SEI's Approach to Mission Engineering and Mission Assurance

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Carnegie Mellon University Software Engineering Institute Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Document Markings

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

GOVERNMENT PURPOSE RIGHTS – Technical Data Contract No.: FA8702-15-D-0002 Contractor Name: Carnegie Mellon University Contractor Address: 4500 Fifth Avenue, Pittsburgh, PA 15213

The Government's rights to use, modify, reproduce, release, perform, display, or disclose these technical data are restricted by paragraph (b)(2) of the Rights in Technical Data—Noncommercial Items clause contained in the above identified contract. Any reproduction of technical data or portions thereof marked with this legend must also reproduce the markings.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon[®] is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-1127

Outline

Introductions

Build security in

- Cybersecurity Engineering (CSE): Situational Awareness Assessments
- Architecture/Acquisition Needs/Support

Operational resilience

- Resilience Management Overview
- Cyber Resilience Assessment (CRA)
- Security Architecture Assessment (SAA)
 Summary

Introductions

SEI participants and backgrounds

- Frank Redner
- Carol Woody
- Tim Morrow
- Chris Alberts
- Brett Tucker
- Jason Fricke

CSE: SA Assessments

Introduction

Carnegie Mellon University Software Engineering Institute

CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Mission Assurance

A process to protect or ensure the continued function and resilience of capabilities and assets, including

- personnel,
- equipment,
- facilities,
- networks,
- information and information systems,
- infrastructure, and
- supply chains,

critical to the execution of DoD mission-essential functions in any operating environment or condition¹

1. Office of the Secretary of Defense for Policy. *Mission Assurance (MA)* (DoD Directive 3020.40). Washington, DC, 2018. https://fas.org/irp/doddir/dod/d3020_40.pdf

Mission Assurance and Acquisition

Mission assurance must be considered during the acquisition of DoD software-intensive systems, such as weapon systems.¹

- Risk management must be addressed as early as possible in the acquisition of information technology across the lifecycle.
- Acquisition programs must integrate mission assurance goals and activities with acquisition guidance.

Mission assurance must evolve from an after-the-fact, compliancecentric perspective for acceptance to an engineering-based approach that is holistic and risk-informed for all engineering and acceptance activities.²

- 1. Office of the Secretary of Defense for Policy. *Mission Assurance (MA)* (DoD Directive 3020.40). Washington, DC, 2018. https://fas.org/irp/doddir/dod/d3020_40.pdf
- 2. United States Air Force. Weapon System Program Protection / Systems Security Engineering Guidebook, Version 2.0. Wright Patterson Air Force Base, OH, 2020

DoD Mission Assurance Construct

Mission Assurance is a DoD-wide construct that focuses on prioritizing DoD efforts and resources toward addressing the most critical strategic mission execution concerns¹

Mission Assurance construct comprises four processes:¹

- 1. Identification What is important and why?
- 2. Assessment What is the risk?
- 3. Risk Management What can we do?
- 4. Monitoring and Reporting:
 - Monitor: Threat & Hazard, Risk Response Plan, Yearly Review and Validation of DCA status
 - Reporting: Changes in Operational Status and unanticipated risks

1. Office of the Secretary of Defense for Policy. *Mission Assurance (MA) Construct* (DoD Directive 3020.45). Washington, DC, 2018. https://fas.org/irp/doddir/dod/i3020_45.pdf

Carnegie Mellon University Software Engineering Institute

Systems Security Engineering (SSE)

"An element of Systems Engineering (SE) that applies scientific and engineering principles in a standardized, repeatable, and efficient manner to identify security vulnerabilities, requirements, and methods of verifications that minimize risks."¹

- SSE processes are used to design systems that are resilient to cyber-attacks.
- SSE delivers systems that satisfy stakeholder security needs for weapon system operation in today's cyber-contested environments.

1. United States Air Force Weapon System Program Protection / Systems Security Engineering Guidebook, Version 2.0

Software Assurance

A level of confidence that software functions as intended and is free of vulnerabilities, either intentionally or unintentionally designed or inserted as part of the software, throughout the lifecycle

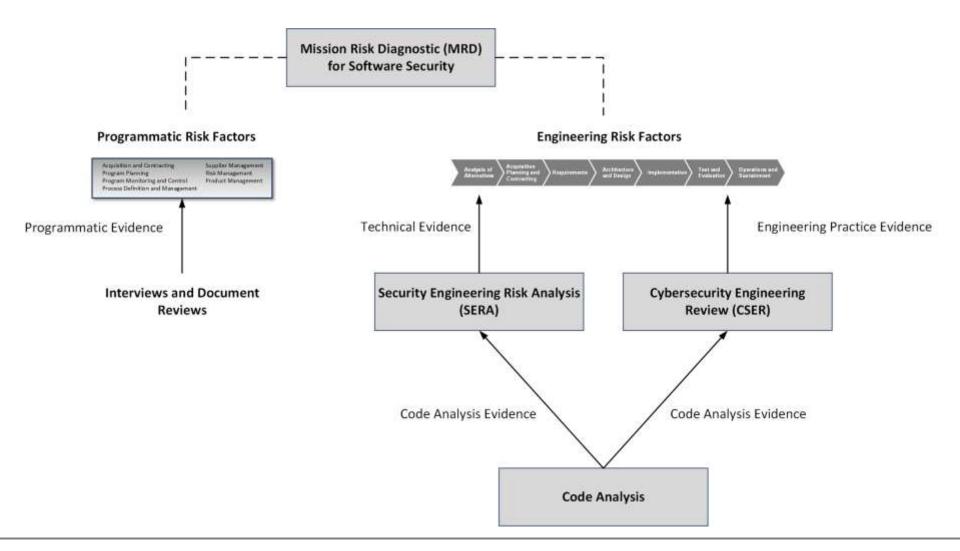
- Software must be designed and architected with the knowledge that it must function as intended in an increasingly contested, challenging, and interconnected cyber environment.
- Software assurance is essential for achieving mission assurance.

SEI Cybersecurity Engineering (CSE)

An approach for integrating software security engineering with SSE across the acquisition lifecycle.

Key areas of focus:

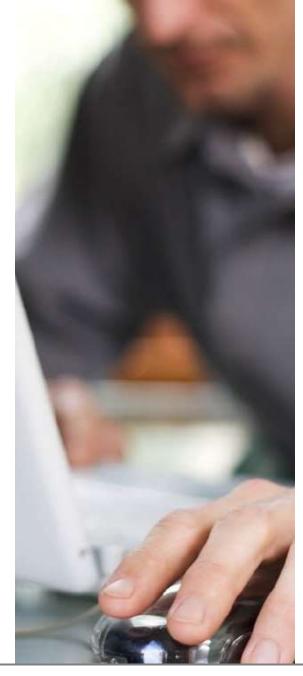
- Procurement strategies
- Secure system design
- Security management / information protection (IP)
- Software assurance (SwA)
- Supply chain risk management (SCRM)
- Anti-tamper (AT)
- Model-based system engineering (MBSE)
- Reference architectures with associated documentation to support assessments


Situational Awareness (SA) CSE Assessments

Assessments are a key component of SEI's CSE strategy.

The CERT SA Team performs the following CSE assessments:

- Mission Risk Diagnostic (MRD)
- Security Engineering Risk Analysis (SERA)
- Cybersecurity Engineering Review (CSER)


SA CSE Assessments: An Integrated View

Carnegie Mellon University Software Engineering Institute

CSE: SA Assessments

Mission Risk Diagnostic (MRD)

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

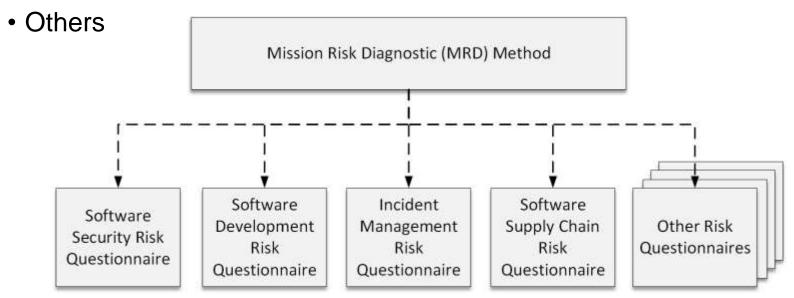
Mission Risk Diagnostic (MRD)

What

 An approach for assessing mission risk in interactively complex, socio-technical systems (e.g., acquisition programs, development projects, enterprise initiatives, organizational capabilities)

Why

- Assess a mission's current potential for success in relation to a set of known risk factors
- Develop a plan for managing risk and increasing the potential for mission success


Benefits

- Provides a time-efficient means of assessing acquisition programs, development projects, initiatives, and capabilities
- Establishes confidence in the ability to achieve mission objectives
- Can be self-applied or expert led

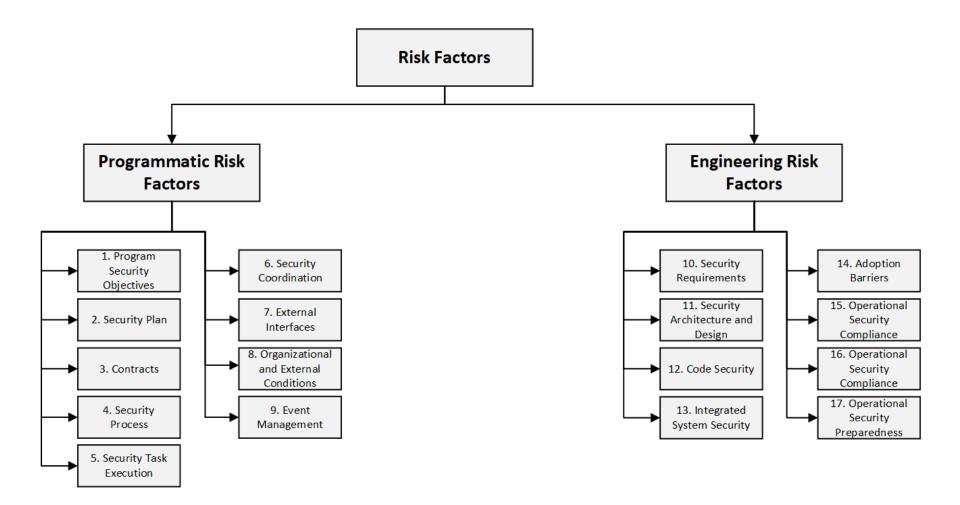
MRD Assessment Platform

The SEI has applied the MRD platform in a variety of contexts, including

- Software acquisition and development
- Software security
- Software supply-chain
- Incident management
- Business portfolio management

Carnegie Mellon University Software Engineering Institute

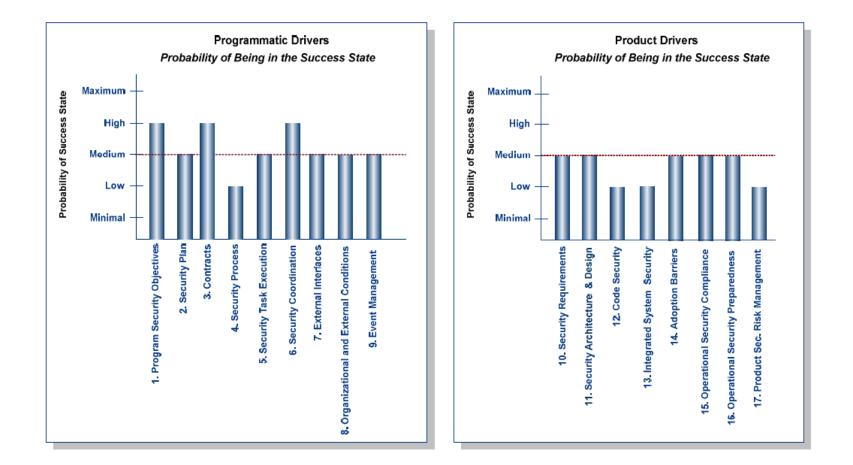
Example: Risk Factors for Software Security


Programmatic Risk Factors

- 1. Program Security Objectives
- 2. Security Plan
- 3. Contracts
- 4. Security Process
- 5. Security Task Execution
- 6. Security Coordination
- 7. External Interfaces
- 8. Organizational and External Conditions
- 9. Event Management

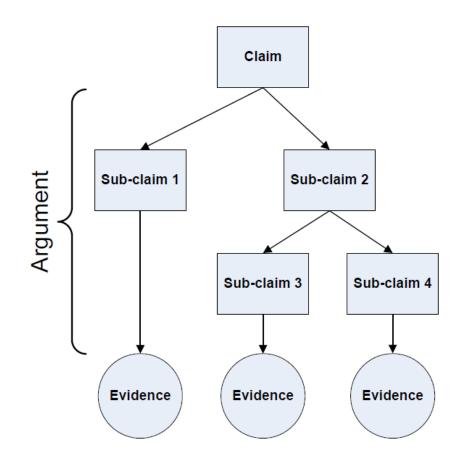
Engineering Risk Factors

- 10. Security Requirements
- 11. Security Architecture and Design
- 12. Code Security
- 13. Integrated System Security
- 14. Adoption Barriers
- 15. Operational Security Compliance
- 16. Operational Security Preparedness
- 17. Product Security Risk Management


Example: *Risk Factors for Software Security* (*Hierarchical View*)

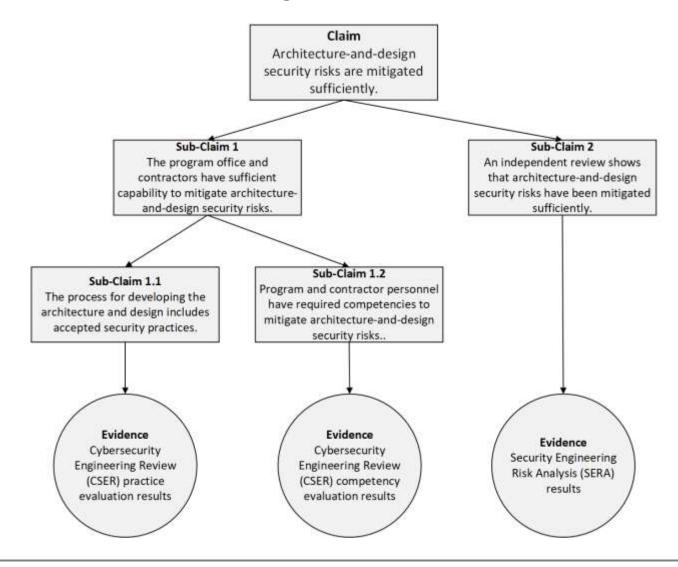
Example: Evaluating Risk Factors

Driver 4: Security Process	
Driver Question	Response
Does the process being used to develop and deploy the system sufficiently address security?	Yes
Considerations:	Likely Yes
 Security-related tasks and activities in the program workflow Conformance to security process models Measurements and controls for security-related tasks and activities 	Equally Likely Likely No
 Process efficiency and effectiveness Software security development life cycle 	D No
 Security-related training Compliance with security policies, laws, and regulations Security of all product-related information 	Don't Know


Example: MRD Mission Assurance Profile

The mission assurance profile can be used as a dashboard for decision makers.

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited


Assurance Case

A security assurance case uses a structured set of arguments and a corresponding body of evidence to demonstrate that a system satisfies specific claims with respect to its security properties

Carnegie Mellon University Software Engineering Institute

Example: Assurance Case for Security Architecture and Design (Risk Factor 11)

Carnegie Mellon University Software Engineering Institute

MRD: Summary

Assessment Types:


- DoD and Civil agency acquisition programs
- Cloud technology adoption
- Software development
- Software security
- Software supply chain
- Custom risk assessments

Time to conduct:

- ~1 month (expert-led version with existing questionnaire)
- 3-4 months (expert-led version with questionnaire development)

CSE: SA Assessments

Security Engineering Risk Analysis (SERA)

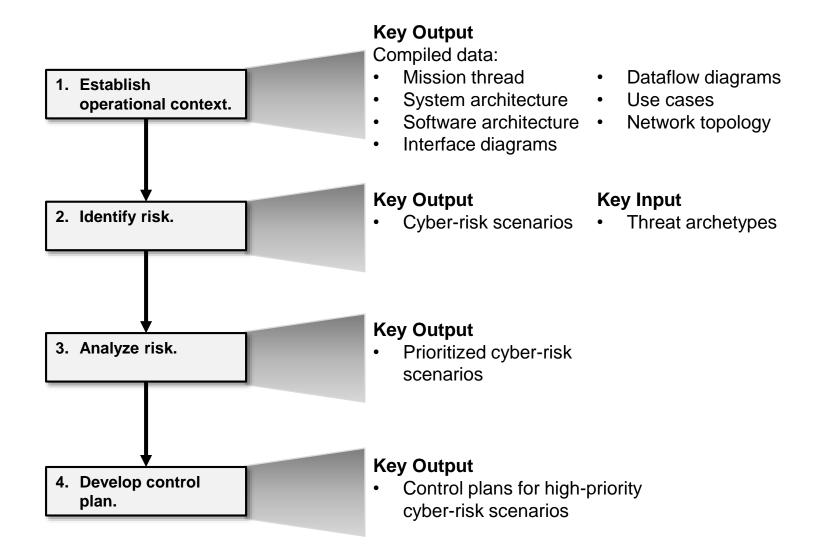
Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Security Engineering Risk Analysis (SERA)

What

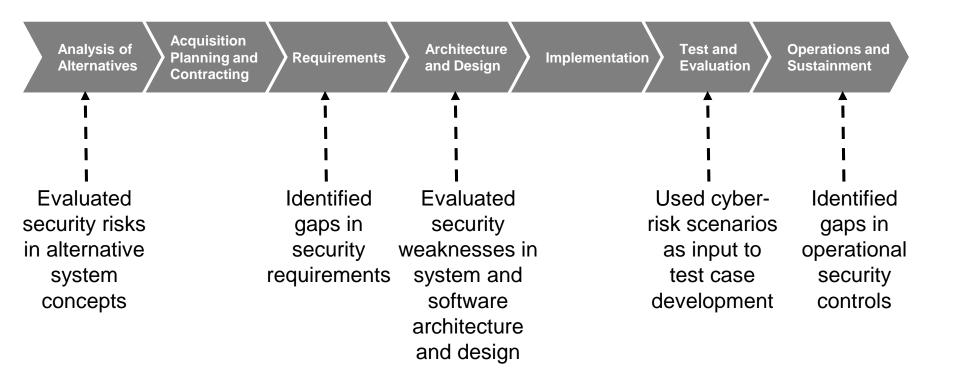
 A systematic approach for analyzing complex security risks in software-reliant systems and systems of systems across the lifecycle and supply chain

Why


- Build security into software-reliant systems by addressing design weaknesses as early as possible (e.g., requirements, architecture, design)
- Assemble a shared organizational view (business and technical) of cybersecurity risk

Benefits

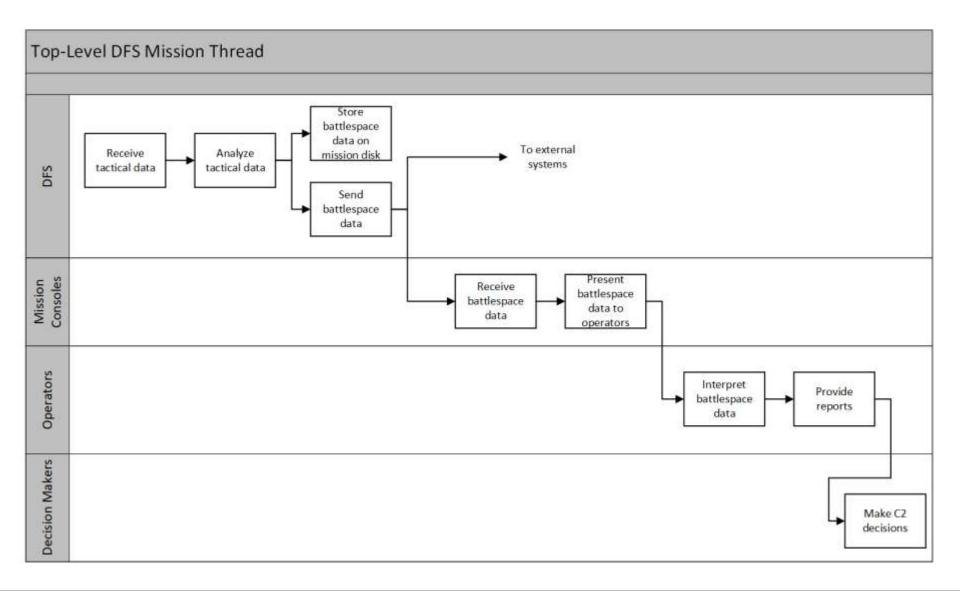
- · Correct design weaknesses before a system is deployed
- Reduce residual cybersecurity risk in deployed systems
- Ensure consistency with NIST Risk Management Framework (RMF)


SERA Method: Four Tasks

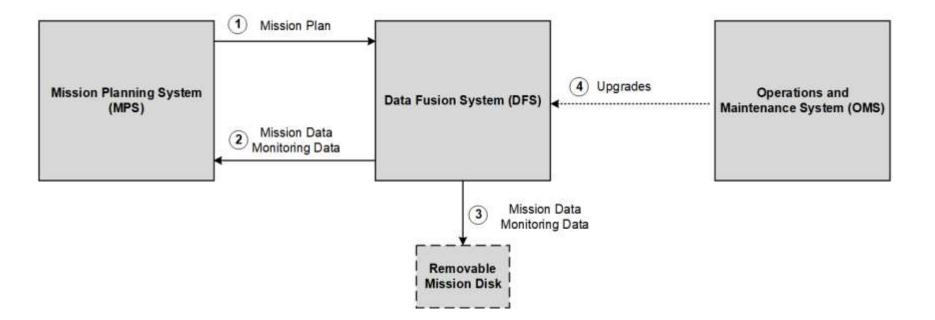
Carnegie Mellon University Software Engineering Institute

SERA Method: Security Analysis Across the Lifecyle

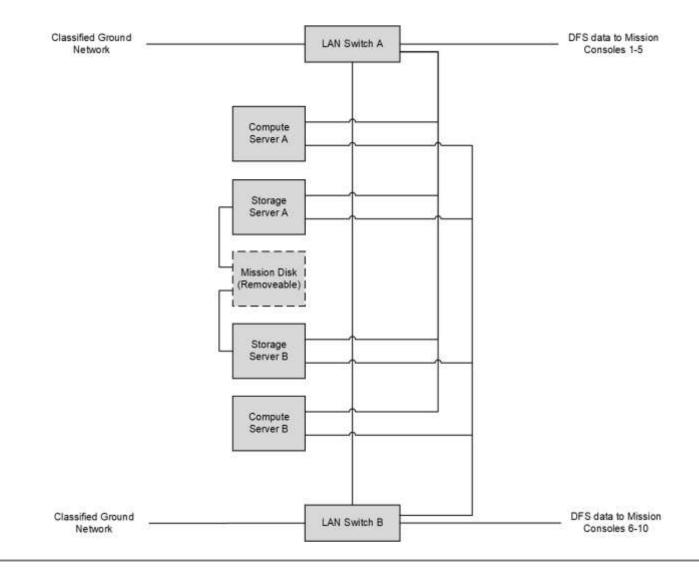
The SERA Method has been piloted across the acquisition and engineering lifecycle.


Example: Mission Context

A command-and-control group is acquiring a Data Fusion System (DFS) to support strategic and tactical decision making.


The DFS provides a single graphical representation of the battlespace by integrating tactical data from

- Data link networks
- Ground networks
- Intelligence networks
- Sensor networks

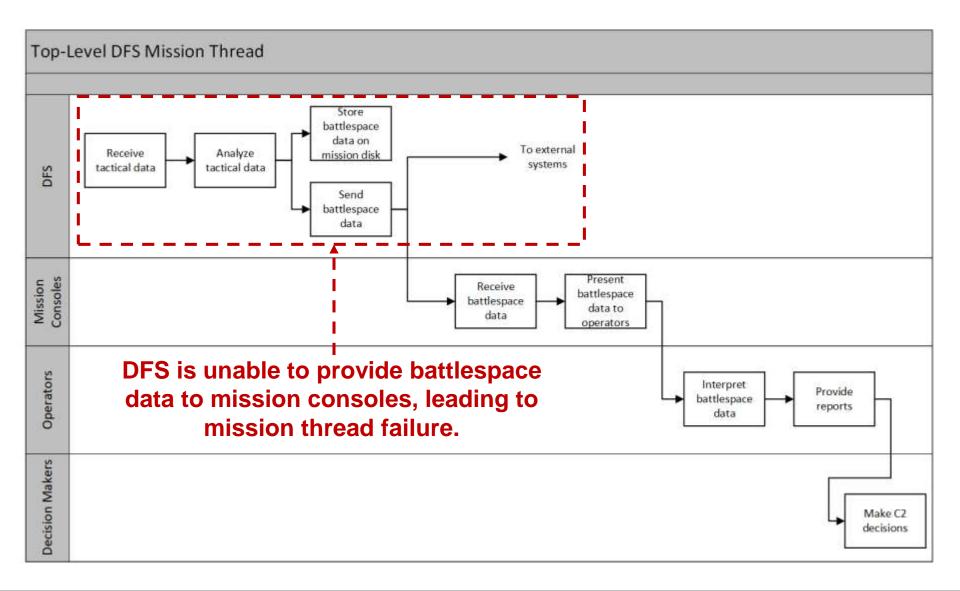

Example: Mission Thread

Example: DFS Interfaces

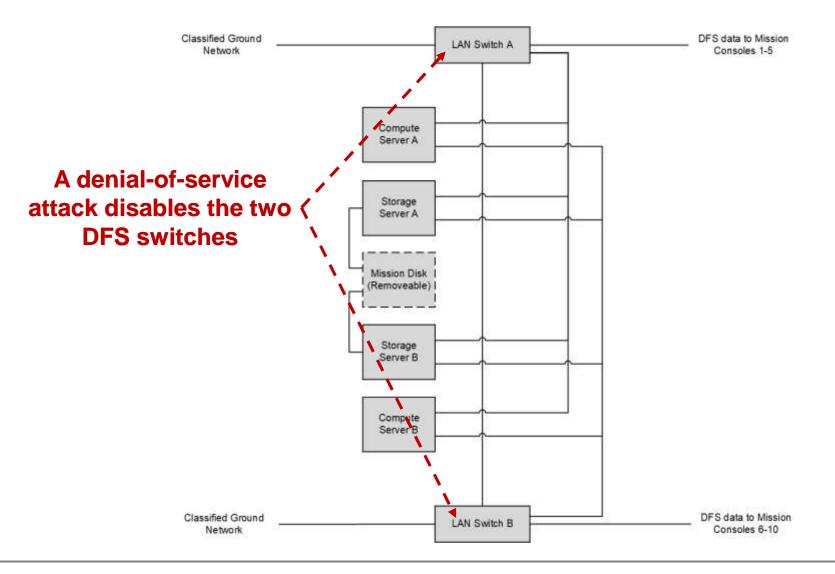
Example: DFS Architecture

Carnegie Mellon University Software Engineering Institute

Example: Threat Archetype 1

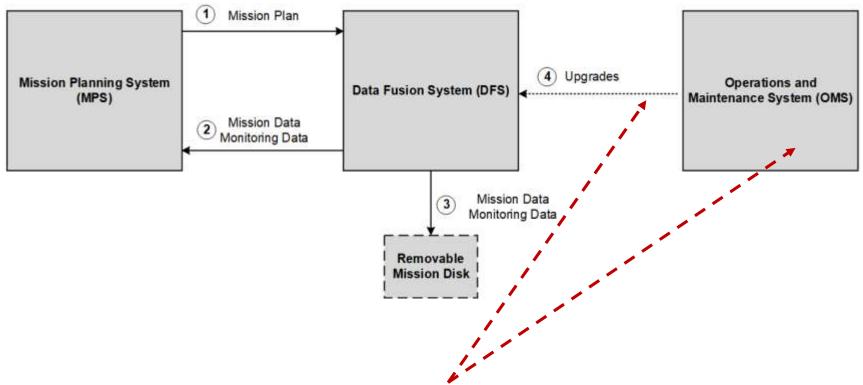

Element	Attribute
Actor	Insider
Threat Type	Targeted
Access Type	Physical
Access Point	Support/maintenance systems
Attack Pattern	Local Execution of Code (CAPEC-549)
	Flooding (CAPEC-125)
Direct Consequence	Interruption of access to data (availability)

A *threat archetype* is a pattern or model that describes a cyber-based act, occurrence, or event with the potential to harm an information system through unauthorized access, destruction, disclosure, modification of data, and/or denial of service.


Example: Threat Archetype 2

Element	Attribute
Actor	Insider
Threat Type	Targeted
Access Type	Physical and network
Access Point	Enterprise systems/networks
Attack Pattern	Privilege Abuse (CAPEC-122)
	Bypassing Physical Security (CAPEC-390)
	Research and Reconnaissance
Direct Consequence	Data disclosure (confidentiality)

Example: Mission Impact



Example: DFS Denial of Service

Carnegie Mellon University Software Engineering Institute

Example: SoS Attack Vector

The insider uploads the malicious code to the DFS via the software upgrade process and changes log files to erase evidence of the action.

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Example: Threat Sequence

- An insider with technical skills and administrative access to the Data Fusion System (DFS) becomes disgruntled after being passed over for a promotion.
- 2. The insider begins to behave aggressively and abusively toward coworkers.
- 3. After a while, the insider decides to execute a cyber attack on the DFS. The insider's goal is to execute a denial-of-service (DoS) attack on DFS switches.
- 4. The insider uses cyber access to the DFS engineering repository (resulting from insufficient access control mechanisms) to view engineering documents. The insider uses physical access to the DFS engineering organization's work space to view unsecured hard copies of DFS engineering documents.
- 5. The insider develops a plan for the cyber attack based on the available information.

- 6. The insider uses the organization's resources to develop malicious code designed to flood the DFS network with traffic.
- 7. The insider uploads the malicious code to the DFS via the software upgrade process and changes log files to erase evidence of the action.
- 8. After a mission begins, the malicious code monitors DFS network traffic.
- 9. When the data indicate that the DFS is receiving mission data, the malicious code's attack is triggered. The malicious code floods the DFS network with illegitimate traffic. Processing illegitimate requests consumes the DFS switches' resources, which creates an DFS denial of service.

Example: Controls Areas for Cyber-Risk Scenario

Access Control

Change Management

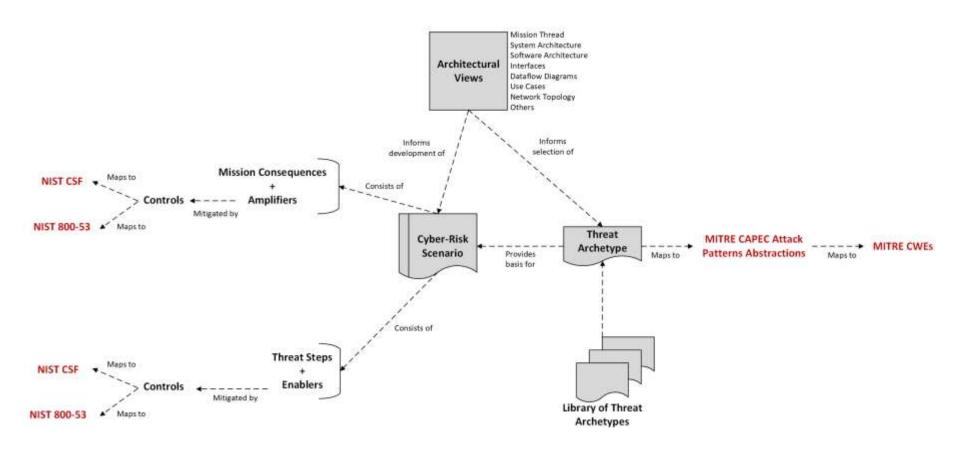
Code Analysis

Disaster Recovery

Human Resources

Incident Response

Monitoring


System Architecture

Training

Example: SERA Threat Sequence Table (Excerpt)

Step		Enabler	Candidate Control	NIST Mapping
1.	An insider with technical skills and administrative access to the Data Fusion System (DFS) becomes disgruntled after being passed over for a promotion and not receiving a bonus.	Insufficient feedback about employee performance	The organization's managers are trained to provide constructive feedback on performance issues.	NIST CSF: PR.IP-11 NIST 800-53: PS-1. PS-2, PS-3, PS-4, PS-5, PS-6, PS-7, PS-8, SA-21
2.	The insider begins to behave aggressively and abusively toward coworkers.	Tolerance for inappropriate employee behavior	The organization's managers recognize inappropriate behavior when it occurs and respond appropriately.	NIST CSF: PR.IP-11 NIST 800-53: PS-1. PS-2, PS-3, PS-4, PS-5, PS-6, PS-7, PS-8, SA-21
3.	After a while, the insider decides to execute a cyber attack on the DFS. The insider's goal is to execute a denial-of- service (DoS) attack on DFS switches.	No resolution to underlying employee issue	The organization's managers recognize an employee's escalating frustration and proactively work to diffuse the situation.	NIST CSF: PR.IP-11 NIST 800-53: PS-1. PS-2, PS-3, PS-4, PS-5, PS-6, PS-7, PS-8, SA-21
4.	The insider uses cyber access to the DFS engineering repository (resulting from insufficient access control mechanisms) to view engineering documents. The insider uses physical access to the DFS engineering organization's work space to view unsecured hard copies of DFS engineering documents.	Insufficient access control for information and resources (physical and cyber)	Physical access to information and resources is managed and protected.	NIST CSF: PR.AC-2 NIST 800-53: PE-2, PE-3, PE-4, PE-5, PE-6, PE-8
			Access permissions and authorizations for computing resources are managed.	NIST CSF: PR-AC-4 NIST 800-53: AC-1, AC-2, AC- 3, AC-5, AC-6, AC-14, AC-16, AC-24
		Insufficient monitoring of the organizational environment for abnormal activity (physical and cyber)	The organization monitors the physical environment for abnormal activity.	NIST CSF: DE.CM-2 NIST 800-53: CA-7, PE-3, PE-6, PE-20
			The organization monitors systems and networks for abnormal activity.	NIST CSF: DE.CM-1 NIST 800-53: AC-2, AU-12, CA- 7, CM-3, SC-5, SC-7, SI-4
			The organization performs targeted monitoring of individuals with suspected behavioral issues.	NIST CSF: DE.CM-3 NIST 800-53: AC-2, AU-12, AU- 13, CA-7, CM-10, CM-11
			The organization responds appropriately when abnormal activity is detected.	NIST CSF: RS.MI-1, RS-MI-2 NIST 800-53: IR-4

SERA Data Mapping

SERA cyber-risk data can be mapped to security standards, such as

- NIST Cybersecurity Framework (CSF) and NIST 800-53
- MITRE CAPEC attack patterns and MITRE CWEs

Carnegie Mellon University Software Engineering Institute

SERA Method: Summary

Customer Types:

- DoD weapon system acquisition (5 pilots)
- Foreign Military Sales (FMS) (2 pilots)
- Civil agency system acquisition (2 pilots)

Lifecycle Phases

- Analysis of alternatives (AoA)
- Requirements specification
- Architecture analysis
- Operational test and evaluation (OT&E)
- Operations and Sustainment (O&S)

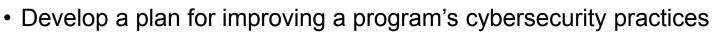
Time to conduct:

• 1-6 months (depending on scope)

CSE: SA Assessments

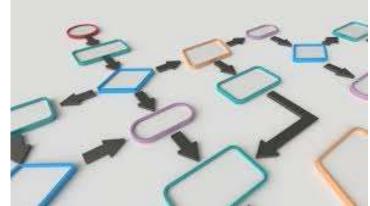
Cybersecurity Engineering Review (CSER)

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University


Cybersecurity Engineering Review (CSER)

What

 Evaluates an acquisition program's security practices for conformance to accepted CSE practices


Why

 Understand the effectiveness of an acquisition program's cybersecurity practices

Benefits

- Establish confidence in a program's ability to acquire software-reliant systems across the lifecycle and supply chain
- Reduce cybersecurity risk of deployed software-reliant systems

Prototype CSE Lifecycle Roadmap

A collection of cybersecurity engineering practices and competencies that can be applied across the lifecycle:

- 1. Security Risk Assessment
- 2. Requirements
- 3. Architecture and Design
- 4. Implementation
- 5. Developmental Test and Evaluation (DT&E)
- 6. Operational Test and Evaluation (OT&E)
- 7. Operations and Sustainment (O&S)

Each area of the roadmap includes the following:

- Practices
- Evidence (key outputs produced)
- Competencies

CSER: Assessment Approach

Collect data on program's security practices.

- Document review
 - Plans and processes
 - Work products (e.g., requirements, architecture analysis)
- Interviews (optional)
- Studies (optional)

Evaluate program's security practices in relation to CSE Lifecycle Roadmap practices.

Document observations about program's security practices.

- Strengths
- Weaknesses

Example: General Observations

Compliance Focus

Security is focused on system compliance. [Systems Engineering Management Plan, System Security Plan]

• Lack of a broader context (e.g. system of systems, mission resilience) could lead to unmitigated security risks.

Process Integration

Security is viewed as a specialty engineering activity. [Systems Engineering Management Plan, Critical Design Review]

• This could indicate a lack of process integration.

It is unclear how well cybersecurity engineering practices are integrated with system engineering activities. [Systems Engineering Management Plan, Critical Design Review]

• This could lead to unmitigated security risks.

Example: Roadmap Observations

1. Security Risk Assessment

Evaluation: Partially addressed

Rationale:

- Unclear how security assessments are performed
- Unclear if security assessments are comprehensive enough to satisfy the intent of Security Risk Assessment.

Evidence:

- A security assessment is performed on any change created as part of a Systems Engineering (SE) activity. [Systems Engineering Management Plan]
- Security assessments are completed at each relevant SE Lifecyle stage. [Systems Engineering Management Plan]
- For unaccredited systems, a security risk assessment incorporates relevant content from engineering artifacts. [System Security Plan]

CSER: Summary

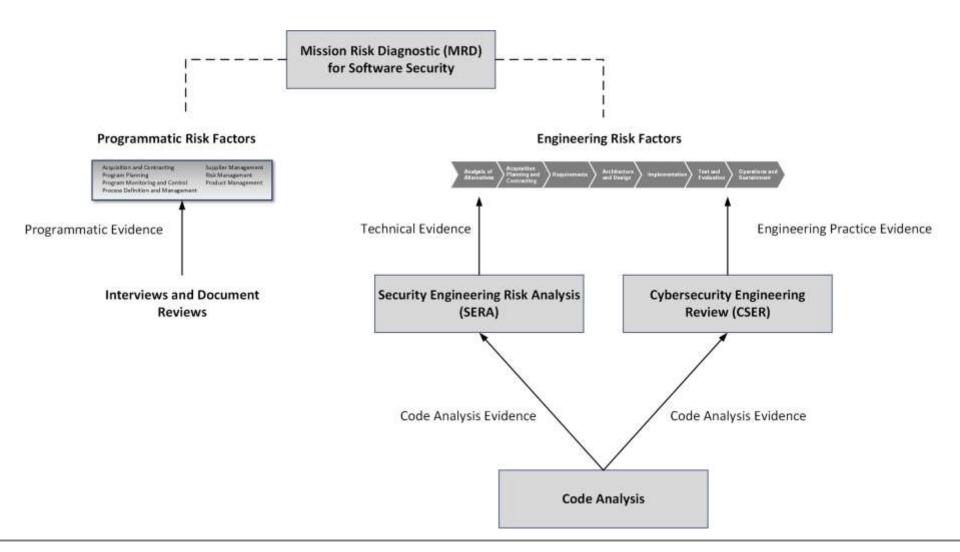
Customer Types:

• Foreign Military Sales (FMS) (1 pilot)

Time to conduct:

• 1-3 months (depending on scope)

CSE: SA Assessments



Carnegie Mellon University Software Engineering Institute

CSE: SA Assessments © 2020 Carnegie Mellon University

Summary: SA CSE Assessments

Carnegie Mellon University Software Engineering Institute

Key Points

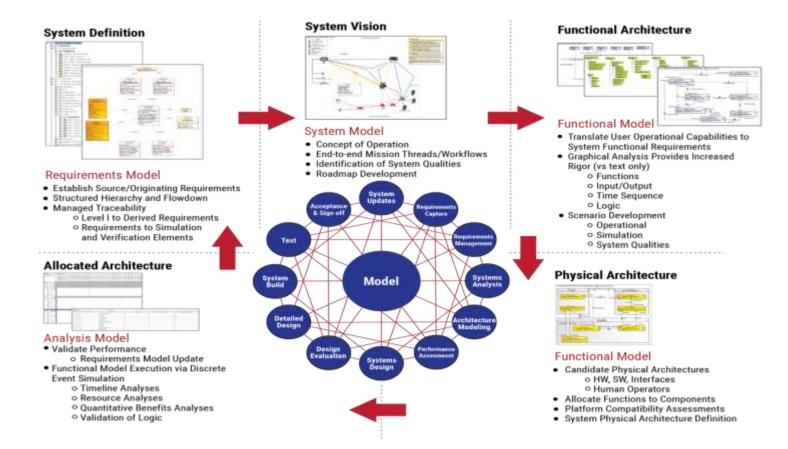
SEI CSE research is defining an approach for integrating software security engineering with SSE across the acquisition lifecycle.

Assessments are a key component of the SEI CSE strategy.

- Mission Risk Diagnostic (MRD)
- Security Engineering Risk Analysis (SERA)
- Cybersecurity Engineering Review (CSER)

We have worked with UPMC, VA, DHS, MDA, CROWS, GBSD, NC3, HBI, NASA, ATEC, Dept. of Commerce, Telemedicine and Advanced Technology Research Center (TATRC) to name a few.

The CERT Situational Analysis Team is looking to expand its portfolio for its assessments.

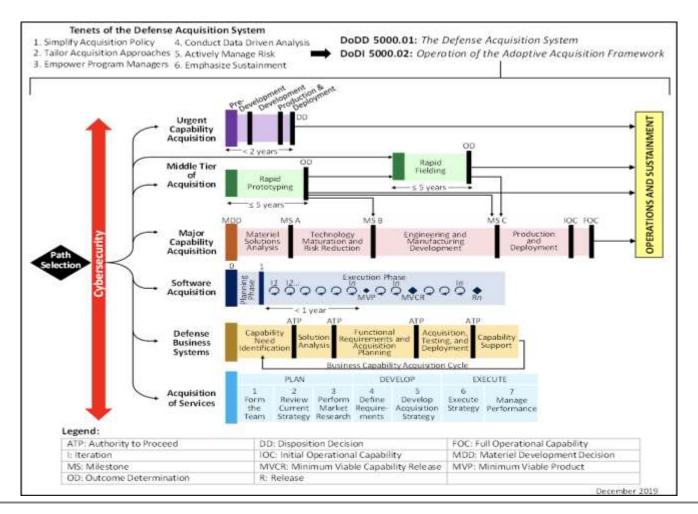

SEI's Approach to Mission Engineering and Mission Assurance

Architecture/Acquisition Needs/Support

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University

Model Based Systems Engineering

System-of-Systems (SoS), System, and Software Architecture


Need to develop documentation to support architecture analysis of the implementation, operation, and security of autonomous groundbased systems which operate in hybrid, multi-cloud, multiple security enclaves development, production, and test environments where Artificial Intelligence and Machine Learning (AI/ML) approaches/solutions can be applied to support autonomous operations. in a digital engineering environment.

What that will entail

- Development of conceptual, capability, operational, systems/services, and stakeholder architecture views that will provide a vision for the system which include the conceptual, logical, and physical designs. (system security engineering)
 - As-Is and To-Be architectures.
 - operational, developmental, and lifecycle support mission threads and scenarios to help provide a vision for the systems to enhance concept of operations (CONOPs) development.
 - Mission-specific reference architectures for the vehicle systems.
- Requirements development, consolidation, and refinement which includes gathering objectives and identifying mission, stakeholders, users, non-functional, and performance requirements.
 - Workflow integration.
 - Support for retrospective, streaming, and predictive analytics.
- Data security plan and methods to address storage and retrieval of data of various sensitivities, both for datasets and analytical output.
- Business case and comparative analysis of capabilities and operational activities in support of transitioning to cloud services, AI/ML, and zero trust architecture.
- Expertise and training is needed to support digital engineering environment and above mentioned technologies.

Adaptive Acquisition Framework: *Multiple* Acquisition Pathways

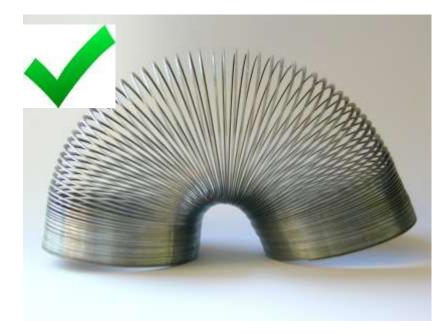
SA cybersecurity assessments can be tailored to multiple types of acquisitions.

Carnegie Mellon University Software Engineering Institute

SEI's Approach to Mission Engineering and Mission Assurance

Resilience Management Overview

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University


Operational Resilience Defined

Resilience: The physical property of a material when it can return to its original shape or position after deformation that does not exceed its elastic limit [wordnet.princeton.edu]

Operational resilience: The emergent property of an organization that can continue to carry out its mission after disruption that does not exceed its operational limit[CERT-RMM]

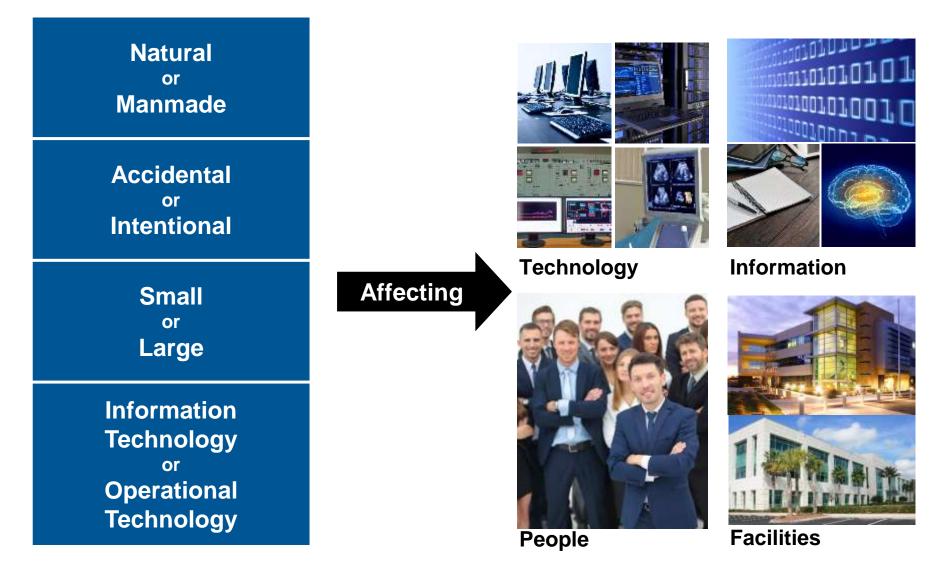
Like a Slinky....

https://www.youtube.com/watch?v=EZL6RGkPjws

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University

ERM and ORM

Operational risk management (ORM) is a significant subset of ERM.


ORM addresses day-to-day risks that can affect the organization's ability to carry out its mission.

Failure to manage operational risk can have significant impact on the organization's ERM process.

Carnegie Mellon University Software Engineering Institute

CSE: SA Assessments © 2020 Carnegie Mellon University

Scope of Operational Stress

Carnegie Mellon University Software Engineering Institute

Challenges to the Operational Mission

430 JL 7362	11:20am	~ 1	Cancelled
914 US 2554	1:20pm		
853 AS 4233	3:15pm		Cancelled
070 BA 4925	10:25am		Cancelled
	1:10pm		Cancelled
699 US 8435	70		
288 US 8393	to the other thanks		Cancelled
268 JL 7366	12:47pm	H3A	Cancelled
1361 BA 6746	12:00pm	H2	Cancelled
303 BA 1755	2.2000	LCA	
1222 GF 4374	1.00	LIO	Cancelled
3642 US 8445	9:10am	118	On Time

The operational mission of organizations is regularly under stress.

The stress comes from disruptive events affecting business operations.

Disruptive Events...

Natural
or
Manmade

Accidental or Intentional

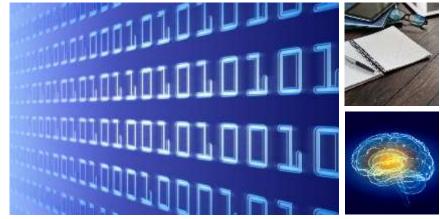
> Small or Large

Information Technology or Operational Technology

	• Fire
	Flooding
	• IT failures
	Earthquakes
	•
	Cyber attacks
	Severe weather
	Network failures
	 Technology failures
	 Organizational changes
	 Loss of service provider
	 Strikes or other labor actions
	Loss of customer or trading partner
	Chemical, biological, nuclear hazards
	Unavailability of workforce
	Failed internal processes
	Supply chain disruption
	Employee kidnappings
	Workplace violence
,	Data corruption
_	Product failure
	Power outages
	• Civil unrest
7	• Terrorism
	• Fraud
	• Etc.

Result in

Interruption of Business Processes


...through which risks are realized

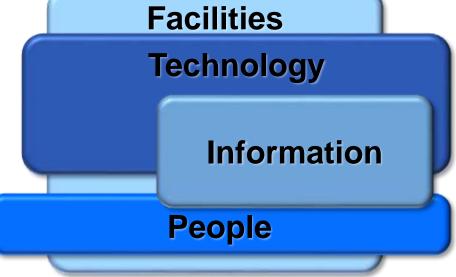
Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University

Asset Types Essential to Operational Resilience

Technology

Information

People

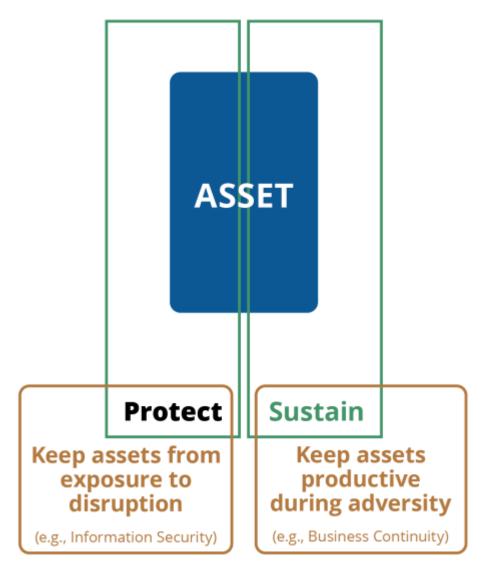

Facilities

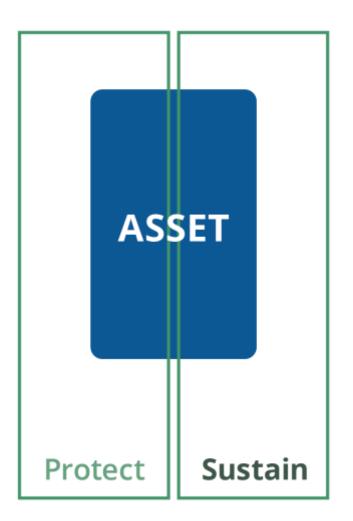
Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University

Assets as "Containers"

Often, assets are containers of other assets. Facility assets may contain technology assets that, in turn, contain information assets to be stored, transported, or processed.

This concept is important because controls may be applied at the container level to meet the resilience requirements of the assets they contain. **Facilities**

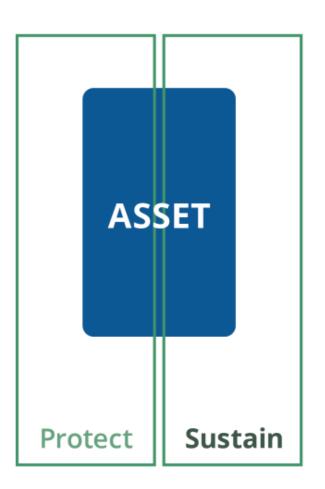

Putting Assets in Context


Relationships among assets have implications for resilience. Some assets are containers for others.

Information is the most embedded type of asset (i.e., resilience linked to technology, facilities, and people).

Operational Resilience Starts at the Asset Level

Protection Strategies

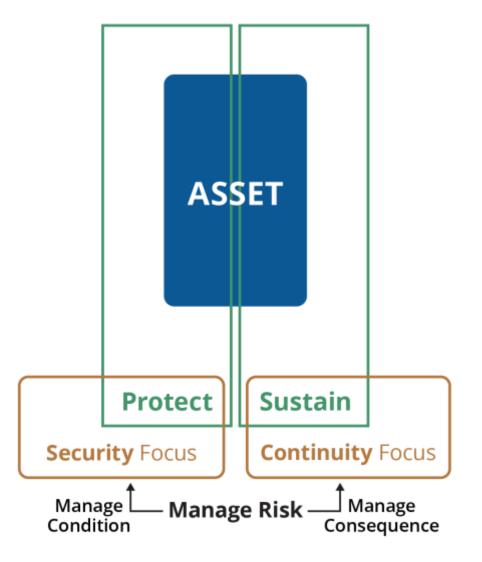


Translate into activities designed to keep assets from exposure to disruption

Typically **security** activities, but may also be embedded in IT operations activities

Instantiated through processes, procedures, policies, and controls

Sustainment Strategies

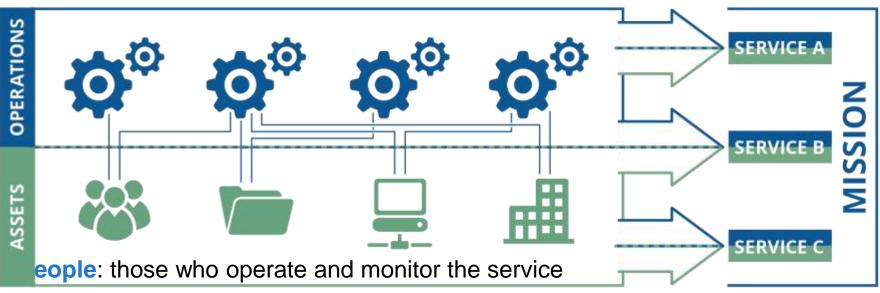

Translate into activities designed to keep assets productive during adversity

Keep an associated business process or service operable without the asset's contributions

Typically **business continuity** activities, but may also be embedded in IT operations activities

Instantiated through processes, procedures, policies, and controls

Efficiency

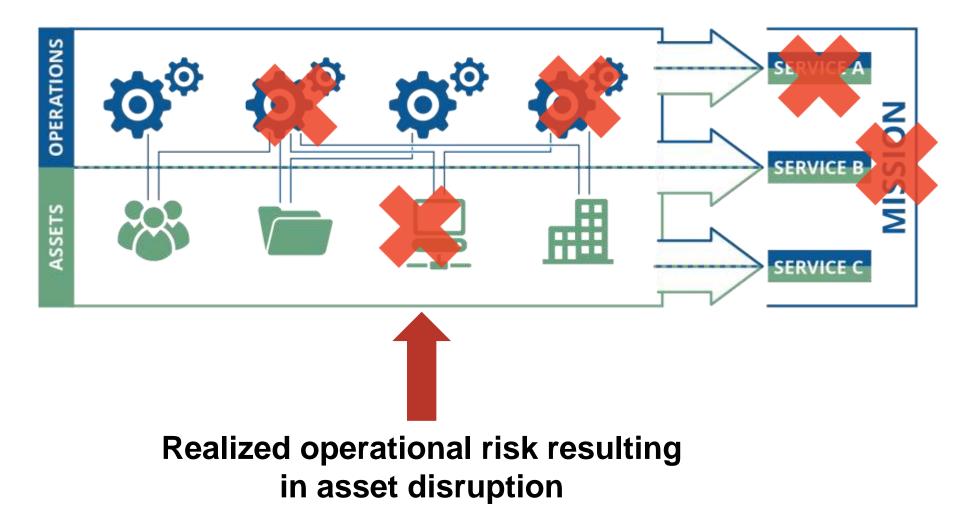


The optimal mix of protection and sustainment strategies

Depends on the value of the asset to the service and the cost of deploying and maintaining the strategy

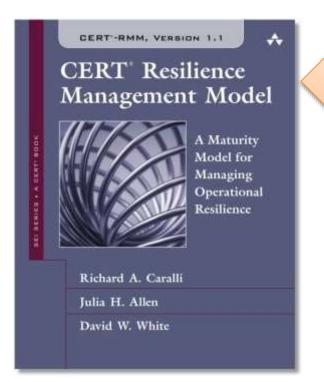
The management challenge of operational resilience

Asset Support Services



Information: data associated with the service

Technology: tools and equipment that automate and support the service **Facilities**: where the service is performed


Assets derive their value from their importance in meeting the service mission.

Disruption of Assets Can Lead to Mission Failure

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University

CERT Resilience Management Model (CERT-RMM)

http://www.cert.org/resilience/

Framework for managing and improving operational resilience

"...an extensive superset of the things an organization could do to be more resilient."

- CERT-RMM adopter

Carnegie Mellon University Software Engineering Institute

A Sampling of CERT-RMM Applications and Derivatives

Carnegie Mellon University Software Engineering Institute

Additional Success Stories for Department of Defense

Carnegie Mellon University Software Engineering Institute

Core Principle and Focus of CERT-RMM

Premise at the core of CERT-RMM

The ability of the organization to sustain operations in the face of operational risk is highly influenced by the quality of the process used to ensure assets remain protected and sustained.

Focus of CERT-RMM

Transforming some (emergent) quality of the organization, called operational resilience, focuses on the processes or activities that support operational resilience management system.

CERT-RMM Approach

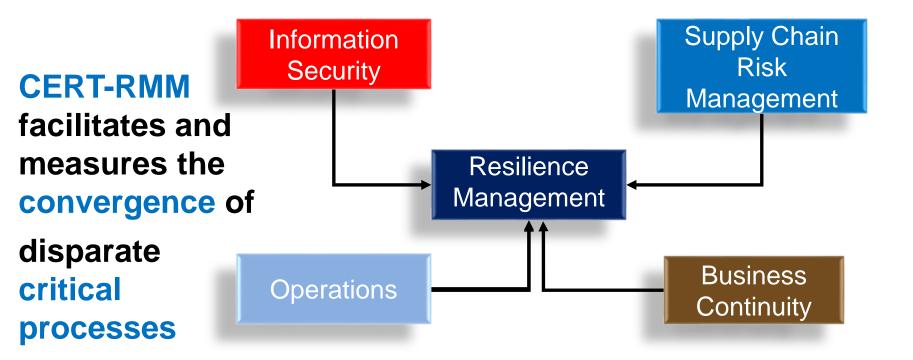
Operational Resilience Management

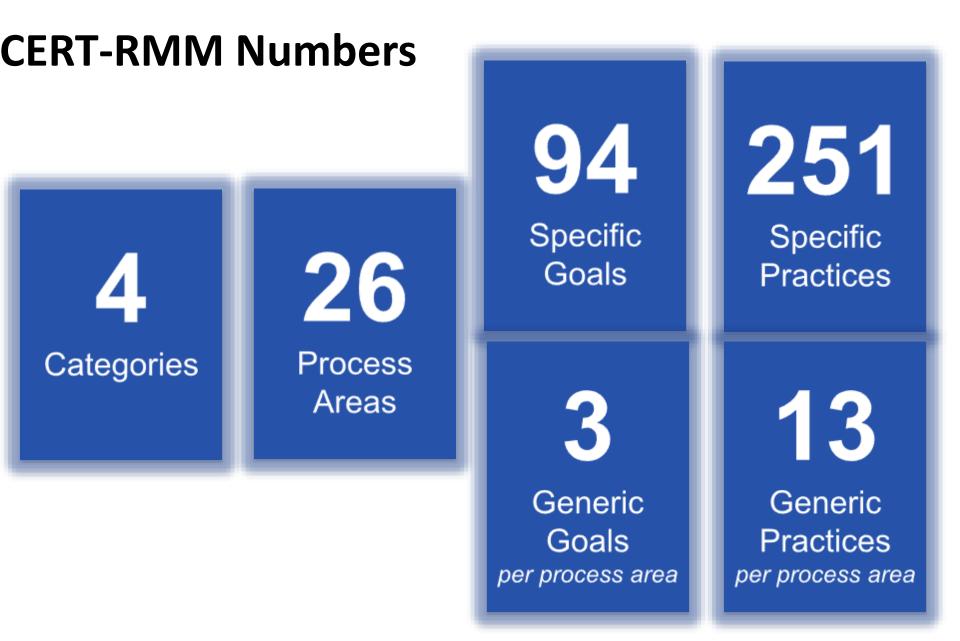
What to do

Comprehensive nonprescriptive guidance on what to do to manage operational resilience

Process Dimension

Institutionalization and Improvement


Making it stick


Proven guidance for institutionalizing processes so that they persist over time

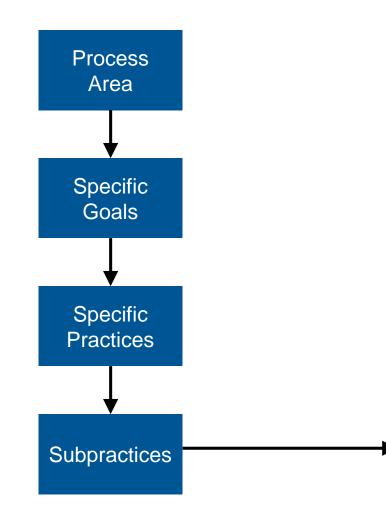
Capability Dimension

Carnegie Mellon University Software Engineering Institute

Convergence of Process

26 Process Areas in 4 Categories

ADM Asset Definition and Management	
CTRL Controls Management	
RRD Resilience Requirements Development	nt
RRM Resilience Requirements Management	nt
RTSE Resilient Technical Solution Engineering	
SC Service Continuity	
Enterprise Management	
COMM Communications	
COMP Compliance	
F Enterprise Focus	
RM Financial Resource Management	
IRM Human Resource Management	
DTA Organizational Training and Awarenes	SS
RISK Risk Management	


Operations							
AM	Access Management						
EC	Environmental Control						
EXD	External Dependencies Management						
ID	Identity Management						
IMC	Incident Management and Control						
KIM	Knowledge and Information Management						
РМ	People Management						
ТМ	Technology Management						
VAR	Vulnerability Analysis and Resolution						
Process	Management						
MA	Measurement and Analysis						
MON	Monitoring						
OPD	Organizational Process Definition						
OPF	Organizational Process Focus						

Example: Managing Cloud Computing

Engineering								
ADM	Asset Definition and Management							
CTRL	Controls Management							
RRD	Resilience Requirements Development							
RRM	Resilience Requirements Management							
RTSE Resilient Technical Solution Engineering								
SC	Service Continuity							
Enterpr	ise Management							
Enterpr COMM	ise Management Communications							
-								
СОММ	Communications							
COMM COMP	Communications Compliance							
COMM COMP EF	Communications Compliance Enterprise Focus							
COMM COMP EF FRM	Communications Compliance Enterprise Focus Financial Resource Management							

Operations								
AM	Access Management							
EC	Environmental Control							
EXD	External Dependencies Management							
ID	Identity Management							
IMC	Incident Management and Control							
KIM	Knowledge and Information Management							
РМ	People Management							
ТМ	Technology Management							
VAR	Vulnerability Analysis and Resolution							
Proces	s Management							
MA	Measurement and Analysis							
MON	Monitoring							
OPD	Organizational Process Definition							
OPF	Organizational Process Focus							

CERT-RMM Links to Codes of Practice

Codes of Practice ISO 31000: 2009 BS25999-1:2006 CobiT 4.1 CMMI-DEV v1.2 CMMI-SVC v1.2 **FFIEC BCP Handbook** ISO 20000-2:2005(E) ISO 24762:2008(E) ISO 27002:2005 ISO 27005:2008 PCI DSS v1.2.1: 2009 NFPA 1600:2007 ANSI/ASIS SPC.1-2009

Resilience Management Overview

The Role of Risk Management

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

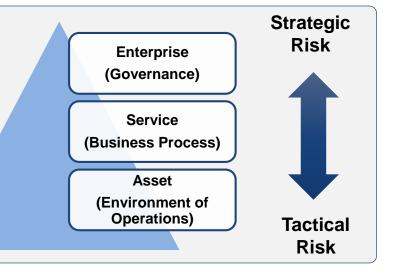
Risk Management Is a Lynchpin Activity

Enterprise (Governance)

• Governance addresses risk from an enterprise perspective by developing a comprehensive governance structure and organization-wide risk management strategy.

Service (Business Process)

• A business process addresses risk from a service and business process perspective and is guided by the risk decisions at the enterprise level.


Asset (Environment of Operations)

• Risk decisions at the enterprise and service levels impact the ultimate selection and deployment of needed safeguards and countermeasures at the asset level.

Risk Management Is a Team Sport

Risk management can be viewed as a holistic activity that is fully integrated into every aspect of the organization:

- enterprise level
- service and business process level
- asset level
- multi-tier organization-wide risk management
- implemented by the risk executive function
- tightly coupled to the enterprise architecture and information security architecture
- system development life-cycle focus
- disciplined and structured process
- flexible and agile implementation

Outcomes of Risk Management

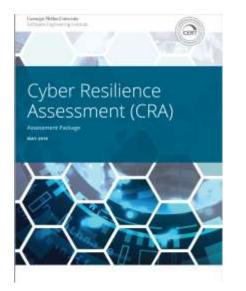
An understanding of

- the organization's threat, vulnerability, and risk profile
- risk exposure
- potential consequences of compromise
 - awareness of risk management priorities based on potential consequences

A risk mitigation strategy sufficient to achieve an acceptable level of residual risk

Organizational acceptance/transference based on an understanding of potential consequences of residual risk

Integration as "business as usual"


Compliance as a by-product

SEI's Approach to Mission Engineering and Mission Assurance

Cyber Resilience Assessment Architecture Assessment

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Purpose: Help organizations assess their operational resilience and cybersecurity practices:

- · as it relates to a specific critical service
- across ten foundational cybersecurity domains
- based on the organization's unique risk profile

Delivery: The CRA is *facilitated* by SEI cybersecurity professionals

Output: The CRA provides an organization with a report detailing its capability and maturity in security management. The CRA also allows an organization to compare its capabilities to the criteria of the NIST Cybersecurity Framework (CSF)

Overview of the CRA

The CRA is a structured assessment conducted during a **one-day facilitated session**.

The CRA session is facilitated by multiple SEI Navigators who solicit answers to **297 questions**.

The CRA results are made available in a **summary report** that provides the organization with suggested **options for consideration**.

Cyber Resilience Assessment - Domains

Asset Management

Controls Management

Configuration and Change Management

Incident Management

Vulnerability Management

Risk Management

Service Continuity Management

External Dependency Management

Training and Awareness

Situational Awareness

1 Asset Management

1 Asset Management

The purpose of Asset Management is to identify, document, and manage assets during their life cycle to ensure sustained productivity to support critical services.

Goal 1	- Services are identified and prioritized.		Yes	Incomplete	No
1,	Are services identified? [SC:SG2.SP1]	۲			
2.	Are services prioritized based on analysis of the potential impact if the services are disrupted? [SC:SG2.SP1]	۲			
3.	Is the organization's mission, vision, values and purpose, including the organization's place in critical infrastructure, identified, and communicated? [EF:SG1.SP1]	۲			
4.	Are the organization's mission, objectives, and activities prioritized? [EF:SG1.SP3]	۲			
respor	 Assets are inventoried, and the authority and sibility for these assets is established. 		Yes	Incomplete	No
1.	Are the assets that directly support the critical service inventoried (technology includes hardware, software, and external information systems)? [ADM:SG1.SP1] People Information Technology Facilities				 • • • • • •
2.	Do asset descriptions include protection and sustainment requirements? [ADM:SG1.SP2] People Information Technology Facilities				

CRA Performance Summary

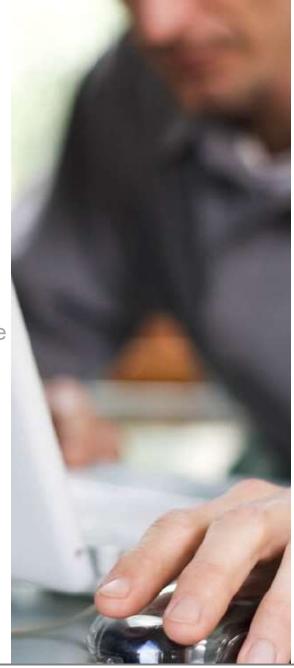
Domain Summary	Domai	MIL-1 Performed Domain practices are being performed.						MIL-2 Planned: Domain practices are supported by planning, policy, stakeholders, and standards.				MIL-3 Managed: Domain practices are supported by governance and adequate resources.				MIL-4 Measured: Domain practices are supported by measurement, monitoring, and executive oversight.			MIL-5 Defined: Domain practices are supported by enterprise standardiza- tion and analysis of lessons learned.	
Asset Management	G1 G2 G3 G4 G5 G6 G7						Q1	Q1	Q2	Q3	Q4	Q1 Q2 Q3			01 02					
Controls Management	G1	G2	G3	G4			Q1	Q2	Q3	Q4	Q1	02	Q3	Q4	01	Q2	Q3	01	Q2	
Configuration and Change Management	G1	G2	G3		-		01	Q2	Q3	Q4	Q1	Q2	03	Q4	Q1	Q,2	Q3	Q1	Q2	
Vulnerability Management	G1	GZ	G3	G4			QI	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q1	02	
Incident Management	G1	G2	G3	G4	G5		01	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	01	Q2	
Service Continuity Management	G1	G2	G3	G4			01	02	Q3	Q4	01	02	Q3	Q4	01	Q2	Q3	01	02	
Risk Management	G1	G2	63	G4	G5		Q1	Q2	Q3	Q4	01	Q2	Q3	Q4	01	Q2	Q3	01	02	
External Dependencies Management	G1	G2	G3	G4	G5		QI	Q2	Q3	Q4	Q1	QZ	Q3	Q4	Q1	Q2	Q3	01	02	
Training and Awareness	G1	G2			_		QI	Q2	Q3	Q4	Q1	02	03	Q4	91	QZ	03	Q1	Q2	
Situational Awareness	G1	G2	G3				01	0,2	Q3	Q4	Q1	02	Q3	Q4	01	Q2	Q3	01	02	
	Legend			1 C C C C C C C C C C C C C C C C C C C	rriplataly G1 = Geal	100-0110 ·····	- Not Perform		AL USE	ONLY								1	D CRA	

Carnegie Mellon University Software Engineering Institute

Resilience Management Overview

e 2020 Gamogie Menor Chivelony

Total number Total number Total number Legend of practices of practices of practices CRA MIL-1 Performance performed incompletely not performed = Performed Q1 = Question Number performed 1P = Question Number, People Asset = Incompletely 11 = Question Number, Information Asset Performed 123 70 1T = Question Number, Technology Asset 44 = Not Performed 1F = Question Number, Facilities Asset CRA MIL-1 Summary DOMAIN SUMMARY MIL-1 PRACTICE LEVEL PERFORMANCE Asset Management Goal 1 - Services are identified and prioritized. 01 02 03 04 1P 1I 1T 1F 2P 2I 2T 2F 3P 3I 3T 3F 4P 4I 4T 4F 05 Goal 2 - Assets are inventoried, and the authority and responsibility for these 17 3 assets is established. Goal 3 - The relationship between assets and the services they support is established. 1P 1I 1T 1F 2P 2I 2T 2F Goal 4 - The asset inventory is managed. 1P 1I 1T 1F 2P 2I 2T 2F 11 1T 1F 21 2T 2F 31 3T 3F 41 4T 4F 51 5T 5F 61 6T 6F Goal 5 - Access to assets is managed. 01 02 03 04 05 06 07 Goal 6 - Information assets are categorized and managed to ensure the sustainment and protection of the critical service. 01 02 03 Goal 7 - Facility assets supporting the critical service are prioritized and managed. Controls Management 1P 1I 1T 1F 02 Goal 1 - Control objectives are established. 25 01 02 03 04 05 06 07 08 09 010 Goal 2 - Controls are implemented. 0 Goal 3 - Control designs are analyzed to ensure they satisfy control objectives. 1P 1I 1T 1F 02 1P 1I 1T 1F 02 Goal 4 - The internal control system is assessed to ensure control objectives are met. **Configuration and** 11 1T 1F 21 2T 2F 03 04 05 06 Goal 1 - The life cycle of assets is managed. Change Management 01 02 03 04 05 06 07 08 09 010 011 Goal 2 - The integrity of technology and information assets is managed. 14 13 01 02 03 04 05 06 Goal 3 - Asset configuration baselines are established. 0


Summary of CRA Results

1.83	Maturity Indi	cator Level by	Domain				Legend 📕	< Your Results	
Asset Management			_						
Controls Management									
Configuration and Change Management	5 x x x x x x x x x x x x x x x x x x x			4					
Vulnerability Management									
Incident Management			_						
Service Continuity Management									
Risk Management									
External Dependencies Management	8 1								
Training and Awareness	8								
Situational Awareness									
Maturity Indicator Level 0		.25	.5	.75	1 Mil-1 Performed Domain practices are baing partermed	2 MIL-3 Planned; Domain practicas are supported by planning, policy, statisticidars, and standards.	3 Mil-3 Masaged: Domain practicas are supported by governance and adequate resources.	4 MIL-4 Measured: Domain practices are supported by measurement, monitoring and security executive eventight.	5 MIL-S Defined: Domain practices are supported by enterprise standardization and analysis of lessons learned

Carnegie Mellon University Software Engineering Institute Resilience Management Overview

SEI's Approach to Mission Engineering and Mission Assurance

Security Architecture Assessment

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Summary

- In collaboration with the Department of Homeland Security (DHS) and the Cybersecurity and Infrastructure Security Agency (CISA), SEI developed a methodology to assess the cybersecurity architecture of Federal Civilian Enterprise (FCE) High Value Assets (HVAs)
- SEI personnel performed as Technical Leads for more than 120 Security Architecture Reviews and High Value Asset Assessments in support of the Office of Management and Budget (OMB) / DHS HVA Program

Assessment Methodology

Overview

- Holistic view of the security of a sensitive or mission-critical system
- Conducted utilizing the methods defined in National Institute of Standards and Technology (NIST) Special Publication (SP) 800-53A:
 - Examine: The examine method is the process of reviewing, inspecting, observing, studying, or analyzing one or more assessment objects. (Document or Configuration Review)
 - Interview: The interview method is the process of holding discussions with individuals or groups of individuals within an organization (Technical Exchange Meetings)
 - Test: The test method is the process of exercising one or more assessment objects under specified conditions to verify and validate conformity or nonconformity with a requirement. (Penetration Tests)
- Security Controls assessment utilizing the High Value Asset (HVA) Overlay
 - NIST SP 800-53r5 Security Controls
 - Specific requirements/parameters required for HVAs

Assessment Methodology Domains

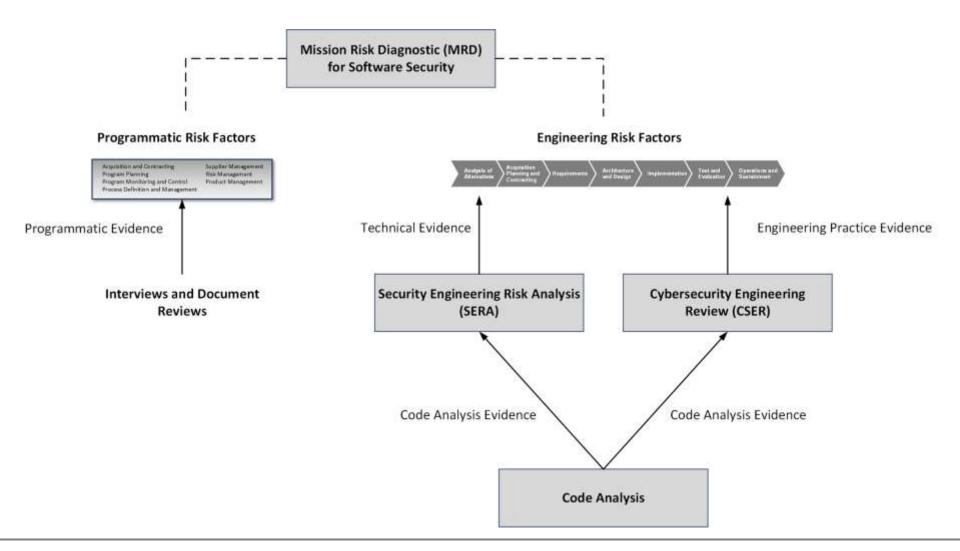
- Network-Based Protections
- Identity and Access Management
- Application Security
- System-Based Protections
- Service Continuity
- Risk Management
- Incident Management
- Continuous Monitoring
- Data Security
- Enterprise Processes and Capabilities
- Penetration Tests

Assessment Methodology Enhancements

- Incident Response Evaluations
- Specific Threat Scenarios
- Threat Modeling
- Reference Architectures

Assessment Results

- Business Impact Analysis
- Key Observations
- Risks
- Recommendations
- High Value Asset (HVA) Overlay Analysis
- Penetration Test Findings


SEI's Approach to Mission Engineering and Mission Assurance

Summary

Carnegie Mellon University Software Engineering Institute CSE: SA Assessments © 2020 Carnegie Mellon University Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Summary: SA CSE Assessments

Carnegie Mellon University Software Engineering Institute

Key Points

SEI CSE research is defining an approach for integrating software security engineering with SSE across the acquisition lifecycle.

Assessments are a key component of the SEI CSE strategy.

- Mission Risk Diagnostic (MRD)
- Security Engineering Risk Analysis (SERA)
- Cybersecurity Engineering Review (CSER)

The CERT Situational Analysis Team is looking to expand its portfolio for its assessments.

Operational Resilience Key Points

Operational Resilience is a critical element that minimizes disruption in times of peril.

- CERT RMM is predictive of future behaviors despite disruptive events based upon its measures of maturity
- CERT RMM has proven itself with a diverse set of derivatives in a broad customer set
- CERT RMM can be leveraged by any organization, regardless of its current degree of maturity

The Cyber Resilience Assessment (CRA) and Security Architecture Assessment (SAA) gages overall resilience measures across a variety of high value assets.

Questions Concerning Build Security In?

Chris Alberts

Principle Cyber Security Analyst Telephone: +1 412.268.3045 Email: <u>cja@cert.org</u>

Carol Woody Principal Researcher Telephone: +1 412.770.5133 Email: cwoody@sei.cmu.edu

Tim Morrow

Technical Manager, Situational Awareness

Telephone: +1 412.268.4792

Email: tbm@sei.cmu.edu

Questions Concerning Operational Resilience?

Jason Fricke

Senior Cybersecurity Engineer Telephone: +1 571.423.9600 Email: jfricke@cert.org

Brett Tucker, PMP, CSSBB, CISSP

Technical Manager, Cyber Risk Management

Telephone: +1 412.268.6682

Email: <u>batucker@sei.cmu.edu</u>

Questions Concerning Business Development?

Frank Redner

Program Development Manager Telephone: +1 703.247.1347 Email: fredner@sei.cmu.edu