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A c o u s t i c  b o t t o m  ref lect ivi ty  

O.F. Hastrup 

A b s t r a c t :  Acoustic reflectivity from the seafloor is often an important fac- 
tor influencing the performance of ASW systems in different environments, 
such as in deep water when the bottom bounce paths are used, and in gen- 
eral in influencing sound propagation in shallow water. This report summa- 
rizes the work that has been pursued in this field for more than 20 years. 
The following topics are discussed: general equations; reflection coefficient 
and impedance; the half-space bottom; attenuation; general layering; solid 
half-space; liquid layers; high loss at  grazing; density gradient; examples of 
general layering; impulse response; periodic layers; measurement of bottom 
reflectivity; data  analysis methods; and prediction of bottom reflectivity. It 
is stressed that only the plane wave reflection coefficient is considered. 

Keywords :  acousticreflectivity o bottombounce o reflection 
coefficient o plane wave reflection coefficietlt o underwater sound 
attenuation 
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Introduction 

The acoustic reflectivity from the sea floor is often an important factor for the 
performance of ASW systems in different environments, such as in deep water when 
using the bottom bounce paths, and in general for sound propagation in shallow 
water. Furthermore, it plays a role in the degradation of towed-array operations 
due to reflected tow-ship radiated noise and in certain weapon systems and with the 
frequency range of interest which spans over a large band from a few Hz to tenths 
of kHz. Therefore there is a need to he able to accurately measure the reflectivity 
or predict it from known or assumed geoacoustical data. 

At several national naval research laboratories as well at the SACLANT Undersea 
Research Centre, La Spezia, work has been pursued in this field for more than 
20 years, making a significant improvement in our knowledge in this field. During 
this period, the experimental techniques have changed from the use of analog to 
digital acquisition, yielding higher resolution and accuracy, and the subsequent use 
of computers to analyze the data results in faster and more flexible ways of reporting. 
Furthermore, today we have a much better, though not complete, understanding and 
knowledge of the geoacoustical parameters for the bottom, including deeper layers. 

The results from the SACLANTCEN activity have appeared in several published 
and unpublished reports and articles [1,2]. However, to make these more accessible 
for potential users, it was felt worthwhile to update the material and issue some of 
it as a single report. 

Special emphasis has been put into combining the theoretical results, with results 
obtained not from model tank experiments but from experiments in the real ocean 
environment where the action takes place. For this reason experimental and digital 
analysis techniques are included in the report. Furthermore, due to the wide intro- 
duction of microcomputers, a set of algorithms for the IBM-PC computer family has 
been developed to enable the user to carry out 'experiments' either in the office or 
on board to study the effect of the bottom layering on the reflectivity. Instructions 
for using these programmed algorithms are contained in Appendix A. 

It is hoped that this summary report will be useful especially for operators and 
scientists new to this field. However, it should be stressed that only the plane wave 
reflection coefficient will be considered in this report. For information concerning 
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the complete wave solution, readers should look into new algorithms such as the 
Fast Field or SAFARI models. 

This work has been sponsored by the Office of Naval Research and the Naval Un- 
derwater Systems Center and was done as a visiting scientist during an interesting 
and stimulating stay at the Naval Underwater Systems Center, Code 10, in New 
London. 
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General equations 

From the classical theory of elasticity, we know that a wave propagating through 
a homogeneous media is determined by the compressional wave potential and the 
shear wave potentials satisfying the following wave equations: 

with a as the compressional wave velocity and p as the shear wave velocity. 

The displacement which completely determines a plane wave is expressed as 
- -- 
U = grad4 + curl?. 

Introducing an orthogonal coordinate system with the displacement u in the x- 
direction and w in the z-direction, Eq. (2) simplifies to 

By the use of the two elastic constants (LamC), the stresses can also be related to 
the potentials through u and w as 

The relationship between the LamC constants, density, and compressional and shear 
wave velocity is the following: 

Report no. changed (Mar 2006): SR-115-UU



Analogous to the theory of electricity, we can introduce the concept of an impedance 
Z defined as the ratio between pressure and the normal component of the particle 
velocity: 

Z = p/w = -u/w, (2.5) 
where p is the pressure, a the normal stress, and w the particle velocity. The minus 
sign is due to the difference of defining pressure and stress. 

In the case where the medium is a liquid, it cannot sustain shear which means that 
p = 0. This reduces Eq. (2.1) to 

With the use of Eqs. (2.1), (2.3) and (2.4), one obtains for u 

Using Bernoulli's method of assuming that the solution can be written as a product 
of functions, each depending only on one variable, we equate 

which, after differentiation with respect to x, z and t, gives 

With T depending only on t and F, and G being independent of t ,  we have 

The choice of sign for the separation constant is due to the requirement of periodic 
solutions in time. For the F and G functions, we can write 

and setting F"/F = -h2 we have Gfl/G = h2 - w 2 / a 2  = -n2, which leads to 
solutions of the form 

F = e  f i h x  and G = e i n z .  

Letting the waves propagate in the direction of the positive x-axis, the potential 
becomes 

4(x, z ,  t )  = ( ~ e ' ~ '  + ~ e - ~ ~ ~  ) eih=-"t 

where the factor A and B respectively corresponds to waves travelling in the positive 
and negative direction of the z-axis as seen on Fig. 2-1. 
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So we are dealing with plane waves propagating with the wavenumber k = w / a  
normal to the wavefront, h in the z-direction and K. in the z-direction, satisfying the 
important condition k 2  = h2 + /c2. 
From Fig. 2-1 we obtain the apparent horizontal velocity, which is the horizontal 
phase velocity c = w / h  = a/ sine. When w2/a2 > h2, we see that the potential will 
not oscillate with respect to z but decay exponentially. These types of waves are 
called inhomogeneous waves and are frequently associated with boundary interaction 
as seen later. 

Fig. 2-1. Wavefront geometry. 
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Reflection coefficient and impedance 

Since the waves we are interested in are interacting with the sea floor and the layers 
below, the solutions to the wave equation must, therefore, satisfy certain boundary 
conditions depending on the nature of the boundary. The conditions are usually 
expressed directly in terms of stress and displacement. 

For example, for two elastic media in welded contact, both stress and displacement 
must be continuous across the boundary. In the case of a liquid-solid or liquid-liquid 
interface, only the normal component of the stress and the displacement has to be 
continuous and the shear stress disappears. For a free and unloaded boundary, all 
stresses are zero. 

On some occasions it is more advantageous to use velocity potentials instead of 
displacement potentials which can be done by multiplying the displacements by 
iw. The requirement of continuity of stress and displacement, therefore, can also 
be expressed in terms of stress and particle velocity or impedance as defined in 
Eq. (2.5). 

The boundary which is of main interest is the interface between the water column 
and the sea floor. Let us now determine the reflection and transmission coefficients 
for a plane wave incident from the water as shown in Fig. 3-1. What the bottom 
looks like is of no concern at this moment and we will only treat it as a 'black box'. 

From the Fermat principle (minimum travel time), we know that Oi = 8, which 
means that 

ni = n, = n and hi = h, = h. 

The total field in the water can then be written as 

where R is'the reflection coefficient. 

Differentiating this with respect to t and z,  the pressure p and the particle velocity 
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Fig. 3-1. Plane wave reflection from the bottom. 

are expressed as 

az4 2 inz p = -p- = pw2$ = pw ( e  + R ~ - ~ ~ ~ ) ~ ~ ( ~ ~ - ~ ~ ) ,  
at2 

which at the boundary z = 0, reduces to 

Using the definition for the impedance and h = k cos 8 and k = w / a ,  we end up 
with the following equation for the bottom impedance: 

z = ~ 4 1  + R )  
cos 8 ( 1  - R )  ' 

or for the reflection coefficient R  

with Zo = p a /  cos 8 being the impedance for the water. 
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In other words, if the bottom impedance is known, the reflection coefficient can be 
calculated from the above formula. However, as we will see later, the impedance 
often is a complicated function depending on both frequency and angle of incidence. 
This is the plane wave reflection coefficient which in optics is termed the Fresnel or 
Rayleigh coefficient. 

Assuming now that the bottom can be treated as a liquid half-space (often a good 
assumption), the shear modulus p = 0. As a boundary condition, we will use the 
continuity of a across the interface. The potential in the bottom, with T being the 
transmission coefficient, is 

- ~ ~ i n c z  i (h+-wt )  4 - e 

Differentiating twice with respect to t,  we obtain the stress in the bottom as 

giving 
= p/pb(l + R) ,  

or expressed as a function of impedance 

By knowing the impedance Z at the boundary it is straightforward to calculate 
both the reflection and transmission coefficients. Whereas to get the angle of the 
transmitted wave, information of the bottom itself is required. 

Now let us consider some simple examples looking at the bottom reflection charac- 
teristics for different situations. 
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T h e  half-space bottom 

In the ocean, the bottom often consists of soft unconsolidated sediments which 
acoustically can be considered liquid due to the very low shear modulus. We will, 
therefore, study this case in more detail. Figure 4-1 illustrates our simple model 
where water has a density of p and a velocity of a and the bottom has a density of 
pl and a compressional velocity of a l .  The angle of incidence in the water is 0 and 
the angle of the transmitted wave in the bottom is e l .  

a P 

/ / / / / / / / / / / / / / I  
a1 P 1 

Fig. 4-1. Simple bottom model. 

Given that the horizontal phase velocity c along the interface must be the same in 
the water and in the bottom, we get from Fig. 2-1 

a/al = sine/ sin dl 

which is the Snell's refraction law. 

Using the potential for the transmitted wave and Eq. (2.5)' the impedance Z1 for 
the bottom, with a1 / cos el as the vertical phase velocity, becomes 

a1 Pl Z1 = - 
cos 

The reflection coefficient expressed by density, wave velocity, and angle of incidence 
becomes 

pl a1 COS e - pa cos el R = 
pl a1 cos 0 + pa cos 9, 
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which with Snell's Law reduces to the classical reflection coefficient 

a cos 0 - 
R = 

JX72-i 
a c o s ~  + J X Z G '  

where a = pl / p  is t,he density contrast and n = cu/cul  the refractive index. 

When st,udying the reflection coefficient at angles close to grazing, the following 
simplified expression can he obtained by using the grazing angle E = 90" - 8 instead 
of t.he angle of incidence: 

a sin E - Jn2 - C O S ~ E  R = 
a sin E + Jn2 - cos2 E 

For small grazing angles with sin E FZ 6 and cos 6 z 1, the following can be obtained: 

Using t,he Taylor expression for the exponential function 

the reflection coefficient near grazing can he written as 

This expression will he used later to look at reflection loss ano~~lalies near grazing. 

The form of the reflection coefficient depends on the ratios of a and n. We will 
consider three cases corresponding to values observed in the real world: the intro- 
mission angle, the critical angle, and no critical or intromission angle. Appendices B 
and C contain discussions of the values for the bottom geoacoustical para~rieters ob- 
served in the sea floor environment. However, in some of the following examples, 
extreme values for these para~neters have been used in order to emphasize their 
relative i~~lportance on the reflection coefficient. 

intromission angle case: 1 < n < a This is t,he most colnmon case with the top 
bottom layer consisting of unconsolidated sediments as has been observed during a 
large number of experi1nent.s. 

The argument of the square root n2 - sin2 9 is always positive. The coefficient 
remains real for all angles and is zero for 

a cos 0 = J-, 

Report no. changed (Mar 2006): SR-115-UU



This angle OB is called the intromission angle or, in optics, the Brewster angle. In 
optics, at this angle, the reflected and the transmitted waves are perpendicular to 
each other; however, in acoustics this is not the case due to the density effect. In 
nature where some attenuation is always present, the reflection coefficient will not 
be zero but finite (as will be discussed later). The phase shift will be zero for angles 
steeper than the introlnission angle and 180" for more grazing angles, meaning that 
a reflected signal will be inverted. 

To show the behavior of the reflection coefficient curve, we will use results obtained 
from bottom cores taken in the deep Mediterranean Naples Abyssal Plain. The 
averages and standard deviations for the upper 50 cm have been computed as 

relative compressional velocity al = 0.977 * 0.004 

relative density pl = 1.39 * 0.04 

the bottom and the density of the bottom water. The reason for using relative 
values, as we will be doing for the rest of the report, is that they are independent 
of seasonal changes in the water column. 

Also instead of the reflection coefficient, we will use the reflection loss in dB defined 
as -20 log(R). The reason is that we will need the losses in dB for the sonar equation. 

Figure 4-2 illustrates the loss curve corresponding to the above data and the ac- 
tual measured losses from the water/sedirnent interface. One will notice excellent 
agreement except around the intromission angle where the effect of attenuation is 
noticeable. 

Critical angle case: n < 1,  71 < m This case of having a higher wave velocity in 
the bot,tom than in the water is usually found when the bottom is composed of 
coarser sediments such as sand. 

Using Eq. (4.1), for angles of incidence larger than arcsin(n), the reflection coefficient 
R becomes complex with a magnitude of one and can be written as R = ei@ where 
4 is the phase, shift (not to be confused with the 4 previously used for potentials). 
This angle is called the critical angle O,,. For angles more grazing, the reflection 
becomes total with all the incident energy being reflected and with the presence 
of an inhonlogeneous wave travelling in the bottom along the interface. The phase 
shift is expressed as 
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Fig. 4-2. Reflection loss (intromission angle case). 

ANGLE OF INCIDENCE 

The phase shift is zero for angles of incidence less than 8,, and increases monotonic 
to 180' at grazing. The sign of the phase shift is determined from the direction of 
the z-axis. 
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Figure 4-3 illustrates the reflection loss for a sandy bottom with the relative wave 
velocity cr = 1.13 and the relative density p = 2.0. The loss curves for taking 
attenuation into account will be discussed in Sect. 5. 

0 10 20 30 40 50 60 70 80 90 
I I 1 I I r I I 

REFLECTION LOSS UPPER LAYER - NAPOLI 

- 

COMPUTED FROM AVERAGE OF 21 CORES - r . . . , . .. 4, I 
8 - -  ,** . '. 

- 

ATTENUATION 
- (a) 1.5 dB/WAVE LENGTH RUN 1 

(b) 0.6 dB/WAVE LENGTH RUN 2 
(c)  0.3 dB/WAVE LENGTH - 

LOSS 

No critical or intromission angle case: 1 < n, a < n This is arare situation which 
has been included for completeness and can occur in the case where the bottom con- 
tains gas bubbles, such as methane caused by decomposition of organic matter in 
the bottom. This is normally observed in lakes or bays and possibly could be more 
common in the future as a result of pollution. 

The presence of gas bubbles has little effect on density but a dramatic effect on 
wave velocity through a strong increase in the compressibility of the sediments. To 
understand this, let us look at a unit volume of bottom material as seen in Fig. 4-4. 
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Fig. 4-3. Reflection loss (critical angle case). 

GAS 

1 
I WATER 

I 
1 I 
I 
1 I 

SOLID 

Fig. 4-4. Sediment unit volume. 

We will assume that the bottom is composed of a mixture of non-resonant adiabatic- 
behaving gas bubbles, water, and solids. We will also assume that we can treat such 
a sediment as an ideal three-component mixture and that the equations for elastic 
waves are valid. 

We will now introduce the concept of porosity, defined as the ratio between the 
volume of the voids and the total volume of the sediment. The volume of gases, 
water and solids is represented in the following ratios as g, x and y with g +x + y = 1. 
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The porosity n then becomes n = g + x 
If the density of the solid particulate matter in the sediment is constant, then from 
the definition of porosity, the bulk sediment density is given by 

Psediment  = P g g  + pw(n - 9) + ( 1  - n ) P s ,  

where the indices g, w and s, respectively, refer to gas, water and solid. 

The sound velocity for a liquid is given by 

where B is the compressibility. We assume that B can be expressed as the sum of 
the three component moduli, so in terms of porosity we get 

and for the wave velocity 

which is the so-called Woods equation for a three-component mixture. The validity 
of the above assumptions has been verified through many experiments and in a later 
section we will use the porosity as an independent parameter to parameterize the 
wave velocity and sediment density. 

Figure 4-5 illustrates an example of the relative wave velocity as a function of gas 
content for a 70180% porosity sediment and a methane-nitrogen mixture, showing 
the very marked effect for even small quantities of free gas bubbles. 

Now assuming that n >> sine, Eq.  ( 4 . 1 )  can be reduced to the simple expression 

(zl /z) cos e - 1 R = 
(Z1 /Z) cos 8 + 1 

showing that R only depends on the impedance ratio and the angle of incidence with 
a 180" phase shift for all angles. 

Figure 4-6 plots the reflection loss for a relative density p = 1.3 and a relative wave 
velocity a = 0.2 equal to a gas content 0.001. Also on the same plot are shown 
reflection losses measured in a lake near the SACLANTCEN where the bottom 
contained a high concentration of free methane of which some was released for each 
shoot fired during the experiment. The reflected pulses received were all inverted 
due to the 180' phase shift from this almost perfect pressure release interface. 
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Fig. 4-5. Wave velocity as function of gas content. 
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Fig. 4-6. Calculated and measured reflection losses. 
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Attenuation 

Until now we have ignored attenuation in our calculations of the reflection coeffi- 
cient, an idealization which is not always permissible. Real-bottom materials ab- 
sorb energy; this results in a smoothing of the reflection coefficient curves, espe- 
cially near the critical or the intromission angle. In this report, we will not deal 
with the actual attenuation mechanisms or processes but will introduce attenuation 
through complex wavenumbers and wave velocities. Looking at the propagation of 
a wave with a complex wave velocity a = a(l - iv),  we have for the wavenumber 
k = k' = w/a ( l  - iv) % k(l  + iv) 

where the first factor represents the attenuation. The imaginary part is a function 
of frequency and through this report we will consider a linear dependence, which 
corresponds to a constant attenuation 6 in dB per wavelength A.  Thus, with X = 
27r/k, we get 

6 = 20 loge-"' = 20 log e2"" 

and 

which can be used in the different expressions for the reflection coefficient 

With the presence of attenuation, it can be shown that neither total reflection nor 
total transmission exists except at grazing. The analytical calculations for the re- 
flection coefficient are quite lengthy and the effect is perhaps better illustrated by 
using our previous examples. Figures 4-2 and 4-3 illustrated the reflection losses for 
varying degrees of attenuation. The smoothing effect of the attenuation is clearly 
seen near critical and intromission angles. 

What happens if the attenuation is very large? Is the reflection coefficient then going 
to he very small? In such a case, we have v >> 1 and n2 = kf /k2 = nI2 (1  + i ~ ) ~  = 
nf2(1  + 2iv - v2). Inserting this into Eq. (4.1) and dividing both nominator and 
denominator by v, we obtain 
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which for v -t CCI gives R = -1. 

In other words the reflection is total with a 180' phase shift, when the attenuation 
is high in the bottom. In optics, the analog is the reflection of light from a metallic 
surface, the mirror - but who notices in the morning that you are phase-shifted 
180'. 
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General layering 

So far we have only looked at the most simple bottom model, the liquid half-space. 
When inspecting core samples taken from the ocean floor, a large majority of them 
show a marked layering, very often alternating between harder and softer sediments. 
In this section we will, therefore, study the reflectivity from the most general type 
of ocean bottom, one consisting of several parallel sediment layers, each supporting 
both compressional and shear waves and including attenuation of both wave types. 

Figure 6-1 illustrates our model for calculating the reflection coefficient for a plane 
wave incident fro111 a fluid half-space onto a semi-infinite medium consisting of n 
parallel homogeneous and isotropic layers on top of a half-space. 

For a wave with the angle of incidence I9 in the fluid half-space, the two angles in 
the mth layer corresponding to compressional and shear waves will be determined 
by Snell's Law in the following way: 

where c is the horizontal phase velocity. 

From the relationship between wavenumber and velocity, 

w = k O a O  = k m a m  = K,P,, 

Eq. (6.1) can also be written as follows: 

ko sin tlo = k, sin 19, = nm sin qm = h, 

where h = w / c  is the horizontal wavenumber, and k and K are the normal wavenum- 
hers in the inth layer for the compressional and shear waves. 

In this case we will need the potentials for both the compressional and shear waves. 
Using the form g(z)ei(hx-"t) fo r the potentials and inserting it into the wave equation 
from Sect. 2, a solution for the mth layer can be written as 

- ikm cos 0, z + B eik, cos 0,z 4 m  = [Arne m lei(""-Wt), 
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Fig. 6-1.  Layer geometry. 

water 

1 
I 
I 

The four constants are to be determined from the boundary conditions, which are 

2 d2 

3 d 3 

continuity in stress and displacement, or more conveniently as continuity in particle 
velocity. By differentiating Eq. (2.3)  with respect to time and combining this result 
and Eq. (2.4)  with the expressions for the two potentials above, we get the following 
matrix form in which the quantities of interest expressed by the four constants A,, 
B, , C ,  and Dm : 

1 1  

I 

or, using the more convenient matrix notation, 

s = T [ Z ] P .  

4 

n - 1  

n 
" z 
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Omitting the common factor the elements in T are 

2 t l l  = -(a,/c) cosamhz, 
2 t12 = i (am/c)  sina,hz, 

t13 = -ymbm cos b ~ ~ h z ,  

t14 = iymbm sin bm hz 
2 t2, = i (am/c)  a, sin a,hz, 

2 t22 = -(a,/c) am cosa,hz, 

t23 -- i7, sin bmhz, 

t24 = Ym COS bmhz, 
2 t3, = -pmam(ym - 1) cos amhz, 

2 t32 = ipmam(ym - 1) sin a,hz, 

t33 = -Pmc2y;bm cos bmhz, 

t34 = ipmc2 y i b m  sin b, hz,  
2 t41 = -zpmamTmam sinamhz, 

2 t42 = pmam7rnarn cos amhz, 
2 t43 = ipmc ym(ym - 1) sin bmhz, 

2 t44 = -PmC ~ m ( y m  - 1) cos bmhz, 

where am = cot em, b ,  = cot 7, and y, = 2(prnlC)2. 

So for a system of n layers, we get 4n equations plus one for the water-column and 
two for the limiting half-space, to determine the 4n + 3 unknown constants. Since 
we are mainly interested in the calculation of the reflection coefficient, we will not 
try to solve the equations directly, but uses a method based on transfer matrices 
due to W.T. Thompson and later modified by N.A. Haskell [3,4]. 

Placing the origin of the z-axis at the (m - 1)th interface, we get for z = 0 and 
z = dm 

where dm is the thickness of the layer and in which indices for S refer to the interface 
and indices for T and P refer to the layer. 

Report no. changed (Mar 2006): SR-115-UU



By eliminating P,,, from the two equations, we get a relation between the value of 
velocity and stress at the top and bottom of the mth layer 

S, = T,[~,]T[o]-'S,-~, (6.3) 

- 

The elements of A, can be found after some simple but quite lengthy calculations: 

A11 = 7, cos Pn - ( 7 7 ,  - 1 )  cos Q n  

A1 2 = i [ (yn - 1 )  sin P n / a n  + y,bn sin Q,], 
2 A13 = -(COS Pn - COS Q n ) / p n c  , 

A14 = i(sin Pn/an + bn sin Q , ) / ~ , C ~ ,  

A21 = -i[y,a, sin P n  + (7, - 1 )  sinQ,/b,], 

A22 = -(7n - 1) cos Pn + 7 n  cos Q n ,  

2 A23 = i(a,  sin P, + sin Q,/bn)/pnc , 
A24 = A137 

A31 = p n c 2 y n ( ~ ,  - ~)(COS Pn - cos Q,), 

A32 = ipnc2 [(7,, - 1 ) 2  sin Pn/an + sin Q,], 

A33 = A22, 

A34 = A12, 

A41 = ipn~2[Y:an sin P, f (7, - 1)2  sin Q,/bn], 

A42 = A31 , 
A43 = A21, 

A44 = A l l ,  

where a, = cot On, b, = cot qn,  7, = ~ ( P , / c ) ~ ,  Pn = a,hdn and Q, = b,hdn. 
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The elements Vij of the half-space matrix T[o]-' are 

and 

To take the attenuation in the layer int,o account, we will use complex wavenumbers 
as before. Ignoring the attenuation in the water means that both k ,  h and c are real, 
but from Snell's Law we see that the wavenumber, velocities and angles of incidence 
will be complex in a layer with attenuation, which again means that the elements 
in 2 are complex. 

From the conditions of continuity and successive use of Eq. (6.3) 

and from Eq. (6.2)  - 

P, = T ~ [ o ] - '  A , - ~ A , - ~  . .AoSo, 
where Pn represents the potential - - in the lower half-space, 5?[0]-' the acoustic prop- 
erties of the half-space, . . . A. the acoustic properties of the layering, and $0 

the upper boundary conclition. In the two half-spaces 0 and n,  certain conditions 
have to be met. No shear stresses or shear waves can exist in the fluid, which means 
that 

7- = G o  = Do = 0. 

For the solid half-space to ensure a limited potential for z + +oo 

Inserting the above-given values into Eq. (6.4) 
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where the matrix H = T , [ O ] ~ - ' A , - ~  . . . Ao. 

Eliminating A,,  C, and u / c  gives 

or, from the definition of the hot tom impedance as -a/w, we get 

and for the reflection coefficient 

where Z is the water impedance. 

Because of the complexity of the equations, they are not well suited for an analytical 
study except for some simple cases, which will he presented in the following sections. 
For a more general purpose, the above equations have been program~~ied for an IBM- 
X T  in Microsoft FORTRAN as described in Appendix A. 
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Solid half-space 

With only the half-space and no layers present, i z  = 1 and the H matrix becomes 
H = T[o]-' . Inserting the values for t iPj ,  we get for the bottom impedance 

which is not a convenient expression for analytically studying the reflection coeffi- 
cient. Using the different relations between the angles 9 and 77 and c, the bottom 
impedance as shown by Brekhovskikh [5] becomes 

P l Q l  2 Z,, = - cos 271 + - cos el sin2 2q1 
cos 771 

Using Snell's Law with the relative wave velocities, we have 

sin 0 sine1 sin q1 ---- 
1 a1 P1 

showing the possibility for two critical angles determined by 

respectively for compressional and shear waves. 

In the following, we will study three different cases depending on the values of a1 

and Dl : 
One crit.ica1 angle 

Two critical angles 

a1 > PI > 1.09 Rayleigh interface waves 

O n e  critical angle a1 > 1 > P1 This is the   no st common case when we are deal- 
ing with a bottom consisting of consolidated sediments as often found in shallow 
water. Figure 7-1 illustrates the loss and phase shift when a1 = 1.13, P1 = 0.4 and 
pl = 2.0. Two values for the attenuation are used, 0 and 1 dB/X. The values for no 
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Fig. 7-1. Reflection loss for a half-space with one critical 
angle. 

shear are also shown for comparison. Clearly, the presence of shear waves 'softens' 
the bottom, due to energy being carried away from the interface by them. 

T w o  critical angles al > P1 > 1 This is the case when we are looking of reflection 
from a sedimentary rock half-space. Figure 7-2 diagrams the reflection loss and phase 
shift for the following acoustic values: al = 1.87, P1 = 1.07, pl = 2.2, again with 0 
and 1 dB/attenuation for both waves. 

As the grazing angle diminishes and we reach the critical angle arcsin(l/al), the 
reflection will be total, but only at this angle when no attenuation is present. For 
angles between the two critical angles, the reflection coefficient will be less than 
one, since the shear waves will be carrying energy away from the boundary. In this 
interval, the bottom impedance is complex, and when the imaginary part is zero, the 
phase shift is also zero. This corresponds to cos2 71 = 0 which gives 71 = 45" and 
from Snell's Law, 8 = arcsin(fi/2p1) = 41.36' in our case. f i om differentiation 
with respect to 7, this value also corresponds to a minimum as seen in Fig. 7-2. Only 
after the last critical angle arcsin(l/pl) = 69.2" or 20.8" grazing has been reached 
can total reflection occur. 

Rayleigh interface waves al > Dl > 1.09 This case is not a typical situation, but 
it is interesting, being related to the propagation of Rayleigh interface waves. Fig- 
ure 7-3 shows the reflection loss and phase shift for the following bottom parameters: 
a1 = 3.48, = 2.0, pl = 2.5 with no attenuation included to enhance the shape of 
the curves. The phase shift curve again has the minimum for 8 = 20.705'; it also 
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ANGLE OF INCIDENCE 

Fig. 7-2. Reflection loss for a half-space with two critical 
angles. 

has a jump from +180° to -180' for 8 = 32.92'. The Rayleigh wave velocity for a 
half-space with the above constants can be shown to be VR = 0.920P1 = 1.840, which 
turns out to be equal to the horizontal phase velocity c = 1/ sin(32.92) = 1.840. This 
value can be shown $0 correspond to a pole in the complex reflection coefficient. 
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Fig. 7-3. Reflection loss for a solid half-space supporting Rayleigh waves. 
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Liquid layers 

Before looking a t  some examples for layers with both compressional and shear waves, 
let us consider a bottolll consist,ing of unconsolidated sediments which acoustically 
can be considered liquid due to the very low shear modulus. We will study this type 
of layering in more detail since some of t,he results we will obtain are useful for the 
understanding of several reflection processes. 

In this case y = 2(P/c) = 0 and no shear potentials exist so the boundary conditions 
are reduced to  the requirement of c0ntinuit.y of only (T and w across an interface. 
The 4 x 4T matrix reduces to a 2 x 2 matrix and we obtain along the same lines as 
in Sect.. 6: 

s = T[;]P 

with 

Using the appropriat,e values for t i j  fro111 Sect. 6,  we get the following for the inth 
layer: 

- i(a,/c)a, sin P,, -(a,/c)a, cos P,, 
T,[d] = 

pm cos P,n 2 -zpmaln sin P,, 

where P, = a,hd, is the phase shift through layer m, and 

which with A = T[~]T[o ] - '  gives 

cos P,, 
. 2 -1 2pmc a, sin P,, 

i ( ~ , , ( ~ , , c ~ ) - ~  sin P,, 
cos P, 

For the total number of layers 

which is the matrix equation relating the boundary conditions at the bottom and 
the t,op of the layering, or 
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which with 

and zb = -u/w gives zb = hl l  - hZ1 / c ( h 1 2  - h Z 2 )  and reflection coeficient R = 
( z b  - z ) / ( z b  + 2 ) .  

Let us now consider soltle simple and illust.rative cases. 

T h e  bo t tom consisting o f  a half-space With no layers present, H = T [ o ] - '  and 
we have 

hl l  = hZ2 = 0, h12 = l l p l a f ,  hZ1 = - l / ( a l / c ) 2 a l  

so that. 
z b  = a1 p1/ cos e l ,  

agreeing with the previous results. 

T h e  b o t t o m  consisting o f  a single layer over a half-space In this case, we get for 
the H matrix 

0 cos PI ial ( p l  c 2 ) - l  sin PI 
- l l ( ~ 2 / ~ ) ~ a z  0 2 - 1  zplc al sin Pl cos Pl 

with the index 1  and index 2 referring, respectively, to the layer and the half-space. 

After some lengthy calculations and setting 21 = a1 pl / cos 81 and 22 = aZp2 / cos 02, 
the total bottom impedance becomes 

z2 cos Pl + iz1 sin PI 
Zb = 

cos PI + 2 2 2  / zl sin PI 

and the reflection coefficient hecornes 

where z is the impedance of the water 

Contrary to the simple half-space solut,ion, the reflection coefficient is an oscillating 
function of P I ,  which can he written as PI - 2a(dl / A 1  ) cos el . For vertical incidence, 
two special cases exist, one corresponding to  a layer thickness equal to  a number 
of integer half-wavelengths and one corresponding to  an odd number of quarter- 
wavelengths. 

If P  = m a  for m = 1 , 2 , 3 , .  . . ,sin P = 0 and we get 
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meaning that a half-wave layer has no influence on the reflectivity which is being 
controlled only by the half-space. This could also be seen from the A matrix for a 
layer, which, for sin P = 0 and cos P = 1, reduces to the unit matrix, meaning that 
such layers have no influence on the total reflection coefficient. 

If P = m7r/2 for m = 1,3 ,5 , .  . . , cos P = 0 and sin P = 1 we get R = (Zf - 
Z22)/(2,2 + Z2Z).  

Therefore, if Z1 = m, no reflection takes place. This particular case is very 
frequently utilized in optics where quarter-wave coatings are used to increase the 
transmitted light in, for example, lens systems. 

To illustrate how the loss depends on the frequency and the angle of incidence, we 
will study the case with the acoustic constants as given in Table 8(a) where AA and 
AB are the attenuations in dB per wavelength. 

Table 8 
Bottom acoustic constants 

a P P A A' AB1 Depth 

(a) Two-layer model 

0.970 0.000 1.450 0.100 0.000 1 .OOO 
1.050 0.000 1.850 0.300 0.000 

(b) Three-layer model 

1.050 0.000 1.890 0.000 0.000 1.000 
1.130 0.000 2.050 0.000 0.000 1.500 
1.870 0.000 2.200 0.000 0.000 

' Attenuations in dB per wavelength. 

The losses are shown in Figs. 8-1 and 8-2 for 15' and 60' angles of incidence, re- 
spectively. Note that the interference pattern clearly corresponds to quarter- and 
half-wavelengths in the layer with minimum losses equal to the case where only the 
half-space was present. As the angle of incidence increases, there is a shift toward 
higher frequencies due to the cos 9 term for the phase shift in the layer. 

The formula for the reflection coefficient can be rewritten using the two local reflec- 
tion coefficients at the two interfaces 0 and 1, with 701 = (Z1 - Z)/(Z1 t Z) and 
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Fig. 8-1. Reflection loss and phase shift as a function of frequency (15' angle of incidence). 

0, - ANGLE: 15" 

an expression attributed to the famous astronomer G.B. Airy in 1833. This result 
can also easily be obtained by the following considerations. Looking at the ray paths 
in the layering as seen in Fig. 8-3, we can write the total reflection coefficient as 

181 
L 

e - i 2 k  1 d 1 being the phase shift for a double passage through the layer. 

Rearranging using ri, = -rji  and t i j  = 1 + r;,, the above reduces to the Airy expres- 
sion which is very useful and can be applied recursively to calculate the reflection 
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Fig. 8-2. Reflection loss and phase shift as a function of frequency (60" angle of incidence). 

Fig. 8-3. Ray paths in layers. 

coefficient from a multilayered medium. We will later use it to study some special 
cases, such as a density gradient in a layer and reflection close to grazing. 
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Fig. 8-4. Vector addition of reflecti.on coefficients. 

For weakly reflecting layers, the local reflection coefficients are small compared to 
unity and we can ignore second-order terms. Thus, the reflection coefficient can be 
written in the simple form 

R = r01 + r12e i241, 

a formula well suited for recursive calculation in the case of multilayers. This ap- 
proximation corresponds to the graphical polygon technique used in optics before 
the days of computers by calculating the reflection coefficient using vector addition 
of the local reflection coefficients for a set of layers. Though this method is now 
obsolete, it is quite illustrative and we will use it for the three-layer model given 
in Table 8(b) and construct the reflection coefficient for z 0, 150, and 300 Hz at 
vertical incidence. 

From the two reflection coefficients, we get 

as a function of the local reflection coefficients and the phase shift in the two layers. 
From the impedances, these are easily computed: rol = 0.332, rl2 = 0.075, r23 = 
0.279. 
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In the following we will give the reflection coefficient and phase shift obtained 
(1) graphically (signified by 'graph') from Fig. 8-4, numerically ('num'), and ex- 
actly ('exact') using transfer matrices. 

(a) f = 0 Hz 

In this case, 4: = 4; = 0 and the local reflection coefficients are on the same 
line as seen in Fig. 8-4. Computing the equation graphically, numerically, 
and exactly, we get 

0.332 + 0.075 t 0.279 = 0.69 (graph) 
( n u 4  

0.609 (exact). 

(b) f = 150 Hz 

The two phase shifts in degrees are 

Results obtained are 

0.18 (graph) -58' (graph) 
m =  { -55.9' (num) 

0.194 (exact) -55.99' (exact). 

(c) f = 300 Hz 

The two phase shifts are obtained as above, yielding 

From the vector addition, we have 

0.51 (graph) -13" (graph) 

0.494 (exact) 8.84" (exact). 

The accuracy of the approximate method, whether graphical or numerical, for the 
above cases can be considered to be quite satisfactory for the interference effects 
from the different layers. 
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Now let us look at the phase shift as a function of frequency and impedance for this 
simple two-layer liquid bottom. The phase shift is determined as 

tan $ = Im[R]/Re[R], 

where Im[R] and Re[R] are the imaginary and real parts of the reflection coefficient. 
Inserting these values and setting the phase shift in the layer 2kldl = 4, the phase 
shift for the reflection becomes 

T ~ ~ ( T &  - 1)  sin q5 
tan$ = 

 TO^ ( r f2  + 1)  + r12(~:1 + 1 )  ~ 0 ~ 4 '  

We will discuss some different cases according to the relative magnitude of the two 
local reflection coefficients, rol and 7-12, and assume that the angle of incidence is less 
than critical and that the reflection coefficients are small compared to 1 so we can 
ignore higher-order terms. The expression for the phase shift can then be rewritten 

- sin q5 
tan$ % 

~ 0 1 1 ~ 1 2  + ~ 0 ~ 4 '  

This corresponds to a weak reflector on top of a stronger reflecting half-space. 
The phase shift becomes 

tan 1C, zz - tan 4, 
-4 = -2kl cosO1dl 
-w2dl cos c j l  / a l ,  

which is a linear phase shift corresponding to a simple time delay as one 
would expect. 

(h) 7-01 = 7-12 

In this case the phase shift is 

sin 4 
tan$ = 

1 + cos 4 '  

again a linear phase behaviour with respect to frequency but with only half 
the slope or time delay as compared to the case above. 

Figures 8-5 and 8-6 show the phase shifts calculted from the transfer matrices and 
clearly demonstrate the near-linear dependence. This is also very often the situation 
observed from experiments, even when we are dealing with a complicated ~nultilay- 
ered bottom as seen from Figs. 16-3 and 16-4 in Sect.. 16. 
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Fig. 8-5. Phase shift for a1 = 0.96, a 2  = 1.23 and pl = 1.3, pa = 2.5. 
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FREQUENCY 
Fig. 8-6. Phase shift for a1 = 0.98, a2 = 1.03-and p l  = 1.35, pz = 1.7 
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High loss a t  grazing 

It is frequently believed that with a bottom for which a critical angle exists and for 
small grazing angles, reflection will always be close to perfect, with no or very little 
loss. Although this can be true, there are situations where the reflection coefficient 
behaves differently. 

The sea floor under consideration is a soft, low-velocity layer on top of a harder, 
high-velocity half-space as indicated in Fig. 9-1. With a 2  > 1 > a1 and rol and r12 
(the local Rayleigh reflection coefficients), we have an intromission angle case for rol 
and a critical angle case for rl2. Further, we will consider the case where 0 is small 
and 0 < arccos(l/a2), in other words the reflection from interface 1-2 is total. 

@ WATER 

@ SAND 

Fig. 9-1. Layering geometry. 

Using the Airy expression from the previous section for the reflection coefficient for 
the complete layering and in this case the more convenient grazing angle instead of 
the angle of incidence, we get 
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where q5 = 2kdsinp is the geoinetrical phase shift through the layer, with k being 
the wavenumber. We will study this expression in more detail for 6' -+ 0. 

Fro111 Snell's Law, we have 

a1 sin0 
cos 8 /  cos /L = l /al  ; p arccos(al cos 0); dp/  do = V/I - ( , I ,  ) ?  COS? n '  

which for 6' 4 0 gives dp /  d6' 4 0. This rneans p will vary little with 6' for 9 close 
to zero, and we will consider it constant and equal to  po. 

For small grazing angles, as discussed in Sect. 4, the local reflection coefficient is 
expressed by exponential functions 

Qe ~ 0 1  = -e , 

T l 2  = -e-Sfp, 

with 

For a2 > 1 > al , Q is real and positive and S' is imaginary and negative 

and 

Inserting Eqs. (9.2) and (9.3)  into Eq. (9.1), we get 

- ,QB + ,i(Sp-r+2dksin p) 

R ( 0 ,  k) = 1 - eQeei(Sp-r+2dk sin p )  ' 

which for 6' -. 0 and p + po gives 

as expected: total reflection with a 180" phase shift. 
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But when 
, i ( S p o - n + t d k s i n  P O )  = 1 , 

we have a singularity with R + 010 for 6' + 0. 

From physical reasons, we know that IRI < 1 and we can, therefore, expect R to 
have a minimum. This can also be shown by numerical calculations since the work 
involved in the analytical study of R(k) at this singularity is very tedious. 

From Eq. (9.4), we find 

Spo - n + 2dk sin po = 2nr ,  n = 0,1,2, .  . . , 

and with k = 2n/X 
(2n + l)r - Spa 

(d/X)n = 4x sin 

For these values the reflection coefficient will be very small, even very close to graz- 
ing. Figure 9-2 shows the reflection loss as a function of 0 and d/X for the layering 
used in the previous section. 

Using the above parameters at Eq. (9.5), we can then calculate the d/X values for 
which high losses are expected 

This yields 

One should note that the value of d/X = 0.49, close to 112, is a coincidence and 
that d/A values increase with increasing hardness of the lowest layer, with d/X 
approaching 0.8 for n = 0 in the case of a very hard layer. 

These high-loss d/X values are shown in Fig. 9-2 as arrows and agree very well with 
those calculated numerically from Eq. (9.1) at lo and 2" grazing. To indicate how 
the loss varies with grazing angles for different d/A values, Fig. 9-3 shows the losses 
for the same case with d/X = 0, 0.5, 2, and oo, the first and last corresponding 
to only the high-velocity half-space and a half-space with the characteristics of the 
upper layer. Note the extremely small angle for which a high loss is obtained for 
d / A  = 0.5. 

How can we explain these reflection loss anomalies for discrete d/A values? Let us 
look at the waves being reflected inside the first layer, as seen in Fig. 9-4. 
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d/ A 
Fig. 9-2. Reflection loss as a function of wavelength for 1" 
and 2" grazing angles. 

When 8 + 0, the local reflection coefficient rlo = 1 with a 0' phase shift, since we 
have a plane wave coming from medium 1 being reflected from the higher medium 
0, where po is in fact the critical angle. Writing the equation for conditions under 
which the wave fronts interfere constructively layer 1, we get 

(AB + BC)k + $1 + $2 = 2nn, 

where $1 and $2 are the phase shifts at the two interfaces. From the above, = 0 
and $2 = Spo - n,  AB + BC is easily expressed by d, and po as 

Spa + 2dk sin po - T = 2xn, 

which is exactly the same criterion for the singularities in the reflection coefficient. 

This means that we are dealing with the propagation of trapped modes in the top 
layer and their characteristic equation is Eq. (9.6).  With just a small amount of 
attenuation in the layer, it absorbs most of the incident energy and thereby creates 
a low reflection coefficient just close to grazing. In shallow water sound propagation, 
one can also show that these singular frequencies correspond to similar singularities 
in the frequency-dependent transmission loss. 
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GRAZING ANGLE (degrees) 

Fig. 9-3. Reflection loss as a function of grazing angle. 

B LAYER @ 

* Fig. 9-4. Wave path in the bottom layer. 

Figure 9-5 illustrates the relative sound speed and density measured on a core taken 
on the Italian continental shelf. Using these acoustic parameters with a water osund 
speed of 1500 m/s and the layer depth d = 3.7 m, we find from Eq. (9.5) that 
high losses near grazing are expected for f = 200 Hz, f = 1050 Hz, f = 1900 Hz, 
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f = 2700 Hz, which are within the frequency ranges for both active and passive 
sonar systems. 

r r I I I 1 
0 1 2 3 4 5 

CORE LENGTH (m) 

Fig. 9-5. Sea floor characteristics. 

As a further illustration, the transmission losses for iso-velocity conditions at a range 
of 35 km and for a water depth of 115 m with bottom characteristics corresponding 
to the above core have been calculated. Figure 9-6 very markedly shows the effect 
on shallow-water transmission. 
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m OF REFLECTIVITY 
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SOURCE DEPTH 50m 
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Fig. 9-6. Transmission loss as a function of frequency. 
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Density gradient 

Again turning to what can be observed in nature, one will notice that for unconsol- 
idated bottoms consisting of clay and silt, the analysis of cores can show a more or 
less constant wave velocit,y in the upper meters, whereas density clearly increases 
with depth. Let us look at one possible explanation for this. 

In Sect. 4, we were looking at the rather unusual case of bottom consisting of a 
mixture of gas bubbles, water and solid. We will now look at the very common case 
where there are no free gas bubbles present and we can treat the sediment as an 
ideal two-component mixture. The equations for the relative densit,y and velocity 
from Sect. 4 can be rewritten as 

and 

where n is the porosity. 

Using ~ a o l i d / ~ w a t e r  = 2-62 and B s o ~ i d / B w a t e r  = 0.0455, the values of ~ s e d i m e n t / ~ w a t e r  
and a s e d i m e n t / a w a t e r  have been calculated. Figure 10-1 shows the relative sound 
velocity and density for a two-component sediment as a function of porosity, with 
the velocity exhibiting a wide minimum around a porosity of about 75%, whereas 
the density increases linearly with decreasing porosity. 

Measurements on several thousand core samples indicate that our assumptions can 
be considered valid. We will frequently use this relationship between porosity, den- 
sity, and velocity, known as the Woods equation. In situ, values for porosity usually 
range from 35% for coarse sands to 65% for silts and 85% for clays, as discussed in 
Appendix C. 

Therefore, if we have a sediment with a porosity near 75%, a decrease in porosity 
with increasing depth would change the relative velocity very little. However, the 
density would increase with depth, thereby creating density gradient, as seen from 
Fig. 10-2, which is representative for several cores taken in the Alboran Abyssal 
Plain to the east of Gibraltar. 
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POROSITY 

Fig. 10-1. Relation between density/velocity 
and porosity. 

The relative velocity is ca. 0.975 and we have a type of intromission angle reflection, 
in this case, with a frequency-dependent reflection coefficient due to the clearly seen 
density gradient. 

To calculate the reflection coefficient, let us approximate the continuous density 
gradient with finite density steps, creating a layering system as seen in Fig. 10-3. 

Using the Airy formula for the reflection coefficient from the n-layer expressed by 
the local reflection coefficients, we have 

where r n P l  is the local reflection coefficient, depending on the density and wave 
velocity on each side of the n - 1 interface; R, is the reflection coefficient from 
all the layers below interface n,  Rn-l  the reflection coefficient for all layers below 
interface n - 1, and 4 the two-way phase shift equal for all layers. 
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Fig. 10-2. Example of relative density, wave velocity, and 
porosity. 

N LAYERS 
I 

at 1 
PP 

Fig. 10-3. Approximation of density gra- 
dient. 
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The formula can be used recursively but is not very convenient for our purpose. 
However, by selecting very thin layers and assuming that 1 > al and R,T,-~ << 1, 
we can as before use the much more convenient approximation: 

which physically means that we are ignoring multiple reflections. Starting the cal- 
culations at the lowest interface N ,  we get 

with 

Applying the formula for a sum for geometrical series, we obtain for the reflection 
coefficient 

ei@(p2 - pl) eiN@ - 1 
Ro = ro + + N (p2 + PI )  ei@ - 1 

and 4 = 2kld cos 8, with k being the wavenumber and 8 the angle of incidence equal 
for all the thin layers. Using Snell's Law, this reduces to 

which is real for all angles of incidence. 

Letting N -r oo and d + 0, the density profile will approach a linear one and, after 
some calculations, we arrive at the following expression for the reflection coefficient 
for a layer with a density gradient: 

P2 - P1 Ro = ro + 
40(pz + PI )  

(sin40 + i (1  - cos c$~)), 
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Fig. 10-4. Reflection loss in the presence of a density gradient. 

with 
L l ,  2 . 2  4o = 47r-- 1 I - a,  sln 80. 

Xo a1 
To see how the gradient affects the reflection coefficient, we will use the values from 
Fig. 10-2 which gives 

a1 = 0.975, pl = 1.4 and pl = 1.5. 

Figure 10-4 shows the reflection losses for selected angles of incidence and as function 
of dimensionless wavelength. 

The curves show the usual X/4 and X/2 oscillations, but being damped with increas- 
ing frequency, approaching an asymptotic loss value. The reason for this can be 
understood from the fact that, for long wavelengths/low frequencies, the gradient 
has little effect, whereas for shorter wavelengthslhigher frequencies only the water- 
sediment interface affect s the reflection coefficient. For comparison, Fig. 10-4 also 
shows the losses at 60' for the case with no gradient but with a single layer with a 
density of 1.4 and a half-space with a density of 1.5, showing the smoothing effect 
of the density gradient. 
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Examples of general layering 

When dealing with general multilayered bottoms, it is not possible analytically as 
in the past to study the behaviour of the reflection coefficient as a function of angle 
of incidence and frequency. Therefore, we will use the transfer matrix method as 
described in Sect. 6 to calculate numerically the reflection losses using three different 
bottom models with the acoustic parameters as given in Table 11.1, with AA and 
AB being the attenuation of compressional and shear waves. In Model C, the density 
and compressional wave velocity are related to porosity through the Woods equation. 

Table 11.1 
Bottom acoustic constants for three models 

Model a P A A AB P d Bottom 
(dJ31X) (dB/X) 

A 1.0 0 0 0 1.0 - water 
1.055 0.26 1.0 1.5 1.89 1.0 45% porosity 
1.13 0.40 1.5 2.5 2.05 - 35% porosity 

- - 

B 1.0 0 0 0 1 .O - water 
1.055 0.26 1.0 1.5 1.89 1.0 45% porosity 
1.13 0.40 1.5 2.5 2.05 1.5 35% porosity 
1.87 1.07 0.5 0.75 2.2 - limestone 

C 1.0 0 0 0 1.0 - water 
varying as function of porosity 1.0 

1.13 0.40 1.5 2.5 2.05 - 35% porosity 

To give an overall image of the reflection loss as a function of angle of incidence 
and frequency, the reflection loss isolines were plotted in the angle of incidence- 
dimensionless wavenumber plane. Let us look at the results from the individual 
models. 

Models A and B The reflection loss was calculated for three models, as given in 
Table 11.1. For Model A, the reflection loss was also calculated for cases without 
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shear waves or without attenuation. The results of the computations are shown in 
Figs. 11-1 to 11-4. 

Fig. 11-1. Reflection loss in dB as a function of the angle of incidence and the wavenumber - 
Model A. 

Several significant features are noticeable. One is the sytem of valleys and ridges 
originating at 0' incidence and being shifted toward higher frequencies with increas- 
ing angles. These low and high losses correspond, respectively, to half-wave and 
quarter-wave layer thicknesses. This means that the extremes will be determined by 
d cos 9 = mn/4. 
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A n g l e  of Inc idence 
10' 20' 30" 40' 50' 60. 70. 80' 90' 

Fig. 11-2. Reflection loss in dB as a function of the angle of incidence and the wavenumber - 
Model A,  no damping. 

At angles near the critical angle, the complexity increases and one often finds large 
losses in this region. After the critical angle in the top layer, the losses decrease 
quickly and show little frequency dependence. When comparing the losses for the 
case with and without shear waves, one will notice that the shape of the isoloss 
contours is very much the same, but generally with 1 to 2 dB lower losses in the 
absence of shear as one would expect. 

Comparing the losses with and without attenuation shows some interesting features. 
The isoloss contours get much more irregular due to the unmasked interference 
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Angle of Incidence 
10' 20' 30' 40' 50' 60' 70' 80' 90' 

Fig. 11-3. Reflection loss in dB as a function of the angle of incidence and the 
wavenumber - Model A, no shear. 

between the two types of waves. After the critical angle in the deepest layer, the 
effect of the shear waves is clearly seen when the effective thickness equals quarter- 
wavelengths. 

Model C In the section above, we looked at solid layers supporting shear waves. 
From the cores taken at the SACLANTCEN, it seems that the porosity of the upper 
layers of the deep sea bed is usually about 70 to 80%. It might, therefore, be of 
interest to see how a low velocity layer on top of a more consolidated sediment will 
affect the reflectivity. To obtain a general picture of the reflection loss, this has 
been calculated for a porosity equal to 80%, at which the sediment sound velocity is 
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Fig. 11-4, Reflection loss in dB as a function of the angle of incidence and the wavenumber - 
Model B. 

minimum. The resulting isoloss curves are shown in Fig. 11-5 and the usual system 
of ridges and valleys is noticeable. Two marked zones with very high losses are 
observed near grazing and correspond to an extension of the quarter-wave valleys. 
These are caused by the trapping of waves in the upper layer as already discussed 
in Sect. 9. 
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ANGLE OF INCIDENCE 

Fig. 11-5. Reflection loss in dB as a function of the angle of incidence and the 
wavenumber - Model C. 

Figure 11-6 shows the reflection loss as a function of frequency and porosity for 
angles of incidence of 0°,  60' and 80'. The 100% porosity case is included for 
completeness and corresponds to pure water. 
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Impulse response 

In the preceding section, we have described the bottom by its co~nplex reflection 
coefficient R(w) for a given angle of incidence as a function of frequency and treated 
it as a Linear and time invariant system. Another way to describe such a linear system 
is by the impulse response in the time domain defined as the reflected signal for an 
incident delta function 6(t). For the delta function, also called the Dirac pulse, there 
exists the Fourier pair S ( t ) (  . .)I. The impulse response h ( t )  is, therefore, determined 
by the well known Fourier integral 

In the case of a single half-space as reflector, the reflection coefficient can be writ ten 
as follows 

Aoeieo w > 0; R(w) = Aoe-ieo 
w < 0; 

or, using the signum function sgnw, as 

R ( ~ )  = ~ ~ ~ ~ @ ~ ~ g n ~  - - A. (cos 60 + i sin 60 sgnw ) 

which inserted in Eq. (12.1) gives 

eiwt dw + sin Bo - i sgnweiwt dw I 
F!rom the Fourier pairs, 

and 

we obtain 

l / n t ( -  . .) - i sgnw 

sin Bo 
h(t) = A. C O S ~ ~ ~ ( ~ )  - Ao- 

n t 
which is shown in Fig. 12-1. 

If there is no damping present, 6 will be zero for angles of incidence less than the 
critical angle; hence, the impulse response is represented by the delta pulse at zero 
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Fig. 12-1. Impulse response for a half-space model. 

time. Only after the critical angle will there exist a phase shift causing the hyperbolic 
term in the impulse response. 

In the case of a general multilayered bottom, R ( w )  is so complicated that the Fourier 
integral has to be calculated numerically. This means that it is necessary to truncate 
the integral at a frequency high enough for the remainder to be ignored. But for 
w  oo, there still exists a finite reflection loss, so any termination of the integral 
will cause a serious truncation error. To avoid this difficulty we remove from the 
reflection coefficient function the asymptotic value that corresponds to the case 
where the upper layer is acting as a half-space reflector 

where T ( w )  -+ 0 for w  -+ oo. 

Thus, the impulse response can be written as 
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where Re[. .] and Irn[ . .] are, respectively, the real and imaginary parts. The last 
integral can now be calculated by truncating at wo, such that T(w) << 1. In the 
case where no damping is present this procedure will not work, since T(w) will keep 
oscillating even for w -+ oo and it will be necessary to use a proper frequency window 
such as discussed later in Sect. 14. 

If one is considering the situation where the angle of incidence is sufficiently small, 
such that no critical angle will occur in a layered bottom, the impulse response can 
be obtained in the following way. Using the formula for the reflection coefficient for 
a two-layer model obtained as a sum of single reflections as given in Sect. 8, we have 

R(w) = Y o 1  + tolrl2tloe -2ikl  d l  coa O1 -4ikl  dl cos O1 + . . + tol~l2~lot loe 

where 2kl dl cos O1 = (2 dl cos O1/al)w is the phase shift in the layer. 

The Fourier inversion can now be made on each term. Using the following pairs 

with 

the impulse response becomes: 

which is a sequence of delta pulses separated from each other by the travel time 
2 dl cos 6'1 /al ,  a result one would expect. 

At this point it is also possible to get an idea of the influence of the attenuation on 
a separate pulse by introducing the complex wavenumber kt = k( l  - if). The phase 
shift now becomes 

,-2ik; d l  cos O1 = e-2ikl  d l  cos Ole-2kledl  cos O1 - - e- i (2  d l  cos Ol/al)w e -(2 dl  coa O1c/al)IwI 

The Fourier transform is then carried out by the use of the pairs 
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resulting in, for example for the second pulse, the following form 

In this case it is not a delta pulse, but a smaller, 'gaussian-looking' pulse that is 
obtained; thus, increased attenuation will decrease the peak amplitude but widen 
the pulse. Had the attenuation in the water been taken into account, the reflection 
from the first interface would not have been a perfect delta pulse but a finite pulse 
like the reflection from the second interface. 

To illustrate the technique, the impulse response has been calculated for the same 
three-layer model (B) ,  used in Sect. 11, for 0°, 40°, 60" and 80" angles of incidence. 
The results are shown in Figs. 12-2 to 12-5. 

Fig. 12-2. Impulse response for a three-layer model, 0" angle of 
incidence. 

Looking, for example, at Fig. 12-3, we notice the following reflections: first, the 
delta pulse and the hyperbolic term from the surface, then the gaussian-looking 
pulse from the second interface. Because the critical angle for the half-space is 
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Fig. 12-3. Impulse response for a three-layer model, 40" angle of incidence. 

Fig. 12-4. Impulse response for a three-layer model, 60" angle 
of incidence. 
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Fig. 12-5. Impulse response for a three-layer model, 80" angle 
of incidence. 

32.3", the reflection from the third interface will involve phase shift, which gives the 
pulse from this layer an inverted look. The next pulse to be seen on the figure occurs 
at t z 4.9 and is caused by the reflection of the previous pulse from the first and 
second interfaces before leaving this layer through the first interface. The pulse will 
have the same polarity as the incident because of an additional reflection from the 
first interface separating a higher impedance from a lower impedance. The following 
pulses are difficult to trace exactly due to the repeated influence on the phase shift. 

The impulse response is a very useful way of describing the reflectivity and often is 
much easier to comprehend than the complex reflection coefficient when trying to 
deduct the characteristics of the bottom layering. 
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Periodic layers 

Analysis of hundreds of sediment cores taken from both the Atlantic and the Mediter- 
ranean shows that two distinct types of deep sea sediment are found. One consists 
of rather homogeneous clay, which has been deposited slowly and continuously (so- 
called pelagic sediments). The other consists of layers of clay mixed with sand or 
silt deposited suddenly by turbidity currents. Turbidity sedimentation is a frequent 
type in the Mediterranean and in the Atlantic. An inspection of the core sections 
very often indicates a clearly marked systematic change between clay and sand, giv- 
ing certain parts of the core a periodic structure. It is of interest to study these 
conditions in more detail, since we shall see that periodic layers of quarter-wave 
thickness are one of the few cases where very high reflectivity exists over a finite 
frequency hand. 

Let us start by rewriting the transfer matrix A for liquid layers to a form more 
convenient for our purpose. From Sect. 8, we have 

cos PI, iam(pmc2) -1  sin Pm 
( w Q / c )  = (ipmc2a;,l sin cos Pm ) ( w Q / c )  m-1 

which by the use of the values for c an a can he written as 

cos Pm i Z i l  sin P,,, ) (:) ( ) = ( i  sin P cos P.. m-1 

or S,, = AmS ,,,- 1 with 
P m a m  Zm = - 
COS em 

being the impedance for the m layer. It is easy to prove that the determinant of 
this matrix is equal to unity, a fact due to the assumption of no attenuation in the 
medium. 

By relating the boundary condition vector for the lower half-space interface and the 
layer-water interface through the new A matrices and by introducing Z, = - a , / w ,  
and Zo = -uo /wo  as the inlpedance for the lower half-space and the total layering, 
respectively, we get after some calculations 
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which expresses the reflection coefficient R by the half-space and water impedances 
and by the coefficients ai, for the layering (excluding half-space) product matrix A. 

Consider now a bottom built up of a succession of homogeneous sand and clay layers 
with markedly different acoustic parameters causing an alternation between higher 
and lower impedances. There will, therefore, be two types of matrices, A1 and Az, 
one corresponding to sand and one to clay. The product matrix for such a double 
layer is 

cos Pl cos P2 - (Z2/Z1) sin PI sin Pz i (Zzl  cos PI sin Pl + 2;' cos Pz sin Pl ) 
i(Z1 cos P2 sin PI + Zz cos PI sin P2) cos Pl cos P2 - (Z1 /Z2) sin Pl sin P2 

which is the transfer matrix for a single period ( a  double layer) in the layering. 

The transfer matrix for N equal double layers is then 
- - - -  E = mmmm . . . m N times 

Since A is unity, the elements in a can be expressed explicitly by the use of Chebyshev 
polynomials in the following way: 

where UN(x) is the Chebyshev polynomial of second kind and Nth degree. The 
argument x is half of A's trace and equal to 

The first polynomials are U(x) = 1, U(x) = 2x, and the higher orders can be com- 
puted from the recurrence formula 

In the case where the acoustic thickness of the two layers is identical (which corre- 
sponds to equal phase shifts) Pl = P2 = P and m reduces to 

cos2 P - (Zz /Z1 ) sin2 P l ( Z c l  + 2,' ) cos P sin P 
i(Z1 + Z2) cos P sin P cos2 P - (Z1 122) sin2 P 

When P = 1712 (which is the case when the thickness of the simple layer equals a 
quarter-wavelength), m reduces further to the simple and symmetrical form 
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and 

The reflection coefficient, according to Eq. (13.1), is then 

This is valid only at a frequency corresponding to the quarter-wave criterion in the 
original layers. 

The analytical evaluation of R when the phase shift P is not equal to 7r/2 leads to 
rather complicated expressions. The following cases have, therefore, been computed 
numerically and the results given in graphical form using asand = 1.05; a,lay = 0.95; 
psand = 1.8 and p,la, = 1.4. 

Figure 13-1 shows the vertical losses for N = 1,2,3,4,6,9 and 0 5 P 5 a with 
PI = Pz = P. 

Fig. 13-1. Reflection loss (dB) as a function of phase shift for different 

dB 

numbers of layers. 

L W  
PHASE SHIFT IN LAYER 

1 & I 

To avoid confusion between the different curves, only the high reflection zone has 
been plotted at the highest values of N. We find a very characteristic, almost 

0 ui4 r/2 3n/4 K 
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frequency-independent, low loss around P = 7r/2. Outside this region the losses are 
much higher and oscillate, with the number of oscillations increasing with N. 

When using th  condition of periodicity, it can be shown that when N + oo, one can 
find a finite interval around P = a/2 with zero loss and that the width of this high- 
reflectance is twice the arcsine of the local reflection coefficient r = (zl - 2 2  )/(zl + t.2 ) 
between two single layers. 

The influence on the angle of incidence is investigated for the case N = 3 and with 
the single layers matched in phase for vertical incidence. The results are given in 
Fig. 13-2. Apart from an expected shift of the high-reflectance zone towards higher 
frequencies, we notice that both the width of the zone and the reflectivity increase 
with an increasing angle of incidence. 

Fig. 13-2. Reflection loss (dB) for N = 3 as a function of phase shift for different 
- angles of incidence. 

Until now we have only considered single layers of equal acoustic thickness (same 
phase shift in both layers), a criterion that quite often is not exactly met in nature. 
We shall now study the effect of three double layers that are similar but not exactly 
matched. Figure 13-3 shows the minimum loss for the first high-reflectance zone as 
a function of the ratio between acoustical thicknesses. 

Report no. changed (Mar 2006): SR-115-UU



Fig. 13-3. Minimum reflection loss (dB) for N = 3 as a function of 
different ratios of acoustic thickness. (Thickness of double layer = X/2.) 

dl 
1 

- 
2 3 4 5 6 7 8  d l  

From the figure we notice a very important factor: even in the case of unmatched 
layers, high-reflectance zones exist when the thickness of the total double layer is 
equal to a half-wavelength. We can, therefore, perhaps conclude that, where a 
periodicity is found in the sub-bottom layering, low-loss frequency bands should be 
found by, for example, the use of broadband signals such at those from explosive 
sources. 

0 -  

- 

One of the several areas where SACLANTCEN has made bottom reflectivity mea- 
surements is in the Tyrrhenian Abyssal Plain southwest of Naples. Figure 13-4 shows 
the reflection losses as a function of frequency and angle of incidence. The losses 
are strongly oscillating except within a very marked band ca. 300 Hz wide where 
the losses are almost constant and in the order of 2-3 dB. The center frequency is 
about 1500 Hz at 18.3' angle of incidence. Correcting this to vertical incidence by 
cos 18.3", we get f =I430 Hz. 

I 

Thus, it looks very much as if we were dealing with a system of periodic layers and 
an inspection of seven bottom cores taken within the reflecting area shows a marked 
layering. Analyzing the density, we obtain an average wavelength corresponding 
to a double layer on the order of 54 cm with a standard deviation of 10 cm. We 
should, therefore, expect a high-reflectance zone corresponding to a wavelength of 

4- 

- 
6 -  

dB 

N=3 

Min. Loss 
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Fig. 13-4. Reflection loss as a function of frequency for different angles of 
incidence. 

108 cm (54 x 2),  which again corresponds to a frequency f =1560/108=1450 Hz, an 
excellent agreement. 

Such periodic structures play an important role in other fields of wave propagation. 
One example is the use of different coatings of optical devices, either to reduce or 
enhance reflectivity; another, the Bragg reflections of X-rays used in crystallographic 
research. 
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Measurement of  bo t tom reflectivity 

The experimental determination of the reflection coefficient is not always a simple 
matter and many different techniques have been applied with varying results. The 
problem divides itself into two parts: one concerning the experimental set-up and 
the other concerning the analysis of the experimental data. 

In the past some of the techniques used have been standing spherical wave inter- 
ference methods or correlation techniques with random noise. However, they are 
not really practical in the true ocean with water depths up to several thousands of 
metres. The technique we will discuss in detail uses explosive sources and digital 
processing. 

14.1. EXPERIMENTAL DETERMINATION O F  THE REFLECTION COEFFI- 
CIENT 

To measure the reflection coefficient over a wide frequency band and for angles of 
incidence from vertical to close to grazing, the following technique has been used by 
the SACLANTCEN during the past 20 years. 

A receiving ship suspends a 750-m vertical hydrophone string, while a source ship 
moves on a predetermined fixed course, launching explosive charges (500 to 1000 g 
TNT) set to explode at a depth of about 500 m. The launching schedule is arranged 
so that bottom grazing angles between 5O and close to 90' are covered. 

The direct and reflected acoustic signals are received by the hydrophones in the string 
and recorded, in digital form, along with a radio pulse that is transmitted from the 
source ship at the moment of reception of the direct acoustic pulse. Acoustic travel 
times are computed from the radio signal, and in connection with radar observations, 
used to determine the trial geometry. Figure 14-1 shows the experimental set-up. 

For each station occupied by the receiving ship, the following supporting environ- 
mental measurements are made: 

(a)  Bathymetry along source ship track. 

(b) Sound-speed profiles. 

(c) Core samples. 
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DlRECT PATH 

Fig. 14-1. Experimental set-up. 

(d) Bottom stereo photographs. 

14.2. REFLECTION-LOSS CALCULATIONS 

Since the reflection coefficient at a layered bottom is frequency dependent, simple 
and direct calculations cannot be made and one has to use Fourier analysis tech- 
niques. Let d(t) and r ( t )  be the incident and reflected pulse close to the bottom, as 
seen in Fig. 14-2. 

GRAZING ANGLE q 

Fig. 14-2. Ray geometry. 

The frequency-dependent reflection coefficient H(w) is then obtained by deconvolv- 
ing the reflected spectrum by the incident spectrum as 
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where R and D are the Fourier transforms of r ( t )  and d(t), as 

R(w) = / r ( t ) e - ' ~ ~  dt, 

The reflection loss is then defmed as L = -20 log I H I dB. The impulse response h(t)  
is then determined as discussed previously as the inverse Fourier transform of H(w) 

h(t) = 1/27r / ~ ( w ) e ' ~ '  dw. 

In the experiment, the direct and reflected pulses were not measured near the bottom 
but instead measured in the water column after they had both been attenuated 
along their propagation paths. The attenuation is the combined spreading loss and 
the frequency-dependent absorption and is determined by ray tracing based on the 
measured sound-speed profiles. 

Nominating the difference transmission loss in the water for a perfect reflecting 
boundary as 

A = TLref - TLdirect , 
the bottom loss is BL = -20log R1(w)/D'(w) - A(w) where Rf(w) and D1(w) cor- 
respond to the Fourier transforms of the reflected and direct path of the received 
signal, for which an example is given in Fig. 14-3, along with their respective am- 
plitude spectra. By dividing the Fourier transform of the reflected signal by the 
Fourier transform of the direct signal, the uncorrected reflection loss is obtained 
as shown on Fig. 14-4. The impulse response is then calculated from the lowpass 
filtered deconvolved signal. The result is also shown on Fig. 14-4 with the noisy 
nonfiltered impulse response. 

Using the same hydrophones and recording channels for both the direct and reflected 
signals makes this technique self-calibrating, and the use of several hydrophones at 
different depths gives t,he capability to separate as many as possible of the received 
pulses at low grazing angles, down to a few degrees. Henceforth, we will use the 
grazing angle instead of the angle of incidence when presenting results, a practice 
common in AS W. 

Figure 14-5 shows an example of the measured frequency-dependent losses at low 
and high grazing angles on a flat and smooth bottom. At high grazing angles, one 
notices the interference pattern caused by reflections from the different layers. Also, 
it should be noted that the lowest losses occur at higher frequencies because the 
reflection from shallow and thin layers is the most dominant. At low grazing angles, 
the picture changes to an almost perfect reflection of the lowest frequencies, due 
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Fig. 14-5. Examples of the measured frequency-dependent reflection loss at high (a) and 
low (b) grazing angles. 

Report no. changed (Mar 2006): SR-115-UU



A F R I C A  

1 0' 
Fig. 14-6. Positions of acoustic runs. 

silt and sand deposits transported by turbidity currents, probably originated by the 
steep Algerian continental slope. These turbidity are also very evident from the 
impulse responses shown on Fig. 14-7. 

The reflection losses, as seen in Figs. 14-8 and 14-9, show a clear critical angle 
situation for low frequencies, as we would expect from the existence of the high 
sound-speed sand layer observed in the core. No evidence is seen of high loss due 
to an intromission angle. Only the first reflection from the waterlsediment interface 
indicates an intromission angle seen from the 180" phase shift of the pulse at 13.5' 
grazing angle. This value corresponds to a sound-speed contrast of 0.98 and a density 
contrast of 1.4; such values are typical of unconsolidated sediments and were also 
observed during the subsequent runs over a flat bottom. 

Very marked reflections occur from layers A, B and C situated at depths of 5 m,  
12.5 m and 34 m. As the grazing angle diminishes, the pulse is critically reflected 
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Fig. 1 !4-7a. Impulse response for Station 1. 
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Fig. 14-7b. Detailed display of the first 20 ms of impulse response for Station 1. 

Report no. changed (Mar 2006): SR-115-UU



Fig. 14-8. Isoloss contours (dB) us grazing angle and frequency for Station 1.  

from these layers, forming high-amplitude phase-distorted pulses that dominate the 
impulse response at small angles. Note also a possible deep-refracted arrival showing 
at 33' grazing caused by the velocity gradient in the sub-bottom. 

Run 2: Pantelleria Basin This acoustic run was conducted in the Pantelleria Basin, 
situated southeast of the Island of Pantelleria. The basin is approximately 90 km 
long and 30 km wide with a water depth of about 1300 m. A core (about 7 m)  was 

- taken in the area of position 2 as shown in Fig. 14-6. It consisted of soft unconsoli- 
dated sediments with three layers of siltlsand-type turbidity sequences. 

The impulse response seen in Fig. 14-10 clearly shows that we are dealing with 
a bottom consisting mainly of soft, unconsolidated sediments with very few hard 
layers. Only the layer A,  which corresponds to a depth of about 30 m, is apparently 
hard enough to have a critical angle. 
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Fig. 14-9. Bottom reflection loss us grazing angle for Station 1. 
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Fig. 14-10s. Impulse response for Station 2. 
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Fig. 14-lob. Detailed display of the first 20 Ins of impulse response for Station 2. 
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Fig 14-11. Isoloss c o ~ ~ t o u r s  (dB)  us grazing angle a11d frequency for Station 2. 

This is also seen from the loss plots on Figs. 14-11 and 14-12, where a critical angle of 
about 10" is seen for frequencies of 100 to 200 Hz and a clearly marked intromission 
angle occurs for the highest frequencies, with losses of up to more than 20 dB. This 
means that this area is not suitable for the use of hull-mounted bottom-bounce 
sonars. 

Run 3: Mediterranean Ridge The Mediterranean Ridge is the dominant physio- 
graphic feature of the eastern Mediterranean. It extends from the Italian continental 
rise between Crete and Libya to Cyprus and is bordered by deep basins to the north 
and south. Its length is approximately 1800 km and its width varies from 75 to 
200 km. The water depth at the run is approximately 2300 m, and the topography 
in general is very rough with many hills and depressions reaching about 10 to 50 m 
in height and 1 km or more in wavelength. 
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Fig. 14-12. Bottom reflection loss us grazing angle for Station 2. ' 
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This type of structure gives overlapping, hyperbola-type bottom profiles of the 
seafloor on the normal echo-sounding recordings. These are also clearly observable 
from the impulse response, shown in Fig. 14-13. The pulses obtained were of the 
chaotic type because the Fresnel (reflecting) zone moves along the bottom showing 
marked focusing and defocusing effects for all frequencies. This is also noticeable 
from the loss contours, shown in Fig. 14-14, where a strong focusing is observed for 
grazing angles around 25" (see also Fig. 14-15). 

u 

FREOUENCY I KHz  I 

Fig 14-14. Isoloss contours (dB) vs grazing angle and frequency for Station 3. 
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Fig. 14-15. Bottom reflection loss as grazing angle for Station 3. 
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14.4. SUMMARY 
Summarizing from the above and other measurements, we can conclude that areas 
with high-porosity, unconsolidated sediments (run 2) in general have an intromis- 
sion angle at high frequencies and a critical angle at low frequencies, whereas areas 
with turbidity sediments (run 1) show a critical angle situation for all used frequen- 
cies. Even though the bottom material for run 3 creates a critical angle situation, 
the roughness of the bottom plays the major role in the reflectivity characteristics, 
showing marked focusing and defocusing effects for all frequencies. 
To give an idea of how the reflection losses vary over an area such as the Mediter- 
ranean Sea, the results from 30 acoustic runs are shown in Figs. 14-16 and 14-17, 
again clearly showing a marked critical angle around a 20" grazing angle. For the 
higher frequencies, the situation is more mixed with some of the areas showing an 
intromission angle case and others - even for these frequencies - showing a critical 
angle. 

Angle of incidence 

Fig. 14-16. Reflection loss for all runs. 

The losses for all runs are seen on Fig. 14-18 which represents some 6000 data points. 
From this, one will notice that the bottom in the Mediterranean basins is a rather 
good reflector with losses generally less than 10 dB, even for vertical incidence. 
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Fig. 14-1 7. Reflection loss for all runs. 
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Fig. 14-18. Reflection loss for all frequencies and runs. 
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Data  analysis methods 

In the previous section we studied techniques to measure the reflection coefficient as a 
function of frequency for selected angles of incidence in a general way. Unfortunately, 
this type of representation is often too bulky for certain purposes and one searches 
for something as an answer to the question: what is the reflection coefficient for this 
bottom within something like 20" from grazing? 

Several analysis and reporting techniques exist. We will look more in detail for 
a comparison between the following categories, which have been listed in a rather 
arbitrary manner: 

Complete transfer function. 

Narrowband losses, long CW pulses. 

Total energy, bandpass filtered. 

Peak amplitude, broadband. 

Peak amplitude, bandpass filtered. 

Peak amplitude, bandpass filtered and time averaged (sonar simulator). 

To choose an exact and unbiased example by which to compare the results of using 
the different methods of analysis, a large number of deep sea cores taken in the 
North Atlantic were inspected in order to choose one whose structure seemed to 
be characteristic in layering, sound velocity and density. To compute the reflection 
coefficient, the relative sound velocity and density curves were approximated by step 
functions that converted the bottom into a 19-layer model. The results are shown 
in Fig. 15-1, which also shows the original measurement of sound velocity in the 
sediment. 
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Fig. 15-1. Relative sound velocity ar.d relative density profiles 
(Indices s and w refer to sediment and water.) 

30" Grazing Angle 

Fig. 15-2. Reflection loss and phase shift for 30' grazing. 
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Reflection Loss 

Fig. 15-3. Reflection loss contours. 

15.1. C O M P L E T E  TRANSFER FUNCTION 

The calculations for the model are done using the previously described transfer ma- 
trix technique. An example of how the reflection loss and the phase shift appear for 
a 30" grazing angle is given in Fig. 15-2. As expected and observed from experimen- 
tal data, the reflection coefficient is a strongly oscillating function with up to about 
30 dB between maximum and minimum, whereas the phase shift behaves in a less 
complicated way. 
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To represent the reflection loss as a function of both frequency and angle, the con- 
tours for equal loss have been plotted in Fig. 15-3. This type of display represents 
the full informatin on reflection losses, corresponding to specular reflections and 
pure frequencies. 

From Fig. 15-3, it is very clear that it is meaningless to characterize the reflec- 
tion coefficient by a single number without at least specifying frequency and angle 
interval. 

Bottom-bounce sonars often use long CW pulses, corresponding to a very narrow 
frequency band. The bot tom losses are easily obtained from Fig. 15-3 by cuts in the 
surface for constant frequency. Figure 15-4 shows the losses for a 3.5 kHz, 500 ms 
long, CW pulse. 

Grazlno Angle 
v v  80- m no' sa r r  3 4  20' 10- r 

- 1 5  kHz 500 rns CW 
I S  kHz r.5'effective beam w ~ d t h  

5 - 

dB 

Fig. 15-4. 3 .5 kHz narrowband reflection losses. 

Large fluctuations can be noticed, especially near the marked intromission angle 
caused by the presence of several low-velocity sediment layers. 
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An actual sonar insonifies a finite area on the bottom, but for a flat, smooth bottom 
the active reflecting area is determined approximately by the size of the first Fresnel 
zone. This and the movement of the transducer means we have to average the losses 
over a finite angle interval. In Fig. 15-4, the reflection losses for a 4.5" effective 
beamwidth are also drawn. Note that, even after smoothing, large variations in the 
losses can be observed. 

15.2. T O T A L  ENERGY METHOD 

One of the most frequently used analysis methods is to measure reflected energy in 
different bandpass filters - normally octave or 113-octave filters. The computation 
for the losses to be found by this method is rather simple since we only have to 
integrate the transfer function in the frequency domain using the appropriate filter 
window. 

Figure 15-5 shows the results when using a 3.5 kHz centre frequency for computing 
the losses for octave and 113-octave filters. Note how the octave filtering now alnlost 
masks the intronlission angle, whereas this feature is clearly recognizable for the 113- 
octave filters. As a reference, the pure 3.5 kHz losses are also shown by a dotted 
line. 

15.3. PEAK AMPLITUDE METHODS 

One popular method to calculate the reflect.ion coefficient has been to use the ratio 
between the peak amplitude of the reflected and incident pulses. To investigate the 
effect of this procedure, we will use the i~npulse response obtained from the layering 
in Fig. 15-1. Figure 15-6 shows the response calculated for a sequence of angles. 
Also shown is the vertical layer impedance scaled to travel time. Note the 180' 
phase shift for the first reflection at an angle near 19" due to the intromission angle 
for the upper layer. The compression in time with decreasing grazing angle due to 
the change in the vertical wavenumber is also clearly shown. 

If we are dealing with a single reflector, it would be correct to measure the reflection 
coefficient from the broadband peak values due to the frequency independence. The 
broadband losses are seen in Fig. 15-7, where the largest peak has been used. 

Usually, however, as in our case, the reflection coefficient is frequency-dependent, 
and filtered peak values are used for the loss computations. Figure 15-8 displays 
the bandpass-filtered impuse responses using a gaussian 113-octave filter centered 
around 3.5 kHz. The reflection loss is computed from the peak values. 

The result has been added to Fig. 15-7. Cont,rary to the broadband data, the filtered 
data again show the intromission angle and, by a co~nparison between these data 
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Fig. 15-5. Octave and 113-octave reflection losses. 
(Centre frequency: 3.5 kHz.) 

and the energy data from Fig. 15-5, we see that the peak amplitude method, as 
expected, usually yields much higher losses. 

15.4. SONAR SIMULATOR M E T H O D  

Some sonars process their data by using reflected energy averaged over a certain 
time window. For this reason, losses are determined in a similar way using a so- 
called sonar simulator, an analog device consisting of a bandpass filter, a half-wave 
rectifier and a lowpass filter. Losses thus obtained can be computed from the impulse 
response, but due to the nonlinear characteristics of the rectifier, the numerical 
compuation has been done in several steps. 

For the computations, gaussian filters were used with 113-octave bandwidths cen- 
tered around 3.5 kHz and a time constant of 7-8 ms. The result is shown in Fig. 15-9, 
which for comparison also contains the results from the other applied methods. From 
this figure, we can conclude that, except for a small angle interval, the loss curves 
obtained in different ways show considerable divergence, in some cases more than 
10 dB. In this particular example, the methods using averaged and total energy yield 
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Fig. 15-6. Bottom impulse response and layer 
impedance. 

almost identical resutls at when deeper interfaces are the important reflectors, one 
might expect differences in results between the two methods. 
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Fig. 15-7. Peak amplitude reflection losses. 

Grazing Angle 
o ~ 8 U 7 W 6 U X ) ' u Z # ~ ~ ~  

From the above, we can conclude that only the complete transfer function gives the 
correct solution for both short and long pulses. However, for practical purposes, 
the use of total energy filtered in 113-octave bands seems to be a good compromise 
between ease of computation and the reporting of a reasonable amount of resulting 
data. 
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Fig. 15-8. 113-octave reflection response and 
layer impedance. 

Report no. changed (Mar 2006): SR-115-UU



Graz~ng Angle 

. * : : 
8 .  

i i 

Fig. 15-9. Sonar simulator reflection losses. 
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Prediction of reflectivity 

We have looked at the theory and the measurement of bottom reflectivity; how- 
ever, our key objective is to establish to what extent the bottom reflectivity can 
be predicted from knowledge of the acoustical parameters of the bottom. For this 
purpose, a well controlled experiment was performed in the Naples Abyssal Plain in 
the Tyrrhenian Sea at the position shown in Fig. 16-1. 

Fig. 16-1. Position of Tyrrhenian Abyssal Plain. 

At this location, the water depth is 3600 m and the bottom consists of a large 
number of continuous clay and sand layers deposited by turbidity currents, thereby 
serving as a model for a multilayered deep-sea bottom. 
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The measurements were made using the technique described in Sect. 14 except that 
the receiving hydrophone was kept suspended 150 m above the bottom in order 
for the layering to be as constant as possible over the isonified part of the bottom. 
The explosive charges consisted of 500 g TNT with a depth setting of 550 m which 
creates a bubble pulse period of 10 ms. 

Figure 16-2 gives a detailed display of the first 27 ms of both the direct and reflected 
pulses, showing the characteristic compression fo the signals as the angle of incidence 
changes from vertical incidence to grazing. Note also the intromission angle at about 
77' for the reflection from the water interface. This situation was dealt with in detail 
in Sect. 4 and the reflection losses illustrated in Fig. 4-2. 

-- - -  .-A- ". 
0 5 I0 IS 20 2 s m  0 5 I0 1: 20 2 5  m s  

Fig. 16-2. Signal shape as a function of angle of incidence. 

An inspection of the signals closest to vertical incidence showed that the major part 
of the reflection happened within the first 55 ms, and this value was, therefore, used 
for the truncation of the signals. 

Figures 16-3 and 16-4 show examples of the reflection loss and phase shift for 24.4' 
and 73.9' angles of incidence in the frequency interval 20-5000 Hz. As predicted 
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Fig. 16-3. Reflection loss and phase shift for 24.4'. 
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Fig. 16-4. Reflection loss and phase shift for 73.9". 
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from the theoretical calcualtions, the loss is a strongly oscillating function with up 
to 30 dB between the maximum and minimum loss. 

The phase shift, on the other hand, shows a rather linear frequency dependence, 
indicating a time delay probably due to reflections from a major reflector. At the 
higher angles, there is a noticeable smoothing of the loss curve due to the shallower 
penetration. 

Figure 16-5, which shows the losses for a 62' angle of incidence with, respectively, 
31 ms and 95 ms integration times, illustrates the effect of signal length on the shape 
of the loss curve. As expected, the curve corresponding to 95 ms gives less loss for 
the lower frequencies and also shows faster oscillations due to the greater effective 
layer thickness. 

QS 1 U 2 2 3  3 kHz 
I 

Fig. ?-5. Effect of integration length on shape of loss curves for 62". 

Although the picture looks confused, the losses are found to behave in a very sys- 
tematic way if the angle is taken into consideration. Figure 16-6 displays the losses 
at different angles of incidence as a function of frequency. We see that the rnaxima 
and minima are not randomly distributed but follow a well defined trend with the 
expected shift towards higher frequencies with an increasing angle of incidence. For 
a better absolute determination of the losses as a function of frequency and angle, 
the data have been used to construct a map (shown in Fig. 16-7) giving the reflec- 
tivity as isoloss contours for 5, 10, 15 and 20 dB. This picture clearly shows that 
the reflectiviy cannot be described by a single parameter without the specification 
of angle and frequency. A strongly reflecting region is found around 18" incidence 
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Fig. 16-6. Loss display for different angles of incidence and frequencies. 

and 1500 Hz, with minimum losses of about only 2 dB, and is caused by periodic 
layering, a subject studied in detail in Sect. 13. 

The impulse response being the inverse Fourier transfor~n of the complex reflection 
coefficient has been calculated using a gaussian filter in order to avoid artificial over- 
shoots and the result is seen in Fig. 16-8. One willnotice a strong reflection occurring 
for 18' at 14 ms which for vertical incidence is equal to a dept.h of approximately 
10 m ,  in fact at the depth where most of the bottom cores taken stopped confirming 
the presence of a hard layer. 

So at this stage we have a pretty good description of the bottom reflectivity. Let us 
now look at the actual bottom layering obtained from cores and echo soundings. 

A total of six cores were taken along the isonified area and an inspection of them 
indicates that the layers are sloping down t,owards the west; therefore, four charac- 
teristic depths A, B, C and D were chosen to correspond to marked changes in the 
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Fig. 16-7. Reflection loss contours in the angle frequency plane. 
(black contours: 5 dB; green contours: 10 dB; red contours: 15 dB; black areas: 
over 20 dB.) 

layering. The depths are indicated in Fig. 16-9, which gives the acoustic paralneters 
for the core taken only 1000 m from the reflecting area. 

Using these four characteristics from t,he six close cores, a multiple regression analysis 
was used t,o correct the layer depths to obtain the depths at th center of the isonified 
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Fig. 16-8. Impulse response for different angles of incidence. 

area and the geoacoustical model, also indicated on Fig. 16-9. The results, corrected 
for the sloping of the layers and the estimated values of shear wave velocity and 
attenuation, are given in Table 16. 
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Fig. 16-9. Core parameters. 

Based on the parameters for this model, computations are made to yield both the re- 
flection loss and impulse response for angles of incidence of 0,18, 36,54 and 72" using 
the techniques discussed in previous sections. The results are shown on Figs. 16-10 
and 16-11. 

We see that the two reflection loss curves are very similar except of the lack of 
the high-frequency components and higher losses (about 2-3 dB) for the theoretical 
curve, due to the Limited depth for which the computations are made. Also the 
characteristic low-loss intervals can easily be followed over the angles. 

The theoretical impulse responses are computed using a gaussian filter to enable a 
comparison with the experimental data. Within the first part of the signal (where 
we are representing the bottom with our model), we see that, considering the com- 
plicated sub-bot tom structure, there is a good agreement between the two groups 
of curves, both with respect to time and amplitude and over all angles. Some peaks 
differ in magnitude, which is not surprising, considering that the velocity had to be 
estimated for some parts of the sand layers where the velocity is very difficult to 
measure. 
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Table 16 
Bottom acoustic constants for a 35-layer model 

a p A A ~  AB' P Thickness 

- -- - 

Attenuations in dB per wavelength. 
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Fig. 16-10. Theoretical and experimental losses. 

Only for 72" does there seem to be some disagreement with respect to the first pulse. 
An inspection of the core data shows that this is probably due to a change in density 
a few centimeters below the bottom, a change that does not seem to correlate with 
either the velocity function or the layering. The upper right portion of Fig. 16-11 
also shows the first pulse computed by ignoring this change. One now observes a 
better agreement between the curves for all angles of incidence. 

Therefore, we can conclude that a comparison between the measured losses and 
impulse responses and the similar quantities computed from a 35-layer model based 
on actual core data shows good agreement over different angles of incidence with 
respect to frequency, time and amplitude. 
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Fig. 16-1 1 .  Theoretical and experimental impulse response. 
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Appendix A 
IBM-PC routines for reflectivity calculations 

Several computer models have been developed for calculating the complex reflection 
coefficient for a general multilayered bottom. Unfortunately, the more complete 
models run only on large mainframe computers and the existing models available for 
microcomputers are usually too simple for serious studies. For certain applications 
such as on board ships and aircraft and in research environments where access to 
large computers is lacking or troublesome, it would be desirable to convert some of 
the large and general reflection loss programs to run on the popular IBM-PC type 
of personal computer. 

Furthermore, it is often also very useful for the reader to have the opportunity 
to have an on-line facility to test the influence of the different bottom parameters 
on reflectivity. Therefore, an existing general multilayer model, which is based on 
the classical Thompson-Haskell transfer matrix technique and runs on a UNIVAC 
system, has been rewritten in Microsoft FORTRAN. This allows double precision of 
complex variables (in 16-byte length) to take advantage of the 8087 co-processor to 
run on IBM-PC family microcomputers. The program will not run without the 8087 
co-processor. 

The model calculates the reflection loss and the phase shifts as a function of angle of 
incidence and frequency for a multilayered bottom, taking into account shear waves 
and attenuation. Additional procedures for disk file manipulations and display of 
results have also been developed. 

The model is not an operational one and no special techniques, such as Knopoff's 
method, have been used to improve numerical accuracy for the matrix operations. 
Therefore, for higher frequencies and close to grazing, lack of accuracy and floating 
point overflow can occur. Some of these numerical problems have been countered by 
dropping deeper layers when the potentials in a layer were very small. Furthermore, 
no input data checking or error handling has been included. However, despite these 
shortcomings it was felt that such a PC facility could be useful and, therefore, is 
included. 

The following will explain the different procedures and illustrate them by some 
examples. 
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T h e  programs The disk REFLOSS* contains several programs. The two main ones 
aie LAYER3.EXE and LAYER4 .EXE which do the loss calculations: LAYER3 for a vari- 
able angle of incidence and fixed frequency, and LAYER4 for a variable frequency and 
fixed angle of incidence. PL2 .BAS and PL4. BAS plot loss and phase as a function 
of angle of incidence and frequency, respectively. HELP. BAS is the program which 
displays the different options on the screen. The input files contain the relative 
acoustical parameters for the layers and on this disk are usually named such as 
FLOOR1. DAT, although such nomenclature is not required as long as it is a valid file 
name with the DAT extension. The output files from LAYER3 and LAYER4 contain the 
reflection loss and phase shift as a function of either angle or frequency and are on 
the disk named, respectively, RESVl8.DAT or RESFlS.DAT, indicating whether the 
result is a function of angle or frequency. 

The programs CREATE. BAT, LIST. BAT, and FILES. BAT are utility programs for edit- 
ing or creating new input files for the acoustic parameters of the bottom, for listing 
a file, and for displaying all the FLOOR and RES files on a given disk. Programs 
PLOTV .BAT, PLOTF . BAT, HELP. BAT, LOSSV .BAT, and LOSSF . BAT are batch programs 
used to tie it all together. 

How t o  run the program Before the program, prepare a work disk in the following 
way. Format a disk using the /S option and copy onto it from your DOS disk the files 
BASICA.COM, GRAPHICS .COM and EDLIN. COM and finally all the files on the REFLOSS 
disk. Set aside the original and use the work disk. 

To start, boot the disk by pressing simultaneously the following three keys <CTRL> 
<ALT> and <DELETE>, or from DOS type HELP. The following menu will appear: 

HELP menu 

CREATE 'FILENAIIEJ.DAT Use t o  create an layer input f i l e  
for  LOSSV/LOSSF. 

LIST 'FILENAt4EJ.DAT List a data f i l e .  Do not include extension. 
FILES Lis ts  a l l  data f i l e s  of the type FLOOR* .DAT and 

RES* .DAT on the disk.  
LOSSV Calculates the re f l e c t i on  l o s s  as function 

of angle of incidence. 
LOSSF Calculates the re f l e c t i on  l o s s  as function 

of frequency. 
PLOTV/PLOTF Plots l o s s  and phase as function of 

angle or frequency. 
quIr 

* The disk REFLOSS is available in NUSC Technical Document 8192. 
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Enter your selection - -> As an example of how to use the CREATE option, 
we will consider a bottom consisting of two layers on top of a half-space with the 
characteristics shown below, where ALPHA is the compressional wave velocity, BETA 
the shear wave velocity, RHO the wet density, A A  the compressional wave attenuation 
in dB/wavelength, AB the shear wave attenuation in dB/wavelength and DEP the 
layer thickness. 

Since the programs LAYER3 and LAYER4 require the relative velocities and relative 
densities, these must be calculated and the results are shown on the line below the 
absolute values. Therefore, to create an input file named FLOOR12. DAT, using the 
above example, type CREATE FLOOR12 <ENTER>. The computer will display: 

A>EDLIN FLOOR12.DAT 
N e w  f i l e  
* 

The program uses the DOS line editor EDLIN, but any preferred editor could be 
used. I starts the insert mode and <CTRL> C (same as <CTRL> ends inserting). The 
E ends editing and saves the file to disk. For further details concerning the use of 
EDLIN to edit an existing fle, consult the DOS manual. Enter I and insert values 
calculated in the example shown, creating the file on screen: 

where Line 1 is the number of layers. 

To indicate the end of inserting the calculated values as shown above, type <CTRL> C 
and complete editing with E. 

To calculate the reflection loss as a function of angle, type LOSSV from the HELP 
menu. For a hard copy of the results, ready the printer and type <CTRL> P before 
<ENTER>. Do not forget to turn the printer off by typing <CTRL> P again when the 
listing is terminated. 

The program LAYER3. EXE will load and prompt 

LAYER CONSTANTS FROM DISK F I L E  ( Y / N ) ?  

Report no. changed (Mar 2006): SR-115-UU



If' yes, the program will ask for the name of the file to use. Type the entire filename 
and extension. When the file data comes on the screen, verify by yes or no that it 
is the file you want to use. If' yes, the program will ask for the minimum angle, the 
angle increment, and the maximum angle. Type in these angle values. The program 
will then ask for the frequency. Type in the frequency value. 

At the termination of the LOSS program, you have the option to write the results to 
a disk file for subsequent processing such as for graphic displays. Choose a filename 
which relates to the input filename and shows the type of calculation ( V  or F). For 
the preceding example, the filename could be RESV12. DAT. 

The program LOSSF, which calculates losses as a function of frequency, works in the 
same way as LOSSV. 

To plot the angle-dependent results, type PLOTV. The program will ask for the name 
of the output file (RES* . DAT) which contains the results to be displayed. The filename 
should match the type of plot selected ( V  or F) and must include the . DAT extension. 
For example, to plot angle-dependent results from RESV18. DAT, which is in drive A,  
enter A : RESV18. DAT. 

If the PC is connected to a dot matrix printer which can produce graphics, print 
a hard copy of the results by pressing <SHIFT> <PRTSC>. To continue, press a key. 
Answer Y if you want to leave PLOTV or PLOTF and return to the HELP menu. A 
similar procedure to plot results as a function of frequency is contained in PLOTF 
and works in the same way. 

Figures A.l and A.2 show the results for an 18-layer sample input file, FLOOR18. DAT, 
giving the reflection loss as a function of frequency and angle of incidence. The phase 
shift is omitted but could also have been included if required. 

Sometimes it is convenient to see what data files of the format FLOOR* . DAT and 
RES* . DAT exist on a disk. Selecting FILES from system will display them on the 
monitor. Another facility available to display a data file is LIST, which when used, 
must contain the file name, but without the extention .DAT (e.g. LIST RESF4). 

Figure A.3 shows the acoustical parameters for some FLOOR*. DAT files on the disk 
corresponding to different numbers of layers. 

QUIT does what it says and clears the screen. 
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Fig. A.2. Reflection loss as function of angle (18 layers). 
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Input file name Depth 

Fig. A.3. Acoustical parameters for some FLOOR*.DAT files. 
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Appendix B 
Half-space parameters 

Information concerning the vertical incidence reflection coefficient and the intromis- 
sion angle or critical angle can. be used to quickly calculate the equivalent density 
and sound velocity at the water-sediment interface if we assume the bottom to act 
as a half-space. 

From Sect. 4 we have for the reflection coefficient this expression 

p cos B - \/l/o2 - sin2 8 
R = 

p c o s ~  + JijZZT 
For vertical incidence, it is reduced to 

The other information we have is from the reflection coefficient as a function of 
angle. If a < 1, we have the intromission angle for which the,!oss 'is maximum and 
a'sudden shift in phase from 0' to 180' with the angle being determined by 

For a > 1, we have a critical angle case where the angle is determined by 

which enables us to calculate a and p if Rvert and OB or O,, are observed. 

Figure B.l sliows the relationship between the vertical incidence loss (-20log R), 
relative velocity, relative density and the characteristic angle involved. Also plotted 
is the curve corresponding to Woods equation, relating density, velocity and porosity. 
Because of the marked intersection between the loss curves and the angle curves, a 
good determination of a and p is theoretically possible. 

As an example, look at Fig. 4.2, which has a vertical loss L = 16.5 dB and OB = 76'. 
Figure B.l indicates that a = 0.975 and p = 1.38 fully in agreement with the 
measured values. 
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Fig. B.1. Relationship between vertical incidence loss, relative velocity, relative density, and char- 
acteristic angle. 
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Appendix C 
Acoustic characteristics of the seafloor 

No doubt there is little purpose in trying to make predictions of the bottom reflectiv- 
ity without some a priori knowledge of the layering of the bottom and its acoustical 
parameters. Several measurements have been made using echo soundings, seismic 
profiling, laboratory measurements on core and drilling samples, and most impor- 
tant of all in situ measurements. Also inverse methods such as using some knowledge 
about the bottom and then fitting modelled results to the experimental reflection or 
transmission loss data have yielded valuable information concerning certain bottom 
parameters. No attempt will be made to look into the physics of special models 
such as Biot, since it is the conviction of the author that such refinements are not 
yet required as long we are missing first order data for a large number of cases for 
practical requirements in AS W predictions. 

Since our knowledge in this field is continually changing, this appendix will only 
summarize the range of the values of some of the acoustic parameters used for 
bottom reflection coefficient calculations. Readers are recommended to consult the 
substantial and recent documentation available. 

Let us first list some of the most important geoacoustic values desirable to know: 

(a) Layer composition. 

(b) Layer geometry including thickness and slope. 

(c) Compressional wave (sound) velocity. 

(d) Shear wave velocity. 

(e) Density. 

(f) Attenuation of compressional waves. 

(g) Attenuation of shear waves. 

(h) For all of the above parameters, their dependence on depth. 

The depth to which information is required depends on the frequency, the angle 
of incidence and the impedance of the layers. Usually we are talking of meters for 
frequencies in the kHz range down to hundreds of meters or even k ~ n  for infra-sonics. 

Unfortunately, the available amount of data are insufficient and probably will stay 
so, despite a continuing effort in this field caused by an increasing requirement for 
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a better knowledge due to the development of future realistic acoustic prediction 
models. We are, therefore, faced with the reality of life where we are constrained 
to use what is available and, supported by marine geology, to make interpolations 
and extrapolations. We are also required to do some intelligent guessing in order 
to obtain the needed geoacoustical parameters for the bottom of interest. A large 
number of measurements on marine sediments have been made in the past years, 
and to the author's knowledge, the most complete critical review and compilation 
of these has been made by Edwin L. Hamilton, Naval Ocean Systems Center, San 
Diego. The following are extracts from his work supplemented by a number of data 
collected by the SACLANTCEN from measurements made on bottom cores. 

It is not the purpose of this report to go into details on the values of the acoustic 
parameters to select for a given situation, but only to give some guidelines to the 
user. For more detailed information, one should consult the most recent relevant 
information available. 

Before quoting possible values for the parameters of interest, let us return briefly to 
the concept of porosity as discussed in previous chapters. Porosity is an extremely 
practical parameter used to describe a marine sediment and is defined as the ratio 
(often in percent) of the void volume to the solid volume of a sample. Furthermore, 
it can easily be measured by simple techniques using a precession scale and even a 
normal kitchen stove. Suppose the wet sediment sample weighed W g before any 
loss of porous liquid and weighed D g after being dried at a temperature below 
which chemical-bound water is not released. From the definition of the porosity n 
and some straightforward calcualtions, we arrive at the following expression for the 
sample's porosity 

with p, as the solid bulk density under the assumption that no decomposition takes 
place and that the solid bulk density remains constant. In general, by using p, = 2.7 
good practical results are obtained. 

Other important parameters exist to describe marine sediments such as grain size; 
however, these are not as easily measured as the porosity. 

Compressional wave velocity and density - Previously, we investigated the use of 
porosity as the parameter in the Woods equation to relate sound velocity and wet 
density under the assumption that one could regard a sediment as a two- or three- 
component mixture and to show that these assumptions are fairly valid. Figures C.l 
and C .2 show the relative density and compressional (sound) velocity as a function 
of porosity based on approximately 15,000 and 8000 samples, respectively, from both 
deep sea and continental shelf cores. 
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Regression L~ne  ( p: 2.6- 1.6 P )  

Fig. C. 1. Relationship between relative density and porosity. 

LYNOMlAL CURVE (0:1.631 - 1.78 P +  12 PI  ) - 

Fig. C.2. Relationship between relative sound velocity and porosity. 
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Table C . l  lists some charactcristic values of the ranges of porosity n, density and 
compressional wave velocity for different sediment types found in certain marine 
environments important for ASW. 

In almost all cases, measurements in nature have shown a distinct increase in the 
compressional wave velocity with depth, with the result that, at smaller grazing 
angles and low frequencies, the s c -ad  energy penetrating into the bottom is not 
only being reflected but also refracted back into the water column. Examples of 
such refracted waves are observable in Figs. 14.6 and 14.9 in Sect. 14. 

This gradient could be taken into account when preparing input data to the two 
computer models covered in Appendix A by creating a set of thin layers simulating a 
velocity gradient if required. Good values to use for the gradient of the compressional 
waves in the upper layers range from 1.1 to 1.5 s-' . 

Shear wave velocity If our knowledge of compressional wave velocities is sorne- 
what limited, unfortunately much less is available concerning shear wave velocities. 
Perhaps for two reasens: one is that historically in ASW it was electronic engineers 
or scientists who were the pioneers. They were little acquainted with the existence 
and importance of shear waves frcm the theory of elasticity of solids. More impor- 
tant is the fact that it is much more dificult to measure shear wave characteristics 
than compressional wave characteristics for sevcral rcascns. One problem is to en- 
sure proper coupling between the measuring probes and the sediment. Another 
is the fact that shear in a sediment to a certain extent is transmitted through its 
chemical bounds which are easily destroyed either by the sediment sampling or by 
the insertion of the measuring sensors in the samples. This is very unfortunate, 
since for consolidated sediments, shear waves can be extremely importmt because 
of the role they play in carrying converted incident compressional energy away from 
the water-sediment boundary and as such are subject to a higher attenuation and 
may be converted into interface waves (Scholte type). All these factors result in a 
softening effect and thereby a reduction of the bottom reflectivity. 

Studies have shown that shear wave velocities can be related to compressional wave 
velocities, but unfortunately not in the same fixed ratio. For practical reasons, three 
intervals of relative compressional wave velocities a with their associated relative 
shear wave velocity p dependence have been identified. Let us look at those cases 

(a)  0.989 < a < 1.017, ,B = 3 . 8 8 4 ~  - 3.765 

(b) 1.017 < a < 1.079, P = 1.137a - 0.971 

(c) 1.079 < a < 1.406, P = 0.648 - 1 . 1 3 6 a t  0.179a2 

To obtain an idea of the relative shear velocity as a function of depth below the 
water-sediment interface, the following expression for fine sand can be used 
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Table C. 1 
Characteristic values for density, sound velocity, and porosity for various sediment types 

- -  - 

Sediment Relative Relative Porosity 
type density sound velocity 

Continental shelf 

coarse sand 1.99 1.20 3 9 
fine sand 1.90 1.15 46 
very fine sand 1.82 1.12 5 0 
silty sand 1.74 1.08 5 5 
sandy silt 1.74 1.08 54 
silt 1.71 1.06 5 6 
sand-silt-clay 1.56 1.03 6 6 
clayey silt 1.46 1.01 7 2 
silty clay 1.39 0.994 7 6 

Abyssal plain 

clayey silt 1.43 0.999 74 
silty clay 1.32 0.991 8 1 
clay 1.33 0.983 8 0 

Abyssal hills 

clayey silt 1.32 0.995 
silty clay 1.32 0.986 
clay 1.39 0.976 
sand-silt-clay 1.41 1.02 
silt-clay 1.38 1.00 

Rocks 

sedimentary rock 
basalt 
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where D is depth of the sediment in meters. 

Attenuation of  compressional waves A large number of measurements of the at- 
tenuation of compressional waves in marine sediments have been made covering a 
frequency range from 10 Hz to 1 MHz. The results show that the attenuation in 
dB/m varies remarkably well with the first power of frequency, which again corre- 
sponds to a constant dB per wavelength as used in the previous calculations. How- 
ever, in order to be consistent with attenuation values reported in the literature, we 
will use for the attenuation the expression 

where f is in kHz, AA in dB/m and kc the attenuation coefficient. Also here, 
as for the densities and compressional wave velocities, we will use porosity as the 
indepndent variable. Figure C.3 shows the result of a large number of measurements 
indicating a maximum attenuation around a porosity of 50 to 55% corresponding to 
silty sand. For solid rocks like limestone or basalt, k is in the order of 0.02 to 0.03. 

Fig. C.3. Attenuation coefficients for compressional waves as a function of porosity. 

Very little data are available to determine the depth dependence on the compres- 
sional wave attenuation, but some data indicate only a little effect in the first meters 
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of the sediments. For deeper sediments consisting of silt-clays, the data seem to 
show an increase with depth, whereas for sand-silt it appears that the attenuation 
decreases with about the -116 power of the overburden pressure. 

Attenuation of shear waves Similar to measurements for the compressional waves, 
measurements of the attenuation of shear waves indicate a linear relationship. Again, 
we can use the expression 

AB = k , f  

where f is the frequency in kHz, AB in dB/m, and kc the attenuation coefficient. 
Table C.2 gives examples of values for k for different materials. 

Table C.2 
Characteristic values for the attenuation coefficient 

Material kc  

diluvial sand 
diluvial sand and clay 
alluvial silt 
mud (silt-clay) 
water-saturated clay 
tertiary rnudstone 
solenhofen limestone 
chalk 
basalt 

Concerning the depth dependence of the shear wave attenuation, it can be assumed 
that it varies proportionally with the compressional wave attenuation. 

The above values for the geoacoustical parameters in marine sediments are only given 
to show within which values they are to be expected in nature. For the purpose of 
constructing a proper geoacoustical model, readers are referred to the large and 
detailed amount of information available in the open literature. 
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