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ABSTRACT 

One feature of pattern recognition is to treat geometric objects as physical 
entities. This approach, also found in many applications areas, gives rise 
to a host of problems that essentially involve matching a mobile object 
against a static one. This article investigates the particular problem of de­
termining whether a given polygon P (with p vertices) can fit into a polygon 
Q (with q vertices), if translations and/or rotations are allowed. The main 
result is an O(pq2

) algorithm for solving this problem, for the case where 
Q is convex. We also give an O(p + q) procedure, valid if only translations 
are allowed; and we show that the naive algorithm for the general problem 
requires as much as O[p 3q3(p + q) log(p + q)]. 

Et iterum dico vobis: Facilius est came/um per foramen acus transire, quam divitem 
intrare in regnum caelorum. 
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1. INTRODUCTION 

Questions one may ask about the relationships between two polygons fall 
into two categories. If polygons are regarded as mere sequences of ver­
tices with fixed coordinates in a given system of reference, studying re­
lationships between polygons involves computing their intersection or 
testing for inclusion of one within the other. All these problems have been 
well studied [3, 9, 10], and efficient methods for solving them are available. 
Polygons also can be regarded as coordinate-free objects, defined by the 
relative position of their vertices or their edges with respect to one an­
other. For example, specifying the angle between two consecutive edges 
as well as the length of each edge in a traversal of the boundary suffices 
to define a polygon unambiguously. One can still give a coordinate-de­
pendent description of the vertices, if it is understood that rotating or 
translating the given set of vertices still gives the same polygon. 

This second approach involves giving a physical reality to geometric 
objects, an approach that is a prime feature of pattern recognition as well 
as a frequent viewpoint in many applications areas such as graphics, 
modeling, land planning, or architecture. Typical problems with this set­
ting include determining whether two polygons are similar1 or whether 
one can contain the other. The first problem was solved in [6], where an 
optimal algorithm based on a linear pattern-matching algorithm was pro­
posed. The latter problem is more difficult and, to our knowledge, no 
satisfying results have as yet been found. 

In this article we will investigate the general containment problem, 
which, in its full generality, can be stated as follows: 

Given two arbitrary, simple2 polygons P and Q, determine whether Q can contain P, 
and if yes, report a location for P and Q that realizes containment. 

In other words, the goal is to determine whether it is possible to translate 
or rotate P so as to make it fit into Q. Here is a summary of our results: 
In Section 2, we will attack the general problem and will give a naive, 
O[p 3 q 3(p + q) log(p + q )] algorithm for solving it, with p [resp. q] the 
number of vertices in P [resp. Q]. In Section 3, we will present an im­
proved O(pq2

) algorithm for the case where the containing polygon Q is 
convex. It also describes a simple procedure requiring only O(p + q) 
steps for solving the problem, with now translations allowed only. In 
Section 4, we will further restrict the generality of the problem by re­
quiring the convex hull of P to be a triangle. Although the complexity of 
the algorithm that we will present for this particular case is asymptotically 
of the same order as for the general method, the underlying idea is rad­
ically different and makes the algorithm substantially simpler, hence 
faster. Note that all of our algorithms handle the case where mirror-image 
transformation of one of the polygon is allowed as well, because it is 
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reducible to our statement of the problem in linear time. Similarly, they 
can be used to answer the following question. What is the maximum 
scaling factor applied to P that will still allow for P to fit into Q? To do 
so, we proceed by binary search, discriminating on the scaling factor, 
until the accuracy of the approximation obtained is judged satisfactory. 

2. THE GENERAL PROBLEM 

Let P [resp. Q] be a simple polygon with vertices vi , . . . , vP [resp. wi , 
... , wq], listed in clockwise order. Wlog, we assume that no pair of 
consecutive edges in P or Q are collinear. For the sake of convenience, 
we consider Q to be fixed in the plane, whereas P is mobile yet subject 
to translations and rotations only. We define a placement of P as any 
given position of P relative to Q. A placement can be specified by the 
location of an edge of P, say v1v2, or similarly, as we will do throughout, 
by the location of vi along with the value of the angle 0 = (viX, vi vi), 
viX being the horizontal line passing through v i (Figure 1). A placement 
is said to be containing if it corresponds to a position of Q and P such 
that Plies inside Q. We also say that a placement has one contact if one 
of two situations occurs: either one vertex of P lies on an edge of Q 
(contact of type 1), or one vertex of Q lies on an edge of P (contact of 
type 2). Because contacts are viewed as pairs (vertex , ed e) and are in­
dependent of the precise location of the vertex on the edge, two contacts 
are considered distinct if they differ either in the vertex or in the edge. 
As a result, a vertex of P that coincides with a vertex of Q gives rise to 
two contacts. Note that these kinds of contacts are of both types. A 
placement of P is said to be stable if it exhibits three distinct contacts . 
As it turns out, only stable placements will be of interest when testing 

----+-X 

Figure 1. Specifying a placement of P. 
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for containment. In order to assert this claim, we need to investigate the 
nature of stable or near-stable placements. 

Consider a placement with two contacts of type 1. A and B are the 
vertices of P involved in the contacts, and aa' and bb' are the two edges 
of Q supporting A and B, respectively. We define an origin O as the 
intersection of the two infinite lines passing through aa' and bb', and we 
let C be an arbitrary point in the polygon P. We choose a system of X­
and Y-axes so that ex= (OX, Ob) = 'TT - (OX, Oa). Finally, we introduce 
the angle f3 = (AB, BC) (Figure 2). We wish to study the motion of C as 
A and B slide along Oa and Ob, respectively. InitiaJly we assume that AB 
is parallel to the X-axis; but, in general, this segment forms a nonnull 
angle 8 with the X-axis [8 = (AX, AB)] (Figure 2). Using the well-known 
sine relation, we can easily find the location of C. We have 

sin(AO, AB)!I OB I = sin(2ex)/I AB I 

and because (AO, AB) = (ex + 8), it follows that 

I OB I = I AB I sin(ex + 8)/sin(2cx) (1) 

Letting Xe [resp. ye] denote the X- (resp. Y-) coordinate of the point C, 
we derive from this relation 

Xe = I AB I sin(ex + 8)/2 sin(ex) + I BC I cos(f3 + 8) (2) 

Ye = I AB I sin(ex + 8)/2 cos(ex) + I BC I sin([3 + 8) 

For the sake of clarity, we introduce the set F of functions of the form 

f(6) = >-.. sin(8 + -y) + µ 

defined on [O, 2'TT] for any reals>-.., -y, andµ. Note that Fis a vector space 
over the field of real numbers . An important prop rty of the functions in 
Fis that (1) they are continuous, and (2) on any given interval of size less 
than 'TT, they take on any value at most twice. Note that the functions 

0 X 0 X 

Figure 2. Moving a placement with two contacts. 
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xc(0) and Yc(0) belong to F. We next study the behavior of the vertices 
A and B. It is easy to show that, like (I) 

I OA I = I AB I sin(a - 0)/sin(2a) 

Because 0 varies between - a and + a, and O < a < -rr/2, the constraint 
I Oa' I :5 I OA I :s: I Oa I restricts the range of feasible values for 0 to at 
most two intervals. Relation (I) shows that the same applies to I OB I, 
which ultimately limits 0 to taking on values on three possible disjoint 
intervals in [ - a, a]. 

It is now easy to test all the possible situations in which Chas a contact 
of type 1, while both A and B have contacts of type 1 on aa' and bb', 
respectively. To do so, we observe that the locus of C is an ellipse. There­
fore, we can compute its intersection with all the edges of Q and keep 
only the intersection points that correspond to feasible values of 0. Note 
that to compute the intersection of a line with the locus of C, we have to 
solve an equation of the form: 

AXc(0) + µyc(0) = V (3) 

Since Fis a vector space and both xc(0) and yc(0) are functions in F, 
as mentioned earlier, the left-hand side is a function in F. Therefore, 
Equation (3) reduces to 

X.' sin(0 + 'Y) = µ' 

which we assume to be solvable in constant time. Throughout, our model 
of computation will be a RAM with infinite arithmetic precision and unit 
time trigonometric functions. We also observe that the intervals of fea­
sibility for 0 do not span a range of size greater than -rr; therefore, as 
previously noted, the equation has at most two feasible solutions. We can 
conclude: 

LEMMA 1. Given any vertices A, B, C of P and any edges a, b, c of 
Q, there are at most two stable placements with contacts of type I in­
volving A on a, Bon b, and Con c. Moreover, these placements can be 
computed in constant time. 

Next, we proceed to generalize this result to any kind of stable place­
ments. Note that because P and Q play symmetrical roles, the only case 
that remains to be studied involves stable placements with two contacts 
of type 1 (A on aa', B on bb') and one contact of type 2 (v1.!rtex w of 
Q on edge CC' of P). Let D be the intersection of the vertical line passing 
through w with line( CC')3 (Figure 3). It is clear that there is a contact of 
type 2 between wand CC' if and only if D lies on CC' and coincides with 
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Figurt 3. Testing for stable placements with one contact or type 2. 

w. We can now generalize our previous result. 

L£MMA 2. Given any triple of verticts and any triplt of tdgts in P 
and Q, any stablt plal'tmtnt Involving thtSt tdgn and vtrticts can bt 
dttuud and compurnd In constant timt. 

We must now show the utility of these arguments by establishing the 
following. 

l.£.MMA 3. /JQ can contain P, there al!ts a stable containi11g plou• 
m~nt. 

PttooP. Starting from a containing placement (i.e .. for which Q con­
tains P). we can move P by a vertical translution until it first hits Q. Al 
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this point, we have at least one contact of type 1 or 2. If there are three 
of them, the claim is true. If there are only two, and two vertices happen 
to coincide, we can pivot P around these vertices until P hits Q for a 
second time; at this stage the placement is necessarily stable. In the gen­
eral case, the first translation creates only one contact. Whatever its type , 
there is always one edge involved, so we can translate P along this edge 
until P hits Q again, which will create a second contact. If both contacts 
are of the same type , we are in the case of Figure 2 (exchanging P and 
Q, if the contacts are of type 2). Then we move A and B along aa' and 
bb', respectively , until either A or B hits an end point of their respective 
edge aa' or bb', or a third point C hits the boundary of Q, whichever 
happens first. In all cases, a third contact is thus created. The last pos­
sibility to investigate corresponds to the two contacts created so far being 
of distinct types. Let aa' and A be , respectively , the edge of Q and the 
vertex of P involved in the contact of type I. Similarly, bb' and B denote 
the edges of P and the vertex of Q forming the contact of type 2 (Figure 
4). A divides the edge aa' into two segments, one of which, say u = Aa, 
wlog, has the property that all of its points M satisfy I MB I ~ I AB I­
Similarly, the segment v = bB can be assumed to share the same property 
with respect to A. It then follows that we can have A move along u toward 
vertex a in a continuous motion, while B slides similarly along v. This 
motion will proceed until either A reaches vertex a or B reaches b, or 
until P hits Q anywhere else, whichever happens first. In all cases, the 
motion terminates with the addition of a third contact to the placement, 
which completes the proof. D 

a 

Figure 4. Dealing with contacts of different types. 
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We are now in a position to propose a naive algorithm for solving the 
general containment problem: 

Enumerate all possible stable placements, and for each of 1hem, determine whether 
Q contains P. 

For each feasible stable placement, the detection procedure just de­
scribed provides the location, with respect to Q, of at least three distinct 
points. So, it is straightforward to obtain the coordinates of all vertices 
of P for this particular placement. With this information available, we can 
next test whether P lies inside Q, using any standard polygon-inclusion 
algorithm [ 1, 9]. These methods usually require sorting the vertices of P 
and Q beforehand, which contributes to the O(q + p log p) running time 
of each iteration. Since there are O(p 3 q3

) candidates for stable place­
ments, we conclude 

THEOREM 4. For any pair of simple polygons with, respectively, p and 
q vertices, it is possible to solve the general polygon containment problem 
in O[p 3 q3(p + q) log(p + q)] steps. 

3. THE CONVEX CASE 

We will see in this section how the introduction of a convexity requirement 
leads to significant improvements in the containment algorithm. From 
now on, we will assume that the polygon Q is convex. If P has a containing 
placement, Q certainly also contains the convex hull of P. So we will first 
compute this convex hull, using any linear time algorithm [7], which then 
permits us to deal exclusively with convex objects. We can state the new 
version of our problem as follows: 

Given two convex polygons P and Q, solve the general containment problem for P 
andQ. 

Once again, we assume that Q is fixed and P mobile. We choose to 
specify a placement of P with the XY-coordinates of one of its points, say 
v1, and the direction ofv1v2, measured by the angle 0 = (v1X, v1v2). 

3.1 The Translation-Restricted Problem 

Mostly in order to introduce our notation and present some of the tech­
niques used later on, we will begin with a simplified version of the prob­
lem. We require here that P be moved only by translation. For any fixed 
value of 0, there is a very convenient way of characterizing containing 
placements. 
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Let H;(i = 1, ... , q) be the half-plane that is delimited by line(w;W;+ 1) 
(indices taken mod q), and contains Q. For any position of Pin H;, there 
is in general one vertex (c;), or in any case at most tw (consecutive) 
vertices of P that are closest to line(w;W;+ 1). Since P and Qare convex, 
it is easy to see that the line passing through c; and parallel to W;W;+ 1 

rolls around P, as w; progresses in clockwise order around Q. As a result, 
{c1, ... , cq} is a subsequence of{v1, . . . , vp}, and it is thus straight­
forward to compute the c;'s in O(p + q) time. We will omit the details. 

We will now move the polygon P by translation so that c; coincides 
with w;. This completely specifies a placement of P, which enables me 
to define the infinite line t,{0) passing through v1 and parallel to W;W;+ 1. 
Finally we let ht;(0) denote the half-plane defined by t;(0) that does not 
contain the edge w;w;+ 1- Note that P lies entirely on the same side of 
line(w;W;+ 1) as Q if and only if vi lies in ht;(0). Therefore, we know that 
for any given value of 0, Q can contain P if and only if the intersection 
/(0) of the half-planes ht1(0), ... , htq(0) is not empty. Moreover if the 
intersection is indeed not empty, it is a convex polygon that is exactly 
the locus of vi for all containing placements with direction 0 (Figure 5). 
We can use this fact to derive an algorithm for solving our restricted 
problem. It simply consists of computing all the half-planes ht1, ... , htq, 
which requires O(q log p) time; then determining their intersection (using 
Shamos and Hoey's algorithm [10], for example), which adds O(q log q) 
to the running time. This results in an O[p + q log(p + q)] time algorithm 
for computing all containing placements of P obtainable by translation 
only. We will show in Section 3.2.2 that, actually, the intersection ofhalf­
planes can be computed in linear time, leading to: 

THEOREM 5. For any pair of convex polygons P and Q, with, respec­
tively, p and q vertices, it is possible to find all the containing placements 
of P obtainable by translation only, in time and space O(p + q). 

Figure 5. The locus of the vertex v1. 
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3.2 The Unrestricted Problem 

Turning back to our original problem, i.e., allowing both translations 
and rotations in the motion, we are tempted to carry out the previous 
procedure for all values of 0, or since it is obviously impossible to do so, 
at least apply the previous technique for all "significant" values of 0. To 
give substance to this idea, we must first investigate the transformation 
that the intersection /(0) undergoes as 0 varies from O to 271". The lines 
t,{0) are translated in a continuous motion, so the only angles 0 that need 
to be considered are those for which three lines t,-(0) intersect at the same 
point. Note that these values of 0 correspond exactly to the stable place­
ments of P. If our goal is to improve upon the naive algorithm, however, 
we cannot compute all possible candidates for cm,taining placement, and 
we must show that it is indeed possible to avoid the exhaustive enumer­
ation. 

To that end, we will give a more convenient characterization of stable 
placements. We use the concept of duality, found in [2, 8), which consists 
of reducing geometric problems to others by means of mathematical trans­
forms. In this case, we borrow from K. Brown's half-space algorithm [2], 
which proceeds by reduction to a convex hull problem. 

We start out by partitioning the set of edges of Q into two parts: one 
including the upper edges of Q and the other the lower edges. Wlog, we 
can assume that no edge of Q is parallel to the Y-axis. Then it is possible 
in linear time to determine the unique vertex of Q with the minimum X­
coordinate, say Wt. Similarly we obtain the vertex wk with the maximum 
X-coordinate, and we partition the edges of Q into two subsets { Wt w2 , 

... , Wk-tWk} and {wkwk+t, ... , Wqwi}. Now /(0) can be viewed as the 
intersection of two unbounded convex regions (Figure 6) 

UP(0) = htt(0) n ... n htk- t (0) 

and 

L0(0) = htk(0) n ... n htq(0) 

Since none of the lines t.-(0) is vertical, each can be represented by an 
equation of the kind: 

Y = a.-(0)X + b.-(0) 

So we have a one-to-one mapping 

t;(0) - U.-(0) = [a.-(0), b.-(0J] 

Note that a;(0) = (Yw;+, - Yw;)/(xw;+, - xwJ, and is thus independent 
of 0; so from now on, we will refer to it as simply a;. 
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Figure 6. The partition of the half-planes defining /(0). 

The boundary of UP(0) consists of several edges, one or two of which 
are semiinfinite lines. The lines t;(0) that do not contribute an edge to 
UP(0) are called redundant. It is shown in [2] that a line t,(0) is redundant 
if and only if there exist two other lines t;(0) and t;{0), such that their 
intersection lies below tr(fl), and the slope of t,(0) lies between the slope 
of t;(0) and that of t/0), that is, such that (wlog) 

a;< a,< aj 

and 

[b,(0) - b;(0)]/(a, - a;) > [b;{0) - b;(fl)]l(a1 - a;) 

It follows that the point U,(0) lies above the segment U;(fl)U;{0) (Figure 7). 

y 

L------1---'---'---- X 
0 

Figure 7. The notion of redundancy. 
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From this fact, we can prove that all the nonredundant lines for UP(0) 
are exactly those corresponding to the vertices U,{0) of the bottom part 
of the convex hull of { U1(0), ... , Uk-1(0)}.4 Note that since Q is convex, 
the slope of w;w;+ 1 decreases as i varies from 1 to k - 1; therefore, the 
points U;(0), for i = k - 1, ... , 1, appear in this order with increasing 
X-coordinates. Let CU(0) be the bottom part of the convex hull of { U1(0), 
... , Uk- 1(0)}. We can apply the same reasoning to LO(0), which leads 
us to define CL(0) as the top part of the convex hull of {Uk(0), ... , Uq(0)} 
(Figure 8). If for 0 = 0, there exists a containing placement of P, the 
algorithm of Theorem 5 can be used to detect it. If this is not the case, 
difficulties arise, and a more thorough analysis is needed. 

Assume that for some value of 0, exactly one vertex u of UP(0) lies on 
an edge ~'Y of LO(0), and all of UP(0) lies below the line tk (Figure 9A). 
Using the notation of Figure 9, with the correspondence between lines tx 
and points Mx, we can show that the dual figures CU(0) and CL(0) share 
the same property. More precisely, we will prove that 

LEMMA 6. The statements "u lies on ~'Y and UP(0) lies below LO(0)" 
and "Mk lies on M;Mi and CL(0) lies below CU(0)" are equivalent. 

- -. ...._ --- - -.... 
/ ---

/ 
/ . . 

/ • 
• 

• 

• • 
y t Ua(8~" L ,,. __ _ 

Q X 

• 

- -

• 

- .... 

u, (8) 
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Figure 9. Characterizing containing placements. 
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PRooF. First we observe that the three lines Y = a,X + br(t = i, j, 
k) have a common intersection if and only if the three points M, = (a,, 
b,) (t = i, j, k) are collinear. Also it is clear that slope(t;) ~ slope(tk) ~ 
slope(tj) is exactly equivalent to a; ~ ak ~ aj. As a result, the intersection 
oft; and tj lies on tk and UP(6) lies below tk if and only if Mk lies on M;Mj. 
The last condition is that a actually lies on the segment !3-y. We express 
this by saying that the X-coordinates of 13, a, 'Y are increasing in this order. 
Analytically, this is equivalent to 

(bk - be)l(a"', - ak) :5 (bj - b;)l(a; - aj) :5 (bk, - bd/(ak - ak,) 

that is, 

slope(MkMk') :5 slope(MjM;) :5 slope(Mk',Mk) 

which completes the proof (Figure 9B). D 

Since what we just proved still applies ifwe exchange the roles of UP(6) 
and LO(0), that is, assuming that a vertex of LO(0) lies on an edge of 
UP(6), we can summarize this result as follows: "L0(6) and UP(6) in­
tersect in exactly one point if and only if CU(0) and CL(0) do so, too." 
Now the simple observation that if we translate LO(0) vertically upward 
[resp. downward], CL(0) will also be translated vertically upward [resp. 
downward], leads to the following characterization lemma: 

LEMMA 7. LO(0) and UP(6) intersect in the interior if aml only ifCL(6) 
and CU(6) do not intersect. So, there is a containing placement with the 
angle 6 if and only if CU(6) and CL(6) do not intersect. 

PRooF. A direct consequence of the preceding remark. D 
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3.2.2 Computing a Description of CU 

To be able to use the characterization of Lemma 7, we need a descrip­
tion of both C U(0) and CL(0) as a sequence of vertices in, say, clockwise 
order. Since the polygonal lines are defined in a similar manner, we may 
concentrate on CU(0) exclusively. For 0 = 0, we may use any standard 
convex hull algorithm [5] to obtain CU(0) in time O(q log q). Actually it 
is possible to do it in time 0( q) by observing that the sequence of points 
U1(8), ... , Uk- 1(0) can be viewed as a clockwise traversal of a polygon 
V whose convex hull contains CU(0) as its bottom part (Figure 10). The 
convex hull can be obtained in O(q) time, using McCallum and Avis' 
algorithm for example [7], and a simple traversal of the boundary of this 
convex hull permits us to find its rightmost [resp. leftmost] vertex, from 
which we derive its bottom part. This gives us yet another, more efficient 
method for computing a containment placement of P achievable by trans­
lation only. Indeed, from Section 3.1 and the preceding result, it follows 
that we can compute CU(0) and CL(0) in O(p + q) time, and since they 
are convex, we can test their intersection in O(q) time [10) which, with 
Lemma 7, completes the proof of Theorem 5. For the general problem, 
however, computing the convex hull explicitly will not be necessary, since 
CU(0) will be computed recursively. 

First, we need to define a data structure that will afford us a complete 
description of CU(0), for any 0 between O and 2,r. To do so, we must 
observe the behavior of the points U,{0), 1 ::5 i < k. Each of them moves 
along the vertical axis X = a;, and its motion is a continuous function of 
0. To be more precise, let us define some notation. For all v;, 1 s i s 
p, d; is the length of the segment viv;, and a; is the angle (v;v;+1, v;-1v;). 
Note that a1 + ... + ap = 2,r. Whatever the value of 0, we will assume 
for the time being that P always rests above the X-axis, that is, its inter-

(V) 

cu (0) 

Figure 10. Constructing CU(O). 
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Figure 11. Expressing the function y,(0). 
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section with the X-axis consists of exactly one vertex v, or one edge v,- ,v,. 
As we start with 0 = 0, we introduce the angle 00 = (v,v,-1, OX), which 
permits us to express y,(0), the f-coordinate of v1, in terms of 0 for any 
value of this angle. Note that 60 always lies in the interval [ -1r, OJ (Figure 
11). 

For any value of 0 in [0o, 0i], with e, = 0o + a,, we have Y1(6) = 
d, cos(0 + 10) for some constants "lo- Similarly we can see that there 
exists a constant "f; such that for any 0 in [0;, 0;+ i], where 0;+ 1 is defined 
by the recurrence relation5 0; + 1 - 0; + a,+;, we have the following relation. 

y,(0) = d,+; cos(0 + "f;) (1) 

These relations induce a partition of the interval [O, 21r] into p + l intervals 
[0;, 0;+il with 

0 s 61 < 62 < ... < 0p s 21T 

such that, on any of these intervals, the functiony1(0) belongs to the vector 
space F defined in Section 2. Figure 12 provides an illustration of this 
result. 
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A 8= 0 
X 0 

B 

y,(8) 

Figure 12. The behavior of Y1(0). 
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e 

We can now turn back to the behavior of the oints U;(0), l :s i < k. 
As observed, the X-coordinate of U;(0) is indepen ent of e, so we simply 
have to express its ordinate b,{0). Note that if D r any j, 1 :s j < k, we 
study the motion of the point v1, as P rests on line(w1w1 + 1), lying on the 
same side of the line as W with e varying from O to 2'TT, we will observe 
a behavior strictly similar to that of Y1(0). More precisely, the distance 
h1 from v1 to line(w1w1 + 1) can be expressed as Y1(0 + '3}) for some constant 
'31 . Note that the function Y1(0) is periodic with period 2'TT; therefore, the 
function Y1(0 + '31) is well defined. Finally, we can derive from this fact 
that the intersection of the line ti0) with the Y-axis has an ordinate of the 
kind bi0) = 'Y;Y1(0 + '31) + 61 , where -y1 and 61 are two constants (Figure 
13). It is easy to see that -y1 = -1/cos(OX, w1w1 + 1), with (OX, w1w1 + 1) 
measured between O and 2'TT' and that 61 = Yw1 - XwiYwJ+ I - YwJl(xwj+ I 
- xwJ- From this, we conclude that for any j, I :s j < k, we have the 
relation 

(2) 

y 

b· (8) ... 
J 

...._ _________________ --l._,X 

0 

Figure 13. Expressing bi0). 
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We are now in a position to give a full description of CU(0), the bottom 
part of the convex hull of the points { U1(6), ... , Uk- 1(6)}. For simplicity, 
we regard the points U;(0) as points U; moving vertically between the 
instants 0 = 0 and 0 = 2,r, according to relation (2). Similarly CU(0) can 
be viewed as a moving convex polygonal line. We observe that CU may, 
at times, lose or gain vertices, so we can say that a vertex U; is active at 
time 0, if U;(0) belongs to CU(0). Note that both U1 and Uk-1 are always 
active. 

We must next tackle the following problem. How do we represent CU so 
that we can efficiently check the conditions of Lemma 7? Assume for the 
time being that in the time interval [O, 2,r], CU never loses or gains ver­
tices. Let CU1, ... , CUr be a list of its vertices in clockwise order. Since 
CUi obeys relation (2), its ordinate is a function of F on each interval 
[ -[3j, 61 - [3j], ... , [0p - f3j, 2,r - [3p], Taken modulo 2,r, this sequence 
partitions [0, 2,r] into p + 1 intervals. Therefore we can describe the 
behavior of CU by setting up a doubly linked list L consisting of t cells, 
each containing enough space for three real numbers: 

L = Cell(CU1) - · · · - Cell(CU1) 

The INFO part of each cell Cell(CU), at each instant 0, consists of three 
numbers A, B, C specifying that at that instant, the ordir1ate of CUi is 
A cos(0 + B) + C. Along with the data structure L given for 0 = 0, i.e., 
describing CU(0), we need a list of instructions I, in order to update the 
INFO parts of the cells of Lat the appropriate times. 

Since a partition of [0, 2,r] into p + 1 intervals is needed to describe 
the behavior of each CUi, we must set up a list/ of t(p + 1) instructions 
of the kind (t;, j, A, B, C) (1 :s i :s t(p + 1)) with ti = 0, meaning that 
at instant t;, the INFO part of CUi should be updated and set to (A, B, 
C). Of course, we require that the t;'s appear in increasing order, which 
corresponds to merging the t partitions of [0, 2,r]. Note that for any i, I 
:s i < t(p + 1), every point CUi has an ordinate of the form Al cos(0 + 
B) + C for any 0 in [t;, f;+ i], where the triplet (A, B, C) is given by the 
contents of Cell(CU). 

Now what if CU happens to gain or lose vertices? We can extend the 
preceding data structure to handle these cases as well. Such situations 
are characterized by the collinearity of three consecutive vertic,es of CU, 
say CU;, CUi, CUk, in clockwise order. If tis the time when this gain or 
loss occurs, the list I must contain the instruction [t, j, i, insert,, A, B, C] 
if CUi is to be inserted next to CU; in clockwise order, and [t, j, delete] 
if CUi is to be deleted. This being self-explanatory, we simply note that 
by giving fixed locations to the cells, we can ensure that any instruction 
of I can be executed in constant time. Whereas the representation by 
means of data L and instructions I is clearly adequate for describing the 
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behavior of CU, we must still investigate size issues and give an efficient 
method for computing L and /. 

We next turn to the latter problem. Efficiency will be ensured by means 
of a divide-and-conquer strategy. Since the method is straightforward for 
size 1, we will directly attack the general recursive step. We assume two 
pairs of lists (L1, Ji) and (L2, /2), corresponding to cu<0 and CU2l, 
respectively, where cu< 0 [resp. CU2

l] is the bottom part of the convex 
hull of {U1, ... , U[k121} [resp. {U[kl2J+1, ... , Uk~1). We start out by 
computing the line of support of CU1J and CU2J at time 0 = 0, which 
gives us CU(O), hence the list L. To do so, we use any standard linear 
time algorithm6 [3] (Figure 14). 

Next we have to set up the list of instructions / for CU. To this end, 
we introduce some notation. Let a1 and a 2 be the two vertices of CU1

J 

and CU2l, respectively, in contact with the line of support (Figure 14). 
The points a 1 and a2 are to be regarded as vari,ibles taking on the name 
of the particular vertices that they happen to represent at any given time. 
Similarly, we define h1, c1, and h2, c2, as the neighbors of a1 and a2, 
respectively (Figure 14). Wlog, we can assume that such neighbors are 
always well defined. The first task consists of merging the two sets of 
instructions /1 and Ii in chronological order. Then we proceed with scan­
ning the resulting list /, keeping, deleting, or adding instructions to the 
set. The major work is to keep track of the points a1 and a2. We define 
the interval 6(a1, a2) to be the set of indices corresponding to the points 
U; lying between a 1 and a2. More precisely, if a 1 = U u and a2 = U v (note 
that 1 :::;; u :::,; k/2 and k/2 + 1 :::,; v < k), 6(a1, a2 ) is the set {u + 1, u + 
2, ... , V - 1}. 

As we scan down the list /, it is clear that all instructions relating to 
an index in 6(a1, a2) should be discarded.7 Difficulties arise when 6(a 1, 
a2) must be updated. This corresponds to a situation where one of the 
triplets (a1, a2, c2), (a1, a2, h2), (a2, a1, h1), (a2, a1, c1) becomes collinear. 

cu<2 > CU (I) 

(CU) 

Figure 14. Computing CU(0). 
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Since each of these four triplets involves a I and a2, we can associate to 
each of them a function f; of 0, defined as the distance of the third point 
in the triplet to line(a1, a2), All these functions f1, fz, f3, f4 can be 
expressed in a similar way 

ayu; + ~Yuj + "/Yuk 

for some constants a, ~. and -y, depending only on the X-coordinates of 
the three points U;, U1 , Uk involved in the function. The functions Yw, 
Yu;, and Yu• belong to F over some intervals partitioning [O, 21r] into p + 
1 parts. Therefore each of the functions f;(0) belongs to F (recall that F 
is a vector space) over intervals that partition [0, 21r] into at most 3p + 
1 parts. As a result, if we are given the interval [t, t'] in which 0 falls, 
we can compute in constant time the smallest 0', t ::s; 0 ::s; 0' :S t', if it 
exists, such that f;(0') = 0. 

With these facts in mind, we are ready to describe the algorithm for 
setting up the list I. It essentially consists of going through the list I, as 
initially set up, removing or adding instructions to the set, and always 
executing the remaining instructions on the list L, so that at any step of 
the procedure, L gives the actual picture of CU at this step. / is assumed 
to be a linear list so that scanning down / allows for constant time in­
sertions and deletions. 

Step 1. 

Step 2. 
Step 3. 

Step 4. 

Let L be the doubly linked list describing CU(0) and let / be 
defined as the merge of I, and /z. Let R denote the number of 
instructions in/, with t,, ... , tR, being the instants associated 
with these instructions. Determine the vertices a1, a2, b,, b2, 
c1, c2, as defined earlier, and for each of them, find its corre­
sponding triplet (A, B, C). To do so, look up in L. Set i to 0. 
Set i to i + 1, and 0 to t;. If i = R + 1, then STOP. 
Compute the smallest 0', 0 < 0' ::s; 21r, such that the product 
ITU0') = 0(1 ::s; i ::s; 4). If no such 0' is found, let 0' = oo. 

If 0' 2: t;+,, the value of a1 and a2 remains the same over the 
interval [0, t;+ i]. The only necessary updating may come from 
the instruction [t;+,, j, ... ] of I. In all cases, we execute it on 
L if and only if j does not belong to 8(a 1, a2), so as to update L 
for the forthcoming instants >t;+ 1, If the instruction is of the 
form [t;+,, j, A, B, C], check if one of the variables a,, a2, b1, 
b2, c1, c2 has the value U1 , in which case its corresponding triplet 
(A, B, C) should be updated as specified by the instruction. 
Slightly more complicated is a situation where the instruction 
involves deleting or inserting a vertex U1 , i.e., [t;+,, j, delete] 
or [t;+ 1 , j, I, insert, A, B, C]. Up to symmetrical cases, there 
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are only two situations to investigate: 

1. The variable c2 has the value U1 , and U1 must be deleted. Here, a 
simple look-up in L gives the successor of U1 in increasing order, 
which is precisely the new value to which c2 should be set. 

2. The vertex U1 is to be inserted, andj belongs to &(a2, cz). Then c2 
should simply be set to U1. 

In all cases, we can also update the triplets (A, B, C) corresponding to 
the updated variables, in constant time. At this point, both L and the 
sextuplet S = (a1, a2, b1, b2, c1, c2) have been updated, so we can iterate 
by setting 0 to t; + 1 and go to Step 2. 
Step 5. If 0' < t;+1, we have f;(0') = 0 for some i, so the sextuplet S 

must be updated. Up to symmetrical cases, there are two sit­
uations to examine. Either (a1, b2, a2) or (a,, a2, c2) are colli­
near. 

1. In the first case, set c2 to the value of a2, and a2 to the value of 
b2. Finally, by looking up in L, the new value of b2 (the successor 
of b2 in decreasing order) can be found in constant time. 

2. Handling the latter case involves updating c2 to the neighbor (in 
clockwise order) of its current value by looking up in L, setting a2 
to the former value of c2 and b2 to the former value of a2. 

In all cases, it is easy to update the corresponding triplets (A, B, C) in 
constant time. 
Step 6. The final step is to update I and L. For I, we simply have to 

add an instruction of the kind [0', *, insert, *] or [0', *, delete] 
between the instructions [0, *] and [t;+,, *]. We will omit the 
details, as this operation is very straightforward. In all cases, 
also execute the newly added instruction on L, for reasons al­
ready stated. 

Except for boundary conditions, which we d,.i not think necessary to 
dwell upon (i.e., terminal cases of the recursive procedure), the preceding 
algorithm correctly computes the (/, L)-description of CU, as 0 varies 
from Oto 2ir. We will omit the proof of correctness, which we believe to 
be essentially included in the presentation of this rather involved, yet 
conceptually simple algorithm. 

Turning next to an analysis of its complexity, we observe that the crucial 
parameter is, of course, the number of instructions in /1, /z, and/. Let 
R(N) be the maximum number of instructions in the set I relative to the 
bottom part of the convex hull of a set of N vertices of the kind { U1 , ... , 
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UJ+N-1}. Both the time and space requirements of the algorithm are 
bounded, up to within a multiplicative factor, by the function T(N), de­
fined by T(l) = 0 and 

T(N) = 2T(N/2) + R(N) + 2R(N/2) + O(N) (3) 

R(N) accounts for two very distinct kinds of instructions: (1) the in­
structions of the kind [t, j, A, B, C], which correspond to a change of 
interval over which (f,{8) belongs to F, and thus do not number more than 
Np; (2) the delete or insert instructions, which correspond to the situations 
where three consecutive vertices of CU become collinear. Let S(N) be 
an upper bound on the number of such instructions. 

R(N) :s Np + S(N) 

Since the collinearity of three vertices U;, U1 , Uk corresponds to values 
of 8 for which 

f(8) = a.b;(8) + J3b;{8) + -ybk(8) = 0 

for some constants a., J3, -y, relation (1) and (2) show that for any given 
triplet (i, j, k), f(8) belongs to F over 3p + 1 intervals. 8 Furthermore, 
since each interval is less than 1r wide, f(8) takes on any !;riven value at 
most twice over each interval, therefore the number of distinct values of 
8 for which f(8) = 0 is bounded above by 6p + 2. This !;rives a naive, 
conservative estimate of S(N), namely, S(N) = O(pN3

). 

It is possible to improve on this result with a more careful analysis of 
the problem. To begin with, we view the line CU(8) a little differently. 
Instead of representing its evolution in time with a sequence of instruc­
tions, we regard it as a sequence of triplets [e, t,(e), t2(e)], where e is an 
edge of CU, and [t 1(e), ti(e)] is the maximum time interval during which 
e is not altered by an instruction of/. To make this notion clearer, we 
will examine the various cases where this happens. Recall that there are 
three kinds of instructions in/: 

1. [t, j, A, B, C]; "update vertexj" 
2. [t, j, delete]; "delete vertex j'' 
3. [t, j, i, insert, A, B, C]; "insert vertexj next to vertex i" 

Therefore, up to symmetrical cases, the edge ab will be altered if one 
of the following actions takes place: 

4. a is updated by (1) (Figure 15A) 
5. a is deleted by (2) (Figure 15B) 
6. c is inserted by (3) (Figure 15C) 
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a b ~J ____ J 
A B 

C 
C 

Figure 15. Updating the edges of CU. 

Now we can legitimately define the maximum time interval [t1(ab ), 
ti(ab )] over which none of the previous actions takes place. Consider the 
list of all triplets {(e, t1, t2)}, sorted in increasing order with respect to 
the second component, t1 , and let C(N) be the list with maximum car­
dinality defined for N points U/0), ... , Uj+N- 1(0). Note that an in­
struction of type (1) or (3) creates two triplets, whereas an instruction of 
type (2) creates one triplet, therefore I C(N) I 2: IHN). The next step must 
be to evaluate the cardinality of C(N). To do so, we first introduce the 
notion of temporal segment. For any pair of vertices U;, Uj, we can 
partition [O, 2,r] into 2p + 1 intervals over which the ordinate of both U; 
and Uj is a function in F, i.e., of the form A cos(0 + B) + C, for constants 
A, B, C. This suggests breaking down the motion of U;Uj into 2p + 1 
parts, i.e., representing U;Uj by 2p + 1 temporal segments e1, ... , 
e2p+ 1. Each segment e; is defined only on one interval in [O, 2,r] and has 
the property that the ordinate of both of its end points is a function in F. 
Before proceeding, we will exhibit an important feature of temporal seg­
ments. 

Let e = U;Uj and f = U;Uk be two temporal segments, with either i 
:5 j, k or k, j :5 i. It is clear that e and f can never both belong to CU at 
the same time. Moreover, we can show that if e is an edge of CU at time 
t1, f becomes one at time t2 > t1, and finally e regains its status as an 
edge of CU at time t3 > t2, then f can never beclime an edge of CU again. 
Indeed, ifit did, Uk would have to cross the line passing through ea third 
time, which is impossible since the collinearity of U;, Uj, Uk corresponds 
to values of 0 for which A cos(0 + B) + C = 0, for some coefficients 
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A, B, C, and at most two such values can be found on any interval less 
than 'TT wide (note that this result still holds, if we exchange e and f). 

This fact is subtler than it may appear. Indeed, one may think that f 
could actually become an edge of CU again, once e has "died," i.e., has 
ceased to be defined as a temporal segment. Recall that temporal segments 
are defined only on a subinterval of [0, 2'TT] less than 'TT wide. This is, 
however, impossible because of relations (I) and (2) (Figure 12). Indeed, 
if the lifetime of temporal segments were extended to [O, 21T], they would 
always lie above the line CU(6); therefore, even "dead," e would have 
to recross fa third time, to let it become an edge of CU again. Collinearity 
being still expressed with the same coefficients A, B, C, this leads to an 
impossibility. 

Turning our attention back to the list C(N), we observe that each triplet 
[e, t1(e), tz(e)] is associated with exactly one temporal segment (the con­
verse is not true, in general), so we can replace each triplet in C(N) by 
its corresponding temporal segment, and thus we obtain a list of same 
cardinality, yet with possible duplicates. The next step is to show that 
there cannot be very many duplicates. Consider two successive duplicates 
x in the list C(N): ( ... x . .. x . .. ), the first corresponding to a triplet (e, 
ti, t2), the second to (e, t1', t2'). We have t1 < t2 < t1' < t2', so at time 
t2, x ceases to be an edge of CU. This involves either the insertion of a 
vertex between the end points of x or the deletion of either of its end 
points. In both cases, there is at least one temporal segment y that be­
comes an edge of CU at time t2 and fits exactly into the conditions of the 
fact established earlier. As a result, y will never appear again in the list 
C(N) after the second x. In other words, between any pair of successive 
occurrences of x, there exists a y such that the configuration C(N) = 
( ... x ... y ... x ... y) is impossible. 

This gives us a powerful means to bound the number of dupli­
cates .9 Before proceeding, we adopt the notatio:n C(N) 
( ... x1 ... Y1 ... x2 ... Yz . .. ) to mean that x1 and x2 [resp. Y1 and Y2] 
are two occurrences of the same temporal segment, namely, x [resp. y], 
and that the order among indices corresponds to precedence in time (i.e., 
in the list C(N), too). We observe that Y1 is the actual cause of the dis­
appearance of x1 as an edge of CU, hence of the occurrence of the du­
plicate xz. Therefore, to each duplicate x, we can associate a unique ele­
ment f(x), such that f(x) precedes x in the list and no occurrence of f(x) 
can be found after x. In our example, f(x2) = Y1. Unfortunately it is 
not clear at all that f may not map several duplicates to the same element. 

To investigate this possibility, we observe that a temporal segment that 
becomes an edge of CU through insertion causes the disappearance of 
exactly one edge of CU, whereas a case of deletion causes two edges to 
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disappear. Figure 16 illustrates this problem, with x = U;U1 and y = 
U;Uk. An insertion of Uk causes U;U1 to disappear, whereas a deletion 
of U1 will result in the disappearance of both U;U1 and U;Uk. This is not 
a major difficulty, however, and we can overcome it by breaking down 
the function f into two functions f I and f 2. 

Recall that there is always either j, k :s i or j, k 2:: i. In the first case, 
we set f 1(x2) = y1, and in the latter fi(x2) = Yi. This ensures that every 
duplicate is mapped to a preceding element in lhe list and that both f 1 

and f 2 are one-to-one on their respective domai111. Of course we redefine 
f(x) to be f 1(x) or fi(x), whichever is defined. The next step is to show 
that not only f I and f2 are one-to-one in the list C(N), but also that for 
any x and y, f i(x) and f 1(y), if defined, are not duplicates of each other, 
i.e., are distinct temporal edges. This is the object of the following tech­
nical lemma. 

LEMMA 8. For any x and y in the list C(N), if f i(x) and f 1(y) are 
defined, they are distinct temporal segments. 

PROOF. From now on, the relation < pertains to the order in the list 
C(N). Suppose that there exist two duplicates x and yin C(N), such that 
f i(x) and f 1(y) are the same temporal segment z. Note that by definition 
of f 1, it follows that all three segments have a common end point U;. 
Therefore only one of the segments x, y, z can be an edge of CU at any 
given time. Wlog, assume that f1(x) < f 1(y). This means that z causes 
the disappearance of x before that of y. As a result, one occurrence 
of y is needed between the two occurrences of z, namely, C(N) = 
( ... x ... Zt ... y ... z2 ... ), and since f I maps elements backward, 
i.e., to preceding elements in the list, we are left with only the following 
possibilities. 

1. x precedes y, i.e., C = ( ... xi ... z1 ... Y1 ... z2 ... 
x2 ... Y2). This order implies that y crosses x at least once in order 

insertion 

B deletion 

Figure 16. The two cases in the definition off. (A) Insertion; 
(B) deletion. 
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to become Yt, then at least once for x to become x2, and finally at 
least a third time to become Y2- As already seen, however, two 
temporal segments sharing one end point cannot cross three times, 
hence an impossibility. 

2. y precedes x, i.e., C = ( ... x, ... z1 ... Y1 ... z2 ... 
Y2 ... x2). In this case, y must cross z at least once from z, to Yt, 
once from Yt to z2, and once from z2 to Y2, hence contradiction. 

This completes the proof of the lemma, which of course also applies 
to f2. • 

We are now in a position to derive a bound on the size of C(N). 

LEMMA 9. The number of instructions R(N) in we is O(pN2
). 

PROOF. Let d 1 be the total number of distinct elements in C(N), and 
d2 the number of duplicates; I C(N) I = d1 + d2. We will represent each 
of the d1 distinct elements in C(N) by a pile of bricks. Initially all piles 
are empty; then we proceed to scan the list C(N) from the first to the last 
element, one element at a time, updating the piles accordingly. Let x be 
the next element scanned. We begin by putting one brick into its corre­
sponding pile, then if x is a duplicate, we put one STOP-brick onto the 
pile of f(x). Note that, by definition off, once a pile has received a STOP­
brick, it can never grow again with regular bricks. Moreover, Lemma 8 
shows that any pile can receive at most two STOP-bricks, one from f,, 
the other from fi. This implies that there are at most 2d1 STOP-bricks, 
hence d2 :s 2d,. Now, from I C(N) I = d1 + d2, we derive I C(N) I :s 
3d1. Finally since the number of distinct elements in C(N) is dominated 
by the total number of temporal segments, we have d, = O(pN2

), which 
completes the proof. • 

Relation (3) shows that the algorithm for setting up the set of instruc­
tions /for CU requires time and space T(q), with T(q) = 2T(q/2) + O(pq2

) 

= O(pq2
). We conclude 

LEMMA 10. Setting up we and Lfor CU(6) requires O(pq2
) time. 

3.2.3 The Final Phase 

The main algorithm will start by calling upon the procedure of Theorem 
5 to check whether there exists a containing placement for 6 = 0. If there 
is one, the algorithm can report the location of P inside Qin time O[q log(p 
+ q)]. Otherwise, the algorithm proceeds with computing the pairs ([, 
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L) and(/', L') relative to CU(6) and CL(6), respectively, which can be 
done in time O(pq2

), according to Lemma 10. Once the pairs(/, L) and 
(/', L') have been set up, we can use them to provide a description of the 
intersection CU(6) n CL(6) at all times and can detect the first occurrence 
of a nonintersection, which in Lemma 7 has been shown to correspond 
to a containing placement. Such an occurrence corresponds to a one-point 
intersection; and knowing this point as well as the corresponding value 
of 6 will permit us to report the location of the containing placement, and 
thus terminate. 

At time 6 = 0, L and L' provide us with a description of CL(6) and 
CU(6). These convex lines necessarily intersect at this point, since we 
assume that there is no containment placement for that particular value 
of 6 (Lemma 7). We can use any linear algorithm for computing the in­
tersection of two convex polygons [10], in order to determine the two 
intersection points a and b. Let a,a2 and a,' ai' [resp. b1 b2 and b, 'bi'] 
be the two edges of CL and CU, respectively, which intersect at point a 
[resp. b] (Figure 17). In a procedure identical to the recursive step of the 
construction of CU(6), we first merge the lists I and I', then we proceed 
to scan the resulting list, updating the variables (a,, a2 , a1 ', a2 ') and (b 1 , 

b2, b, ', b2'). A case analysis of the relative posit ion of these eight points 
will handle the updating as before. Note that, as usual, we must actually 
execute the instructions of I and I' on L and L', respectively, in order to 
gain access to the neighbors of these eight vertices and ensure the up­
dating. Because of the similarity with the recursive step in computing 
CU(6), we omit the details. The purpose of this computation is to keep 
track of the intersection points a and b, so that the first occurrence of a 
nonintersection can be detected immediately. 

Figure 17. Computing the intersection of CU and CL. 
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Figure 18. The definition of U;a; and U;a;'. 
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Up to within a constant factor, the execution time of this final procedure 
is dominated by the total number of triplets assigned to the variables a I a2, 
a1'a2', b 1b2, b1'b2' over the interval (0, 2TI]. This quantity, in turn, is 
certainly bounded above by the total number of triplets assigned to CU 
and CL, i.e., O(pq 2

), added to the number of times a vertex of CU crosses 
an edge of CL (i.e., a1a2 or b1b2), or a vertex of CL crosses an edge of 
CU. Because of the similarity of these two cases, we may consider only 
T, the number of times a vertex of CU intersects a1a2. 

LEMMA 11. T = O(pq2
). 

PROOF. To evaluate T, we will use a technique very similar to that 
introduced for bounding the description size of CU. For any point U; 
inside CU (i.e., 1 :5 i :5 k - 1), let S; be the set of points U1 lying within 
CL to the right of U;, that is, such that k :5 j :5 q and the X-,coordinate 
of U; is smaller than that of U1 . We consider the convex hull of the set 
S; U { U;} and, in particular, the edge U;a; of the convex hull that lies 
above S; (Figure 18A). Note that a; may or may not be a vertex of CL. 
Next we form the list C; consisting of all the triplets assigned to U;a; over 
(0, 2TI], and we merge the k - 1 lists C1, ... , Ck- 1 into a list C, ordered 
chronologically as usual, that is, according to the second element of the 
triplets. Recall that the presence of a triplet (e, t, t') in S; signifies that 
U;a; is the temporal segment e from time t to time t'. 

As we did before, we proceed to replace each triplet (e, t, t') in C by 
the single element e, so that C becomes a list of temporal segments with 
possible duplicates. We can still define a function f mapping each du­
plicate to the unique element that caused its disappearance as an edge 
U;a;, so Lemma 8 can still be applied. Note that with this setting of the 
problem, there is no need to introduce two subfunctions f I and f 2 • A 
similar reasoning will show that, once again, the total number of elements 
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in C is bounded by O(pq2
), therefore if q; is the total number of triplets 

assigned to U;a;, we have q1 + ... + qk-1 = Otpq 2
). Similarly we can 

define the set S;', consisting now of all the points Vik::=; j ::=; q) that lie 
to the left of U;, and can define the variable U;a;. Repeating the preceding 
reasoning and introducing the number q;' of triplets assigned to U;a;' 
(Figure 18B), we derive q 1' + ... + qk' = O(pq 2

). 

The motivation for these considerations comes from the following fact: 
every time a vertex of CU crosses CL, there exis1s a vertex U; such that 
a;, U;, a;' are collinear. Thus, we can use the preceding results to bound 
the number of these occurrences. For each U;(l s i :5 k - 1), we merge 
the triplets assigned to U;a; and U;a;' into an ordered list D;. The q; + 
q;' time intervals present in D; may overlap; however, we can still break 
them down into at most 2(q; + q;' - 1) nonoverlapping intervals having 
the property that, on each of them, exactly one triplet is assigned to U;a; 
and one to U;a;'. As a result, it appears that during each interval, U; can 
cross a;a;' at most twice; therefore, the number of times U; can cross CL 
is bounded by 4(q; + q;') - 2. Summing up for all U;, 1 :5 i :5 k - 1, 
we derive T = O(pq2

). • 

Since T is an upper bound on the complexity of our final procedure, 
we can put the results together and conclude 

THEOREM 12. For any pair of simple polygons P and Q (Q convex) 
with, respectively, p and q vertices, it is possible, in time O(pq 2

), to de­
termine whether there exists a containing placement of P reachable by 
translation and rotation, and if there is one, report its location. 

4. FITTING A TRIANGLE INTO A CONVEX POLYGON 

As is often the case, a general-purpose algorithm can be found to be 
advantageously replaced by a more restrictive procedure, when the prob­
lem at hand loses some of its generality and lends itself to handy, tailored 
characterizations. The containment problem gives an illustration of this 
feature. Assume that P, the polygon to fit, is now a triangle ABC. The 
general method described in the previous section becomes essentially 
quadratic, but the overhead involved is still rather heavy, so a simpler 
algorithm may reasonably be sought. From an investigation of the geo­
metric properties hidden behind the new statement of the problem, we 
are able to devise a very straightforward method for testing containment. 
Although the complexity of this algorithm is still quadratic, its simplicity 
makes it a much more efficient, hence desirable, alternative. 

To begin with, we will show that we may consider only coinciding 
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placements, that is, placements with one vertex of P coinciding with one 
vertex of Q (Figure 20). 

LEMMA 13. Any stable containing placement of P can be transformed 
into a coinciding containing placement. 

PRooF. Starting from a stable containing placement of P and using the 
notation of Figure 19, we distinguish between two cases: 

1. To begin with, we assume that P is free to move in one direction, 
e.g., Bb, wlog. More precisely, we assume that the intersection of line(aa') 
and line(bb') lies on the same side of AB as C (Figure 19A). Wlog we 
suppose that the two lines are not parallel. Consider the two lines parallel 
to AB and passing respectively through a and b, and }et D be the one 
closer to line(AB). Wlog we assume that D passes throu,gh b. Since Q is 
convex, none of its vertices between b and a in clockwise order lies above 
D, therefore we can translate P along bb' toward b, until vertex B co­
incides with vertex b, which precisely gives us a coinciding placement. 

2. In the general case, however, the assumption made at the beginning 
is not valid, and we must contemplate a different strategy. Earlier we saw 

a 

A 

Figure 19. Obtaining a coinciding placement. 



30 BERNARD CHAZELLE 

that, as A and B slide on aa' and bb', respectively, C describes an ellipse 
(E). We can assume that (E) intersects the boundary of Qin at least two 
points v and w, such that v lies on cc' and the portion of (E) between v 
and w lies entirely inside Q (wlog we also assume that w follows v in a 
clockwise traversal of the boundary of Q). This may not be true only if 
A [resp. B] hits an end point of aa' [resp. bb'], in which case we have 
once again reached a coinciding placement. 

Consider the infinite line L passing through c' and parallel to bb'. Sup­
pose that line(cc') and line(bb') intersect on the same side of vB as A 
(Figure 19B). This resets the conditions of the first case considered in 
this proof; therefore, we may assume that it is not the case. This implies 
that L intersects the ellipse at a point z between v and w (Figure l 9C). 
Thus, we can start rotating P so as to bring Cat the point z, from which 
we proceed to translate P along L toward c'. This motion inside Q may 
be interrupted by three possible causes: 

(i) C reaches c', which leads to a coinciding placement. 
(ii) B reaches b', and we are in a situation similar to the previous 

case. 
(iii) A hits an edge dd' of Q. This is possible only if A lies outside of 

the strip comprised between L and line(bb'), and line(dd') inter­
sects line(bb') on the same side of line(AB) as C. Although we 
do not have a stable containing placement at this point, the rea­
soning used at the beginning of the proof is still applicable and 
still shows how to exhibit a coinciding placement. • 

It is clear that any coinciding placement can be made stable simply by 
rotating P around its coinciding vertex, until a verti;;x of P first encounters 
an edge of Q. From this fact we derive a much simpler containment al­
gorithm: 

For any pair of vertices, one in P, the other in Q, determine ((there exists a containing 
stable placement, for which these two vertices coincide. 

The only difficulty may be to detect a containing placement for a given 
pair of coinciding vertices. Let A be the coinciding vertex of P. Let a = 
(AB, AC) and 0 = (AX, AB) (Figure 20). As 0 varies from Oto 21r, the 
segment AB may, at times, lie inside then outside Q. Let LB = {[01, 02 ], 

... , [0b, 0b+ i]} be the list of intervals of 0 for which AB lies in Q. It is 
easy to compute LB by traversing the boundary 0f Q in clockwise order 
and testing every edge of Q against AB. Since the segment AB can cross 
no edge of Q more than twice, this method requires O(q) steps. Similarly, 
we compute the list Le defined in the same way with respect to C. Since 
P imposes an angular difference of a between AB and AC, we must shift 
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C 

A X 

Figure 20. Computing containing placements of a triangle. 

the list Le by a, in order to be able to match it against LB. Then only, 
we can compute the intersection of LB and Le, observin , that this new 
list corresponds exactly to the containing placements of P. Computing 
the intersection is similar to merging two ordered lists, and thus requires 
O(q) time. We can conclude: 

THEOREM 14. It is possible to determine if a triangle can fit into a 
convex polygon with q vertices, and if it can , report a containing place­
ment, in O(q2

) steps. 

5. CONCLUDING REMARKS 

In addition to the naive algorithm for the general problem, this work gives 
two nontrivial algorithms for solving the containment problem restricted 
to convex polygons. The first preserves the generality of the problem. It 
relies on two powerful techniques: one is duality, which was first intro­
duced in [8] and [2]; the other is the well-known, all-purpose divide-and­
conquer. The second algorithm restricts the shape of the contained po­
lygon to that of a triangle and uses the notion of geometric reduction to 
limit the set of solution candidates. Both algorithms are quadratic in the 
size of the containing polygon. This stems from the fact that they both 
attempt to enumerate all stable containing placements. With this strategy, 
a quadratic bound appears to be optimal, since it is possible to exhibit a 
class of polygons Q with q vertices giving O(q2

) distinct stable placements 
[4]. As a consequence, it is clear that only a nonenumerative method can 
free itself from this quadratic bound. 

Further research on this subject includes devising a nonnaive algorithm 
for the case where the containing polygon is nonconvex, investigating the 
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possibility of fast expected-time or probabilistic algorithms, and of course 
extending the present work to higher dimensions. 

ACKNOWLEDGMENT 

This research was sponsored by the Defense Advanced Research Projects 
Agency (DOD), ARPA order no. 3597, monitored by the Air Force Avionics 
Laboratory under contract F33615-81-K-1539. 

NOTES 

I. Two polygons are similar if they can be made to coincide with each other by uniform 
enlargement, translation, and rotation. 

2. A polygon is said to be simple if any pair of nonconsecutive edges do not intersect. 
3. Line(ab) denotes the infinite line passing through the two distinct points a and b. 
4. More precisely, since to every point on the boundary of a convex polygon corresponds 

another with the same X-coordinate, we define the bottom pan of a convex polygon as the 
part of its boundary containing the points with the smaller Y-coordinates. 

5. All indices are taken modulo p. 
6. Recall that the standard method relies on a co-routine strategy, starting with any 

segment ab, with a on CU(!) and b on Ccf2l, then proceeding with a traversal of Ccf2l, 

starting from b, so as to increase the angle (aX, ab) as much as possible. When the maximum 
has been reached, the same procedure is carried out, now permuting the roles of cu<n and 
Ccf2l. We iterate on this process, until no angle can be increased. Proving that the algorithm 
runs in linear time is straightforward. 

7. Relating to an index j means an instruction of the form [ t, j, . . . ] . 
8. That is, there exist 3p + I intervals partitioning [O, 2,r], over each of which the 

restriction off is a function of F. 
9. In the following, we will refer to duplicates as copies, that is, k occurrences of x in 

the list give k - I duplicates. 
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