W1X1	5,459	89.296	4.600	.484	.443	.463	.418	.444			
2W2X1	587	93.204	2.899	.497	.430	.436	.405	.419			
3D1X7	475	90.686	3.945	.521	.447	.461	.419	.441			
3E0X1	1,044	87.810	4.996	.546	.500	.543	.465	.515			
3E0X2	1,124	86.716	4.519	.529	.435	.449	.428	.447			
3E1X1	1,151	88.662	4.441	.494	.437	.460	.411	.440			
3E2X1	1,276	89.837	4.428	.449	.413	.417	.386	.398			
3E3X1	786	86.615	4.947	.429	.403	.413	.379	.396			
3E4X1	1,250	88.850	4.665	.521	.472	.473	.437	.450			
3E8X1	231	93.857	4.873	.395	.318	.313	.308	.309			
4A2X1	216	90.463	3.266	.436	.365	.417	.428	.467			

Table C.1. Predictive Validity Results for Training Grade Criterion by AFS for Mechanical Composite

AFGG	G 1 G	Criterion		Predictive Validity					
AFSC	Sample Size	Mean	Criterion SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK	
1C2X1	171	39.001	13.617	096	091	086	107	101	
1C7X1	423	36.392	15.833	.125	.097	.108	.109	.118	
1P0X1	927	34.257	17.031	.013	005	.027	.020	.045	
2A3X3	2,910	37.026	16.002	.074	.046	.053	.063	.067	
2A3X3L	234	32.007	16.407	.200	.149	.134	.132	.123	
2A3X3M	199	33.017	14.874	.109	.048	.030	.052	.035	
2A3X7	137	32.767	15.820	.188	.199	.228	.213	.239	
2A5X1	4,204	37.746	15.227	.117	.087	.089	.094	.096	
2A5X2B	239	37.542	15.420	.132	004	.002	.025	.026	
2A5X2D	101	36.480	15.023	.304	.237	.240	.214	.223	
2A5X4	572	33.235	15.445	.078	.058	.070	.061	.072	
2A6X1	2,421	37.066	15.553	.071	.037	.039	.058	.057	
2A6X2	1,918	36.398	15.789	.102	.041	.047	.064	.066	
2A6X3	272	38.242	14.798	.018	.038	.048	.059	.064	
2A6X4	1,050	35.059	16.350	.140	.095	.096	.095	.097	
2A6X5	963	37.446	14.881	.099	.082	.076	.089	.083	
2A6X6	1,705	38.530	14.518	.103	.075	.074	.083	.081	
2A7X1	310	36.147	15.558	.069	.019	.022	.041	.039	
2A7X2	393	35.815	16.215	.025	.064	.069	.052	.059	
2A7X3	1,227	36.630	15.903	.124	.081	.066	.096	.081	
2A7X5	184	35.638	15.395	.235	.155	.156	.124	.132	
2F0X1	1,688	37.350	15.273	.017	016	010	.000	.002	
2M0X2	219	34.673	15.905	.144	.142	.145	.169	.169	
2T1X1	1,249	36.044	16.035	.059	.031	.031	.034	.034	
2T2X1	2,350	38.053	14.751	.035	.019	.018	.028	.026	
2T3X1	739	37.104	15.500	.048	.012	.003	.018	.008	
2T3X1A	104	37.471	15.572	.144	.085	.092	.060	.072	
2T3X1C	136	36.185	15.275	.077	.044	.023	.067	.044	
2W0X1	3,122	35.886	15.918	.102	.082	.076	.094	.087	
2W1X1	3,166	37.169	15.346	.026	014	003	004	.004	
2W2X1	356	37.339	15.202	012	011	.006	016	.000	
3D1X7	222	37.599	15.038	.023	.056	.079	.025	.052	
3E0X1	571	38.550	14.440	049	041	035	058	049	
3E0X2	639	38.363	14.539	.062	.035	.040	.067	.066	
3E1X1	641	38.008	14.576	.047	.052	.048	.056	.052	
3E2X1	832	37.806	15.087	.098	.101	.078	.111	.090	
3E3X1	687	38.351	14.267	.079	.079	.070	.079	.072	
3E4X1	644	37.186	14.982	.055	.019	.004	.027	.012	
3E8X1	216	41.742	11.795	044	109	067	057	029	
4A2X1	218	39.972	13.385	181	129	133	091	103	

Table C.2. Predictive Validity Results for MMRS Criterion by AFS for Mechanical Composite

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

	G 1	a :. :	a :					Predictive V	alidity			
AFSC	Sample	Criterion	Criterion	Current	AR+MK	AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO
	Size	Mean	5D	Composite		+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK
1A3X1	1,177	92.981	3.930	.287	.313	.353	.377	.294	.387	.335	.358	.373
1C6X1	733	92.035	4.309	.315	.268	.298	.296	.252	.306	.283	.284	.297
1C8X3	942	89.162	4.875	.327	.341	.374	.377	.333	.386	.366	.371	.383
1W0X1	1,960	89.006	4.886	.516	.464	.514	.509	.446	.526	.497	.496	.517
2A0X1	904	88.894	5.194	.398	.347	.401	.386	.344	.411	.394	.383	.409
2A2X1	225	90.493	3.800	.646	.533	.576	.580	.505	.590	.553	.559	.576
2A2X2	168	91.149	3.965	.478	.402	.428	.463	.404	.459	.430	.462	.463
2A2X3	138	87.630	4.128	.335	.385	.386	.427	.351	.408	.362	.400	.391
2A3X4	1,312	89.843	4.365	.482	.420	.451	.463	.381	.468	.420	.433	.445
2A3X5	1,022	90.824	4.476	.463	.377	.415	.410	.337	.423	.381	.380	.399
2A6X2	3,197	87.927	4.555	.526	.439	.504	.489	.418	.518	.482	.473	.505
2A6X6	3,001	90.530	4.832	.580	.477	.533	.518	.454	.541	.512	.501	.529
2A8X1	260	90.408	3.756	.255	.222	.275	.276	.189	.300	.242	.245	.274
2A8X2	275	90.822	4.151	.464	.363	.422	.450	.339	.469	.398	.425	.449
2A9X1	142	90.261	3.494	.562	.370	.431	.435	.350	.459	.409	.416	.444
2A9X2	133	90.782	4.427	.369	.357	.422	.434	.283	.460	.356	.369	.406
2A9X3	234	88.103	4.285	.493	.393	.469	.441	.378	.480	.450	.428	.469
2M0X1	602	91.945	4.215	.516	.442	.517	.513	.436	.546	.507	.506	.540
2M0X3	328	91.546	3.871	.384	.342	.399	.368	.328	.398	.384	.358	.390
2P0X1	649	87.664	5.252	.605	.540	.583	.576	.482	.587	.535	.533	.554
2W1X1	5,459	89.296	4.600	.478	.396	.448	.442	.367	.463	.421	.419	.445
3D1X1	569	87.775	4.612	.154	.182	.237	.242	.157	.268	.210	.216	.246
3D1X2	334	87.955	6.772	.244	.164	.237	.226	.117	.267	.190	.182	.228
3D1X3	2,539	88.917	4.718	.441	.381	.436	.429	.359	.451	.413	.410	.436
3D1X7	475	90.686	3.945	.516	.397	.462	.432	.365	.465	.431	.408	.444
3E0X1	1,044	87.810	4.996	.579	.508	.540	.545	.459	.549	.500	.508	.521
3E0X2	1,124	86.716	4.519	.506	.402	.436	.448	.395	.455	.429	.442	.452
3E1X1	1,151	88.662	4.441	.486	.401	.449	.437	.369	.456	.420	.412	.436
3E4X1	1,250	88.850	4.665	.510	.381	.447	.442	.348	.471	.415	.413	.447
4A2X1	216	90.463	3.266	.278	.277	.329	.312	.363	.338	.395	.382	.395

Table C.3. Predictive Validity Results for Training Grade Criterion by AFS for Electronics Composite

	C 1 -	Cuitouiou	Cuitanian					Predictive V	alidity			
AFSC	Sample	Moon	Criterion	Current	AR+MK	AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO
	Size	Wiean	3D	Composite		+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK
1A3X1	705	39.513	14.083	.070	.044	.042	.053	.062	.048	.057	.067	.060
1C6X1	431	37.765	14.718	030	008	014	045	.038	042	.024	003	008
1C8X3	548	37.467	14.525	.084	.043	.034	.050	.051	.040	.042	.056	.046
1U0X1	320	39.813	13.345	.177	.018	.040	.070	.022	.077	.041	.067	.074
1W0X1	1,134	39.606	13.689	.141	.117	.132	.126	.113	.133	.128	.123	.131
2A0X1	525	38.507	13.990	145	092	112	077	070	094	092	063	081
2A3X4	767	36.269	15.873	.241	.236	.238	.220	.223	.219	.230	.215	.217
2A3X5	609	39.827	13.936	.064	.135	.099	.098	.115	.073	.089	.088	.069
2A6X2	1,918	36.398	15.789	.067	.061	.056	.056	.086	.051	.077	.078	.070
2A6X6	1,705	38.530	14.518	.068	.049	.052	.070	.062	.067	.062	.078	.075
2A8X2	113	35.932	13.748	.021	.011	001	006	.089	012	.066	.060	.044
2A9X3	104	37.033	13.811	.731	.412	.476	.473	.386	.499	.450	.450	.481
2M0X1	358	38.091	14.505	.001	.003	.019	.016	.028	.026	.038	.035	.041
2M0X3	187	35.497	15.693	.073	.093	.089	.079	.097	.076	.094	.086	.082
2P0X1	390	38.949	14.793	091	032	066	042	056	066	081	061	079
2W1X1	3,166	37.169	15.346	.021	.007	007	.010	.017	002	.003	.018	.006
3D1X1	999	39.498	13.614	.147	.143	.142	.127	.113	.126	.119	.107	.110
3D1X2	1,118	39.481	13.135	.078	.034	.038	.051	.013	.050	.021	.032	.035
3D1X3	1,471	39.003	14.411	.077	.032	.041	.037	.058	.042	.062	.058	.060
3D1X7	222	37.599	15.038	.041	.084	.079	.098	.043	.089	.047	.064	.062
3E0X1	571	38.550	14.440	027	011	051	015	037	045	067	036	060
3E0X2	639	38.363	14.539	.071	.056	.061	.050	.093	.053	.091	.082	.080
3E1X1	641	38.008	14.576	.022	.037	.041	.039	.044	.041	.047	.045	.046
3E4X1	644	37.186	14.982	.002	043	010	024	023	001	.001	012	.006
4A2X1	218	39.972	13.385	200	132	158	134	084	150	116	096	118

Table C.4. Predictive Validity Results for MMRS Criterion by AFS for Electronics Composite

							Predic	tive Validity			
AFSC	Sample Size	Criterion Mean	Criterion SD	Current Composite	MK+PC+ WK+GS	MK+PC+ WK+AR	MK+PC+ WK+AO	MK+PC+ WK+AR+ GS	MK+PC+ WK+AO+ GS	MK+PC+WK +AO+AR	MK+PC+WK+ AO+AR+GS
1C0X2	1,469	85.978	6.449	.385	.363	.395	.354	.384	.354	.379	.375
1C3X1	818	86.995	5.672	.366	.377	.400	.362	.393	.367	.383	.384
1N0X1	2,460	88.338	4.907	.461	.459	.479	.435	.473	.442	.455	.459
1N2X1A	522	91.128	4.503	.489	.505	.524	.470	.529	.491	.504	.517
1N2X1C	434	91.461	3.776	.339	.299	.360	.325	.331	.304	.355	.334
2G0X1	405	87.252	6.088	.339	.295	.352	.284	.331	.278	.326	.314
2S0X1	5,350	88.084	5.726	.410	.396	.419	.385	.414	.391	.407	.408
2T0X1	1,475	87.099	5.544	.462	.433	.469	.403	.458	.409	.437	.438
2T2X1	3,921	88.046	5.371	.446	.468	.473	.429	.483	.453	.453	.470
2T3X7	452	87.522	6.360	.428	.426	.466	.405	.451	.405	.437	.433
3D0X1	3,618	85.981	6.009	.355	.331	.358	.313	.349	.316	.336	.335
3F0X1	3,197	88.626	6.274	.296	.286	.320	.301	.307	.294	.321	.313
3F5X1	353	88.805	5.793	.262	.233	.288	.281	.261	.255	.302	.278
4A1X1	610	82.910	5.719	.399	.396	.426	.380	.414	.380	.403	.400
4C0X1	396	87.634	5.047	.531	.536	.542	.515	.531	.514	.514	.514
4J0X2	143	85.441	5.212	.528	.574	.580	.570	.581	.579	.578	.585

Table C.5. Predictive Validity Results for Training Grade Criterion by AFS for Administrative Composite

	Samula	Critarian	ion Criterion				Predic	tive Validity			
AFSC	Sample	Moon	SD	Current	MK+PC+	MK+PC+	MK+PC+	MK+PC+W	MK+PC+W	MK+PC+W	MK+PC+WK+
	Size	Mean	3D	Composite	WK+GS	WK+AR	WK+AO	K+AR+GS	K+AO+GS	K+AO+AR	AO+AR+GS
1C0X2	828	34.953	16.379	001	020	.006	.005	009	011	.012	002
1C3X1	470	35.578	15.819	.055	.010	.056	.034	.031	.012	.053	.031
1N0X1	1,420	39.302	13.810	.054	.059	.067	.076	.072	.080	.087	.089
1N2X1A	577	40.412	13.682	.010	.024	.038	017	.054	.012	.024	.041
1N2X1C	235	38.154	14.321	044	079	084	051	094	069	073	085
2G0X1	231	37.502	15.653	.037	.027	.000	.032	.004	.031	.006	.009
2S0X1	3,101	37.186	15.534	025	019	028	025	020	017	025	018
2T0X1	807	36.655	15.805	137	100	115	067	105	068	080	078
2T2X1	2,350	38.053	14.751	.017	.018	.025	.035	.019	.027	.033	.026
2T3X7	228	31.447	17.415	.160	.135	.149	.187	.138	.168	.180	.166
3D0X1	2,112	35.907	16.473	.033	.023	.031	.063	.024	.050	.056	.046
3F0X1	1,530	34.633	16.421	038	055	034	028	045	042	022	035
4A1X1	484	38.630	14.748	.004	032	.006	022	012	037	002	018
4C0X1	491	33.993	16.313	.166	.164	.188	.176	.177	.168	.187	.179
4E0X1	575	36.719	15.336	004	033	008	.032	032	002	.021	006
4J0X2	140	37.780	15.216	.167	.149	.213	.197	.179	.165	.221	.190
4M0X1	136	35.817	16.168	.204	.184	.231	.223	.210	.203	.244	.224
4N1X1	331	36.608	15.298	.079	.040	.064	.020	.058	.023	.044	.043
4P0X1	408	35.754	15.787	051	045	058	.001	050	003	014	015

Table C.6. Predictive Validity Results for MMRS Criterion by AFS for Administrative Composite

	C 1	<u> </u>	o :. ·	Predictive Validity								
AFSC	Sample	Criterion	Criterion	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+	
	Size	Mean	5D	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK	
1A0X1	364	94.676	2.987	.435	.419	.402	.425	.392	.413	.402	.396	
1A2X1	887	94.379	3.009	.292	.334	.286	.303	.330	.340	.305	.340	
1A8X1	1,316	89.477	6.544	.058	.046	.071	.073	.055	.058	.079	.065	
1A8X2	260	91.800	3.416	.673	.650	.630	.624	.645	.638	.626	.641	
1C1X1	2,644	86.419	6.633	.365	.384	.353	.366	.375	.383	.361	.380	
1C2X1	412	86.330	10.274	.151	.200	.144	.193	.179	.216	.174	.200	
1C3X1	818	86.995	5.672	.338	.389	.346	.362	.372	.383	.351	.374	
1C4X1	873	84.427	9.102	.227	.232	.215	.267	.213	.257	.247	.242	
1C5X1	902	87.541	5.920	.392	.424	.364	.425	.396	.444	.401	.423	
1C7X1	662	84.760	5.798	.382	.416	.375	.389	.411	.418	.389	.418	
1N1X1A	2,205	88.671	4.237	.460	.481	.460	.476	.482	.493	.481	.498	
1N3X1	2,476	88.181	6.220	.186	.189	.186	.193	.189	.194	.194	.196	
1N4X1A	917	93.529	3.442	.479	.511	.465	.480	.503	.512	.479	.510	
1N4X1B	448	91.366	3.544	.525	.548	.504	.507	.537	.536	.505	.534	
1T2X1	356	82.253	10.926	.012	.040	.036	.068	.025	.054	.052	.041	
1W0X1	1,960	89.006	4.886	.531	.544	.504	.532	.534	.555	.528	.552	
2F0X1	2,876	89.605	5.253	.390	.411	.368	.402	.396	.422	.392	.414	
2R0X1	507	88.363	5.214	.379	.416	.363	.367	.404	.404	.363	.399	
2R1X1	702	87.152	5.306	.346	.380	.352	.339	.374	.361	.339	.361	
2S0X1	5,350	88.084	5.726	.368	.415	.355	.370	.403	.410	.365	.405	
2W0X1	5,577	89.584	4.847	.450	.477	.426	.467	.457	.488	.452	.476	
3D0X2	227	86.264	6.118	.454	.470	.433	.484	.441	.482	.457	.462	
3D0X4	248	89.375	4.997	.109	.182	.161	.156	.211	.201	.188	.226	
3E4X3	175	90.389	4.706	.385	.415	.358	.442	.402	.468	.430	.458	
3E5X1	629	86.409	7.128	.257	.277	.234	.272	.263	.292	.260	.281	
3E6X1	383	86.794	5.677	.367	.404	.351	.376	.387	.404	.365	.394	
3E7X1	3,384	89.158	3.926	.487	.485	.484	.516	.482	.509	.514	.510	
3E8X1	231	93.857	4.873	.256	.255	.243	.263	.249	.265	.259	.263	
3E9X1	162	87.747	5.429	.465	.496	.435	.501	.470	.522	.479	.504	
3F1X1	3,751	84.073	5.988	.390	.430	.364	.399	.403	.428	.379	.410	
3P0X1	29,141	82.911	5.913	.497	.518	.461	.513	.488	.528	.488	.508	
4A0X1	1,383	85.205	5.307	.456	.492	.448	.473	.476	.494	.463	.486	
4D0X1	164	81.463	5.454	.561	.608	.581	.553	.619	.591	.573	.608	
4Y0X1	1,029	84.114	5.716	.460	.487	.438	.466	.472	.492	.457	.484	
4Y0X2	128	87.430	4.576	.487	.424	.366	.390	.396	.414	.370	.396	
6C0X1	1,118	85.125	5.859	.541	.578	.533	.543	.564	.568	.537	.564	
6F0X1	1,804	89.256	5.253	.371	.413	.388	.352	.424	.390	.371	.405	

 Table C.7. Predictive Validity Results for Training Grade Criterion by AFS for General Composite

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

	G 1	a :. :	a :. :	. Predictive Validity							
AFSC	Sample	Criterion	Criterion	Current	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+WK+
	Size	Mean	SD	Composite	K+MK	K+AO	K+GS	K+AO+MK	K+GS+MK	K+AO+GS	AO+GS+MK
1A0X1	268	39.461	13.138	.176	.162	.192	.225	.151	.183	.210	.175
1A2X1	792	39.107	13.625	.033	.040	.080	.039	.076	.042	.074	.072
1A8X1	724	38.872	12.952	034	034	041	038	026	025	030	019
1A8X2	158	40.750	12.041	139	096	054	156	027	115	084	057
1C1X1	2,355	38.750	14.935	053	032	028	046	020	036	033	026
1C2X1	171	39.001	13.617	009	008	027	.011	024	.008	007	007
1C3X1	470	35.578	15.819	.057	.053	.035	.012	.049	.028	.012	.027
1C4X1	478	42.031	12.064	.015	.008	.005	.028	.006	.026	.025	.024
1C5X1	538	38.742	14.606	.087	.090	.096	.094	.097	.095	.101	.101
1C7X1	423	36.392	15.833	.132	.122	.123	.100	.131	.111	.112	.121
1N1X1A	1,288	39.158	13.733	.092	.083	.092	.086	.089	.084	.091	.089
1N3X1	1,504	40.865	12.509	.202	.186	.169	.178	.170	.177	.164	.166
1N4X1A	514	41.391	12.601	.092	.118	.082	.076	.102	.095	.065	.085
1N4X1B	162	36.505	14.494	.374	.339	.297	.322	.314	.334	.302	.317
1T0X1	108	40.727	14.349	167	207	135	186	172	210	155	183
1T2X1	125	34.618	14.673	194	147	230	210	152	143	210	149
1U0X1	320	39.813	13.345	.054	.025	.054	.079	.024	.047	.073	.045
1W0X1	1,134	39.606	13.689	.150	.141	.135	.140	.139	.142	.139	.142
2F0X1	1,688	37.350	15.273	020	007	.003	019	.005	014	006	003
2R0X1	299	36.729	15.528	.135	.130	.122	.113	.124	.117	.110	.114
2R1X1	414	34.656	16.754	.060	.118	.086	.089	.107	.108	.083	.101
2S0X1	3,101	37.186	15.534	028	023	024	018	019	015	016	013
2W0X1	3,122	35.886	15.918	.081	.075	.093	.081	.086	.076	.092	.086
3D0X2	1,304	38.979	13.722	.045	.052	.065	.032	.071	.043	.052	.060
3D0X3	397	37.396	14.136	.166	.136	.115	.127	.124	.133	.117	.125
3D0X4	146	40.290	11.844	394	378	358	419	339	393	381	364
3E5X1	433	38.624	14.002	084	062	088	077	066	059	080	063
3E6X1	201	33.625	17.440	.194	.217	.226	.194	.231	.203	.211	.218
3E7X1	2,274	38.407	14.578	.050	.046	.062	.053	.053	.047	.060	.054
3E8X1	216	41.742	11.795	084	080	066	132	040	099	089	065
3E9X1	277	39.193	14.816	.237	.257	.241	.262	.250	.266	.256	.262
3F1X1	2,421	33.109	16.884	.049	.065	.089	.053	.085	.055	.074	.073
3N0X2	205	38.589	13.916	.209	.131	.178	.189	.134	.148	.188	.151
3P0X1	20,959	35.713	16.025	.082	.078	.088	.084	.085	.082	.091	.089
4A0X1	1,383	34.289	16.828	.138	.145	.163	.139	.161	.141	.156	.156
4B0X1	419	36.513	15.554	.089	.080	.055	.074	.063	.078	.057	.064
4D0X1	169	35.904	16.613	.043	.095	.045	.056	.077	.083	.043	.070
4H0X1	176	41.492	11.712	052	032	006	035	.003	023	001	.005
4N0X1	3,095	38.345	14.450	025	012	007	024	.003	013	008	.000
4R0X1	335	38.448	14.139	048	042	042	057	028	042	042	031

Table C.8. Predictive Validity Results for MMRS Criterion by AFS for General Composite

50

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

	Samula	Cuitanian	Cuitanian				Predicti	ve Validity			
AFSC	Sample	Maan		Current	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+W	AR+PC+WK+
	Size	Mean	SD	Composite	K+MK	K+AO	K+GS	K+AO+MK	K+GS+MK	K+AO+GS	AO+GS+MK
4T0X1	462	36.395	15.196	.057	.050	.060	.042	.058	.043	.051	.051
4Y0X1	1,057	34.655	16.486	.040	.059	.041	.050	.052	.058	.045	.053
4Y0X2	135	37.710	14.499	.502	.408	.376	.383	.399	.402	.379	.399
5J0X1	204	35.268	15.625	.024	019	005	.000	022	016	005	020
6C0X1	735	38.120	14.080	.090	.098	.116	.080	.126	.094	.109	.118
6F0X1	1,118	35.402	15.912	.001	.007	.027	014	.029	006	.009	.014

APPENDIX D – OBSERVED PREDICTIVE VALIDITY RESULTS BY AFS

Table D.1. Predictive Validity Results for Training Grade Criterion by AFS for Mechanical Composite - Observed	53
Table D.2. Predictive Validity Results for MMRS Criterion by AFS for Mechanical Composite - Observed	555
Table D.3. Predictive Validity Results for Training Grade Criterion by AFS for Electronics Composite - Observed	577
Table D.4. Predictive Validity Results for MMRS Criterion by AFS for Electronics Composite - Observed	588
Table D.5. Predictive Validity Results for Training Grade Criterion by AFS for Administrative Composite - Observed	599
Table D.6. Predictive Validity Results for MMRS Criterion by AFS for Administrative Composite - Observed	60
Table D.7. Predictive Validity Results for Training Grade Criterion by AFS for General Composite - Observed	61
Table D.8. Predictive Validity Results for MMRS Criterion by AFS for General Composite - Observed	63

		Critorion				Predictive Val	idity	
AFSC	Sample Size	Mean	Criterion SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK
1C2X1	412	86.330	10.274	.153	.206	.231	.181	.209
1C7X1	662	84.760	5.798	.332	.312	.354	.304	.348
1P0X1	1,618	89.518	5.156	.387	.332	.371	.322	.365
2A3X8	125	87.560	5.576	.479	.479	.476	.453	.465
2A5X1	1,306	87.394	6.706	.381	.277	.289	.251	.268
2A5X2B	420	90.719	5.325	.284	.278	.285	.267	.279
2A5X2D	198	88.167	5.056	.250	.157	.143	.094	.096
2A5X4	772	86.522	5.801	.483	.330	.368	.294	.341
2A6X1	4,369	87.674	5.456	.409	.323	.342	.307	.331
2A6X2	3,197	87.927	4.555	.428	.354	.381	.337	.371
2A6X3	485	87.186	5.022	.233	.163	.193	.180	.208
2A6X4	1,799	88.511	5.297	.376	.285	.324	.276	.317
2A6X5	1,738	88.639	5.193	.331	.256	.281	.240	.271
2A6X6	3,001	90.530	4.832	.440	.375	.397	.362	.389
2A7X1	576	88.186	9.720	.200	.240	.262	.203	.234
2A7X2	676	88.175	5.023	.441	.429	.472	.410	.458
2A7X3	2,138	89.122	5.023	.418	.349	.366	.326	.349
2A7X5	385	87.844	5.289	.441	.300	.325	.279	.311
2F0X1	2,876	89.605	5.253	.322	.278	.309	.255	.292
2M0X2	419	93.200	3.030	.392	.373	.396	.355	.387
2T1X1	1,544	86.622	4.857	.342	.320	.332	.293	.313
2T2X1	3,921	88.046	5.371	.338	.354	.383	.323	.361
2T3X1	1,482	88.653	5.607	.323	.190	.206	.184	.202
2T3X1A	219	87.082	5.536	.246	.163	.196	.145	.180
2T3X1C	250	92.288	4.860	.220	.219	.236	.237	.251
2W0X1	5,577	89.584	4.847	.361	.353	.382	.326	.363
2W1X1	5,459	89.296	4.600	.465	.433	.447	.405	.426
2W2X1	587	93.204	2.899	.353	.275	.294	.259	.280
3D1X7	475	90.686	3.945	.427	.366	.377	.336	.357
3E0X1	1,044	87.810	4.996	.512	.461	.507	.420	.475
3E0X2	1,124	86.716	4.519	.390	.270	.297	.263	.291
3E1X1	1,151	88.662	4.441	.470	.412	.436	.384	.413
3E2X1	1,276	89.837	4.428	.367	.319	.324	.284	.299
3E3X1	786	86.615	4.947	.369	.331	.346	.302	.326
3E4X1	1,250	88.850	4.665	.392	.324	.333	.294	.311
3E8X1	231	93.857	4.873	.198	.119	.126	.108	.118
4A2X1	216	90.463	3.266	.408	.335	.373	.383	.414

Table D.1. Predictive Validity Results for Training Grade Criterion by AFS for Mechanical Composite - Observed

53

		Criterion				Predictive Val	idity	
AFSC	Sample Size	Mean	Criterion SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK
Aggregated				.385	.334	.357	.312	.342

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

		Criterier		Predictive Validity								
AFSC	Sample Size	Mean	Criterion SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK				
1C2X1	171	39.001	13.617	034	048	048	059	059				
1C7X1	423	36.392	15.833	.098	.080	.097	.094	.107				
1P0X1	927	34.257	17.031	.007	016	.022	.013	.042				
2A3X3	2,910	37.026	16.002	.067	.029	.038	.047	.052				
2A3X3L	234	32.007	16.407	.126	.097	.090	.080	.079				
2A3X3M	199	33.017	14.874	.077	.023	.009	.025	.012				
2A3X7	137	32.767	15.820	.154	.168	.200	.193	.218				
2A5X1	4,204	37.746	15.227	.092	.057	.062	.065	.068				
2A5X2B	239	37.542	15.420	.057	105	088	074	066				
2A5X2D	101	36.480	15.023	.135	.105	.099	.086	.086				
2A5X4	572	33.235	15.445	.064	.037	.052	.042	.055				
2A6X1	2,421	37.066	15.553	.060	.022	.025	.043	.042				
2A6X2	1,918	36.398	15.789	.080	015	005	.015	.018				
2A6X3	272	38.242	14.798	.030	.033	.042	.056	.061				
2A6X4	1,050	35.059	16.350	.098	.039	.045	.040	.046				
2A6X5	963	37.446	14.881	.076	.047	.044	.058	.054				
2A6X6	1,705	38.530	14.518	.089	.056	.054	.066	.063				
2A7X1	310	36.147	15.558	.059	005	001	.022	.021				
2A7X2	393	35.815	16.215	.022	.062	.068	.050	.059				
2A7X3	1,227	36.630	15.903	.094	.038	.022	.056	.039				
2A7X5	184	35.638	15.395	.190	.100	.097	.058	.063				
2F0X1	1,688	37.350	15.273	.012	030	023	013	011				
2M0X2	219	34.673	15.905	.117	.115	.113	.150	.145				
2T1X1	1,249	36.044	16.035	.040	.004	.006	.007	.008				
2T2X1	2,350	38.053	14.751	.024	.001	.001	.011	.009				
2T3X1	739	37.104	15.500	.036	006	017	.000	011				
2T3X1A	104	37.471	15.572	.131	.030	.046	007	.015				
2T3X1C	136	36.185	15.275	.073	.037	.014	.060	.036				
2W0X1	3,122	35.886	15.918	.082	.053	.047	.066	.059				
2W1X1	3,166	37.169	15.346	.019	016	006	005	.002				
2W2X1	356	37.339	15.202	.035	.018	.027	.012	.021				
3D1X7	222	37.599	15.038	.040	.062	.080	.031	.053				
3E0X1	571	38.550	14.440	049	035	023	052	039				
3E0X2	639	38.363	14.539	.065	.023	.030	.051	.052				
3E1X1	641	38.008	14.576	.033	.040	.039	.046	.045				
3E2X1	832	37.806	15.087	.072	.078	.053	.090	.067				
3E3X1	687	38.351	14.267	.062	.065	.054	.065	.056				

Table D.2. Predictive Validity Results for MMRS Criterion by AFS for Mechanical Composite – Observed

55

		Criterion				Predictive Val	idity	
AFSC	Sample Size	Mean	Criterion SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK
3E4X1	644	37.186	14.982	.021	027	045	022	039
3E8X1	216	41.742	11.795	.041	026	.001	.009	.026
4A2X1	218	39.972	13.385	060	022	034	.011	006
Aggregated				.059	.024	.027	.036	.037

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

	G 1	a :. :	a :					Predictive V	alidity			
AFSC	Sample	Criterion	Criterion	Current	AR+MK	AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO
	Size	Mean	SD	Composite		+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK
1A3X1	1,177	92.981	3.930	.293	.328	.370	.388	.313	.399	.350	.372	.384
1C6X1	733	92.035	4.309	.255	.225	.254	.257	.219	.266	.246	.249	.261
1C8X3	942	89.162	4.875	.301	.307	.349	.354	.312	.366	.346	.351	.363
1W0X1	1,960	89.006	4.886	.413	.358	.410	.407	.357	.429	.401	.400	.422
2A0X1	904	88.894	5.194	.292	.244	.307	.295	.263	.324	.312	.304	.329
2A2X1	225	90.493	3.800	.436	.352	.387	.401	.348	.403	.385	.392	.401
2A2X2	168	91.149	3.965	.347	.245	.276	.324	.288	.320	.311	.349	.345
2A2X3	138	87.630	4.128	.271	.324	.338	.372	.294	.358	.314	.349	.344
2A3X4	1,312	89.843	4.365	.331	.287	.325	.345	.271	.351	.306	.323	.335
2A3X5	1,022	90.824	4.476	.322	.247	.284	.287	.221	.300	.259	.263	.280
2A6X2	3,197	87.927	4.555	.410	.336	.374	.367	.315	.381	.355	.352	.371
2A6X6	3,001	90.530	4.832	.438	.319	.379	.373	.312	.397	.366	.363	.389
2A8X1	260	90.408	3.756	.267	.181	.240	.245	.156	.271	.208	.212	.240
2A8X2	275	90.822	4.151	.379	.225	.306	.344	.233	.375	.299	.340	.368
2A9X1	142	90.261	3.494	.312	.178	.231	.248	.167	.271	.217	.229	.255
2A9X2	133	90.782	4.427	.382	.319	.420	.416	.261	.459	.361	.355	.410
2A9X3	234	88.103	4.285	.383	.289	.369	.337	.298	.380	.365	.348	.385
2M0X1	602	91.945	4.215	.372	.310	.408	.405	.341	.449	.416	.417	.454
2M0X3	328	91.546	3.871	.315	.265	.336	.300	.260	.339	.321	.293	.329
2P0X1	649	87.664	5.252	.477	.420	.478	.473	.380	.491	.435	.438	.461
2W1X1	5,459	89.296	4.600	.456	.357	.424	.420	.326	.447	.394	.393	.426
3D1X1	569	87.775	4.612	.299	.312	.372	.368	.280	.396	.343	.337	.371
3D1X2	334	87.955	6.772	.307	.210	.287	.266	.173	.307	.249	.230	.276
3D1X3	2,539	88.917	4.718	.361	.288	.357	.350	.281	.380	.342	.337	.368
3D1X7	475	90.686	3.945	.415	.321	.372	.352	.292	.377	.346	.326	.357
3E0X1	1,044	87.810	4.996	.533	.456	.493	.504	.396	.507	.446	.457	.475
3E0X2	1,124	86.716	4.519	.360	.285	.284	.312	.272	.297	.275	.301	.291
3E1X1	1,151	88.662	4.441	.465	.359	.424	.409	.325	.436	.391	.379	.413
3E4X1	1,250	88.850	4.665	.385	.276	.314	.316	.245	.333	.286	.288	.311
4A2X1	216	90.463	3.266	.354	.337	.372	.355	.396	.373	.421	.401	.414
Aggregated				.393	.320	.372	.371	.303	.391	.353	.354	.378

Table D.3. Predictive Validity Results for Training Grade Criterion by AFS for Electronics Composite - Observed

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

	a 1	a	a					Predictive V	alidity			
AFSC	Sample	Criterion	Criterion	Current		AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO
	Size	Mean	SD	Composite	AK+MK	+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK
1A3X1	705	39.513	14.083	.033	.013	.009	.020	.032	.015	.025	.034	.027
1C6X1	431	37.765	14.718	006	.007	.006	015	.048	011	.038	.021	.017
1C8X3	548	37.467	14.525	.003	020	034	012	007	024	021	002	014
1U0X1	320	39.813	13.345	.097	022	002	.030	016	.036	001	.027	.033
1W0X1	1,134	39.606	13.689	.072	.060	.071	.067	.060	.073	.070	.067	.073
2A0X1	525	38.507	13.990	.017	.023	.010	.041	.037	.026	.024	.049	.035
2A3X4	767	36.269	15.873	.118	.142	.140	.127	.136	.123	.136	.124	.122
2A3X5	609	39.827	13.936	.071	.139	.111	.109	.115	.089	.095	.094	.079
2A6X2	1,918	36.398	15.789	.030	.025	.005	.009	.053	005	.031	.035	.018
2A6X6	1,705	38.530	14.518	.056	.036	.037	.059	.051	.054	.049	.069	.063
2A8X2	113	35.932	13.748	.085	.021	.035	.018	.110	.028	.106	.088	.086
2A9X3	104	37.033	13.811	.191	057	018	015	.007	.008	.028	.028	.042
2M0X1	358	38.091	14.505	.050	.044	.066	.061	.070	.073	.084	.079	.087
2M0X3	187	35.497	15.693	.159	.147	.157	.130	.147	.136	.155	.134	.139
2P0X1	390	38.949	14.793	.041	.067	.048	.054	.059	.039	.043	.050	.037
2W1X1	3,166	37.169	15.346	.010	.001	012	.005	.012	006	001	.014	.002
3D1X1	999	39.498	13.614	.115	.115	.114	.099	.088	.098	.093	.080	.083
3D1X2	1,118	39.481	13.135	.023	014	011	.007	029	.005	024	009	007
3D1X3	1,471	39.003	14.411	.053	.007	.018	.017	.035	.023	.039	.039	.040
3D1X7	222	37.599	15.038	.020	.063	.068	.081	.024	.080	.036	.048	.053
3E0X1	571	38.550	14.440	.000	.018	027	.011	010	023	046	011	039
3E0X2	639	38.363	14.539	.056	.042	.040	.031	.069	.030	.064	.056	.052
3E1X1	641	38.008	14.576	.016	.033	.038	.036	.041	.039	.045	.043	.045
3E4X1	644	37.186	14.982	036	076	051	066	062	045	043	056	039
4A2X1	218	39.972	13.385	063	032	044	024	.010	034	008	.009	006
Aggregated				.040	.029	.025	.032	.038	.027	.033	.039	.034

Table D.4. Predictive Validity Results for MMRS Criterion by AFS for Electronics Composite - Observed

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

							Predic	tive Validity			
AFSC	Sample Size	Criterion Mean	Criterion SD	Current Composite	MK+PC+ WK+GS	MK+PC+ WK+AR	MK+PC+ WK+AO	MK+PC+ WK+AR+ GS	MK+PC+ WK+AO+ GS	MK+PC+WK +AO+AR	MK+PC+WK+ AO+AR+GS
1C0X2	1,469	85.978	6.449	.323	.306	.345	.295	.331	.297	.326	.323
1C3X1	818	86.995	5.672	.362	.369	.390	.352	.383	.357	.372	.373
1N0X1	2,460	88.338	4.907	.407	.411	.427	.390	.423	.396	.406	.410
1N2X1A	522	91.128	4.503	.366	.390	.408	.359	.415	.378	.389	.402
1N2X1C	434	91.461	3.776	.274	.239	.306	.266	.272	.239	.298	.271
2G0X1	405	87.252	6.088	.284	.261	.326	.244	.304	.243	.299	.288
2S0X1	5,350	88.084	5.726	.328	.311	.339	.302	.334	.308	.328	.330
2T0X1	1,475	87.099	5.544	.387	.360	.412	.329	.398	.338	.375	.377
2T2X1	3,921	88.046	5.371	.357	.369	.383	.334	.390	.354	.361	.376
2T3X7	452	87.522	6.360	.289	.265	.334	.253	.312	.251	.302	.294
3D0X1	3,618	85.981	6.009	.303	.279	.314	.260	.302	.263	.290	.288
3F0X1	3,197	88.626	6.274	.214	.201	.250	.224	.232	.214	.253	.241
3F5X1	353	88.805	5.793	.198	.168	.237	.237	.206	.206	.262	.234
4A1X1	610	82.910	5.719	.277	.259	.301	.242	.286	.240	.273	.267
4C0X1	396	87.634	5.047	.433	.451	.449	.429	.441	.428	.420	.423
4J0X2	143	85.441	5.212	.395	.411	.435	.425	.432	.430	.450	.450
Aggregated				.324	.314	.346	.302	.338	.306	.330	.330

Table D.5. Predictive Validity Results for Training Grade Criterion by AFS for Administrative Composite - Observed

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

							Predic	tive Validity			
AFSC	Sample Size	Criterion Mean	Criterion SD	Current Composite	MK+PC+ WK+GS	MK+PC+ WK+AR	MK+PC+ WK+AO	MK+PC+ WK+AR+ GS	MK+PC+ WK+AO+ GS	MK+PC+WK +AO+AR	MK+PC+WK+ AO+AR+GS
1C0X2	828	34.953	16.379	008	022	.006	.007	009	010	.016	.000
1C3X1	470	35.578	15.819	.035	003	.038	.020	.016	001	.037	.016
1N0X1	1,420	39.302	13.810	.049	.056	.062	.069	.069	.076	.080	.084
1N2X1A	577	40.412	13.682	.007	.022	.036	014	.052	.014	.025	.042
1N2X1C	235	38.154	14.321	011	048	049	013	064	037	038	054
2G0X1	231	37.502	15.653	008	019	038	003	039	012	029	032
2S0X1	3,101	37.186	15.534	012	004	014	010	005	001	010	002
2T0X1	807	36.655	15.805	127	086	108	060	093	055	072	067
2T2X1	2,350	38.053	14.751	005	007	.001	.010	006	.001	.009	.001
2T3X7	228	31.447	17.415	.118	.090	.117	.161	.103	.138	.160	.142
3D0X1	2,112	35.907	16.473	.019	.003	.013	.051	.004	.033	.042	.029
3F0X1	1,530	34.633	16.421	039	064	034	026	051	047	018	037
4A1X1	484	38.630	14.748	.012	029	.022	014	005	034	.010	011
4C0X1	491	33.993	16.313	.123	.121	.147	.133	.134	.124	.144	.135
4E0X1	575	36.719	15.336	.019	007	.018	.049	007	.016	.039	.013
4J0X2	140	37.780	15.216	.123	.085	.146	.128	.111	.096	.151	.119
4M0X1	136	35.817	16.168	.166	.166	.206	.192	.191	.180	.214	.201
4N1X1	331	36.608	15.298	.069	.041	.069	.025	.062	.028	.052	.049
4P0X1	408	35.754	15.787	032	028	038	.012	030	.010	.003	.002
Aggregated				.004	002	.008	.018	.004	.011	.021	.015

Table D.6. Predictive Validity Results for MMRS Criterion by AFS for Administrative Composite - Observed

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

60

	G 1	<u> </u>	o :. ·				Pre	dictive Validity	ctive Validity				
AFSC	Sample	Criterion	Criterion	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+		
	5120	Ivicali	3D	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK		
1A0X1	364	94.676	2.987	.394	.382	.360	.387	.353	.376	.360	.356		
1A2X1	887	94.379	3.009	.268	.317	.265	.282	.313	.323	.283	.322		
1A8X1	1,316	89.477	6.544	.128	.117	.138	.142	.123	.127	.145	.132		
1A8X2	260	91.800	3.416	.410	.407	.399	.371	.419	.390	.386	.407		
1C1X1	2,644	86.419	6.633	.275	.301	.267	.279	.292	.299	.274	.295		
1C2X1	412	86.330	10.274	.175	.231	.181	.227	.209	.245	.208	.228		
1C3X1	818	86.995	5.672	.348	.390	.345	.363	.372	.383	.352	.373		
1C4X1	873	84.427	9.102	.214	.217	.199	.247	.199	.239	.227	.224		
1C5X1	902	87.541	5.920	.355	.389	.318	.386	.356	.409	.359	.386		
1C7X1	662	84.760	5.798	.319	.354	.304	.314	.348	.354	.315	.353		
1N1X1A	2,205	88.671	4.237	.375	.407	.384	.401	.414	.423	.409	.431		
1N3X1	2,476	88.181	6.220	.149	.159	.154	.160	.159	.163	.162	.165		
1N4X1A	917	93.529	3.442	.386	.419	.379	.392	.416	.424	.393	.424		
1N4X1B	448	91.366	3.544	.455	.486	.437	.440	.474	.474	.437	.470		
1T2X1	356	82.253	10.926	.064	.083	.079	.107	.070	.094	.092	.083		
1W0X1	1,960	89.006	4.886	.406	.429	.388	.418	.422	.443	.414	.441		
2F0X1	2,876	89.605	5.253	.277	.309	.255	.291	.292	.319	.278	.308		
2R0X1	507	88.363	5.214	.338	.377	.322	.325	.363	.363	.321	.357		
2R1X1	702	87.152	5.306	.231	.250	.225	.201	.247	.227	.209	.231		
2S0X1	5,350	88.084	5.726	.283	.339	.272	.282	.328	.334	.283	.330		
2W0X1	5,577	89.584	4.847	.347	.382	.326	.373	.363	.397	.356	.384		
3D0X2	227	86.264	6.118	.458	.476	.433	.482	.448	.486	.455	.466		
3D0X4	248	89.375	4.997	.187	.275	.248	.255	.293	.298	.280	.315		
3E4X3	175	90.389	4.706	.334	.372	.282	.393	.345	.436	.379	.421		
3E5X1	629	86.409	7.128	.272	.293	.261	.297	.282	.310	.288	.301		
3E6X1	383	86.794	5.677	.320	.357	.313	.328	.342	.358	.326	.351		
3E7X1	3,384	89.158	3.926	.454	.445	.452	.482	.443	.470	.481	.473		
3E8X1	231	93.857	4.873	.117	.126	.108	.132	.118	.135	.125	.130		
3E9X1	162	87.747	5.429	.378	.416	.348	.421	.391	.446	.394	.425		
3F1X1	3,751	84.073	5.988	.310	.359	.285	.322	.327	.358	.302	.338		
3P0X1	29,141	82.911	5.913	.461	.484	.423	.478	.449	.496	.452	.474		
4A0X1	1,383	85.205	5.307	.375	.412	.364	.390	.395	.416	.382	.407		
4D0X1	164	81.463	5.454	.441	.498	.473	.418	.513	.469	.454	.496		
4Y0X1	1,029	84.114	5.716	.360	.391	.335	.365	.376	.397	.357	.390		

Table D.7. Predictive Validity Results for Training Grade Criterion by AFS for General Composite - Observed

61

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

	Commla	Cuitanian	Critarian				Pre	dictive Validity			
AFSC	Sample	Moon	SD	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
	Size	Wiean	3D	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
4Y0X2	128	87.430	4.576	.079	.043	016	008	.032	.032	015	.024
6C0X1	1,118	85.125	5.859	.389	.437	.386	.394	.423	.426	.387	.421
6F0X1	1,804	89.256	5.253	.320	.366	.334	.297	.374	.339	.314	.352
Aggregated				.370	.398	.349	.384	.378	.406	.371	.394

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

	G 1	a :	a :. :				P	redictive Validity			
AFSC	Sample	Criterion	Criterion	Current	AR+PC+	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
	Size	Mean	5D	Composite	WK+MK	WK+AO	WK+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
1A0X1	268	39.461	13.138	.114	.114	.143	.172	.110	.135	.160	.130
1A2X1	792	39.107	13.625	.031	.038	.076	.039	.072	.041	.072	.069
1A8X1	724	38.872	12.952	.065	.067	.053	.064	.070	.078	.067	.079
1A8X2	158	40.750	12.041	015	.034	.071	028	.103	.013	.041	.072
1C1X1	2,355	38.750	14.935	010	.011	.011	002	.019	.007	.007	.014
1C2X1	171	39.001	13.617	050	048	059	028	059	032	040	042
1C3X1	470	35.578	15.819	.040	.038	.027	.003	.037	.016	.004	.016
1C4X1	478	42.031	12.064	.009	.002	002	.021	.000	.019	.018	.017
1C5X1	538	38.742	14.606	.070	.078	.085	.080	.088	.083	.089	.091
1C7X1	423	36.392	15.833	.099	.097	.094	.064	.107	.082	.079	.093
1N1X1A	1,288	39.158	13.733	.036	.033	.043	.034	.043	.035	.043	.043
1N3X1	1,504	40.865	12.509	.068	.058	.046	.049	.047	.049	.040	.041
1N4X1A	514	41.391	12.601	.124	.149	.112	.103	.132	.123	.091	.112
1N4X1B	162	36.505	14.494	.223	.204	.161	.185	.185	.202	.171	.190
1T0X1	108	40.727	14.349	158	176	120	161	149	180	137	159
1T2X1	125	34.618	14.673	109	057	137	135	067	071	138	079
1U0X1	320	39.813	13.345	.065	.036	.060	.084	.033	.054	.075	.050
1W0X1	1,134	39.606	13.689	.077	.073	.068	.071	.073	.075	.071	.075
2F0X1	1,688	37.350	15.273	037	023	013	038	011	031	024	020
2R0X1	299	36.729	15.528	.094	.096	.090	.075	.093	.080	.075	.080
2R1X1	414	34.656	16.754	.008	.058	.031	.026	.054	.047	.026	.046
2S0X1	3,101	37.186	15.534	023	014	017	011	010	005	007	002
2W0X1	3,122	35.886	15.918	.052	.047	.066	.054	.059	.049	.065	.060
3D0X2	1,304	38.979	13.722	.041	.050	.060	.029	.068	.041	.049	.057
3D0X3	397	37.396	14.136	.063	.038	.025	.028	.035	.037	.027	.035
3D0X4	146	40.290	11.844	.006	.036	.042	.003	.048	.015	.019	.028
3E5X1	433	38.624	14.002	056	032	054	043	036	028	046	032
3E6X1	201	33.625	17.440	.182	.202	.220	.170	.223	.182	.199	.205
3E7X1	2,274	38.407	14.578	.047	.039	.057	.049	.047	.041	.056	.048
3E8X1	216	41.742	11.795	.004	.001	.009	036	.026	013	007	.010
3E9X1	277	39.193	14.816	.183	.204	.191	.208	.200	.215	.203	.211
3F1X1	2,421	33.109	16.884	.012	.027	.055	.010	.052	.014	.036	.036
3N0X2	205	38.589	13.916	012	070	002	012	046	052	.004	034
3P0X1	20,959	35.713	16.025	.075	.070	.080	.075	.077	.073	.083	.080
4A0X1	1,383	34.289	16.828	.109	.116	.137	.111	.134	.113	.130	.130
4B0X1	419	36.513	15.554	.072	.066	.040	.059	.049	.064	.044	.051
4D0X1	169	35.904	16.613	.055	.113	.055	.075	.092	.106	.060	.092
4H0X1	176	41.492	11.712	.001	.021	.026	.011	.043	.029	.034	.047
4N0X1	3,095	38.345	14.450	016	002	.000	017	.013	003	002	.009

Table D.8. Predictive Validity Results for MMRS Criterion by AFS for General Composite - Observed

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

AFSC	Sample Size	Criterion Mean	Criterion SD	Predictive Validity							
				Current	AR+PC+	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
				Composite	WK+MK	WK+AO	WK+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
4R0X1	335	38.448	14.139	042	036	038	057	019	038	040	024
4T0X1	462	36.395	15.196	025	031	016	038	017	036	024	024
4Y0X1	1,057	34.655	16.486	.019	.035	.015	.027	.027	.035	.020	.029
4Y0X2	135	37.710	14.499	.037	014	027	049	.010	015	026	.003
5J0X1	204	35.268	15.625	.003	029	015	012	030	026	014	027
6C0X1	735	38.120	14.080	.050	.061	.075	.039	.088	.057	.069	.081
6F0X1	1,118	35.402	15.912	.029	.038	.050	.009	.057	.021	.031	.039
Aggregated				.045	.047	.054	.044	.055	.047	.053	.054

Note. Validities reported are observed correlations between the composite and the criterion. The aggregated entry is the sample-size weighted mean of the AFS results. SD = standard deviation.

APPENDIX E – DIFFERENTIAL VALIDITY RESULTS BY AFS

Table E.1. Differential Validity Results for Training Grade Criterion by AFS for Mechanical Composite: Male/Female
Table E.2. Differential Validity Results for Training Grade Criterion by AFS for Mechanical Composite: Non-Hispanic
White/Non-Hispanic Black67
Table E.3. Differential Validity Results for Training Grade Criterion by AFS for Electronics Composite: Male/Female699
Table E.4. Differential Validity Results for Training Grade Criterion by AFS for Electronics Composite: Non-Hispanic White/Non-Hispanic Black
Table E.5. Differential Validity Results for Training Grade Criterion by AFS for Administrative Composite: Male/Female71
Table E.6. Differential Validity Results for Training Grade Criterion by AFS for Administrative Composite: Non-Hispanic White/Non-Hispanic Black
Table E.7. Differential Validity Results for Training Grade Criterion by AFS for General Composite: Male/Female
Table E.8. Differential Validity Results for Training Grade Criterion by AFS for General Composite: Non-Hispanic White/Non-Hispanic Black

AFSC
1C7X1
1P0X1
2A6X1
2A6X2
2A6X4
2A6X6
2A7X2
2A7X3
2F0X1
2T1X1
2T2X1
2W0X1
2W1X1

Table E.1. Differential Validity Results for Training Grade Criterion by AFS for Mechanical Composite: Male/Female

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. SD = standard deviation.

		Sample	Criterion	Criterion			Predictive Va	lidity	
AFSC	Subgroup	Size	Mean	SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK
1C7X1	NHW	407	85.388	5.831	.372	.376	.420	.374	.417
	NHB	103	83.350	5.535	.540	.510	.527	.534	.550
1P0X1	NHW	971	89.793	4.998	.465	.429	.451	.412	.440
	NHB	252	87.889	5.645	.494	.495	.543	.506	.553
2A5X1	NHW	934	87.854	6.687	.458	.363	.368	.342	.354
	NHB	119	85.042	7.078	.383	.446	.472	.408	.444
2A6X1	NHW	2,978	88.097	5.416	.476	.408	.415	.390	.404
	NHB	445	85.236	5.510	.384	.316	.362	.295	.343
2A6X2	NHW	2,080	88.221	4.607	.561	.507	.518	.485	.503
	NHB	387	86.318	4.025	.529	.527	.540	.507	.527
2A6X4	NHW	1,154	88.870	5.251	.492	.432	.441	.418	.433
	NHB	275	87.215	5.240	.388	.373	.417	.359	.406
2A6X5	NHW	1,256	88.886	5.235	.475	.416	.420	.394	.406
	NHB	136	87.096	5.336	.336	.353	.372	.316	.344
2A6X6	NHW	1,943	91.005	4.753	.596	.536	.561	.514	.545
	NHB	358	88.492	4.764	.517	.482	.510	.469	.501
2A7X2	NHW	374	88.564	5.150	.467	.465	.501	.439	.481
	NHB	114	87.053	4.396	.524	.589	.596	.553	.572
2A7X3	NHW	1,485	89.463	4.946	.502	.435	.453	.420	.444
	NHB	203	86.818	4.819	.555	.539	.524	.511	.508
2F0X1	NHW	1,984	89.800	5.207	.454	.408	.424	.384	.406
	NHB	349	88.195	5.112	.370	.377	.410	.364	.400
2T1X1	NHW	1,003	86.952	4.759	.448	.441	.457	.418	.441
	NHB	200	85.310	4.812	.443	.426	.410	.388	.385
2T2X1	NHW	2,645	88.353	5.265	.450	.464	.480	.437	.462
	NHB	404	86.455	5.613	.354	.389	.423	.363	.402
2T3X1	NHW	1,082	88.849	5.506	.434	.327	.333	.311	.322
	NHB	108	87.185	6.193	.508	.325	.319	.372	.361
2W0X1	NHW	4,045	89.805	4.782	.474	.463	.483	.441	.468
	NHB	422	87.979	5.052	.444	.418	.418	.386	.396
2W1X1	NHW	3,400	89.885	4.516	.504	.458	.474	.432	.455
	NHB	765	87.404	4.379	.432	.416	.451	.367	.411
3E0X1	NHW	554	88.749	4.863	.576	.525	.563	.484	.531
	NHB	190	85.716	4.787	.571	.557	.590	.559	.594
3E1X1	NHW	628	89.400	4.348	.483	.442	.451	.405	.424
	NHB	232	86.668	3.913	.561	.521	.544	.496	.526

Table E.2. Differential Validity Results for Training Grade Criterion by AFS for Mechanical Composite: Non-Hispanic White/Non-Hispanic Black

Distribution A: Approved for public release.

		Samula	Critorian	Critorian			Predictive Va	alidity	
AFSC	Subgroup	Size	Mean	SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK
3E2X1	NHW	880	90.290	4.322	.441	.407	.414	.386	.400
	NHB	150	87.460	4.449	.192	.195	.188	.185	.183
3E4X1	NHW	812	89.321	4.636	.544	.480	.476	.438	.446
	NHB	147	87.122	4.432	.343	.454	.475	.446	.471

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. NHB=Non-Hispanic Black, NHW=Non-Hispanic White. SD = standard deviation.

		Samula	Cuitanian	Cuitanian					Predictive V	alidity			
AFSC	Subgroup	Sample	Moon	SD	Current	AR+MK	AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO
		5126	Wiean	5D	Composite		+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK
1A3X1	Male	1,030	93.055	3.918	.267	.314	.349	.379	.286	.384	.324	.352	.364
	Female	147	92.463	3.992	.277	.202	.280	.273	.270	.315	.327	.323	.353
1C6X1	Male	615	92.280	4.258	.226	.215	.234	.226	.214	.234	.233	.227	.235
	Female	118	90.763	4.367	.532	.348	.395	.408	.267	.423	.325	.339	.367
1W0X1	Male	1,485	89.380	4.792	.467	.440	.491	.487	.425	.506	.476	.475	.497
	Female	475	87.836	4.997	.562	.500	.537	.537	.478	.544	.518	.521	.535
2A6X2	Male	2,822	88.033	4.559	.523	.438	.501	.491	.413	.518	.476	.470	.502
	Female	375	87.131	4.454	.543	.465	.535	.486	.475	.524	.537	.498	.533
2A6X6	Male	2,781	90.679	4.811	.580	.480	.538	.520	.457	.545	.516	.503	.532
	Female	220	88.655	4.718	.526	.434	.463	.491	.431	.490	.461	.487	.491
2W1X1	Male	4,794	89.419	4.585	.493	.402	.454	.452	.372	.471	.426	.427	.452
	Female	665	88.412	4.614	.456	.392	.452	.418	.369	.450	.429	.403	.436
3D1X3	Male	2,352	88.995	4.707	.437	.374	.431	.424	.352	.448	.408	.405	.433
	Female	187	87.936	4.762	.565	.519	.545	.527	.475	.532	.511	.498	.511

Table E.3. Differential Validity Results for Training Grade Criterion by AFS for Electronics Composite: Male/Female

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. SD = standard deviation.

		G 1	a :. :	a]	Predictive V	alidity			
AFSC	Subgroup	Sample	Criterion	Criterion	Current	AR+MK	AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO
		Size	Mean	50	Composite		+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK
1A3X1	NHW	821	93.066	4.018	.344	.350	.400	.413	.326	.430	.377	.390	.412
	NHB	108	92.407	3.744	.221	.248	.261	.319	.220	.308	.239	.291	.288
1C6X1	NHW	452	92.265	4.401	.328	.292	.317	.317	.283	.324	.309	.311	.320
	NHB	103	90.806	4.477	.063	.075	.109	.133	.069	.145	.100	.121	.135
1W0X1	NHW	1,426	89.297	4.854	.534	.470	.523	.515	.445	.534	.500	.495	.520
	NHB	169	87.266	4.578	.279	.297	.351	.363	.280	.384	.332	.344	.369
2A0X1	NHW	573	89.138	5.190	.413	.361	.420	.412	.354	.438	.410	.405	.433
	NHB	104	87.750	5.161	.031	.071	.146	.118	.063	.166	.130	.107	.153
2A3X4	NHW	890	90.128	4.192	.475	.422	.468	.475	.384	.489	.434	.443	.464
	NHB	115	88.061	4.710	.348	.475	.425	.436	.445	.391	.412	.424	.389
2A6X2	NHW	2,080	88.221	4.607	.527	.431	.500	.488	.410	.519	.477	.470	.504
	NHB	387	86.318	4.025	.471	.427	.497	.462	.405	.498	.474	.446	.484
2A6X6	NHW	1,943	91.005	4.753	.616	.492	.561	.539	.466	.570	.535	.519	.554
	NHB	358	88.492	4.764	.450	.405	.443	.475	.393	.479	.431	.461	.471
2W1X1	NHW	3,400	89.885	4.516	.496	.394	.458	.446	.367	.475	.430	.423	.456
	NHB	765	87.404	4.379	.432	.373	.403	.409	.308	.414	.349	.357	.374
3D1X3	NHW	1,681	89.284	4.741	.429	.378	.438	.434	.358	.459	.416	.415	.444
	NHB	318	87.142	4.614	.558	.459	.481	.492	.380	.490	.418	.430	.443
3E0X1	NHW	554	88.749	4.863	.601	.520	.566	.557	.466	.571	.520	.515	.539
	NHB	190	85.716	4.787	.568	.485	.528	.551	.489	.558	.530	.553	.563
3E1X1	NHW	628	89.400	4.348	.447	.353	.422	.420	.319	.451	.388	.389	.425
	NHB	232	86.668	3.913	.644	.551	.625	.589	.518	.624	.593	.565	.605
3E4X1	NHW	812	89.321	4.636	.505	.374	.449	.438	.334	.474	.410	.403	.444
	NHB	147	87.122	4.432	.414	.371	.417	.441	.365	.453	.409	.432	.447

Table E.4. Differential Validity Results for Training Grade Criterion by AFS for Electronics Composite: Non-Hispanic White/Non-Hispanic Black

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. NHB=Non-Hispanic Black, NHW=Non-Hispanic White. SD = standard deviation.

		G 1	<u> </u>	C '				Predic	tive Validity			
AFSC	Subgroup	Sample	Mean	SD	Current	MK+PC+	MK+PC+	MK+PC+	MK+PC+W	MK+PC+W	MK+PC+W	MK+PC+WK+
		5120	liteun	50	Composite	WK+GS	WK+AR	WK+AO	K+AR+GS	K+AO+GS	K+AO+AR	AO+AR+GS
1C0X2	Male	753	86.236	6.469	.360	.343	.379	.328	.365	.326	.355	.349
	Female	716	85.705	6.421	.395	.364	.389	.357	.387	.365	.383	.386
1C3X1	Male	478	86.935	5.605	.374	.402	.424	.379	.425	.393	.409	.417
	Female	340	87.079	5.771	.373	.391	.409	.365	.407	.375	.387	.393
1N0X1	Male	1,699	88.583	4.759	.488	.484	.494	.447	.493	.460	.464	.473
	Female	761	87.791	5.183	.411	.404	.450	.412	.429	.401	.438	.425
2G0X1	Male	205	87.985	6.171	.299	.290	.323	.292	.303	.280	.306	.294
	Female	200	86.500	5.923	.261	.164	.242	.135	.220	.134	.202	.191
2S0X1	Male	3,391	88.008	5.734	.413	.408	.426	.390	.424	.399	.411	.416
	Female	1,959	88.217	5.712	.399	.371	.405	.368	.398	.372	.398	.397
2T0X1	Male	993	87.013	5.592	.438	.415	.453	.380	.445	.390	.419	.422
	Female	482	87.276	5.445	.549	.526	.561	.492	.554	.504	.529	.534
2T2X1	Male	3,456	88.000	5.368	.443	.468	.476	.424	.487	.451	.453	.472
	Female	465	88.389	5.388	.468	.491	.485	.476	.499	.498	.488	.505
2T3X7	Male	290	87.372	6.485	.408	.414	.460	.383	.449	.391	.427	.428
	Female	162	87.790	6.140	.515	.511	.546	.501	.525	.492	.518	.510
3D0X1	Male	1,826	85.840	5.872	.358	.332	.358	.324	.351	.326	.346	.345
	Female	1,792	86.124	6.143	.395	.387	.415	.351	.409	.361	.382	.387
3F0X1	Male	1,365	88.341	6.398	.281	.282	.301	.298	.298	.298	.312	.310
	Female	1,832	88.838	6.174	.326	.316	.361	.320	.346	.315	.352	.343
3F5X1	Male	230	88.561	5.787	.215	.211	.254	.255	.236	.237	.273	.256
	Female	123	89.260	5.800	.366	.269	.344	.312	.310	.283	.348	.319
4A1X1	Male	337	82.531	5.694	.375	.390	.387	.320	.393	.345	.338	.357
	Female	273	83.377	5.726	.472	.485	.547	.496	.530	.492	.543	.533
4C0X1	Male	186	86.844	5.077	.538	.578	.576	.509	.577	.529	.521	.537
	Female	210	88.333	4.927	.571	.574	.586	.567	.576	.565	.570	.570

Table E.5. Differential Validity Results for Training Grade Criterion by AFS for Administrative Composite: Male/Female

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. SD = standard deviation.

		C 1 -	Cuitouiou	Cuitouiou				Predic	tive Validity			
AFSC	Subgroup	Sample	Mean	SD	Current	MK+PC+	MK+PC+	MK+PC+	MK+PC+W	MK+PC+W	MK+PC+W	MK+PC+WK+
					Composite	WK+GS	WK+AR	WK+AO	K+AR+GS	K+AO+GS	K+AO+AR	AO+AR+GS
1C0X2	NHW	633	86.397	6.355	.375	.336	.385	.329	.365	.322	.362	.351
	NHB	442	85.434	6.234	.249	.231	.251	.227	.244	.226	.241	.239
1C3X1	NHW	491	87.316	5.866	.375	.379	.415	.352	.405	.358	.386	.387
	NHB	132	86.598	5.091	.190	.172	.193	.218	.190	.211	.229	.222
1N0X1	NHW	1,611	88.529	4.841	.461	.471	.474	.442	.476	.455	.452	.462
	NHB	279	87.918	4.983	.478	.463	.535	.447	.517	.449	.509	.502
2S0X1	NHW	2,164	88.202	5.746	.423	.419	.437	.416	.433	.420	.432	.434
	NHB	1,677	87.677	5.642	.415	.412	.427	.382	.427	.395	.404	.412
2T0X1	NHW	650	87.332	5.618	.432	.419	.444	.399	.438	.406	.424	.427
	NHB	395	86.428	5.350	.486	.441	.485	.402	.464	.400	.435	.429
2T2X1	NHW	2,645	88.353	5.265	.451	.481	.478	.439	.493	.467	.460	.481
	NHB	404	86.455	5.613	.395	.386	.409	.378	.395	.372	.389	.383
2T3X7	NHW	182	86.670	6.398	.459	.500	.548	.478	.534	.482	.520	.518
	NHB	130	88.000	6.359	.455	.444	.465	.387	.463	.405	.419	.430
3D0X1	NHW	1,348	86.196	6.011	.386	.387	.395	.354	.395	.366	.369	.378
	NHB	1,245	85.666	5.733	.320	.278	.309	.260	.296	.258	.283	.278
3F0X1	NHW	1,145	88.598	6.450	.343	.336	.361	.356	.349	.348	.366	.359
	NHB	1,088	88.116	6.007	.286	.249	.295	.265	.271	.247	.285	.268
3F5X1	NHW	155	88.787	6.076	.156	.157	.195	.242	.178	.214	.247	.224
	NHB	106	88.462	5.131	.482	.442	.515	.470	.468	.432	.493	.458
4A1X1	NHW	296	83.179	5.420	.376	.367	.391	.321	.375	.322	.339	.337
	NHB	149	82.195	5.807	.448	.467	.486	.470	.485	.477	.489	.493

Table E.6. Differential Validity Results for Training Grade Criterion by AFS for Administrative Composite: Non-Hispanic White/Non-Hispanic Black

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. NHB=Non-Hispanic Black, NHW=Non-Hispanic White. SD = standard deviation.

		C	Cuitarian	Cuitouisu				Pred	ictive Validity			
AFSC	Subgroup	Sample	Moon	SD	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
		SIZE	Weall	3D	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
1A2X1	Male	750	94.471	3.009	.274	.315	.270	.281	.312	.317	.284	.318
	Female	137	93.876	2.972	.381	.462	.399	.455	.458	.499	.455	.497
1A8X1	Male	1,027	89.758	6.446	.131	.116	.140	.136	.126	.125	.145	.133
	Female	289	88.481	6.801	093	104	073	060	096	082	057	078
1C1X1	Male	2,211	86.540	6.631	.361	.386	.350	.364	.376	.385	.359	.381
	Female	433	85.801	6.611	.356	.338	.337	.332	.336	.332	.333	.334
1C3X1	Male	478	86.935	5.605	.359	.403	.366	.389	.389	.406	.379	.398
	Female	340	87.079	5.771	.369	.413	.369	.395	.391	.410	.378	.396
1C5X1	Male	616	88.208	5.887	.406	.438	.387	.438	.418	.458	.421	.444
	Female	286	86.105	5.741	.326	.380	.300	.359	.344	.388	.329	.362
1C7X1	Male	426	85.052	5.899	.404	.450	.388	.402	.442	.448	.403	.447
	Female	236	84.233	5.585	.326	.343	.343	.352	.345	.352	.356	.357
1N1X1A	Male	1,518	89.202	4.216	.482	.500	.470	.502	.489	.515	.496	.511
	Female	687	87.499	4.048	.420	.448	.437	.417	.465	.446	.441	.465
1N3X1	Male	1,643	88.460	5.836	.118	.129	.137	.128	.138	.130	.138	.139
	Female	833	87.633	6.886	.267	.260	.242	.271	.248	.272	.260	.263
1N4X1A	Male	709	93.717	3.241	.501	.519	.485	.508	.511	.528	.506	.527
	Female	208	92.889	3.997	.378	.471	.393	.368	.466	.438	.376	.441
1N4X1B	Male	335	91.561	3.529	.492	.513	.461	.480	.494	.506	.468	.496
	Female	113	90.788	3.539	.610	.637	.608	.587	.641	.620	.601	.632
1W0X1	Male	1,485	89.380	4.792	.509	.526	.488	.509	.517	.532	.506	.529
	Female	475	87.836	4.997	.576	.591	.536	.579	.580	.612	.574	.607
2F0X1	Male	2,663	89.707	5.241	.393	.412	.367	.404	.396	.424	.392	.414
	Female	213	88.319	5.245	.261	.327	.313	.286	.340	.314	.305	.329
2R0X1	Male	367	88.444	5.242	.407	.438	.378	.373	.425	.416	.369	.411
	Female	140	88.150	5.152	.324	.371	.341	.377	.365	.393	.374	.390
2R1X1	Male	450	87.022	5.411	.384	.407	.388	.384	.397	.392	.379	.389
	Female	252	87.385	5.115	.333	.372	.325	.308	.367	.349	.312	.351
2S0X1	Male	3,391	88.008	5.734	.372	.421	.360	.382	.406	.420	.374	.412
	Female	1,959	88.217	5.712	.368	.402	.345	.352	.395	.396	.353	.395
2W0X1	Male	4,881	89.800	4.776	.456	.481	.435	.472	.462	.491	.459	.480
	Female	696	88.063	5.067	.396	.447	.356	.410	.412	.452	.383	.428
3E5X1	Male	510	86.557	6.985	.299	.316	.274	.316	.301	.333	.303	.323
	Female	119	85.773	7.710	.149	.151	.105	.135	.135	.157	.122	.145
3E6X1	Male	255	87.004	5.661	.397	.422	.367	.423	.392	.437	.398	.416
	Female	128	86.375	5.708	.314	.398	.332	.294	.395	.356	.304	.361
3F1X1	Male	2,102	83.685	5.910	.408	.435	.372	.418	.406	.441	.395	.421
	Female	1,649	84.567	6.052	.405	.452	.386	.413	.427	.446	.396	.430
3P0X1	Male	23,676	83.269	5.908	.496	.518	.461	.513	.487	.528	.487	.507
	Female	5,465	81.359	5.679	.465	.491	.429	.471	.466	.497	.452	.481

Table E.7. Differential Validity Results for Training Grade Criterion by AFS for General Composite: Male/Female

		Samula	Cuitanian	Cuitanian				Prec	lictive Validity			
AFSC	Subgroup	Sample	Moon	SD	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
		SIZE	Mean	50	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
4A0X1	Male	570	84.553	5.441	.467	.501	.449	.486	.481	.509	.472	.497
	Female	813	85.663	5.165	.498	.513	.479	.508	.498	.520	.498	.512
4Y0X1	Male	400	83.638	5.893	.439	.483	.431	.459	.474	.494	.457	.491
	Female	629	84.417	5.584	.502	.512	.465	.501	.493	.520	.487	.508
6C0X1	Male	872	85.104	5.841	.634	.646	.604	.623	.627	.641	.612	.633
	Female	246	85.199	5.933	.148	.275	.208	.204	.268	.258	.205	.256
6F0X1	Male	1,155	88.869	5.284	.393	.433	.400	.375	.439	.414	.390	.425
	Female	649	89,945	5.131	.406	.431	.421	.389	.443	.414	.408	.430

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. SD = standard deviation.

		Samula	Cuitanian	Critarian				Pred	ictive Validity			
AFSC	Subgroup	Sample	Mean	SD	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
		5120	Wiedli	3D	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
1C1X1	NHW	1,791	86.619	6.649	.362	.386	.360	.362	.380	.380	.362	.381
	NHB	259	85.517	6.030	.357	.385	.376	.361	.387	.373	.368	.380
1C3X1	NHW	491	87.316	5.866	.370	.406	.348	.374	.378	.397	.353	.379
	NHB	132	86.598	5.091	.272	.341	.339	.303	.363	.330	.331	.353
1C5X1	NHW	554	88.099	5.859	.418	.455	.401	.452	.428	.469	.430	.450
	NHB	136	85.721	5.749	.258	.299	.256	.305	.288	.326	.296	.318
1C7X1	NHW	407	85.388	5.831	.397	.418	.372	.381	.415	.418	.385	.421
	NHB	103	83.350	5.535	.448	.554	.543	.518	.570	.546	.540	.565
1N1X1A	NHW	1,471	89.024	4.194	.464	.489	.465	.474	.490	.495	.480	.501
	NHB	199	86.573	3.930	.438	.460	.423	.436	.463	.470	.445	.477
1N3X1	NHW	1,759	88.524	6.091	.088	.098	.092	.112	.092	.109	.106	.104
	NHB	143	85.783	8.339	.224	.226	.229	.235	.240	.244	.249	.256
1W0X1	NHW	1,426	89.297	4.854	.559	.562	.518	.557	.546	.576	.546	.568
	NHB	169	87.266	4.578	.338	.378	.353	.357	.367	.370	.351	.365
2F0X1	NHW	1,984	89.800	5.207	.402	.421	.381	.423	.404	.437	.409	.426
	NHB	349	88.195	5.112	.347	.384	.341	.351	.375	.380	.349	.377
2R1X1	NHW	362	87.298	5.222	.362	.410	.364	.351	.396	.382	.346	.377
	NHB	168	86.762	5.506	.147	.106	.097	.088	.099	.091	.084	.088
2S0X1	NHW	2,164	88.202	5.746	.394	.431	.392	.398	.426	.428	.399	.429
	NHB	1,677	87.677	5.642	.367	.415	.345	.377	.393	.415	.362	.401
2W0X1	NHW	4,045	89.805	4.782	.459	.481	.439	.477	.465	.494	.466	.485
	NHB	422	87.979	5.052	.419	.414	.384	.434	.392	.433	.414	.418
3E7X1	NHW	2,302	89.705	3.841	.488	.487	.486	.516	.485	.511	.516	.513
	NHB	369	86.902	3.441	.337	.335	.333	.376	.328	.364	.368	.360
3F1X1	NHW	1,628	84.477	5.973	.398	.451	.380	.421	.419	.449	.396	.428
	NHB	1,117	83.433	5.971	.367	.399	.324	.362	.358	.387	.329	.358
3P0X1	NHW	17,192	83.625	5.928	.489	.512	.458	.508	.483	.523	.484	.503
	NHB	5,023	80.833	5.548	.502	.529	.464	.519	.496	.539	.493	.517
4A0X1	NHW	626	85.663	5.303	.494	.536	.504	.530	.522	.542	.521	.536
	NHB	336	84.095	5.099	.459	.504	.440	.463	.483	.497	.449	.485
4Y0X1	NHW	501	84.471	5.803	.486	.508	.479	.484	.504	.505	.486	.508
	NHB	246	82.630	5.287	.393	.427	.373	.404	.402	.425	.385	.409
6C0X1	NHW	732	85.348	5.811	.547	.580	.540	.547	.565	.568	.540	.563
	NHB	130	83.954	6.354	.362	.436	.391	.381	.440	.427	.394	.436
6F0X1	NHW	872	89.469	5.221	.375	.414	.427	.377	.441	.398	.410	.426
	NHB	439	88.351	5.440	.306	.349	.283	.272	.338	.323	.271	.320

Table E.8. Differential Validity Results for Training Grade Criterion by AFS for General Composite: Non-Hispanic White/Non-Hispanic Black

Note. Validities reported are correlations between the composite and the training grade criterion within the indicated subgroup. NHB=Non-Hispanic Black, NHW=Non-Hispanic White. SD = standard deviation.

Distribution A: Approved for public release.

88ABW-2020-3628, cleared 18 November 2020.

APPENDIX F – PROJECTED IMPACT RESULTS BY AFS

Table F.1. Projected Impact Results by AFS for Mechanical Composite: Current Composite	
Table F.2. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK	799
Table F.3. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK+MK	80
Table F.4. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK+AO	81
Table F.5. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK+AO+MK	82
Table F.6. Projected Impact Results by AFS for Electronics Composite: Current Composite	
Table F.7. Projected Impact Results by AFS for Electronics Composite: AR+MK	84
Table F.8. Projected Impact Results by AFS for Electronics Composite: AR+MK+WK	85
Table F.9. Projected Impact Results by AFS for Electronics Composite: AR+MK+PC	86
Table F.10. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO	87
Table F.11. Projected Impact Results by AFS for Electronics Composite: AR+MK+PC+WK	
Table F.12. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO+WK	
Table F.13. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO+PC	90
Table F.14. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO+PC+WK	91
Table F.15. Projected Impact Results by AFS for Administrative Composite: Current Composite	
Table F.16. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+GS	
Table F.17. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AR	94
Table F.18. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO	95
Table F.19. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AR+GS	96
Table F.20. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO+GS	97
Table F.21. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO+AR	98
Table F.22. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO+AR+GS	999
Table F.23. Projected Impact Results by AFS for General Composite: Current Composite	100
Table F.24. Projected Impact Results by AFS for General Composite: AR+PC+WK+MK	101
Table F.25. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO	102
Table F.26. Projected Impact Results by AFS for General Composite: AR+PC+WK+GS	103
Table F.27. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO+MK	104

Table F.28. Projected Impact Results by AFS for General Composite: AR+PC+WK+GS+MK	105
Table F.29. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO+GS	106
Table F.30. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO+GS+MK	1077

AFGC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1C2X1	412	.640	.707	.379	.748	.312	.559	.536	.418	.747	86.129
1C7X1	662	.855	.901	.677	.925	.619	.822	.751	.669	.888	85.628
1P0X1	1,618	.855	.901	.677	.925	.619	.822	.751	.669	.888	91.045
2A3X8	125	.757	.817	.524	.851	.458	.698	.641	.538	.820	87.470
2A5X1	1,306	.757	.817	.524	.851	.458	.698	.641	.538	.820	87.706
2A5X2B	420	.624	.692	.363	.734	.297	.542	.524	.405	.738	90.819
2A5X2D	198	.699	.764	.449	.802	.381	.629	.587	.474	.784	87.798
2A5X4	772	.757	.817	.524	.851	.458	.698	.641	.538	.820	87.445
2A6X1	4,369	.624	.692	.363	.734	.297	.542	.524	.405	.738	88.313
2A6X2	3,197	.757	.817	.524	.851	.458	.698	.641	.538	.820	89.041
2A6X3	485	.624	.692	.363	.734	.297	.542	.524	.405	.738	87.648
2A6X4	1,799	.757	.817	.524	.851	.458	.698	.641	.538	.820	89.670
2A6X5	1,738	.624	.692	.363	.734	.297	.542	.524	.405	.738	89.100
2A6X6	3,001	.844	.892	.657	.918	.599	.808	.737	.652	.881	90.054
2A7X1	576	.757	.817	.524	.851	.458	.698	.641	.538	.820	88.962
2A7X2	676	.832	.883	.637	.910	.578	.793	.721	.635	.872	89.357
2A7X3	2,138	.757	.817	.524	.851	.458	.698	.641	.538	.820	89.806
2A7X5	385	.757	.817	.524	.851	.458	.698	.641	.538	.820	88.322
2F0X1	2,876	.757	.817	.524	.851	.458	.698	.641	.538	.820	90.624
2M0X2	419	.757	.817	.524	.851	.458	.698	.641	.538	.820	93.459
2T1X1	1,544	.855	.901	.677	.925	.619	.822	.751	.669	.888	87.731
2T2X1	3,921	.757	.817	.524	.851	.458	.698	.641	.538	.820	89.314
2T3X1	1,482	.757	.817	.524	.851	.458	.698	.641	.538	.820	88.710
2T3X1A	219	.855	.901	.677	.925	.619	.822	.751	.669	.888	87.628
2T3X1C	250	.855	.901	.677	.925	.619	.822	.751	.669	.888	92.783
2W0X1	5,577	.564	.632	.301	.674	.242	.475	.477	.358	.704	90.549
2W1X1	5,459	.564	.632	.301	.674	.242	.475	.477	.358	.704	91.035
2W2X1	587	.564	.632	.301	.674	.242	.475	.477	.358	.704	93.149
3D1X7	475	.640	.707	.379	.748	.312	.559	.536	.418	.747	91.407
3E0X1	1,044	.911	.944	.783	.961	.737	.893	.829	.767	.929	88.857
3E0X2	1,124	.624	.692	.363	.734	.297	.542	.524	.405	.738	86.651
3E1X1	1,151	.757	.817	.524	.851	.458	.698	.641	.538	.820	90.406
3E2X1	1,276	.855	.901	.677	.925	.619	.822	.751	.669	.888	90.562
3E3X1	786	.757	.817	.524	.851	.458	.698	.641	.538	.820	87.004
3E4X1	1,250	.757	.817	.524	.851	.458	.698	.641	.538	.820	89.811
3E8X1	231	.564	.632	.301	.674	.242	.475	.477	.358	.704	92.916
4A2X1	216	.564	.632	.301	.674	.242	.475	.477	.358	.704	89.917

Table F.1. Projected Impact Results by AFS for Mechanical Composite: Current Composite

78

AFRO	Sample			Qualificat	tion Rate			QR	Adverse Impact	Ratio	FOC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1C2X1	412	.653	.681	.548	.718	.455	.599	.805	.635	.835	86.321
1C7X1	662	.860	.877	.797	.898	.743	.832	.909	.827	.926	85.535
1P0X1	1,618	.860	.877	.797	.898	.743	.832	.909	.827	.926	90.930
2A3X8	125	.764	.787	.675	.817	.598	.723	.858	.731	.884	87.363
2A5X1	1,306	.764	.787	.675	.817	.598	.723	.858	.731	.884	87.381
2A5X2B	420	.625	.653	.516	.690	.424	.569	.791	.614	.824	90.774
2A5X2D	198	.709	.735	.610	.769	.525	.662	.831	.683	.861	87.603
2A5X4	772	.764	.787	.675	.817	.598	.723	.858	.731	.884	87.106
2A6X1	4,369	.625	.653	.516	.690	.424	.569	.791	.614	.824	88.037
2A6X2	3,197	.764	.787	.675	.817	.598	.723	.858	.731	.884	88.863
2A6X3	485	.625	.653	.516	.690	.424	.569	.791	.614	.824	87.500
2A6X4	1,799	.764	.787	.675	.817	.598	.723	.858	.731	.884	89.462
2A6X5	1,738	.625	.653	.516	.690	.424	.569	.791	.614	.824	88.900
2A6X6	3,001	.860	.877	.797	.898	.743	.832	.909	.827	.926	89.848
2A7X1	576	.764	.787	.675	.817	.598	.723	.858	.731	.884	89.042
2A7X2	676	.838	.856	.769	.880	.708	.808	.898	.805	.918	89.292
2A7X3	2,138	.764	.787	.675	.817	.598	.723	.858	.731	.884	89.631
2A7X5	385	.764	.787	.675	.817	.598	.723	.858	.731	.884	88.026
2F0X1	2,876	.764	.787	.675	.817	.598	.723	.858	.731	.884	90.490
2M0X2	419	.764	.787	.675	.817	.598	.723	.858	.731	.884	93.410
2T1X1	1,544	.860	.877	.797	.898	.743	.832	.909	.827	.926	87.667
2T2X1	3,921	.764	.787	.675	.817	.598	.723	.858	.731	.884	89.275
2T3X1	1,482	.764	.787	.675	.817	.598	.723	.858	.731	.884	88.407
2T3X1A	219	.860	.877	.797	.898	.743	.832	.909	.827	.926	87.495
2T3X1C	250	.860	.877	.797	.898	.743	.832	.909	.827	.926	92.713
2W0X1	5,577	.570	.599	.457	.637	.364	.511	.763	.571	.803	90.482
2W1X1	5,459	.570	.599	.457	.637	.364	.511	.763	.571	.803	90.866
2W2X1	587	.570	.599	.457	.637	.364	.511	.763	.571	.803	92.982
3D1X7	475	.653	.681	.548	.718	.455	.599	.805	.635	.835	91.182
3E0X1	1,044	.915	.926	.872	.941	.834	.897	.941	.885	.953	88.779
3E0X2	1,124	.625	.653	.516	.690	.424	.569	.791	.614	.824	86.339
3E1X1	1,151	.764	.787	.675	.817	.598	.723	.858	.731	.884	90.255
3E2X1	1,276	.860	.877	.797	.898	.743	.832	.909	.827	.926	90.502
3E3X1	786	.764	.787	.675	.817	.598	.723	.858	.731	.884	86.888
3E4X1	1,250	.764	.787	.675	.817	.598	.723	.858	.731	.884	89.655
3E8X1	231	.570	.599	.457	.637	.364	.511	.763	.571	.803	92.661
4A2X1	216	.570	.599	.457	.637	.364	.511	.763	.571	.803	89.682

Table F.2. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK

79

AFRO	Sample			Qualificat	tion Rate			QR	Adverse Impact	Ratio	FOC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1C2X1	412	.653	.676	.567	.705	.475	.614	.838	.674	.871	86.493
1C7X1	662	.871	.882	.827	.896	.776	.856	.938	.866	.955	85.559
1P0X1	1,618	.871	.882	.827	.896	.776	.856	.938	.866	.955	90.935
2A3X8	125	.767	.785	.699	.808	.621	.740	.890	.768	.916	87.358
2A5X1	1,306	.767	.785	.699	.808	.621	.740	.890	.768	.916	87.367
2A5X2B	420	.631	.654	.542	.684	.448	.589	.829	.655	.861	90.754
2A5X2D	198	.699	.720	.619	.747	.530	.664	.859	.710	.889	87.557
2A5X4	772	.767	.785	.699	.808	.621	.740	.890	.768	.916	87.134
2A6X1	4,369	.631	.654	.542	.684	.448	.589	.829	.655	.861	88.037
2A6X2	3,197	.767	.785	.699	.808	.621	.740	.890	.768	.916	88.880
2A6X3	485	.631	.654	.542	.684	.448	.589	.829	.655	.861	87.568
2A6X4	1,799	.767	.785	.699	.808	.621	.740	.890	.768	.916	89.499
2A6X5	1,738	.631	.654	.542	.684	.448	.589	.829	.655	.861	88.911
2A6X6	3,001	.853	.865	.804	.880	.747	.836	.929	.849	.949	89.924
2A7X1	576	.767	.785	.699	.808	.621	.740	.890	.768	.916	89.121
2A7X2	676	.832	.847	.778	.863	.716	.813	.919	.829	.942	89.386
2A7X3	2,138	.767	.785	.699	.808	.621	.740	.890	.768	.916	89.634
2A7X5	385	.767	.785	.699	.808	.621	.740	.890	.768	.916	88.038
2F0X1	2,876	.767	.785	.699	.808	.621	.740	.890	.768	.916	90.532
2M0X2	419	.767	.785	.699	.808	.621	.740	.890	.768	.916	93.425
2T1X1	1,544	.871	.882	.827	.896	.776	.856	.938	.866	.955	87.639
2T2X1	3,921	.767	.785	.699	.808	.621	.740	.890	.768	.916	89.313
2T3X1	1,482	.767	.785	.699	.808	.621	.740	.890	.768	.916	88.410
2T3X1A	219	.871	.882	.827	.896	.776	.856	.938	.866	.955	87.480
2T3X1C	250	.871	.882	.827	.896	.776	.856	.938	.866	.955	92.702
2W0X1	5,577	.565	.590	.470	.621	.375	.518	.797	.604	.833	90.575
2W1X1	5,459	.565	.590	.470	.621	.375	.518	.797	.604	.833	90.936
2W2X1	587	.565	.590	.470	.621	.375	.518	.797	.604	.833	93.001
3D1X7	475	.653	.676	.567	.705	.475	.614	.838	.674	.871	91.208
3E0X1	1,044	.912	.920	.880	.930	.842	.901	.957	.905	.969	88.845
3E0X2	1,124	.631	.654	.542	.684	.448	.589	.829	.655	.861	86.350
3E1X1	1,151	.767	.785	.699	.808	.621	.740	.890	.768	.916	90.286
3E2X1	1,276	.871	.882	.827	.896	.776	.856	.938	.866	.955	90.471
3E3X1	786	.767	.785	.699	.808	.621	.740	.890	.768	.916	86.896
3E4X1	1,250	.767	.785	.699	.808	.621	.740	.890	.768	.916	89.637
3E8X1	231	.565	.590	.470	.621	.375	.518	.797	.604	.833	92.654
4A2X1	216	.565	.590	.470	.621	.375	.518	.797	.604	.833	89.802

Table F.3. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK+MK

AFGC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1C2X1	412	.646	.669	.558	.696	.459	.632	.833	.660	.908	85.917
1C7X1	662	.858	.863	.840	.866	.809	.877	.974	.935	1.012	85.296
1P0X1	1,618	.858	.863	.840	.866	.809	.877	.974	.935	1.012	90.684
2A3X8	125	.758	.774	.698	.790	.622	.765	.902	.787	.968	86.979
2A5X1	1,306	.758	.774	.698	.790	.622	.765	.902	.787	.968	87.037
2A5X2B	420	.628	.652	.536	.680	.436	.610	.823	.641	.898	90.593
2A5X2D	198	.715	.734	.642	.755	.553	.713	.875	.733	.944	87.224
2A5X4	772	.758	.774	.698	.790	.622	.765	.902	.787	.968	86.740
2A6X1	4,369	.628	.652	.536	.680	.436	.610	.823	.641	.898	87.833
2A6X2	3,197	.758	.774	.698	.790	.622	.765	.902	.787	.968	88.618
2A6X3	485	.628	.652	.536	.680	.436	.610	.823	.641	.898	87.494
2A6X4	1,799	.758	.774	.698	.790	.622	.765	.902	.787	.968	89.255
2A6X5	1,738	.628	.652	.536	.680	.436	.610	.823	.641	.898	88.672
2A6X6	3,001	.847	.853	.823	.858	.785	.864	.965	.915	1.007	89.575
2A7X1	576	.758	.774	.698	.790	.622	.765	.902	.787	.968	88.570
2A7X2	676	.833	.840	.802	.848	.755	.848	.954	.890	1.001	89.003
2A7X3	2,138	.758	.774	.698	.790	.622	.765	.902	.787	.968	89.365
2A7X5	385	.758	.774	.698	.790	.622	.765	.902	.787	.968	87.819
2F0X1	2,876	.758	.774	.698	.790	.622	.765	.902	.787	.968	90.250
2M0X2	419	.758	.774	.698	.790	.622	.765	.902	.787	.968	93.306
2T1X1	1,544	.858	.863	.840	.866	.809	.877	.974	.935	1.012	87.371
2T2X1	3,921	.758	.774	.698	.790	.622	.765	.902	.787	.968	88.957
2T3X1	1,482	.758	.774	.698	.790	.622	.765	.902	.787	.968	88.257
2T3X1A	219	.858	.863	.840	.866	.809	.877	.974	.935	1.012	87.265
2T3X1C	250	.858	.863	.840	.866	.809	.877	.974	.935	1.012	92.643
2W0X1	5,577	.572	.597	.472	.628	.368	.545	.790	.586	.867	90.221
2W1X1	5,459	.572	.597	.472	.628	.368	.545	.790	.586	.867	90.649
2W2X1	587	.572	.597	.472	.628	.368	.545	.790	.586	.867	92.839
3D1X7	475	.646	.669	.558	.696	.459	.632	.833	.660	.908	90.988
3E0X1	1,044	.913	.915	.905	.914	.899	.925	.990	.984	1.012	88.522
3E0X2	1,124	.628	.652	.536	.680	.436	.610	.823	.641	.898	86.204
3E1X1	1,151	.758	.774	.698	.790	.622	.765	.902	.787	.968	90.015
3E2X1	1,276	.858	.863	.840	.866	.809	.877	.974	.935	1.012	90.210
3E3X1	786	.758	.774	.698	.790	.622	.765	.902	.787	.968	86.642
3E4X1	1,250	.758	.774	.698	.790	.622	.765	.902	.787	.968	89.331
3E8X1	231	.572	.597	.472	.628	.368	.545	.790	.586	.867	92.557
4A2X1	216	.572	.597	.472	.628	.368	.545	.790	.586	.867	89.867

Table F.4. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK+AO

81

AFGC	Sample			Qualificat	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1C2X1	412	.654	.672	.584	.693	.487	.648	.869	.703	.935	86.017
1C7X1	662	.858	.863	.842	.865	.809	.878	.976	.935	1.014	85.350
1P0X1	1,618	.858	.863	.842	.865	.809	.878	.976	.935	1.014	90.732
2A3X8	125	.764	.777	.718	.788	.647	.776	.925	.821	.985	86.966
2A5X1	1,306	.764	.777	.718	.788	.647	.776	.925	.821	.985	87.008
2A5X2B	420	.638	.657	.565	.679	.468	.630	.860	.688	.927	90.557
2A5X2D	198	.713	.729	.654	.745	.568	.717	.897	.763	.963	87.191
2A5X4	772	.764	.777	.718	.788	.647	.776	.925	.821	.985	86.733
2A6X1	4,369	.638	.657	.565	.679	.468	.630	.860	.688	.927	87.803
2A6X2	3,197	.764	.777	.718	.788	.647	.776	.925	.821	.985	88.611
2A6X3	485	.638	.657	.565	.679	.468	.630	.860	.688	.927	87.519
2A6X4	1,799	.764	.777	.718	.788	.647	.776	.925	.821	.985	89.259
2A6X5	1,738	.638	.657	.565	.679	.468	.630	.860	.688	.927	88.651
2A6X6	3,001	.846	.851	.826	.855	.787	.865	.970	.920	1.012	89.627
2A7X1	576	.764	.777	.718	.788	.647	.776	.925	.821	.985	88.607
2A7X2	676	.839	.845	.817	.849	.775	.858	.967	.912	1.010	89.030
2A7X3	2,138	.764	.777	.718	.788	.647	.776	.925	.821	.985	89.350
2A7X5	385	.764	.777	.718	.788	.647	.776	.925	.821	.985	87.805
2F0X1	2,876	.764	.777	.718	.788	.647	.776	.925	.821	.985	90.261
2M0X2	419	.764	.777	.718	.788	.647	.776	.925	.821	.985	93.307
2T1X1	1,544	.858	.863	.842	.865	.809	.878	.976	.935	1.014	87.408
2T2X1	3,921	.764	.777	.718	.788	.647	.776	.925	.821	.985	88.968
2T3X1	1,482	.764	.777	.718	.788	.647	.776	.925	.821	.985	88.241
2T3X1A	219	.858	.863	.842	.865	.809	.878	.976	.935	1.014	87.300
2T3X1C	250	.858	.863	.842	.865	.809	.878	.976	.935	1.014	92.668
2W0X1	5,577	.575	.597	.492	.622	.390	.557	.825	.628	.896	90.260
2W1X1	5,459	.575	.597	.492	.622	.390	.557	.825	.628	.896	90.670
2W2X1	587	.575	.597	.492	.622	.390	.557	.825	.628	.896	92.834
3D1X7	475	.654	.672	.584	.693	.487	.648	.869	.703	.935	90.975
3E0X1	1,044	.912	.914	.904	.914	.894	.925	.989	.978	1.012	88.542
3E0X2	1,124	.638	.657	.565	.679	.468	.630	.860	.688	.927	86.179
3E1X1	1,151	.764	.777	.718	.788	.647	.776	.925	.821	.985	90.020
3E2X1	1,276	.858	.863	.842	.865	.809	.878	.976	.935	1.014	90.241
3E3X1	786	.764	.777	.718	.788	.647	.776	.925	.821	.985	86.633
3E4X1	1,250	.764	.777	.718	.788	.647	.776	.925	.821	.985	89.309
3E8X1	231	.575	.597	.492	.622	.390	.557	.825	.628	.896	92.524
4A2X1	216	.575	.597	.492	.622	.390	.557	.825	.628	.896	89.925

Table F.5. Projected Impact Results by AFS for Mechanical Composite: AR+PC+WK+AO+MK

82

AFSC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.531	.588	.310	.607	.279	.467	.528	.460	.769	92.932
1C6X1	733	.531	.588	.310	.607	.279	.467	.528	.460	.769	92.435
1C8X3	942	.531	.588	.310	.607	.279	.467	.528	.460	.769	89.191
1W0X1	1,960	.843	.884	.689	.895	.659	.814	.780	.736	.910	87.673
2A0X1	904	.531	.588	.310	.607	.279	.467	.528	.460	.769	89.100
2A2X1	225	.531	.588	.310	.607	.279	.467	.528	.460	.769	90.956
2A2X2	168	.531	.588	.310	.607	.279	.467	.528	.460	.769	91.381
2A2X3	138	.531	.588	.310	.607	.279	.467	.528	.460	.769	87.878
2A3X4	1,312	.531	.588	.310	.607	.279	.467	.528	.460	.769	90.016
2A3X5	1,022	.531	.588	.310	.607	.279	.467	.528	.460	.769	90.933
2A6X2	3,197	.985	.991	.958	.993	.951	.982	.966	.958	.988	88.039
2A6X6	3,001	.681	.736	.468	.754	.434	.626	.635	.576	.830	90.859
2A8X1	260	.531	.588	.310	.607	.279	.467	.528	.460	.769	90.641
2A8X2	275	.531	.588	.310	.607	.279	.467	.528	.460	.769	91.447
2A9X1	142	.531	.588	.310	.607	.279	.467	.528	.460	.769	90.740
2A9X2	133	.531	.588	.310	.607	.279	.467	.528	.460	.769	91.010
2A9X3	234	.531	.588	.310	.607	.279	.467	.528	.460	.769	88.135
2M0X1	602	.531	.588	.310	.607	.279	.467	.528	.460	.769	92.258
2M0X3	328	.531	.588	.310	.607	.279	.467	.528	.460	.769	91.734
2P0X1	649	.531	.588	.310	.607	.279	.467	.528	.460	.769	87.375
2W1X1	5,459	.892	.924	.770	.932	.745	.869	.834	.799	.932	89.853
3D1X1	569	.698	.753	.488	.770	.455	.646	.648	.591	.839	87.661
3D1X2	334	.531	.588	.310	.607	.279	.467	.528	.460	.769	87.969
3D1X3	2,539	.531	.588	.310	.607	.279	.467	.528	.460	.769	89.171
3D1X7	475	.767	.817	.578	.832	.544	.724	.708	.654	.871	90.970
3E0X1	1,044	.963	.977	.907	.980	.895	.956	.928	.913	.975	88.667
3E0X2	1,124	.930	.953	.841	.959	.820	.914	.882	.855	.953	85.363
3E1X1	1,151	.985	.991	.958	.993	.951	.982	.966	.958	.988	89.582
3E4X1	1,250	.985	.991	.958	.993	.951	.982	.966	.958	.988	88.833
4A2X1	216	.531	.588	.310	.607	.279	.467	.528	.460	.769	90.017

Table F.6. Projected Impact Results by AFS for Electronics Composite: Current Composite

AFGC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.560	.583	.469	.588	.412	.553	.804	.701	.939	92.850
1C6X1	733	.560	.583	.469	.588	.412	.553	.804	.701	.939	92.214
1C8X3	942	.560	.583	.469	.588	.412	.553	.804	.701	.939	89.071
1W0X1	1,960	.850	.862	.805	.863	.773	.857	.934	.896	.993	87.541
2A0X1	904	.560	.583	.469	.588	.412	.553	.804	.701	.939	88.756
2A2X1	225	.560	.583	.469	.588	.412	.553	.804	.701	.939	90.415
2A2X2	168	.560	.583	.469	.588	.412	.553	.804	.701	.939	90.982
2A2X3	138	.560	.583	.469	.588	.412	.553	.804	.701	.939	87.923
2A3X4	1,312	.560	.583	.469	.588	.412	.553	.804	.701	.939	89.681
2A3X5	1,022	.560	.583	.469	.588	.412	.553	.804	.701	.939	90.514
2A6X2	3,197	.986	.987	.981	.987	.978	.988	.994	.991	1.001	88.009
2A6X6	3,001	.703	.722	.630	.725	.581	.706	.872	.800	.973	90.403
2A8X1	260	.560	.583	.469	.588	.412	.553	.804	.701	.939	90.393
2A8X2	275	.560	.583	.469	.588	.412	.553	.804	.701	.939	90.980
2A9X1	142	.560	.583	.469	.588	.412	.553	.804	.701	.939	90.126
2A9X2	133	.560	.583	.469	.588	.412	.553	.804	.701	.939	90.776
2A9X3	234	.560	.583	.469	.588	.412	.553	.804	.701	.939	87.660
2M0X1	602	.560	.583	.469	.588	.412	.553	.804	.701	.939	91.884
2M0X3	328	.560	.583	.469	.588	.412	.553	.804	.701	.939	91.476
2P0X1	649	.560	.583	.469	.588	.412	.553	.804	.701	.939	86.878
2W1X1	5,459	.894	.903	.860	.902	.837	.902	.953	.927	1.000	89.739
3D1X1	569	.703	.722	.630	.725	.581	.706	.872	.800	.973	87.581
3D1X2	334	.560	.583	.469	.588	.412	.553	.804	.701	.939	87.338
3D1X3	2,539	.560	.583	.469	.588	.412	.553	.804	.701	.939	88.788
3D1X7	475	.797	.811	.741	.813	.700	.802	.913	.861	.986	90.664
3E0X1	1,044	.970	.972	.959	.972	.952	.974	.986	.980	1.002	88.603
3E0X2	1,124	.941	.946	.921	.946	.907	.948	.974	.959	1.003	85.233
3E1X1	1,151	.986	.987	.981	.987	.978	.988	.994	.991	1.001	89.560
3E4X1	1,250	.986	.987	.981	.987	.978	.988	.994	.991	1.001	88.795
4A2X1	216	.560	.583	.469	.588	.412	.553	.804	.701	.939	89.848

Table F.7. Projected Impact Results by AFS for Electronics Composite: AR+MK

AFSC	Sample			Qualifica	tion Rate			QR	Ratio	FRC	
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.558	.584	.459	.610	.371	.515	.787	.607	.844	92.969
1C6X1	733	.558	.584	.459	.610	.371	.515	.787	.607	.844	92.315
1C8X3	942	.558	.584	.459	.610	.371	.515	.787	.607	.844	89.191
1W0X1	1,960	.855	.868	.802	.880	.748	.843	.924	.850	.958	87.587
2A0X1	904	.558	.584	.459	.610	.371	.515	.787	.607	.844	88.975
2A2X1	225	.558	.584	.459	.610	.371	.515	.787	.607	.844	90.571
2A2X2	168	.558	.584	.459	.610	.371	.515	.787	.607	.844	91.075
2A2X3	138	.558	.584	.459	.610	.371	.515	.787	.607	.844	87.931
2A3X4	1,312	.558	.584	.459	.610	.371	.515	.787	.607	.844	89.799
2A3X5	1,022	.558	.584	.459	.610	.371	.515	.787	.607	.844	90.655
2A6X2	3,197	.988	.990	.982	.991	.978	.989	.992	.987	.998	88.004
2A6X6	3,001	.701	.724	.614	.745	.535	.669	.849	.718	.898	90.565
2A8X1	260	.558	.584	.459	.610	.371	.515	.787	.607	.844	90.545
2A8X2	275	.558	.584	.459	.610	.371	.515	.787	.607	.844	91.178
2A9X1	142	.558	.584	.459	.610	.371	.515	.787	.607	.844	90.317
2A9X2	133	.558	.584	.459	.610	.371	.515	.787	.607	.844	90.993
2A9X3	234	.558	.584	.459	.610	.371	.515	.787	.607	.844	87.918
2M0X1	602	.558	.584	.459	.610	.371	.515	.787	.607	.844	92.141
2M0X3	328	.558	.584	.459	.610	.371	.515	.787	.607	.844	91.650
2P0X1	649	.558	.584	.459	.610	.371	.515	.787	.607	.844	87.072
2W1X1	5,459	.894	.904	.852	.913	.809	.885	.942	.886	.969	89.786
3D1X1	569	.701	.724	.614	.745	.535	.669	.849	.718	.898	87.706
3D1X2	334	.558	.584	.459	.610	.371	.515	.787	.607	.844	87.706
3D1X3	2,539	.558	.584	.459	.610	.371	.515	.787	.607	.844	88.991
3D1X7	475	.783	.801	.713	.818	.643	.762	.890	.786	.931	90.804
3E0X1	1,044	.969	.973	.955	.975	.942	.968	.981	.966	.992	88.608
3E0X2	1,124	.938	.945	.910	.949	.884	.933	.964	.931	.983	85.256
3E1X1	1,151	.988	.990	.982	.991	.978	.989	.992	.987	.998	89.555
3E4X1	1,250	.988	.990	.982	.991	.978	.989	.992	.987	.998	88.792
4A2X1	216	.558	.584	.459	.610	.371	.515	.787	.607	.844	89.979

Table F.8. Projected Impact Results by AFS for Electronics Composite: AR+MK+WK

AFSC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FOC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.539	.562	.448	.580	.372	.517	.797	.642	.892	93.082
1C6X1	733	.539	.562	.448	.580	.372	.517	.797	.642	.892	92.352
1C8X3	942	.539	.562	.448	.580	.372	.517	.797	.642	.892	89.265
1W0X1	1,960	.857	.868	.816	.873	.776	.856	.940	.888	.980	87.575
2A0X1	904	.539	.562	.448	.580	.372	.517	.797	.642	.892	88.986
2A2X1	225	.539	.562	.448	.580	.372	.517	.797	.642	.892	90.669
2A2X2	168	.539	.562	.448	.580	.372	.517	.797	.642	.892	91.240
2A2X3	138	.539	.562	.448	.580	.372	.517	.797	.642	.892	88.118
2A3X4	1,312	.539	.562	.448	.580	.372	.517	.797	.642	.892	89.910
2A3X5	1,022	.539	.562	.448	.580	.372	.517	.797	.642	.892	90.705
2A6X2	3,197	.987	.988	.984	.988	.979	.990	.995	.991	1.002	88.008
2A6X6	3,001	.684	.703	.608	.717	.538	.672	.865	.750	.937	90.597
2A8X1	260	.539	.562	.448	.580	.372	.517	.797	.642	.892	90.577
2A8X2	275	.539	.562	.448	.580	.372	.517	.797	.642	.892	91.321
2A9X1	142	.539	.562	.448	.580	.372	.517	.797	.642	.892	90.380
2A9X2	133	.539	.562	.448	.580	.372	.517	.797	.642	.892	91.089
2A9X3	234	.539	.562	.448	.580	.372	.517	.797	.642	.892	87.892
2M0X1	602	.539	.562	.448	.580	.372	.517	.797	.642	.892	92.201
2M0X3	328	.539	.562	.448	.580	.372	.517	.797	.642	.892	91.610
2P0X1	649	.539	.562	.448	.580	.372	.517	.797	.642	.892	87.159
2W1X1	5,459	.894	.902	.864	.907	.832	.896	.957	.917	.988	89.777
3D1X1	569	.711	.730	.639	.742	.573	.701	.876	.772	.945	87.701
3D1X2	334	.539	.562	.448	.580	.372	.517	.797	.642	.892	87.690
3D1X3	2,539	.539	.562	.448	.580	.372	.517	.797	.642	.892	89.034
3D1X7	475	.790	.805	.734	.813	.680	.785	.912	.836	.965	90.727
3E0X1	1,044	.966	.968	.955	.969	.944	.970	.987	.974	1.001	88.631
3E0X2	1,124	.937	.942	.917	.944	.898	.941	.974	.952	.997	85.271
3E1X1	1,151	.987	.988	.984	.988	.979	.990	.995	.991	1.002	89.558
3E4X1	1,250	.987	.988	.984	.988	.979	.990	.995	.991	1.002	88.798
4A2X1	216	.539	.562	.448	.580	.372	.517	.797	.642	.892	89.973

Table F.9. Projected Impact Results by AFS for Electronics Composite: AR+MK+PC

AFGC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.552	.573	.472	.581	.391	.565	.822	.674	.974	92.746
1C6X1	733	.552	.573	.472	.581	.391	.565	.822	.674	.974	92.118
1C8X3	942	.552	.573	.472	.581	.391	.565	.822	.674	.974	88.980
1W0X1	1,960	.845	.849	.829	.849	.800	.872	.976	.942	1.027	87.289
2A0X1	904	.552	.573	.472	.581	.391	.565	.822	.674	.974	88.681
2A2X1	225	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.250
2A2X2	168	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.945
2A2X3	138	.552	.573	.472	.581	.391	.565	.822	.674	.974	87.739
2A3X4	1,312	.552	.573	.472	.581	.391	.565	.822	.674	.974	89.460
2A3X5	1,022	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.293
2A6X2	3,197	.985	.986	.979	.986	.977	.988	.993	.991	1.001	88.001
2A6X6	3,001	.696	.710	.639	.716	.566	.720	.899	.791	1.006	90.212
2A8X1	260	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.268
2A8X2	275	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.862
2A9X1	142	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.044
2A9X2	133	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.400
2A9X3	234	.552	.573	.472	.581	.391	.565	.822	.674	.974	87.532
2M0X1	602	.552	.573	.472	.581	.391	.565	.822	.674	.974	91.823
2M0X3	328	.552	.573	.472	.581	.391	.565	.822	.674	.974	91.407
2P0X1	649	.552	.573	.472	.581	.391	.565	.822	.674	.974	86.490
2W1X1	5,459	.892	.893	.889	.890	.887	.910	.995	.997	1.023	89.492
3D1X1	569	.713	.727	.660	.732	.589	.738	.908	.805	1.009	87.436
3D1X2	334	.552	.573	.472	.581	.391	.565	.822	.674	.974	87.048
3D1X3	2,539	.552	.573	.472	.581	.391	.565	.822	.674	.974	88.635
3D1X7	475	.773	.783	.733	.785	.679	.799	.937	.864	1.018	90.515
3E0X1	1,044	.964	.967	.954	.966	.951	.971	.987	.984	1.005	88.548
3E0X2	1,124	.930	.933	.919	.931	.916	.942	.985	.983	1.012	85.176
3E1X1	1,151	.985	.986	.979	.986	.977	.988	.993	.991	1.001	89.548
3E4X1	1,250	.985	.986	.979	.986	.977	.988	.993	.991	1.001	88.783
4A2X1	216	.552	.573	.472	.581	.391	.565	.822	.674	.974	90.113

Table F.10. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO

87

AFGC	Sample	Qualification Rate QR Adverse Impact Ratio Overall Male Female NHW NHB HW M/F NHW/NHB NHW/HW			FRC						
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.543	.568	.446	.600	.353	.495	.786	.589	.825	93.101
1C6X1	733	.543	.568	.446	.600	.353	.495	.786	.589	.825	92.379
1C8X3	942	.543	.568	.446	.600	.353	.495	.786	.589	.825	89.284
1W0X1	1,960	.853	.865	.804	.880	.747	.836	.929	.849	.949	87.616
2A0X1	904	.543	.568	.446	.600	.353	.495	.786	.589	.825	89.075
2A2X1	225	.543	.568	.446	.600	.353	.495	.786	.589	.825	90.690
2A2X2	168	.543	.568	.446	.600	.353	.495	.786	.589	.825	91.223
2A2X3	138	.543	.568	.446	.600	.353	.495	.786	.589	.825	88.044
2A3X4	1,312	.543	.568	.446	.600	.353	.495	.786	.589	.825	89.914
2A3X5	1,022	.543	.568	.446	.600	.353	.495	.786	.589	.825	90.741
2A6X2	3,197	.986	.987	.981	.988	.974	.985	.994	.985	.997	88.019
2A6X6	3,001	.699	.720	.619	.747	.530	.664	.859	.710	.889	90.597
2A8X1	260	.543	.568	.446	.600	.353	.495	.786	.589	.825	90.644
2A8X2	275	.543	.568	.446	.600	.353	.495	.786	.589	.825	91.376
2A9X1	142	.543	.568	.446	.600	.353	.495	.786	.589	.825	90.451
2A9X2	133	.543	.568	.446	.600	.353	.495	.786	.589	.825	91.164
2A9X3	234	.543	.568	.446	.600	.353	.495	.786	.589	.825	88.016
2M0X1	602	.543	.568	.446	.600	.353	.495	.786	.589	.825	92.299
2M0X3	328	.543	.568	.446	.600	.353	.495	.786	.589	.825	91.693
2P0X1	649	.543	.568	.446	.600	.353	.495	.786	.589	.825	87.189
2W1X1	5,459	.900	.910	.865	.920	.823	.889	.951	.895	.966	89.780
3D1X1	569	.699	.720	.619	.747	.530	.664	.859	.710	.889	87.787
3D1X2	334	.543	.568	.446	.600	.353	.495	.786	.589	.825	87.894
3D1X3	2,539	.543	.568	.446	.600	.353	.495	.786	.589	.825	89.106
3D1X7	475	.789	.806	.725	.827	.652	.765	.900	.788	.925	90.789
3E0X1	1,044	.970	.973	.961	.977	.946	.968	.987	.968	.991	88.606
3E0X2	1,124	.933	.939	.909	.947	.878	.925	.968	.927	.976	85.285
3E1X1	1,151	.986	.987	.981	.988	.974	.985	.994	.985	.997	89.565
3E4X1	1,250	.986	.987	.981	.988	.974	.985	.994	.985	.997	88.809
4A2X1	216	.543	.568	.446	.600	.353	.495	.786	.589	.825	90.033

Table F.11. Projected Impact Results by AFS for Electronics Composite: AR+MK+PC+WK

AFSC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.546	.569	.457	.591	.357	.530	.804	.604	.898	92.855
1C6X1	733	.546	.569	.457	.591	.357	.530	.804	.604	.898	92.213
1C8X3	942	.546	.569	.457	.591	.357	.530	.804	.604	.898	89.097
1W0X1	1,960	.848	.853	.830	.855	.796	.870	.974	.931	1.018	87.296
2A0X1	904	.546	.569	.457	.591	.357	.530	.804	.604	.898	88.870
2A2X1	225	.546	.569	.457	.591	.357	.530	.804	.604	.898	90.405
2A2X2	168	.546	.569	.457	.591	.357	.530	.804	.604	.898	91.039
2A2X3	138	.546	.569	.457	.591	.357	.530	.804	.604	.898	87.781
2A3X4	1,312	.546	.569	.457	.591	.357	.530	.804	.604	.898	89.586
2A3X5	1,022	.546	.569	.457	.591	.357	.530	.804	.604	.898	90.433
2A6X2	3,197	.985	.987	.978	.988	.974	.987	.991	.986	.999	88.007
2A6X6	3,001	.692	.709	.626	.724	.538	.699	.883	.744	.966	90.322
2A8X1	260	.546	.569	.457	.591	.357	.530	.804	.604	.898	90.390
2A8X2	275	.546	.569	.457	.591	.357	.530	.804	.604	.898	91.025
2A9X1	142	.546	.569	.457	.591	.357	.530	.804	.604	.898	90.199
2A9X2	133	.546	.569	.457	.591	.357	.530	.804	.604	.898	90.602
2A9X3	234	.546	.569	.457	.591	.357	.530	.804	.604	.898	87.752
2M0X1	602	.546	.569	.457	.591	.357	.530	.804	.604	.898	92.032
2M0X3	328	.546	.569	.457	.591	.357	.530	.804	.604	.898	91.548
2P0X1	649	.546	.569	.457	.591	.357	.530	.804	.604	.898	86.696
2W1X1	5,459	.892	.893	.887	.892	.879	.909	.993	.986	1.020	89.512
3D1X1	569	.708	.724	.647	.738	.562	.718	.893	.762	.973	87.508
3D1X2	334	.546	.569	.457	.591	.357	.530	.804	.604	.898	87.333
3D1X3	2,539	.546	.569	.457	.591	.357	.530	.804	.604	.898	88.813
3D1X7	475	.778	.789	.735	.797	.667	.795	.932	.837	.997	90.548
3E0X1	1,044	.963	.966	.951	.967	.944	.967	.984	.977	1.000	88.554
3E0X2	1,124	.931	.934	.920	.934	.912	.940	.985	.977	1.007	85.181
3E1X1	1,151	.985	.987	.978	.988	.974	.987	.991	.986	.999	89.552
3E4X1	1,250	.985	.987	.978	.988	.974	.987	.991	.986	.999	88.789
4A2X1	216	.546	.569	.457	.591	.357	.530	.804	.604	.898	90.196

Table F.12. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO+WK

AFSC	Sample	Qualification Rate QR Adverse Impact Ratio Overall Male Female NHW NHB HW M/F NHW/NHB NHW/HW				FRC					
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.531	.553	.448	.569	.358	.530	.810	.630	.932	92.935
1C6X1	733	.531	.553	.448	.569	.358	.530	.810	.630	.932	92.240
1C8X3	942	.531	.553	.448	.569	.358	.530	.810	.630	.932	89.152
1W0X1	1,960	.845	.849	.828	.849	.798	.870	.975	.940	1.024	87.311
2A0X1	904	.531	.553	.448	.569	.358	.530	.810	.630	.932	88.882
2A2X1	225	.531	.553	.448	.569	.358	.530	.810	.630	.932	90.477
2A2X2	168	.531	.553	.448	.569	.358	.530	.810	.630	.932	91.159
2A2X3	138	.531	.553	.448	.569	.358	.530	.810	.630	.932	87.912
2A3X4	1,312	.531	.553	.448	.569	.358	.530	.810	.630	.932	89.665
2A3X5	1,022	.531	.553	.448	.569	.358	.530	.810	.630	.932	90.470
2A6X2	3,197	.987	.988	.983	.987	.980	.990	.995	.993	1.002	88.000
2A6X6	3,001	.694	.710	.636	.719	.559	.711	.896	.777	.989	90.285
2A8X1	260	.531	.553	.448	.569	.358	.530	.810	.630	.932	90.413
2A8X2	275	.531	.553	.448	.569	.358	.530	.810	.630	.932	91.128
2A9X1	142	.531	.553	.448	.569	.358	.530	.810	.630	.932	90.247
2A9X2	133	.531	.553	.448	.569	.358	.530	.810	.630	.932	90.664
2A9X3	234	.531	.553	.448	.569	.358	.530	.810	.630	.932	87.737
2M0X1	602	.531	.553	.448	.569	.358	.530	.810	.630	.932	92.080
2M0X3	328	.531	.553	.448	.569	.358	.530	.810	.630	.932	91.525
2P0X1	649	.531	.553	.448	.569	.358	.530	.810	.630	.932	86.760
2W1X1	5,459	.893	.894	.888	.892	.881	.911	.993	.987	1.021	89.518
3D1X1	569	.710	.724	.655	.733	.582	.729	.905	.794	.995	87.510
3D1X2	334	.531	.553	.448	.569	.358	.530	.810	.630	.932	87.318
3D1X3	2,539	.531	.553	.448	.569	.358	.530	.810	.630	.932	88.846
3D1X7	475	.777	.787	.739	.792	.683	.801	.940	.863	1.012	90.524
3E0X1	1,044	.966	.968	.959	.968	.953	.973	.990	.985	1.006	88.550
3E0X2	1,124	.931	.933	.920	.932	.913	.943	.986	.980	1.011	85.186
3E1X1	1,151	.987	.988	.983	.987	.980	.990	.995	.993	1.002	89.546
3E4X1	1,250	.987	.988	.983	.987	.980	.990	.995	.993	1.002	88.785
4A2X1	216	.531	.553	.448	.569	.358	.530	.810	.630	.932	90.202

Table F.13. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO+PC

AFSC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A3X1	1,177	.542	.565	.455	.591	.353	.521	.806	.598	.881	92.949
1C6X1	733	.542	.565	.455	.591	.353	.521	.806	.598	.881	92.258
1C8X3	942	.542	.565	.455	.591	.353	.521	.806	.598	.881	89.161
1W0X1	1,960	.846	.851	.826	.855	.787	.865	.970	.920	1.012	87.347
2A0X1	904	.542	.565	.455	.591	.353	.521	.806	.598	.881	88.941
2A2X1	225	.542	.565	.455	.591	.353	.521	.806	.598	.881	90.483
2A2X2	168	.542	.565	.455	.591	.353	.521	.806	.598	.881	91.140
2A2X3	138	.542	.565	.455	.591	.353	.521	.806	.598	.881	87.859
2A3X4	1,312	.542	.565	.455	.591	.353	.521	.806	.598	.881	89.668
2A3X5	1,022	.542	.565	.455	.591	.353	.521	.806	.598	.881	90.494
2A6X2	3,197	.987	.988	.982	.988	.978	.989	.994	.989	1.000	88.003
2A6X6	3,001	.684	.701	.619	.720	.528	.683	.882	.733	.949	90.393
2A8X1	260	.542	.565	.455	.591	.353	.521	.806	.598	.881	90.461
2A8X2	275	.542	.565	.455	.591	.353	.521	.806	.598	.881	91.162
2A9X1	142	.542	.565	.455	.591	.353	.521	.806	.598	.881	90.288
2A9X2	133	.542	.565	.455	.591	.353	.521	.806	.598	.881	90.737
2A9X3	234	.542	.565	.455	.591	.353	.521	.806	.598	.881	87.826
2M0X1	602	.542	.565	.455	.591	.353	.521	.806	.598	.881	92.139
2M0X3	328	.542	.565	.455	.591	.353	.521	.806	.598	.881	91.574
2P0X1	649	.542	.565	.455	.591	.353	.521	.806	.598	.881	86.778
2W1X1	5,459	.894	.896	.886	.896	.871	.911	.989	.973	1.016	89.543
3D1X1	569	.699	.715	.637	.733	.549	.700	.890	.749	.956	87.579
3D1X2	334	.542	.565	.455	.591	.353	.521	.806	.598	.881	87.474
3D1X3	2,539	.542	.565	.455	.591	.353	.521	.806	.598	.881	88.895
3D1X7	475	.776	.787	.733	.798	.665	.790	.931	.834	.990	90.571
3E0X1	1,044	.964	.966	.955	.967	.946	.969	.988	.979	1.002	88.555
3E0X2	1,124	.932	.934	.922	.935	.912	.942	.987	.976	1.008	85.186
3E1X1	1,151	.987	.988	.982	.988	.978	.989	.994	.989	1.000	89.548
3E4X1	1,250	.987	.988	.982	.988	.978	.989	.994	.989	1.000	88.788
4A2X1	216	.542	.565	.455	.591	.353	.521	.806	.598	.881	90.220

Table F.14. Projected Impact Results by AFS for Electronics Composite: AR+MK+AO+PC+WK

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F50
1C0X2	1,469	.875	.877	.865	.890	.817	.857	.987	.917	.962	88.455
1C3X1	818	.807	.812	.789	.831	.723	.781	.972	.870	.939	87.233
1N0X1	2,460	.636	.648	.594	.677	.500	.594	.917	.740	.878	88.312
1N2X1A	522	.417	.432	.358	.464	.266	.366	.829	.573	.790	90.878
1N2X1C	434	.417	.432	.358	.464	.266	.366	.829	.573	.790	91.701
2G0X1	405	.768	.775	.743	.796	.670	.737	.959	.842	.925	88.839
2S0X1	5,350	.973	.972	.975	.975	.964	.969	1.003	.989	.994	89.452
2T0X1	1,475	.994	.993	.995	.994	.993	.993	1.002	.999	.999	89.305
2T2X1	3,921	1.000	.999	1.000	.999	1.000	1.000	1.000	1.000	1.000	88.320
2T3X7	452	.973	.972	.975	.975	.964	.969	1.003	.989	.994	90.183
3D0X1	3,618	.636	.648	.594	.677	.500	.594	.917	.740	.878	89.079
3F0X1	3,197	.973	.972	.975	.975	.964	.969	1.003	.989	.994	90.227
3F5X1	353	.924	.925	.922	.933	.890	.914	.996	.954	.979	89.479
4A1X1	610	.924	.925	.922	.933	.890	.914	.996	.954	.979	84.461
4C0X1	396	.768	.775	.743	.796	.670	.737	.959	.842	.925	87.442
4J0X2	143	.875	.877	.865	.890	.817	.857	.987	.917	.962	86.453

Table F.15. Projected Impact Results by AFS for Administrative Composite: Current Composite

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F50
1C0X2	1,469	.878	.891	.825	.915	.770	.838	.926	.842	.917	88.394
1C3X1	818	.816	.835	.744	.864	.676	.763	.891	.782	.884	87.187
1N0X1	2,460	.639	.666	.535	.705	.445	.571	.803	.631	.810	88.265
1N2X1A	522	.430	.458	.320	.496	.235	.358	.699	.473	.722	90.835
1N2X1C	434	.430	.458	.320	.496	.235	.358	.699	.473	.722	91.479
2G0X1	405	.781	.802	.700	.834	.624	.724	.873	.748	.868	88.711
2S0X1	5,350	.976	.979	.964	.986	.947	.964	.985	.961	.978	89.421
2T0X1	1,475	.995	.995	.992	.998	.989	.992	.997	.991	.994	89.295
2T2X1	3,921	1.000	1.000	.999	1.000	.999	1.000	1.000	.999	1.000	88.320
2T3X7	452	.976	.979	.964	.986	.947	.964	.985	.961	.978	90.146
3D0X1	3,618	.639	.666	.535	.705	.445	.571	.803	.631	.810	88.976
3F0X1	3,197	.976	.979	.964	.986	.947	.964	.985	.961	.978	90.203
3F5X1	353	.926	.934	.892	.951	.853	.899	.955	.897	.945	89.403
4A1X1	610	.926	.934	.892	.951	.853	.899	.955	.897	.945	84.413
4C0X1	396	.781	.802	.700	.834	.624	.724	.873	.748	.868	87.374
4J0X2	143	.878	.891	.825	.915	.770	.838	.926	.842	.917	86.418

Table F.16. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+GS

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F50
1C0X2	1,469	.887	.897	.847	.909	.802	.874	.944	.882	.961	88.439
1C3X1	818	.811	.826	.752	.845	.683	.789	.910	.808	.934	87.269
1N0X1	2,460	.653	.676	.567	.705	.475	.614	.838	.674	.871	88.292
1N2X1A	522	.436	.461	.339	.493	.250	.383	.736	.507	.777	90.907
1N2X1C	434	.436	.461	.339	.493	.250	.383	.736	.507	.777	91.691
2G0X1	405	.789	.806	.725	.827	.652	.765	.900	.788	.925	88.875
2S0X1	5,350	.979	.980	.972	.983	.961	.977	.991	.978	.994	89.425
2T0X1	1,475	.995	.996	.995	.996	.992	.996	.999	.996	.999	89.300
2T2X1	3,921	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	88.320
2T3X7	452	.979	.980	.972	.983	.961	.977	.991	.978	.994	90.163
3D0X1	3,618	.653	.676	.567	.705	.475	.614	.838	.674	.871	89.051
3F0X1	3,197	.979	.980	.972	.983	.961	.977	.991	.978	.994	90.218
3F5X1	353	.933	.939	.909	.947	.878	.925	.968	.927	.976	89.470
4A1X1	610	.933	.939	.909	.947	.878	.925	.968	.927	.976	84.435
4C0X1	396	.789	.806	.725	.827	.652	.765	.900	.788	.925	87.364
4J0X2	143	.887	.897	.847	.909	.802	.874	.944	.882	.961	86.391

Table F.17. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AR

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
Arse	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	150
1C0X2	1,469	.876	.876	.874	.876	.857	.894	.997	.978	1.020	88.077
1C3X1	818	.813	.817	.796	.827	.739	.827	.975	.894	1.000	86.921
1N0X1	2,460	.650	.663	.600	.687	.500	.638	.905	.728	.929	87.948
1N2X1A	522	.425	.443	.355	.476	.251	.388	.800	.528	.814	90.625
1N2X1C	434	.425	.443	.355	.476	.251	.388	.800	.528	.814	91.549
2G0X1	405	.779	.786	.754	.799	.684	.787	.959	.856	.986	88.452
2S0X1	5,350	.974	.975	.971	.976	.962	.978	.996	.986	1.001	89.409
2T0X1	1,475	.995	.995	.995	.995	.993	.995	1.000	.997	1.000	89.292
2T2X1	3,921	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	88.319
2T3X7	452	.974	.975	.971	.976	.962	.978	.996	.986	1.001	90.115
3D0X1	3,618	.650	.663	.600	.687	.500	.638	.905	.728	.929	88.690
3F0X1	3,197	.974	.975	.971	.976	.962	.978	.996	.986	1.001	90.217
3F5X1	353	.928	.929	.922	.930	.911	.937	.992	.980	1.008	89.467
4A1X1	610	.928	.929	.922	.930	.911	.937	.992	.980	1.008	84.249
4C0X1	396	.779	.786	.754	.799	.684	.787	.959	.856	.986	86.980
4J0X2	143	.876	.876	.874	.876	.857	.894	.997	.978	1.020	86.062

Table F.18. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F30
1C0X2	1,469	.879	.897	.810	.915	.757	.850	.903	.827	.929	88.434
1C3X1	818	.810	.835	.717	.860	.646	.771	.858	.751	.897	87.246
1N0X1	2,460	.642	.674	.520	.709	.428	.582	.771	.603	.821	88.308
1N2X1A	522	.424	.457	.300	.491	.218	.362	.657	.445	.738	90.975
1N2X1C	434	.424	.457	.300	.491	.218	.362	.657	.445	.738	91.615
2G0X1	405	.779	.806	.678	.833	.601	.735	.841	.722	.882	88.822
2S0X1	5,350	.976	.981	.956	.986	.939	.967	.974	.952	.981	89.430
2T0X1	1,475	.994	.995	.988	.997	.983	.991	.993	.985	.994	89.303
2T2X1	3,921	1.000	1.000	.999	1.000	.998	.999	.999	.998	1.000	88.321
2T3X7	452	.976	.981	.956	.986	.939	.967	.974	.952	.981	90.160
3D0X1	3,618	.642	.674	.520	.709	.428	.582	.771	.603	.821	89.044
3F0X1	3,197	.976	.981	.956	.986	.939	.967	.974	.952	.981	90.214
3F5X1	353	.930	.941	.886	.954	.848	.911	.941	.888	.955	89.431
4A1X1	610	.930	.941	.886	.954	.848	.911	.941	.888	.955	84.423
4C0X1	396	.779	.806	.678	.833	.601	.735	.841	.722	.882	87.370
4J0X2	143	.879	.897	.810	.915	.757	.850	.903	.827	.929	86.426

Table F.19. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AR+GS

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F50
1C0X2	1,469	.876	.880	.860	.885	.829	.886	.978	.937	1.002	88.152
1C3X1	818	.814	.824	.775	.837	.715	.815	.941	.853	.973	86.946
1N0X1	2,460	.649	.671	.564	.700	.468	.620	.841	.669	.886	87.956
1N2X1A	522	.418	.444	.315	.478	.225	.366	.708	.470	.765	90.721
1N2X1C	434	.418	.444	.315	.478	.225	.366	.708	.470	.765	91.495
2G0X1	405	.775	.789	.724	.807	.651	.769	.917	.806	.953	88.449
2S0X1	5,350	.974	.976	.963	.978	.957	.975	.987	.979	.997	89.408
2T0X1	1,475	.994	.995	.991	.996	.988	.994	.996	.993	.999	89.293
2T2X1	3,921	1.000	1.000	.999	1.000	.999	.999	1.000	.999	1.000	88.320
2T3X7	452	.974	.976	.963	.978	.957	.975	.987	.979	.997	90.109
3D0X1	3,618	.649	.671	.564	.700	.468	.620	.841	.669	.886	88.681
3F0X1	3,197	.974	.976	.963	.978	.957	.975	.987	.979	.997	90.212
3F5X1	353	.925	.928	.913	.930	.902	.934	.983	.970	1.004	89.463
4A1X1	610	.925	.928	.913	.930	.902	.934	.983	.970	1.004	84.251
4C0X1	396	.775	.789	.724	.807	.651	.769	.917	.806	.953	87.012
4J0X2	143	.876	.880	.860	.885	.829	.886	.978	.937	1.002	86.170

Table F.20. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO+GS

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
Arse	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	150
1C0X2	1,469	.877	.880	.866	.881	.844	.896	.984	.958	1.017	88.141
1C3X1	818	.815	.823	.785	.830	.732	.833	.953	.882	1.004	86.948
1N0X1	2,460	.638	.657	.565	.679	.468	.630	.860	.688	.927	88.028
1N2X1A	522	.430	.454	.337	.482	.243	.395	.742	.504	.819	90.702
1N2X1C	434	.430	.454	.337	.482	.243	.395	.742	.504	.819	91.620
2G0X1	405	.776	.787	.733	.798	.665	.790	.931	.834	.990	88.536
2S0X1	5,350	.973	.975	.966	.976	.958	.977	.990	.982	1.001	89.417
2T0X1	1,475	.995	.995	.992	.995	.991	.996	.997	.995	1.000	89.296
2T2X1	3,921	1.000	1.000	.999	1.000	.999	1.000	1.000	1.000	1.000	88.320
2T3X7	452	.973	.975	.966	.976	.958	.977	.990	.982	1.001	90.124
3D0X1	3,618	.638	.657	.565	.679	.468	.630	.860	.688	.927	88.784
3F0X1	3,197	.973	.975	.966	.976	.958	.977	.990	.982	1.001	90.226
3F5X1	353	.926	.929	.917	.929	.907	.937	.987	.976	1.009	89.478
4A1X1	610	.926	.929	.917	.929	.907	.937	.987	.976	1.009	84.256
4C0X1	396	.776	.787	.733	.798	.665	.790	.931	.834	.990	86.995
4J0X2	143	.877	.880	.866	.881	.844	.896	.984	.958	1.017	86.130

Table F.21. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO+AR

AESC	Sample			Qualifica	tion Rate			QR	Ratio	ESC	
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	F50
1C0X2	1,469	.876	.884	.845	.890	.809	.886	.957	.909	.996	88.221
1C3X1	818	.807	.822	.751	.835	.688	.810	.913	.823	.970	87.029
1N0X1	2,460	.642	.669	.542	.695	.446	.619	.810	.642	.891	88.032
1N2X1A	522	.422	.452	.306	.483	.220	.374	.679	.455	.775	90.786
1N2X1C	434	.422	.452	.306	.483	.220	.374	.679	.455	.775	91.573
2G0X1	405	.771	.789	.701	.805	.628	.768	.888	.780	.954	88.563
2S0X1	5,350	.974	.977	.961	.978	.955	.975	.984	.976	.997	89.414
2T0X1	1,475	.994	.996	.990	.996	.988	.995	.994	.992	.998	89.295
2T2X1	3,921	1.000	1.000	.999	1.000	.999	1.000	.999	.999	1.000	88.320
2T3X7	452	.974	.977	.961	.978	.955	.975	.984	.976	.997	90.117
3D0X1	3,618	.642	.669	.542	.695	.446	.619	.810	.642	.891	88.771
3F0X1	3,197	.974	.977	.961	.978	.955	.975	.984	.976	.997	90.219
3F5X1	353	.926	.930	.908	.932	.893	.935	.976	.958	1.004	89.475
4A1X1	610	.926	.930	.908	.932	.893	.935	.976	.958	1.004	84.273
4C0X1	396	.771	.789	.701	.805	.628	.768	.888	.780	.954	87.073
4J0X2	143	.876	.884	.845	.890	.809	.886	.957	.909	.996	86.238

Table F.22. Projected Impact Results by AFS for Administrative Composite: MK+PC+WK+AO+AR+GS

AFRO	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.718	.747	.605	.775	.521	.682	.809	.673	.880	94.679
1A2X1	887	.678	.709	.560	.739	.474	.637	.789	.641	.862	94.352
1A8X1	1,316	.410	.442	.289	.475	.211	.353	.653	.445	.744	89.595
1A8X2	260	.410	.442	.289	.475	.211	.353	.653	.445	.744	91.715
1C1X1	2,644	.718	.747	.605	.775	.521	.682	.809	.673	.880	85.743
1C2X1	412	.718	.747	.605	.775	.521	.682	.809	.673	.880	86.107
1C3X1	818	.678	.709	.560	.739	.474	.637	.789	.641	.862	87.643
1C4X1	873	.829	.852	.739	.872	.676	.807	.867	.776	.925	84.284
1C5X1	902	.718	.747	.605	.775	.521	.682	.809	.673	.880	88.668
1C7X1	662	.829	.852	.739	.872	.676	.806	.867	.776	.925	85.660
1N1X1A	2,205	.520	.553	.392	.587	.306	.464	.708	.521	.790	88.788
1N3X1	2,476	.410	.442	.289	.475	.211	.353	.653	.445	.744	87.705
1N4X1A	917	.598	.630	.473	.664	.384	.548	.751	.578	.826	93.239
1N4X1B	448	.598	.630	.473	.664	.384	.548	.751	.578	.826	91.414
1T2X1	356	.889	.906	.822	.920	.777	.876	.907	.844	.953	82.453
1W0X1	1,960	.520	.553	.392	.587	.306	.464	.708	.521	.790	89.055
2F0X1	2,876	.951	.961	.913	.968	.890	.944	.950	.919	.975	89.858
2R0X1	507	.718	.747	.605	.775	.521	.682	.809	.673	.880	89.049
2R1X1	702	.889	.906	.822	.920	.777	.876	.907	.844	.953	88.307
2S0X1	5,350	.889	.906	.822	.920	.777	.876	.907	.844	.953	89.688
2W0X1	5,577	.678	.709	.560	.739	.474	.637	.789	.641	.862	90.052
3D0X2	227	.558	.591	.431	.625	.344	.504	.729	.550	.806	86.519
3D0X4	248	.558	.591	.431	.625	.344	.504	.729	.550	.806	87.835
3E4X3	175	.951	.961	.913	.968	.890	.944	.950	.919	.975	92.265
3E5X1	629	.829	.852	.739	.872	.676	.807	.867	.776	.925	85.888
3E6X1	383	.889	.906	.822	.920	.777	.876	.907	.844	.953	87.871
3E7X1	3,384	.951	.961	.913	.968	.890	.944	.950	.919	.975	89.671
3E8X1	231	.558	.591	.431	.625	.344	.504	.729	.550	.806	93.003
3E9X1	162	.598	.630	.473	.664	.384	.548	.751	.578	.826	88.730
3F1X1	3,751	.998	.999	.997	.999	.996	.998	.998	.996	.999	85.706
3P0X1	29,141	.991	.994	.980	.995	.976	.990	.986	.981	.994	84.654
4A0X1	1,383	.889	.906	.822	.920	.777	.876	.907	.844	.953	86.917
4D0X1	164	.889	.906	.822	.920	.777	.876	.907	.844	.953	83.238
4Y0X1	1,029	.889	.906	.822	.920	.777	.876	.907	.844	.953	85.891
4Y0X2	128	.520	.553	.392	.587	.306	.464	.708	.521	.790	88.107
6C0X1	1,118	.410	.442	.289	.475	.211	.353	.653	.445	.744	85.219
6F0X1	1,804	.678	.709	.560	.739	.474	.637	.789	.641	.862	89.340

Table F.23. Projected Impact Results by AFS for General Composite: Current Composite

AFRO	Sample			Qualificat	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.722	.742	.645	.768	.560	.688	.870	.729	.896	94.636
1A2X1	887	.699	.720	.619	.747	.530	.664	.859	.710	.889	94.370
1A8X1	1,316	.416	.441	.321	.473	.233	.363	.728	.492	.768	89.492
1A8X2	260	.416	.441	.321	.473	.233	.363	.728	.492	.768	91.641
1C1X1	2,644	.722	.742	.645	.768	.560	.688	.870	.729	.896	85.776
1C2X1	412	.722	.742	.645	.768	.560	.688	.870	.729	.896	86.260
1C3X1	818	.699	.720	.619	.747	.530	.664	.859	.710	.889	87.647
1C4X1	873	.832	.847	.778	.863	.716	.813	.919	.829	.942	84.265
1C5X1	902	.722	.742	.645	.768	.560	.688	.870	.729	.896	88.710
1C7X1	662	.832	.847	.778	.863	.716	.813	.919	.829	.942	85.682
1N1X1A	2,205	.521	.546	.423	.578	.330	.471	.775	.571	.815	88.822
1N3X1	2,476	.416	.441	.321	.473	.233	.363	.728	.492	.768	87.690
1N4X1A	917	.609	.632	.518	.664	.423	.564	.819	.637	.849	93.271
1N4X1B	448	.609	.632	.518	.664	.423	.564	.819	.637	.849	91.413
1T2X1	356	.900	.910	.865	.920	.823	.889	.951	.895	.966	82.517
1W0X1	1,960	.521	.546	.423	.578	.330	.471	.775	.571	.815	89.086
2F0X1	2,876	.953	.957	.936	.963	.913	.948	.978	.948	.985	89.869
2R0X1	507	.722	.742	.645	.768	.560	.688	.870	.729	.896	89.106
2R1X1	702	.900	.910	.865	.920	.823	.889	.951	.895	.966	88.283
2S0X1	5,350	.900	.910	.865	.920	.823	.889	.951	.895	.966	89.721
2W0X1	5,577	.699	.720	.619	.747	.530	.664	.859	.710	.889	90.026
3D0X2	227	.565	.590	.470	.621	.375	.518	.797	.604	.833	86.474
3D0X4	248	.565	.590	.470	.621	.375	.518	.797	.604	.833	87.986
3E4X3	175	.953	.957	.936	.963	.913	.948	.978	.948	.985	92.280
3E5X1	629	.832	.847	.778	.863	.716	.813	.919	.829	.942	85.905
3E6X1	383	.900	.910	.865	.920	.823	.889	.951	.895	.966	87.876
3E7X1	3,384	.953	.957	.936	.963	.913	.948	.978	.948	.985	89.655
3E8X1	231	.565	.590	.470	.621	.375	.518	.797	.604	.833	93.004
3E9X1	162	.609	.632	.518	.664	.423	.564	.819	.637	.849	88.738
3F1X1	3,751	.999	.999	.999	.999	.999	.999	1.000	1.000	1.000	85.706
3P0X1	29,141	.991	.992	.989	.993	.984	.991	.997	.992	.999	84.659
4A0X1	1,383	.900	.910	.865	.920	.823	.889	.951	.895	.966	86.915
4D0X1	164	.900	.910	.865	.920	.823	.889	.951	.895	.966	83.244
4Y0X1	1,029	.900	.910	.865	.920	.823	.889	.951	.895	.966	85.883
4Y0X2	128	.521	.546	.423	.578	.330	.471	.775	.571	.815	88.088
6C0X1	1,118	.416	.441	.321	.473	.233	.363	.728	.492	.768	85.296
6F0X1	1.804	.699	.720	.619	.747	.530	.664	.859	.710	.889	89.344

Table F.24. Projected Impact Results by AFS for General Composite: AR+PC+WK+MK
AFRO	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FOC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.730	.748	.661	.767	.575	.731	.884	.750	.953	94.437
1A2X1	887	.682	.703	.601	.726	.507	.674	.856	.698	.928	94.269
1A8X1	1,316	.419	.446	.314	.480	.219	.377	.703	.456	.786	89.636
1A8X2	260	.419	.446	.314	.480	.219	.377	.703	.456	.786	91.446
1C1X1	2,644	.730	.748	.661	.767	.575	.731	.884	.750	.953	85.422
1C2X1	412	.730	.748	.661	.767	.575	.731	.884	.750	.953	85.691
1C3X1	818	.682	.703	.601	.726	.507	.674	.856	.698	.928	87.379
1C4X1	873	.833	.840	.802	.848	.755	.848	.954	.890	1.001	83.879
1C5X1	902	.730	.748	.661	.767	.575	.731	.884	.750	.953	88.225
1C7X1	662	.833	.840	.802	.848	.755	.848	.954	.890	1.001	85.381
1N1X1A	2,205	.533	.560	.431	.592	.327	.501	.770	.552	.846	88.626
1N3X1	2,476	.419	.446	.314	.480	.219	.377	.703	.456	.786	87.626
1N4X1A	917	.609	.634	.515	.663	.412	.589	.812	.622	.888	93.052
1N4X1B	448	.609	.634	.515	.663	.412	.589	.812	.622	.888	91.183
1T2X1	356	.890	.891	.885	.890	.877	.907	.993	.985	1.019	82.356
1W0X1	1,960	.533	.560	.431	.592	.327	.501	.770	.552	.846	88.743
2F0X1	2,876	.953	.956	.943	.957	.934	.959	.986	.976	1.002	89.780
2R0X1	507	.730	.748	.661	.767	.575	.731	.884	.750	.953	88.761
2R1X1	702	.890	.891	.885	.890	.877	.907	.993	.985	1.019	88.079
2S0X1	5,350	.890	.891	.885	.890	.877	.907	.993	.985	1.019	89.445
2W0X1	5,577	.682	.703	.601	.726	.507	.674	.856	.698	.928	89.754
3D0X2	227	.572	.597	.472	.628	.368	.545	.790	.586	.867	86.056
3D0X4	248	.572	.597	.472	.628	.368	.545	.790	.586	.867	87.989
3E4X3	175	.953	.956	.943	.957	.934	.959	.986	.976	1.002	92.195
3E5X1	629	.833	.840	.802	.848	.755	.848	.954	.890	1.001	85.567
3E6X1	383	.890	.891	.885	.890	.877	.907	.993	.985	1.019	87.578
3E7X1	3,384	.953	.956	.943	.957	.934	.959	.986	.976	1.002	89.610
3E8X1	231	.572	.597	.472	.628	.368	.545	.790	.586	.867	92.900
3E9X1	162	.609	.634	.515	.663	.412	.589	.812	.622	.888	88.303
3F1X1	3,751	.999	.999	.998	.999	.997	.999	.999	.998	1.000	85.706
3P0X1	29,141	.992	.992	.988	.993	.985	.993	.996	.992	1.000	84.643
4A0X1	1,383	.890	.891	.885	.890	.877	.907	.993	.985	1.019	86.608
4D0X1	164	.890	.891	.885	.890	.877	.907	.993	.985	1.019	83.021
4Y0X1	1,029	.890	.891	.885	.890	.877	.907	.993	.985	1.019	85.549
4Y0X2	128	.533	.560	.431	.592	.327	.501	.770	.552	.846	87.658
6C0X1	1,118	.419	.446	.314	.480	.219	.377	.703	.456	.786	84.875
6F0X1	1.804	.682	.703	.601	.726	.507	.674	.856	.698	.928	89.241

Table F.25. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO

AFSC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.719	.753	.589	.791	.505	.654	.782	.638	.827	94.645
1A2X1	887	.680	.716	.544	.755	.458	.611	.760	.606	.809	94.349
1A8X1	1,316	.425	.461	.287	.499	.209	.353	.622	.420	.708	89.629
1A8X2	260	.425	.461	.287	.499	.209	.353	.622	.420	.708	91.473
1C1X1	2,644	.719	.753	.589	.791	.505	.654	.782	.638	.827	85.712
1C2X1	412	.719	.753	.589	.791	.505	.654	.782	.638	.827	86.252
1C3X1	818	.680	.716	.544	.755	.458	.611	.760	.606	.809	87.617
1C4X1	873	.842	.868	.745	.895	.681	.799	.858	.760	.893	84.378
1C5X1	902	.719	.753	.589	.791	.505	.654	.782	.638	.827	88.738
1C7X1	662	.842	.868	.745	.895	.681	.799	.858	.760	.893	85.583
1N1X1A	2,205	.521	.559	.375	.599	.289	.448	.671	.482	.748	88.803
1N3X1	2,476	.425	.461	.287	.499	.209	.353	.622	.420	.708	87.680
1N4X1A	917	.600	.637	.457	.678	.368	.527	.717	.543	.776	93.219
1N4X1B	448	.600	.637	.457	.678	.368	.527	.717	.543	.776	91.331
1T2X1	356	.897	.916	.823	.937	.776	.865	.899	.828	.923	82.611
1W0X1	1,960	.521	.559	.375	.599	.289	.448	.671	.482	.748	89.034
2F0X1	2,876	.954	.964	.915	.976	.886	.936	.949	.908	.958	89.859
2R0X1	507	.719	.753	.589	.791	.505	.654	.782	.638	.827	88.965
2R1X1	702	.897	.916	.823	.937	.776	.865	.899	.828	.923	88.216
2S0X1	5,350	.897	.916	.823	.937	.776	.865	.899	.828	.923	89.650
2W0X1	5,577	.680	.716	.544	.755	.458	.611	.760	.606	.809	90.076
3D0X2	227	.560	.598	.414	.639	.327	.488	.692	.511	.764	86.543
3D0X4	248	.560	.598	.414	.639	.327	.488	.692	.511	.764	87.929
3E4X3	175	.954	.964	.915	.976	.886	.936	.949	.908	.958	92.308
3E5X1	629	.842	.868	.745	.895	.681	.799	.858	.760	.893	85.872
3E6X1	383	.897	.916	.823	.937	.776	.865	.899	.828	.923	87.839
3E7X1	3,384	.954	.964	.915	.976	.886	.936	.949	.908	.958	89.676
3E8X1	231	.560	.598	.414	.639	.327	.488	.692	.511	.764	93.047
3E9X1	162	.600	.637	.457	.678	.368	.527	.717	.543	.776	88.805
3F1X1	3,751	.999	.999	.997	1.000	.996	.998	.998	.996	.998	85.708
3P0X1	29,141	.991	.994	.982	.997	.975	.987	.988	.978	.990	84.661
4A0X1	1,383	.897	.916	.823	.937	.776	.865	.899	.828	.923	86.895
4D0X1	164	.897	.916	.823	.937	.776	.865	.899	.828	.923	83.154
4Y0X1	1,029	.897	.916	.823	.937	.776	.865	.899	.828	.923	85.857
4Y0X2	128	.521	.559	.375	.599	.289	.448	.671	.482	.748	87.939
6C0X1	1,118	.425	.461	.287	.499	.209	.353	.622	.420	.708	85.019
6F0X1	1.804	.680	.716	.544	.755	.458	.611	.760	.606	.809	89.198

Table F.26. Projected Impact Results by AFS for General Composite: AR+PC+WK+GS

AFRO	Sample			Qualificat	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.727	.742	.670	.756	.590	.733	.904	.780	.969	94.425
1A2X1	887	.684	.701	.619	.720	.528	.683	.882	.733	.949	94.311
1A8X1	1,316	.414	.438	.321	.466	.228	.378	.733	.488	.810	89.566
1A8X2	260	.414	.438	.321	.466	.228	.378	.733	.488	.810	91.508
1C1X1	2,644	.727	.742	.670	.756	.590	.733	.904	.780	.969	85.477
1C2X1	412	.727	.742	.670	.756	.590	.733	.904	.780	.969	85.808
1C3X1	818	.684	.701	.619	.720	.528	.683	.882	.733	.949	87.418
1C4X1	873	.832	.838	.807	.843	.762	.851	.963	.903	1.009	83.891
1C5X1	902	.727	.742	.670	.756	.590	.733	.904	.780	.969	88.282
1C7X1	662	.832	.838	.807	.843	.762	.851	.963	.903	1.009	85.437
1N1X1A	2,205	.526	.549	.438	.575	.337	.502	.799	.585	.872	88.695
1N3X1	2,476	.414	.438	.321	.466	.228	.378	.733	.488	.810	87.644
1N4X1A	917	.607	.628	.529	.651	.427	.594	.843	.655	.912	93.118
1N4X1B	448	.607	.628	.529	.651	.427	.594	.843	.655	.912	91.238
1T2X1	356	.891	.893	.883	.893	.867	.908	.988	.970	1.017	82.358
1W0X1	1,960	.526	.549	.438	.575	.337	.502	.799	.585	.872	88.849
2F0X1	2,876	.951	.954	.941	.955	.932	.958	.987	.975	1.003	89.791
2R0X1	507	.727	.742	.670	.756	.590	.733	.904	.780	.969	88.839
2R1X1	702	.891	.893	.883	.893	.867	.908	.988	.970	1.017	88.114
2S0X1	5,350	.891	.893	.883	.893	.867	.908	.988	.970	1.017	89.492
2W0X1	5,577	.684	.701	.619	.720	.528	.683	.882	.733	.949	89.785
3D0X2	227	.559	.581	.473	.606	.372	.539	.815	.613	.889	86.114
3D0X4	248	.559	.581	.473	.606	.372	.539	.815	.613	.889	88.138
3E4X3	175	.951	.954	.941	.955	.932	.958	.987	.975	1.003	92.211
3E5X1	629	.832	.838	.807	.843	.762	.851	.963	.903	1.009	85.615
3E6X1	383	.891	.893	.883	.893	.867	.908	.988	.970	1.017	87.623
3E7X1	3,384	.951	.954	.941	.955	.932	.958	.987	.975	1.003	89.613
3E8X1	231	.559	.581	.473	.606	.372	.539	.815	.613	.889	92.928
3E9X1	162	.607	.628	.529	.651	.427	.594	.843	.655	.912	88.384
3F1X1	3,751	.999	.999	.998	.999	.998	.999	1.000	.999	1.000	85.707
3P0X1	29,141	.991	.992	.988	.993	.985	.993	.995	.992	1.000	84.647
4A0X1	1,383	.891	.893	.883	.893	.867	.908	.988	.970	1.017	86.655
4D0X1	164	.891	.893	.883	.893	.867	.908	.988	.970	1.017	83.076
4Y0X1	1,029	.891	.893	.883	.893	.867	.908	.988	.970	1.017	85.602
4Y0X2	128	.526	.549	.438	.575	.337	.502	.799	.585	.872	87.750
6C0X1	1,118	.414	.438	.321	.466	.228	.378	.733	.488	.810	85.032
6F0X1	1.804	.684	.701	.619	.720	.528	.683	.882	.733	.949	89.310

Table F.27. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO+MK

AESC	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	ESC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.729	.757	.619	.789	.533	.677	.817	.676	.859	94.608
1A2X1	887	.694	.724	.579	.757	.490	.640	.799	.647	.845	94.385
1A8X1	1,316	.424	.457	.300	.491	.218	.362	.657	.445	.738	89.557
1A8X2	260	.424	.457	.300	.491	.218	.362	.657	.445	.738	91.531
1C1X1	2,644	.729	.757	.619	.789	.533	.677	.817	.676	.859	85.734
1C2X1	412	.729	.757	.619	.789	.533	.677	.817	.676	.859	86.337
1C3X1	818	.694	.724	.579	.757	.490	.640	.799	.647	.845	87.635
1C4X1	873	.840	.862	.755	.884	.692	.804	.876	.783	.910	84.356
1C5X1	902	.729	.757	.619	.789	.533	.677	.817	.676	.859	88.752
1C7X1	662	.840	.862	.755	.884	.692	.804	.876	.783	.910	85.654
1N1X1A	2,205	.522	.555	.393	.591	.303	.458	.707	.512	.776	88.854
1N3X1	2,476	.424	.457	.300	.491	.218	.362	.657	.445	.738	87.692
1N4X1A	917	.607	.640	.481	.675	.390	.547	.751	.578	.810	93.268
1N4X1B	448	.607	.640	.481	.675	.390	.547	.751	.578	.810	91.376
1T2X1	356	.890	.907	.826	.924	.777	.863	.911	.841	.934	82.579
1W0X1	1,960	.522	.555	.393	.591	.303	.458	.707	.512	.776	89.116
2F0X1	2,876	.953	.961	.919	.971	.891	.939	.956	.918	.967	89.880
2R0X1	507	.729	.757	.619	.789	.533	.677	.817	.676	.859	89.029
2R1X1	702	.890	.907	.826	.924	.777	.863	.911	.841	.934	88.271
2S0X1	5,350	.890	.907	.826	.924	.777	.863	.911	.841	.934	89.740
2W0X1	5,577	.694	.724	.579	.757	.490	.640	.799	.647	.845	90.076
3D0X2	227	.573	.607	.444	.642	.353	.511	.732	.549	.795	86.479
3D0X4	248	.573	.607	.444	.642	.353	.511	.732	.549	.795	88.044
3E4X3	175	.953	.961	.919	.971	.891	.939	.956	.918	.967	92.333
3E5X1	629	.840	.862	.755	.884	.692	.804	.876	.783	.910	85.926
3E6X1	383	.890	.907	.826	.924	.777	.863	.911	.841	.934	87.907
3E7X1	3,384	.953	.961	.919	.971	.891	.939	.956	.918	.967	89.676
3E8X1	231	.573	.607	.444	.642	.353	.511	.732	.549	.795	93.023
3E9X1	162	.607	.640	.481	.675	.390	.547	.751	.578	.810	88.845
3F1X1	3,751	.999	.999	.998	1.000	.997	.999	.998	.997	.999	85.707
3P0X1	29,141	.992	.994	.984	.996	.978	.989	.990	.981	.992	84.659
4A0X1	1,383	.890	.907	.826	.924	.777	.863	.911	.841	.934	86.956
4D0X1	164	.890	.907	.826	.924	.777	.863	.911	.841	.934	83.255
4Y0X1	1,029	.890	.907	.826	.924	.777	.863	.911	.841	.934	85.930
4Y0X2	128	.522	.555	.393	.591	.303	.458	.707	.512	.776	88.026
6C0X1	1,118	.424	.457	.300	.491	.218	.362	.657	.445	.738	85.160
6F0X1	1.804	.694	.724	.579	.757	.490	.640	.799	.647	.845	89.263

Table F.28. Projected Impact Results by AFS for General Composite: AR+PC+WK+GS+MK

AFRO	Sample			Qualifica	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.725	.750	.632	.774	.548	.710	.843	.708	.918	94.445
1A2X1	887	.687	.715	.582	.742	.491	.666	.815	.662	.897	94.281
1A8X1	1,316	.414	.447	.288	.481	.203	.359	.646	.422	.747	89.693
1A8X2	260	.414	.447	.288	.481	.203	.359	.646	.422	.747	91.448
1C1X1	2,644	.725	.750	.632	.774	.548	.710	.843	.708	.918	85.462
1C2X1	412	.725	.750	.632	.774	.548	.710	.843	.708	.918	85.828
1C3X1	818	.687	.715	.582	.742	.491	.666	.815	.662	.897	87.367
1C4X1	873	.831	.844	.782	.856	.730	.836	.926	.853	.977	83.992
1C5X1	902	.725	.750	.632	.774	.548	.710	.843	.708	.918	88.324
1C7X1	662	.831	.844	.782	.856	.730	.836	.926	.853	.977	85.437
1N1X1A	2,205	.531	.564	.404	.599	.307	.485	.716	.513	.809	88.686
1N3X1	2,476	.414	.447	.288	.481	.203	.359	.646	.422	.747	87.671
1N4X1A	917	.604	.635	.485	.668	.387	.567	.763	.579	.849	93.093
1N4X1B	448	.604	.635	.485	.668	.387	.567	.763	.579	.849	91.191
1T2X1	356	.889	.895	.868	.899	.844	.901	.970	.939	1.002	82.395
1W0X1	1,960	.531	.564	.404	.599	.307	.485	.716	.513	.809	88.811
2F0X1	2,876	.954	.958	.938	.959	.929	.958	.979	.969	.999	89.785
2R0X1	507	.725	.750	.632	.774	.548	.710	.843	.708	.918	88.770
2R1X1	702	.889	.895	.868	.899	.844	.901	.970	.939	1.002	88.128
2S0X1	5,350	.889	.895	.868	.899	.844	.901	.970	.939	1.002	89.512
2W0X1	5,577	.687	.715	.582	.742	.491	.666	.815	.662	.897	89.781
3D0X2	227	.561	.593	.435	.628	.337	.517	.733	.536	.823	86.171
3D0X4	248	.561	.593	.435	.628	.337	.517	.733	.536	.823	88.095
3E4X3	175	.954	.958	.938	.959	.929	.958	.979	.969	.999	92.219
3E5X1	629	.831	.844	.782	.856	.730	.836	.926	.853	.977	85.640
3E6X1	383	.889	.895	.868	.899	.844	.901	.970	.939	1.002	87.651
3E7X1	3,384	.954	.958	.938	.959	.929	.958	.979	.969	.999	89.616
3E8X1	231	.561	.593	.435	.628	.337	.517	.733	.536	.823	92.958
3E9X1	162	.604	.635	.485	.668	.387	.567	.763	.579	.849	88.448
3F1X1	3,751	.999	.999	.997	.999	.996	.999	.998	.997	.999	85.707
3P0X1	29,141	.992	.993	.985	.994	.982	.992	.992	.988	.997	84.645
4A0X1	1,383	.889	.895	.868	.899	.844	.901	.970	.939	1.002	86.693
4D0X1	164	.889	.895	.868	.899	.844	.901	.970	.939	1.002	83.101
4Y0X1	1,029	.889	.895	.868	.899	.844	.901	.970	.939	1.002	85.642
4Y0X2	128	.531	.564	.404	.599	.307	.485	.716	.513	.809	87.645
6C0X1	1,118	.414	.447	.288	.481	.203	.359	.646	.422	.747	84.907
6F0X1	1.804	.687	.715	.582	.742	.491	.666	.815	.662	.897	89.178

Table F.29. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO+GS

AFRO	Sample			Qualificat	tion Rate			QR	Adverse Impact	Ratio	FRC
AFSC	Size	Overall	Male	Female	NHW	NHB	HW	M/F	NHW/NHB	NHW/HW	FSG
1A0X1	364	.728	.749	.645	.770	.561	.717	.860	.728	.932	94.444
1A2X1	887	.681	.705	.587	.729	.495	.664	.832	.680	.911	94.337
1A8X1	1,316	.422	.452	.306	.483	.220	.374	.679	.455	.775	89.624
1A8X2	260	.422	.452	.306	.483	.220	.374	.679	.455	.775	91.448
1C1X1	2,644	.728	.749	.645	.770	.561	.717	.860	.728	.932	85.517
1C2X1	412	.728	.749	.645	.770	.561	.717	.860	.728	.932	85.928
1C3X1	818	.681	.705	.587	.729	.495	.664	.832	.680	.911	87.453
1C4X1	873	.832	.844	.784	.855	.730	.837	.929	.854	.979	84.025
1C5X1	902	.728	.749	.645	.770	.561	.717	.860	.728	.932	88.381
1C7X1	662	.832	.844	.784	.855	.730	.837	.929	.854	.979	85.505
1N1X1A	2,205	.525	.554	.412	.585	.315	.485	.743	.539	.830	88.752
1N3X1	2,476	.422	.452	.306	.483	.220	.374	.679	.455	.775	87.658
1N4X1A	917	.604	.631	.498	.659	.399	.574	.789	.605	.870	93.153
1N4X1B	448	.604	.631	.498	.659	.399	.574	.789	.605	.870	91.248
1T2X1	356	.890	.896	.865	.901	.834	.901	.964	.926	1.000	82.396
1W0X1	1,960	.525	.554	.412	.585	.315	.485	.743	.539	.830	88.912
2F0X1	2,876	.952	.956	.936	.958	.927	.957	.980	.968	1.000	89.795
2R0X1	507	.728	.749	.645	.770	.561	.717	.860	.728	.932	88.846
2R1X1	702	.890	.896	.865	.901	.834	.901	.964	.926	1.000	88.161
2S0X1	5,350	.890	.896	.865	.901	.834	.901	.964	.926	1.000	89.564
2W0X1	5,577	.681	.705	.587	.729	.495	.664	.832	.680	.911	89.864
3D0X2	227	.564	.593	.454	.622	.356	.528	.767	.571	.849	86.157
3D0X4	248	.564	.593	.454	.622	.356	.528	.767	.571	.849	88.190
3E4X3	175	.952	.956	.936	.958	.927	.957	.980	.968	1.000	92.230
3E5X1	629	.832	.844	.784	.855	.730	.837	.929	.854	.979	85.701
3E6X1	383	.890	.896	.865	.901	.834	.901	.964	.926	1.000	87.699
3E7X1	3,384	.952	.956	.936	.958	.927	.957	.980	.968	1.000	89.620
3E8X1	231	.564	.593	.454	.622	.356	.528	.767	.571	.849	92.952
3E9X1	162	.604	.631	.498	.659	.399	.574	.789	.605	.870	88.518
3F1X1	3,751	.999	.999	.997	.999	.997	.999	.998	.997	1.000	85.707
3P0X1	29,141	.992	.993	.986	.994	.984	.992	.992	.989	.997	84.646
4A0X1	1,383	.890	.896	.865	.901	.834	.901	.964	.926	1.000	86.741
4D0X1	164	.890	.896	.865	.901	.834	.901	.964	.926	1.000	83.156
4Y0X1	1,029	.890	.896	.865	.901	.834	.901	.964	.926	1.000	85.697
4Y0X2	128	.525	.554	.412	.585	.315	.485	.743	.539	.830	87.739
6C0X1	1,118	.422	.452	.306	.483	.220	.374	.679	.455	.775	84.961
6F0X1	1.804	.681	.705	.587	.729	.495	.664	.832	.680	.911	89.288

Table F.30. Projected Impact Results by AFS for General Composite: AR+PC+WK+AO+GS+MK

APPENDIX G – CONTENT-ORIENTED APPROACH RESULTS

Table G.1. Nominal Weights for Content-Oriented Approach: Mechanical Composite 1099
Table G.2. Nominal Weights for Content-Oriented Approach: Electronics Composite 11010
Table G.3. Nominal Weights for Content-Oriented Approach: Administrative Composite 11212
Table G.4. Nominal Weights for Content-Oriented Approach: General Composite 11313
Table G.5. Predictive Validity for Content-Oriented Approach: Mechanical Composite 11515
Table G.6. Predictive Validity for Content-Oriented Approach: Electronics Composite 11616
Table G.7. Predictive Validity for Content-Oriented Approach: Administrative Composite 11717
Table G.8. Predictive Validity for Content-Oriented Approach: General Composite 1188

	Composite 1 Composite 2								Comp	osite 3			C	Composite	4	
AFSC	AR	PC	WK	AR	PC	WK	MK	AR	PC	WK	AO	AR	PC	WK	AO	MK
1C2X1	.000	.535	.465	.000	.465	.535	.000	.000	.465	.535	.000	.000	.465	.535	.000	.000
1C7X1	.000	.513	.487	.000	.487	.513	.000	.000	.487	.513	.000	.000	.487	.513	.000	.000
1P0X1	.000	.483	.517	.000	.455	.427	.118	.000	.517	.483	.000	.000	.455	.427	.000	.118
2A3X8	.065	.454	.481	.031	.330	.315	.324	.060	.459	.432	.048	.030	.320	.304	.033	.313
2A5X1	.000	.490	.510	.000	.339	.330	.331	.000	.494	.472	.034	.000	.332	.323	.022	.323
2A5X4	.038	.469	.493	.017	.335	.323	.324	.035	.472	.447	.046	.017	.326	.313	.031	.314
2A6X1	.022	.491	.487	.011	.339	.347	.304	.019	.444	.444	.094	.009	.318	.322	.069	.282
2A6X2	.000	.465	.535	.000	.376	.330	.294	.000	.502	.433	.064	.000	.360	.314	.046	.280
2A6X3	.000	.431	.569	.000	.402	.306	.292	.000	.533	.400	.066	.000	.385	.290	.048	.277
2A6X4	.000	.442	.558	.000	.393	.313	.294	.000	.550	.435	.015	.000	.389	.310	.010	.291
2A6X5	.000	.466	.534	.000	.368	.325	.307	.000	.480	.415	.105	.000	.342	.299	.077	.282
2A6X6	.000	.487	.513	.000	.360	.346	.294	.000	.469	.441	.091	.000	.339	.322	.067	.273
2A7X1	.000	.380	.620	.000	.353	.217	.431	.000	.518	.309	.172	.000	.316	.189	.111	.383
2A7X2	.000	.432	.568	.000	.390	.299	.310	.000	.568	.432	.000	.000	.390	.299	.000	.310
2A7X3	.000	.462	.538	.000	.336	.292	.372	.000	.491	.417	.092	.000	.317	.273	.061	.349
2A7X5	.000	.554	.446	.000	.281	.358	.362	.000	.403	.498	.099	.000	.263	.333	.067	.337
2F0X1	.000	.450	.550	.000	.447	.368	.185	.000	.550	.450	.000	.000	.447	.368	.000	.185
2M0X2	.048	.438	.514	.022	.349	.301	.328	.039	.463	.390	.108	.019	.325	.276	.078	.302
2T1X1	.000	.506	.494	.000	.458	.471	.071	.000	.494	.506	.000	.000	.458	.471	.000	.071
2T2X1	.000	.503	.497	.000	.497	.503	.000	.000	.497	.503	.000	.000	.497	.503	.000	.000
2T3X1	.000	.529	.471	.000	.350	.399	.251	.000	.422	.471	.107	.000	.324	.366	.084	.227
2W0X1	.000	.419	.581	.000	.416	.302	.282	.000	.581	.419	.000	.000	.416	.302	.000	.282
2W1X1	.000	.460	.540	.000	.540	.460	.000	.000	.484	.407	.109	.000	.484	.407	.109	.000
2W2X1	.000	.510	.490	.000	.408	.427	.165	.000	.474	.491	.035	.000	.397	.415	.029	.159
3D1X7	.000	.590	.410	.000	.363	.525	.112	.000	.371	.531	.098	.000	.333	.480	.089	.098
3E0X1	.000	.537	.463	.000	.363	.426	.212	.000	.411	.473	.115	.000	.331	.386	.095	.188
3E0X2	.000	.470	.530	.000	.332	.298	.370	.000	.494	.434	.071	.000	.318	.283	.046	.353
3E1X1	.217	.383	.399	.123	.284	.275	.319	.187	.362	.343	.107	.110	.263	.252	.080	.294
3E2X1	.000	.560	.440	.000	.269	.353	.378	.000	.388	.491	.121	.000	.249	.324	.081	.347
3E3X1	.000	.534	.466	.000	.294	.345	.361	.000	.407	.462	.131	.000	.269	.313	.090	.328
3E4X1	.078	.415	.508	.034	.329	.271	.366	.066	.463	.374	.097	.030	.309	.252	.067	.342
3E8X1	.000	.483	.517	.000	.501	.467	.032	.000	.517	.483	.000	.000	.501	.467	.000	.032
4A2X1	.000	.464	.536	.000	.400	.348	.252	.000	.502	.431	.066	.000	.381	.330	.050	.238

Table G.1. Nominal Weights for Content-Oriented Approach: Mechanical Composite

Note. Nominal weights incorporate the VCV structure and effective weights for each alternative composite. Composite label refers to the ASVAB subtests comprising the alternative composite.

	Com	posite 1		Composite 2	2	(Composite	3	(Composite	e 4		Comp	osite 5	
AFSC	AR	МК	AR	WK	MK	AR	PC	MK	AR	MK	AO	AR	WK	PC	MK
1A3X1	NA	NA	.000	1.000	.000	.000	1.000	.000	NA	NA	NA	.000	.505	.495	.000
1C6X1	NA	NA	.000	1.000	.000	.000	1.000	.000	.000	.000	1.000	.000	.547	.453	.000
1C8X3	.000	1.000	.000	.493	.507	.000	.566	.434	.000	.853	.147	.000	.283	.390	.327
1W0X1	.000	1.000	.000	.531	.469	.000	.567	.433	.000	.871	.129	.000	.322	.368	.311
2A0X1	.000	1.000	.000	.608	.392	.000	.621	.379	.000	.827	.173	.000	.370	.376	.253
2A2X1	.053	.947	.021	.520	.459	.019	.557	.424	.045	.845	.110	.012	.317	.364	.307
2A2X2	.182	.818	.086	.468	.446	.078	.512	.410	.160	.745	.095	.055	.291	.347	.308
2A2X3	.101	.899	.042	.512	.446	.037	.552	.411	.087	.811	.101	.025	.313	.363	.299
2A3X4	.000	1.000	.000	.547	.453	.000	.581	.419	.000	.915	.085	.000	.329	.373	.297
2A3X5	.000	1.000	.000	.524	.476	.000	.565	.435	.000	.828	.172	.000	.316	.369	.315
2A6X2	.000	1.000	.000	.549	.451	.000	.585	.415	.000	.865	.135	.000	.330	.376	.294
2A6X6	.000	1.000	.000	.559	.441	.000	.577	.423	.000	.819	.181	.000	.346	.360	.294
2A8X1	.000	1.000	.000	.561	.439	.000	.593	.407	.000	.896	.104	.000	.337	.378	.285
2A8X2	.000	1.000	.000	.552	.448	.000	.589	.411	.000	.901	.099	.000	.329	.379	.291
2A9X1	.011	.989	.004	.560	.436	.003	.591	.405	.009	.879	.112	.002	.337	.376	.285
2A9X2	.195	.805	.092	.475	.433	.082	.519	.398	.170	.728	.102	.058	.295	.350	.297
2A9X3	.000	1.000	.000	.560	.440	.000	.595	.405	.000	.901	.099	.000	.334	.381	.285
2M0X1	.000	1.000	.000	.552	.448	.000	.563	.437	.000	.821	.179	.000	.346	.350	.303
2M0X3	.000	1.000	.000	.519	.481	.000	.533	.467	.000	.803	.197	.000	.330	.338	.332
2P0X1	.380	.620	.188	.477	.335	.156	.559	.285	.345	.574	.081	.114	.277	.394	.216
2W1X1	NA	NA	.000	1.000	.000	.000	1.000	.000	.000	.000	1.000	.000	.460	.540	.000
3D1X1	.000	1.000	.000	.639	.361	.000	.655	.345	.000	.994	.006	.000	.381	.393	.226
3D1X2	.000	1.000	.000	.588	.412	.000	.590	.410	.000	.839	.161	.000	.370	.355	.275
3D1X3	.000	1.000	.000	.541	.459	.000	.604	.396	.000	.873	.127	.000	.308	.404	.288
3D1X7	.000	1.000	.000	.819	.181	.000	.773	.227	.000	.618	.382	.000	.525	.363	.112
3E0X1	.000	1.000	.000	.674	.326	.000	.654	.346	.000	.709	.291	.000	.426	.363	.212
3E0X2	.000	1.000	.000	.471	.529	.000	.501	.499	.000	.886	.114	.000	.298	.332	.370
3E1X1	.306	.694	.172	.404	.424	.168	.417	.415	.251	.595	.154	.123	.275	.284	.319
3E4X1	.104	.896	.052	.430	.518	.047	.477	.476	.084	.772	.143	.034	.271	.329	.366
4A2X1	.000	1.000	.000	.597	.403	.000	.633	.367	.000	.839	.161	.000	.348	.400	.252

Table G.2. Nominal Weights for Content-Oriented Approach: Electronics Composite

Table G.2. (Continued)

		Compo	site 6			Compo	site 7			С	omposite	8	
AFSC	AR	WK	MK	AO	AR	PC	MK	AO	AR	WK	PC	MK	AO
1A3X1	.000	1.000	.000	.000	.000	1.000	.000	.000	.000	.505	.495	.000	.000
1C6X1	.000	.897	.000	.103	.000	.884	.000	.116	.000	.510	.425	.000	.065
1C8X3	.000	.452	.466	.082	.000	.526	.400	.074	.000	.266	.370	.307	.057
1W0X1	.000	.496	.438	.065	.000	.533	.404	.063	.000	.307	.352	.295	.046
2A0X1	.000	.561	.360	.079	.000	.574	.346	.079	.000	.350	.357	.237	.056
2A2X1	.019	.491	.434	.056	.017	.528	.400	.054	.012	.304	.351	.294	.039
2A2X2	.080	.443	.424	.053	.072	.488	.389	.051	.052	.280	.335	.296	.038
2A2X3	.039	.486	.424	.052	.035	.525	.390	.050	.024	.301	.351	.288	.036
2A3X4	.000	.526	.436	.038	.000	.560	.402	.038	.000	.321	.364	.289	.026
2A3X5	.000	.475	.432	.093	.000	.517	.395	.088	.000	.294	.347	.292	.066
2A6X2	.000	.513	.421	.066	.000	.549	.387	.064	.000	.314	.360	.280	.046
2A6X6	.000	.508	.399	.092	.000	.527	.382	.092	.000	.322	.339	.273	.067
2A8X1	.000	.535	.418	.047	.000	.567	.386	.047	.000	.326	.367	.275	.032
2A8X2	.000	.527	.428	.045	.000	.564	.392	.044	.000	.319	.369	.282	.031
2A9X1	.004	.531	.413	.052	.003	.562	.383	.051	.002	.325	.364	.273	.036
2A9X2	.085	.449	.410	.057	.076	.493	.376	.055	.054	.282	.338	.285	.041
2A9X3	.000	.535	.420	.045	.000	.570	.386	.044	.000	.324	.370	.275	.030
2M0X1	.000	.501	.406	.092	.000	.513	.394	.093	.000	.322	.329	.281	.067
2M0X3	.000	.462	.428	.110	.000	.477	.414	.109	.000	.302	.312	.304	.082
2P0X1	.178	.457	.321	.044	.148	.540	.273	.039	.109	.268	.384	.210	.030
2W1X1	.000	.815	.000	.185	.000	.835	.000	.165	.000	.407	.484	.000	.109
3D1X1	.000	.639	.360	.001	.000	.654	.345	.001	.000	.381	.393	.226	.001
3D1X2	.000	.545	.380	.075	.000	.547	.376	.078	.000	.349	.338	.259	.054
3D1X3	.000	.507	.430	.063	.000	.571	.372	.057	.000	.295	.388	.275	.042
3D1X7	.000	.725	.153	.121	.000	.668	.186	.146	.000	.480	.333	.098	.089
3E0X1	.000	.591	.280	.129	.000	.569	.293	.138	.000	.386	.331	.188	.095
3E0X2	.000	.440	.497	.063	.000	.470	.467	.062	.000	.283	.318	.353	.046
3E1X1	.151	.362	.385	.102	.146	.377	.375	.101	.110	.252	.263	.294	.080
3E4X1	.046	.391	.474	.089	.041	.438	.436	.085	.030	.252	.309	.342	.067
4A2X1	.000	.553	.373	.074	.000	.590	.339	.071	.000	.330	.381	.238	.050

Note. Nominal weights incorporate the VCV structure and effective weights for each alternative composite. Composite label refers to the ASVAB subtests comprising the alternative composite. Values of NA mean the effective weights for subtests were zero and therefore a nominal weight could not be calculated.

		Comp	osite 1	Composite 2 Composite 3 Composite 4								e 4					
AFSC	PC	WK	MK	GS	AR	PC	WK	MK	PC	WK	AO	MK	AR	PC	WK	MK	GS
1C0X2	.428	.340	.233	.000	.000	.428	.340	.233	.428	.340	.000	.233	.000	.428	.340	.233	.000
1C3X1	.449	.440	.111	.000	.000	.449	.440	.111	.449	.440	.000	.111	.000	.449	.440	.111	.000
1N0X1	.546	.454	.000	.000	.000	.546	.454	.000	.535	.443	.022	.000	.000	.546	.454	.000	.000
2G0X1	.428	.373	.199	.000	.045	.411	.359	.184	.407	.352	.055	.186	.045	.411	.359	.184	.000
2S0X1	.431	.371	.198	.000	.000	.431	.371	.198	.431	.371	.000	.198	.000	.431	.371	.198	.000
2T0X1	.499	.484	.017	.000	.000	.499	.484	.017	.499	.484	.000	.017	.000	.499	.484	.017	.000
2T2X1	.497	.503	.000	.000	.000	.497	.503	.000	.497	.503	.000	.000	.000	.497	.503	.000	.000
2T3X7	.388	.352	.259	.000	.000	.388	.352	.259	.388	.352	.000	.259	.000	.388	.352	.259	.000
3D0X1	.522	.478	.000	.000	.020	.511	.469	.000	.522	.478	.000	.000	.020	.511	.469	.000	.000
3F0X1	.538	.462	.000	.000	.000	.538	.462	.000	.538	.462	.000	.000	.000	.538	.462	.000	.000
3F5X1	.490	.510	.000	.000	.000	.490	.510	.000	.490	.510	.000	.000	.000	.490	.510	.000	.000
4A1X1	.419	.424	.156	.000	.000	.419	.424	.156	.419	.424	.000	.156	.000	.419	.424	.156	.000
4C0X1	.511	.489	.000	.000	.000	.511	.489	.000	.511	.489	.000	.000	.000	.511	.489	.000	.000
4J0X2	.477	.454	.069	.000	.000	.477	.454	.069	.462	.439	.033	.066	.000	.477	.454	.069	.000
		Co	mposit	e 5			Co	mposit	e 6				Comp	osite 7			
AFSC	PC	WK	AO	MK	GS	AR	PC	WK	AO	MK	AR	PC	WK	AO	MK	GS	
1C0X2	428					-			110	11112				110			
	.120	.340	.000	.233	.000	.000	.428	.340	.000	.233	.000	.428	.340	.000	.233	.000	
1C3X1	.449	.340	.000 .000	.233 .111	.000 .000	.000 .000	.428 .449	.340 .440	.000	.233	.000 .000	.428 .449	.340	.000 .000	.233	.000 .000	
1C3X1 1N0X1	.449	.340 .440 .443	.000 .000 .022	.233 .111 .000	.000 .000 .000	.000 .000 .000	.428 .449 .535	.340 .440 .443	.000 .000 .022	.233 .111 .000	.000 .000 .000	.428 .449 .535	.340 .440 .443	.000 .000 .022	.233 .111 .000	.000 .000 .000	
1C3X1 1N0X1 2G0X1	.449 .535 .407	.340 .440 .443 .352	.000 .000 .022 .055	.233 .111 .000 .186	.000 .000 .000 .000	.000 .000 .000 .042	.428 .449 .535 .392	.340 .440 .443 .340	.000 .000 .022 .053	.233 .111 .000 .173	.000 .000 .000 .042	.428 .449 .535 .392	.340 .440 .443 .340	.000 .000 .022 .053	.233 .111 .000 .173	.000 .000 .000 .000	
1C3X1 1N0X1 2G0X1 2S0X1	.449 .535 .407 .431	.340 .440 .443 .352 .371	.000 .000 .022 .055 .000	.233 .111 .000 .186 .198	.000 .000 .000 .000 .000	.000 .000 .000 .042 .000	.428 .449 .535 .392 .431	.340 .440 .443 .340 .371	.000 .000 .022 .053 .000	.233 .111 .000 .173 .198	.000 .000 .000 .042 .000	.428 .449 .535 .392 .431	.340 .440 .443 .340 .371	.000 .000 .022 .053 .000	.233 .111 .000 .173 .198	.000 .000 .000 .000 .000	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1	.449 .535 .407 .431 .499	.340 .440 .443 .352 .371 .484	.000 .000 .022 .055 .000 .000	.233 .111 .000 .186 .198 .017	.000 .000 .000 .000 .000	.000 .000 .000 .042 .000 .000	.428 .449 .535 .392 .431 .499	.340 .440 .443 .340 .371 .484	.000 .000 .022 .053 .000 .000	.233 .111 .000 .173 .198 .017	.000 .000 .000 .042 .000 .000	.428 .449 .535 .392 .431 .499	.340 .440 .443 .340 .371 .484	.000 .000 .022 .053 .000 .000	.233 .111 .000 .173 .198 .017	.000 .000 .000 .000 .000 .000	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1 2T2X1	.449 .535 .407 .431 .499 .497	.340 .440 .443 .352 .371 .484 .503	.000 .000 .022 .055 .000 .000 .000	.233 .111 .000 .186 .198 .017 .000	.000 .000 .000 .000 .000 .000	.000 .000 .000 .042 .000 .000	.428 .449 .535 .392 .431 .499 .497	.340 .440 .443 .340 .371 .484 .503	.000 .000 .022 .053 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000	.000 .000 .000 .042 .000 .000 .000	.428 .449 .535 .392 .431 .499 .497	.340 .440 .443 .340 .371 .484 .503	.000 .000 .022 .053 .000 .000	.233 .111 .000 .173 .198 .017 .000	.000 .000 .000 .000 .000 .000	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1 2T2X1 2T2X1 2T3X7	.449 .535 .407 .431 .499 .497 .388	.340 .440 .443 .352 .371 .484 .503 .352	.000 .000 .022 .055 .000 .000 .000	.233 .111 .000 .186 .198 .017 .000 .259	.000 .000 .000 .000 .000 .000 .000	.000 .000 .042 .000 .000 .000 .000	.428 .449 .535 .392 .431 .499 .497 .388	.340 .440 .443 .340 .371 .484 .503 .352	.000 .000 .022 .053 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259	.000 .000 .000 .042 .000 .000 .000 .000	.428 .449 .535 .392 .431 .499 .497 .388	.340 .440 .443 .340 .371 .484 .503 .352	.000 .000 .022 .053 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259	.000 .000 .000 .000 .000 .000 .000	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1	.449 .535 .407 .431 .499 .497 .388 .522	.340 .440 .443 .352 .371 .484 .503 .352 .478	.000 .000 .022 .055 .000 .000 .000 .000	.233 .111 .000 .186 .198 .017 .000 .259 .000	.000 .000 .000 .000 .000 .000 .000 .00	.000 .000 .042 .000 .000 .000 .000 .020	.428 .449 .535 .392 .431 .499 .497 .388 .511	.340 .440 .443 .340 .371 .484 .503 .352 .469	.000 .000 .022 .053 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000	.000 .000 .042 .000 .000 .000 .000 .020	.428 .449 .535 .392 .431 .499 .497 .388 .511	.340 .440 .443 .340 .371 .484 .503 .352 .469	.000 .000 .022 .053 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000	.000 .000 .000 .000 .000 .000 .000 .00	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1	.449 .535 .407 .431 .499 .497 .388 .522 .538	.340 .440 .443 .352 .371 .484 .503 .352 .478 .462	.000 .000 .022 .055 .000 .000 .000 .000	.233 .111 .000 .186 .198 .017 .000 .259 .000 .000	.000 .000 .000 .000 .000 .000 .000 .00	.000 .000 .042 .000 .000 .000 .000 .020 .000	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462	.000 .000 .022 .053 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000	.000 .000 .042 .000 .000 .000 .000 .000	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462	.000 .000 .022 .053 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000	.000 .000 .000 .000 .000 .000 .000 .00	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 3F5X1	.449 .535 .407 .431 .499 .497 .388 .522 .538 .490	.340 .440 .443 .352 .371 .484 .503 .352 .478 .462 .510	.000 .000 .022 .055 .000 .000 .000 .000	.233 .111 .000 .186 .198 .017 .000 .259 .000 .000 .000	.000 .000 .000 .000 .000 .000 .000 .00	.000 .000 .042 .000 .000 .000 .000 .020 .000 .00	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538 .490	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462 .510	.000 .000 .022 .053 .000 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000	.000 .000 .042 .000 .000 .000 .000 .020 .000 .00	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538 .490	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462 .510	.000 .000 .000 .022 .053 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000 .000	.000 .000 .000 .000 .000 .000 .000 .00	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 3F5X1 4A1X1	.449 .535 .407 .431 .499 .497 .388 .522 .538 .490 .419	.340 .440 .443 .352 .371 .484 .503 .352 .478 .462 .510 .424	.000 .000 .022 .055 .000 .000 .000 .000	.233 .111 .000 .186 .198 .017 .000 .259 .000 .000 .000 .156	.000 .000 .000 .000 .000 .000 .000 .00	.000 .000 .042 .000 .000 .000 .000 .020 .000 .00	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538 .490 .419	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462 .510 .424	.000 .000 .022 .053 .000 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000 .000 .156	.000 .000 .000 .042 .000 .000 .000 .000	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538 .490 .419	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462 .510 .424	.000 .000 .000 .022 .053 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000 .000 .156	.000 .000 .000 .000 .000 .000 .000 .00	
1C3X1 1N0X1 2G0X1 2S0X1 2T0X1 2T3X7 3D0X1 3F0X1 3F5X1 4A1X1 4C0X1	.449 .535 .407 .431 .499 .497 .388 .522 .538 .490 .419 .511	.340 .440 .443 .352 .371 .484 .503 .352 .478 .462 .510 .424 .489	.000 .000 .022 .055 .000 .000 .000 .000	.233 .111 .000 .186 .198 .017 .000 .259 .000 .000 .000 .156 .000	.000 .000 .000 .000 .000 .000 .000 .00	.000 .000 .042 .000 .000 .000 .000 .000	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538 .490 .419 .511	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462 .510 .424 .489	.000 .000 .022 .053 .000 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000 .000 .156 .000	.000 .000 .042 .000 .000 .000 .000 .000	.428 .449 .535 .392 .431 .499 .497 .388 .511 .538 .490 .419 .511	.340 .440 .443 .340 .371 .484 .503 .352 .469 .462 .510 .424 .489	.000 .000 .000 .022 .053 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000	.233 .111 .000 .173 .198 .017 .000 .259 .000 .000 .000 .156 .000	.000 .000 .000 .000 .000 .000 .000 .00	

Table G.3. Nominal Weights for Content-Oriented Approach: Administrative Composite

Note. Nominal weights incorporate the VCV structure and effective weights for each alternative composite. Composite label refers to the ASVAB subtests comprising the alternative composite.

		Comp	osite 1			Comp	osite 2			Comp	osite 3			С	omposite	e 4	
AFSC	AR	PC	WK	MK	AR	PC	WK	AO	AR	PC	WK	GS	AR	PC	WK	AO	MK
1A0X1	.000	.344	.344	.312	.000	.504	.496	.000	.000	.504	.496	.000	.000	.344	.344	.000	.312
1A2X1	.000	.413	.408	.179	.000	.505	.495	.000	.000	.505	.495	.000	.000	.413	.408	.000	.179
1A8X1	.000	.500	.500	.000	.000	.500	.500	.000	.000	.500	.500	.000	.000	.500	.500	.000	.000
1A8X2	.000	.445	.457	.098	.000	.495	.505	.000	.000	.495	.505	.000	.000	.445	.457	.000	.098
1C1X1	.000	.619	.381	.000	.000	.619	.381	.000	.000	.619	.381	.000	.000	.619	.381	.000	.000
1C2X1	.000	.465	.535	.000	.000	.465	.535	.000	.000	.465	.535	.000	.000	.465	.535	.000	.000
1C3X1	.000	.449	.440	.111	.000	.506	.494	.000	.000	.506	.494	.000	.000	.449	.440	.000	.111
1C4X1	.000	.454	.546	.000	.000	.423	.506	.070	.000	.454	.546	.000	.000	.423	.506	.070	.000
1C5X1	.000	.477	.364	.159	.000	.546	.414	.041	.000	.568	.432	.000	.000	.462	.352	.034	.152
1C7X1	.000	.487	.513	.000	.000	.487	.513	.000	.000	.487	.513	.000	.000	.487	.513	.000	.000
1N3X1	.000	.442	.558	.000	.000	.442	.558	.000	.000	.442	.558	.000	.000	.442	.558	.000	.000
1T2X1	.000	.455	.545	.000	.000	.455	.545	.000	.000	.455	.545	.000	.000	.455	.545	.000	.000
1W0X1	.000	.368	.322	.311	.000	.502	.432	.065	.000	.536	.464	.000	.000	.352	.307	.046	.295
2F0X1	.000	.447	.368	.185	.000	.550	.450	.000	.000	.550	.450	.000	.000	.447	.368	.000	.185
2R0X1	.095	.371	.280	.254	.153	.484	.364	.000	.153	.484	.364	.000	.095	.371	.280	.000	.254
2R1X1	.000	.416	.346	.238	.000	.529	.435	.036	.000	.548	.452	.000	.000	.406	.336	.027	.231
2S0X1	.000	.431	.371	.198	.000	.539	.461	.000	.000	.539	.461	.000	.000	.431	.371	.000	.198
2W0X1	.000	.416	.302	.282	.000	.581	.419	.000	.000	.581	.419	.000	.000	.416	.302	.000	.282
3D0X2	.000	.515	.485	.000	.000	.515	.485	.000	.000	.515	.485	.000	.000	.515	.485	.000	.000
3D0X4	.000	.606	.394	.000	.000	.606	.394	.000	.000	.606	.394	.000	.000	.606	.394	.000	.000
3E4X3	.000	.440	.359	.201	.000	.538	.435	.027	.000	.552	.448	.000	.000	.432	.351	.021	.196
3E5X1	.083	.328	.308	.281	.129	.415	.382	.074	.144	.444	.413	.000	.077	.311	.290	.057	.265
3E6X1	.031	.415	.313	.241	.054	.540	.407	.000	.054	.540	.407	.000	.031	.415	.313	.000	.241
3E7X1	.000	.461	.520	.019	.000	.443	.497	.060	.000	.470	.530	.000	.000	.435	.489	.059	.017
3E8X1	.000	.501	.467	.032	.000	.517	.483	.000	.000	.517	.483	.000	.000	.501	.467	.000	.032
3E9X1	.000	.496	.504	.000	.000	.496	.504	.000	.000	.496	.504	.000	.000	.496	.504	.000	.000
3F1X1	.008	.395	.313	.284	.017	.550	.433	.000	.017	.550	.433	.000	.008	.395	.313	.000	.284
3P0X1	.000	.473	.527	.000	.000	.473	.527	.000	.000	.473	.527	.000	.000	.473	.527	.000	.000
4A0X1	.026	.417	.383	.174	.038	.503	.459	.000	.038	.503	.459	.000	.026	.417	.383	.000	.174
4D0X1	.000	.555	.445	.000	.000	.555	.445	.000	.000	.555	.445	.000	.000	.555	.445	.000	.000
4Y0X1	.000	.469	.531	.000	.000	.469	.531	.000	.000	.469	.531	.000	.000	.469	.531	.000	.000
4Y0X2	.000	.424	.366	.211	.000	.538	.462	.000	.000	.538	.462	.000	.000	.424	.365	.000	.211
6F0X1	.176	.282	.220	.322	.298	.395	.307	.000	.298	.395	.307	.000	.176	.282	.220	.000	.322

Table G.4. Nominal Weights for Content-Oriented Approach: General Composite

		C	omposite	e 5		Composite 6					Composite 7					
AFSC	AR	PC	WK	MK	GS	AR	PC	WK	AO	GS	AR	PC	WK	AO	MK	GS
1A0X1	.000	.344	.344	.312	.000	.000	.504	.496	.000	.000	.000	.344	.344	.000	.312	.000
1A2X1	.000	.413	.408	.179	.000	.000	.505	.495	.000	.000	.000	.413	.408	.000	.179	.000
1A8X1	.000	.500	.500	.000	.000	.000	.500	.500	.000	.000	.000	.500	.500	.000	.000	.000
1A8X2	.000	.445	.457	.098	.000	.000	.495	.505	.000	.000	.000	.445	.457	.000	.098	.000
1C1X1	.000	.619	.381	.000	.000	.000	.619	.381	.000	.000	.000	.619	.381	.000	.000	.000
1C2X1	.000	.465	.535	.000	.000	.000	.465	.535	.000	.000	.000	.465	.535	.000	.000	.000
1C3X1	.000	.449	.440	.111	.000	.000	.506	.494	.000	.000	.000	.449	.440	.000	.111	.000
1C4X1	.000	.454	.546	.000	.000	.000	.423	.506	.070	.000	.000	.423	.506	.070	.000	.000
1C5X1	.000	.477	.364	.159	.000	.000	.546	.414	.041	.000	.000	.462	.352	.034	.152	.000
1C7X1	.000	.487	.513	.000	.000	.000	.487	.513	.000	.000	.000	.487	.513	.000	.000	.000
1N3X1	.000	.442	.558	.000	.000	.000	.442	.558	.000	.000	.000	.442	.558	.000	.000	.000
1T2X1	.000	.455	.545	.000	.000	.000	.455	.545	.000	.000	.000	.455	.545	.000	.000	.000
1W0X1	.000	.368	.322	.311	.000	.000	.502	.432	.065	.000	.000	.352	.307	.046	.295	.000
2F0X1	.000	.447	.368	.185	.000	.000	.550	.450	.000	.000	.000	.447	.368	.000	.185	.000
2R0X1	.095	.371	.280	.254	.000	.153	.484	.364	.000	.000	.095	.371	.280	.000	.254	.000
2R1X1	.000	.416	.346	.238	.000	.000	.529	.435	.036	.000	.000	.406	.336	.027	.231	.000
2S0X1	.000	.431	.371	.198	.000	.000	.539	.461	.000	.000	.000	.431	.371	.000	.198	.000
2W0X1	.000	.416	.302	.282	.000	.000	.581	.419	.000	.000	.000	.416	.302	.000	.282	.000
3D0X2	.000	.515	.485	.000	.000	.000	.515	.485	.000	.000	.000	.515	.485	.000	.000	.000
3D0X4	.000	.606	.394	.000	.000	.000	.606	.394	.000	.000	.000	.606	.394	.000	.000	.000
3E4X3	.000	.440	.359	.201	.000	.000	.538	.435	.027	.000	.000	.432	.351	.021	.196	.000
3E5X1	.083	.328	.308	.281	.000	.129	.415	.382	.074	.000	.077	.311	.290	.057	.265	.000
3E6X1	.031	.415	.313	.241	.000	.054	.540	.407	.000	.000	.031	.415	.313	.000	.241	.000
3E7X1	.000	.461	.520	.019	.000	.000	.443	.497	.060	.000	.000	.435	.489	.059	.017	.000
3E8X1	.000	.501	.467	.032	.000	.000	.517	.483	.000	.000	.000	.501	.467	.000	.032	.000
3E9X1	.000	.496	.504	.000	.000	.000	.496	.504	.000	.000	.000	.496	.504	.000	.000	.000
3F1X1	.008	.395	.313	.284	.000	.017	.550	.433	.000	.000	.008	.395	.313	.000	.284	.000
3P0X1	.000	.473	.527	.000	.000	.000	.473	.527	.000	.000	.000	.473	.527	.000	.000	.000
4A0X1	.026	.417	.383	.174	.000	.038	.503	.459	.000	.000	.026	.417	.383	.000	.174	.000
4D0X1	.000	.555	.445	.000	.000	.000	.555	.445	.000	.000	.000	.555	.445	.000	.000	.000
4Y0X1	.000	.469	.531	.000	.000	.000	.469	.531	.000	.000	.000	.469	.531	.000	.000	.000
4Y0X2	.000	.424	.366	.211	.000	.000	.538	.462	.000	.000	.000	.424	.366	.000	.211	.000
6EOV1	176	202	220	222	000	200	205	207	000	000	176	202	220	000	222	000

Table G.4. (Continued)

6F0X1.176.282.220.322.000.298.395.307.000.000.176.282.220.000.322.000Note. Nominal weights incorporate the VCV structure and effective weights for each alternative composite. Composite label refers to the ASVAB subtests comprising the alternative composite.

AFSC	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK
1C2X1	.206	.195	.207	.196
1C7X1	.229	.217	.230	.218
1P0X1	.278	.327	.279	.328
2A3X8	.530	.565	.520	.566
2A5X1	.214	.301	.218	.302
2A5X4	.287	.400	.284	.397
2A6X1	.292	.368	.283	.358
2A6X2	.287	.405	.295	.408
2A6X3	.096	.158	.116	.174
2A6X4	.213	.341	.219	.345
2A6X5	.222	.322	.206	.304
2A6X6	.282	.284	.286	.379
2A7X1	.191	.271	.134	.224
2A7X2	.364	.500	.365	.501
2A7X3	.277	.386	.267	.373
2A7X5	.245	.342	.211	.313
2F0X1	.246	.315	.247	.316
2M0X2	.293	.371	.277	.360
2T1X1	.272	.285	.274	.286
2T2X1	.303	.287	.304	.288
2T3X1	.135	.191	.124	.176
2W0X1	.332	.441	.333	.442
2W1X1	.343	.327	.321	.305
2W2X1	.245	.289	.255	.295
3D1X7	.268	.299	.258	.285
3E0X1	.347	.451	.323	.413
3E0X2	.218	.318	.232	.324
3E1X1	.412	.489	.384	.458
3E2X1	.233	.323	.191	.277
3E3X1	.225	.327	.206	.299
3E4X1	.321	.397	.298	.276
3E8X1	.047	.045	.048	.045
4A2X1	.264	.333	.277	.341

Table G.5. Predictive Validity for Content-Oriented Approach: Mechanical Composite

Note. Validities reported are corrected correlations between the composite and the training grade criterion.

AFSC	AR+MK	AR+MK+WK	AR+MK+PC	AR+MK+AO	AR+MK+PC+WK	AR+MK+AO+WK	AR+MK+AO+PC	AR+MK+AO+PC+WK
1A3X1	NA	.218	.296	NA	.301	.219	.298	.302
1C6X1	NA	.151	.181	.023	.183	.148	.168	.178
1C8X3	.319	.418	.407	.457	.392	.409	.394	.385
1W0X1	.321	.432	.441	.478	.450	.437	.443	.451
2A0X1	.201	.302	.305	.290	.390	.296	.296	.296
2A2X1	.302	.334	.382	.396	.337	.320	.357	.324
2A2X2	.325	.425	.480	.479	.437	.432	.474	.439
2A2X3	.297	.371	.431	.410	.396	.371	.433	.400
2A3X4	.254	.385	.393	.389	.385	.384	.390	.382
2A3X5	.247	.401	.382	.306	.397	.358	.350	.371
2A6X2	.276	.409	.376	.390	.405	.407	.378	.408
2A6X6	.239	.401	.354	.339	.384	.389	.345	.379
2A8X1	.240	.314	.145	.417	.243	.306	.298	.256
2A8X2	.099	.273	.345	.166	.338	.268	.349	.337
2A9X1	.206	.416	.307	.321	.368	.415	.301	.364
2A9X2	.331	.511	.521	.426	.516	.479	.476	.488
2A9X3	.175	.266	.207	.280	.227	.268	.224	.236
2M0X1	.264	.445	.427	.393	.441	.422	.414	.429
2M0X3	.289	.438	.383	.337	.402	.365	.318	.351
2P0X1	.479	.553	.512	.629	.508	.539	.508	.502
2W1X1	NA	.281	.271	.029	.327	.239	.237	.305
3D1X1	.214	.239	.261	.320	.242	.240	.263	.242
3D1X2	.131	.256	.251	.199	.258	.246	.236	.249
3D1X3	.257	.406	.382	.375	.393	.400	.378	.389
3D1X7	.265	.295	.281	.179	.299	.278	.234	.285
3E0X1	.396	.437	.474	.276	.451	.374	.381	.412
3E0X2	.210	.287	.324	.332	.318	.297	.329	.325
3E1X1	.381	.527	.458	.463	.489	.475	.415	.458
3E4X1	.246	.385	.352	.336	.397	.361	.329	.376
4A2X1	.269	.331	.333	.405	.333	.344	.339	.341

Table G.6. Predictive Validity for Content-Oriented Approach: Electronics Composite

Note. Validities reported are corrected correlations between the composite and the training grade criterion. Values of NA reflect composites where it was not possible to calculate a nominal weight and therefore, a validity estimate.

AFSC	MK+PC+WK+GS	MK+PC+WK+AR	MK+PC+WK+AO	MK+PC+WK+AR+GS	MK+PC+WK+AO+GS	MK+PC+WK+	MK+PC+WK+AO+
1C0X2	.390	.390	.390	.390	.390	.390	.390
1C3X1	.340	.340	.340	.340	.340	.340	.340
1N0X1	.360	.360	.360	.360	.360	.360	.360
2G0X1	.310	.310	.270	.310	.270	.280	.280
2S0X1	.310	.310	.310	.310	.310	.310	.310
2T0X1	.230	.230	.230	.230	.230	.230	.230
2T2X1	.280	.280	.290	.280	.290	.290	.290
2T3X7	.280	.280	.280	.280	.280	.280	.280
3D0X1	.190	.190	.180	.190	.180	.190	.190
3F0X1	.100	.100	.100	.100	.100	.100	.100
3F5X1	.160	.160	.160	.160	.160	.160	.160
4A1X1	.240	.240	.240	.240	.240	.240	.240
4C0X1	.380	.380	.380	.380	.380	.380	.380
4J0X2	.420	.420	.440	.420	.440	.440	.440

Table G.7. Predictive Validity for Content-Oriented Approach: Administrative Composite

Note. Validities reported are corrected correlations between the composite and the training grade criterion.

AESC				AR+PC+WK+AO+	AR+PC+WK+GS+	AR+PC+WK+AO+	AR+PC+WK+AO+
Arse		AK+FC+WK+AU	AKTICTWKT03	MK	MK	GS	GS+MK
1A0X1	.410	.340	.340	.410	.410	.340	.410
1A2X1	.220	.160	.160	.220	.220	.160	.220
1A8X1	.080	.080	.080	.080	.080	.080	.080
1A8X2	.320	.290	.290	.320	.320	.290	.320
1C1X1	.240	.250	.250	.240	.240	.250	.240
1C2X1	.190	.210	.210	.190	.190	.210	.190
1C3X1	.340	.310	.310	.340	.340	.310	.340
1C4X1	.190	.190	.200	.180	.190	.190	.180
1C5X1	.260	.210	.210	.250	.260	.210	.250
1C7X1	.220	.230	.220	.220	.220	.230	.220
1N3X1	.120	.130	.130	.120	.120	.130	.120
1T2X1	.080	.090	.090	.080	.080	.090	.080
1W0X1	.450	.320	.310	.450	.450	.320	.450
2F0X1	.320	.250	.250	.320	.320	.240	.320
2R0X1	.450	.360	.360	.440	.440	.360	.440
2R1X1	.220	.160	.140	.240	.230	.160	.240
2S0X1	.310	.210	.210	.310	.310	.210	.310
2W0X1	.440	.330	.330	.440	.440	.330	.440
3D0X2	.300	.320	.320	.300	.300	.320	.300
3D0X4	.250	.260	.260	.250	.250	.260	.250
3E4X3	.390	.290	.280	.390	.390	.290	.390
3E5X1	.290	.260	.250	.250	.290	.260	.290
3E6X1	.290	.220	.220	.290	.290	.220	.290
3E7X1	.370	.400	.380	.390	.370	.400	.390
3E8X1	.050	.050	.050	.050	.050	.050	.050
3E9X1	.210	.220	.220	.210	.210	.220	.210
3F1X1	.400	.270	.270	.400	.400	.270	.400
3P0X1	.350	.370	.370	.350	.350	.370	.350
4A0X1	.430	.360	.360	.430	.430	.360	.430
4D0X1	.310	.330	.330	.310	.310	.330	.310
4Y0X1	.290	.310	.310	.290	.290	.310	.290
4Y0X2	.150	.080	.080	.150	.150	.080	.150
6F0X1	.400	.340	.340	.400	.400	.340	.400

Table G.8. Predictive Validity for Content-Oriented Approach: General Composite

Note. Validities reported are corrected correlations between the composite and the training grade criterion.

APPENDIX H – OPTIMAL WEIGHTING PREDICTIVE VALIDITY RESULTS BY AFS

Table H.1. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for Mechanical Composite	12020
Table H.2. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for Mechanical Composite	12121
Table H.3. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for Electronics Composite	12222
Table H.4. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for Electronics Composite	12323
Table H.5. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for Administrative Composition	te12424
Table H.6. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for Administrative Composite	12525
Table H.7. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for General Composite	12626
Table H.8. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for General Composite	12727

		Criterion		Predictive Validity							
AFSC	Sample Size	Mean	Criterion SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK			
1C2X1	412	86.330	10.274	.218	.202	.243	.206	.246			
1C7X1	662	84.760	5.798	.440	.413	.434	.415	.437			
1P0X1	1,618	89.518	5.156	.489	.441	.458	.444	.461			
2A3X8	125	87.560	5.576	.550	.494	.507	.494	.507			
2A5X1	1,306	87.394	6.706	.480	.386	.387	.386	.387			
2A5X2B	420	90.719	5.325	.392	.368	.369	.369	.370			
2A5X2D	198	88.167	5.056	.364	.260	.265	.276	.281			
2A5X4	772	86.522	5.801	.602	.495	.504	.495	.504			
2A6X1	4,369	87.674	5.456	.479	.398	.404	.399	.405			
2A6X2	3,197	87.927	4.555	.575	.513	.521	.514	.522			
2A6X3	485	87.186	5.022	.371	.304	.320	.315	.331			
2A6X4	1,799	88.511	5.297	.504	.433	.445	.434	.447			
2A6X5	1,738	88.639	5.193	.464	.404	.411	.404	.412			
2A6X6	3,001	90.530	4.832	.595	.527	.542	.529	.543			
2A7X1	576	88.186	9.720	.280	.277	.283	.281	.287			
2A7X2	676	88.175	5.023	.521	.493	.519	.494	.519			
2A7X3	2,138	89.122	5.023	.532	.474	.478	.475	.479			
2A7X5	385	87.844	5.289	.545	.437	.444	.440	.446			
2F0X1	2,876	89.605	5.253	.445	.399	.415	.399	.415			
2M0X2	419	93.200	3.030	.456	.422	.434	.426	.437			
2T1X1	1,544	86.622	4.857	.462	.430	.439	.431	.439			
2T2X1	3,921	88.046	5.371	.478	.458	.476	.458	.476			
2T3X1	1,482	88.653	5.607	.448	.326	.328	.327	.329			
2T3X1A	219	87.082	5.536	.421	.344	.348	.345	.349			
2T3X1C	250	92.288	4.860	.389	.343	.346	.357	.359			
2W0X1	5,577	89.584	4.847	.487	.460	.478	.460	.478			
2W1X1	5,459	89.296	4.600	.503	.454	.465	.454	.465			
2W2X1	587	93.204	2.899	.513	.434	.439	.435	.440			
3D1X7	475	90.686	3.945	.529	.464	.470	.464	.470			
3E0X1	1,044	87.810	4.996	.577	.529	.552	.529	.553			
3E0X2	1,124	86.716	4.519	.564	.457	.461	.461	.465			
3E1X1	1,151	88.662	4.441	.512	.454	.465	.454	.465			
3E2X1	1,276	89.837	4.428	.459	.420	.422	.420	.422			
3E3X1	786	86.615	4.947	.475	.429	.431	.429	.431			
3E4X1	1,250	88.850	4.665	.539	.480	.482	.480	.482			
3E8X1	231	93.857	4.873	.410	.327	.328	.329	.330			
4A2X1	216	90.463	3.266	.473	.372	.436	.441	.495			

Table H.1. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for Mechanical Composite

120

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

AFRO	G 1 G	Criterion	Criterion	rion Predictive Validity								
AFSC	Sample Size	Mean	SD	Current Composite	AR+PC+WK	AR+PC+WK+MK	AR+PC+WK+AO	AR+PC+WK+AO+MK				
1C2X1	171	39.001	13.617	.143	.125	.126	.138	.138				
1C7X1	423	36.392	15.833	.148	.122	.125	.131	.134				
1P0X1	927	34.257	17.031	.060	.049	.106	.081	.124				
2A3X3	2,910	37.026	16.002	.114	.073	.074	.091	.092				
2A3X3L	234	32.007	16.407	.219	.161	.161	.162	.162				
2A3X3M	199	33.017	14.874	.148	.068	.104	.069	.105				
2A3X7	137	32.767	15.820	.205	.205	.257	.220	.269				
2A5X1	4,204	37.746	15.227	.139	.100	.101	.107	.108				
2A5X2B	239	37.542	15.420	.235	.076	.078	.107	.108				
2A5X2D	101	36.480	15.023	.335	.305	.327	.305	.327				
2A5X4	572	33.235	15.445	.097	.060	.077	.063	.079				
2A6X1	2,421	37.066	15.553	.099	.047	.048	.079	.079				
2A6X2	1,918	36.398	15.789	.150	.056	.057	.089	.090				
2A6X3	272	38.242	14.798	.097	.082	.083	.099	.100				
2A6X4	1,050	35.059	16.350	.157	.097	.098	.099	.099				
2A6X5	963	37.446	14.881	.130	.097	.099	.103	.105				
2A6X6	1,705	38.530	14.518	.137	.086	.086	.094	.094				
2A7X1	310	36.147	15.558	.127	.056	.057	.081	.082				
2A7X2	393	35.815	16.215	.143	.141	.148	.142	.149				
2A7X3	1,227	36.630	15.903	.155	.087	.090	.105	.108				
2A7X5	184	35.638	15.395	.272	.188	.189	.197	.198				
2F0X1	1,688	37.350	15.273	.096	.039	.042	.057	.059				
2M0X2	219	34.673	15.905	.226	.201	.201	.225	.225				
2T1X1	1,249	36.044	16.035	.084	.045	.046	.046	.047				
2T2X1	2,350	38.053	14.751	.054	.019	.019	.035	.035				
2T3X1	739	37.104	15.500	.077	.018	.043	.024	.046				
2T3X1A	104	37.471	15.572	.227	.142	.157	.148	.163				
2T3X1C	136	36.185	15.275	.138	.113	.121	.133	.141				
2W0X1	3,122	35.886	15.918	.117	.087	.088	.099	.099				
2W1X1	3,166	37.169	15.346	.091	.043	.058	.051	.064				
2W2X1	356	37.339	15.202	.071	.058	.106	.059	.106				
3D1X7	222	37.599	15.038	.113	.073	.119	.101	.139				
3E0X1	571	38.550	14.440	.104	.102	.102	.115	.115				
3E0X2	639	38.363	14.539	.104	.059	.060	.110	.110				
3E1X1	641	38.008	14.576	.067	.056	.057	.059	.060				
3E2X1	832	37.806	15.087	.135	.106	.119	.116	.129				
3E3X1	687	38.351	14.267	.113	.104	.108	.105	.109				
3E4X1	644	37.186	14.982	.129	.082	.084	.087	.088				
3E8X1	216	41.742	11.795	.247	.224	.228	.249	.252				
4A2X1	218	39.972	13.385	.176	.140	.146	.161	.167				

Table H.2. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for Mechanical Composite

Note. Validities reported are multiple Rs for the composite predicting the criterion. SD = standard deviation.

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

Predictive V									edictive Validity					
AFSC	Sample	Moon	Criterion	Current	AR+MK	AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO		
	Size	Mean	5D	Composite		+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK		
1A3X1	1,177	92.981	3.930	.346	.316	.354	.386	.317	.392	.355	.386	.392		
1C6X1	733	92.035	4.309	.318	.269	.298	.296	.270	.307	.298	.297	.307		
1C8X3	942	89.162	4.875	.367	.344	.375	.378	.350	.388	.378	.382	.391		
1W0X1	1,960	89.006	4.886	.537	.470	.516	.512	.475	.530	.519	.515	.532		
2A0X1	904	88.894	5.194	.410	.348	.403	.386	.356	.412	.407	.392	.416		
2A2X1	225	90.493	3.800	.659	.533	.577	.581	.537	.596	.579	.584	.598		
2A2X2	168	91.149	3.965	.499	.407	.432	.467	.418	.469	.440	.475	.477		
2A2X3	138	87.630	4.128	.393	.385	.395	.429	.386	.429	.395	.429	.429		
2A3X4	1,312	89.843	4.365	.489	.422	.453	.464	.422	.472	.453	.464	.472		
2A3X5	1,022	90.824	4.476	.468	.381	.417	.412	.381	.427	.417	.412	.427		
2A6X2	3,197	87.927	4.555	.550	.449	.510	.495	.452	.522	.511	.496	.523		
2A6X6	3,001	90.530	4.832	.597	.483	.536	.521	.487	.546	.538	.523	.547		
2A8X1	260	90.408	3.756	.295	.234	.288	.290	.235	.308	.291	.292	.311		
2A8X2	275	90.822	4.151	.496	.395	.445	.482	.395	.490	.445	.482	.490		
2A9X1	142	90.261	3.494	.556	.382	.440	.446	.384	.464	.440	.447	.464		
2A9X2	133	90.782	4.427	.418	.371	.434	.450	.380	.467	.446	.461	.479		
2A9X3	234	88.103	4.285	.509	.401	.479	.445	.405	.486	.480	.448	.488		
2M0X1	602	91.945	4.215	.525	.451	.526	.521	.460	.549	.530	.527	.552		
2M0X3	328	91.546	3.871	.412	.345	.408	.373	.349	.411	.410	.376	.413		
2P0X1	649	87.664	5.252	.624	.541	.583	.577	.541	.595	.584	.577	.595		
2W1X1	5,459	89.296	4.600	.492	.401	.451	.445	.402	.465	.451	.445	.465		
3D1X1	569	87.775	4.612	.219	.184	.250	.261	.185	.278	.252	.262	.280		
3D1X2	334	87.955	6.772	.312	.179	.272	.255	.192	.290	.286	.266	.303		
3D1X3	2,539	88.917	4.718	.460	.385	.438	.431	.387	.452	.439	.431	.453		
3D1X7	475	90.686	3.945	.522	.407	.470	.438	.408	.474	.470	.438	.474		
3E0X1	1,044	87.810	4.996	.587	.512	.543	.547	.512	.557	.543	.547	.557		
3E0X2	1,124	86.716	4.519	.530	.420	.448	.459	.426	.467	.452	.463	.470		
3E1X1	1,151	88.662	4.441	.495	.408	.453	.440	.409	.461	.453	.440	.461		
3E4X1	1,250	88.850	4.665	.521	.401	.463	.457	.402	.481	.463	.457	.481		
4A2X1	216	90.463	3.266	.340	.286	.345	.326	.388	.354	.424	.413	.431		

Table H.3. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for Electronics Composite

	G 1	o :. ·	<u> </u>					Predictive V	alidity			
AFSC	Sample	Criterion	Criterion	Current	AR+MK	AR+MK	AR+MK	AR+MK	AR+MK+	AR+MK+	AR+MK+	AR+MK+AO
	Size	Wiean	5D	Composite		+WK	+PC	+AO	PC+WK	AO+WK	AO+PC	+PC+WK
1A3X1	705	39.513	14.083	.082	.048	.048	.058	.070	.059	.070	.076	.077
1C6X1	431	37.765	14.718	.133	.008	.018	.094	.100	.098	.103	.140	.141
1C8X3	548	37.467	14.525	.109	.043	.045	.050	.051	.057	.054	.057	.064
1U0X1	320	39.813	13.345	.227	.094	.105	.154	.095	.155	.105	.154	.155
1W0X1	1,134	39.606	13.689	.137	.120	.134	.127	.121	.135	.135	.128	.136
2A0X1	525	38.507	13.990	.128	.093	.117	.094	.096	.128	.121	.097	.132
2A3X4	767	36.269	15.873	.256	.236	.243	.236	.238	.244	.244	.238	.245
2A3X5	609	39.827	13.936	.159	.135	.147	.150	.136	.154	.147	.151	.154
2A6X2	1,918	36.398	15.789	.110	.062	.062	.062	.093	.062	.093	.093	.093
2A6X6	1,705	38.530	14.518	.075	.052	.055	.080	.065	.081	.066	.088	.089
2A8X2	113	35.932	13.748	.282	.268	.273	.277	.312	.278	.319	.322	.324
2A9X3	104	37.033	13.811	.711	.424	.484	.481	.426	.503	.484	.481	.503
2M0X1	358	38.091	14.505	.158	.056	.065	.062	.077	.066	.082	.080	.083
2M0X3	187	35.497	15.693	.122	.099	.099	.101	.103	.102	.103	.105	.106
2P0X1	390	38.949	14.793	.223	.043	.097	.051	.073	.098	.110	.077	.111
2W1X1	3,166	37.169	15.346	.052	.039	.049	.041	.047	.057	.056	.048	.063
3D1X1	999	39.498	13.614	.158	.143	.146	.144	.147	.148	.150	.147	.152
3D1X2	1,118	39.481	13.135	.132	.043	.046	.064	.059	.064	.061	.076	.076
3D1X3	1,471	39.003	14.411	.101	.050	.056	.052	.082	.056	.084	.082	.084
3D1X7	222	37.599	15.038	.110	.108	.109	.124	.127	.125	.128	.142	.142
3E0X1	571	38.550	14.440	.084	.011	.100	.016	.063	.106	.113	.063	.119
3E0X2	639	38.363	14.539	.115	.063	.066	.063	.113	.068	.114	.114	.115
3E1X1	641	38.008	14.576	.047	.047	.049	.048	.052	.049	.054	.053	.054
3E4X1	644	37.186	14.982	.098	.044	.082	.058	.055	.082	.086	.065	.087
4A2X1	218	39.972	13.385	.199	.135	.164	.139	.153	.164	.183	.158	.183

123

Table H.4. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for Electronics Composite

	Samula	Cuitanian	Criterion				Pred	ictive Validity			
AFSC	Sample	Mean	SD	Current	MK+PC+W	MK+PC+	MK+PC+	MK+PC+WK	MK+PC+WK	MK+PC+WK	MK+PC+WK+
	5126	Ivicali	50	Composite	K+GS	WK+AR	WK+AO	+AR+GS	+AO+GS	+AO+AR	AO+AR+GS
1C0X2	1,469	85.978	6.449	.384	.385	.397	.385	.397	.385	.397	.397
1C3X1	818	86.995	5.672	.387	.389	.400	.388	.400	.389	.400	.401
1N0X1	2,460	88.338	4.907	.470	.472	.480	.470	.481	.472	.480	.481
1N2X1A	522	91.128	4.503	.502	.511	.529	.503	.534	.512	.529	.534
1N2X1C	434	91.461	3.776	.353	.358	.373	.357	.382	.362	.375	.384
2G0X1	405	87.252	6.088	.327	.327	.362	.327	.365	.328	.364	.367
2S0X1	5,350	88.084	5.726	.422	.425	.428	.423	.430	.427	.429	.431
2T0X1	1,475	87.099	5.544	.463	.466	.477	.464	.478	.466	.478	.478
2T2X1	3,921	88.046	5.371	.459	.474	.474	.459	.484	.474	.474	.484
2T3X7	452	87.522	6.360	.455	.455	.470	.455	.470	.456	.471	.471
3D0X1	3,618	85.981	6.009	.355	.356	.363	.355	.363	.356	.363	.364
3F0X1	3,197	88.626	6.274	.313	.313	.327	.319	.327	.320	.331	.331
3F5X1	353	88.805	5.793	.281	.288	.298	.298	.308	.304	.311	.320
4A1X1	610	82.910	5.719	.430	.431	.436	.430	.436	.431	.436	.436
4C0X1	396	87.634	5.047	.560	.560	.561	.560	.561	.560	.561	.561
4J0X2	143	85.441	5.212	.586	.593	.589	.594	.595	.601	.596	.603

Table H.5. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for Administrative Composite

	Sample	Critarian	Criterion	Predictive Validity										
AFSC	Sample	Mean	SD	Current	MK+PC+W	MK+PC+W	MK+PC+W	MK+PC+W	MK+PC+W	MK+PC+W	MK+PC+WK+			
	Size	Ivicali	50	Composite	K+GS	K+AR	K+AO	K+AR+GS	K+AO+GS	K+AO+AR	AO+AR+GS			
1C0X2	828	34.953	16.379	.099	.105	.101	.103	.107	.108	.104	.109			
1C3X1	470	35.578	15.819	.069	.108	.091	.069	.131	.108	.091	.131			
1N0X1	1,420	39.302	13.810	.057	.074	.086	.098	.095	.111	.114	.122			
1N2X1A	577	40.412	13.682	.082	.151	.156	.089	.189	.153	.162	.193			
1N2X1C	235	38.154	14.321	.097	.119	.149	.098	.158	.120	.152	.160			
2G0X1	231	37.502	15.653	.046	.046	.100	.049	.100	.049	.103	.104			
2S0X1	3,101	37.186	15.534	.051	.068	.052	.051	.070	.069	.052	.071			
2T0X1	807	36.655	15.805	.137	.139	.137	.167	.139	.170	.167	.170			
2T2X1	2,350	38.053	14.751	.026	.037	.026	.039	.037	.046	.039	.046			
2T3X7	228	31.447	17.415	.160	.162	.160	.203	.162	.205	.204	.205			
3D0X1	2,112	35.907	16.473	.073	.074	.076	.116	.077	.116	.119	.120			
3F0X1	1,530	34.633	16.421	.077	.083	.077	.084	.085	.090	.084	.090			
4A1X1	484	38.630	14.748	.091	.103	.102	.094	.116	.105	.105	.120			
4C0X1	491	33.993	16.313	.188	.188	.196	.191	.197	.191	.199	.199			
4E0X1	575	36.719	15.336	.080	.132	.081	.125	.133	.161	.126	.161			
4J0X2	140	37.780	15.216	.286	.293	.296	.295	.305	.300	.302	.310			
4M0X1	136	35.817	16.168	.237	.238	.251	.252	.255	.253	.263	.266			
4N1X1	331	36.608	15.298	.075	.076	.112	.092	.115	.093	.128	.131			
4P0X1	408	35.754	15.787	.099	.099	.100	.164	.101	.165	.167	.169			

Table H.6. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for Administrative Composite

	G 1	<u> </u>	<u> </u>				Pre	dictive Validity			
AFSC	Sample	Criterion	Criterion	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
	Size	Mean	SD	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
1A0X1	364	94.676	2.987	.446	.447	.447	.446	.448	.447	.447	.448
1A2X1	887	94.379	3.009	.307	.348	.310	.324	.351	.360	.328	.363
1A8X1	1,316	89.477	6.544	.084	.099	.090	.093	.105	.108	.099	.114
1A8X2	260	91.800	3.416	.669	.671	.673	.670	.675	.671	.674	.675
1C1X1	2,644	86.419	6.633	.373	.385	.375	.377	.386	.387	.378	.389
1C2X1	412	86.330	10.274	.174	.225	.177	.207	.227	.246	.209	.247
1C3X1	818	86.995	5.672	.370	.390	.371	.372	.390	.390	.372	.390
1C4X1	873	84.427	9.102	.258	.260	.260	.281	.261	.282	.282	.282
1C5X1	902	87.541	5.920	.407	.424	.408	.438	.425	.450	.438	.451
1C7X1	662	84.760	5.798	.403	.426	.405	.409	.428	.430	.412	.432
1N1X1A	2,205	88.671	4.237	.472	.483	.478	.488	.489	.497	.495	.504
1N3X1	2,476	88.181	6.220	.191	.192	.193	.196	.194	.197	.198	.199
1N4X1A	917	93.529	3.442	.488	.513	.491	.498	.516	.519	.501	.523
1N4X1B	448	91.366	3.544	.541	.554	.543	.542	.556	.555	.544	.557
1T2X1	356	82.253	10.926	.160	.162	.164	.165	.166	.167	.168	.170
1W0X1	1,960	89.006	4.886	.537	.549	.539	.553	.551	.562	.556	.565
2F0X1	2,876	89.605	5.253	.395	.411	.395	.413	.412	.426	.414	.426
2R0X1	507	88.363	5.214	.393	.423	.394	.393	.423	.423	.394	.423
2R1X1	702	87.152	5.306	.379	.387	.381	.380	.388	.388	.382	.390
2S0X1	5,350	88.084	5.726	.378	.425	.379	.383	.426	.427	.384	.428
2W0X1	5,577	89.584	4.847	.459	.477	.459	.475	.477	.489	.475	.490
3D0X2	227	86.264	6.118	.480	.481	.481	.492	.482	.492	.492	.493
3D0X4	248	89.375	4.997	.136	.266	.189	.206	.295	.297	.249	.327
3E4X3	175	90.389	4.706	.392	.428	.392	.505	.428	.524	.506	.526
3E5X1	629	86.409	7.128	.269	.287	.269	.291	.287	.305	.291	.305
3E6X1	383	86.794	5.677	.384	.407	.384	.392	.407	.412	.392	.412
3E7X1	3,384	89.158	3.926	.500	.500	.503	.522	.504	.522	.526	.526
3E8X1	231	93.857	4.873	.273	.274	.274	.290	.275	.291	.292	.292
3E9X1	162	87.747	5.429	.485	.500	.485	.528	.500	.537	.528	.537
3F1X1	3,751	84.073	5.988	.400	.436	.400	.403	.436	.437	.404	.437
3P0X1	29,141	82.911	5.913	.503	.520	.503	.514	.521	.529	.514	.529
4A0X1	1,383	85.205	5.307	.473	.493	.474	.479	.494	.497	.480	.497
4D0X1	164	81.463	5.454	.584	.612	.599	.585	.626	.612	.600	.626
4Y0X1	1,029	84.114	5.716	.467	.489	.468	.476	.490	.495	.477	.496
4Y0X2	128	87.430	4.576	.435	.441	.436	.435	.442	.441	.436	.442
6C0X1	1,118	85.125	5.859	.560	.578	.562	.561	.580	.578	.563	.580
6F0X1	1,804	89.256	5.253	.394	.420	.406	.395	.431	.422	.407	.433

Table H.7. Optimally Weighted Predictive Validity Results for Training Grade Criterion by AFS for General Composite

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

	G 1	a :	a :. :				Pre	dictive Validity			
AFSC	Sample	Criterion	Criterion	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
	Size	Mean	SD	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
1A0X1	268	39.461	13.138	.290	.305	.290	.305	.305	.322	.305	.322
1A2X1	792	39.107	13.625	.057	.067	.140	.060	.144	.068	.142	.146
1A8X1	724	38.872	12.952	.118	.120	.119	.131	.121	.132	.133	.134
1A8X2	158	40.750	12.041	.202	.225	.296	.205	.311	.229	.296	.313
1C1X1	2,355	38.750	14.935	.058	.065	.069	.058	.074	.065	.069	.075
1C2X1	171	39.001	13.617	.062	.062	.081	.104	.081	.104	.114	.114
1C3X1	470	35.578	15.819	.087	.089	.087	.129	.089	.132	.129	.133
1C4X1	478	42.031	12.064	.054	.054	.054	.096	.054	.096	.096	.096
1C5X1	538	38.742	14.606	.094	.098	.102	.102	.105	.105	.110	.112
1C7X1	423	36.392	15.833	.136	.138	.145	.137	.147	.139	.145	.148
1N1X1A	1,288	39.158	13.733	.088	.088	.093	.088	.093	.088	.093	.093
1N3X1	1,504	40.865	12.509	.199	.199	.201	.200	.201	.200	.202	.203
1N4X1A	514	41.391	12.601	.129	.143	.132	.144	.147	.160	.149	.164
1N4X1B	162	36.505	14.494	.364	.365	.366	.364	.367	.365	.366	.367
1T0X1	108	40.727	14.349	.186	.222	.202	.200	.236	.231	.214	.243
1T2X1	125	34.618	14.673	.332	.394	.335	.338	.396	.396	.340	.398
1U0X1	320	39.813	13.345	.107	.145	.107	.140	.145	.177	.140	.177
1W0X1	1,134	39.606	13.689	.145	.145	.145	.146	.146	.146	.147	.147
2F0X1	1,688	37.350	15.273	.038	.042	.056	.042	.058	.046	.058	.061
2R0X1	299	36.729	15.528	.159	.159	.159	.162	.159	.162	.162	.162
2R1X1	414	34.656	16.754	.113	.163	.114	.117	.164	.168	.118	.169
2S0X1	3,101	37.186	15.534	.047	.049	.048	.068	.049	.068	.069	.069
2W0X1	3,122	35.886	15.918	.086	.087	.098	.086	.099	.087	.098	.099
3D0X2	1,304	38.979	13.722	.064	.070	.095	.067	.099	.074	.096	.101
3D0X3	397	37.396	14.136	.160	.160	.161	.160	.162	.160	.161	.162
3D0X4	146	40.290	11.844	.452	.453	.457	.455	.457	.455	.459	.459
3E5X1	433	38.624	14.002	.095	.114	.097	.102	.115	.118	.103	.119
3E6X1	201	33.625	17.440	.264	.273	.278	.264	.286	.274	.278	.287
3E7X1	2,274	38.407	14.578	.061	.070	.068	.062	.076	.071	.069	.077
3E8X1	216	41.742	11.795	.217	.221	.245	.222	.248	.226	.248	.251
3E9X1	277	39.193	14.816	.255	.265	.256	.262	.266	.271	.263	.272
3F1X1	2,421	33.109	16.884	.070	.071	.104	.079	.104	.080	.109	.109
3N0X2	205	38.589	13.916	.184	.248	.185	.191	.249	.257	.193	.258
3P0X1	20,959	35.713	16.025	.085	.085	.091	.089	.091	.089	.095	.095
4A0X1	1,383	34.289	16.828	.147	.149	.166	.147	.168	.149	.166	.168
4B0X1	419	36.513	15.554	.093	.093	.105	.093	.105	.093	.105	.105
4D0X1	169	35.904	16.613	.121	.201	.125	.121	.204	.203	.125	.206
4H0X1	176	41.492	11.712	.144	.153	.179	.147	.186	.155	.183	.189
4N0X1	3,095	38.345	14.450	.045	.056	.066	.048	.074	.058	.069	.076
4R0X1	335	38.448	14.139	.082	.092	.091	.083	.100	.092	.092	.101

Table H.8. Optimally Weighted Predictive Validity Results for MMRS Criterion by AFS for General Composite

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

	Samula	Critarian	Cuitanian				Pree	dictive Validity			
AFSC	Sample	Moon	SD	Current	AR+PC+	AR+PC+	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK	AR+PC+WK+
	Size	Wiean	5D	Composite	WK+MK	WK+AO	+GS	+AO+MK	+GS+MK	+AO+GS	AO+GS+MK
4T0X1	462	36.395	15.196	.067	.070	.077	.072	.079	.075	.080	.083
4Y0X1	1,057	34.655	16.486	.086	.089	.086	.090	.090	.092	.090	.093
4Y0X2	135	37.710	14.499	.458	.459	.458	.459	.459	.459	.459	.460
5J0X1	204	35.268	15.625	.024	.074	.030	.028	.076	.075	.033	.077
6C0X1	735	38.120	14.080	.095	.108	.143	.095	.152	.108	.143	.152
6F0X1	1,118	35.402	15.912	.079	.080	.107	.089	.108	.089	.114	.114

APPENDIX I – OPTIMAL WEIGHTS BY AFS

Table I.1. OLS Weights for Training Grade Criterion by AFS for Mechanical Composite	13030
Table I.2. OLS Weights for MMRS Criterion by AFS for Mechanical Composite	13131
Table I.3. OLS Weights for Training Grade Criterion by AFS for Electronics Composite	13232
Table I.4. OLS Weights for MMRS Criterion by AFS for Electronics Composite	13433
Table I.5. OLS Weights for Training Grade Criterion by AFS for Administrative Composite	13636
Table I.6. OLS Weights for MMRS Criterion by AFS for Administrative Composite	13737
Table I.7. OLS Weights for Training Grade Criterion by AFS for General Composite	13838
Table I.8. OLS Weights for MMRS Criterion by AFS for General Composite	14040

		Сс	omposite	: 1		Co	mposit	e 2		Comp	osite 3			Comp	osite 4			С	omposite	e 5	
	AR	MC	AS	PC	WK	AR	PC	WK	AR	PC	WK	MK	AR	PC	WK	AO	AR	PC	WK	AO	MK
1C2X1	.143	113	.060	.037	.132	.111	.029	.118	.011	.023	.114	.170	.116	.030	.121	038	.016	.024	.117	039	.170
1C7X1	.228	.114	.084	.042	.140	.282	.057	.184	.180	.051	.180	.171	.275	.056	.181	.047	.174	.051	.177	.046	.171
1P0X1	.211	.141	.131	.100	.106	.282	.119	.167	.188	.114	.164	.159	.275	.118	.163	.052	.181	.113	.159	.051	.159
2A3X8	.180	031	.269	.229	.144	.209	.238	.193	.123	.233	.190	.145	.209	.238	.194	001	.123	.233	.190	002	.145
2A5X1	.188	.127	.225	.072	.053	.268	.094	.131	.248	.093	.130	.032	.269	.094	.131	010	.250	.093	.131	010	.032
2A5X2B	.209	.011	.137	.100	.102	.233	.107	.134	.214	.106	.133	.033	.229	.107	.131	.034	.210	.106	.131	.033	.033
2A5X2D	.129	043	.287	.118	003	.157	.127	.048	.198	.129	.049	070	.170	.128	.055	095	.211	.130	.057	095	069
2A5X4	.228	.176	.253	.113	.070	.329	.141	.166	.259	.137	.163	.118	.329	.141	.166	.002	.259	.137	.163	.002	.118
2A6X1	.170	.109	.217	.094	.090	.241	.114	.161	.191	.111	.159	.085	.237	.114	.159	.030	.187	.111	.157	.030	.085
2A6X2	.245	.144	.185	.114	.128	.324	.136	.201	.255	.132	.199	.118	.319	.136	.199	.034	.250	.132	.196	.034	.117
2A6X3	.209	046	.244	.107	009	.229	.113	.032	.153	.109	.029	.127	.217	.112	.025	.086	.142	.108	.022	.085	.127
2A6X4	.214	.081	.229	.111	.085	.277	.128	.153	.197	.124	.150	.135	.271	.128	.150	.042	.192	.123	.147	.041	.134
2A6X5	.175	.127	.161	.112	.083	.245	.131	.147	.185	.128	.145	.101	.242	.131	.146	.019	.183	.128	.143	.018	.100
2A6X6	.257	.204	.153	.100	.114	.354	.126	.195	.260	.121	.191	.158	.348	.126	.192	.042	.255	.121	.188	.041	.158
2A7X1	.204	.050	007	.101	008	.221	.106	.002	.178	.103	.001	.073	.227	.106	.006	047	.184	.104	.004	047	.074
2A7X2	.263	.174	.038	.109	.123	.332	.127	.173	.211	.120	.168	.205	.328	.127	.171	.027	.207	.120	.166	.026	.205
2A7X3	.225	.180	.130	.106	.102	.309	.129	.173	.263	.126	.171	.078	.306	.129	.171	.020	.260	.126	.169	.020	.078
2A7X5	.185	.163	.244	.120	.047	.280	.146	.138	.224	.143	.136	.094	.274	.145	.134	.043	.219	.142	.132	.043	.093
2F0X1	.189	.086	.157	.129	.074	.244	.144	.128	.157	.139	.125	.146	.241	.144	.127	.017	.155	.139	.124	.016	.146
2M0X2	.212	.030	.164	.149	.101	.247	.159	.143	.172	.154	.140	.127	.240	.158	.139	.053	.165	.154	.136	.053	.126
2T1X1	.179	.065	.139	.131	.149	.223	.143	.194	.159	.140	.192	.108	.220	.143	.193	.020	.157	.140	.190	.020	.108
2T2X1	.211	.067	.102	.173	.124	.251	.184	.162	.154	.178	.158	.163	.249	.184	.161	.009	.153	.178	.157	.008	.163
2T3X1	.146	.116	.258	.091	008	.226	.113	.075	.199	.112	.073	.046	.221	.113	.072	.033	.194	.111	.071	.033	.046
2T3X1A	.205	.004	.254	.088	.039	.244	.100	.094	.206	.097	.092	.064	.240	.099	.091	.028	.202	.097	.090	.028	.063
2T3X1C	.207	.012	.186	.137	.002	.239	.146	.044	.208	.145	.043	.053	.225	.145	.036	.098	.195	.143	.035	.098	.052
2W0X1	.227	.065	.132	.144	.128	.270	.156	.172	.173	.151	.168	.163	.268	.156	.171	.009	.172	.151	.167	.008	.163
2W1X1	.220	.119	.156	.120	.100	.287	.138	.161	.211	.133	.159	.127	.285	.138	.161	.010	.210	.133	.158	.009	.127
2W2X1	.173	.104	.227	.148	.080	.244	.168	.153	.195	.165	.151	.084	.243	.168	.152	.011	.193	.165	.150	.010	.084
3D1X7	.220	.159	.164	.058	.139	.302	.080	.211	.244	.077	.209	.098	.302	.080	.211	.000	.244	.077	.209	001	.098
3E0X1	.312	.151	.144	.131	.060	.388	.151	.127	.269	.145	.122	.200	.389	.151	.128	010	.271	.145	.123	011	.200
3E0X2	.227	.171	.243	.129	.005	.325	.156	.097	.280	.153	.095	.076	.316	.155	.092	.060	.272	.153	.091	.059	.075
3E1X1	.239	.119	.178	.089	.098	.309	.108	.164	.234	.104	.161	.127	.308	.108	.164	.002	.233	.104	.161	.002	.127
3E2X1	.211	.034	.178	.140	.098	.250	.151	.143	.213	.149	.142	.062	.250	.151	.143	.000	.213	.149	.142	001	.062
3E3X1	.247	.088	.165	.161	001	.304	.176	.055	.275	.175	.054	.049	.303	.176	.054	.007	.274	.175	.053	.007	.049
3E4X1	.226	.095	.203	.137	.111	.291	.155	.176	.258	.153	.175	.056	.292	.155	.177	009	.259	.153	.176	010	.056
3E8X1	.079	.239	.078	.160	021	.176	.186	.053	.165	.186	.052	.019	.171	.186	.050	.036	.160	.185	.049	.036	.019
4A2X1	.109	.258	.117	.053	.092	.219	.083	.179	.051	.073	.172	.286	.186	.080	.159	.241	.019	.071	.153	.240	.283

Table I.1. OLS Weights for Training Grade Criterion by AFS for Mechanical Composite

Composite 1 Composite 2 Composite 3 Composite 4 Composite 5 PC PC WK WK WK AR MC AS WK AR PC WK AR MK AR PC AO AR PC AO MK 1C2X1 .078 .060 -.109 -.111 .055 .019 -.059 .056 -.106 -.058 -.071 .055 -.107 -.058 -.050 -.080 .067 .055 -.078 -.111 .019 1C7X1 .087 .004 .087 .050 -.044 .101 .054 -.025 .081 .053 -.026 .035 .095 .054 -.029 .050 .074 .052 -.030 .050 .035 .033 -.009 -.048 -.011 -.007 -.044 -.035 -.011 -.046 1P0X1 .018 .026 .043 -.007 -.039 -.027 -.041 .118 .034 .066 .065 .117 2A3X3 .038 .085 .041 -.060 .045 -.039 .044 .045 -.039 .019 .048 .045 -.043 .044 -.044 .055 .019 .013 .055 .055 .036 2A3X3L -.059 .171 .010 .090 .033 .107 .076 .005 .107 .076 .000 .006 .107 .077 -.012 .006 .107 .077 -.012 .000 .004 2A3X3M .010 .121 .049 -.038 -.008 .061 -.024 .031 .119 -.021 .033 -.100 .058 -.024 .030 .016 .117 -.021 .032 .017 -.100 2A3X7 .065 -.018 .007 .141 .058 .059 .140 .056 -.057 .133 .051 .196 .048 .139 .049 .082 -.067 .133 .045 .081 .195 2A5X1 .028 .048 .074 .067 -.045 .056 .075 -.018 .045 .074 -.018 .018 .051 .074 -.021 .038 .040 .074 -.021 .038 .018 2A5X2B .209 .013 -.084 .024 .001 .076 -.012 -.084 .076 .023 -.036 .047 -.096 .012 -.083 .069 -.002 .068 -.084 .063 .062 2A5X2D .150 .301 .029 -.098 .016 .285 -.012 -.039 .301 .029 -.128 .296 .026 -.038 -.005 -.127 .296 .026 -.006 .150 .156 2A5X4 .062 .009 .061 .032 .012 .028 .019 -.003 .010 .027 .019 .061 .014 .033 .006 .035 .012 .030 -.001.010 .028 2A6X1 .011 .027 .076 .026 -.038 .032 .032 -.015 .028 .032 -.015 .007 .023 .032 -.020 .064 .020 .031 -.021 .064 .006 2A6X2 .013 .019 .054 .116 -.009 -.037 .055 .001 .000 .048 .000 .000 .045 .000 -.005 .071 .038 .000 -.006 .071 .012 2A6X3 .095 -.072 .040 -.049 .045 .075 -.054 .036 .065 -.055 .036 .016 .067 -.055 .031 .058 .057 -.055 .031 .058 .016 2A6X4 .017 .095 .064 .010 .006 .022 .042 .053 .022 .042 .013 .059 .022 .041 .018 .051 .021 .040 .018 .013 .061 2A6X5 .050 -.019 .100 .068 -.037 .058 .070 -.020 .074 .071 -.020 -.027 .053 .070 -.023 .036 .069 .071 -.023 .036 -.028 2A6X6 .023 -.010 .116 .068 -.034 .037 .072 -.012 .034 .072 -.012 .006 .032 .072 -.015 .038 .028 .071 -.015 .038 .006 .134 -.013 -.034 -.033 .007 -.014 .049 -.034 .002 .059 .058 -.034 .002 .059 -.015 2A7X1 .051 -.037 -.036 .057 .007 .066 2A7X2 .019 -.074 .164 -.078 .057 -.076 -.044 -.077 -.005 -.028 .168 -.013 .166 -.077-.046 -.010 .167 -.016 .165 -.016 .057 2A7X3 -.023 .122 .053 -.032 -.005 .051 .042 .015 .052 .042 -.033 .024 .044 .015 .004 .052 .046 .023 .047 .061 .061 .047 -.026 .047 .191 .048 .002 -.060 -.025 2A7X5 .120 .061 .174 .033 -.055 .168 .047 -.004 .183 -.003 .176 .001 -.060 2F0X1 .097 .026 -.060 -.042 .028 -.043 .021 .028 -.046 .042 -.025 .027 -.046 .042 -.018 -.012 -.007 .029 -.020 -.013 .021 2M0X2 .092 .135 -.024 .132 -.119 .137 .144 -.092 .141 .144 -.091 -.007 .122 .142 -.100 .103 .127 .143 -.100 .103 -.008 2T1X1 .024 .031 .057 .002 -.027 .044 .007 -.007 .052 .008 -.007 -.013 .042 .007 -.008 .011 .050 .008 -.008 .011 -.013 2T2X1 .055 .004 .001 .006 .012 .002 .003 .006 .009 .029 .002 .006 .009 .029 .001 .000 -.005 .007 .006 .012 .006 2T3X1 -.010 .064 .032 -.005 -.025 .017 .002 -.002 .047 .004 -.001 -.049 .015 .002 -.004 .017 .044 .004 -.003 .017 -.050 .190 -.073 .159 -.036 .087 .162 -.031 -.044 -.072 .159 -.033 -.044 .087 2T3X1A -.052 -.008 .154 -.026 .162 -.034 -.077 -.020 2T3X1C .100 -.049 .132 -.049 .133 -.056 -.052 .126 .072 -.002 -.050 .127 .073 -.057 -.017 -.066 .126 -.026 -.051 .008 -.036 .005 .057 .047 .045 .005 .057 .047 2W0X1 .040 -.033 .095 .005 .049 .042 .005 .061 .051 .006 .061 -.016 .036 -.016 2W1X1-.031 .029 -.009 .034 -.047 .048 .035 -.048 .029 -.042 .033 -.049 .028 .048 .032 .066 -.068 .035 -.046 -.038 -.013 2W2X1 -.079 .003 .023 .001 -.127 .024 .011 .112 -.060 .028 .014 -.010 -.126 .024 .011 -.011 .112 .046 -.061 .028 .013 3D1X7 -.003 .104 -.097 .066 -.026 .020 .072 -.021 -.050 .068 -.024 .120 .030 .073 -.016 -.072 -.041 .069 -.018 -.073 .120 3E0X1 .021 -.014 .023 .049 -.122 .019 .049 -.120 .023 .049 -.120 -.007 .027 .049 -.116 -.053 .030 .049 -.116 -.053 -.006 3E0X2 .043 .004 .088 -.033 .001 .057 -.029 .021 .055 -.029 .021 .005 .045 -.030 .013 .094 .042 -.030 .013 .094 .004 3E1X1 .031 .014 .031 .001 .014 .041 .004 .024 .050 .005 .025 -.016 .038 .004 .023 .020 .048 .004 .023 .020 -.016 3E2X1 .038 -.083 .101 .032 .077 .023 .028 .078 .064 .031 .080 -.069 .016 .028 .074 .049 .057 .030 .076 .050 -.070 3E3X1 .035 .005 .045 .094 -.048 .044 -.037 .097 -.036 -.035 .041 .096 -.038 .017 .062 .097 -.038 .017 -.035 .096 .064 3E4X1 -.085 .023 .093 .003 .047 -.063 .009 .072 -.051 .010 .072 -.020 -.067 .009 .070 .029 -.055 .010 .070 .029 -.020 3E8X1 .131 -.004 .112 -.126 -.170 .146 -.121 -.148 .117 -.123 -.149 .049 .130 -.123 -.157 .111 .102 -.124 -.158 .111 .048 4A2X1 -.004 -.007 -.015 -.068 -.068 .003 -.082 -.050 -.006 -.113 -.017 -.111 -.055 -.061 -.119 .081 -.028 -.005 -.118 .081 -.056

Table I.2. OLS Weights for MMRS Criterion by AFS for Mechanical Composite

Note. Values reported are standardized OLS weights for each composite for predicting the criterion.

131

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

		Comp	oosite 1		Comp	osite 2	C	Composite	3	C	omposite	4	C	Composite	e 5		Compos	site 6	
	GS	AR	MK	EI	AR	MK	AR	MK	WK	AR	MK	PC	AR	MK	AO	AR	MK	PC	WK
1A3X1	.165	.178	.103	018	.225	.123	.179	.114	.169	.151	.109	.237	.220	.123	.032	.140	.107	.200	.081
1C6X1	.114	.103	.110	.097	.174	.125	.137	.118	.135	.132	.117	.132	.169	.125	.029	.120	.114	.089	.095
1C8X3	.068	.192	.125	.090	.246	.134	.203	.126	.157	.194	.124	.167	.236	.133	.062	.180	.121	.120	.104
1W0X1	.201	.236	.147	.121	.344	.174	.282	.161	.225	.276	.160	.217	.333	.173	.068	.254	.156	.144	.162
2A0X1	.136	.140	.137	.133	.231	.156	.172	.144	.213	.175	.145	.178	.219	.155	.076	.152	.140	.102	.169
2A2X1	.226	.131	.269	.257	.294	.300	.231	.287	.233	.217	.285	.247	.284	.299	.067	.197	.281	.177	.155
2A2X2	.154	.176	.130	.205	.297	.151	.256	.143	.151	.221	.136	.244	.282	.150	.098	.213	.135	.219	.055
2A2X3	.079	.178	.213	.008	.207	.223	.182	.218	.091	.144	.210	.201	.204	.223	.018	.143	.210	.199	.004
2A3X4	.126	.181	.165	.181	.285	.183	.238	.173	.173	.220	.170	.206	.283	.182	.013	.207	.167	.160	.103
2A3X5	.139	.161	.125	.198	.275	.145	.227	.135	.177	.222	.134	.168	.275	.145	.000	.205	.131	.110	.129
2A6X2	.176	.216	.115	.220	.350	.139	.280	.125	.255	.281	.126	.222	.342	.138	.054	.255	.120	.133	.197
2A6X6	.192	.206	.151	.244	.354	.178	.286	.164	.245	.288	.165	.208	.344	.177	.061	.263	.160	.121	.192
2A8X1	.100	.131	.027	.125	.207	.041	.158	.031	.178	.149	.029	.184	.211	.041	025	.133	.026	.130	.121
2A8X2	.095	.254	.013	.265	.377	.028	.318	.016	.216	.285	.010	.295	.373	.028	.024	.270	.007	.246	.109
2A9X1	.237	.143	.067	.266	.313	.100	.250	.087	.229	.236	.085	.246	.307	.099	.037	.216	.081	.177	.151
2A9X2	.178	.236	.062	.055	.312	.085	.248	.072	.237	.227	.069	.274	.326	.087	087	.207	.065	.207	.146
2A9X3	.239	.181	.095	.150	.311	.127	.236	.112	.274	.247	.114	.206	.303	.126	.056	.217	.108	.102	.230
2M0X1	.176	.235	.120	.160	.349	.144	.271	.129	.284	.261	.127	.279	.335	.143	.089	.235	.122	.188	.202
2M0X3	.113	.045	.226	.166	.140	.242	.077	.229	.229	.092	.232	.152	.131	.241	.055	.065	.227	.060	.203
2P0X1	.228	.208	.234	.161	.338	.264	.275	.251	.230	.270	.251	.216	.338	.264	001	.248	.246	.139	.169
2W1X1	.173	.177	.120	.183	.297	.144	.238	.132	.217	.233	.131	.205	.293	.144	.027	.212	.127	.133	.159
3D1X1	.118	.084	.059	.021	.130	.074	.081	.064	.178	.068	.062	.197	.132	.074	014	.053	.058	.145	.114
3D1X2	.260	.075	022	.037	.172	.011	.113	001	.216	.111	001	.194	.183	.012	070	.090	006	.120	.163
3D1X3	.121	.169	.134	.190	.274	.151	.214	.139	.220	.210	.138	.205	.268	.150	.038	.188	.134	.132	.162
3D1X7	.222	.188	.088	.186	.325	.117	.258	.104	.246	.271	.107	.172	.322	.117	.020	.243	.101	.075	.213
3E0X1	.115	.231	.198	.237	.351	.215	.299	.205	.191	.286	.202	.207	.350	.215	.009	.270	.199	.150	.126
3E0X2	.083	.227	.077	.299	.358	.090	.313	.081	.166	.296	.078	.199	.347	.089	.073	.283	.075	.154	.099
3E1X1	.125	.190	.122	.219	.307	.140	.251	.129	.206	.252	.130	.176	.304	.140	.020	.231	.125	.103	.161
3E4X1	.191	.216	.042	.223	.356	.068	.290	.055	.243	.284	.054	.233	.355	.068	.010	.260	.049	.153	.177
4A2X1	.094	005	.223	.134	.072	.236	.017	.225	.203	.020	.226	.166	.030	.233	.265	001	.222	.093	.162

Table I.3. OLS Weights for Training Grade Criterion by AFS for Electronics Composite

		Comp	osite 7			Comp	osite 8			Co	mnosite 9)	
	AR	MK	AO	WK	AR	MK	AO	PC	AR	MK	AO	PC	WK
1A3X1	.176	.114	.019	.167	.148	.109	.022	.236	.138	.106	.017	.200	.080
1C6X1	.134	.118	.018	.133	.129	.117	.023	.131	.117	.114	.017	.089	.094
1C8X3	.196	.125	.050	.152	.186	.123	.055	.164	.173	.121	.049	.119	.100
1W0X1	.275	.161	.051	.220	.267	.160	.059	.214	.248	.155	.050	.143	.158
2A0X1	.164	.144	.059	.208	.165	.144	.068	.175	.145	.140	.058	.101	.164
2A2X1	.224	.287	.049	.229	.209	.284	.056	.244	.190	.280	.047	.176	.152
2A2X2	.244	.142	.086	.144	.208	.135	.087	.240	.202	.134	.084	.218	.049
2A2X3	.180	.218	.011	.090	.142	.210	.010	.200	.142	.210	.009	.199	.003
2A3X4	.238	.173	001	.173	.220	.170	.004	.206	.207	.167	002	.160	.103
2A3X5	.229	.135	015	.178	.224	.134	008	.169	.208	.131	015	.110	.130
2A6X2	.276	.125	.034	.252	.274	.125	.045	.220	.250	.120	.033	.133	.194
2A6X6	.281	.164	.042	.242	.281	.164	.052	.206	.258	.159	.041	.121	.189
2A8X1	.164	.031	040	.181	.154	.030	033	.186	.139	.026	041	.130	.124
2A8X2	.317	.016	.007	.216	.283	.010	.012	.294	.270	.007	.005	.246	.108
2A9X1	.248	.087	.019	.227	.232	.084	.027	.244	.214	.080	.018	.177	.150
2A9X2	.262	.073	106	.246	.241	.070	099	.278	.222	.066	108	.209	.155
2A9X3	.232	.112	.034	.271	.240	.114	.047	.204	.212	.108	.033	.102	.227
2M0X1	.262	.128	.067	.278	.250	.126	.077	.275	.226	.121	.065	.187	.196
2M0X3	.072	.229	.037	.226	.085	.232	.049	.149	.061	.227	.037	.059	.200
2P0X1	.278	.252	019	.231	.272	.251	010	.216	.251	.246	020	.140	.170
2W1X1	.236	.132	.010	.216	.230	.131	.019	.204	.211	.127	.009	.133	.158
3D1X1	.085	.064	028	.180	.071	.062	023	.198	.057	.059	030	.146	.117
3D1X2	.125	.000	088	.223	.123	.000	079	.198	.102	005	089	.121	.170
3D1X3	.211	.139	.021	.218	.206	.138	.029	.204	.186	.134	.020	.132	.161
3D1X7	.257	.104	.000	.246	.269	.107	.013	.171	.243	.101	.000	.075	.213
3E0X1	.300	.205	006	.192	.286	.202	.000	.207	.271	.199	007	.151	.126
3E0X2	.305	.080	.060	.161	.287	.077	.064	.196	.275	.075	.059	.154	.094
3E1X1	.250	.129	.004	.206	.250	.129	.013	.175	.231	.125	.003	.103	.161
3E4X1	.291	.055	009	.244	.283	.054	.000	.233	.262	.049	010	.153	.177
4A2X1	017	.223	.250	.181	017	.223	.258	.154	034	.220	.250	.090	.142

133

Table I.3. (Continued)

		Compo	site 1		Comp	osite 2	C	omposite	3	C	omposite	: 4	С	omposite	5		Comp	osite 6	
	GS	AR	MK	EI	AR	MK	AR	MK	WK	AR	MK	PC	AR	MK	AO	AR	MK	PC	WK
1A3X1	021	016	.047	.079	.005	.045	.003	.044	.006	006	.043	.035	003	.044	.051	005	.043	.040	011
1C6X1	164	.007	.016	.114	006	003	001	002	017	.025	.003	100	022	004	.101	.021	.002	115	.033
1C8X3	053	.005	.022	.124	.031	.016	.035	.017	014	.023	.015	.027	.027	.016	.028	.027	.016	.041	032
1U0X1	.073	.030	105	.176	.115	094	.101	097	.050	.074	102	.131	.114	095	.007	.075	102	.135	009
1W0X1	.065	.069	.027	.014	.095	.035	.077	.032	.064	.080	.033	.047	.092	.035	.018	.073	.031	.022	.054
2A0X1	078	.000	057	030	036	067	015	063	075	041	068	.016	040	067	.026	027	065	.063	102
2A3X4	024	.113	.118	.116	.146	.117	.130	.113	.060	.143	.116	.010	.142	.116	.028	.134	.114	022	.069
2A3X5	103	.112	.075	.027	.088	.062	.104	.066	060	.110	.067	070	.090	.063	013	.115	.068	053	037
2A6X2	054	.027	.025	.113	.049	.020	.049	.020	.000	.049	.020	001	.038	.019	.069	.049	.020	001	.000
2A6X6	.024	.025	.003	.043	.048	.007	.043	.006	.017	.028	.003	.065	.042	.006	.039	.029	.003	.072	014
2A8X2	.082	.319	306	102	.309	297	.324	294	055	.333	293	076	.284	300	.162	.337	292	064	027
2A9X3	.414	.106	.061	.297	.344	.116	.277	.103	.245	.268	.101	.241	.338	.116	.035	.245	.097	.162	.174
2M0X1	171	.068	041	.151	.065	061	.055	063	.035	.056	063	.028	.056	062	.054	.052	064	.015	.029
2M0X3	035	.071	.017	.088	.090	.013	.088	.013	.007	.096	.015	020	.085	.013	.030	.094	.014	029	.020
2P0X1	278	016	.048	.160	050	.015	025	.020	092	041	.017	031	041	.016	060	028	.019	.014	098
2W1X1	004	051	.048	.039	039	.047	031	.049	031	043	.047	.013	043	.047	.026	037	.048	.034	046
3D1X1	.059	.066	.059	.020	.093	.067	.085	.065	.029	.096	.067	010	.098	.067	033	.090	.066	029	.042
3D1X2	074	.019	004	.155	.049	011	.045	012	.015	.034	015	.050	.056	011	040	.035	014	.054	009
3D1X3	.000	.029	027	.094	.061	026	.054	028	.026	.056	027	.016	.051	027	.065	.053	028	.005	.024
3D1X7	024	022	.127	002	031	.124	035	.123	.014	051	.120	.065	020	.125	067	049	.121	.073	018
3E0X1	102	.002	.006	.075	005	006	.023	001	104	001	006	013	.005	006	063	.015	002	.042	123
3E0X2	058	.041	.004	.119	.064	002	.057	003	.023	.066	001	006	.048	003	.096	.061	002	021	.031
3E1X1	009	.055	011	.003	.053	012	.049	013	.016	.050	012	.010	.050	012	.023	.048	013	.004	.015
3E4X1	002	068	013	.095	035	012	055	016	.073	048	015	.040	040	013	.033	057	017	.009	.069
4A2X1	072	.017	093	109	044	103	017	098	098	032	101	037	056	104	.073	019	098	.009	102

Table I.4. OLS Weights for MMRS Criterion by AFS for Electronics Composite

		Compo	site 7			Comp	osite 8			С	omposite	9	
	AR	MK	AO	WK	AR	MK	AO	PC	AR	MK	ÂO	PC	WK
1A3X1	004	.044	.051	.002	013	.042	.050	.032	011	.042	.051	.039	015
1C6X1	015	003	.103	026	.010	.002	.106	105	.007	.001	.104	116	.025
1C8X3	.031	.017	.029	016	.019	.014	.027	.025	.023	.015	.029	.041	034
1U0X1	.101	097	.004	.049	.074	102	.002	.131	.075	102	.002	.135	010
1W0X1	.076	.032	.013	.063	.078	.032	.016	.046	.071	.031	.013	.022	.053
2A0X1	020	063	.032	078	044	068	.026	.015	032	065	.032	.062	105
2A3X4	.126	.113	.024	.058	.139	.116	.028	.008	.131	.114	.024	022	.068
2A3X5	.105	.066	008	060	.111	.067	010	070	.116	.068	008	053	037
2A6X2	.039	.019	.070	006	.039	.019	.069	004	.040	.019	.070	002	005
2A6X6	.038	.005	.038	.014	.022	.002	.037	.063	.024	.003	.038	.071	017
2A8X2	.302	296	.168	069	.309	295	.166	084	.314	294	.168	066	040
2A9X3	.274	.103	.016	.244	.265	.101	.025	.240	.243	.097	.015	.162	.173
2M0X1	.048	064	.051	.031	.049	064	.053	.025	.046	064	.051	.014	.025
2M0X3	.084	.013	.030	.004	.092	.014	.031	021	.090	.014	.030	029	.017
2P0X1	018	.021	053	088	032	.018	059	028	021	.020	053	.014	094
2W1X1	035	.049	.029	033	047	.046	.026	.012	041	.048	.028	.034	048
3D1X1	.089	.065	035	.032	.100	.068	032	009	.095	.067	035	029	.045
3D1X2	.051	012	042	.019	.040	014	043	.052	.040	014	042	.054	005
3D1X3	.046	028	.064	.021	.047	028	.065	.013	.045	029	.064	.004	.019
3D1X7	025	.124	069	.020	041	.121	070	.068	039	.121	070	.073	012
3E0X1	.031	.000	055	100	.008	005	062	011	.022	002	055	.043	118
3E0X2	.045	004	.094	.014	.052	002	.096	011	.049	003	.095	022	.024
3E1X1	.046	013	.022	.014	.047	013	.022	.009	.045	013	.022	.003	.013
3E4X1	059	017	.028	.071	052	015	.032	.039	060	017	.028	.008	.067
4A2X1	028	099	.082	105	043	102	.075	041	030	099	.082	.008	109

135

Table I.4. (Continued)

	C	omposite	e 1		Comp	osite 2			Comp	osite 3			Com	posite 4			C	omposit	e 5	
	MK	PC	WK	MK	PC	WK	GS	MK	PC	WK	AR	MK	PC	WK	AO	MK	PC	WK	AR	GS
1C0X2	.240	.155	.122	.236	.152	.110	.024	.168	.134	.108	.132	.239	.155	.120	.017	.168	.134	.106	.132	.004
1C3X1	.212	.173	.139	.204	.166	.118	.044	.140	.152	.125	.131	.211	.172	.138	.019	.138	.148	.114	.128	.025
1N0X1	.257	.188	.192	.248	.180	.167	.051	.188	.168	.179	.127	.256	.188	.191	.007	.185	.164	.163	.122	.033
1N2X1A	.264	.148	.265	.242	.128	.205	.125	.143	.113	.242	.221	.261	.147	.262	.026	.134	.100	.198	.207	.093
1N2X1C	.262	.057	.143	.276	.070	.182	082	.175	.031	.126	.160	.258	.055	.138	.052	.185	.046	.177	.177	109
2G0X1	.213	.147	.075	.217	.150	.085	021	.100	.114	.053	.207	.215	.148	.077	018	.105	.121	.078	.215	054
2S0X1	.299	.135	.126	.287	.123	.092	.070	.245	.119	.116	.098	.296	.133	.123	.036	.240	.111	.090	.090	.056
2T0X1	.315	.193	.107	.304	.183	.077	.062	.234	.170	.091	.148	.317	.194	.109	018	.231	.164	.073	.141	.040
2T2X1	.245	.203	.173	.218	.178	.098	.154	.160	.178	.157	.155	.244	.202	.171	.020	.148	.160	.094	.134	.134
2T3X7	.287	.204	.119	.282	.200	.106	.026	.202	.179	.103	.155	.288	.204	.120	010	.202	.179	.102	.154	.002
3D0X1	.243	.129	.101	.237	.123	.084	.035	.187	.113	.091	.102	.243	.129	.102	007	.185	.110	.081	.099	.020
3F0X1	.203	.157	.053	.200	.154	.046	.016	.135	.137	.040	.123	.197	.155	.047	.064	.135	.138	.042	.124	003
3F5X1	.212	.073	.084	.226	.086	.124	083	.141	.052	.070	.130	.204	.070	.074	.101	.151	.067	.119	.146	106
4A1X1	.287	.197	.085	.281	.192	.068	.035	.234	.182	.075	.097	.287	.197	.085	.000	.232	.179	.065	.093	.021
4C0X1	.223	.294	.231	.224	.295	.235	008	.197	.286	.226	.048	.223	.294	.231	.001	.198	.288	.233	.050	016
4J0X2	.339	.273	.178	.318	.254	.120	.120	.295	.260	.169	.080	.331	.270	.168	.098	.285	.245	.118	.063	.110
		C	omposit	e 6			C	omposite	e 7				Com	posite 8						
	MK	PC	WK	AO	GS	MK	PC	WK	AO	AR	MK	PC	WK	AO	AR	GS				
1C0X2	.234	.151	.108	.018	.025	.168	.134	.107	.007	.131	.168	.134	.105	.007	.130	.004				
1C3X1	.203	.165	.115	.020	.045	.140	.152	.125	.008	.130	.138	.148	.113	.010	.126	.025				
1N0X1	.247	.180	.166	.009	.052	.188	.168	.179	003	.127	.185	.164	.164	002	.122	.033				
1N2X1A	.239	.127	.201	.031	.126	.142	.113	.241	.009	.220	.134	.100	.197	.013	.205	.094				
1N2X1C	.272	.068	.176	.049	079	.174	.031	.123	.040	.155	.184	.045	.173	.035	.172	106				
2G0X1	.219	.151	.087	019	022	.101	.114	.056	035	.211	.106	.122	.083	037	.220	057				
2S0X1	.283	.122	.088	.038	.072	.245	.119	.114	.028	.095	.240	.111	.086	.031	.085	.059				
2T0X1	.306	.184	.079	016	.061	.235	.170	.094	030	.152	.231	.165	.076	028	.146	.038				
2T2X1	.216	.177	.095	.025	.156	.160	.178	.156	.008	.154	.148	.160	.093	.014	.132	.135				
2T3X7	.283	.200	.108	009	.025	.203	.179	.104	022	.158	.203	.179	.104	022	.158	.000				
3D0X1	.237	.124	.085	006	.035	.187	.113	.092	015	.104	.185	.110	.083	014	.101	.019				
3F0X1	.194	.152	.038	.065	.020	.135	.137	.036	.055	.116	.135	.136	.035	.055	.116	.002				
3F5X1	.217	.082	.112	.099	078	.140	.051	.063	.092	.117	.149	.065	.109	.087	.133	099				
4A1X1	.281	.192	.068	.001	.035	.234	.182	.075	007	.098	.232	.179	.066	006	.094	.020				
4C0X1	.224	.295	.235	.000	008	.197	.286	.226	003	.048	.198	.288	.234	004	.051	016				
4J0X2	.309	.249	.107	.102	.125	.294	.259	.162	.093	.068	.284	.243	.106	.098	.049	.118				

Table I.5. OLS Weights for Training Grade Criterion by AFS for Administrative Composite

	С	omposite	1		Comp	osite 2			Comp	osite 3			Comp	osite 4			С	omposite	: 5	
	MK	WK	PC	MK	PC	WK	GS	MK	PC	WK	AR	MK	PC	WK	AO	MK	PC	ŴK	AR	GS
1C0X2	.042	108	.064	.050	.071	087	043	.031	.061	110	.020	.040	.064	110	.027	.035	.068	088	.028	048
1C3X1	.072	009	007	.091	.011	.044	110	.029	019	017	.078	.071	007	009	.003	.041	002	.041	.097	125
1N0X1	.049	.014	.007	.038	003	016	.063	.002	007	.005	.086	.042	.004	.007	.081	003	014	019	.078	.051
1N2X1A	.074	037	034	.045	060	117	.166	021	061	055	.174	.077	033	033	033	034	081	121	.152	.143
1N2X1C	.030	013	093	.046	079	.031	090	.112	070	.003	150	.029	094	014	.017	.118	060	.035	139	069
2G0X1	021	.031	.023	019	.024	.035	010	.043	.041	.043	117	023	.022	.029	.018	.042	.040	.039	118	.009
2S0X1	.005	057	.014	006	.005	086	.060	.012	.016	056	012	.004	.014	058	.008	.006	.008	086	022	.064
2T0X1	117	058	.013	123	.007	075	.034	117	.013	058	.000	125	.010	067	.097	120	.008	074	005	.035
2T2X1	.011	.016	.008	.017	.013	.032	034	.009	.007	.016	.003	.009	.007	.013	.029	.012	.012	.032	.009	035
2T3X7	.112	.023	.074	.118	.080	.040	035	.113	.075	.023	002	.101	.070	.011	.127	.116	.080	.040	.004	035
3D0X1	.060	049	.039	.062	.041	042	015	.075	.043	046	028	.052	.036	057	.090	.076	.044	041	026	011
3F0X1	.030	072	010	.038	003	051	043	.023	012	074	.014	.027	011	076	.035	.027	006	052	.021	046
4A1X1	.057	091	.023	.068	.033	061	063	.024	.014	097	.060	.059	.024	089	023	.030	.024	063	.072	074
4C0X1	.102	.010	.129	.103	.130	.015	009	.061	.117	.002	.074	.099	.128	.007	.035	.063	.120	.012	.077	021
4E0X1	037	060	.085	013	.107	.007	138	033	.086	059	008	045	.082	069	.097	020	.105	.007	.014	140
4J0X2	.195	143	.213	.209	.226	104	081	.141	.198	154	.098	.189	.211	150	.071	.150	.211	108	.113	099
4M0X1	.186	004	.110	.193	.116	.014	039	.125	.092	016	.112	.179	.107	013	.087	.130	.100	.011	.120	057
4N1X1	.036	.073	047	.039	045	.082	018	024	065	.061	.109	.040	046	.078	053	020	060	.078	.115	036
4P0X1	028	.061	105	030	107	.055	.011	015	101	.063	024	039	109	.048	.133	016	103	.056	027	.016
		~					~		_		1		~				1			
		Co	omposite	6	66		C	omposite	7	1.0	N 677	D C	Comp	osite 8		6.5				
10020	MK	Co PC	omposite WK	6 AO	GS	MK	PC	omposite WK	7 A0	AR	MK	PC	Comp WK	osite 8 AO	AR	GS				
1C0X2	MK .047	Co PC .070	omposite WK 090	6 AO .026	GS 042	MK .031	Co PC .061	omposite WK 112	AO .026	AR .017	MK .035	PC .067	Comp WK 090	AO .024	AR .024	GS 046				
1C0X2 1C3X1	MK .047 .091	Co PC .070 .011	omposite WK 090 .045	AO .026 001	GS 042 110	MK .031 .029	PC .061 019	omposite WK 112 016	AO .026 003	AR .017 .078	MK .035 .041	PC .067 002	Comp WK 090 .043	osite 8 AO .024 009	AR .024 .098	GS 046 125				
1C0X2 1C3X1 1N0X1	MK .047 .091 .030	PC .070 .011 007	00000000000000000000000000000000000000	6 AO .026 001 .084	GS 042 110 .068	MK .031 .029 .001	PC .061 019 008	0mposite WK 112 016 001	AO .026 003 .075	AR .017 .078 .076	MK .035 .041 004	PC .067 002 015	Comp WK 090 .043 028	osite 8 AO .024 009 .078	AR .024 .098 .067	GS 046 125 .058				
1C0X2 1C3X1 1N0X1 1N2X1A	MK .047 .091 .030 .048	Co PC .070 .011 007 059	00000000000000000000000000000000000000	AO .026 001 .084 027	GS 042 110 .068 .164	MK .031 .029 .001 020	PC .061 019 008 061	00000000000000000000000000000000000000	AO .026 003 .075 047	AR .017 .078 .076 .180	MK .035 .041 004 033	PC .067 002 015 080	Comp WK 090 .043 028 117	osite 8 AO .024 009 .078 041	AR .024 .098 .067 .158	GS 046 125 .058 .139				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1A 1N2X1C	MK .047 .091 .030 .048 .045	Co PC .070 .011 007 059 079	WK 090 .045 026 113 .029	AO .026 001 .084 027 .014	GS 042 110 .068 .164 090	MK .031 .029 .001 020 .112	PC .061 019 008 061 070	0mposite WK 112 016 001 051 .001	AO .026 003 .075 047 .029	AR .017 .078 .076 .180 153	MK .035 .041 004 033 .118	PC .067 002 015 080 061	Comp WK 090 .043 028 117 .032	osite 8 AO .024 009 .078 041 .026	AR .024 .098 .067 .158 143	GS 046 125 .058 .139 067				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1A 1N2X1C 2G0X1 2S0X1	MK .047 .091 .030 .048 .045 021	Co PC .070 .011 007 059 079 .024	wk 090 .045 026 113 .029 .033	AO .026 001 .084 027 .014 .018	GS 042 110 .068 .164 090 009	MK .031 .029 .001 020 .112 .042	Co PC .061 019 008 061 070 .041	omposite WK 112 016 001 051 .001 .041	AO .026 003 .075 047 .029 .027	AR .017 .078 .076 .180 153 120	MK .035 .041 004 033 .118 .041	PC .067 002 015 080 061 .040	Comp WK 090 .043 028 117 .032 .036	osite 8 AO .024 009 .078 041 .026 .028	AR .024 .098 .067 .158 143 122	GS 046 125 .058 .139 067 .011				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1	MK .047 .091 .030 .048 .045 021 006	Co PC .070 .011 007 059 079 .024 .004	omposite WK 090 .045 026 113 .029 .033 087	6 AO .026 001 .084 027 .014 .018 .010	GS 042 110 .068 .164 090 009 .061	MK .031 .029 .001 020 .112 .042 .012	Control PC .061 019 008 061 070 .041 .016 012	omposite WK 112 016 001 051 .001 .041 057	AO .026 003 .075 047 .029 .027 .009	AR .017 .078 .076 .180 153 120 014 014	MK .035 .041 004 033 .118 .041 .006	PC .067 002 015 080 061 .040 .007	Comp WK 090 .043 028 117 .032 .036 087	osite 8 AO .024 009 .078 041 .026 .028 .012	AR .024 .098 .067 .158 143 122 024	GS 046 125 .058 .139 067 .011 .065				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1	MK .047 .091 .030 .048 .045 021 006 132	Co PC .070 .011 007 059 079 .024 .004 .004 .003 .012	wk 090 .045 026 113 .029 .033 087 .020	AO .026 001 .084 027 .014 .018 .010 .099	GS 042 110 .068 .164 090 009 .061 .040	MK .031 .029 .001 020 .112 .042 .012 118	Control PC .061 019 008 061 070 .041 .016 .012 .007	omposite WK 112 016 001 051 .001 .041 057 066	AO .026 003 .075 047 .029 .027 .009 .098	AR .017 .078 .076 .180 153 120 014 013	MK .035 .041 004 033 .118 .041 .006 122 .012	PC .067 002 015 080 061 .040 .007 .006	Comp WK 090 .043 028 117 .032 .036 087 086 020	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028	AR .024 .098 .067 .158 143 122 024 019	GS 046 125 .058 .139 067 .011 .065 .043				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2G0X1 2T0X1 2T2X1 2T2X1 2T2X7	MK .047 .091 .030 .048 .045 021 006 132 .014	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075	omposite WK 090 .045 026 113 .029 .033 087 .029	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 126	GS 042 110 .068 .164 090 009 .061 .040 032 028	MK .031 .029 .001 020 .112 .042 .012 118 .009	Control Contro	omposite WK 112 016 001 051 .001 .041 057 066 .013 012	7 AO .026 003 .075 047 .029 .027 .009 .098 .029	AR .017 .078 .076 .180 153 120 014 013 .000 019	MK .035 .041 004 033 .118 .041 .006 122 .012	PC .067 002 015 080 061 .040 .007 .006 .011 077	Comp WK 090 .043 028 117 .032 .036 087 086 .029	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 128	AR .024 .098 .067 .158 143 122 024 019 .005 015	GS 046 125 .058 .139 067 .011 .065 .043 033 .025				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 2D0X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 037	omposite WK 090 .045 026 113 .029 .033 087 .029 .023	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .000	GS 042 110 .068 .164 090 009 .061 .040 032 028 010	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074	Control PC .061 019 008 061 070 .041 .016 .012 .007 .073 .042	omposite WK 112 016 001 051 .001 .041 057 066 .013 .013 .054	7 AO .026 003 .075 047 .029 .027 .009 .098 .029 .129 .003	AR .017 .078 .076 .180 153 120 014 013 .000 019	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 .052	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .002	AR .024 .098 .067 .158 143 122 024 019 .005 015 .040	GS 046 125 .058 .139 067 .011 .065 .043 033 025				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 053	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .090 033	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022	Control PC .061 019 008 061 070 .041 .016 .012 .007 .073 .042 .013	omposite WK 112 016 001 051 .001 .041 057 066 .013 .013 054 054	7 AO .026 003 .075 047 .029 .027 .009 .029 .029 .029 .129 .093 034	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 009	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .074	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 052	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 032	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 016	GS 046 125 .058 .139 067 .011 .065 .043 025 003 025 003				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 4A1X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035 .070	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005 034	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 055 .058	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .090 .033 .025	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022 .024	Control PC .061 019 008 061 070 .041 .016 .012 .007 .073 .042 013 014	omposite WK 112 016 001 051 .001 .041 057 066 .013 .013 054 076 076	7 AO .026 003 .075 047 .029 .027 .009 .029 .029 .029 .029 .029 .029 .034 .034	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 .009 064	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .026 .031	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007 024	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 055	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 .032 .031	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 .016 076	GS 046 125 .058 .139 067 .011 .065 .043 033 025 003 044 076				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 4A1X1 4C0X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035 .070 100	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005 .034 129	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 053 055 .058	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .090 .033 025 035	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041 064 064	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022 .024 .061	C(PC .061 019 008 061 070 .041 .016 .012 .007 .073 .042 013 .014 117	omposite WK 112 016 001 051 .001 .041 057 066 .013 .013 054 076 095 000	7 AO .026 003 .075 047 .029 .027 .009 .029 .029 .029 .129 .093 .034 028 .029	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 .009 .064 070	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .026 .031 .062	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007 .024 119	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 052 056 059 009	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 .032 031 028	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 .016 .076 073	GS 046 125 .058 .139 067 .011 .065 .043 033 025 003 044 076 019				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 4A1X1 4C0X1 4F0X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035 .070 .100 022	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005 .034 .129 103	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 053 055 .058 .010 .004	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .090 .033 025 .035 .092	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041 064 007 133	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022 .024 .061 034	C(PC .061 019 008 061 070 .041 .016 .012 .007 .073 .042 013 .014 .117 .085	omposite WK 112 016 001 051 .001 .041 057 066 .013 .013 054 076 095 .000 067	7 AO .026 003 .075 047 .029 .027 .009 .029 .098 .029 .129 .093 .034 028 .029 098	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 .009 .064 .070 021	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .026 .031 .062 -022	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007 .024 .119 103	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 055 059 .009 004	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 .032 031 .028 092	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 .016 .076 .073 .000	GS 046 125 .058 .139 067 .011 .065 .043 033 025 003 044 076 019 133				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 4A1X1 4C0X1 4E0X1 4I0X2	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035 .070 .100 022 .203	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005 .034 .129 .103 .224	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 053 055 .055 .058 .010 004 113	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .090 .033 025 .035 .092 .068	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041 064 007 133 077	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022 .024 .061 034 .141	C(PC .061 019 008 061 070 .041 .016 .012 .007 .073 .042 013 .042 013 .014 .117 .085 .197	omposite WK 112 016 001 051 .001 057 066 .013 .013 054 076 095 .000 067 159	7 AO .026 003 .075 047 .029 .027 .009 .098 .029 .129 .093 .034 028 .029 .034 028 .029 .098	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 .009 .064 .070 021 .090	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .026 .031 .062 022 .149	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007 .024 .119 .103 .210	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 052 055 059 .009 004 115	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 .032 031 .028 .092 .059	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 .016 .076 .073 .000 .105	GS 046 125 .058 .139 067 .011 .065 .043 033 025 003 044 076 019 133 094				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 4A1X1 4C0X1 4E0X1 4J0X2 4M0X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035 .070 .100 022 .203 .185	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005 .034 .129 .103 .224 .112	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 053 055 .055 .058 .010 004 113 .004	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .090 .033 025 .035 .092 .068 .086	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041 041 064 007 133 077 034	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022 .024 .061 034 .141 .124	Control Contro	omposite WK 112 016 001 051 .001 057 066 .013 .013 054 076 095 .000 067 159 022	7 AO .026 003 .075 047 .029 .027 .009 .098 .029 .129 .093 .034 028 .029 .034 028 .029 .034 028 .029	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 .009 .064 .070 021 .090 .101	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .026 .031 .062 022 .149 .129	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007 .024 .119 .103 .210 .098	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 052 055 059 .009 004 115 .002	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 .032 031 .028 .092 .059 .077	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 .016 .076 .073 .000 .105 .109	GS 046 125 .058 .139 067 .011 .065 .043 033 025 003 044 076 019 133 094 051				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 4A1X1 4C0X1 4E0X1 4J0X2 4M0X1 4N1X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035 .070 .100 022 .203 .185 .044	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005 .034 .129 .103 .224 .112 042	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 053 055 .055 .004 .010 .004 .004	6 AO .026 001 .084 027 .014 .010 .099 .028 .126 .090 .033 025 .035 .092 .068 .086 054	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041 064 007 133 077 034 021	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022 .024 .061 034 .141 .124 023	Control Contro	omposite WK 112 016 001 051 .001 057 066 .013 .013 054 076 095 .000 067 159 022 .066	7 AO .026 003 .075 047 .029 .027 .009 .029 .029 .029 .029 .029 .029 .034 028 .029 .034 028 .029 .098 .064 .079 062	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 .009 .064 .070 021 .090 .101 .118	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .026 .031 .062 022 .149 .129 019	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007 .024 .119 .103 .210 .098 059	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 056 059 .009 004 115 .002 .085	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 .032 031 .028 .092 .059 .077 064	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 .016 .076 .073 .000 .105 .109 .124	GS 046 125 .058 .139 067 .011 .065 .043 033 025 003 044 076 019 133 094 051 041				
1C0X2 1C3X1 1N0X1 1N2X1A 1N2X1C 2G0X1 2S0X1 2T0X1 2T2X1 2T3X7 3D0X1 3F0X1 4A1X1 4C0X1 4E0X1 4J0X2 4M0X1 4P0X1	MK .047 .091 .030 .048 .045 021 006 132 .014 .106 .054 .035 .070 .100 022 .203 .185 .044 042	Co PC .070 .011 007 059 079 .024 .004 .003 .012 .075 .037 005 .034 .129 .103 .224 .112 042 112	omposite WK 090 .045 026 113 .029 .033 087 .029 .025 053 055 .058 .010 004 .113 .004	6 AO .026 001 .084 027 .014 .018 .010 .099 .028 .126 .090 .033 025 .035 .092 .068 .086 054 .134	GS 042 110 .068 .164 090 009 .061 .040 032 028 010 041 041 064 007 133 077 034 021 .019	MK .031 .029 .001 020 .112 .042 .012 118 .009 .111 .074 .022 .024 .061 034 .141 .124 023 016	Control Contro	omposite WK 112 016 001 051 .001 .041 057 066 .013 054 076 095 .000 067 159 022 .066 .052	7 AO .026 003 .075 047 .029 .027 .009 .029 .029 .029 .029 .034 028 .029 .034 028 .029 .098 .064 .079 062 .136	AR .017 .078 .076 .180 153 120 014 013 .000 019 040 .009 .064 .070 021 .090 .101 .118 042	MK .035 .041 004 033 .118 .041 .006 122 .012 .114 .074 .026 .031 .062 022 .149 .129 019 018	PC .067 002 015 080 061 .040 .007 .006 .011 .077 .042 007 .024 .119 .103 .210 .098 059 106	Comp WK 090 .043 028 117 .032 .036 087 086 .029 .025 052 056 059 .009 004 115 .002 .085 .040	osite 8 AO .024 009 .078 041 .026 .028 .012 .100 .028 .128 .093 .032 031 .028 .092 .059 .077 064 .138	AR .024 .098 .067 .158 143 122 024 019 .005 015 040 .016 .076 .073 .000 .105 .109 .124 047	GS 046 125 .058 .139 067 .011 .065 .043 033 025 003 044 076 019 133 094 051 041 .026				

Table I.6. OLS Weights for MMRS Criterion by AFS for Administrative Composite

Note. Values reported are standardized OLS weights for each composite for predicting the criterion.

137

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.
	Composite 1			Composite 2					Comp	osite 3			Comp	osite 4		Composite 5					
	AR	PC	WK	AR	PC	WK	MK	AR	PC	WK	AO	AR	PC	WK	GS	AR	PC	ŴK	AO	MK	
1A0X1	.231	.130	.218	.253	.131	.219	036	.235	.131	.221	029	.236	.133	.228	021	.257	.132	.222	029	036	
1A2X1	.227	.075	.083	.104	.068	.078	.209	.222	.075	.079	.043	.198	.056	.017	.140	.099	.068	.075	.042	.208	
1A8X1	.035	033	.081	.074	031	.083	067	.030	033	.078	.033	.025	040	.058	.050	.070	031	.080	.033	067	
1A8X2	.459	.186	.210	.427	.184	.208	.055	.449	.185	.203	.076	.453	.182	.196	.028	.417	.184	.202	.076	.054	
1A9X1	.117	.116	.250	.121	.116	.250	006	.101	.115	.241	.115	.089	.097	.187	.135	.105	.115	.241	.115	008	
1C1X1	.229	.130	.125	.158	.126	.122	.118	.224	.130	.123	.030	.214	.121	.093	.068	.155	.126	.120	.029	.118	
1C2X1	.086	.024	.111	020	.018	.107	.180	.091	.024	.114	035	.055	.003	.042	.149	015	.018	.110	036	.180	
1C3X1	.198	.157	.127	.108	.152	.123	.152	.196	.157	.126	.009	.189	.152	.108	.041	.107	.152	.123	.008	.152	
1C4X1	.069	.040	.204	.048	.039	.203	.035	.073	.041	.206	028	.038	.020	.134	.148	.052	.040	.205	028	.035	
1C5X1	.250	.141	.136	.161	.136	.133	.150	.254	.141	.138	027	.206	.112	.036	.213	.165	.136	.135	028	.150	
1C7X1	.277	.052	.181	.174	.046	.177	.174	.270	.051	.178	.046	.257	.038	.137	.095	.168	.045	.174	.045	.174	
1N1X1A	.291	.166	.154	.213	.162	.150	.131	.280	.165	.147	.076	.256	.143	.075	.168	.203	.161	.144	.075	.130	
1N3X1	.112	.062	.076	.097	.061	.075	.025	.108	.061	.073	.027	.100	.054	.049	.056	.093	.060	.073	.027	.025	
1N4X1A	.306	.193	.130	.188	.186	.125	.199	.298	.192	.125	.056	.279	.176	.071	.126	.180	.186	.121	.055	.199	
1N4X1B	.364	.198	.127	.274	.193	.123	.153	.358	.197	.123	.049	.354	.191	.103	.052	.268	.192	.119	.048	.152	
1T2X1	124	.093	.089	143	.092	.089	.031	119	.094	.092	035	136	.086	.064	.055	138	.093	.091	035	.031	
1W0X1	.359	.155	.175	.273	.150	.171	.145	.352	.154	.171	.050	.323	.130	.093	.175	.267	.149	.167	.049	.145	
2F0X1	.242	.143	.127	.156	.138	.123	.145	.239	.143	.125	.017	.209	.121	.052	.158	.154	.138	.122	.016	.145	
2R0X1	.268	.088	.147	.151	.081	.142	.197	.264	.088	.145	.024	.264	.086	.139	.016	.148	.081	.140	.023	.197	
2R1X1	.269	.122	.089	.213	.119	.087	.094	.264	.122	.086	.037	.277	.127	.106	037	.208	.119	.084	.036	.094	
2S0X1	.241	.127	.120	.096	.118	.114	.246	.237	.126	.117	.030	.224	.115	.082	.081	.092	.118	.112	.028	.245	
2W0X1	.269	.156	.171	.173	.151	.168	.163	.268	.156	.171	.009	.236	.134	.096	.160	.172	.150	.167	.008	.163	
3D0X2	.269	.194	.162	.246	.193	.161	.039	.273	.194	.164	029	.240	.175	.097	.138	.250	.193	.163	029	.039	
3D0X4	.095	017	.083	075	026	.076	.288	.077	018	.072	.133	.053	045	013	.204	093	028	.066	.131	.287	
3E4X3	.257	.047	.193	.128	.040	.188	.217	.254	.047	.191	.022	.169	012	004	.421	.126	.039	.187	.020	.217	
3E5X1	.191	.019	.126	.117	.015	.123	.126	.192	.019	.127	008	.160	001	.057	.147	.118	.015	.124	009	.126	
3E6X1	.246	.149	.097	.145	.143	.093	.171	.245	.149	.097	.007	.225	.135	.049	.102	.144	.143	.093	.006	.171	
3E7X1	.273	.161	.216	.260	.160	.216	.023	.265	.160	.211	.061	.232	.133	.123	.198	.252	.160	.211	.061	.022	
3E8X1	.158	.174	.000	.141	.174	001	.028	.155	.174	002	.022	.130	.156	062	.131	.138	.173	003	.022	.028	
3E9X1	.321	.175	.124	.230	.170	.121	.154	.322	.175	.125	008	.264	.137	005	.276	.231	.170	.121	009	.154	
3F1X1	.198	.145	.178	.069	.138	.173	.218	.201	.145	.180	019	.183	.135	.145	.071	.072	.138	.175	020	.218	
3P0X1	.243	.179	.233	.143	.174	.229	.169	.245	.180	.235	017	.213	.160	.166	.142	.145	.174	.231	018	.170	
4A0X1	.245	.164	.208	.142	.158	.204	.176	.242	.163	.206	.026	.225	.150	.163	.096	.138	.157	.202	.025	.175	
4D0X1	.353	.261	.137	.216	.253	.131	.232	.334	.259	.126	.136	.344	.255	.118	.040	.198	.251	.121	.134	.230	
4Y0X1	.284	.127	.194	.176	.121	.190	.181	.280	.127	.192	.026	.259	.111	.138	.120	.173	.121	.188	.025	.181	
4Y0X2	.336	.062	.141	.283	.059	.139	.089	.340	.062	.144	032	.332	.060	.133	.018	.287	.059	.142	033	.090	
6C0X1	.319	.216	.194	.213	.210	.189	.180	.312	.215	.190	.046	.308	.209	.170	.049	.207	.209	.186	.045	.179	
6F0X1	.277	.126	.096	.168	.120	.091	.185	.263	.125	.088	.101	.285	.132	.114	039	.155	.119	.083	.100	.184	

 Table I.7. OLS Weights for Training Grade Criterion by AFS for General Composite

Composite 6 Composite 7 Composite 8 AR PC WK GS MK AR PC WK AO GS AR PC WK AO GS MK -.017 .260 1A0X1 .255 .134 .227 -.035 .240 .134 .232 -.030 -.023 .134 .231 -.030 -.020 -.034 1A2X1 .022 .047 .197 .086 .052 .120 .198 .191 .055 .012 .049 .144 .079 .051 .017 .124 1A8X1 .066 -.039 .056 .057 -.072 .019 -.041 .053 .035 .053 .060 -.039 .052 .036 .060 -.072 1A8X2 .423 .181 .197 .023 .053 .441 .181 .187 .077 .035 .412 .180 .188 .077 .029 .052 1A9X1 .099 .097 .186 .137 -.019 .070 .094 .173 .122 .145 .082 .095 .172 .122 .147 -.021 1C1X1 .092 .150 .118 .096 .057 .113 .209 .120 .089 .033 .071 .145 .118 .032 .059 .113 1C2X1 -.041 .000 .046 .132 .168 .059 .004 .045 -.028 .146 -.036 .000 .049 -.030 .129 .168 1C3X1 .104 .149 .111 .026 .150 .187 .151 .106 .011 .042 .102 .149 .110 .009 .027 .150 1C4X1 .026 .020 .135 .145 .021 .041 .020 .137 -.021 .146 .029 .020 .137 -.021 .144 .022 1C5X1 .131 .109 .039 .200 .131 .208 .112 .038 -.017 .212 .133 .109 .041 -.018 .199 .132 1C7X1 .162 .035 .141 .078 .167 .249 .037 .131 .050 .099 .155 .034 .135 .048 .082 .166 1N1X1A .189 .140 .078 .117 .243 .141 .174 .177 .139 .083 .115 .156 .065 .084 .068 .163 1N3X1 .089 .053 .050 .054 .020 .095 .053 .046 .030 .058 .084 .053 .046 .029 .056 .019 1N4X1A .171 .172 .075 .107 .189 .270 .174 .131 .163 .171 .068 .060 .112 .188 .064 .062 1N4X1B .268 .188 .106 .037 .149 .346 .189 .097 .051 .056 .261 .187 .100 .050 .041 .149 1T2X1 .085 .052 .026 .086 .052 .086 -.033 .049 .027 -.151 .064 -.131 .067 -.033 -.146 .068 1W0X1 .248 .128 .096 .162 .131 .314 .129 .086 .058 .179 .240 .126 .089 .056 .166 .130 2F0X1 .134 .118 .056 .145 .132 .205 .120 .050 .024 .160 .130 .118 .053 .023 .147 .131 2R0X1 .151 .082 .144 -.004 .198 .260 .085 .136 .025 .018 .148 .081 .141 .023 -.002 .197 2R1X1 .220 .126 .109 -.047 .099 .271 .127 .102 .035 -.034 .215 .125 .105 .034 -.044 .098 2S0X1 .087 .111 .087 .057 .241 .219 .115 .078 .033 .084 .082 .110 .084 .031 .059 .240 2W0X1 .131 .145 .150 .233 .133 .094 .162 .148 .130 .098 .014 .146 .149 .150 .100 .016 3D0X2 .225 .174 .097 .136 .026 .244 .175 .099 -.023 .136 .228 .175 .100 -.023 .134 .027 3D0X4 -.103 -.050 -.006 .177 .272 .030 -.048 -.029 .143 .215 -.123 -.053 .140 .188 .270 -.023 3E4X3 .066 -.015 .000 .403 .180 .163 -.013 -.009 .041 .424 .061 -.016 -.004 .039 .406 .180 3E5X1 .096 -.004 .060 .136 .113 .161 -.001 .057 -.001 .147 .096 -.004 .060 -.002 .136 .113 3E6X1 .132 .132 .053 .086 .163 .223 .135 .048 .012 .103 .131 .131 .052 .010 .086 .163 3E7X1 .133 .124 .221 .132 .203 .219 .132 .115 .203 .230 .197 .005 .115 .071 .071 .003 3E8X1 .156 -.061 .129 .016 .126 .156 -.065 .028 .133 .117 .155 -.065 .028 .132 .016 .121 3E9X1 .189 .134 -.002 .262 .130 .263 .137 -.006 .004 .276 .189 .134 -.002 .003 .263 .130 3F1X1 .062 .131 .150 .050 .214 .186 .135 .147 -.016 .070 .064 .131 .152 -.018 .048 .214 .215 3P0X1 .123 .127 .142 .125 .157 -.013 .158 .156 .170 .158 .160 .168 -.011 .172 .126 4A0X1 .129 .147 .167 .079 .168 .221 .150 .159 .031 .098 .125 .146 .164 .029 .081 .168 4D0X1 .251 .323 .228 .213 .124 .017 .230 .252 .102 .138 .050 .194 .248 .108 .135 .027 4Y0X1 .160 .107 .142 .103 .172 .254 .110 .135 .032 .122 .156 .107 .139 .030 .105 .171 4Y0X2 .282 .058 .135 .009 .089 .337 .060 .136 -.032 .016 .286 .059 .139 -.033 .007 .089 6C0X1 .208 .205 .175 .032 .177 .301 .208 .165 .048 .053 .201 .204 .169 .046 .035 .176 -.058 6F0X1 .177 .128 .118 .190 .270 .129 .102 .100 -.031 .163 .126 .107 .098 -.050 .188

Table I.7. (Continued)

Note. Values reported are standardized OLS weights for each composite for predicting the criterion.

	Composite 1			Composite 2					Comp	osite 3			Comp	osite 4		Composite 5				
	AR PC WK		AR	PC	WK	MK	AR	PC	WK	AO	AR	PC	WK	GS	AR	PC	WK	AO	MK	
1A0X1	040	.302	001	.029	.306	.002	117	039	.302	.000	006	065	.285	059	.124	.030	.306	.002	005	116
1A2X1	020	.058	.005	046	.057	.004	.044	038	.057	005	.130	024	.055	005	.022	063	.055	006	.130	.043
1A8X1	.072	113	019	.057	114	020	.025	.070	113	021	.017	.056	123	055	.076	.055	114	021	.017	.025
1A8X2	.054	047	187	020	051	190	.125	.024	050	204	.219	.063	041	166	043	049	054	207	.218	.123
1C1X1	002	.003	058	024	.002	059	.037	007	.002	061	.038	001	.003	057	003	029	.001	062	.038	.037
1C2X1	019	.064	058	022	.064	058	.004	012	.065	053	052	042	.049	109	.110	015	.065	053	053	.005
1C3X1	.093	019	017	.077	020	018	.027	.094	019	017	006	.120	001	.042	126	.078	020	017	006	.027
1C4X1	.018	056	.049	.018	056	.049	.000	.019	056	.049	005	004	071	.000	.105	.019	056	.049	005	.000
1C5X1	.025	.075	.014	.005	.073	.013	.035	.020	.074	.010	.039	.015	.068	010	.051	001	.073	.010	.039	.034
1C7X1	.110	.064	024	.092	.063	024	.030	.103	.063	028	.051	.114	.067	013	022	.085	.062	028	.050	.030
1N1X1A	.039	.047	.027	.039	.047	.027	.001	.035	.046	.024	.031	.037	.045	.022	.011	.035	.046	.024	.031	.001
1N3X1	.129	.077	.049	.139	.077	.050	017	.133	.077	.052	029	.135	.081	.064	032	.143	.078	.052	029	017
1N4X1A	.082	.094	044	.035	.091	046	.079	.087	.094	041	032	.100	.106	004	086	.040	.092	043	033	.080
1N4X1B	.275	002	.170	.255	003	.169	.035	.280	002	.173	038	.273	004	.165	.010	.260	003	.173	038	.035
1T0X1	117	099	017	026	094	013	153	128	100	023	.080	096	085	.030	099	037	095	019	.081	154
1T2X1	.074	340	023	084	349	029	.267	.079	339	020	040	.057	351	061	.082	078	348	026	042	.267
1U0X1	024	.123	026	.049	.127	023	125	024	.123	026	.000	049	.106	082	.120	.049	.127	023	.000	125
1W0X1	.095	.029	.062	.086	.028	.062	.015	.093	.028	.061	.012	.089	.025	.050	.027	.084	.028	.061	.012	.015
2F0X1	006	.030	042	019	.029	042	.022	012	.029	045	.042	001	.033	030	024	025	.028	045	.042	.022
2R0X1	.114	.096	036	.122	.097	036	014	.114	.096	036	.000	.123	.102	016	044	.122	.097	036	.000	014
2R1X1	012	.053	.081	100	.048	.078	.149	011	.053	.082	009	004	.058	.099	039	098	.048	.079	010	.149
2S0X1	003	.018	052	013	.017	053	.016	005	.018	053	.009	017	.009	083	.064	014	.017	053	.009	.016
2W0X1	.041	.005	.060	.051	.006	.061	015	.035	.005	.057	.047	.041	.005	.059	.004	.044	.005	.057	.047	016
3D0X2	.056	.028	028	.035	.027	029	.036	.047	.028	034	.071	.062	.032	016	026	.026	.026	035	.071	.035
3D0X3	.138	026	.067	.135	027	.066	.005	.141	026	.068	023	.138	026	.067	.000	.138	026	.068	023	.005
3D0X4	011	203	309	.007	202	309	030	020	204	315	.066	.002	195	280	062	002	203	314	.066	031
3E5X1	006	039	066	052	042	068	.079	003	039	065	019	016	046	089	.049	050	042	066	020	.079
3E6X1	.057	.262	051	.006	.259	053	.087	.045	.261	058	.089	.060	.264	045	014	006	.258	060	.088	.086
3E7X1	.044	.033	005	.069	.034	004	041	.040	.032	007	.030	.042	.031	010	.011	.065	.034	006	.031	042
3E8X1	.127	123	143	.099	124	144	.047	.111	124	152	.116	.138	115	116	057	.083	126	153	.115	.046
3E9X1	.084	.104	.139	.029	.101	.137	.093	.081	.104	.138	.017	.067	.093	.100	.082	.027	.101	.136	.017	.093
3F1X1	.030	.053	.002	.024	.053	.002	.010	.019	.052	004	.078	.040	.060	.025	049	.013	.052	005	.078	.009
3N0X2	.093	.084	.061	.218	.091	.066	210	.091	.084	.060	.021	.079	.074	.029	.070	.215	.091	.065	.022	210
3P0X1	.059	.021	.028	.065	.021	.028	010	.055	.020	.025	.033	.052	.016	.012	.035	.061	.020	.026	.033	010
4A0X1	.062	.087	.038	.044	.086	.038	.031	.051	.086	.032	.079	.062	.087	.038	.000	.033	.085	.031	.079	.030
4B0X1	.083	004	.026	.082	004	.026	.003	.090	003	.030	050	.083	004	.026	001	.088	003	.030	050	.003
4D0X1	047	.134	013	168	.127	018	.204	043	.134	010	032	043	.136	005	017	163	.128	015	033	.204
4H0X1	.011	169	.097	026	171	.095	.064	004	170	.088	.109	.003	174	.078	.041	041	172	.087	.109	.063

Table I.8. OLS Weights for MMRS Criterion by AFS for General Composite

140

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

	Composite 1			Composite 2					Comp	osite 3			Comp	osite 4		Composite 5					
	AR	PC	WK	AR	PC	WK	MK	AR	PC	WK	AO	AR	PC	WK	GS	AR	PC	WK	AO	MK	
4N0X1	.020	013	040	005	014	041	.043	.013	013	044	.049	.016	016	050	.021	012	015	045	.049	.042	
4R0X1	.018	077	017	013	079	018	.052	.012	078	020	.040	.014	080	025	.017	018	080	021	.040	.052	
4T0X1	009	.069	.002	024	.068	.002	.025	014	.068	001	.038	003	.073	.017	032	029	.068	001	.038	.025	
4Y0X1	.059	.060	054	.041	.059	055	.031	.061	.060	053	012	.052	.055	071	.035	.042	.059	054	012	.032	
4Y0X2	.394	024	.160	.375	025	.160	.032	.391	024	.159	.021	.386	028	.144	.035	.372	025	.158	.021	.031	
5J0X1	009	016	.027	.044	013	.029	089	006	016	.029	018	005	014	.035	017	.046	013	.031	018	089	
6C0X1	.082	001	.030	.044	003	.029	.065	.067	003	.022	.109	.081	002	.028	.006	.029	005	.020	.108	.064	
6F0X1	.075	017	053	.081	016	053	012	.064	017	059	.074	.086	009	027	055	.072	017	058	.074	012	

Table I.8. (Continued)

		(Composite	6			(Composite	7		Composite 8							
	AR	PC	WK	GS	MK	AR	PC	WK	AO	GS	AR	PC	WK	AO	GS	MK		
1A0X1	.008	.288	062	.137	129	065	.285	059	.000	.124	.008	.288	062	.001	.137	129		
1A2X1	048	.054	004	.018	.042	045	.052	020	.132	.032	067	.052	019	.131	.028	.040		
1A8X1	.046	124	055	.074	.018	.053	124	057	.021	.078	.043	124	057	.021	.076	.018		
1A8X2	011	044	163	057	.130	.029	046	192	.218	027	043	049	189	.217	039	.127		
1C1X1	023	.002	056	007	.038	007	.002	061	.038	.000	028	.002	060	.037	004	.037		
1C2X1	039	.049	109	.111	006	035	.050	104	048	.107	032	.050	104	048	.107	005		
1C3X1	.097	002	.043	130	.039	.121	001	.043	012	127	.099	002	.044	012	131	.039		
1C4X1	.002	070	.000	.106	010	004	071	.000	.000	.105	.002	070	.000	.000	.106	010		
1C5X1	003	.067	009	.048	.030	.008	.067	015	.041	.054	009	.066	014	.041	.051	.030		
1C7X1	.096	.066	013	025	.033	.107	.066	019	.050	018	.088	.065	018	.049	021	.032		
1N1X1A	.037	.045	.022	.011	.000	.032	.044	.018	.031	.013	.032	.044	.018	.031	.013	.000		
1N3X1	.143	.081	.064	030	014	.140	.082	.068	031	034	.148	.082	.067	031	033	014		
1N4X1A	.050	.104	001	095	.088	.106	.107	.001	036	089	.055	.105	.003	037	098	.089		
1N4X1B	.254	004	.166	.007	.034	.279	003	.170	038	.007	.259	004	.171	038	.004	.035		
1T0X1	013	082	.026	084	145	108	087	.021	.075	093	025	084	.017	.077	078	146		
1T2X1	093	356	055	.056	.262	.062	350	057	037	.080	087	355	051	040	.053	.262		
1U0X1	.029	.109	085	.134	137	050	.106	083	.005	.120	.028	.109	086	.007	.134	137		
1W0X1	.082	.025	.050	.025	.013	.087	.025	.048	.014	.028	.080	.024	.048	.013	.026	.013		
2F0X1	015	.033	030	027	.025	007	.032	035	.041	021	021	.032	034	.041	024	.024		
2R0X1	.129	.103	016	043	010	.123	.102	015	002	044	.129	.103	016	002	043	010		
2R1X1	091	.055	.103	054	.154	002	.058	.101	011	039	090	.055	.105	013	055	.154		
2S0X1	023	.009	082	.063	.011	019	.009	084	.012	.065	025	.008	084	.012	.064	.010		
2W0X1	.050	.005	.058	.005	016	.033	.004	.053	.048	.007	.043	.004	.053	.048	.009	017		
3D0X2	.040	.031	015	030	.039	.051	.030	024	.070	021	.030	.030	023	.070	025	.038		
3D0X3	.135	026	.067	001	.005	.142	026	.069	023	002	.139	026	.070	023	003	.005		
3D0X4	.016	194	281	059	025	008	196	288	.063	057	.006	196	288	.064	054	026		
3E5X1	059	048	087	.041	.075	013	046	087	017	.047	056	047	085	018	.040	.076		
3E6X1	.010	.262	043	023	.089	.046	.262	055	.088	007	003	.261	053	.087	016	.087		
3E7X1	.066	.032	011	.015	043	.037	.031	014	.031	.013	.062	.031	015	.032	.018	043		
3E8X1	.108	116	115	062	.053	.121	117	129	.113	048	.092	118	128	.113	053	.051		
3E9X1	.017	.091	.103	.074	.086	.063	.092	.098	.021	.084	.015	.090	.100	.020	.075	.086		
3F1X1	.032	.059	.025	050	.015	.028	.058	.016	.076	043	.021	.058	.016	.076	044	.014		
3N0X2	.203	.078	.023	.092	218	.075	.074	.026	.024	.072	.199	.078	.020	.027	.094	219		
3P0X1	.059	.016	.011	.036	013	.047	.015	.008	.035	.037	.054	.015	.007	.035	.039	014		
4A0X1	.044	.087	.039	003	.031	.050	.086	.029	.079	.006	.033	.085	.030	.079	.003	.030		
4B0X1	.082	004	.026	001	.003	.091	003	.032	050	005	.089	003	.032	051	005	.004		
4D0X1	162	.132	.000	038	.207	038	.137	001	033	020	157	.133	.004	035	041	.208		
4H0X1	032	175	.079	.035	.061	015	177	.065	.111	.050	048	178	.066	.111	.044	.059		
4N0X1	008	017	049	.017	.041	.008	017	056	.050	.025	015	018	055	.050	.021	.040		
4R0X1	015	081	023	.012	.051	.008	081	029	.041	.020	021	082	028	.040	.015	.051		
4T0X1	019	.073	.018	035	.028	008	.073	.013	.037	029	024	.072	.014	.036	032	.028		
4Y0X1	.036	.055	070	.033	.028	.054	.056	069	010	.035	.037	.055	069	010	.032	.029		

Distribution A: Approved for public release. 88ABW-2020-3628, cleared 18 November 2020.

		(Composite	6			(Composite	7		Composite 8							
	AR	PC	WK	GS	MK	AR	PC	WK	AO	GS	AR	PC	WK	AO	GS	MK		
4Y0X2	.370	029	.145	.032	.029	.383	029	.141	.023	.037	.367	029	.142	.022	.034	.028		
5J0X1	.045	012	.033	009	088	002	013	.038	019	019	.048	012	.035	018	010	088		
6C0X1	.044	003	.029	001	.065	.064	005	.015	.109	.014	.028	006	.017	.109	.008	.063		
6F0X1	.090	009	027	054	007	.075	011	035	.072	050	.079	010	036	.072	049	008		

Note. Values reported are standardized OLS weights for each composite for predicting the criterion.