Washington, DC 20375-5320

NRL/MR/6362--20-10,155

Low-Pressure Chemical Vapor Deposition (LPCVD) of Few-Layers Molybdenum Disulfide (MoS₂) Crystals

DANIEL S. CHOI

NRC Postdoctoral Researcher Washington, DC

Evgeniya H. Lock

Materials and Sensors Branch Materials Science and Technology Division

November 24, 2020

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No 0704-0188

Dublic ser others 1	this collection of the	in antimate day		a time for an in	intin					
Public reporting burden for maintaining the data needs suggestions for reducing th Suite 1204, Arlington, VA 2 information if it does not di	this collection of information ed, and completing and review his burden to Department of E (2202-4302. Respondents sho splay a currently valid OMB c	is estimated to average 1 ho ving this collection of inform- befense, Washington Headq buld be aware that notwithst ontrol number. PLEASE DO	our per response, including the ation. Send comments regard uarters Services, Directorate anding any other provision of NOT RETURN YOUR FOR	the time for reviewing instr ding this burden estimate for Information Operation f law, no person shall be s M TO THE ABOVE ADDE	or any othe s and Repo ubject to ar ESS.	arcning existing data sources, gathering and r aspect of this collection of information, including orts (0704-0188), 1215 Jefferson Davis Highway, iy penalty for failing to comply with a collection of				
1. REPORT DATE (24-11-2020	DD-MM-YYYY)	2. REPORT TYPE NRL Memoran	dum Report	3.	DATES 01 Oct	COVERED (From - To) 2019 – 30 Sep 2020				
4. TITLE AND SUB	TITLE			5a	. CONTI	RACT NUMBER				
Low-Pressure Ch Molybdenum Dis	emical Vapor Deposit sulfide (MoS ₂) Crystal	ion (LPCVD) of Few s	v-Layers	51	. GRAN	TNUMBER				
				50	. PROG	RAM ELEMENT NUMBER				
6. AUTHOR(S)				50	I. PROJI	ECT NUMBER				
Daniel S. Choi*	and Evgeniya H. Loc	k		56	. TASK	NUMBER				
				5f	WORK 1G71	UNIT NUMBER				
7. PERFORMING O	RGANIZATION NAM	E(S) AND ADDRESS	i(ES)	8.	PERFO	RMING ORGANIZATION REPORT R				
Naval Research I 4555 Overlook A Washington, DC	Laboratory venue, SW 20375-5320				NRL/M	/IR/636220-10,155				
9. SPONSORING /	MONITORING AGEN	CY NAME(S) AND A	DDRESS(ES)	10	. SPON	SOR / MONITOR'S ACRONYM(S)				
				11	. SPONS NUMB	SOR / MONITOR'S REPORT ER(S)				
DISTRIBUTION	7 AVAILABILITY STA	Approved for public :	release; distribution is	s unlimited.						
13. SUPPLEMENTA *NRC Postdoctor	ARY NOTES ral Researcher, 500 Fi	fth Street, N.W., Was	shington, DC 20001.							
14. ABSTRACT Two-dimens electrical and opti illumination powe Chemical Vapor D powders quantity, thickness. The pre dichalcogenide ma	sional (2D) molybdenun ical properties such as r r (80 μW). Thus, a large Deposition (LPCVD) syn temperature, pressure, t esented work provides th aterials and their heteros	a disulfide (MoS ₂) is a h nobility of 200 – 700 d -scale high-quality mat thesis of MoS ₂ crystals he relative positions of e basis not only for dev tructures.	highly promising materia m ² V ⁻¹ s ⁻¹ , fast on/off sw erial is needed for the ne on silicon substrates. A 'the precursors' compor reloping a large-scale M	al for various 2D and itch ratio of 10^7 , and ext technological bree systematic optimizat nents, and the substra \log_2 films but it can a	quantum high ph kthrough ion of the ate orient lso be ap	-enabled applications due to its excellent otoresponsivity of 7.5 mA/W under low . In this report, we show a Low-Pressure growth parameters, including precursor ation resulted in control of MoS ₂ crystal plied to synthesize other transition metal				
15. SUBJECT TERI	MS									
Quantum technol Molecular rotors	Quantum technologySelf assembled monolayersMolecular rotorsTwo level systems									
16. SECURITY CLA	ASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a.	NAME OF RESPONSIBLE PERSON Evgeniva H. Lock				
a. REPORT Unclassified Unlimited	b. ABSTRACT Unclassified Unlimited	c. THIS PAGE Unclassified Unlimited	Unclassified Unlimited	28	19b. code	TELEPHONE NUMBER (include area) (202) 767-0351				
	·		i			Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18				

This page intentionally left blank.

Low-Pressure Chemical Vapor Deposition (LPCVD) of Few-Layers Molybdenum Disulfide (MoS₂) Crystals

Daniel S. Choi^{*} and Evgeniya H. Lock[#] *National Research Council Postdoctoral Fellow in residence at the Naval Research Laboratory, Washington DC 20375 #Materials Science and Technology Division, Naval Research Laboratory, Washington DC 20375

ABSTRACT

Two-dimensional (2D) molybdenum disulfide (MoS₂) is a highly promising material for various 2D and quantum-enabled applications due to its excellent electrical and optical properties such as mobility of $200 - 700 \text{ cm}^2 V^{-1} S^{-1}$, fast on/off switch ratio of 10^7 , and high photoresponsivity of 7.5 mA/W under low illumination power (80 μ W). Thus, a large-scale high-quality material is needed for the next technological breakthrough. In this report, we show a Low-Pressure Chemical Vapor Deposition (LPCVD) of MoS₂ crystals on silicon substrates. A systematic optimization of the growth parameters, including precursor powders quantity, temperature, pressure, the relative positions of the precursors' components, and the substrate orientation resulted in control of MoS₂ crystal thickness. The presented work provides the basis not only for developing a large-scale MoS₂ films but it can also be applied to synthesize other transition metal dichalcogenide materials and their heterostructures.

1. INTRODUCTION

a) Application of MoS₂

Molybdenum disulfide (MoS₂), a semiconducting transition metal dichalcogenide (TMD), is a highly explored material due to its unique electronic and optical properties. In the bulk structure, MoS₂ crystal is an indirect bandgap semiconductor with bandgap energy (E_g) of 1.2 eV¹, while monolayer, two-dimensional (2D) MoS₂ crystal is a direct bandgap semiconductor with a bandgap of 1.8 eV². In a monolayer MoS₂ structure, molybdenum (Mo) and sulfur (S) atoms are covalently bonded. They are arranged in a zigzag like geometry in an S-Mo-S unit, as seen in Figure 1a. In a layered structure, the distance between two planes of MoS₂ is 0.653 nm and is stabilized by van der Waals interaction between the S atoms³. Due to the unique bandgap transition observed from bulk to nanoscale, two-dimensional MoS₂ films have demonstrated unique electrical properties such as mobility of 200 - 700 cm²V⁻¹S⁻¹ and high current on/off ratio 10⁵ – 10⁷ ⁴⁻⁶. Additionally, as the indirect-direct bandgap transition is induced by a strong quantum confinement effect, monolayer to few-layers MoS₂ films exhibit strong photoluminescence properties with high quantum yield, including single-photon emission⁷ making it a highly promising material for applications in photonic, optoelectronic, sensors, and photodetectors⁸⁻¹⁵.

Manuscript approved November 23, 2020.

Figure 1. Crystal structure of two-dimensional MoS₂. (a) shows the Mo and S atomic planes of two-layer MoS₂ as well as the distance between two MoS₂ layers while (b) shows two Raman active, in-plane (E^{1}_{2g}) and out of the plane (A_{1g}) intralayer modes. It was reproduced without permission from Li¹⁶.

MoS₂ films have become increasingly important in the production of van der Waals heterostructures in which different classes of 2D materials are brought together to develop hybrid systems with unique material properties¹⁶. For instance, while MoS₂ has shown to have outstanding current switching properties, its relatively lower mobility (compared to graphene) prevents the fabrication of MoS₂ exclusive electrodes and devices. However, when MoS₂ is combined with high mobility material such as graphene, a new device based on both materials is now possible. As such, to advance two-dimensional enabled MoS₂-hybrid applications, a reliable synthesis methodology for MoS₂ films must be first developed, and it is the focus of this report. The following sections will discuss the advantages and limitations of various MoS₂ synthesis approaches.

b) MoS₂ synthesis methods

The two main approaches for synthesizing two-dimensional MoS_2 crystals and films are (1) top-down such as exfoliation, and (2) bottom-up approaches such as molecular beam epitaxy (MBE) and chemical vapor deposition (CVD). The exfoliation methods include mechanical and chemical processes to remove thin MoS₂ flakes or crystals from a bulk crystal. Similar to the "Scotch tape method" utilized in graphene synthesis¹⁷, larger MoS₂ crystals are mechanically cleaved to produce high quality, monolayer films or flakes¹⁸. However, this method is not suitable for device or industry scale applications because of its low yield, small micrometer-scale size, and difficulties in layer control. Chemical exfoliation, on the other hand, utilizes intercalation, i.e., insertion of atoms into layered structures, to exfoliate nanosheets from bulk MoS₂ crystals¹⁹. For instance, in lithium intercalation, lithium ions are inserted into MoS₂ crystals results in the exfoliation of MoS₂²⁰. However, the materials produced by this method have metallic impurities limiting its device potential. Another chemical exfoliation approach is via the Coleman method²¹. In this method, a bulk MoS₂ crystal is suspended in an organic solvent then sonicated to achieve a layered structure. By controlling the sonication parameters, flakes of various layers are achieved. This method produces a higher yield than the mechanical exfoliation. However, the sonication often causes defects to the 2D lattice and reduces the flake size (a few thousand nanometers), limiting its usage in the device applications¹⁶.

The "Bottom-up" synthesis approach of the molecular beam epitaxy is an advanced technique for growing thin-film layers of MoS₂ crystals directly on the substrate. In MBE synthesis, molybdenum and sulfur precursors are evaporated under high vacuum and deposited onto a target substrate. The growth and expansion of thin-film are divided into two main processes²²: (1) Formation of scattered domains and (2) Expansion and stitching of domains to form a film. Typically for MoS₂ film growth, the first stage takes approximately 3 to 4 hours to complete at ~750 °C while the second stage takes about 6 to 7 hours at ~900 °C. While MBE produces high-quality, uniform films, MBE requires complex and expensive equipment to operate. Furthermore, due to the slow crystal growth rate (few microns per hour), combined with the time needed for the vacuum (10^{-8} Torr), the process is slow and is low-throughput compared to the alternative bottom-up approach. Additionally, there have been reports of transitional metal dichalcogenides (TMDs) synthesized via MBE to have limited grain size (< 200 nm), which limits its usage in producing 2D materials for device fabrication^{23,24}.

As such, an alternative, bottom-up synthesis CVD approach has shown promise for producing defect-free, layer controlled, high-yield, MoS₂ crystals and films at a technologically relevant scale. CVD approaches have the potential for direct growth of heterostructures removing the need for the multi-step, layer-by-layer buildup of layers, which is often associated with interlayer contamination¹⁶. Chemical vapor deposition synthesis methods for MoS₂ can be divided into three major groups: (1) Vapor-solid growth, (2) Sulfurization of the molybdenum-based compound, and (3) Pre-deposition of molybdenum on the substrate, followed by sulfurization of molybdenum-based oxides.

Vapor-solid growth methods utilize MoS_2 powder as the precursor for MoS_2 growth²⁵. This approach produced large triangular flakes of MoS_2 in approximately 25 µm size with room temperature photoluminescence properties comparable to mechanically exfoliated flakes. However, due to the tendency for random nucleation of MoS_2 crystals and the formation of MoS_2 islands, consistent uniform growth of films is not yet achieved.

Synthesis of MoS₂ films via sulfurization of Mo compounds utilizes molybdenum trioxide (MoO₃) and sulfur (S) powders as solid precursors. They are vaporized and then nucleated on a SiO₂/Si substrate. Typically, the growth is carried out in an ambient environment. Atomic force microscope (AFM) analysis of MoS₂ crystals produced by this method shows that their thickness of 0.72 nm is comparable to monolayer exfoliated MoS₂ flakes^{26,27}. The electrical properties of MoS₂ films produced via this method are excellent, with current switching ratio of 10⁴. Further modifications have been made, such as conducting the growth under lower pressure and substituting MoO₃ with molybdenum chloride (MoCl₅) to produce centimeter-scale films¹².

Another method of MoS_2 synthesis is by first pre-depositing a thin layer of molybdenum (1-5 nm) on SiO₂/Si via e-beam evaporation then react in a CVD furnace with MoO₃ and S as the precursors²⁸. While this method produced uniform MoS₂, the film thickness was approximately 2 nm, thicker than a true monolayer MoS_2^{29} . Additionally, the film produced by this method exhibited resistor-like behavior, with a sheet resistant value of $10^4 \Omega/sq$ and a low mobility value of $0.004-0.04 \text{ cm}^2\text{V}^{-1}\text{S}^{-1}$ limiting its use in devices and applications²⁸.

While all three types of CVD methods have been extensively achieved in atmospheric pressure, Low-Pressure Chemical Vapor Deposition (LPCVD) is the preferred growth approach because it reduces the unwanted gas-phase moisture controlled reaction, as well as minimizing nuclei density, leading to better-quality, uniform, large-area MoS₂ film deposition^{12,30,31}. As such, the objective of this work to develop a protocol for LPCVD synthesis of two to three layers thick MoS₂ crystals and films on SiO₂/Si substrates via sulfurization of MoO₃ and S powders as

precursors. The LPCVD growth approach was developed by optimizing the (1) precursors amount, (2) growth pressure, (3) relative position of the growth substrate with respect to the precursors, and (4) the utilization of an external heating element for S sublimation. After each growth, the quality of the MoS₂ film growth was verified by optical microscopy and Raman spectroscopy. Additionally, Raman analysis of the two Raman active vibrational modes (E^{1}_{2g} and A_{1g}) was performed to estimate the thickness, i.e., the number of layers of the MoS₂. The developed growth technology and the accompanying analysis presented in this report can be applied to the growth of other TMD materials such as WSe₂ and WS₂ and provide a basis for developing direct synthesis methods for TMD/graphene hybrid structures for advancing materials research in quantum applications³².

2. EXPERIMENTAL

2.1 Chemical Vapor Deposition (CVD) Chamber

Synthesis of MoS₂ crystals was carried out in a three-temperature zone chemical vapor deposition (CVD) reactor furnace (Model# OTF-1200X-III-S, MTI Corporation). The reactor furnace (Figure 2) consisted of a 122 cm long, 10.16 cm outer-diameter quartz tube placed in three independently controlled temperature zones with 16 cm, 30 cm, and 16 cm length respectively (Figure 2). Approximately 30 cm of the quartz tube is overhung at both ends and not directly exposed to the heating elements of the furnace. An additional heating belt (Omega Engineering SWH171-020) was wrapped around the exposed part of the tube next to at the Zone 3/entrance to sublimate the S powder precursor. The carrier gas argon (Ar) was controlled via a mass flow controller (MKS Type 1179A) and flowed from Zone 3 to Zone 1 during the synthesis to keep the system oxygen and moisture-free and to carry the precursor vapors. The outlet, at the left of Zone 1, was connected to a molecular pump (MTI Corporation) to keep the reaction chamber under low-pressure and to drive out the precursor vapor.

Figure 2. (a) CVD reactor oven used for MoS_2 synthesis and (b) detailed schematic of the tube furnace indicating dimensions of individual heating zones and direction of the gas flow.

In low-pressure chemical vapor deposition synthesis, it is crucial to monitor the chamber pressure during the growth process. A preliminary study to correlate the internal chamber pressure

to the argon gas flow rates was conducted, and the results are summarized in Table 1 and Figure 3. Both show a linear correlation between the argon gas flow and the internal chamber pressure. Excellent pressure control with a broad pressure range from 38 to 1190 mTorr was achieved by changing the argon flow rates.

Ar gas flow	0	5	15	25	50	75	100	150	200
(sccm)									
Chamber pressure	38.4	112	198	286	438	577	715	745	1190
(mtorr)									

Table 1. Internal chamber pressure under various Ar gas flow.

Figure 3. Linear correlation between reactor pressures and argon gas flow rates with a calculated R-squared value of 0.973.

2.2 MoS₂ Synthesis

Chemical vapor deposition growth of MoS_2 crystals consists of sublimation of molybdenum and S precursor powders, which nucleate on the target surface (SiO₂/Si wafers, sapphire, others) under constant carrier gas flow. In this report, 99.9995% purity molybdenum trioxide (MoO₃) and 99.5% purity sulfur (S) powders (Alfa Aesar) powders were utilized as precursors, respectively. The carrier gas used was ultra-high 99.9995 % purity argon (Earlbeck Gases & Technologies). The target substrate was p-type/B-doped, (100) orientation Si wafer with 300 nm thick thermal SiO₂ oxide (MTI Corporation).

First, the SiO₂/Si wafer was cut into smaller, 15 mm x 10 mm pieces. Then, oxygen plasma treatment was performed using an RF plasma system (Plasma Etch) to increase the silicon wafer wettability. Before the substrate treatment, the plasma system was cleaned with ultra-high purity oxygen gas under 15 sccm flow, 50 W, for 10 minutes. The SiO₂/Si substrates were then placed in the chamber and treated via oxygen plasma under 10 sccm O₂ gas flow, at 40 W power, for one minute. Using a Video Contact Angle Optima Goniometer System (AST Products), the surface contact angle of the silicon substrate before and after plasma exposure was determined. The

untreated SiO₂/Si substrate had an average water contact angle (WCA) of 45°, while the postplasma treated surface showed a completely hydrophilic surface.

Table 2 contains a summary of the experimental conditions for the experiments described in this report. Parameters modified were: (1) Mass of precursor powders, (2) Argon flow rate/chamber pressure, (3) Relative distance between the powder precursors and the target substrate in the reactor, and (4) Effect of the heating belt for S sublimation.

Exp.	Sample ID	Po	owder	Ar	Ramp	Growth	Chamber		Temperature (°C)				Distances (cm)			Substrate			
#		s	MoO ₂	Flow (sccm)	Time (min)	(min) (min)		Zone	1	Zone	2	Zone	3	Heat.	belt		-		Orientation
		(g)	(g)	(seem)	(IIII)	(1111)	(111011)	Set	Final	Set	Final	Set	Final	Set	Final	0- Sulfur	0- MoO3	0- SiO2/Si	
1	200114A1	1	0.5	50	20	45	377	off	569	850	850	off	552	180	180	15	60.5	58	Down
	200114B1	1	0.5	50	20	45	377	off	569	850	850	off	552	180	180	15	60.5	60.5	Down
2	200114A2	0.5	0.1	50	20	45	368-376	800	798	550	550	180	320	180	180	15	60.5	85	Up
	200114B2	0.5	0.1	50	20	45	368-376	800	798	550	550	180	320	180	180	15	60.5	82	Up
3	200115A1	0.5	0.05	50	20	45	370-381	850	850	850	850	150	554	180	180	15	60.5	60.5	Down
4	200115A2	0.5	0.05	25	20	45	230-247	850	798	850	850	120	554	180	180	15	60.5	60.5	Down
5	200115A3	0.5	0.05	25	20	45	230-240	850	827	600	550	150	557	180	180	15	60.5	83.5	Up
6	200116A1	0.5	0.05	25	20	45	230-244	850	850	850	850	100	555	180	180	15	60.5	60.5	Down
7	200116A2	0.5	0.05	25	20	45	230-244	850	850	850	850	100	555	180	180	15	60.5	60.5	Down
	200116B2	0.5	0.05	25	20	45	228-244	850	850	850	850	100	555	180	180	15	60.5	75.5	Up
8	200116A3	0.5	0.05	25	20	45	228-244	850	850	850	850	180	570	off	off	30	60.5	60.5	Down
	200116B3	0.5	0.05	25	20	45	227-241	850	850	850	850	180	570	off	off	30	60.5	75.5	Up
9	200117B1	0.5	0.05	25	20	45	252-242	850	850	850	850	180	563	off	off	15	60.5	60.5	Down

Table 2. Complete experimental parameters set for MoS₂ crystal growth.

A schematic diagram of the substrate and precursor arrangement for experiment 1 is shown in Figure 4. Two silicon substrates labeled "A1" and "B1" were facing down. "Spot **0**" is defined as the entrance of the tube furnace and is used as the point of reference for relative positions of the other components. From this point, the S powder, MoO₃ powder and, substrate positions were measured as 15 cm, 60.5 cm, and 58 cm (A1) [60.5 cm (B1)] accordingly. Thus, the relative distance between precursor (S and MoO₃) powders was approximately 46 cm, while the SiO₂/Si substrates were on top of the MoO₃ powder boat, as shown in Figure 4.

Figure 4. Representative schematic diagram for experiment 1 with relative locations of S, MoO₃, and SiO₂/Si substrates (A1 and B1). The Center of the tube is measured to be 60.5 cm.

For every experiment, a specified amount of S and MoO₃ powders were placed in ceramic boats at selected positions (Table 2). After the plasma treatment, SiO₂/Si substrates were placed in the appropriate positions (Table 2), then both ends of the reactor tube were closed and pumped down to achieve a base pressure of less than 30 mTorr. Argon carrier gas was introduced into the chamber with an appropriate flow rate controlled via a mass flow controller to achieve the desired experimental pressure. The reactor's temperature and its ramping rate for each zone (Figure 4) were controlled via MTI's furnace software. The S sublimation occurs at 180 °C, while MoO₃ sublimation occurs in the 600 to 850 °C range. Thus, precise temperature control is needed for both processes. The S powder was placed in the outside portion of the reactor tube, not directly heated by the furnace with a heating belt wrapped around it to facilitate S sublimation.

Typical MoS_2 growth took approximately 70 minutes without considering the reactor cooling. In the first 22 minutes, both S and growth/MoO₃ zones were heated in parallel. After reaching their respective temperatures, all zones were held for 45 minutes - at this phase, the MoS_2 growth occurs. After completing the growth, the furnace was cooled down using fans and opening the top of the furnace. Figure 5 shows a temperature-time profile of each zone during MoS_2 synthesis.

Figure 5. A time-temperature profile of the sulfur zone and growth/MoO₃ zones for the MoS₂ growth experiment. Sublimation of MoO₃ and sulfur occur in parallel for nucleation on the SiO₂/Si substrate during the growth stage.

Upon cooling of the furnace to room temperature, the argon gas flow was stopped, the reactor tube was brought up to atmospheric pressure, and the growth substrates and the precursor ceramic boats removed. Then, the reactor tube was closed and evacuated down to a pressure of approximately 30 mTorr. The SiO₂/Si surface characterization was performed using an optical microscope Olympus BX53M to qualitatively observe MoS_2 crystals or film production. Also, Raman spectroscopy using a Renishaw inVia Raman Microscope equipped with a 514 nm laser was performed to verify MoS_2 crystal formation and estimate the number of MoS_2 crystal layers.

3. RESULTS AND DISCUSSION

3.1 Optical and Raman Characterizations

In the initial experiment, the amounts of precursor powders were 1 g and 0.5 g of S and MoO₃, respectively. The argon flow rate was set to 50 sccm to achieve a growth reactor pressure of 377 mTorr. The temperature of the growth zone (Zone 2, middle of the reactor) was set to 850°C, and the heating belt temperature was used to sublimate the S precursor. The S powder was loaded into a ceramic cup and placed 15 cm from the tube entrance, while the MoO₃ powder was placed in a ceramic boat and placed in the center of the furnace (60.5 cm from the entrance) as described in Figure 4. SiO₂/Si substrates were placed at the center of the tube entrance. Figure 6 shows optical images of thick, non-uniform MoS₂ crystals obtained from this condition. The thick film is attributed to the excess amount of precursor powders leading to heavy deposition of the vapors on substrate surfaces.

The Raman analysis in Figure 7 shows two peaks present around 383 cm⁻¹ and 406 cm⁻¹. These values are in agreement with Raman active peaks of bulk MoS₂. As seen in Figure 1b, the two primary Raman active peaks for a monolayer MoS₂ are (1) lower in-plane, E^{1}_{2g} mode at 382 cm⁻¹, and an out-of-plane, A_{1g} mode at 402 cm⁻¹. The approximately 4 cm⁻¹ difference in the out-of-plane mode for our sample indicates significantly more interlayer interactions in the out-of-plane mode showing a thicker structure compared to monolayer MoS₂. A summary of Raman analysis with corresponding average peak position/frequency for all experiments is presented in Table 3. Additionally, the complete set of Raman spectra as with peak position/frequency analysis is presented in detail in the Appendix.

Figure 6. Optical microscope images (100x) of MoS_2 crystals obtained from experiment 1. (a) and (b) correspond to 200114A1 and 200114B1. The scale bar is 10 μ m.

Figure 7. Raman spectroscopy data for experiment 1. (a) corresponds to 200114A1 and (b) corresponds to 200115B1. Different colors represent separate areas analyzed.

Sample		Em	Element	Peak Freque	ency (cm^{-1})	
Sampi	le	Exp.	Figure	Avg. E ¹ 2g	Avg. A _{1g}	
200114	A1	Even 1	6a	382.39	406.03	
	B1	Exp. 1	6b	382.39	406.97	
	A2	Even 2	8a	No MoS	2 growth	
B2		схр. 2	8b	No MoS ₂ growth		
200115	A1	Exp. 3	9a	380.97	407.92	
	A2	Exp. 4	9b	378.83	404.38	
	A3	Exp. 5	9c	No MoS	2 growth	
200116	A1	Exp. 6	9d	380.97	405.78	
	A2	Eve 7	10a	382.39	405.09	
	B2	схр. /	10b	383.10	407.21	
	A3	Even 9	11a	383.10	405.44	
	B3		11b	383.10	406.50	
200117	B1	Exp. 9	11c	383.10	405.09	

Table 3. Summary of the average values of the E^{1}_{2g} and A_{1g} modes frequencies.

Therefore, to reduce the MoS₂ deposition rate and produce thinner structures, the precursor amounts were decreased by a factor of two and five for S (0.5 g) and MoO₃ (0.1 g) respectively for the subsequent experiments. Additionally, the SiO₂/Si growth substrate was placed further downstream, 21 cm, and 25 cm from the MoO₃ precursor (85 cm from entrance) to reduce the amount of vapor deposited on the substrate surface. Figure 8 shows optical images of the resulting experiment in which no MoS₂ crystal growth occurred. This observation was also confirmed via Raman spectroscopy, as only the silicon substrate peak at 520 cm⁻¹ was detected (Figure A1).

Figure 8. 100x optical microscope images of experiment 2, where the growth substrates were placed further downstream from the precursor powders. (a) and (b) correspond to substrates 200114A2 and 200114B2 substrates, respectively. MoS_2 deposition did not occur for either substrate. The scale bar is 10 μ m.

In establishing optimal synthesis parameters such as respective distances between precursors and the substrates, mass of the precursors, and internal chamber pressure, the growth reactor chamber configuration should be taken into account to understand the MoS₂ growth mechanism, as well as the gas and particle deposition kinetics especially when comparing different growth systems. The CVD reactor tube used in this work is relatively large with a diameter (D) and length of 10.16 cm and 122 cm. However, growth chambers used by other research groups have smaller diameters (D = 2.54 - 7.62 cm) and lengths (L < 100 cm)^{33–36} and thus many instrument-specific variables such as (1) the extraneous path for vaporized particles to diffuse across the tube, (2) correlation between the gas flow and internal chamber pressure, (3) the probability of nucleation on the SiO₂/Si substrate surface concerning the relative distance, must be determined.

Thus, in the next experiments, we varied the relative positions of the substrates, precursors, and substrate orientation compared to the gas stream. First, the SiO₂/Si substrates were moved from far down-stream in Zone 1 (85 and 82 cm from the gas entrance), to the middle of the reactor tube (60.5 cm from entrance). The positions of the S and MoO₃ precursors remained unchanged (15 cm and 60.5 cm from the entrance, respectively). Furthermore, the mass of the S precursor was kept constant at 0.5 g, while the amount of MoO₃ powder was reduced by a factor of 2 (0.05 g) as thinner MoS₂ deposition is desired. Lastly, the argon flow rate was reduced from 50 to 25 sccm after experiment 3 to achieve an internal chamber pressure of 230 mTorr allowing for more uniform deposition on the substrates^{37–39}. The optical images in Figures 9a, 9b, and 9d show a thinner deposition of MoS₂ crystals compared to the thick film observed in Figure 6. This was due to less aggregation of precursor vapors on the substrate surface due to the lower amount of precursor powder utilized as well as to the reduced internal pressure. The Raman analysis shows average peak positions at ~380 – 382 cm⁻¹ and ~404 – 407 cm⁻¹ for El_{2g} and A_{1g}.

Comparing these results with the previous ones presented in Figures 6 and 8, shows the almost complete sublimation of both precursor powders producing near-zero solid waste. Additionally, Figure 9c shows results from the same growth conditions with different locations of the growth substrates compared to the MoO₃ precursor powders (83.5 cm downstream compared to 60.5 cm for Figures 9a, 9b, and 9d). However, with this placement, no MoS₂ crystal growth was detected, as verified by a lone silicon peak at 520 cm⁻¹, indicating the importance of the growth substrate placement with respect to the precursor powders.

Figure 9. 100x optical microscope images of MoS_2 crystal growth from experiments 3-6 in which the amount of MoO_3 and internal chamber pressure were reduced. (a – d) correspond to experiments (3-6). (a), (b), and (d) show MoS_2 crystal growth on substrates placed in the middle of the furnace, while (c) shows no growth on a substrate placed further downstream.

Next, two growth experiments were performed utilizing the same growth conditions and different substrate placements and orientation with respect to the Ar flow. One substrate was placed face-down and in the middle of the furnace (60.5 cm), at the same position as the MoO₃ precursor and 45.5 cm from the S precursor. In contrast, the other substrate was placed face-up, slightly further downstream (75.5 cm) from the entrance (15 cm away from centered MoO₃ precursor, 60.5 cm from S precursor) for simultaneous growth. The distance of 75.5 cm from the entrance was chosen because it is the mid-point between far down-stream where no growth occurred (83.5 cm away, Figure 9c), and the middle of the furnace (60.5 cm from entrance) where growth occurred. Other parameters were kept constant with 0.5 g and 0.05 g for S and MoO₃ precursors, the argon flow rate of 25 sccm, and a growth chamber pressure of ~230 mTorr. Figure 10 shows the resulting MoS₂ growth from these conditions.

Both Figures 10a and 10b show uniform deposition compared to previous experiments indicating fewer layers of MoS₂. Furthermore, MoS₂ deposition was observed for the substrate placed face-up, further down-stream (Figure 10b) compared to the substrate placed in the middle of the furnace (Figure 10a). In comparing the two orientations, the substrate placed at 75.5 cm downstream was placed face-up to maximize the surface area of the vapor exposure on the substrate surface. In contrast, the substrate placed in the middle of the furnace (overhanging the MoO₃ precursor, 60.5 cm downstream) was placed faced-down to expose the substrate to MoO₃ vapor. Raman analysis shows Raman active peaks at ~381 – 383 cm⁻¹ and ~405 – 407 cm⁻¹ for E^{1}_{2g} and A_{1g} modes respectively, confirming MoS₂ crystal deposition.

Figure 10. Optical microscope images (100x) of MoS_2 crystal growth from experiment 7. (a) corresponds to substrate placed at the center of the tube, the same location as the MoO_3 precursor, while (b) corresponds to the substrate placed 15 cm downstream from the MoO_3 powder (75.5 cm from the entrance). Both (a) and (b) show MoS_2 crystal deposition. The scale bar is 10 μ m.

The resulting data show that the substrate distance from the MoO₃ precursor powder position plays a significant role in the deposition of MoS₂. It should be noted that the position of the S precursor was upstream and remained unchanged during this experimental set. The MoO₃ precursor was placed directly in the middle of the furnace (60.5 cm). Then, the SiO₂/Si substrate placement was varied from 0 (on top of the MoO₃ powder) to 15 cm further downstream. This modification caused MoS₂ crystal growth that was independent of the substrate orientation. However, when substrates were placed at a distance greater than 20 cm downstream (82 to 85 cm from the entrance) from the center, there was no MoS₂ growth (Figures 8 and 9c) indicating that we found the optimal precursor-substrate distance of 15 cm for the S precursor and 60.5 cm for the MoO₃ precursor.

For all of the experiments discussed above, an external heating belt was placed at the exposed part of the quartz tube near the gas entrance to sublimate the S precursor independently. However, as seen in Table 2, while the temperatures of each heating zones are controlled separately, the data indicates that residual heat from one zone affects the temperature profile of the adjacent zones. For instance, while the MoO₃ zone (Zone 2) was set to 850 °C and the neighboring zones between room temperature (off) and 180 °C, the heat from the higher temperature zone raised the temperature of the lower zone to 320 - 570 °C significantly overshooting the S sublimation temperature. As such, the last set of MoS₂ growth utilized residual heat from the neighboring zone, rather than the heating belt to prevent overheating of the S precursor.

With the heating belt removed and the S substrate placed 30 cm from the entrance to compensate for the removal of direct heating of the S, optimized growth conditions from the previous experiment (0.5 and 0.05 g of S and MoO₃ precursors, argon gas flow of 25 sccm, ~230 mTorr internal pressure, and substrate positions of 60.5 and 75.5 cm), was utilized for MoS₂ crystal growth. Figures 11a and b show uniform dispersion of MoS₂ crystals compared to the previous experiments. Additionally, Figure 11c shows MoS₂ growth with the S precursor moved back to the initial position (15 cm from the entrance), indicating that the movement of the S precursor did not affect the overall quality of the MoS₂ crystal growth. The accompanying Raman analysis shows active peaks at ~383 cm⁻¹ and ~405 cm⁻¹ for E¹_{2g} and A_{1g} modes. As the MoS₂ growth produced a

thinner structure, the out-of-plane, A_{1g} peak shifted towards lower wavenumbers as less interlayer perturbation occurs, approaching the 402 cm⁻¹ observed in monolayer MoS₂.

Figure 11. Optical microscope images (100x) of MoS_2 crystal growth with the heating belt removed. From experiments 8 and 9. (a) and (b) correspond to experiment 8, while (c) corresponds to experiment 9. All three substrates show thin MoS_2 crystal growth. The scale bar is 10 µm.

3.2 Number of Layers of MoS₂

Raman spectra of MoS₂ films can be used to determine the number of layers of MoS₂^{32,40–43}. Specifically, the intralayer vibrational modes in MoS₂ crystals are affected by the thickness of the sample. As additional layers are introduced, the van der Waals bonded layers tend to "stiffen"⁴² and as such, a shift in the peak location (Δ frequency) of the vibrational modes is observed. The lower in-plane vibrational E¹_{2g} mode is shifted to a lower frequency while the out-of-plane, A_{1g} mode is moved to a higher frequency with increasing MoS₂ crystal thickness^{9,42}. Thus, the peak frequency difference (A_{1g} – E¹_{2g}) can be correlated to the thickness of the MoS₂ crystals. Figure 12 and Table 4 depict a correlation between frequency differences and the number of MoS₂ layers based on literature data^{32,40–43}.

Figure 12. Peak frequency difference $(A_{1g} - E_{2g}^{1})$ peaks as a function of the number of layers for MoS₂ crystals obtained from literature: Liang³², Vangelista⁴⁰, Li⁴¹, Lee⁴², Boukhicha⁴³.

Table 4. Average literature values of frequency difference $(E^{1}_{2g} \text{ and } A_{1g})$ Raman modes as a function of the number of layers of MoS₂.

	Literature values: Δ frequency $(A_{1g} - E_{2g}^1)$										
	Lee ⁴²	Liang ³²	Boukicha43	Li ⁴¹	Vangelista ⁴⁰	Average					
1L	18.5	19	17.5	18.7		18.42 ± 0.65					
2L	22	22	21	21.6	21.6	21.64 ± 0.41					
3L	23.8	23	23	23.1		23.30 ± 0.39					
4L	24	24	23.5	24.4	22.3	23.64 ± 0.81					
5L	24.5	24.2	24	25.5		24.55 ± 0.67					
6L	25	24.5				24.75 ± 0.35					
Bulk	25.5	25.5	25.5			25.50 ± 0.00					

From Table 4, the average literature Δ frequency value of monolayer (1L) MoS₂ is 18.42 cm⁻¹. With an increasing number of layers, the frequency difference value increases from 21.64 to 24.75 cm⁻¹ for bi- to six- MoS₂ layers respectively, while the frequency difference value for bulk MoS₂ is 25.50 cm⁻¹. From these literature values, the number of layers of our grown MoS₂ crystals can be estimated as well - the results are shown in Figure 13 and Table 5.

It should be noted that the Raman data presented in this report are different from those reported in the literature due to differing MoS₂ synthesis methods. These methods varied from mechanical exfoliation^{41,42}, electron beam evaporation⁴⁰, and modeled via density functional theory^{32,43}. While some Raman analysis has been performed on CVD grown monolayer MoS₂, a systematic thickness analysis from CVD synthesized MoS₂ is not well established. As such, the synthesis method, involving different growth mechanisms, different substrate types, etc. should be considered when interpreting Raman data. For example, in graphene, the locations and the width of its signature Raman peaks vary depending on the substrate type, e.g., SiO₂/Si, Al₂O₃, polymers⁴⁴, synthesis method (e.g., exfoliation from HOPG, CVD, or epitaxial⁴⁵ growth), and the number of graphene layers⁴⁶.

For CVD grown monolayer MoS₂, the two characteristic Raman peaks are observed at 382 cm⁻¹ and 402 cm⁻¹ with the frequency difference of 20 cm⁻¹ between the two peaks⁹. This value is approximately 1 cm⁻¹ greater than the monolayer MoS₂ synthesized by other synthesis methods such as exfoliation presented in Table $4^{8,9,12,47-49}$. This difference is attributed to the different MoS₂ deposition process. In CVD growth, MoS₂ deposition occurs via nucleation of Mo and S vapors on the silicon substrate. In the mechanical exfoliation method, a layer (or layers) of MoS₂ is "pulled" away from an existing bulk structure. This perturbation of the plane in the exfoliation method, combined with possible crystalline imperfections in CVD synthesized films, result in a difference of the out-of-plane vibrational mode (A_{1g}) between CVD and exfoliated MoS₂^{12,36}. Thus, in analyzing frequency differences for the data, it is acceptable to take our values and estimate within ~1 cm⁻¹, resulting in even thinner MoS₂ films compared to the initial estimate.

Figure 13. Estimation of the number of MoS₂ layers synthesized compared to the literature values. The black points indicate the frequency difference obtained from the literature values in Table 4.

Table 5. Average frequency difference values for synthesized MoS₂, with the number of layers, interpolated from the graph in Figure 12. The color of the table cells corresponds to experimental growth modified.

Experiment #	1	1	3	4	6	7	7	8	8	9
∆frequency	23.64	24.55	26.95	25.55	24.83	24.11	22.70	22.34	23.40	21.99
$(A_{1g} - E^{1}_{2g})$	± 0.81	± 0.82	± 0.81	± 0.82	± 0.83	± 1.16	± 0.00	± 1.34	± 1.00	± 1.83
No. of Layers	3 - 4	5 - 6	Bulk	Bulk	6	5	2 - 3	2 -3	2 - 3	2 - 3

Peak frequency difference values obtained from the initial experiments with highest precursor amounts of 1 and 0.5 g of S and MoO₃, respectively, and higher argon gas flow rate (pressure) of 50 sccm (\sim 377 mTorr) and the growth substrate placement in the middle of the furnace (same zone as MoO₃) are highlighted in red columns (experiment 1) in Table 5. When comparing these values to the literature values in Table 4, three to six layers of MoS₂ were estimated. The Raman analysis, as well as the accompanying optical analysis in Figure 6, confirm this observation. After the subsequent lowering of the gas flow rate (pressure) to 25 sccm (\sim 230

mTorr) as well as reducing the amount of precursor powders by a factor of two for S and ten for MoO_3 , the resulting peak frequency differences are 26.95 cm⁻¹, 25.55 cm⁻¹, 24.83 cm⁻¹, and 24.11 cm⁻¹, highlighted green in Table 5 (experiments 3, 4, 6, 7). These values indicate the presence of 5 layer to bulk MoS_2 . The optical image in Figure 9 and Figure 10a confirm thick crystalline films with large particles several microns in size.

Next, utilizing the same conditions as the previous experiment but placing the growth substrate further downstream (75.5 cm from the entrance) from the MoO_3 precursor, a thinner deposition was observed with a peak frequency difference value of 22.70 cm⁻¹, highlighted blue in Table 5 which indicates a two to three layers thick film (experiment 7). The optical image in Figure 10b confirms this observation.

Lastly, utilizing the optimized conditions established from the previous experiments but with the heating belt removed, consistent synthesis of two to three layers of MoS_2 crystals was observed with corresponding Raman peak frequency differences of 22.34 cm⁻¹, 23.40 cm⁻¹, and 21.99 cm⁻¹ highlighted yellow in Table 5 (experiments 8 and 9). By removing the heating belt and allowing the residual heat to sublimate the S precursor, more uniform sublimation of S occurred resulting in a more consistent film deposition.

4. SUMMARY

A systematic approach for growing two to three-layer thin MoS_2 crystals on SiO₂/Si substrates in a low-pressure chemical vapor deposition (LPCVD) system is presented in this report. The pretreatment of SiO₂/Si substrate via oxygen plasma, subsequent substrate and the precursor powder placements in the reactor, and the modifications of the experimental parameters such as precursor powder amount, internal chamber pressure, and the utilization of an external heating belt for S sublimation all affected the quality, as well as the thickness, of the resulting MoS₂ crystals. The MoS₂ crystal growth was qualitatively verified via optical microscopy in which clear, crystal deposition was observed. The growth was also confirmed by Raman spectroscopy to identify two characteristic Raman active bands, the lower in-plane, E^{1}_{2g} (382cm⁻¹), and out-of-plane A_{1g} (402 cm⁻¹) modes. Additional Raman analysis was performed to estimate the number of layers of MoS₂ crystals were grown by taking the difference in the peak positions of the two Raman active peaks.

Four layer to bulk MoS₂ were grown on SiO₂/Si substrates initially. Subsequently, with the optimization of the growth parameters such as the reduction in precursor amount, argon gas flow, internal chamber pressure, and the removal of the external heating belt, consistently thinner growth, ranging between two to three layers, was achieved. Raman analysis indicated that as the synthesis method is optimized, the out-of-plane interlayer mode red-shifted from ~ 407 cm⁻¹ to ~ 404 cm⁻¹ indicating less perturbation along the z-plane due to fewer number of layers present. Although the detailed mechanism of the MoS₂ crystal deposition with respect to the various experimental parameters is not yet elucidated, this work provides a basis for future modifications for thinner crystal growth of not only MoS₂ but other transition metal dichalcogenides utilizing LPCVD for various applications in 2D optoelectronic devices and applications.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research through the Naval Research Laboratory Base Program under the National Research Council Research Apprenticeship Program (NRC-RAP).

REFERENCES

- 1. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS₂: A New Direct-Gap Semiconductor. *Phys. Rev. Lett.* **105**, 136805 (2010).
- 2. Hu, T., Li, R. & Dong, J. A new (2×1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. *J. Chem. Phys.* **139**, 174702 (2013).
- 3. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. *ACS Nano* **8**, 1102 (2014).
- 4. Bao, W., Cai, X., Kim, D., Sridhara, K. & Fuhrer, M. S. High mobility ambipolar MoS₂ field-effect transistors: Substrate and dielectric effects. *Appl. Phys. Lett.* **102**, 042104 (2013).
- 5. Islam, M. R. *et al.* Tuning the electrical property via defect engineering of single layer MoS₂ by oxygen plasma. *Nanoscale* **6**, 10033 (2014).
- 6. Fuhrer, M. S. & Hone, J. Measurement of mobility in dual-gated MoS₂ transistors. *Nat. Nanotechnol.* **8**, 146 (2013).
- 7. Klein, J. *et al.* Site-selectively generated photon emitters in monolayer MoS₂ via local helium ion irradiation. *Nat. Commun.* **10**, 1 (2019).
- 8. Xu, H. *et al.* High-Performance Wafer-Scale MoS₂ Transistors toward Practical Application. *Small* **14**, 1803465 (2018).
- 9. Chen, X. *et al.* CVD-grown monolayer MoS₂ in bioabsorbable electronics and biosensors. *Nat. Commun.* **9**, 1690 (2018).
- 10. Palummo, M., Bernardi, M. & Grossman, J. C. Exciton Radiative Lifetimes in Two-Dimensional Transition Metal Dichalcogenides. *Nano Lett.* **15**, 2794 (2015).
- Pham, T., Li, G., Bekyarova, E., Itkis, M. E. & Mulchandani, A. MoS₂ -Based Optoelectronic Gas Sensor with Sub-parts-per-billion Limit of NO₂ Gas Detection. ACS Nano 13, 3196 (2019).
- 12. Yu, Y. *et al.* Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer MoS₂ Films. *Sci. Rep.* **3**, 1866 (2013).
- 13. Choi, W. *et al.* High-detectivity multilayer MoS₂ phototransistors with spectral response from ultraviolet to infrared. *Adv. Mater.* **24**, 5832 (2012).
- 14. Park, J., Mun, J., Shin, J. S. & Kang, S. W. Highly sensitive two dimensional MoS₂ gas sensor decorated with Pt nanoparticles. *R. Soc. Open Sci.* **5**, 1 (2018).
- 15. Yin, Z. et al. Single-layer MoS₂ phototransistors. ACS Nano 6, 74 (2012).
- 16. Li, X. & Zhu, H. Two-dimensional MoS₂: Properties, preparation, and applications. *J. Mater.* **1**, 33 (2015).
- 17. Novoselov, K. S. *et al.* Electric field in atomically thin carbon films. *Science* **306**, 666 (2004).

- 18. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS₂ transistors. *Nat. Nanotechnol.* **6**, 147 (2011).
- 19. Ganatra, R. & Zhang, Q. Few-Layer MoS₂: A Promising Layered Semiconductor. *ACS* Nano 8, 4074 (2014).
- 20. Zeng, Z. *et al.* Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. *Angew. Chemie Int. Ed.* **50**, 11093 (2011).
- 21. Coleman, J. N. *et al.* Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. *Science* **331**, 568 (2011).
- 22. Fu, D. *et al.* Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride. *J. Am. Chem. Soc.* **139**, 9392 (2017).
- 23. Yue, R. *et al.* Nucleation and growth of WSe₂: enabling large grain transition metal dichalcogenides. *2D Mater.* **4**, (2017).
- 24. Vishwanath, S. *et al.* Comprehensive structural and optical characterization of MBE grown MoSe₂ on graphite, CaF₂ and graphene. *2D Mater.* **2**, 1 (2015).
- 25. Wu, S. *et al.* Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. *ACS Nano* 7, 2768 (2013).
- 26. Lee, Y. H. *et al.* Synthesis of large-area MoS₂ atomic layers with chemical vapor deposition. *Adv. Mater.* **24**, 2320 (2012).
- Lin, Y. C. *et al.* Wafer-scale MoS₂ thin layers prepared by MoO₃ sulfurization. *Nanoscale* 4, 6637 (2012).
- 28. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS₂ atomic layers on a SiO₂ substrate. *Small* **8**, 966 (2012).
- 29. Splendiani, A. *et al.* Emerging Photoluminescence in Monolayer MoS₂. *Nano Lett.* **10**, 1271 (2010).
- 30. Muñoz, R. & Gómez-Aleixandre, C. Review of CVD synthesis of graphene. *Chem. Vap. Depos.* **19**, 297 (2013).
- Bhaviripudi, S., Jia, X., Dresselhaus, M. S. & Kong, J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. *Nano Lett.* 10, 4128 (2010).
- 32. Liang, L. & Meunier, V. First-principles Raman spectra of MoS₂, WS₂ and their heterostructures. *Nanoscale* **6**, 5394 (2014).
- 33. Bilgin, I. *et al.* Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality. *ACS Nano* **9**, 8822 (2015).
- 34. Wang, W. *et al.* Investigation of the Growth Process of Continuous Monolayer MoS₂ Films Prepared by Chemical Vapor Deposition. *J. Electron. Mater.* **47**, 5509 (2018).

- Zhou, D. *et al.* Unveiling the Growth Mechanism of MoS₂ with Chemical Vapor Deposition: From Two-Dimensional Planar Nucleation to Self-Seeding Nucleation. *Cryst. Growth Des.* 18, 1012 (2018).
- 36. Dumcenco, D. et al. Large-Area Epitaxial Monolayer MoS₂. ACS Nano 9, 4611 (2015).
- 37. Shi, J. *et al.* Monolayer MoS2 growth on au foils and on-site domain boundary imaging. *Adv. Funct. Mater.* **25**, 842–849 (2015).
- Shi, J. *et al.* Substrate facet effect on the growth of monolayer MoS₂ on Au foils. *ACS Nano* 9, 4017 (2015).
- Ji, Q. *et al.* Epitaxial monolayer MoS2 on mica with novel photoluminescence. *Nano Lett.* 13, 3870–3877 (2013).
- 40. Vangelista, S. *et al.* Towards a uniform and large-scale deposition of MoS₂ nanosheets via sulfurization of ultra-thin Mo-based solid films. *Nanotechnology* **27**, 175703 (2016).
- 41. Li, H. *et al.* From Bulk to Monolayer MoS₂: Evolution of Raman Scattering. *Adv. Funct. Mater.* **22**, 1385 (2012).
- 42. Lee, C. *et al.* Anomalous Lattice Vibrations of Single- and Few-Layer MoS₂. *ACS Nano* **4**, 2695 (2010).
- 43. Boukhicha, M., Calandra, M., Measson, M.-A., Lancry, O. & Shukla, A. Anharmonic phonons in few-layer MoS₂: Raman spectroscopy of ultralow energy compression and shear modes. *Phys. Rev. B* **87**, 195316 (2013).
- 44. Wang, Y. Y. *et al.* Raman studies of monolayer graphene: The substrate effect. *J. Phys. Chem. C* **112**, 10637 (2008).
- 45. Wu, J. Bin, Lin, M. L., Cong, X., Liu, H. N. & Tan, P. H. Raman spectroscopy of graphenebased materials and its applications in related devices. *Chem. Soc. Rev.* 47, 1822 (2018).
- 46. Park, J. S. *et al.* G' band Raman spectra of single, double and triple layer graphene. *Carbon N. Y.* **47**, 1303 (2009).
- 47. Chen, X. *et al.* Lithography-free plasma-induced patterned growth of MoS₂ and its heterojunction with graphene. *Nanoscale* **8**, 15181 (2016).
- 48. Jeon, J. *et al.* Layer-controlled CVD growth of large-area two-dimensional MoS₂ films. *Nanoscale* **7**, 1688 (2015).
- 49. Zhang, X. *et al.* Raman spectroscopy of shear and layer breathing modes in multilayer MoS₂. *Phys. Rev. B* **87**, 115413 (2013).

APPENDIX

A. Raman peak analysis for all MoS₂ Crystals

Figure A1. Raman spectroscopy data for experimental conditions that did not produce any MoS_2 growth. (a) and (b) correspond to experiment 2, while (c) corresponds to experiment 5. A sharp silicon substrate peak is observed at 520 cm⁻¹.

Figure A2. Raman spectroscopy data for experiment 1. (a) corresponds to 200114A1 and (b) corresponds to 200115B1. Different colors represent separate areas analyzed.

			Peak Frequency (cm ⁻¹)					
	200114		E^{1}_{2g}	A_{1g}	Δ frequency (A _{1g} - E ¹ _{2g})			
	A1	1	382.39	405.09	22.70			
		2	382.39	406.50	24.11			
		3	382.39	406.50	24.11			
5 .1		Х	382.39	406.03	23.64 ± 0.81			
Exp	B1	1	382.39	406.50	24.11			
		2	382.39	406.50	24.11			
		3	382.39	407.92	25.53			
		Х	382.39	406.97	24.58 ± 0.82			

Table A1. Table summarizing Raman peak analysis for experiments 1.

Figure A3. Raman spectroscopy data for experiments 3 and 4. (a) corresponds to 200115A1 and (b) corresponds to 200115A2. Different colors represent separate areas analyzed.

			Peak Frequency (cm ⁻¹)						
	200115		E ¹ 2g A1g		$\begin{array}{l} \Delta frequency \\ (A_{1g} \text{-} E^{1}_{2g}) \end{array}$				
	A1	1	376.70	403.67	26.97				
5.3		2	385.23	413.58	28.35				
ExJ		3	380.97	406.50	25.53				
		Х	380.97	407.92	26.95 ± 1.41				
4	A2	1	378.12	403.67	25.55				
.xp.		2	379.54	405.09	25.55				
Щ		Х	378.83	404.38	25.55 ± 0.00				

Table A2. Table summarizing Raman peak analysis for experiments 3 and 4.

Figure A4. Raman spectroscopy data for experiments 6, 7, and 8: (a) 200116A1, (b) 200116A2, (c) 200116B2, (d) 200116A3, and (e) 200116B3. Different colors represent separate areas analyzed.

]	Peak Frequency	(cm ⁻¹)
	2001	16	E^{1}_{2g}	A_{1g}	Δ frequency (A _{1g} - E ¹ _{2g})
	A1	1	382.39	406.50	24.11
2		2	379.54	405.09	25.55
xp.		3	379.54	405.09	25.55
Щ		4	382.39	406.50	24.11
		Х	380.97	405.78	24.83 ± 0.83
	A2	1	382.39	405.09	22.70
		2	382.39	405.09	22.70
		3	382.39	405.09	22.70
		4	382.39	405.09	22.70
5.7		Х	382.39	405.09	22.70 ± 0.00
Exp	B2	1	382.39	406.50	24.11
		2	383.81	407.92	24.11
		3	382.39	407.92	25.53
		4	383.81	406.50	22.69
		Х	383.10	407.21	24.11 ± 1.16
	A3	1	382.39	406.50	24.11
		2	382.39	405.09	22.70
		3	383.81	405.09	21.28
o. 8		4	383.81	405.09	21.28
ExI		X	383.10	405.44	22.34 ± 1.34
	B3	1	383.81	406.50	22.69
		2	382.39	406.50	24.10
		Х	383.10	406.50	23.40 ± 1.00

Table A3. Table summarizing Raman peak analysis for experiments 6, 7, and 8.

Figure A5. Raman spectroscopy data for experiment 9. The spectra correspond to 200117B1. Different colors represent separate areas analyzed.

]	Peak Frequency	(cm ⁻¹)
	200117		E^{1} 2g	Alg	Δ frequency (A _{1g} - E ¹ _{2g})
	B1	1	383.81	407.92	24.11
6		2	382.39	405.09	22.70
.txp.		3	382.39	403.67	21.28
н		4	383.81	403.67	19.86
		Х	383.10	405.09	21.99 ± 1.83

Table A4. Table summarizing Raman peak analysis for experiment 9.