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 Preface i 


 


Preface 
 


 


I first started teaching United States Air Force Test Pilot School (USAF TPS) students about 


“Pitot-Statics and the Standard Atmosphere” in the fall of 1997 (Class 97B).  After teaching this 


course six times, the student feedback was quite clear that the textbook provided was difficult to 


understand for a first time student and left much to be desired.  This was the same textbook that I 


had used as a student in the fall of 1989 (Class 89B) and had been in use for many years before 


that. 


 


To ease my workload in teaching the course, in 2000 I requested permission to write a new Pitot-


Statics textbook, with the goal of making it easier to understand and of filling in the holes of 


understanding left in the previous textbook, such as the source of the many seemingly bizarre 


equations.  This textbook had the desired effect of reducing my teaching workload by giving the 


students a better reference.  As my understanding of the subject increased over the years, I have 


incorporated that new understanding into improvements in the textbook in hopes of making that 


understanding more easily accessible for future flight testers. 


 


In 2017, I became aware of interest in this textbook from organizations such as the Society of 


Flight Test Engineers (SFTE) and the Department of Aeronautics (DFAN) at the United States Air 


Force Academy.  Realizing the lack of comprehensive references on Pitot-Statics available outside 


of Test Pilot Schools or aerospace company proprietary documents, USAF TPS began the long 


process to peer review this textbook and approve it for public release. 


 


The reader is encouraged to also obtain a copy of Pitot-Static Systems: Class Notes from the 


United States Naval Test Pilot School (USNTPS) (Ref 1), approved for public release in 2019.  


The USNTPS textbook is not redundant with this textbook, following a more “operational” 


approach to doing flight tests with less emphasis on the mathematics.  It also includes techniques 


used on aircraft not tested at the Air Force Test Center, such as helicopters.  Rather than further 


increase the size of this textbook by repeating information only covered in the USNTPS textbook, 


the reader is simply encouraged to procure a copy of each. 


 


Russell E. Erb 
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Chapter 1 
 


 


Why Study Pitot-Statics? 
 


Virtually every flying task depends in some way on knowing the aircraft altitude, airspeed, Mach 


number, or air temperature.  These parameters are collectively known as “air data.” 


 


Performance testing is concerned with answering questions like “How fast?  How high? How far?”  


These questions would need airspeed and altitude information to address.  Handling qualities 


testing is primarily concerned with how the airplane feels to the pilot, but how the airplane feels to 


the pilot is strongly driven by dynamic pressure, which is again determined by knowing airspeed 


and altitude.  Advanced flight control systems require air data for scheduling gains.  Many systems 


depend on air data.  Navigation systems need airspeed to determine winds, and weapon delivery 


systems need airspeed and altitude to calculate release parameters.  Any sort of operational testing 


is going to require measurements of air data to properly define tactics and write instructional 


manuals. 


 


Because virtually every flight test needs air data, good air data is needed from the beginning of a 


flight test program.  If the aircraft is new, externally modified, or the air data system has been 


modified, a calibration of the air data system will probably be one of the first flight tests 


accomplished.  This could be done as early as the first flight.  On the first flight of the B-2 in 


1989, airspeed and altitude readings were compared with those of the safety chase F-16. 


 


But what’s all this about calibration?  Don’t we know by now how to make an airspeed indicator 


or altimeter well enough that we don’t have to individually calibrate each one?  Well, yes, we do, 


but that’s not the primary issue here.  An airplane flies because it is designed to disturb the air in 


such a way as to create a pressure differential that will offset the aircraft’s weight and produce 


forces and moments for maneuvering. It is very difficult to measure the undisturbed freestream 


values of temperature, ambient pressure, and total pressure on the airplane because the entire 


airplane is disturbing the airflow.  Without these disturbances the airplane would not fly, but with 


them we cannot measure exactly the data we need.  That’s where the calibration comes in.  By 


good design, we can minimize the size of the errors in reading air data, and then by calibration we 


can determine the size of the remaining errors to correct our measurements to our best estimate of 


the “real” answer. 


 


Typically flight test air data systems are not production representative.  The desire in flight test is 


to get the best possible air data with a simple system.  Using a simple system reduces the amount 


of errors that are introduced by the system, such as software programming errors.  Note that in 


flight test the “best possible air data” is concerned with getting precise data, whether or not they 


are unbiased.  If the air data are precise (repeatable) with a known error, then the corrected data 


can be computed to high accuracy once the calibration is known.  The known errors can be worked 


into the test point definition to ensure data are recorded at the desired conditions.  If the air data 


are unbiased (correct mean value) but not precise (large scatter), then there is no method to reduce 


the data uncertainty.  Design tradeoffs may result in production air data sensors being located in 


less than optimal locations, but most contemporary air data systems use some form of 


compensation, such as a Central Air Data Computer (CADC), to apply corrections before the data 


are presented to the flight crew. 


 


This course is about air data systems, but is typically referred to as “Pitot-Statics” because Pitot-


static systems are the most common air data systems and the primary type that will be discussed.  


TPS students typically think that this is a tough course.  I suspect that’s primarily because it is 


mostly new material.  Most undergraduate and graduate college programs do not typically teach 


this material.  The concepts are not that difficult, but understanding and discussion does require 
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use of math at a higher level than you probably remember off the top of your head.  Unfortunately, 


the resulting equations are not simple like F = ma.  They end up being fairly complex, but they do 


work and they actually do model the real world results. 


 


Textbook Structure 


 


The design of this text book intentionally departs from the norm for the specific reason of 


arranging the information in the hope of accelerating understanding.  Many textbooks are written 


in such a way that they make perfect sense if you already know the material, but not if you don’t. 


Since I don’t have a board of PhDs to get this approved by, I’m trying to avoid the problem that 


General Jimmy Doolittle had with his doctoral dissertation (Ref 2): 


 


I submitted a draft of the dissertation to my advisors and it was rejected.  At first 


they said it wasn’t erudite enough.  This was disappointing and when I pressed 


for more information, was told that it needed more mathematical calculations to 


fit the actual flight results…I wanted the paper to be read and understood by the 


average pilot, not by an aeronautical engineer…. 


 


As far as I’m concerned, the master’s thesis was far more significant.  I felt at 


the time that they wanted a doctoral dissertation to be so abstract that few people 


could understand it…. 


 


For subjects such as this one where mathematics are important to the understanding of the 


concepts, many textbooks include the derivation and development of the mathematics right in the 


middle of the running text.  I have found that this slows down the reading and makes 


understanding more difficult.  In this book, the derivation and development of the equations has 


been moved to appendices referenced from the text.  However, since knowing where these 


equations come from and knowing the involved assumptions are still important, the derivations are 


covered in gross detail, avoiding as much as possible statements such as “and after a few steps” 


(that always seemed to be 30 steps that I couldn’t figure out). 


 


Likewise, the data reduction is explained in gross detail in the concept of calculation, actual 


equations, and results from example data. 


 


Every effort has been made to ensure that any equation has only one equation number associated 


with it.  These numbers are assigned in numerical order in the appendix in which they were 


derived.  When used in the text, the equation retains the same equation number.  The first letter of 


the equation number is the appendix from whence it came.  This allows easy cross-reference to 


determine where any particular equation came from. 


 


Explanations of the many available Flight Test Techniques (FTTs) are included, covering not only 


those that will be practiced in the USAF TPS curriculum, but also other methods used for other 


purposes or at other flight test centers.  In Chapter 9, the data reduction section for each FTT is 


written to stand alone for ease of reference.  Thus, they may seem repetitious if multiple sections 


are read at the same time. 


 


Appendix J includes pictures of Pitot-static installations on many different aircraft for comparison.  


Appendix K is a glossary of all the symbols used in this text, useful for decoding all of the 


subscripts. 


 


Lastly, please help us improve this text.  We don’t know what was difficult to understand unless 


you tell us.  It all makes sense to us, but then again, we already know the material.  Please let us 


know what parts of the text you had trouble with and why you didn’t understand it if you can. 
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Chapter 2 
 


 


Standard Atmosphere 
 


Why Do I Need a Standard Atmosphere? 


 


The atmosphere is a large, non-uniform, constantly changing mass.  Part of it is heated by the sun, 


both directly and from terrestrial radiation.  Another part of the atmosphere is on the shaded side 


of the earth and cools off by radiating heat into space.  Because the atmosphere rotates with the 


earth, the portion that is being heated or cooled is constantly changing.  Because the size of the 


atmosphere is so large compared to the rate at which thermal changes can flow through it (i.e. 


typical wind speeds), the atmosphere never reaches equilibrium.  This is the basis for changing 


weather, which makes life far more interesting than if the atmosphere was one homogeneous mass. 


 


Even so, engineers need a model of an “average” atmosphere.  This requirement shows up both in 


the design phase and the flight test phase.  In the design phase, if you want to build an altimeter to 


determine altitude based on the air pressure, then you’ll need a model for how pressure changes 


with altitude.  If you are trying to design an aircraft to fly at 30,000 feet at Mach 0.88, you’ll need 


to know the density at that altitude to calculate your engine performance.  You’ll need to know the 


temperature to determine what true airspeed corresponds to that Mach number. 


 


In the flight test arena, we need a way to compare results from different test locations or even 


different conditions at the same location.  It is well known that an airplane will perform better at 


low altitude than at high altitude.  Likewise, an airplane will perform better on a cold day than a 


hot day.  So how do we compare the performance of an airplane in Florida (near sea level) in 


January with the same airplane in Colorado Springs (above 6,000 feet) in August?  More 


importantly, how do we take that information and tell the operator in the field what performance to 


expect at his planned flight condition? 


 


The answer is to define a standard atmosphere, which is a model of the atmosphere on a “standard 


day.”  We will then take our flight test results from a non-standard day and calculate what the 


results would have been if the same test was done on a standard day.  These standardized results 


would then be used to increase sample size for improved statistical significance, to compare the 


performance of one airplane to another, to evaluate performance against specifications or 


guarantees, and to validate models that would be used to produce the flight manual performance 


charts.  (Note:  The methods for accomplishing this data standardization will not be covered in this 


textbook.) 


 


Creating the Standard Atmosphere 


 


The primary data we need for our model (or representation) of the atmosphere is to know how 


temperature (T), pressure (P), and density () vary with altitude.  That is, I need to be able to 


determine the values of these three parameters at any specified altitude.  Many standard altitude 


tables list other parameters besides these three, but any other parameters, such as speed of sound 


or kinematic viscosity, can be calculated from knowing temperature, pressure, and density. 


 


Since we have three unknowns we are looking for (T, P, ), the mathematicians tell us that we 


need three equations.  Well, if we had equations like T = f(h), P = f(h), and  = f(h), not only 


would our job be easy—it would be done!  These are the types of equations that we are trying to 


find.  So, what do we do now? 
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Measuring the Atmosphere 


 


Another option would be just to measure the values of temperature, pressure, and density with 


altitude and fit equations to those data.  Unfortunately, temperature, pressure, and density are not 


independent functions of altitude.  That is, if one value changes at a particular location, it will 


change the other two.  However, this method will work well for one variable.  The temperature 


profile with altitude is essentially independent of the pressure (though not the other way ‘round), 


and temperature and pressure will define density.  Therefore, we will measure the temperature 


distribution with altitude and fit an equation to those data as one of our three equations. 


 


Equation of State 


 


Another equation that we have at our disposal is the Equation of State, also known as the Perfect 


Gas Law or the Ideal Gas Law.  You may have first seen this equation in Chemistry class 


expressed as 


 


 PV = NRT (A1) 


 


where  


 


 P = Pressure 


 V = Volume 


 N = Number of molecules (moles) 


 R = Gas Constant 


 T = Temperature 


 


Well, that was fine for chemists, but aero engineers aren’t too interested in counting molecules, 


and it’s tough to build a molecule counter.  However, a given number of air molecules are going to 


have a certain mass, so the Equation of State can be re-written (with a different constant) as 


 


 PV = mRT (A2) 


 


where m = mass. 


 


That’s closer, but still not the parameters we were looking for.  Well, mass divided by volume is 


density, which is something that we’re looking for.  Hence, the Equation of State becomes 


 


 P = RT (A3) 


 


This is the version of the Equation of State most useful for our analysis.  This equation is valid for 


a perfect gas, which is one in which intermolecular forces are negligible.  This is a valid 


assumption for air at the temperatures and pressures that we will be dealing with. 


 


The Equation of State is useful to us because it characterizes the relationship between the three 


parameters.  However, it doesn’t relate any of them to altitude. 


 


So far, we have an equation that relates temperature to altitude, and an equation that relates 


temperature, pressure, and density to each other.  We still need a third equation to characterize the 


atmosphere. 


 


Pressure and Altitude 


 


How about the relationship between pressure and altitude?  First, let’s look at why the air is under 


pressure.  Figure 2.1 shows a column of bricks with interspersed weightless scales.  The top scale 


shows a weight of zero bricks, since there are no bricks above it.  The next scale shows three 


bricks, since there are three bricks above it.  The next scale has eight bricks above it, plus the three 
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bricks above the previous scale, so it shows a weight of 11 bricks.  


Likewise, the bottom scale shows a weight of 19 bricks because 


there is a total of 19 bricks above it. 


 


What do all of these bricks have to do with air pressure?  I want a 


standard atmosphere, not a retaining wall.  Well, remember that 


air has weight—not a lot of weight, but weight nonetheless.  A 


square foot of beach sand on the Eglin beach at sea level on a 


standard day has 2116 pounds of air above it.  That is, if we took 


all of the air in a square column one foot on a side from the 


surface to outer space and weighed it, it would have a net weight 


of 2116 pounds.  The weight of all of this air is pressing down on 


our square foot of beach sand, creating a pressure of 2116 psf.  If 


we only looked at a column one inch on a side, it would contain 


14.7 pounds of air, for a pressure of 14.7 psi.  That number sound 


familiar? 


 


Now if we took a balloon up to 10,000 feet and held out a square 


foot of cardboard, the pressure on the cardboard would be 1456 


psf, because there is only 1456 pounds of air above it.  The air 


pressure is determined by the weight of the air above a point of 


interest.  So how can we hold up the cardboard with that much 


weight on it?  The air below the cardboard is pressurized to the 


same pressure by the weight of the air above it, so there is no net 


pressure force on the cardboard.  (Okay, there is an ever so small 


difference in pressure because of the thickness of the cardboard and buoyancy effects, but these 


are extremely small compared to the weight of the cardboard, so we ignore them.) 


 


This idea of an increase in pressure as altitude decreases is developed in Appendix A.  Our result 


shows that pressure is related to altitude by the differential equation known as the Hydrostatic 


Equation 


 


 dP = -g dh (A15) 


 


where 


 


 P = pressure 


  = density 


 g = acceleration of gravity 


 h = altitude (geometric) 


 


This equation assumes that the fluid (liquid or gas) is at rest, such that there are no shear forces 


between fluid elements. 


 


So all we need to do now to find the pressure change with altitude is to integrate this equation 


 


  
h


0


P


0


gdhdP  (A16) 


 


No problem, right?  Not so fast, Moosebreath!  We’ve got a minor problem here.  First of all, we 


already agreed that density is a function of altitude, and we don’t know what that function is yet, 


so it might be a little difficult to integrate a function we don’t know.  If that’s not bad enough, talk 


to your friendly local astro major.  She’ll tell you that the acceleration of gravity changes with 


altitude too!  Ooo, boy!  So whadda we do now?  Hmmm… 


 


0 bricks


3 bricks


11 bricks


19 bricks


Figure 2.1.  Column o’ Bricks 
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Geopotential Altitude and the Constant g 


 


We’ll deal with the density later by a neat mathematical trick.  But first, let’s talk about that non-


constant acceleration of gravity.  Our good buddy of yore Sir Isaac Newton told us that for a single 


body problem, the acceleration of gravity varies as 


 


 


2


SLe


SLe
SL


hR


R
gg























  (A18) 


 


where 


 


 gSL = acceleration of gravity at sea level 


 Re
SL


 = radius of the earth 


 


Why a single body problem?  Because the mass, and thus the gravitational acceleration, of the air 


is negligible when compared to the earth. 


 


Yes, the acceleration of gravity does vary with altitude, but let’s take off our scientist hat and put 


on our engineering hat for a moment.  How big is this effect? 


 


First of all, the difference between the acceleration of gravity at sea level and the local 


acceleration of gravity at altitude grows larger the higher we go.  But what are our altitudes of 


interest?  In this textbook we will only concern ourselves with the Troposphere and Stratosphere.  


Here at the Flight Test Center, we rarely fly above 40,000 feet.  So what is the acceleration of 


gravity at 40,000 feet?  Using the values 


 


 gSL = 32.1741 ft/sec
2
  (adopted primary constant, 1962 US Standard Atmosphere, Ref 3) 


 


 Re
SL


 = 20,902,808.99 ft  (radius of the earth at mean sea level at 34.9 degrees latitude, 


WGS-84 spheroid) 


 


we get  


 


 g40,000 ft = 32.051 ft/sec
2
 


 


Is this a problem?  The difference is a whopping 0.382 percent, far less than one percent.  That’s 


not much, but we can use a math trick to deal with the change. 


 


Geopotential Altitude 


 


We can make g constant by shifting the change with altitude into a different concept of altitude.  


The hydrostatic equation,  


 


 dP = -g dh (A15) 


 


is valid for a variable acceleration of gravity, that is, the real world case.  If we are going to 


change the way that g changes with altitude (i.e. make it not change), then we have to make a 


reciprocal change in another parameter in the equation so that both sides will stay equal.  The best 


candidate for this is the way we measure altitude.  We will define a new type of altitude which we 


will call Geopotential Altitude (H), which refers to the distance that a given unit of energy (a 


potential) will lift a given unit of mass (Ref 4). Geopotential altitude is defined by the equation 


 


 g dh = gSL dH (A17) 
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Thus, any change in g will be offset by a reciprocal change in geopotential altitude.  Based on this 


equation, we can substitute into the hydrostatic equation and get 


 


 dP = -gSL dH (A30) 


 


We will use this equation to help define our standard atmosphere in terms of geopotential altitude.  


As will be seen later, this not only makes the math easier, it makes the math possible.  Though our 


standard atmosphere will be calculated in geopotential altitude, it is not difficult to then convert 


those values to the values at geometric altitude.  The physical length of geopotential units is not 


constant but increases at higher elevations because the acceleration of gravity decreases (same 


energy will raise the same mass farther because gravity’s attraction (weight) is less). As shown in 


Appendix A, geopotential altitude and geometric altitude are related by  


 


 h
hR


R
H


SLe


SLe























  (A29) 


 


What is the magnitude of this difference?  


 


Let’s look again at our case of flying at 40,000 feet geometric altitude on a standard day.  Plugging 


40,000 feet into Equation A29 yields a geopotential altitude of 39,924 feet, a difference of 76 feet 


and a 0.191 percent error.  Small enough for most of our efforts.  Besides, we will see later that for 


most flight testing, we will be more interested in yet another kind of altitude than geopotential or 


geometric. 


 


Equation A29 also gives us the way to get the standard atmosphere values for geometric altitudes.  


If we want to know the temperature, pressure, and density on a standard day at 40,000 geometric 


feet, we use Equation A29 to calculate the corresponding geopotential altitude (39,924 feet).  We 


would then calculate the temperature, pressure, and density at 39,924 geopotential feet, which will 


be the values for 40,000 geometric feet. 


 


Standard Atmosphere Assumptions 


 


We’ve already touched on some of the assumptions required to calculate the standard atmosphere, 


but let’s bring them all together in one place. 


 


 Dry Air 


 


This is, of course, not true.  Flight testers at Eglin are frequently reminded that humidity exists, 


like every time they go outside.  Some humidity will always exist, although in many locations it 


will be very small.  As shown in Appendix A, water vapor has about 62 percent the density of dry 


air, meaning that a mixture of dry air and water vapor will have an overall lower density than dry 


air at the same pressure and temperature.  Here in the desert environment of Edwards AFB, the 


relative humidity is typically around 53 percent in the morning to 25 percent in the afternoon.  The 


difference between the actual moist air density and the dry air density at the same pressure and 


temperature will be around 1 percent at these conditions.  At 100° F and 100 percent humidity, the 


error can be as much as 7 percent.  At higher altitudes, especially above the clouds, humidity will 


drop off significantly. 


 


Interestingly, in humid environments, the amount of lift and drag created by the wings, propellers, 


and other surfaces depends on the moist air density, the density of the air and water vapor mixture.  


However, reciprocating engine power depends only on the density remaining if the water vapor 


were taken away (density at the same temperature and pressure reduced by the partial pressure of 


water vapor), since the engine performance really depends on the amount of oxygen available.  Jet 


performance is somewhere in between, since the combustion depends on oxygen available, but the 


mass flow to create thrust depends on the moist air density. 
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So if there is error involved with assuming dry air, why not assume moist air?  As you may have 


already thought, allowing moisture into the question significantly complicates the analysis for very 


little gain.  For our purposes, it would greatly complicate using the Equation of State, since air and 


water vapor have different gas constants (R), and their mixture would have yet another gas 


constant, which would depend on the humidity.  So rather than have a standard atmosphere that 


changes with humidity, the defining body of the standard atmosphere decided that the air would be 


assumed dry. 


 


 Air Acts as a Perfect Gas 


 


As alluded to before in our search for equations, we will assume that air acts as a perfect gas, 


which is to say that it obeys the Equation of State (P =  R T).  R is defined as M/R
*
, where M is 


the mean molecular weight of air and R
*
 is the universal gas constant.  M is assumed to be 


constant up to an altitude of approximately 90 kilometers (295,000 feet), above which M changes 


because of increasing dissociation and diffusive separation. 


 


 Constant Acceleration of Gravity 


 


As mentioned earlier, we will assume that the acceleration of gravity is fixed at its sea level value.  


As a result, the standard atmosphere will be defined in geopotential altitude. 


 


 Measured Temperature Variation 


 


We said that we would measure the temperature profile to define one of our needed equations.  


Years of measurements from weather balloons, airplanes, and later sounding rockets were used to 


come up with a profile, shown in Figure 2.2.  This profile is made up of altitude bands with 


temperature defined as varying linearly with altitude throughout the band.  In some bands the 


temperature is constant for all altitudes within the band. 


 


 
Figure 2.2.  Temperature Profile, 1962 and 1976 US Standard Atmosphere (Ref 3 and 5) 
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The troposphere is heated from below by the surface of the earth, which is warmed by solar 


radiation.  The air at higher altitude is cooler as it is farther away from the heat source.  The 


stratosphere is warmed by the interaction of ultraviolet radiation with oxygen and ozone in the 


ozone layer.  The mesosphere above the stratosphere cools with altitude as carbon dioxide absorbs 


and radiates infrared energy into space.  The altitude bands that are a transition between the 


cooling and warming zones are modeled as isothermal regions, which is a simple model that is 


sufficiently representative of the transitions in these regions.   More details of these heating and 


cooling processes are covered in Appendix A. 


 


Let’s Do It! 


 


Finally we have all of the equations and assumptions we need to generate the standard atmosphere.  


To review, we have three unknowns (temperature, pressure, and density) so we need three 


equations.  Our three equations are 


 


 1.  The Equation of State 


 2.  The Hydrostatic Equation 


 3.  A Temperature Profile with Altitude 


 


We also needed four assumptions. 


 


 1.  Dry Air 


 2.  Perfect Gas (covered in the Equation of State)  


 3.  Constant Acceleration of Gravity 


 4.  Linear or Constant Temperature Profile (covered in the measured temperature profile) 


 


Armed with this information, let’s hop to it.  Let’s see, where were we?  Oh, yes—we were trying 


to integrate the Hydrostatic Equation when we ran up against the problem that density and the 


acceleration of gravity were both functions of altitude.  Well, we solved our problem with gravity, 


but what about density?  Somebody many years ago found a neat mathematical trick that will 


address our problem.  If you flash back to algebra class (assuming that’s not too frightening), you 


may recall that if we divide an equation by an equation, the result is still an equation.   


 


With that obscure thought in mind, let’s divide the Hydrostatic Equation by the Equation of State 


to get 


 


 
RT


dHg


P


dP SL






  (A32) 


 


If we divide out the density (my algebra teacher would never let us say “cancel”) we get 


 


 dH
RT


g


P


dP SL  (A33) 


 


Now we have an expression that we can actually integrate.  gSL and R are constants, and we’ll 


know how T varies with altitude. 


 


Isothermal Regions 


 


Iso-what?  Isothermal—it means constant temperature.  We have two types of regions that we 


need to integrate Equation A33 in, regions where the temperature doesn’t change (isothermal 


regions) and regions where the temperature changes linearly with altitude (gradient regions).  


We’ll look at the isothermal regions first since the math is easier. 
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For isothermal regions, the relationship of temperature with altitude is simply 


 


 T = constant (A34) 


 


Betcha saw that one coming, eh?  With that established, we will integrate Equation A33 starting at 


the base altitude (bottom of the altitude band, designated by subscript B) to the altitude of interest 


(no subscript).  When we do that, we get 
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Using this relationship with the Equation of State we can get the density variation as 
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BRT
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
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
 (A44) 


 


Gradient Regions 


 


For the gradient regions we have a different relationship between temperature and altitude.  We 


call this relationship the temperature lapse rate and define it as 


 


 ttancons
dH


dT
L   (A45) 


 


Integrating this equation from the base altitude to the altitude of interest results in an expression 


for temperature. 


 


  B
BB


HH
T


L
1


T


T
  (A51) 


 


Using Equation A45 to define the variation of temperature with altitude, we can again integrate 


our magic pressure equation 


 


 dH
RT


g


P


dP SL  (A33) 


 


to get 
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Again, returning to the equation of state, we find the density variation with altitude to be 
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It is interesting to note that for gradient regions, the density variation is exactly the same as the 


pressure variation except that it is raised to an exponent exactly 1 less. 
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Temperature, Pressure, and Density Ratios 


 


You may have noticed by now that all of the equations we have derived are ratios of the parameter 


of interest to the value of that parameter at some base altitude.  By far, the most popular values to 


use in the denominator are the values of temperature, pressure, and density at sea level on a 


standard day.  So popular, in fact, that such ratios are given special symbols.  The temperature 


ratio is labeled theta, the pressure ratio is labeled delta, the density ratio is labeled sigma, and are 


defined as such: 


 


 
SLT


T
  (A69) 


 


 
SLP


P
  (A70) 


 


 
SL



  (A71) 


 


You might as well learn these now, because they will continue to pop up throughout your flight 


test career.  As we calculate the actual values for the standard atmosphere, we will be calculating 


these ratios. Many equations tend to work better using these ratios instead of the values alone.  


Best of all, when using ratios you don’t have to worry as much about keeping your units straight. 


 


Putting the Numbers in the Equations 


 


Having the equations is great, but unless we have values for the constants, they’re not very useful.  


Reference 3 describes the 1962 US Standard Atmosphere as “idealized middle-latitude year-round 


mean conditions for the range of solar activity that occurs between sunspot minimum and sunspot 


maximum.”  Further digging implies that “middle-latitude” is taken as 45°.  While this may seem 


well north of Edwards AFB, it is basically the latitude of Salem, Oregon, Minneapolis, Minnesota, 


Bangor, Maine, Southern France, Northern Italy, the north tip of Japan, and well south of England.  


When you consider this, the “average” sea level temperature of 59° F doesn’t seem that 


unreasonable. 


 


Table 2.1 shows the adopted primary constants for the 1962 and 1976 US Standard Atmospheres.   


 


Table 2.1 


Adopted Primary Constants, 1962 and 1976 US Standard Atmospheres (Ref 3 and 5) 


 


Symbol Parameter Value 


TSL Sea Level Temperature 15° C, 59°F, 288.15K 


PSL Sea Level Pressure 2116.22 lb/ft
2 


SL Sea Level Density 0.076474 lb/ft
3 


0.00237688 slug/ft
3 


gSL Sea Level Acceleration of Gravity 32.1741 ft/sec
2 


 Ratio of Specific Heats 1.40 


R
* 


Universal Gas Constant 1545.31 ft-lb/(lb-mol)-°R 


 Air Molecular Weight 28.9644 lbm/(lb-mol) 


R Specific Gas Constant (Air) 3089.8 ft-lb/slug-K 


1716.6 ft-lb/slug-°R 


 


 


Tables 2.2 and 2.3 and Figure 2.2 show the temperature profile as defined for the 1962 and 1976 


US Standard Atmospheres.  Note that altitudes for the Standard Atmosphere are defined in 
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geopotential altitude (H) up to 88.743 km (1962) or 84.8520 km (1976), and in geometric altitude 


(h) above these altitudes.  These changes happen because the perfect gas assumption starts to 


break down because of increasing dissociation and diffusive separation. 


 


Table 2.2 


Temperature Profile, US Standard Atmosphere, 1962 (Ref 3) 


 


Altitude, H 


km 


Temperature, T 


K 


Gradient, L 


K/km 


Altitude, H 


ft 


Gradient, L 


K/1000 ft 


 


0.000 288.15  0.00   
-6.5 -1.9812 Troposphere 


11.000 216.65 36,089.24 
0.0 0.0 Stratosphere 


20.000 216.65 65,616.8 
+1.0 +0.3048 


32.000 228.65 104,986.9 
+2.8 +0.85344 


47.000 270.62 154,199.5 
0.0 0.0 Mesosphere 


52.000 270.65 170,603.7 
-2.0 -0.6096 


61.000 252.65 200,131.2 
-4.0 -1.2192 


79.000 180.65 259,186.4 
0.0 0.0 Thermosphere 


88.743 180.65 291,151.6 
0.0 0.0 


90 (h) 180.65 295,275.6 
+3 +0.9144 


100 (h) 210.65 328,084.0 
+5 +1.524 


110 (h) 260.65 360,892.4 
+10 +3.048 


120 (h) 360.65 393,700.8 
   


 


Table 2.3 


Temperature Profile, US Standard Atmosphere, 1976 (Ref 5) 


 


Altitude, H 


km 


Temperature, T 


K 


Gradient, L 


K/km 


Altitude, H 


ft 


Gradient, L 


K/1000 ft 


 


0.000 288.15  0.00   
-6.5 -1.9812 Troposphere 


11.000 216.65 36,089.24 
0.0 0.0 Stratosphere 


20.000 216.65 65,616.8 
+1.0 +0.3048 


32.000 228.65 104,986.9 
+2.8 +0.85344 


47.000 270.65 154,199.5 
0.0 0.0 Mesosphere 


51.000 270.65 167,322.8 
-2.8 -0.85344 


71.000 214.65 232,939.6 
-2.0 -0.6096 


84.8520 186.95 278,385.8 
0.0 0.0 Thermosphere 


86 (h) 186.95 282,152.2 
0.0 0.0 


91 (h) 186.95 298,556.4 
12.0 3.6576 


110 (h) 414.95 


 


360,892.4 
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Troposphere 


 


The troposphere is defined for an 


altitude band from –5 kilometers 


to 11 kilometers (-16,404.2 feet 


to 36,089.24 feet).  The base 


altitude is mean sea level 


(0 geopotential feet).  The base 


values for temperature, pressure, 


and density are given in Table 1.  


Note that the lapse rate, L, for the 


troposphere is –1.9812 K/1000 


feet.  This matches with the old 


pilot’s rule of thumb that 


temperature decreases with 


altitude at the rate of 2° C per 


thousand feet. 


 


After inserting our constants, we get 


 


  = 1 – 6.87559x10
-6


 H (A78) 


 


  = (1 – 6.87559x10
-6


 H)
5.2559


 (A79) 


 


  = (1 – 6.87559x10
-6


 H)
4.2559


 (A80) 


 


Note that the units of the constant 6.87559x10
-6


 are per foot (/ft). 


 


Stratosphere 


 


The stratosphere includes an isothermal altitude band from 11 kilometers to 20 kilometers 


(36,089.24 feet to 65,616.8 feet), and an increasing temperature altitude band from 20 kilometers 


up to the stratopause at 47 kilometers.  This textbook is primarily concerned with airplanes, which 


mostly fly below 65,000 feet.  Therefore, we will only evaluate the isothermal portion of the 


stratosphere. 


 


Of course, in the isothermal region there is no temperature lapse rate.  The base altitude is 11 


kilometers.  The base values for temperature, pressure, and density come from the troposphere 


calculations at 11 kilometers, and are 


 


 TB = 216.65 K    = 0.751865 (A81) 


 


 PB = 472.679 lb/ft
2
    = 0.223360 (A82) 


 


 B = 0.0007061 slug/ft
3
     = 0.297075 (A83) 


 


Our equations for isothermal regions are written as ratios of the parameter to its value at the base 


altitude.  However, it is more useful to have ratios of the parameter to the sea level value.  Note 


that  


 


 
B


B
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B


SL T


T


T


T


T


T


T


T
  (A84) 


 


 


 


Why –5 Kilometers? 


 


It would not be unreasonable to ask why the standard 


atmosphere is defined all the way down to 5 kilometers 


below sea level.  After all, the lowest point on earth is the 


Dead Sea, which has an elevation of –408 meters (-1339 


feet), so it’s doubtful that anyone would be aviating any 


lower than that. 


 


One possible explanation arises when considering density 


altitude.  Assume you are in Nome, Alaska, and the 


temperature is –90° C (-130° F).  If we assume a sea level 


pressure, the resulting density altitude would be –16,341 


feet.  To allow for these temperature extremes, the 


standard atmosphere had to be defined to that low of an 


altitude. 
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Applying this concept and inserting our constants, we get 


 


  = 0.751865 (A86) 


 


  = 0.223360 e
(-4.80637x10


-5
 (H – 36089.24))


 (A87) 


 


  = 0.297075 e
(-4.80637x10


-5
 (H – 36089.24))


 (A88) 


 


Note that the units of the constant 4.80637x10
-5


 are per foot (/ft). 


 


Standard Atmosphere History 


 


During the Revolutionary War, George Washington and the Continental Army had very little 


interest in the properties of the atmosphere above them.  Shortly thereafter, though, with the start 


of ballooning in 1783 there was a sudden requirement amongst scientists to understand the 


properties of the atmosphere at altitudes more than a few feet above the ground.  Even so, 


engineers did not have a compelling need for this type of information until the advent of heavier 


than air flight.  Since flight performance is so dependent on air density, pressure and temperature, 


it was essentially impossible to do any sort of engineering design on aircraft without a model of 


the atmosphere.  Furthermore, this model of the atmosphere should be agreed upon throughout the 


world if there was any hope of being able to communicate and compare engineering designs with 


any sort of validity.  Thus the requirement for a standard atmosphere was born. 


 


So where do you go to get data on the atmosphere?  Hmmm, the Weather Bureau would seem like 


a good place to start.  In 1915, the Chief of the U.S. Weather Bureau was C.F. Marvin, who also 


happened to be the chairman of an NACA subcommittee to investigate and report upon the 


existing status of atmospheric data and knowledge.  Their report, “Preliminary Report on the 


Problem of the Atmosphere in Relation to Aeronautics” (NACA Report No. 4, 1915), stated 


 


The Weather Bureau is already in possession of an immense amount of data concerning 


atmospheric conditions, including wind movements at the earth’s surface.  This 


information is no doubt of distinct value to aeronautical operations, but it needs to be 


collected and put in form to meet the requirements of aviation. 


 


And thus many scientists and engineers went to work studying the atmosphere.  In 1920 


A. Toussaint, director of the Aerodynamic Laboratory at Saint-Cyr-l’Ecole, France, suggested a 


relationship for temperature with altitude.  He expressed this as 


 


T = 15 – 0.0065H 


 


where T was in degrees Celsius and H was the geopotential altitude in meters.  If we convert 


meters to feet we get 


 


T = 15 - 0.0019812H  


 


which, if you check back a few sections (Tables 2.2 and 2.3), is still the temperature relationship 


used for the troposphere.  Of course, in 1920 Toussaint had no reason to know about the 


stratosphere or any of those other –ospheres. 


 


Toussaint’s formula was formally adopted by France and Italy with the Draft of Inter-Allied 


Agreement on Law Adopted for the Decrease of Temperature with Increase of Altitude, issued by 


the Ministere de la Guerre, Aeronautique Militaire, Section Technique, in March 1920.  England 


bought in the next year, and the United States shortly after that.  Eighteen years after the Wright 


Brothers’ first successful powered flight, on 17 December 1921 NACA adopted Toussaint’s 


formula for airplane performance testing, saying “The subcommittee on aerodynamics 
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recommends that for the sake of uniform practice in different countries that Toussaint’s formula be 


adopted in determining the standard atmosphere up to 10 km (33,000 ft)….” 


 


Toussaint’s formula was supported by data from NACA Report No. 147, “Standard Atmosphere,” 


by Willis Ray Gregg in 1922.  This report cited data from free-flight tests at McCook Field in 


Dayton, Ohio, Langley Field in Hampton, Virginia, and Washington D.C.  Additionally, artillery 


data from Aberdeen, Maryland and Dahlgren, Virginia were used.  Finally, sounding balloon 


observations were used from Fort Omaha, Nebraska and St. Louis, Missouri.  With all of these 


data, Gregg compiled the results shown in Table 2.4. 


 


Table 2.4 


Evaluation of Toussaint’s Formula 


 


Altitude 


 


(meters) 


Mean Annual Temperature 


in United States 


(K) 


Temperature from 


Toussaint’s Formula 


(K) 


Difference 


 


(K) 


0 284.5 288 3.5 


1,000 281.0 281.5 0.5 


2,000 277.0 275.0 -2 


5,000 260.0 255.5 -4.5 


10,000 228.5 223.0 -5.5 


 


Thus, Toussaint’s formula was a reasonable model for reality while maintaining a simple 


mathematical form.  This was Gregg’s point, and he didn’t go much farther in developing a 


standard atmosphere for engineering use. 


 


Not wanting to let a thing like this slide, in 1925 Walter S. Diehl produced NACA Report No. 


TR 218 “Standard Atmosphere.”  This report included the first practical tables for aeronautical 


use.  The tables were presented in English and Metric units, with data every 100 feet up to 32,000 


feet, and every 200 feet up to 65,000 feet.  Considering that the aircraft of the time were the same 


vintage as the Spirit of St Louis, these data were more than sufficient.  Diehl used Toussaint’s 


Formula for temperature up to 10,769 meters (35,331 feet), and then a constant temperature 


of -55°C up to 65,000 feet.  Pressure and density were calculated in the same manner as described 


in this chapter. 


 


Diehl’s standard atmosphere was sufficient for a while, but started to be limited as aircraft 


continued to fly higher and higher.  In the 1940s rockets such as the German V-2 and sounding 


rockets made it apparent that it was not sufficient to just continue the stratosphere model up to 


higher altitudes.  With the development of intercontinental ballistic missiles and later space flight, 


a requirement arose to characterize the upper atmosphere.  In 1954 the International Civil Aviation 


Organization (ICAO) published the  Manual of the ICAO Standard Atmosphere.  In  1953 the 


United States Committee on Extension to the Standard Atmosphere (COESA) was formed, and in 


1958 published U.S. Extension to the ICAO Standard Atmosphere—Tables and Data to 300 


Standard Geopotential Kilometers.  This was followed by the Air Research Development Center 


(ARDC) 1959 Standard Atmosphere.  For the lower 20 kilometers there were very few changes 


over the years, as shown in this comparison of Diehl’s 1925 atmosphere with the ARDC 1959 


atmosphere. 
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Table 2.5 


Comparison of 1925 and 1959 Standard Atmospheres 


 


Altitude 


 


(meters) 


Temperature 


Diehl, 1925 


(K) 


Temperature 


ARDC, 1959 


(K) 


Difference 


 


(K) 


0 288 288.16 0.16 


1,000 281.5 281.66 0.16 


2,000 275.0 275.16 0.16 


5,000 255.5 255.69 0.19 


10,000 223.0 223.26 0.26 


10,800 218.0 218.03 0.03 


11,100 218.0 216.66 -1.34 


20,000 218.0 216.66 -1.34 


 


As with so many things in America, everything was hunky-dory on the Standard Atmosphere front 


until two words:  Sput-nik.  Besides upsetting almost everything in the fabric of American culture, 


analysis of the orbital periods of Sputnik I indicated that densities at the upper altitudes were in 


error by more than an order of magnitude.  COESA came together again in January 1960 to 


consider how the standard atmosphere needed to be revised.  They couldn’t analyze the data from 


Russian satellites closely because the Soviets for some unknown reason would not release the 


aerodynamic configuration of their satellites.  Besides that, the Russian satellite data only covered 


the lower altitude range of satellite orbits. Data from United States satellites were used for extreme 


altitude data, along with high-altitude balloons and sounding rockets. Additionally, observations at 


satellite altitudes were included to understand the effects of solar activity and position. From these 


data, the U.S. Standard Atmosphere, 1962 was published.  This atmosphere matched the ICAO 


atmosphere up to 20 kilometers.  It was unusual in that it included a more complicated gravity 


model than previous atmospheres, which had used the R
2
 model presented in this text.  The result 


was that the relationship between geopotential and geometric altitude were slightly different than 


for other standard atmospheres. 


 


At high altitudes, it becomes more difficult to measure the air properties.  Density is the primary 


atmospheric property measured at high altitudes, presumably by measuring the effects of air loads 


on rockets and satellites.  However, it is necessary to define the atmosphere in terms of 


temperature for continuity with the lower altitudes.  At these altitudes, it is necessary to 


differentiate between molecular-scale temperature and kinetic temperature.  The difference 


between these temperatures arises because the mean molecular weight of air changes at extreme 


altitudes.  The molecular-scale temperature is the defining property, but the kinetic temperature is 


what would be measured without compensating for the change in molecular weight.  These 


temperatures are identical up to 90 kilometers. 


 


The U.S. Standard Atmosphere, 1962 agreed in general with but differed in detail from the 


Committee on Space Research (COSPAR) International Reference Atmosphere (CIRA) 1961, and 


the CIRA 1961 did not agree with the ICAO Standard Atmosphere.  The U.S. Standard 


Atmosphere,1962 provided detail and more parameters than did CIRA 1961, and included 


refinements in matching data that were not possible in the earlier COSPAR atmosphere. 


 


While the U.S. Standard Atmosphere, 1962 provided a good model of the atmosphere for 


engineering and design work, it was not very good for operational use, precisely because it was a 


single representation of the atmosphere for mid-latitude year-round mean conditions.  This was 


not very useful for calculating re-entry trajectories or ephemeris predictions for low altitude orbits.  


At the behest of the U.S. space program, in 1966 supplements were released to the U.S. Standard 


Atmosphere, 1962 for conditions other than the mid-latitude mean.  Tables were published that 


were representative of winter and summer conditions for various latitudes.  Tables for the surface 
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to 120 kilometers were keyed to seasonal and latitudinal variations.  Tables for 120 to 1000 


kilometers were keyed to solar and geomagnetic activity and solar angle.  


 


During the 11 year solar cycle following the publication of the U.S. Standard Atmosphere, 1962, 


additional data were collected by rockets and satellites above 50 kilometers.  With this increased 


knowledge of the upper atmosphere, the U.S. Standard Atmosphere, 1976 was published.  Both 


the 1962 and 1976 U.S. Standard Atmospheres were identical to the ICAO Standard Atmosphere 


as revised in 1964 up to 32 kilometers, and the 1973 International Standards Organization (ISO) 


Standard Atmosphere up to 50 kilometers.  The U.S. Standard Atmosphere, 1976 reverted back to 


the R
2
 gravity model.  The U.S. Standard Atmosphere, 1962 attempted to depict idealized middle-


latitude year-round mean conditions for the range of solar activity that occurs between sunspot 


minimum and sunspot maximum, but subsequent observations showed mean conditions of solar 


activity were considerably lower.  The World Meteorological Organizations’s (WMO) definition 


of a standard atmosphere was accepted by COESA and is as follows: 


 


…A hypothetical vertical distribution of atmospheric temperature, pressure and density 


which, by international agreement, is roughly representative of year-round, mid-latitude 


conditions.  Typical usages are as a basis for pressure altimeter calibrations, aircraft 


performance calculations, aircraft and rocket design, ballistic tables, and meteorological 


diagrams.  The air is assumed to obey the perfect gas law and hydrostatic equation which, 


taken together, relate temperature, pressure and density with geopotential.  Only one 


standard atmosphere should be specified at a particular time and this standard atmosphere 


must not be subjected to amendment except at intervals of many years. 


 


COESA added to this definition 


 


This atmosphere shall also be considered to rotate with the earth, and be an average over 


the diurnal cycle, semi-annual variation, and the range of conditions from active to quiet 


geomagnetic, and active to quiet sunspot conditions.  Above the turbopause (about 110 


km) generalized forms of the hydrostatic equations apply. 


 


In the past, the Flight Test Center primarily used the U.S. Standard Atmosphere, 1962, though it 


has now mostly changed over to using the U.S. Standard Atmosphere, 1976.  As mentioned 


earlier, for the altitudes of interest for most aircraft, the change has been immaterial, since the 


variations are in the upper atmosphere. 
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Chapter 3 
 


 


Altitude Measurement 
 


So How High Are We? 
 


Before answering this question, we have to ask another question, namely “What do you mean by 


‘high’?”  This isn’t some sort of political verbal maneuvering, but a necessary question. 


 


There are at least four different types of “altitude” that we will deal with:  geometric (or tapeline), 


geopotential, pressure, and density. 


 


Geometric Altitude is the one that you would probably first think of.  Oddly enough, it is one of 


the less useful definitions of altitude for use in flight test.  Geometric altitude is an actual distance 


(measured in units like feet or meters (or metres if you prefer)) above some datum plane.  The two 


most popular datums (data?) are Mean Sea Level (expressed as feet MSL) and local ground 


elevation (expressed as feet AGL (Above Ground Level)).  This type of altitude is also referred to 


as tapeline altitude, meaning that it is the distance you would read if you could lower a tape 


measure from your aircraft down to the datum plane. 


 


Geopotential Altitude is an oddball altitude that we have already discussed.  Geopotential 


altitude is measured in geopotential feet, which can be defined as the distance required to raise one 


pound-mass to increase its potential energy by one foot-pound force.  Clear as Mississippi mud, 


right?  Another way to look at it is what we get when we assume a constant acceleration of gravity 


with altitude.  In reality, the acceleration of gravity (g) decreases with increasing altitude and the 


length of a geometric foot (h) remains constant.  Because we insist on being able to solve our 


equations, we created a fictitious altitude defined such that the acceleration of gravity remains 


constant (gSL) and the length of a geopotential foot (H) varies as required such that the following 


equation is satisfied: 


 


 g dh = gSL dH (A17) 


 


Pressure Altitude is a different animal altogether.  (CHORUS:  Pressure altitude is a different 


animal…)  Feet of pressure altitude is another unit of pressure, just like pounds per square foot, 


newtons per square meter, or inches of mercury.  The conversion is defined by the standard 


atmosphere.  That is, for a pressure of interest, pressure altitude is the geopotential altitude that 


this pressure would occur at on a standard day.  For example, a pressure of 1,456 pounds per 


square foot corresponds to a pressure altitude of 10,000 feet.   


 


Whoa!  How’d you figure that out?  One method is to use the standard atmosphere tables.  Look 


down the column of pressures until you find 1,456 psf, then read across to see what altitude that 


occurs at.   


 


By equation, we know the pressure ratio, , given by 


 


 
SLP


P
  (A70) 
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The relationship between pressure and geopotential altitude is defined by the standard atmosphere 


equations 


 


  = (1 – 6.87559x10
-6


 H)
5.2559


 (H  36089.24 feet) (A79) 


 


  = 0.223360 e
(-4.80637x10


-5
 (H – 36089.24))


 (H > 36089.24 feet) (A87) 


 


Since we have said that pressure altitude is equal to the geopotential altitude corresponding to the 


pressure of interest, we can simply “replace” the geopotential altitude “H” with a pressure altitude 


“Hc” to get 


 


  = (1 – 6.87559x10
-6


 Hc)
5.2559


 (Hc  36089.24 feet) (B1) 


 


  = 0.223360 e
(-4.80637x10


-5
 (H


c
 – 36089.24))


 (Hc > 36089.24 feet) (B2) 


  


These equations will give us the pressure ratio corresponding to any pressure altitude of interest, 


REGARDLESS if it is a standard day or not.  The difference on a non-standard day is that the 


pressure altitude will exist at a numerically different geopotential altitude.  We can deal with that, 


because the airplane flies based on the pressure and temperature of the air (i.e. density) where it is, 


not based on how far it is above the rocks below.  MSL and AGL altitudes are important for 


considerations such as obstacle clearance, but pressure (or pressure altitude) and temperature 


determine the aerodynamics that the airplane abides by. 


 


If we already know the pressure, we can find the corresponding pressure altitude by inverting 


Equations B1 and B2 to give 


 


 
6


2559.5


c
10x87559.6


1
H






  (Hc  36089.24 feet) (B3) 


 


 24.36089
10x80637.4


223360.0
ln


H
5c 














 






 (Hc > 36089.24 feet) (B4) 


 


Note that the relationship between pressure and pressure altitude is monotonic.  Every pressure (or 


pressure ratio) corresponds to a unique pressure altitude.  Every pressure altitude corresponds to a 


unique pressure. 


 


Pressure altitude is probably the most important type of altitude in flight test.  Pressure altitude can 


be measured directly with an altimeter.  In fact, an altimeter is a pressure gauge that measures 


absolute pressure and reports the result in units of feet pressure altitude.  Except for test points 


defined in relation to the ground (such as weapons deliveries), most test points will be defined in 


terms of pressure altitude. 


 


Pressure altitude at a particular elevation, such as at an airport, will change by small amounts as 


low pressure and high pressure weather systems are present.  These are the same factors that cause 


a local barometer reading to change with time.  Typically pressure altitudes at Edwards AFB 


(elevation 2303 feet) will vary from 2000 feet to 2400 feet. 


 


Pressure altitude is also important to understanding physiological effects.  Breathing depends on 


the difference between the partial pressures of oxygen and carbon dioxide in the air and in the 


blood stream.  Hypoxia arises when the difference between the partial pressures is too small.  The 


pressure of the air, which directly relates to the partial pressures of oxygen and carbon dioxide, 


can be expressed in terms of pressure altitude, giving a convenient measure that can be directly 
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read in the cockpit.  This cabin pressure altitude can then be easily interpreted by the aircrew for 


determination of physiological needs, such as supplemental oxygen. 


 


Density Altitude is defined just like pressure altitude if you substitute the word “density” for the 


word “pressure.”  That is, the density altitude is the geopotential altitude in the standard 


atmosphere that the density of interest would occur at.  For a given density, the density altitude 


can be determined by finding that density in the standard atmosphere table, then looking across to 


find the corresponding altitude. If we know the density ratio, , given by 


 


 
SL



  (A71) 


 


The relationship between density and geopotential altitude is defined by the standard atmosphere 


equations 


 


  = (1 – 6.87559x10
-6


 H)
4.2559


 (H  36089.24 feet) (A80) 


 


  = 0.297075 e
(-4.80637x10


-5
 (H – 36089.24))


 (H > 36089.24 feet)  (A88) 


 


Since we have said that density altitude is equal to the geopotential altitude corresponding to the 


density of interest, we can simply “replace” the geopotential altitude “H” with a density altitude 


“H” to get 


 


  = (1 – 6.87559x10
-6


 H)
4.2559


 (H  36089.24 feet) (B5) 


 


  = 0.297075 e
(-4.80637x10


-5
 (H



 – 36089.24))


 (H  36089.24 feet) (B6) 


 


These equations will give us the density ratio corresponding to any density altitude of interest, 


regardless if it is a standard day or not.  The difference on a non-standard day is that the density 


altitude will exist at a numerically different geopotential altitude. (Is this beginning to sound 


repetitious?)   


 


If we already know the density, we can find the corresponding density altitude by inverting 


Equations B5 and B6 to give 


 


 
6


2559.4


10x87559.6


1
H






  (H  36089.24 feet) (B7) 


 


 24.36089
10x80637.4


297075.0
ln


H
5















 



  (H > 36089.24 feet) (B8) 


 


Note that the relationship between density and density altitude is monotonic.  Every density (or 


density ratio) corresponds to a unique density altitude.  Every density altitude corresponds to a 


unique density. 


 


Density altitude is an important number for describing aircraft performance.  Many factors in 


aircraft performance, such as engine thrust, can be described as a first order approximation to vary 


with density.  Thus, if the local density altitude is 5000 feet, the thrust of the engine can be 


expected to be about the same as would be seen at 5000 feet elevation on a standard day.  


However, density is not very useful in the cockpit because we generally do not have a method to 


measure density directly.  Thus, we measure pressure (with the altimeter) to get a pressure altitude, 


and measure the temperature to determine the density during post-flight processing. 







22 Pitot-Statics and the Standard Atmosphere 


Since density altitude is affected both by pressure and temperature, the density altitude can vary by 


large amounts at a given elevation.  Assuming standard pressure at Edwards AFB (elevation 


2303), at a temperature of 105° F the density altitude would be 5655 feet.  At a temperature of 20° 


F the density altitude would be 196 feet. 


 


The Altimeter 


 


The altimeter is merely an absolute pressure gauge.  However, instead of reporting pressure in 


units like pounds per square foot, it reports pressure in units of feet pressure altitude.  The 


conversion between the sensed pressure and feet pressure altitude is as defined by the standard 


altitude. 


 


A mechanical altimeter, as shown in Figure 3.1, consists of a sealed case connected by a tube to 


the static port.  Inside the case is a sealed bellows which expands and contracts as the pressure 


changes.  This movement is translated through a clockwork mechanism to the pointer on the face 


of the instrument, which indicates the pressure in units of pressure altitude. 


 


 


Figure 3.1.  Altimeter Schematic 


 


Virtually all sensitive altimeters are 


equipped with a knob that allows 


setting the local sea level barometric 


pressure in a small window commonly 


referred to as the “Kollsman 


Window.”  If this reading is set to 


29.92, then the altimeter will directly 


read pressure altitude. 


 


For most performance and flying 


qualities testing, one of the first steps 


on each mission is to set the altimeter 


to 29.92 so that it will read pressure 


altitude.  This is because we are not 


interested in our actual distance above 


the ground, but rather in testing at 


certain atmospheric properties.  


Testing at pressure altitudes lets us 


know what the air pressure is. 


 


However, just setting the altimeter to 


29.92 will not necessarily cause it to 


read pressure altitude.  Many aircraft 


STATIC 


PRESSURE


Why Is It Called the Kollsman Window? 


 


Back in the days of early instrument flight when 


Jimmy Doolittle was trying to develop blind flying, 


altimeters were not adjustable and not very sensitive.  


Climbing from sea level to 20,000 feet sent one 


pointer around the face of the altimeter one time 


instead of twenty.  You might have been able to read 


one to the nearest 500 feet.  Doolittle needed a 


altimeter readable to at least 20 feet of altitude. 


 


Mr. Kollsman worked for Bendix, a manufacturer of 


instruments, and he and Doolittle went to 


Switzerland to work with Swiss watchmakers to 


increase the sensitivity of an altimeter.  While they 


were successful, solving one problem caused 


another—now the altimeter was sensitive enough to 


change significantly with local barometric changes.  


Kollsman designed the system to compensate for 


barometric changes, and the indicator window was 


named in his honor. 
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have devices, such as an air data computer (ADC) that electrically drive the altimeter.  This allows 


corrections to be applied to the sensed static pressure to compensate for the position error, 


resulting in a more accurate altitude presented to the pilot.  More accurate, that is, if the position 


error model in the air data computer is correct.  In flight test, a position error model may not exist 


yet (since this is what air data calibration testing is supposed to determine) or it may be known to 


be wrong, such as when the Pitot-static system has been modified, such as by installing a nose 


boom. 


 


In the T-38C, the altitude shown on the Primary Flight Display (PFD) is always compensated by 


the ADC.  The standby altimeter only receives uncompensated static pressure.  Because the T-38C 


uses a compensated Pitot-static tube (covered in Chapter 6), there is normally little difference 


between altitudes on the PFD and standby altimeter.  Some TPS T-38Cs are modified with a flight 


test nose boom, and the ADC is modified with the appropriate position error compensation.  In 


these aircraft, a large difference in the altitudes on the PFD and standby altimeter will be seen in 


certain flight conditions. 


 


Some aircraft provide a method to defeat the static pressure compensation.  In the F-16, the round 


dial altimeter is compensated in the “RESET” mode and uncompensated in the “PNEU” 


(pneumatic) mode (altitude as shown in the Head Up Display (HUD) is always compensated and 


not affected by the position of the RESET/PNEU switch).  In the uncompensated mode, static 


pressure is fed directly from the static ports to the altimeter.  While these modes were probably 


installed as a backup mode in case the air data computer failed, they have the additional benefit of 


allowing flight testers to defeat position error compensation while trying to determine what the 


position error actually is. 


 


Some other aircraft, such as the F-15 or T-38C, use only an electrically driven altimeter.  In this 


case, there is no option available to defeat the ADC inputs.  Even so, it is not unreasonable to do 


Pitot-static calibrations on such an aircraft.  The effects of the ADC inputs would be to change the 


shape of the perceived position error.  To update the ADC would require adding the new 


correction to the correction in the ADC at the time of the testing. 


 


So what happens when I turn that knob to something 


other than 29.92?  Internally, the knob rotates the internal 


mechanism of the altimeter to move the needles to the 


new indication.  Mathematically, the knob is adding a 


bias to shift the relationship between the pressure altitude 


measured and the geopotential altitude indicated, as 


shown in Figure 3.2.   When set to 29.92, this bias is zero.  


The purpose of this adjustment is to allow a pressure 


altimeter give a reasonable indication of geopotential 


altitude. 


 


Consider the case of an airfield where the barometer 


reading is 29.82 inches of mercury.  Now this does not 


mean that the ambient air pressure at the airfield is 29.82 


inches.  In fact, if you were to set up a mercury barometer 


(which reads absolute pressure) on the numbers of 


Runway 5R at Edwards (elevation 2303 feet MSL), the 


pressure reading would be 27.42 inches of mercury.  


How’s that work?  The barometer reading that you get 


from the weather shop is the sea level pressure that would 


give you the current local pressure at your elevation, assuming a standard sea level temperature 


and a standard temperature lapse rate.   


 


It was so nice of Mr. Kollsman to provide us a window in our altimeters to adjust for non-standard 


day conditions.  If only it really did.  It turns out that while adjusting the altimeter reduces the 
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errors in reading altitude on non-standard days, it does not eliminate them.  To understand this, 


let’s look at some notional non-standard days.   


 


 
 


Figure 3.3.  Pressure and Altitude Relationships on Non-Standard Days 


 


Figure 3.3 shows the relationship of pressure ratio () to geopotential altitude on a standard day, a 


day with a temperature 20° C hotter than standard, and a day with a temperature 20° C colder than 


standard.  We could also call the x-axis Pressure, which would just change the scale on the axis.  


Looking at equation A63 for the troposphere 
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we see that the only variables which would change the result of this equation in Figure 3.3 are the 


sea level temperature (TB) and the temperature lapse rate (L).  Experience has shown that the 


temperature lapse rate stays reasonably constant at approximately 2° C per 1000 feet from day to 


day.  Look at the temperatures aloft on most any day’s weather report and you will see that this is 


generally true.  Therefore, assuming a standard temperature lapse rate and no temperature 


inversions, the real driver in changing the pressure profile is the temperature at sea level (or what 


the temperature would be at sea level extrapolated down from the current elevation). 


 


As seen from the lines shown on Figure 3.3, the pressure ratio of 0.6877 corresponds to a pressure 


altitude of 10,000 feet.  This can be seen from the Standard Day (ISA) curve.  On a standard day, 


the pressure ratio (and pressure) corresponding to 10,000 feet pressure altitude occurs at a 


geopotential altitude of 10,000 feet.  However, if the temperature is 20° C above standard 


temperature, the pressure ratio (and pressure) corresponding to 10,000 feet pressure altitude now 


occurs at a geopotential altitude of 10,688 feet.  Note that the change in the shape of the curve is 


not a direct vertical shift, but rather more of a rotation around  = 1 and sea level. 
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“But wait a minute, Moosebreath!” you think, being the sharp TPS student that you are.  “You just 


said a few paragraphs back that changing the setting in the Kollsman window shifts the curve 


vertically (adds a bias to the displayed altitude for the pressure measured).  How can those two 


match up?”  Congratulations, Grasshopper. You are becoming wise in the ways of altimetry. 


 


Of course, the answer is, “It depends.” If the reason for the non-standard pressure is simply a high 


or low pressure system in the area with standard temperature and standard temperature lapse rate, 


then the altimeter can accurately model the altitude.  However, if the difference is because the 


temperature in non-standard, then we have the conditions shown in Figure 3.4. 


 


 
Figure 3.4.  Altimeter Adjustments for Non-Standard Days 


 


Figure 3.4 shows a notional non-standard day with the actual sea level pressure at 29.92 and the 


temperature at sea level 20° C above standard (standard lapse rate).  At the elevation of Edwards 


(2303 feet), an altimeter setting of 30.07 makes a perfect altimeter indicate 2303 feet.  However, 


because these two lines have different slopes, the indicated altitude only matches the geopotential 


altitude at one point (in this case, 2303 feet).  How do we live with this error?  Easily—all 


altimeters will have the same error, so altitude separation between airplanes is preserved. 


 


Generally the altimeter setting will be given such that indicated altitude and geopotential altitude 


match at the field elevation.  For instrument flight, near the ground is the location where this 


match is most critical. 


 


Another interesting point hinted at by Figure 3.4 is that because the two lines diverge, for the same 


atmospheric conditions, the altimeter setting at a higher elevation airport will be higher than the 


altimeter setting at a lower elevation airport.  This is because the altimeter cannot adjust itself for 


differences caused by non-standard temperatures.  Operationally we have developed flight 


procedures and rules that work around this limitation. 
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How Much Does the Kollsman Window Setting Change the Altitude Displayed? 


 


Ask this question of any pilot who has recently taken an FAA Knowledge Test and they will tell 


you “One inch of mercury per 1000 feet.”  Not bad as a rule of thumb, but hardly accurate enough 


for flight test data or building an altimeter. 


 


Remember that the number in the Kollsman window is the pressure at sea level which would make 


your altimeter read field elevation at the current pressure (or pressure altitude), assuming standard 


sea level temperature and standard temperature lapse rate.  Hence, we can figure out what the 


pressure ratio at sea level would be.  For example, let’s assume 


 


 Altimeter Setting = 29.82 (B9) 
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levelsea   (B11) 


 


 sea level = 0.9967 (B12) 


 


Then by using Equation B3 we can find the amount of the shift. 
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 Hc = 93 feet  (B14) 


 


 


Altimeter Settings and ATC 


 


Ever wonder why when you’re talking to ATC, each time you get handed off to a new 


controller, the first thing he or she does is to tell you what the altimeter setting is at some 


nearby airport that you weren’t planning to go to? Ever wonder why they think this is so 


important?  


 


When you consider that your Mode C encoded altitude is pressure altitude, how does ATC 


ensure ground clearance if all they are receiving is pressure altitude?  For that matter, why do 


they always know what altitude you are seeing on your altimeter, even though you’re not set 


to 29.92? 


 


As told to me by Pat Fagan, air traffic controller at Los Angeles center (ZLA):  


 


"The radar screen that we look at is broken up by the computer into a grid, called sort boxes. 


The computer assigns data to a sort box, based on the computer program. One sort box may be 


assigned Boron as its main source for radar data, while the one next to it may be assigned Paso 


Robles. It is my understanding that the altimeters work the same way. A sort box may be 


assigned the Bakersfield altimeter, and the computer knows what the altimeter setting is for 


Bakersfield and automatically compensates for pressure altitude for us so that we see the same 


thing as the pilot. "  
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So for our example, an altimeter setting of 29.82 means a pressure altitude of 93 feet at a 


geopotential altitude of sea level (0 feet).  Since 29.82 is less than 29.92, we would expect a 


positive pressure altitude for the lower pressure, so that checks. 


 


How does this relate to what is displayed on our altimeter?  Under these conditions, if an altimeter 


at sea level (geopotential altitude) is set to 29.92 (to read pressure altitude), it would indicate 93 


feet of altitude.  Turning the Kollsman window from a pressure of 29.92 DOWN to 29.82 would 


change the indicated altitude from 93 feet DOWN to 0 feet.  So raising the pressure reading in the 


Kollsman window raises the indicated altitude, and lowering the pressure reading lowers the 


indicated altitude.  This is the size of the shift up and down. 


 


NOTE:  This method can also be used to correct your altitude data if you ever inadvertently forget 


to set 29.92 on your altimeter before taking data.  Just be sure to note what the altimeter setting 


was. 


 


This raises the question of just how accurate is the Pilot’s Rule of Thumb.  The highest altimeter 


setting possible on most altimeters is 31.00.  At this setting, the equations above show a shift 


of -984 feet.  The rule of thumb calculates a shift of –1080 feet, for an error of 96 feet, or about 10 


percent.  This is an extreme example—generally the error will be much smaller. 


 


Pressure Contour Levels 


 


As temperature changes, the geopotential altitude that a particular pressure altitude occurs at 


changes.  This is hinted at in Figure 3.3, but can also be seen by reviewing the Equation of State 


 


 P = RT (A3) 


 


For an air mass at constant pressure, if the temperature increases, the density must decrease.  With 


a fixed mass of air, this means that the volume must increase.   


 


This also happens on the macro scale of the atmosphere.  As the air increases in temperature, it 


expands, and pushes the geopotential altitude that a particular pressure (and hence pressure 


altitude) occurs at higher.  If we drew a line (or surface) connecting all of the points of equal 


pressure (a pressure contour), this line would move up in areas of localized heating.  Figure 3.5 is 


a notional drawing of this effect.  Likewise, if the air is cooled, the pressure contours will move 


down. 


 


 
 


Figure 3.5. Pressure Contour Movement with Temperature 


 


This expansion and contraction of the pressure contours has two major implications:  the 


geopotential distance between the contours change, and their height above the ground changes. 
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The first implication affects the way we do flight test.  One example comes in climb testing.  We 


measure climb rate by recording the time to climb between two pressure altitudes, because our 


altitude instrument, the altimeter, measures pressure.  Imagine doing climb testing on a hot day 


from 5000 to 6000 feet pressure altitude.  You think you are measuring the time to climb 1000 


feet, but on this day the 5000 foot pressure altitude contour and the 6000 foot pressure altitude 


contour are 1075 geopotential feet apart.  Because climbing is an exercise in gaining potential 


energy, the amount of potential energy to be gained is dependent on geopotential feet, not on 


pressure altitude feet.  Therefore, the climb will take longer because more geopotential altitude 


must be gained.  To determine the climb rate on a standard day, this error brought on by a 


deficiency in our altitude measurement system must be accounted for.  For small altitude changes 


(less than 3000 feet or so), this error can be corrected by the following relationship between 


geopotential altitude (H) and pressure altitude (Hc): 


 


 c
std


test H
T


T
H   (B23) 


 


where  


 


 Ttest = Temperature measured at median altitude 


 Tstd = Standard day temperature for median altitude 


 


The second implication can affect our methods of operation.  As the temperatures get colder, the 


pressure contours get closer to the ground.  “High to Low, look out below” is a time-honored pilot 


catch phrase that sends a warning for going into either lower temperature or lower barometric 


pressure areas.  This warning becomes especially important when operating close to terra firma, 


such as on approaches.  As discussed around Figure 3.4, with a field altimeter setting in the 


Kollsman window, the indicated altitude and the geopotential altitude only match at one point, 


usually field elevation.  That works fine for the touchdown point, but other AGL altitudes are 


important on an instrument approach.  If the temperature is hotter than standard, there isn’t a 


problem, because you are higher above the obstructions than you think.  However, when it is 


colder than standard, your airplane will be closer to the obstructions than you think.  DOD 


addresses this in the Flight Information Handbook (Ref 6), excerpted here: 


 


3.  Temperature Error 


 


a.  Pressure altimeters are calibrated to indicate true altitudes under International 


Standard Atmosphere (ISA) conditions.  Any deviation from these standard 


conditions will result in an erroneous reading on the altimeter.  This error 


becomes important when considering obstacle clearances in temperatures lower 


than standard since the aircraft’s altitude is below the figure indicated by the 


altimeter. 


 


b.  The error is proportional to the difference [sic, actually the ratio (Equation 


B23), not the difference] between actual and ISA temperature  and the height of 


the aircraft above the altimeter setting source.  Height above altimeter source is 


considered to be published HAT [height above touchdown] or HAA [height 


above airport] for the approach.  The amount of error is approximately 4 feet 


per thousand feet for each degree Celsius of difference. 


 


c.  Corrections will only be made for Decision Heights (DHs), Minimum 


Descent Altitudes (MDAs), and other altitudes inside, but not including, the 


Final Approach Fix (FAF).  The same correction made to DHs and MDAs can 


be applied to other altitudes inside the FAF. 
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This text is then followed by a table with inputs of Airport Temperature and AGL altitudes.  The 


table appears to be loosely based on Equation B23 assuming a sea level elevation with the values 


rounded up to a convenient multiple of 10 feet.  A sea level elevation is the worst case, since the 


standard temperature is the greatest value above the temperature listed.  The resulting corrections 


are thus conservative (more than needed) at higher elevations, and it greatly simplifies the chart by 


not introducing elevation as an independent variable. 


 


Density Altitude—Finding Density for Non-Standard Conditions 


 


Density altitude can be a powerful first-order predictor of aircraft performance.  Additionally, air 


density is a required parameter for many data reduction calculations.  So how do we determine 


density?  Aircraft are typically not equipped with a density-ometer. 


 


If we look at the Equation of State again, 


 


 P = RT (A3) 


 


we see that we should be able to calculate density if temperature and pressure are known, since R 


is a known constant.  Air temperature can be measured with various types of thermometers and 


corrected for Mach effects (see later section).  Pressure can be determined from pressure altitude.  


By using the temperature and pressure ratios, we can even determine the density without having to 


remember the value of R. 


 


Using the ambient air temperature, find the temperature ratio for the test condition. 
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Then determine the pressure ratio from the pressure altitude. 
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With these two ratios, the density ratio can be determined. 


 


 




  (B26) 


 


If necessary, the density can then be found from the definition of the density ratio. 


 


  =  SL (B27) 


 


Density altitude can be calculated from the density ratio. 
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The pressure ratio is found from the pressure altitude using the standard atmosphere relationships 


because pressure altitude is defined by the standard atmosphere.  Do not fall in the trap of 


finding the temperature ratio by the standard atmosphere formulas or by a standard 


atmosphere table with the pressure altitude.  Doing so will give the temperature ratio for a 


standard day, not the test day temperature ratio.  This will also result in finding the standard day 


density, not the test day density.  It is the non-standard temperature ratio that results in the non-


standard density. 


 


Measuring Rate of Climb 


 


Measuring rate of climb is similar to measuring altitude, except that instead of measuring the 


pressure, we need to measure the rate of change of the pressure.  A mechanical rate of climb 


indicator, also known as a Vertical Speed Indicator (VSI) or Vertical Velocity Indicator (VVI) is 


connected to the static ports to sense static pressure.  It is constructed similar to an airspeed 


indicator with a single bellows, but static pressure is fed to the inside of the bellows and also into 


the case, as shown in Figure 3.6.  The feed into the case is through a restricted orifice (highbrow 


talk for little bitty hole), which, oddly enough, restricts the flow.  Static pressure can therefore feed 


in and out of the bellows freely, but changes slowly in the case.  The resulting difference in 


pressure as the static pressure is changing deflects the bellows and moves the needle.  In steady 


state conditions, the pressure inside the bellows and the pressure inside the case will equalize and 


the instrument will indicate zero climb.   


 


 
Figure 3.6. Vertical Velocity Indicator Schematic 


 


Because of the principles used to measure the change in static pressure, the indication on the 


instrument will always lag behind changes in the actual rate of climb (i.e. vertical acceleration).  It 


takes a finite time to build up a sufficient difference in pressure to cause an indication.  The lag in 


the instrument depends on the size of the orifice.   


 


If the orifice is very small, the instrument will react quickly to changes in pressure from the steady 


state, but will take a very long time to return to zero once steady state conditions are achieved.  


The pilot would see this as an overly sensitive and noisy indicator that would be likely to falsely 


report climbs and descents in level flight. 


 


If the orifice is larger, the instrument will require much larger changes in pressure to react, but 


would achieve level flight indication more quickly.  The pilot would see this as a sluggish and 


insensitive indicator that would not indicate small changes in climb or descent angle, and would 


not be useful as a trend instrument. 


 


The best compromise solution for most aircraft seems to be a design with about a 9 second lag.  


Another design that has been developed for transport type aircraft is the so called “instantaneous” 


VVI.  This system introduces a mechanical lead filter by adding a mass onto the bellows.  In a 


vertical acceleration, such as pulling into a climb, the acceleration of the mass causes a force that 


deflects the bellows in the proper direction to give the initial climb or dive indication until the 


difference in pressure can build up.  Presumably this allows opening the orifice size to allow the 


indicator to reach a level flight indication quicker.  The result can be an indicator that is useful for 
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a transport application where most flying is straight ahead and turns are gentle.  Such a device 


would not be acceptable for aircraft that do a lot of maneuvering, because the instrument cannot 


tell the difference between vertical acceleration (relative to the earth) and normal acceleration 


(relative to the airplane).  Thus, flying a level turn would show a false rate of climb because of the 


effect of the mass on the bellows. 


 


Of course, in an air data computer equipped aircraft, rate of climb can be mathematically 


calculated from changes in static pressure with time.  However, this type of differentiation tends to 


create a lot of high frequency noise, which must be damped out by a low pass filter, which again 


adds lag in the system.  As a result, even rate of climb calculated in an air data computer will still 


have a noticeable lag in the indication. 


 


Gliders require indication of rate of climb on the order of ±1000 feet per minute, unlike powered 


aircraft that typically indicate between ±2000 and ±6000 feet per minute.  To achieve this level of 


sensitivity, a different design is used.  Figure 3.7 shows a cutaway drawing of a variometer. 


 


 


Figure 3.7.  Variometer Schematic 


 


One side of the variometer is connected to that static port or a “total energy probe” (described in 


Appendix I) and the other side is connected to a reference chamber, which is a sealed container 


holding a volume of air.  As the aircraft climbs, static pressure is reduced, and air flows out of the 


reference chamber, through the variometer, and out the static port.  As the air passes through the 


variometer, it flows past a vane and creates a force on that vane, which deflects a needle against a 


light spring.  As the aircraft descends, air flows from the static port, through the variometer, and 


into the reference chamber.  The size of the reference chamber will affect the response of the 


variometer, similar to the size of the orifice in the VVI.  A large chamber will provide a lot of 


airflow, such that the variometer will be more sensitive, but will take longer to stabilize.  A small 


chamber will result in an insensitive variometer which will stabilize quickly.  Because of the very 


small pressure gradients being measured, the variometer tends to be more sensitive than a VVI and 


also more noisy in its indication. 
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Chapter 4 
 


 


Airspeed Measurement 
 


So How Fast Are We Flying? 
 


Now that we’ve figured out how high we are, we next ask “How fast are we flying?”  Much like 


answering the altitude question, the airspeed question is not that simple either.  The answer is 


different depending on what you really want to know. 


 


Your first question might be to support the question of “When will we get to our destination?”  In 


this case, a navigation question, you are interested in your speed relative to the ground.  This type 


of speed is called Ground Speed. 


 


However, we also know that if we have a large headwind, it will take a lot longer to get where 


we’re going.  But the airplane doesn’t fly based on how fast it is traversing the ground.  In fact, the 


airplane has no idea how fast the ground is moving beneath it.  All the airplane knows is how fast 


it is flying through the air mass around it.  How fast that air mass is moving relative to the ground 


(wind speed) is mostly immaterial to how the airplane flies.  The speed of the airplane through the 


air mass (or the speed of the air mass past the airplane) is called True Airspeed. 


 


Of all the speeds that we will be discussing, only Ground Speed and True Airspeed are actually 


“speeds.”  That is, these are the only two speeds that can be characterized as the movement of 


some particle over a distance in a measured period of time.  All of the other speeds discussed will 


be engineering constructs created because they have some useful characteristics in making the 


flying task or data analysis easier. 


 


During many piloting tasks, the pilot is called upon to control his angle of attack.  For a given 


configuration, an aircraft will always stall at the same angle of attack (the “critical” angle of 


attack), regardless of weight, load factor, altitude, or temperature.  Maximum range will occur at a 


particular angle of attack.  Likewise for maximum endurance or best glide.  The landing approach 


is flown at a particular angle of attack, a certain fraction of the critical angle of attack.  While 


some aircraft have angle of attack indicators, many do not.  In these aircraft, airspeed has been 


used as a measure of angle of attack, but the airspeed corresponding to an angle of attack depends 


on weight, load factor, altitude, and temperature.  If true airspeed were used for this purpose, a 


new airspeed would have to be computed for each approach as conditions changed.  If we use 


something called Equivalent Airspeed, then the altitude and temperature (read:  density) effects 


are accounted for, such that at a given weight and load factor, each angle of attack corresponds to 


a unique equivalent airspeed.  Additionally, airspeed limits, such as gear extension or flap 


extension, which are really functions of dynamic pressure, are constant if expressed in equivalent 


airspeed. 


 


Equivalent airspeed in many ways would be the best for the piloting task, but it is still difficult to 


measure with a mechanical pressure gauge.  While we may have air data computers and electric 


instruments today, Bill Gates was born a little too late to sell a PC to the Wright Brothers.  


Aviators tend to be a conservative lot, in their flying operations at least if not their politics.  That 


is, pilots like new airplanes to fly like the airplanes they’ve been flying.  As a result, we still do a 


lot of things because “That’s the way we’ve always done it,” which is not necessarily a bad thing.  


In some cases, trying to change something to a “better way” might require a large change in the 


flying infrastructure that is not economically viable.  What does all of this have to do with 


airspeed?  Well, it turns out that if we make a small change to our definition of equivalent 


airspeed, we get something we call Calibrated Airspeed which is reasonably close (but not exact) 


to equivalent airspeed to give us many of the advantages of equivalent airspeed, but in a form 
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much easier to build a mechanical gauge to measure.  Because the gauge is easier to build, it is 


simpler, and thus cheaper and more reliable.  That’s the way it’s been done in the past, and that’s 


the way it will be done for the foreseeable future. 


 


True Airspeed 


 


From Bernoulli’s Equation, we can get a fairly simple expression for airspeed for incompressible 


flow.  However, it is not even worth looking at because we deal with many airplanes that fly at 


speeds significantly above the incompressible region.  Since the compressible flow equations work 


equally well at incompressible speeds, we’ll just jump straight to the compressible equations. 


 


As shown in gross detail in Appendix C, starting with the first law of thermodynamics, the energy 


equation, the speed of sound and Mach Number (coming up in a later section), we can derive a 


velocity equation for an ideal gas in isentropic flow, which is the nice, “simple” relationship given 


by 
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Using  = 1.4 for air 
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There are three variables in this equation:  Total Pressure (PT), Ambient Pressure (Pa), and ambient 


density (a).  We can measure total pressure from the Pitot tube, and ambient pressure (or at least a 


reasonable approximation) from the static ports, but what about the density?  Density is not easily 


measured, and presumably we could measure ambient pressure and temperature to find density, 


but it is not easy.  Mechanical true airspeed gauges have been built, and can still be seen in older 


C-130s and B-52s.  These gauges had two pressure inputs and a temperature input, and were 


notoriously inaccurate.  While a quick reading within 10 to 20 knots may be good enough for 


navigation purposes, it is way too much error for flight test purposes.  Besides that, the complexity 


increased costs and degraded reliability. 


 


So what would be the advantages of knowing true airspeed?  About the biggest benefit is that true 


airspeed combined with winds can be used to find ground speed for navigation.  In these days with 


ubiquitous GPS and INS in many aircraft, ground speed can be better determined with these 


devices. 


 


Equivalent Airspeed 


 


As mentioned earlier, the major problem in measuring true airspeed comes from measuring 


density.  Additionally, true airspeed is not very useful to the pilot because the relationship between 


true airspeed and angle of attack varies with density.  So, we say, why not just remove the 


dependence of airspeed on density?  We can do that by replacing the ambient density (a) with a 


constant sea level density (SL).  By choosing sea level density, equivalent airspeed and true 


airspeed are equal at sea level.  The equivalent airspeed equation becomes 
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In addition to the benefits mentioned above to the piloting task, equivalent airspeed is very useful 


in conditions where a particular dynamic pressure is of interest, because each equivalent airspeed 


corresponds to a unique dynamic pressure, given by 
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Because the sea level density is a constant, the equivalent airspeed is the only variable on the right 


hand side, so each value of dynamic pressure corresponds to one value of equivalent airspeed, 


regardless of temperature or pressure altitude. 


 


Equivalent airspeed has a lot of advantages and seems very attractive for our purposes, but it still 


has drawbacks for implementation in a mechanical instrument.  A differential bellows could be 


used to measure the differential pressure (PT – Pa), but a second bellows would be required to 


independently measure ambient pressure (Pa).  Like a true airspeed gauge, the resulting instrument 


would be rather complex, costly, and not very reliable.  I have never seen an example of a 


mechanical equivalent airspeed gauge. 


 


To get equivalent airspeed from true airspeed 
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Calibrated Airspeed 


 


Again, looking back in history, engineers were looking for a way to build a simple, reliable 


airspeed indicator.  The concept of equivalent airspeed promised a lot of benefits, but still required 


measuring the differential pressure and the ambient pressure independently. But what if we just 


ignored the effect of ambient pressure?  If we replace the ambient pressure with a constant sea 


level pressure, we create a new airspeed concept which we call “Calibrated Airspeed.”  Calibrated 


airspeed is given by  
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For low airspeeds and low altitudes, calibrated airspeed is very close to equivalent airspeed, and 


thus retains many of the benefits of equivalent airspeed with regards to stall speeds, approach 


speeds, limit speeds and such.  Thus, we can produce a device very close to an equivalent airspeed 


gauge, yet build it with a single bellows.  The only variable in Equation C65 is the differential 


pressure (PT – Pa), so only one differential pressure sensor (bellows) is required.  We will see later 


that calibrated airspeed also has some very useful properties with respect to Mach number. 


 


But how can we convert between equivalent airspeed and calibrated airspeed and back again?  


Well, because the ambient pressure was changed to sea level pressure in two places from Equation 


C49 to Equation C65, there is not a simple, straightforward mathematical conversion as we saw 


between true airspeed and equivalent airspeed.  Therefore, we again go back in history to the days 


of slide rules and before when complex mathematical equations were accomplished by use of 
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tables and graphs.  That way, we can do the calculations once (in our case, we can use a 


spreadsheet), and then refer to the table or graph after that. 


 


Since we’re brute forcing the equation, we can do it in either of two ways—by multiplication or 


addition.  Hence, we use the “f factor” as 


 


 Ve = f Vc  


 


where f is defined as 
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Similarly, if we choose to convert by addition, we have 


 


 Ve = Vc + Vc  


 


where Vc is defined as 


 


 cec VVV   (C135) 


 


Well, that was simple enough.  If only.  So how do we calculate the f factor or Vc?  Looking 


again at Equation C65, we can solve this equation for the differential pressure (PT – Pa).  If we 


choose a calibrated airspeed, we can calculate the corresponding differential pressure.  If we then 


select a pressure altitude, we can calculate the ambient pressure (Pa).  Using the differential 


pressure and the ambient pressure, we can then calculate the equivalent airspeed using Equation 


C49.  Having now both the calibrated airspeed and the equivalent airspeed, we can divide them to 


get the f factor (Table 4.1) or subtract them to find Vc. 


 


Table 4.1 


f Factors 


 


Pressure  Calibrated Airspeed (knots) 


Altitude (ft) 100 200 300 


Sea Level 1.000 1.000 1.000 


10,000 0.999 0.995 0.989 


20,000 0.997 0.987 0.973 


30,000 0.993 0.975 0.950 


40,000 0.988 0.957 0.916 


50,000 0.979 0.930 0.871 


 


A more complete table of f factors is shown in Appendix C, along with a table of Vc and charts 


of each. 


 


You may have had a flight instructor in the past who drilled into your head that stall speeds, 


approach speeds, flap and gear limits, or whatever were constant in terms of calibrated airspeed, at 


least at a particular gross weight.  Or you may have seen it written as “indicated” airspeed, which 


is the same as calibrated airspeed if there are no instrument or position errors (more on that later).  


Questions on this topic even appear on the FAA written knowledge tests.  If the FAA says it’s 


true, it must be true, right?  Well, not quite. 


 


We established a few pages ago that these speeds were constant in terms of equivalent airspeed, 


because each equivalent airspeed corresponded to a unique dynamic pressure, regardless of 
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altitude or temperature.  We have also established that calibrated airspeed and equivalent airspeed 


are not the same.  So what’s the deal? 


 


Well, when do you really care about stall speeds and approach speeds?  When you’re slow and 


generally close to the ground.  Well, let’s assume you’re landing your T-38 at Leadville, Colorado, 


the highest airport in the contiguous 48 states.  (Of course, you might not think that a good idea 


since the elevation is 9927 feet and the runway is only 6400 x 75 feet.)  Let’s assume that your 


approach speed today is 200 knots calibrated airspeed (KCAS).  Looking at Table 6, the f factor at 


200 KCAS and 10,000 feet pressure altitude is 0.995.  Running through the highly complex math, 


that gives us an equivalent airspeed of 199 knots equivalent airspeed (KEAS).  This is such a 


small difference, even at this extreme condition, that it just isn’t worth worrying about.  This error 


is also probably smaller than other errors present in the airspeed system.  Hence, for ease of 


training, we say that the performance speeds are constant with calibrated airspeed.  While not 


absolutely true, it is true within acceptable tolerances. 


 


In the common parlance, the f factor has been referred to, albeit incorrectly, as the 


“compressibility correction.”  If we look back at the definition of compressible flow, we find that 


compressibility refers to a condition where the density is not constant.  However, the differences 


between equivalent airspeed and calibrated airspeed arise because of differences between ambient 


pressure and sea level pressure.  Thus, the f factor is a pressure correction, not a density 


correction. 


 


So why the confusion?  My suspicion is that the need to apply the f factor was not significant until 


airplanes were flying fast enough and high enough that the airflow had to be considered 


compressible.  This was the region where compressibility effects, such as transonic drag rise and 


Mach tuck became an issue, so someone incorrectly concluded that the airspeed correction must 


be a compressibility effect too.  There’s no benefit in trying to correct everyone now, but as 


professional testers and engineers we should understand that the f factor represents the results of 


changing the pressure value that we use in our equations. 


 


Time for the Nestea Plunge 


 


Having trouble relating the various airspeeds?  Take a look at Figure 4.1. 


 


 
 


Figure 4.1.  Airspeed ICE-T 


 


This handy graphic shows the relative magnitudes of the different types of airspeed.  We draw a 


radical (square root sign) and label the corners as shown, where 


 


 I Indicated 


 C Calibrated 


 E Equivalent 


 T True 


 G Ground 


 


The conversion from indicated to calibrated airspeed is the addition of instrument and position 


corrections (to be introduced later), which are generally small and don’t change the magnitude 


I C


E


T G
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very much.  To get from calibrated to equivalent airspeed we multiply by the f factor, which is 


almost always less than one, so the magnitude of the equivalent airspeed will be less than the 


magnitude of the calibrated airspeed.  To get true airspeed, we divide the equivalent airspeed by 


the square root of the density ratio.  Since we are dividing by the square root of a number less than 


one, the magnitude of the true airspeed will be greater than the magnitude of the equivalent 


airspeed.  Also, it turns out that typically the true airspeed will have a higher magnitude than the 


calibrated airspeed as well.  To calculate ground speed, we add the winds to the true airspeed, 


which may increase or decrease the magnitude. 


 


These generalizations will hold true for most cases, unless you’re doing something odd like flying 


fast below sea level in Death Valley on a really cold day.  Of course, if you’re doing that, the Ops 


Officer wants to see you about scheduling your Flight Evaluation Board to review your gross poor 


flight discipline. 


 


Figure 4.1 can also help you remember how to do the conversions.  For instance, you know that to 


calculate the equivalent airspeed from calibrated airspeed, you need to multiply or divide by the f 


factor, but can’t remember which.  Looking at the figure, you know that the equivalent airspeed 


needs to be less than the calibrated airspeed.  Because you also remember that the f factor is less 


than one, you can reason that you need to multiply the calibrated airspeed by the f factor to get a 


smaller number.  Easier done than wildly flipping pages through this book. 


 


Differential Pressure (Compressible q) 


 


From incompressible flow, we had from Bernoulli’s Equation 
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We could rearrange this to 
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From this concept came the definition of dynamic pressure, q, as 
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For our purposes, and through most engineering disciplines, this is the definition of dynamic 


pressure.  In this equation, the density is the freestream density, or the density of the air far enough 


ahead of the aircraft to be unaffected by the aircraft. 


 


This works fine at low speeds, but at higher speeds the density is no longer constant.  For Equation 


C1 to remain true, the density in the equation must be allowed to change to that actually seen at 


the Pitot and static ports, which will be higher than the freestream density.  Rather than mess with 


that, we will leave the definition of dynamic pressure alone and define the differential pressure as  


 


 qc = PT - Pa (subsonic) (C66) 


 


The relationship between dynamic pressure and differential pressure is given by  
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At low Mach numbers, these two pressures are essentially equal, but diverge at higher Mach 


numbers.  The real benefit to defining “qc” is that it is shorter to write than “PT – Pa”. 


 


Effects of Temperature and Pressure on Airspeed 


 


By looking at how temperature and pressure affect airspeed, we can get some guidance about 


optimum altitudes to fly at.  For purposes of this discussion, we will assume that the differential 


pressure, qc, remains constant, so that the pressures, and thus forces, seen by the airplane remain 


constant. 


 


Calibrated airspeed is solely a function of qc, as seen in Equation C65 
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Thus, at a constant qc, the calibrated airspeed will always be the same.  In fact, every value of 


calibrated airspeed corresponds to a unique value of qc.  Changes in pressure and temperature will 


not affect calibrated airspeed under these conditions. 


 


Equivalent airspeed, given by 
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does not have a temperature dependence, because density has been set to the sea level standard 


value.  The pressure dependence is not obvious from inspecting the equation, but if we look at the 


f factor table (Table 6) at a constant calibrated airspeed (constant qc), we see that as the pressure 


altitude increases (decreasing pressure) the equivalent airspeed also decreases. 


 


True airspeed, given by  
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has the same pressure dependence as equivalent airspeed, plus a pressure and temperature 


dependence through the density term.  Thus, for a constant qc and constant pressure altitude, if 


temperature decreases, density increases, and true airspeed decreases.  For a constant qc and 


constant temperature (such as in the stratosphere), as pressure altitude increases, true airspeed 


increases for the same reasons as equivalent airspeed. Additionally, we know from the standard 


atmosphere model that we can expect density to decrease with an increase in altitude, which will 


lead to a higher true airspeed. 


 


That’s nice as a mathematical exercise, but what does it mean to us?  Consider the case of the 


airliner in cruise.  Any airplane will cruise best at a particular angle of attack.  For a given weight 


in level flight, this angle of attack will occur at a particular equivalent airspeed.  Since a given 


angle of attack will result in a particular drag coefficient, the equivalent airspeed gives a unique 


dynamic pressure, and the reference area is a constant, the drag for this condition will be the same 


regardless of what altitude we fly at. 
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In the cruise condition, thrust required is roughly equal to drag.  For jet engines, the fuel flow is 


roughly proportional to thrust.  So for this condition, if the drag is the same regardless of altitude, 


the fuel flow will be the same regardless of altitude. 


 


As altitude increases, the true airspeed corresponding to a given equivalent airspeed increases.  So 


if my fuel flow is constant with regards to equivalent airspeed and altitude, I should want to fly at 


a high altitude to get a high true airspeed.  Because the true airspeed is higher, the time to reach 


the destination will be less.  Because the time is less at a constant fuel flow, the total amount of 


fuel burned will be less.  Customers are happy because the trip takes less time, and management is 


happy because operating costs are reduced. 


 


Of course, there is a limit to the savings possible, primarily driven by the fuel required to climb to 


altitude.  A reasonable rule of thumb is that the time to climb should be no more than 15 percent of 


the entire flight time. 


 


Converting Airspeeds, Airspeed Method 


 


While calibrated airspeed is convenient for the piloting task, it is not very useful for the navigation 


task or mission planning, such as determining time on target.  We need to be able to change 


between the different types of airspeed to accomplish our mission.   


 


Let’s start with a calibrated airspeed and calculate true airspeed and Mach.  In the process, we’ll 


also determine our equivalent airspeed.  For example, let’s say we’re flying with “Narco” and 


“Hojo” in the KC-135 to France on your class field trip.  Currently our flight conditions are 


 


 Calibrated Airspeed (Vc):  300 knots calibrated airspeed (KCAS) 


 Altitude:     FL 300 


 Ambient Air Temperature (Ta): -30 °C 


 


Our first step is to convert calibrated airspeed into equivalent airspeed.  We have a choice of two 


equally effective methods.  The first is to use the f factor (multiplication method).  The f-factor 


can be found in Table C1 or Figure C1.  From Equation C134 


 


 Ve = f Vc  


 


 f = 0.950 


 


 Ve = 285 knots equivalent airspeed (KEAS) 


 


Similarly, if we choose to convert by addition, we have from Equation C133 


 


 Ve = Vc + Vc  


 


 Vc = -15 knots 


 


 Ve = 285 KEAS 


 


Next we can calculate true airspeed, but first we need the density ratio.  To find the density ratio, 


we need the temperature and pressure ratios.  The temperature ratio is straightforward, given by 
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Remembering to convert Celsius to Kelvin, we get 


 


 
15.288


15.27330 
  


 


  = 0.84383 


 


To find the pressure ratio, we need the pressure altitude.  Remember that in the flight levels (above 


18,000 feet MSL), we fly with the altimeter set to 29.92.  Thus, FL 300 is 30,000 feet pressure 


altitude.  The pressure ratio at this altitude is given by 


 


  = (1 – 6.87559x10
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5.2559


 (Hc  36089.24 feet) (B1) 


 


  = 0.29696 


 


Now we can calculate the density ratio 
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  = 0.35192 


 


Finally, the true airspeed is given by 
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 Vt = 480 knots true airspeed (KTAS) 


 


To find the Mach number, we first need the speed of sound, given by 


 


 aRTa   (C31) 


 


Again, remembering to convert to Kelvin, we get 
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 a = 607.2 knots 


 


So Mach number would be 
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Now let’s change the scenario and go the other way.  Let’s imagine that you have a test point at 


the following conditions: 


 


 Pressure Altitude:   16,000 feet 


 Mach number:   0.80 


 Ambient Air Temperature:  -5 °C 


 


What calibrated airspeed would you expect to need to fly to get these conditions?  Again, we need 


to find the speed of sound. 


 


 aRTa   (C31) 


 


Remembering to convert to Kelvin, we get 
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 a = 637.7 knots 


 


The true airspeed is found from the Mach number 


 


 Vt = Ma (C60) 


 


 Vt = (0.80)(637.7 knots) 


 


 Vt = 510 KTAS 


 


To find the equivalent airspeed, we need the density ratio, which we find from the temperature and 


pressure altitude. 


 


 
SLT


T
  (A69) 


 


Remembering to convert Celsius to Kelvin, we get 
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  = 0.54197 
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Now we can calculate the density ratio 
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  = 0.58239 


 


The equivalent airspeed is given by 


 


  te VV  (C53) 
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 Ve = 389 KEAS 


 


Next, we need to find the f factor or Vc to calculate calibrated airspeed.  From Equation C134 
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While a table of f factors could be produced in terms of equivalent airspeed, generally f factor is 


presented in terms of calibrated airspeed and pressure altitude.  Thus we can approach this 


problem with a small iteration technique.  We know from our ICE-T discussion that calibrated 


airspeed should generally be greater than equivalent airspeed.  We also know that the f factor will 


be close to one, so the calibrated airspeed will be close to the equivalent airspeed.  Therefore, let’s 


pick the f factor from the table closest to our pressure altitude and equivalent airspeed.  Without 


interpolating, there will be some error, but if the error is on the order of a knot it won’t matter for 


this problem because we can’t read the airspeed indicator that precisely anyway.  Selecting 15,000 


feet pressure altitude and 400 KCAS we get 


 


 f = 0.9706 


 


 
9706.0


KEAS389
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 Vc = 401 KCAS 


 


Looking at the table again, would you have picked an f-factor any different based on 16,000 feet 


pressure altitude and 401 KCAS?  Probably not.  The exact answer would be an f factor of 0.9677 


and a calibrated airspeed of 402.6 KCAS, but the answer above would be close enough for 


mission planning. 
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Using the Vc method, we would enter the table for Vc using the same logic at 15,000 feet 


pressure altitude and 400 KCAS and get 


 


 Vc = -11.75 knots 


 


 Vc = Ve - Vc 


 


 Vc = 389 KEAS – (-11.75 knots) 


 


 Vc = 401 KCAS 


 


Same assumptions, same result.  Good to see it still works out that way. 


 


Supersonic Considerations 


 


For supersonic flow, the equations discussed so far (true airspeed, equivalent airspeed, calibrated 


airspeed) are still valid from a theoretical point of view.  From a practical point of view, they cease 


to be useful above Mach 1 because it is no longer possible to directly measure the freestream total 


pressure. In subsonic flight, the differential pressure divided by the ambient pressure is given by 
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The parameter on the left of Equation C69 is significant because it appears in the center of the 


equivalent airspeed equation. 


 


As discussed in Reference 7, in supersonic flow a normal shock will form in front of the Pitot 


tube.  Because a shock wave is a huge producer of entropy, the air will lose energy passing 


through the shock wave, with the result being that the total pressure immediately behind the shock 


wave (sensed by the Pitot tube) is less than the freestream total pressure.  However, all is not lost!  


One of the convenient properties of a normal shock wave is that if we know the properties of the 


flow downstream of the shock wave, we can determine the properties of the flow upstream of the 


shock wave.  That is, if we measure the total pressure behind a normal shock wave (PT’), we can 


calculate the total pressure in front of the shock wave (PT) with no other required data.  With some 


mathemagic, we can relate what we actually measure to the freestream Mach number in something 


known as “The Rayleigh Supersonic Pitot Tube Formula.” 
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Note that this equation does not represent a change in the relationship between freestream 


pressures and airspeed.  This equation shows that what we are able to measure aboard the aircraft 


changes, and thus we have to change the relationship we use to determine what we’re really 


interested in. 


 


Note that for supersonic flow, the definition of differential pressure is changed slightly.  It is still 


the difference in the pressures being sensed by the airspeed indicator, but in relation to the flow 


field parameters we have  


 


 qc = PT’ - Pa (supersonic) (C96) 


 


To see the effect of this loss of total pressure, let’s change slightly what we’re looking at.  Rather 


than use the ratio from the center of the equivalent airspeed equation, we’ll use the ratio from the 


center of the calibrated airspeed equation.  This has the benefit of removing an altitude 
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dependence so that it is easier to see the effects of just the shock wave.  As shown in Appendix C, 


these equations are 
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The selection of the equation to use is now based on the value of calibrated airspeed with respect 


to the speed of sound at sea level. 


 


These two equations are plotted in Figure 4.2.   


 
Figure 4.2.  Subsonic and Supersonic Airspeed Relationships at Sea Level 


 


The difference between the lines above Vc/aSL = 1 represents the total pressure loss (PT – P
’
T) 


through the normal shock wave. 


 


These two lines are continuous at Vc/aSL = 1.  This is shown in Appendix C as the values of both 


equations are equal and the values of their derivatives are equal at Vc/aSL = 1. 


 


Mach Number Revisited 


 


Mach number is a big player in compressible aerodynamics, and it is still a very useful term in air 


data systems, even at incompressible (low) airspeeds.  To review, Mach number is the ratio of the 


true airspeed and the local speed of sound.  The local speed of sound is given by  
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and the Mach number is given by 
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V
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Mach number has a lot of useful properties and many concepts are more easily expressed in terms 


of Mach number instead of airspeed.  Study of Appendix C will show that much of the airspeed 


theory was developed using Mach number.  Perhaps one of the most convenient properties of 


Mach number is that which is summarized in the flight test axiom 


 


 Mach is Mach!  


 


So you’re thinking “Huh?”  Allow me to elucidate (+5 points, correct use of elucidate in a 


sentence).  As shown in Appendix C, for any given test point, the Mach number at test day 


conditions will be the same as the Mach number on a standard day, because the corresponding true 


airspeed and speed of sound both vary with the square root of temperature, such that their ratio 


(Mach number) remains the same.  


 


In general, when standardizing for non-standard atmospheric properties, we are looking for the 


conditions on a standard day that would result in the same lift and drag coefficients as seen at the 


test day conditions.  Another way to say this would be that we are looking for the conditions on a 


standard day that would result in the same angle of attack as seen at the test day conditions.  


Normally we keep the pressure altitude the same between the test day conditions and the standard 


day conditions.  For the same gross weight, the same amount of lift and drag will be required to do 


the same maneuver.  Therefore, if the lift and drag forces remain constant, the lift and drag 


coefficients remain constant, and the reference area remains constant, then the dynamic pressure 


must also remain constant.  At a set pressure altitude, as the temperature changes, the density of 


the air changes.  To keep the dynamic pressure constant, the true airspeed must change.  As it 


turns out, because of the temperature change, the speed of sound changes proportionally to the true 


airspeed, with the end result being that the Mach number does not change. 


 


Another way to look at this is to consider the expression for dynamic pressure in terms of Mach 
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From this expression, we can see that for dynamic pressure to remain constant at a constant 


pressure altitude, Mach number must remain constant. 


 


Another interesting property of Mach number is found in the words of Lt Col Charlie Longnecker 


(and many other Pitot-static instructors) back in 1989: 


 


 “Mach is not a function of temperature” 


 


Say what?  Just look back at Equations C31 and C33 and it is very clear that Mach number 


changes with temperature.  The point would actually be better stated as “Mach number can be 


calculated without an explicit reference to temperature.”  How do we do that?  Simple.  Bury the 


temperature effects in some other parameter. 
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Appendix C shows that for subsonic conditions, we can derive an equation for Mach number with 


inputs of calibrated airspeed and pressure ratio (from pressure altitude). 
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So where do the temperature effects show up in this equation?  For a constant true airspeed and 


pressure altitude, the corresponding Mach number will change as the temperature changes.  


Higher temperatures, higher speed of sound, lower Mach number.  A higher temperature will also 


reduce the air density, which will decrease the equivalent airspeed corresponding to the true 


airspeed.  The corresponding calibrated airspeed will also decrease (the f factor will increase 


slightly, but far less than the equivalent airspeed decreased).  Thus, the result of the temperature 


increase at a constant true airspeed and pressure altitude is a reduction in calibrated airspeed.  


Looking at Equation C118, this will reduce the Mach number as expected. 


 


Alternatively, if Mach number is held constant at a constant pressure altitude, the resulting 


calibrated airspeed will not change as the temperature changes.  A given Mach number 


corresponds to a given differential pressure to ambient pressure ratio ((PT – Pa)/Pa – see Equation 


C68).  For a constant pressure altitude, the ambient pressure is constant, therefore the differential 


pressure will be constant for this scenario.  A constant differential pressure corresponds to a 


constant calibrated airspeed.  So what does change?  As the temperature changes, the true airspeed 


varies with the square root of the temperature.  However, because the speed of sound also varies 


with the square root of the temperature, the ratio of true airspeed and the speed of sound (i.e. the 


Mach number) does not change.  Hence for a given pressure altitude, a given Mach number will 


result in the same calibrated airspeed regardless of temperature.  However, that same Mach 


number will occur at different true airspeeds as the temperature changes. 


 


Therefore, even though Mach number can be calculated without a temperature measurement, any 


changes in Mach number caused by changes in temperature will be accounted for by the 


corresponding change in calibrated airspeed. 


 


For supersonic flow, an explicit equation for Mach number in terms of calibrated airspeed and 


pressure ratio cannot be derived because of the behaviour of pressures through the shock wave.  


However, a method is shown shortly for how Mach can be calculated using an iterative process.  


Additionally, because the correspondence between calibrated airspeeds and pressure altitude with 


Mach number is unique, tables and graphs can be produced to show this relationship as well. 


 


Converting Airspeeds, Mach Method 


 


Mach number can also be determined from calibrated airspeed and pressure altitude.  This has the 


advantage of being able to make the conversion without knowing temperature.  Additionally, this 


method can be used to find true airspeed if temperature is known.  The advantage of using this 


method to find true airspeed, at least for the subsonic case, is that this method can be programmed 


into a computer program or spreadsheet without needing a table look up routine for the f factor or 


Vc. 
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For the subsonic case, the method is straightforward.  From the pressure altitude, calculate the 


pressure ratio. 


 


  = (1 – 6.87559x10
-6


 Hc)
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Using the subsonic Mach meter equation, find Mach Number. 
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Equation C118 is valid only for Mach numbers less than 1.  If the result of Equation C118 is 


greater than 1, the answer is invalid and must be calculated using the supersonic method.  That is, 


assuming that the reason you got an answer greater than 1 was not just because you punched it 


into the calculator wrong.  If Vc > aSL in your favorite units system, then Equation C118 will 


definitely be invalid.  However, it is possible to have a calibrated airspeed less than aSL (661.48 


knots) that is supersonic because of the pressure altitude.  So what do we do? 


 


To understand the problem, let’s look at what is going on in Equation C118.  If you look at the 


middle of Equation C118, you will find the right hand side of Equation C106.  So we are using 


calibrated airspeed to find qc/PSL.  This ratio has a one-to-one correspondence to calibrated 


airspeed.  The definition of calibrated airspeed can be summarized as calibrated airspeed works 


exactly like true airspeed at sea level on a standard day.  So even if the aircraft is supersonic, if the 


differential pressure seen at the airspeed indicator corresponds to 600 knots, it will still indicate 


600 knots, whether a shock wave was involved or not.  The equations for calibrated airspeed only 


change for supersonic effects at aSL, because as far as the airspeed indicator is concerned, the only 


altitude it knows is sea level. 


 


However, next the value of qc/PSL is divided by the pressure ratio.  This introduces the effects of 


altitude and changes the ratio to qc/Pa, as seen in  
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This will typically result in qc/Pa > qc/PSL.  There is a one-to-one correspondence between qc/Pa 


and Mach Number.  If qc/Pa > 0.89293, then M > 1.  So if Vc < aSL, then qc/PSL calculated by 


Equation C106 will be less than 0.89293.  However, dividing qc/PSL by the pressure ratio may 


result in a qc/Pa that is greater than 0.89293, indicating a supersonic condition.  This requires use 


of the supersonic equations. 
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Hence, for supersonic conditions, first find qc/PSL using the appropriate equation based on the 


value of calibrated airspeed. 
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Next, find qc/Pa by  
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If the resulting value of qc/Pa is less than 0.89293, go back and use Equation C118 like you should 


have in the first place. If qc/Pa is greater than 0.89293, then the aircraft is supersonic and Mach 


number must be found by using  
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Of course, the sharper ones in the class immediately recognize that Equation C124 is not explicit 


in Mach number.  Therefore, it must either be solved by iteration or by reference to a table of 


values (for those of you still sporting slide rules).  Equation C124 can be solved by functional 


iteration.  That is, start with an estimate of Mach number.  Use it to calculate a new Mach number.  


Use this result in Equation C124 to calculate another Mach number.  Continue until the result 


converges with the input. 


 


In either case, to find true airspeed, use the ambient temperature to calculate the speed of sound 


 


 aRTa   (C31) 


 


and then find the true airspeed by 


 


 MaVt   (C60) 


 


To go the other direction, let’s start with Mach number and pressure altitude and find calibrated 


airspeed.  From the pressure altitude, calculate the pressure ratio. 
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Figure 4.3.  Richard 


anemometer and stopwatch 


For the subsonic case (M < 1), the calibrated airspeed can then be calculated directly by  
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For the supersonic case, first calculate qc/Pa by 
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This will result in a qc/Pa > 0.89293.  Next calculate qc/PSL by 
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If the resulting value of qc/PSL is less than 0.89293, calculate Vc by 
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If the resulting value of qc/PSL is greater than 0.89293, calculate Vc by iterating on 
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Measuring Airspeed 


 


Over the years, many different methods have been tried for measuring 


airspeed, with varying degrees of success.   


 


When the Wright Brothers made their first flight in 1903, their airspeed 


measuring device was more of a Data Acquisition System than an airspeed 


indicator.  They fitted their aircraft with a Richard anemometer and a stop 


watch that could be started and stopped with a single lever at the beginning 


and end of the flight.  The anemometer was made by Richard in Paris, 


purchased by Octave Chanute, and given to the Wrights as a gift in April 


1903 (Figure 4.3).  As the air spun the vanes, a shaft moved the pointer on 


the lower dial.  This dial indicated in “metres” (French spelling) how far the 


device had passed through the air mass, which presumably was resettable to 


zero prior to each trial.  This distance was differentiated to airspeed post 


flight by dividing by the number of seconds shown on the stop watch in the 


middle. (Ref 8) 
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During the era of biplanes, a common method of sensing airspeed was listening to the pitch of the 


vibrating rigging wires.  Very effective from an open cockpit to detect changes in airspeed, but not 


very effective for getting measured values for flight testing.  Also a difficult method to use when 


rigging wires are not present on the aircraft. 


 


Another straight forward method for slow airplanes was 


to put a flat plate perpendicular to the airstream on a 


spring (see Figure 4.4).  The amount that the plate blew 


back indicated the airspeed.  This is somewhat effective 


over low airspeed ranges, but its precision is 


questionable.  After the plate has blown back 


sufficiently, say about 60 degrees, any further increase 


in airspeed would cause little additional movement.  


The resolution of this device is relatively fixed.  A 


stronger spring could be used to measure to a higher 


airspeed, but the number of increments that could be 


measured would remain the same. 


 


In the laboratory, manometers can be used very 


effectively to measure pressure differences and thus 


compute airspeed, such as in a wind tunnel.  


Unfortunately, manometers would be rather large and 


ungainly for use in the cockpit.  Additionally, the 


calibration would change with load factor, and a 


manometer would be essentially useless (and messy) at negative load factors. 


 


The APN-147 Doppler Radar, once used in C-130, RC-135A, C-141, and other aircraft, “transmits 


two fan-shaped beams continuously, one forward and the other to the rear.  The receiver samples 


alternate pairs of forward and rear beams (Janus mode), obtaining a resultant Doppler shift 


frequency proportional to the groundspeed.  The antenna is maintained parallel to the track of the 


aircraft by rotating in azimuth to cancel lateral Doppler shift frequencies.  The angular 


displacement with respect to the center-line of the aircraft is drift angle and is displayed on the 


Groundspeed and Drift Angle Indicator.” (Ref 9) 


 


An Inertial Navigation System (INS) or Global Positioning System (GPS) can also give a 


measurement of ground speed.  While ground speed is useful for navigation, it does not account 


for the wind and is thus not very usable for the piloting task.  However, it may be available as a 


backup if the airspeed system(s) should malfunction. 


 


One moderately successful system at low speeds was a venturi mounted on the exterior of the 


aircraft.  Air flow accelerates into the throat of the venturi, lowering the pressure in the throat.  By 


measuring the ambient pressure and comparing it to the pressure in the throat the airspeed can be 


determined.  However, this method starts to break down when the flow through the venturi 


becomes compressible (about Mach 0.3 through the throat), which will be a much lower 


freestream Mach number.  In practice, the venturi becomes impractical above about 100 knots.  


Even if compressible flow equations were developed for the venturi, at some Mach number well 


below Mach 1 the flow at the throat would reach Mach 1 and the flow would be choked, and the 


venturi would not show any change at any higher airspeeds.  Of course, there’s also that minor 


detail that venturis hanging out in the airstream create additional drag. 


 


A technique useful in the laboratory or wind tunnel for measuring airspeed is hot wire 


anemometry, where a short length of wire is heated by an electrical current.  When placed in a 


flow field, the passing air convectively cools the wire.  The electrical resistance of the wire 


depends on its temperature, and its temperature depends on the velocity of air past the wire.  By 


measuring the current flowing through the wire, the airspeed can be determined.  The main 


advantage to hot wires is a very high bandwidth, that is rapid changes in velocity can be detected.  


Figure 4.4.  Flat Plate and Spring 


Airspeed Indicator 
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This is useful when studying phenomena such as turbulence.   The main disadvantage of hot wire 


anemometry is the fragile nature of the sensor.  Hot wires are frequently broken in laboratory 


conditions, and this is considered normal.  Such a sensor could not be expected to hold up in 


operational usage under varying conditions. 


 


By far, the most useful method for determining airspeed over large speed ranges is the Pitot-static 


system.  This system measures total pressure and ambient pressure (or some combination thereof) 


and determines airspeed and altitude from these pressures. 


 


Air Data Sensors 


 


The Pitot-static theory discussed heretofore has been based on the idea that we can measure 


freestream total pressure and ambient pressure.  In the simplest sense, to measure total pressure, 


we just need an open-ended tube pointed into the airstream (parallel to the flow) to measure total 


pressure.  To measure ambient pressure, we need an open ended tube pointed perpendicular to the 


flow.  In this direction, the tube would not pick up any of the additional pressure from the velocity 


of the flow. 


 


One method for mounting these ports is to use a Pitot tube for total pressure and mount a flush 


port on the side of the fuselage to measure ambient pressure.  This installation is common in low 


speed aircraft, including the Cessna 172, C-12, and C-130, though it is also used on the B-52, 


which is hardly a low speed aircraft.  The location of the port on the side of the fuselage is 


important to reducing errors in sensing ambient pressure.  The location is usually determined 


experimentally by trying several locations and picking the one with the least error over the 


aircraft’s angle of attack and speed range.  While this is fine for production aircraft where many 


will be built, it is not practical for one-off designs or limited production runs. 


 


Another option is to use two tubes, both pointed into the airstream.  One is open at the end and is 


used to sense total pressure.  The other tube is closed at the end and senses ambient pressure 


through holes in the side of the tube.  This type of setup has been used on aircraft such as the 


Bellanca Scout and Schweizer SGS 2-33 glider.  If the tubes are concentric, with the total pressure 


tube inside the ambient pressure tube, the sensor is called a Pitot-static tube.  Pitot-static tubes are 


very common on high-speed aircraft, and have also been used on low speed aircraft as well. 


 


Using simple tubes as the air data sensors can lead to problems, primarily with water ingestion.  


Water in the air data tubes can lead to all sorts of erroneous readings.  If a slug of water gets 


caught in a vertical (or at least slanted) portion of the air data tube, the weight of the water will 


cause the pressure in the tube to change as the water is pulled down by gravity or acceleration 


while still sealing the tube.  As an extra bonus, this error will vary as the load factor changes. 


 


Many production Pitot or Pitot-static probes are designed to protect the air data tubes from water 


ingestion.  Some techniques for rejecting water can be seen in Figure 4.5 in the design of the 


“Shark Fin” AN5816 Pitot-Static Probe.  Ram air enters through the Pitot port on the right side of 


the diagram.  The first water separator is a baffle in front of the first total pressure line.  The total 


pressure air can get around the baffle, but large rain drops bounce off the baffle and fall to the 


bottom of the chamber, where the water exits out a small drain hole, aided by the total pressure.  


Any moisture that makes it past the baffle travels to a Moisture Trap, where it tends to fall to the 


floor and continue out the rear drain hole.  The Total Pressure Line is a standpipe in the Moisture 


Trap, which senses the dry air pressure about one inch higher. 


 


Now you may wonder, how does this probe properly measure total pressure if the air does not 


come to a complete stop because of the drain holes allowing it to pass through?  First of all, the 


drain holes are very small compared to the Pitot port, so there is very little airflow velocity 


through the moisture trap.  Second, the air does come to a complete stop, and therefore reach full 


total pressure, at the top end of the Total Pressure Line that leads to the instruments, since the 


remainder of this line is sealed. 
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The ambient air pressure enters through static ports on the top and bottom of the probe.  Any 


moisture trapped in the static pressure chamber will drain out the lower static port.  The Static 


Pressure Line is another standpipe to sense the dry air pressure from the top of the chamber. 


 


Electric heaters are installed to prevent blockage by ice accumulation. 


 


 
 


Figure 4.5.  AN5816 Pitot Static Probe 


 


Another common Pitot-static probe is the L-Shaped Pitot-Static Probe, as shown in Figure 4.6.  


Water ingestion is minimized in a similar way.  Water entering the Pitot port will drain through 


the provided drain hole.  Any water making its way into the first total pressure line will be stopped 


by the baffle on the second total pressure line and remain in the moisture trap, eventually draining 


back down the first total pressure line.  Water in the static pressure chamber will drain out the 


lower static port. 


 


 
 


Figure 4.6.  L-shaped Pitot Static Probe 
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For flight test use, a Pitot-static tube will frequently be mounted on a nose boom in front of the 


aircraft.  This boom is also frequently used to mount vanes for measuring angle of attack and 


sideslip.  At the AFTC, this setup is typically referred to as a Yaw-Angle of attack-Pitot-Static 


(YAPS) head. 


 


Modifying an aircraft with a YAPS boom does have one undesirable effect—the YAPS boom will 


have a different correction curve than the production Pitot-static system.  While the YAPS boom 


may cause a bias in the static pressure corrections, the benefit is usually a more precise 


(repeatable) measurement.  How this difference is handled depends on the installation.  For AFTC 


F-16s modified with a YAPS boom, “When this boom is installed, the source error correction 


(SEC) in the Central Air Data Computer (CADC) is bypassed by connecting CADC connector 


J105 pin 35 (SEC Bypass Engage) to aircraft ground.  The SEC in the CADC is used only with the 


production pitot-static boom, which has a different static pressure (Ps) position error than the 


flight test boom.  With the SEC bypassed, all air data parameters that are a function of Ps will be 


affected by the flight test boom position error.” (Ref 10)  Some T-38Cs modified with a YAPS 


boom are equipped with an air data computer that allows selection of multiple correction curves.  


Some of these aircraft have been equipped with correction curves specifically derived for the 


YAPS boom configuration.  In AFTC DAS modified C-12s, the YAPS boom Pitot and static 


pressures are only connected to the DAS.  The pilot and copilot Primary Flight Displays (PFD) 


remain connected to the production Pitot tubes and static ports. 


 


Another way to get flow angularity data is to use a multiple hole probe.  One hole in the center is 


used like a normal Pitot tube to measure total pressure.  Behind the center hole the probe is shaped 


like a cone with ports on the surface of the cone.  The F-117 probe is similar to the five hole 


probe, except that instead of a cone it uses four facets with a hole in the center of each.   


 


Consider the five hole probe.  Ports above and below the Pitot port are used to determine the angle 


of attack.  When the probe is placed at an angle of attack to the airstream, the port on the bottom 


of the probe is more aligned with the airstream and thus picks up more of the total pressure rise.  


The port on the top of the probe is less aligned (more perpendicular) with the airstream and thus 


picks up less of the total pressure rise.  The difference in pressure between the top and bottom port 


is related to the angle of attack.  Similarly, the ports on either side of the Pitot port can be used to 


measure sideslip.  For ambient pressure, a separate set of ports are used, either farther back on the 


probe or on the fuselage. 


 


Taking the multiple hole idea one step farther would be multiple flush ports on the exterior of the 


aircraft.  This system is used on the B-2.  Booms and tubes tend to have a large radar cross section, 


and there is no point making an aircraft stealthy if the Pitot boom grossly magnifies the radar cross 


section.  Using multiple ports can result in a stealthy design, but it will require a computer to 


interpret the pressures.  How the pressures are to be interpreted would need to be worked out 


either experimentally (wind tunnel, flight test) or analytically (computational fluid dynamics). 


 


For flight test work, some specialized sensors are 


sometimes used.  One concern is that at high 


angles of attack the error in sensing total pressure 


increases as the Pitot tube becomes less aligned 


with the airstream.  One seemingly obvious 


answer to this would be to mount the Pitot tube on 


a horizontal pivot and add some stabilizing fins to 


keep it aligned with the flow.  While we’re at it, 


we pivot it vertically so that it will remain aligned 


in sideslip.  The result is a swivel probe, as shown 


in Figure 4.7.  The added complexity is not 


justified for operational flying, but may be useful in flight test.  The probe will need to be 


sufficiently stable that it doesn’t oscillate constantly in flight and thus corrupt the readings. If used 


at high speeds, the possibility of flutter in the probe should be investigated. 


Figure 4.7.  Swivel Probe 
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Another approach to improve total pressure 


sensing is to place the Pitot tube in a larger tube.  


This setup is referred to as a Kiel probe, as shown 


in Figure 4.8.  The outer tube helps the flow to 


turn more in line with the sensing tube.  A Kiel 


probe was used on the C-17 for high angle of 


attack testing as the total pressure truth source.  


According to the manufacturer of the probe, the 


Kiel probe had zero total pressure loss at flow 


angles of up to 58 degrees.  Thus, for most 


conditions, the Kiel probe will accomplish the 


same results as the swivel probe but with less 


complexity. 


 


To more accurately measure the ambient pressure in flight test, a trailing cone or trailing bomb 


system may be used.  In this system, a long tube is trailed behind the aircraft to pick up ambient 


pressure from outside of the flow field of the aircraft.  The specifics of this system will be further 


described in the flight test techniques section. 


 


Airspeed Indicator Construction 


 


The airspeed indicator is a differential pressure gauge.  However, instead of reporting differential 


pressure in units like pounds per square foot, it reports pressure in units of calibrated airspeed in 


knots, miles per hour, or kilometers per hour.  Airspeed indicators marked in furlongs per fortnight 


(0.00032328 knots, about one centimeter per minute) are rare.  The conversion between the sensed 


pressure and airspeed is as defined by the calibrated airspeed equation. 
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Per this equation, the airspeed indicator senses the differential pressure PT – Pa and displays the 


corresponding calibrated airspeed.  We know this equation is valid up to a calibrated airspeed 


equal to the speed of sound at sea level (661.48 knots).  It is conceivable that an instrument could 


be built that would follow the supersonic relationship (Equation C131) above 661.48 knots.  In 


practice, aircraft that have performance sufficient for this to be an issue have typically had an air 


data computer to interpret the pressures, solving the problem in software instead of mechanical 


gears.  The airspeed indicator is then driven electrically or is a readout from the air data computer.  


 


 
Figure 4.9.  Airspeed Indicator Schematic 
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Figure 4.8.  Kiel Probe 
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A mechanical airspeed indicator, as shown in Figure 4.9, consists of a sealed case connected by 


one tube to the Pitot tube and one tube to the static port.  The total pressure is fed to the inside of a 


bellows, and the static pressure is fed into the case.  The difference in these pressures causes the 


bellows to expand and contract as the differential pressure changes.  This movement is translated 


through a clockwork mechanism to the pointer on the face of the instrument, which indicates the 


pressure differential in units of airspeed. 


 


Mach Meter Construction 


 


The Mach meter is a combination absolute and differential pressure gauge.  The conversion 


between the sensed pressures and Mach number is as defined by the Mach meter equation. 
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Per this equation, the Mach meter senses the differential pressure qc and ambient pressure Pa and 


displays the corresponding Mach number.  We know this equation is valid up to sonic speed (M = 


1).  For supersonic Mach numbers, the supersonic relationship (Equation C124) would be used.  In 


practice, most supersonic aircraft have an air data computer to interpret the pressures, solving the 


problem in software instead of mechanical gears.  The Mach meter is then driven electrically or is 


a readout from the air data computer.  The T-38A is supersonic and does not have an air data 


computer.  I suspect the Mach meter in the T-38 does not change to the supersonic equation above 


Mach 1, since with a maximum Mach of about 1.2 M any error arising from only using Equation 


C117 would be very small. 


 


A mechanical Mach meter, as shown in Figure 4.10, consists of a sealed case connected by one 


tube to the Pitot tube and one tube to the static port.  The total pressure is fed to the inside of a 


bellows, and the static pressure is fed into the case.  The difference in these pressures causes this 


bellows to expand and contract as the differential pressure changes.  An additional bellows is 


sealed and reacts to the ambient pressure changes.  The movements of these two bellows are 


mixed together according to Equation C117 through a clockwork mechanism to the pointer on the 


face of the instrument, which indicates the result in units of Mach number. 


 


 
Figure 4.10.  Mach Meter Schematic 


 


Because of the two bellows system and the complexity involved, the mechanical Mach meter has a 


lower accuracy and reliability that the airspeed indicator and altimeter.  They are also more 
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difficult to calibrate.  Although they are amazingly good considering these drawbacks, there are 


some considerations to remember when using a mechanical Mach meter in flight test.  Mechanical 


Mach meters can be used for reference in flight to fly a maneuver, but a more accurate Mach 


number can be calculated post flight using the airspeed and altitude recorded during the maneuver.  


For airplanes using air data computers, this issue may be moot.  For instance, in the F-16, the air 


data computer measures total pressure and ambient pressure and uses these pressures to digitally 


calculate altitude, airspeed, and Mach number, which are then projected on the HUD.  In this case, 


if you recorded the airspeed and altitude from the HUD and calculated the Mach number, you’d 


better get the same value that was in the HUD or somebody’s making a mistake! 


 


Henri Pitot and His Tube 


 


Henri Pitot (Figure 4.11) was born in Aramon, France on 3 May 


1695.  Like many eventual great thinkers, as a boy he intensely 


disliked academic studies.  However, while serving briefly in the 


French military, he purchased a geometry text and spent the next 


three years studying mathematics and astronomy.  He moved to 


Paris in 1718, and became an assistant in the chemistry laboratory 


of the Royal Academy of Sciences in 1723.  He did well enough to 


get himself elected to the Academy in 1724.   


 


Pitot became interested in hydraulics, mostly in the flow of water 


in rivers and canals.  At the time, the prevailing method of 


measuring flow velocity was by observing flotsam on the surface, 


but that only told the velocity on the surface.  A prevailing theory 


of the time stated that flow velocity at a given depth was 


proportional to the mass above it, and thus flow velocity increased 


with depth.  Pitot devised his measurement technique by using one 


tube oriented into the flow and a second tube perpendicular to the 


flow.  He used this device to measure the flow of the Seine River 


between two piers of a bridge in 1732.  The results were presented to the Royal Academy on 12 


November 1732, right after the Veterans Day holiday.  His results showed that the flow velocity 


decreased as depth increased, in keeping with modern boundary layer theory, which would be 


developed by Ludwig Prandtl in the early 1900s. 


 


Pitot’s tube was not the overnight success story that might be expected.  In fact, it fell into 


disfavor in the engineering community, mostly because of other investigators using it improperly.  


Many tried using just the total pressure tube, not understanding the importance of the static 


pressure tube.  Various shapes for the opening, rather than just a simple tube, were used, which led 


to erroneous results. 


 


While Pitot tubes are introduced to young aeronautical engineering students as an obvious 


outgrowth of Bernoulli’s equation, Pitot had no rational theory to explain its use.  He invented the 


Pitot-static tube in 1732, six years before Daniel Bernoulli published Hydrodynamica and well 


before Euler developed the theory into what we commonly refer to as Bernoulli’s Equation.  Pitot 


simply used intuition and empirical results to determine that the pressure differential was 


proportional to the square of the flow velocity.  The Pitot tube would not be linked to the Bernoulli 


equation until 1913, when John Airey presented the results of experiments at the University of 


Michigan. 


 


Strangely enough, Airey used the Pitot tube for measuring velocity in liquids, making no mention 


of its use in airplanes or wind tunnels.  The first practical airspeed indicator was driven by a 


venturi tube on an aircraft by French Captain A. Eteve in January 1911.  Later in 1911, British 


engineers at the Royal Aircraft Establishment (RAE) at Farnborough used a Pitot tube on an 


airplane for the first time.  One of the first tasks of the newly formed NACA in 1915 was to 


Figure 4.11.  Henri Pitot 
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investigate reliable airspeed meters.  NACA Report No. 2 developed the theory for the Pitot tube 


in compressible flow. 


 


Henri Pitot retired to his birthplace, dying in Aramon on 27 December 1771. (Ref 11) 


 


Ernst Mach and His Number 


 


Ernst Mach (Figure 4.12) was born 18 February 1838 at 


Turas, Moravia (then part of the Austrian Empire, now part 


of the Czech Republic).  His studies were widely varied, 


leading American philosopher William James to refer to 


him as a man who knew “everything about everything.” 


 


Surprisingly, even though his name is forever associated 


with supersonic flow, it was a rather small part of his 


research.  He was the first to capture a photograph of shock 


waves (Figure 4.13) around a supersonic bullet in 1887.  He 


used the shadowgraph method to get the shot.  This was 


very impressive since he managed split-second timing 


without the benefit of vacuum tubes, much less solid state 


electronics. 


 


Mach was also the first researcher of the basic 


characteristics of supersonic flow.  He recognized the 


importance of the ratio of the velocity to the speed of 


sound, and noted that there was discontinuity in flow 


behaviour when this ratio changed from less than one to 


greater than one.  However, he did not go so far as to name 


this ratio after himself.  It was Swiss engineer 


Jakob Ackeret who referred to this ratio as “Mach 


number” in 1929 during a lecture in Zurich.  


“Mach number” did not reach the English literature 


until 1932.  (Ref 11) 


 


 


 


 


 


 


 


Figure 4.13.  Mach’s photograph of 


supersonic bullet 


Figure 4.12.  Ernst Mach  
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Chapter 5 
 


 


Temperature Measurement 
 


You Can’t Get There From Here 
 


You would think that measuring air temperature would be easy enough.  Weather Guessers do it 


all of the time.  Your mother could even do it (you never would listen to her and put your coat on, 


would you?).  Even so, pilots just can’t seem to handle it, because 


 


IT IS IMPOSSIBLE TO MEASURE AMBIENT AIR TEMPERATURE IN FLIGHT! 
 


Now before you get all excited and tell me that your flight engineer or copilot would read the 


outside air temperature to you all of the time, realize that the key word in that statement is 


“ambient,” namely, the temperature of the air at rest.  The second key word (in importance, not in 


order) is “measure.”  I didn’t say we couldn’t determine the ambient air temperature, just that we 


can’t measure it directly. 


 


“So why not, oh purveyor of Pitot-static wisdom?” you may be asking.  The problem arises 


because the air is in motion (or the airplane is in motion).  The airplane disturbs the air as it passes 


through it, and a temperature measuring transducer may or may not have a stagnation point 


associated with it.  In any case, the end result is that the measured temperature is going to be the 


ambient temperature, plus some amount of total temperature rise. 


 


This can easily be understood for probes that stick out in the airstream.  The probe will have a 


stagnation point, just like a wing or fuselage, where the air molecules are brought to a stop relative 


to the probe.  This causes a rise in pressure (total pressure) and also a rise in temperature.  If the 


air is brought to a stop adiabatically, then the relationship of the total temperature to the ambient 


temperature is given by 
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So why not just make the temperature probes flush like we do to measure static pressure?  The 


temperature probes on the MC-130H are flush probes on either side of the fuselage near the nose 


gear well, and these probes still see 80 percent of the total temperature rise over the ambient 


temperature (the flight manual claims it to be 90 percent, but flight testing has shown it to be 


closer to 80 percent).  Why?  Because the nose of the fuselage is disturbing the air. 


 


Equation C34 shows us what happens if the air is brought to a stop adiabatically.  However, a 


temperature probe with a finite diameter may see the full total temperature at the stagnation point, 


but lower temperatures at other locations on the probe.  Because of this temperature difference, 


some of the heat energy will be conducted away from the stagnation point to other parts of the 


probe.  Additionally, the higher temperature will cause some of the heat energy to be lost to the 


surroundings as radiation.   Hence, the process is not adiabatic and the output temperature may be 


less than the actual total temperature.  This effect is dealt with in the traditional engineering 


manner, namely by the insertion of a fudge factor.  In this case we call it the Temperature 


Recovery Factor (Kt), and the resulting equation looks like (using  = 1.4 for air) 
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For a well-designed probe, such as used for flight test or air data on some aircraft (such as the F-15 


and F-16), the temperature recovery factor will be very close to 1, in a range of 0.90 to 0.99.  


Typical light aircraft systems (such as seen on a Cessna 172 or a C-12) tend to have temperature 


recovery factors closer to 0.8 or even 0.7.   


 


Note, however, that for Equation C186 to work, the temperatures must be expressed in an absolute 


temperature scale, such as Kelvin or Rankine.  In fact, the sooner you shed those childhood 


notions of temperature in Fahrenheit or Celsius and just do all of your engineering in Kelvin or 


Rankine, the better off you’ll be.  Of course, your family will think you’ve flipped when you start 


saying “Man, I’m freezing!  It’s only 273 degrees out here! 


 


When talking about airspeed, we had to choose which equation to used, based on if we were in 


subsonic or supersonic flow, or at a calibrated airspeed greater than or less than the speed of sound 


as sea level.  Well, here comes a well-deserved break.  The only assumption we had to make to get 


Equation C34, and thus Equation C186, was that the flow was adiabatic.  Isentropic flow was not 


required.  We learned in Compressible Aero that flow through a shock was adiabatic, even if it 


was very entropic.  As such, the Total Temperature did not change passing through a shock wave.  


Hence, Equation C34, and thus Equation C186, are valid for subsonic and supersonic flow. 


 


Figure 5.1 shows a cutaway of a typical total temperature probe. 


 


  
Figure 5.1.  Total Temperature Probe 


 


In this probe, the air enters the top section of the probe.  The boundary layer is reduced through 


holes in the walls.  Part of the airstream is turned through 90 degrees, effectively bringing it to a 


stop relative to the airplane.  The remainder of the airstream exits the back of the probe.  This 90 


degree turn also acts as an inertial separator, since dirt, water drops, and other contaminants cannot 


make the turn and continue out the rear, thus protecting the temperature sensor.  The air that was 


turned 90 degrees passes over a temperature sensing element and then exits through the rear of the 


strut portion of the probe.  Because the air is slowed in a controlled fashion, this type of probe has 


a higher temperature recovery factor than a simple rod placed in the airstream. 
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Determining the Temperature Recovery Factor 
 


To determine the temperature recovery factor (Kt), we first collect data for indicated temperature, 


ambient temperature, and Mach number.  This is usually done in conjunction with the position 


error flight test techniques (FTTs), using a source separate from the test system to determine the 


ambient temperature.  Then, using Equation C194, we plot the parameter (Tic/Ta -1) as the “y” 


parameter and the parameter (M
2
/5) as the “x” parameter to produce a plot as shown in Figure 5.2. 
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Figure 5.2.  Determining Temperature Recovery Factor 


 


These points should fit to a straight line.  The slope of this line will be the Temperature Recovery 


Factor (Kt).  In Figure 5.2, the particular uncertainty of the data points lead to a least squares curve 


fit with a slope of 1.005.  However, since there is no additional source of heat energy (such as a 


probe heater) in this system, physics tells us that the temperature recovery factor (in this case) 


should be no more than 1.0.  Therefore, a proper data analysis of these data would return a 


Kt = 1.0.  Figure 5.2 also shows a reference line (K=1) to show an ideal temperature recovery for 


comparison. 


 


Theoretically, this line should pass through the origin, but uncertainty in measurements or 


instrument errors in the temperature probe will occasionally lead to a slight bias, or non-zero 


intercept.  This bias should be very small if it does exist. 
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Variable Temperature Recovery Factor 
 


The previous discussion assumed that the Temperature Recovery Factor (Kt) was a constant.  


Equation C186 came about by inserting a fudge factor in Equation C34.  This method has been 


shown to work well for subsonic flow, but may not be effective for supersonic flow with certain 


types of total temperature probes. 


 


The higher quality total temperature probes (something more sophisticated than a simple rod in the 


airstream) typically depend on some sort of internal flow through passages.  While the Total 


Temperature (TT) in supersonic flow does not change through the shock wave, at supersonic 


speeds the temperature recovery characteristics of the probe may change, due to factors such as 


choked flow through the probe passages. 


 


To address this, an alternate recovery correction () can be defined as 


 


 𝜂 = TT - Tic
TT


 (C196) 


 


In this approach,  is typically variable for subsonic Mach numbers and constant for supersonic 


Mach numbers.  Values for  should be available from the probe manufacturer. 


 


To find ambient temperature, the total temperature is calculated first. 


 


 TT = Tic


1 - η
 (C197) 


 


Then the ambient temperature is calculated by 


 


 Ta = TT


1 + 0.2M
2 (C198) 


 


Note that there is no recovery factor in Equation C198 because that effect was taken care of by 


calculating the actual total temperature. 
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Chapter 6 
 


 


Air Data System Errors 
 


Tell Me Again Why I Should Care… 
 


So far we’ve spent a lot of time discussing the standard atmosphere and how Pitot-static systems 


work.  But flight test professionals like ourselves are not tasked with designing these systems, so 


what is our role in this testing? 


 


The role of the flight tester in Pitot-static systems arises because any uncompensated Pitot-static 


system will have errors in it.  Period.  Dot.  It’s just the nature of the beast.  Operational aircrew 


need to know what the right answers are, so flight testers measure and characterize the errors.  


This information is then either given to the aircrew directly as corrections to be applied to the 


instrument readings, or is incorporated into a computer system to correct the air data before it is 


displayed to the aircrew. 


 


There are three major sources of errors in a Pitot-static system:  instrument errors, system errors, 


and position (or installation) errors.  Each type of error must be handled differently. 


 


Instrument Error 


 


Mechanical instruments (altimeter, airspeed indicator, Mach meter) are designed to be fed a 


pressure or pressures and display an output value corresponding to the input pressures according 


to a defined equation.  Several problems can get in the way of accomplishing this goal. 


 


The simplest problem could arise from the markings on the face of the instrument.  If the lines and 


numbers are not painted in the right position per the design of the instrument, the resulting 


readings referencing those lines and numbers will have errors.  This is generally not a problem 


with quality instruments as normally used in aircraft.  Some instruments will be installed with a 


witness mark on the frame and glass of the instrument.  If this witness mark is broken (doesn’t line 


up), then the face has been moved relative to where the internal mechanism thinks it is, and that 


instrument should be repaired. 


 


Other errors come from the internal mechanisms.  These errors could come from reactions to 


magnetic fields, temperature changes (expansion or contraction of parts), or even errors arising 


from the design of the gauge not perfectly realizing the intended equation.  These errors can be 


reduced in magnitude by good design.   


 


The biggest contributor to instrument error is hysteresis arising from internal friction.  This causes 


the instrument to lag behind the correct reading as the property being measured is changing.  For 


instance, in a climb an altimeter will show a lower than actual altitude.  In a descent, the altimeter 


will show a higher than actual altitude.  While friction can be reduced through design, it cannot be 


eliminated.   


 


To calibrate an altimeter, the altimeter is fed a known pressure, and the reading on the dial is 


compared to the calculated altitude for that pressure.  To check for hysteresis, readings are 


recorded first as the altitude is increased and then as the altitude is decreased.  Because of 


hysteresis, the altitude read while decreasing altitude will be higher than the altitude read while 


increasing altitude for the same input pressure.  Typically the hysteresis values for altimeters will 


be around 20 feet or less, possibly increasing at higher altitudes.  Figure 6.1 shows the results of a 


calibration of a typical altimeter. 
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Figure 6.1.  Example Altimeter Instrument Correction Curve 


 


 
 


Figure 6.2.  Example Airspeed Indicator Instrument Correction Curve 


 


So if the instrument correction is different depending on whether the altitude is increasing or 


decreasing, which one do we use?  For simplicity’s sake, in general we assume that we do not 


know the direction of the last change of altitude, so we use the average of the up and down value 
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as our instrument correction.  The sharper ones in the class will immediately recognize that this 


leaves some residual error.  That’s true, and generally we accept that.  In the above example, the 


residual error would be 20 feet at most generally, which is acceptably small for most cases. 


 


Airspeed indicators and Mach meters are calibrated in the same fashion, feeding known pressures 


and comparing the instrument readings to the calculated values.  Figure 6.2 shows the results of a 


calibration of a typical airspeed indicator. 


 


As mechanical gauges wear, the calibrations will change, requiring periodic recalibration.  Back 


when TPS aircraft primarily used calibrated mechanical flight instruments, the airspeed indicators 


and altimeters were changed out annually and the calibrations were checked on the aircraft six 


months after installation. 


 


Electrical measurement systems don’t have to worry about friction, but have a different set of 


errors to be considered.  A pressure transducer’s relationship between input pressure and output 


value can slowly change with time, which is usually referred to as “drift.”  Variations in input 


voltage to the system may cause changes in the output voltage, although well designed systems are 


tolerant of a wide range of input voltages without a change in the output.  Errors may arise from 


variations or improper settings of amplifiers or signal conditioning equipment.  If analog signals 


are converted to digital measurements, then some errors may come from the analog to digital 


conversion.  While theoretically it would be possible to calibrate each item in the system, it is 


typically easier and most defensible to perform an “end to end” calibration.  For instance, a known 


pressure would be applied to the static port and the resulting altitude value would be recorded at 


the final system output and compared to the calculated altitude.  Thus, all of the separate 


calibrations would be combined into one overall system calibration. 


 


Data Acquisition Systems (DAS) are a form of electrical measurement systems.  The engineering 


units output from a DAS are typically presented as “instrument corrected” values.  The DAS data 


as actually recorded on the recording media are in “counts”, that is, a raw number value output by 


the sensor in “units” that are convenient to the range of that sensor.  In post-flight processing, 


these “counts” are converted to engineering units through a calibration routine specific to that 


parameter on that DAS.  Running this calibration routine is equivalent to applying instrument 


corrections, such that the output data are considered “instrument corrected” values.  These 


calibration routines are determined by running “end to end” calibrations where possible.  When 


not possible, simulated values are input to the system as close to the sensor as possible. 


 


System Errors 


 


Lag 


 


Because the Pitot-static system has a non-zero volume, the system will exhibit a time delay 


between a change in pressure at the ports and a change in reading on the face of the instrument.  


Looking at the equation of state (Equation A3), if we assume nearly constant temperature, then for 


the pressure to change inside the static system, the air density must change as well.  If the volume 


of the system doesn’t change, then the mass of the air must change. For an increase in pressure, 


more molecules must move into the static system.  If we allow an increase in volume for the 


bellows to expand, then even more molecules must move into the static system.  These molecules 


require a finite amount of time to move in and out of the static port.  If the port is small or 


otherwise restricted, then the required amount of time will increase.  Of course, the length of time 


involved is generally small, on the order of seconds or fractions of seconds. 


 


Lag is increased by factors that slow down this movement in molecules.  These factors include: 


 


 Pressure drop in the tubing due to viscous friction—as long as the air is moving through 


the tube, there will be a pressure loss from friction, because the tubing walls have a boundary 
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layer.  If the input pressure stabilizes, the pressure in the tube will eventually stabilize at the input 


pressure as the air stops moving. 


 


 Inertia of the air mass in the tubing—it takes time to accelerate a mass to a velocity, and 


the air has to move to change pressure.  


 


 Instrument inertia and viscous and kinetic friction—once the pressure gets to the 


instrument, the instrument takes time to react. 


 


 The finite speed of pressure propagation (acoustic lag)—a pressure change can travel no 


faster than the local speed of sound. 


 


Reference 12 has a more detailed discussion 


of lag, but states “A detailed mathematical 


treatment of the response of such a system 


would be difficult.”  It goes on to say that “it 


is generally not possible to assume that the 


overall lag error correction can be made with 


a precision of more than 80 percent.”  For 


stabilized flight test techniques, lag is 


generally not an issue and can be safely 


ignored.  It can be an issue for quasi-steady 


flight test techniques, with the effect of lag 


increasing as the rate of energy change 


(altitude or airspeed) increases. 


 


Lag can be reduced by increasing the size of 


the tubing, which reduces the effect of 


friction in the tubes by moving the walls 


away from more of the air in the tube.  For 


this to be effective, the size of the ports must 


also be increased.  Since a change in 


pressure will cause a finite flow rate through 


the port, if the port size is unchanged, the 


increase in volume from the larger tubes can 


actually increase the lag because of the 


increase in volume.   


 


Shortening the tubes (moving the ports 


closer to the instruments) can also reduce lag 


by reducing the volume of the system. 


 


For an operational example of the effects of 


lag, consider an F-4 on a dive bombing pass.  


Early F-4s had the Pitot-static tube mounted 


on the vertical fin, which made for very long 


tubes to the instruments.  Later F-4s moved 


the Pitot-static tube to the nose of the 


radome, which presumably shortened the 


required tubing somewhat.  To reduce the 


impact of static pressure lag, the F-4 was 


equipped with a static pressure compensator 


(SPC). 


 


Consider a dive bombing pass at 400 knots true airspeed (KTAS) and a 45 degree dive angle.  


From Figure 6.3, with the SPC operative, we see that the altimeter will be reading 92 feet higher 


How Does This Static Pressure 


Compensation Thing Work? 


 


Air Data Computers (ADC) were introduced 


during the Century Series fighters as air data 


(airspeed, Mach number, altitude) were 


required to actuate systems such as inlet ramps 


or adjust gains in the flight control system.  In 


current aircraft, the ADC takes inputs from the 


pressure sensors and outputs electrical signals 


or bus words to send the corrected air data 


values to where they are needed.  The F-4 


ADC took a little different approach.  While it 


did have electrical outputs, the ADC output air 


at the “corrected” pressures to standard 


mechanical altimeters, airspeed indicators, and 


Mach meters in the cockpits.  From NAVAIR 


01-245FDB-1:  “One of the functions of the 


ADC is to supply all systems requiring static 


pressure inputs with a static pressure which has 


been corrected for static source position error.  


This correction is accomplished through the 


static pressure compensator.  When operating 


normally, the compensator utilizes static air 


pressure as a balancing force only.  The 


corrected static pressure output is actually 


auxiliary equipment air, corrected for the static 


source error as dictated by the instantaneous 


flight situation.  If a malfunction occurs in the 


compensator, a fail safe solenoid is 


deenergized allowing static pressure from the 


static source to be routed directly to all systems 


requiring static pressure inputs.  With a 


malfunction, overall accuracy suffers, but no 


system dependent on static pressure becomes 


inoperative.”  Rather than having redundant 


ADCs (probably space and cost prohibitive), 


the fail safe mode was simply to turn off the 


static pressure compensation and plumb static 


pressure air directly to the instruments. 
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than the actual altitude.  For the same conditions, with the SPC inoperative (Figure 6.4), the 


altimeter will be reading 1,120 feet higher than the actual altitude.  If the bomb release altitude is 


anywhere close to the ground, this would introduce significant errors to the bombing solution, not 


to mention possibly endangering the aircraft and crew! 


 


Reference 13 discusses some methods for measuring altimeter lag, though these tests have not 


commonly been done recently.  One method is to use a calibrated aircraft to lay a smoke trail at a 


specified altitude.  The test aircraft dives at the smoke trail at a predetermined airspeed and dive 


angle.  As the test aircraft passes through the smoke trail, the indicated airspeed, altitude, and dive 


angle are recorded.  The difference between the calibrated altitude of the smoke aircraft and the 


instrument corrected altitude of the test aircraft is the measurement of the lag. 


 


 
 


Figure 6.3.  F-4E Altimeter Lag, Static Pressure Compensator Operative 
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Figure 6.4.  F-4E Altimeter Lag, Static Pressure Compensator Inoperative 


 


The second method described in Reference 13 uses a tracking radar, although Wide Area 


Augmentation System (WAAS) or Differential GPS would be suitable today.  If the test aircraft 


has already been calibrated for steady state position corrections then no additional calibrated 


aircraft is required.  Similar to the survey method discussed in the next chapter, the aircraft flies at 


an airspeed where corrections are known at the altitude of interest and an altitude above and an 


altitude below.  These runs correlate the pressure altitude with geometric altitude at the time of the 


test.  The test aircraft then dives through the altitude of interest.  The lag is then determined by 


taking the aircraft’s geometric altitude (from GPS), finding the corresponding pressure altitude 


(from the survey) and comparing that to the instrument corrected altitude. 


 


Dynamic Imbalance 


 


An error can also be introduced into a Pitot-static system if the lag time constants for the total 


pressure side and the static pressure side are significantly different.  While this will not affect the 


altimeter or the Vertical Velocity Indicator (VVI), it will affect the airspeed indicator and any 


other instruments that use differential pressure.  It is likely that the static pressure system has a 


longer lag time constant than the total pressure system, since the static pressure system has more 


volume because more instruments are connected to it.  In a climb at a constant calibrated airspeed, 


the static pressure and total pressure are both decreasing, but their difference, qc, remains constant.  


If the static pressure system has more lag than the total pressure system, the static pressure system 


will be supplying a higher pressure (lower altitude) than truth to the airspeed indicator.  The 


differential pressure will thus be less and the airspeed indicator will read a lower than truth 


airspeed.  Like lag, this problem will occur only when the ambient or total pressure is changing.  
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Dynamic imbalance errors are a function of the design of the Pitot-static system, and thus can be 


characterized by testing but cannot be changed without changing the system. 


 


Leaks 


 


Leaks in a Pitot-static system will also give erroneous readings.  A leak in the total pressure 


system would result in a lower pressure reaching the instruments, as the pressure in the tube 


leaked to the presumably lower pressure in the cabin.  This would result in an airspeed reading 


lower than truth.  In a pressurized cabin, it is possible that the error would be in the opposite 


direction if the cabin pressure was higher than the outside total pressure. 


 


A leak in the static system would produce erroneous altitude and airspeed readings.  The direction 


of the error would depend on the relative values of the static pressure and cabin pressure. 


 


Errors from leaks can be eliminated by maintenance.  FAA regulations require that the Pitot-static 


system be checked for leaks every two years if flying under Instrument Flight Rules (IFR) (14CFR 


§91.411(a)(1)). 


 


Prior to performance testing and especially Pitot-static calibrations, it is highly recommended to 


do a leak check on the Pitot-static system of the test aircraft.  With the proper test equipment 


(TTU-205 or similar), this leak check can also serve as an end-to-end test for instrument errors. 


 


Position Error 


 


The objective of the air data system is to measure the freestream values of total and ambient 


pressure and use these pressures to determine altitude, airspeed, and Mach number.  The sensors 


(ports) that sense these pressures are necessarily located on the airframe.  The problem with 


trying to measure these pressures in the flow field of the airplane is that the whole point of 


the design of the airplane is to disturb the freestream flow in such a way that produces lift.  
Thus, if the location of the ports were randomly selected, they would very likely end up in a 


location where the local pressures do not represent the freestream pressure.  Because the pressures 


measured do not match the freestream pressures, but are interpreted by the instruments as 


freestream pressures, there is an error in the results known as position error.  This is also called 


installation error, since it arises from the way the air data system is installed on the aircraft. 


 


Total Pressure Position Error 


 


For minimal error, the total pressure port (Pitot tube) should be aligned with the local velocity.  


We know that the tube will sense total pressure if aligned with the flow and will sense ambient 


pressure if perpendicular to the flow.  From this, we can see that the error in the total pressure 


reading should increase as the angle of attack between the probe and flow field increases.  


However, the relationship between total pressure error and angle of attack is far from linear, and is 


typically close to zero error in the normal flight range of angle of attack.  As such, the error in 


reading total pressure is generally assumed to be negligible. 


 


Of course, it is possible for a Pitot tube to have significant errors.  The design of the probe can 


affect how quickly errors grow with angle of attack.  The location of the Pitot tube makes a big 


difference on the existence of errors.  Ideally the Pitot tube would be installed to see an 


undisturbed airstream.  Some of the locations for a Pitot tube which would cause large errors 


would be: 


 


- Behind a propeller – the local velocity of the slipstream would be higher than the freestream, so 


the sensed total pressure would be higher than the “correct” total pressure.  Another way to 


consider it is that the purpose of the propeller is to produce thrust by increasing the total pressure 


of the slipstream. 


 







70 Pitot-Statics and the Standard Atmosphere 


- In the boundary layer – the boundary layer exists because the friction with the surface removes 


energy from the flow, and when energy is removed, total pressure drops.  This can also be seen as 


the velocity of the air in the boundary layer is reduced, so the sensed airspeed would be less.  Pitot 


tubes which are not mounted on booms are typically mounted on struts that move the Pitot tube 


well outside of the boundary layer. 


 


- In the wing wake – the wing wake is the remains of the boundary layer formed as the air passed 


over the wing.  Because the boundary layer had energy losses (total pressure losses), the wake 


behind the wing will also have less velocity and less total pressure than the freestream air. 


 


- In localized supersonic flow – a normal shock wave will form in front of the Pitot tube, causing a 


total pressure loss.  The airspeed indicator will interpret this reduced total pressure as an airspeed 


lower than the correct airspeed. 


 


- Behind an oblique shock wave – a Pitot tube will naturally have a normal shock wave in front of 


it in supersonic flow.  This is acceptable because the flow behind a normal shock wave is subsonic 


(so no other shock waves will form), and the total pressure loss through the shock wave is solely a 


function of Mach number.  Therefore, it is possible to compensate for this loss and determine the 


Mach number in front of the shock wave based on the pressures behind the shock wave.  However, 


behind an oblique shock wave, the flow is still supersonic, albeit slower than freestream, and the 


total pressure loss through the oblique shock wave depends on the freestream Mach number and 


the turning angle.  Therefore, the Rayleigh supersonic Pitot tube formula is insufficient to account 


for all of the total pressure loss.  Sometimes, other considerations will force a Pitot tube to be 


placed behind an oblique shock wave.  On the F-15, to leave an unobstructed view for the radar, 


the Pitot tubes were placed on the fuselage behind the radome.  The corrections for the oblique 


shock waves are made through a more complex calibration in the air data computer and displayed 


by an electrically driven instrument. 


 


The statement that total pressure error is negligible is based on the assumption that the Pitot tube is 


in undisturbed flow.  An example of when this assumption breaks down can be found in many 


gliders.  If the Pitot tube is buried in the nose of the glider or is very close to the vertical fin, then 


the airflow to the Pitot tube is disturbed during large sideslips.  Glider sideslips at normal 


operational speeds can indicate airspeeds around zero knots (or some other obviously incorrect 


airspeed), caused by large pressure errors at the Pitot tube. 


 


Another example can be found in the B-52 flight manual, which states “Significant Mach position 


errors exist at airspeeds above Mach 0.81 indicated due to the EVS pod installation. The pods 


create a region of localized supersonic flow in the vicinity of the Pitot tube. This results in sensing 


a lower pressure and causes the airspeed and Mach indicating systems to read low. Therefore, the 


aircraft will not be flown at speeds greater than 0.84 Mach indicated to prevent exceeding the 


limiting Mach of 0.91 true.”  Because the error comes from the flow in the vicinity of the Pitot 


tube, this means that the error is a total pressure error.  While charts are provided for the Mach 


correction above 0.81 Mach number, the correction changes greatly with gross weight and with 


altitude, so the instruments are generally considered unreliable in these flight conditions.  Flight 


tests requiring weapon releases at maximum Mach number (above 0.81 M) were flown in 


formation with an F-16 pace aircraft to avoid inadvertently exceeding the B-52’s maximum Mach 


number. 


 


Because of large vertical velocity components, helicopters and V/STOL aircraft may have 


challenges locating a Pitot probe for total pressure measurements related to horizontal speeds, 


particularly at low horizontal speeds. 


 


Static Pressure Position Error 


 


The freestream total pressure can be sensed fairly accurately in many locations, regardless of 


whether the flow has been accelerated or not, by creating a stagnation point.  However, the local 
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ambient pressure depends on the local velocity, and decreases as the velocity increases.  This is the 


basic principle used to create lift.  However, to measure the freestream ambient pressure, the port 


needs to be located at a point where the local velocity is equal to the freestream velocity.  While 


these points exist on and around the aircraft, they move as the flow field changes with changes in 


angle of attack, Mach number, and Reynolds number.  Thus, all of the physics which help us make 


an airplane fly also work against us when trying to measure the ambient pressure. 


 


Therefore, errors in sensing ambient pressure are pretty much unavoidable.  About the best a 


designer can do is to choose a location for the static ports where the errors are minimized.  


Because the errors in reading ambient pressure are significant, we give the sensed pressure a 


different name—static pressure.  Because total pressure errors are generally negligible 


compared to the errors in static pressure, position error is assumed to arise only from static 


pressure errors. 
 


Static Port Locations 


 


For subsonic aircraft, static ports are frequently located on the fuselage.  Some general aviation 


aircraft locate the static port on the side of the fuselage just aft of the cowling.  Another popular 


location is on the aft fuselage between the wing and tail.  The static ports on the C-12 are located 


on the side of the fuselage just forward of the tail.  C-130 static ports are located on the fuselage 


both in front and aft of the wing.  The drawback of mounting static ports on the fuselage is the 


effort required to find a suitable location for the static port.  Many times this is done through trial 


and error, either in the wind tunnel or in flight test.  This is suitable for production aircraft, since 


once a suitable location has been found it should work for all models of that aircraft.  However, for 


one-off or prototype aircraft, this level of effort may not be desirable. 


 


Subsonic static ports can also be located on probes, as shown in Figure 6.5.  These probes look 


similar to Pitot tubes, but have the front end sealed and holes drilled in the side of the tube.  The 


probe may cause additional drag and is more likely to be bumped or otherwise damaged, but may 


produce better results than a randomly placed fuselage port.  The primary consideration is that the 


probe be located in an area assumed to have undisturbed flow.  An example of this type of probe 


can be found on the Schweitzer SGS 2-33 glider. 


 


 
 


Figure 6.5.  Separate Pitot and Static Probes 
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So if the static ports can be located on a probe, why not locate them on the side of the Pitot probe?  


This is actually the preferred method for high speed aircraft (and will work on subsonic aircraft as 


well).  The resulting probe is referred to as a Pitot-static probe.  Pitot-static probes can be found on 


the T-38 and F-16, along with many other aircraft.  For flight test work, a Pitot-static probe is 


frequently mounted on a long nose boom well in front of the aircraft’s flow field, and frequently 


has vanes mounted for measuring angle of attack and sideslip.  At Edwards this is usually referred 


to as a YAPS boom, from Yaw, Angle of attack, Pitot, Static. 


 


Reference 14 has an excellent discussion of Pitot and static port placement in Chapter 3. 


 


Reducing Static Pressure Errors 


 


Supersonic Pitot-Static Tubes 


 


Placing the static ports on the Pitot tube has another benefit in supersonic flight if the Pitot-static 


tube is mounted on the nose of the aircraft or otherwise ahead of any other shock waves caused by 


the aircraft.  Because flow disturbances cannot propagate upstream in supersonic flow, any 


position error at the static ports is caused only by the Pitot probe in front of the ports.  Thus, the 


position errors tend to be smaller because they are not affected by the entire aircraft. 


 


Wind tunnel and other testing many years ago (probably documented in some NACA reports I 


haven’t found yet) determined an optimal design for supersonic Pitot-static tubes.  One such 


design is shown in Figure 6.6.  The probe has a constant diameter with a total pressure port at the 


tip.  The static ports are located eight to ten times the diameter of the probe back from the tip.  


You may have noticed when we derived the airspeed equations for supersonic flow, we accounted 


for the loss of total pressure through the normal shock wave in front of the total pressure port.  


However, we know that ambient pressure increases through a shock wave, yet we did not account 


for that effect.  Why not, you ask?  Because the flow is not constrained and the surface does not 


continue to turn the flow, the higher pressure air behind the shock wave immediately expands until 


its pressure drops back to ambient pressure.  Testing has shown that by locating the static ports 


eight to ten diameters behind the tip, the air has sufficient time to expand back to ambient 


pressure, such that the sensed pressure is a good representation of the ambient pressure. 


 


 
 


Figure 6.6.  Supersonic Pitot-Static Probe Design 


 


Figure 6.6 also stipulates that the static ports be at least four to six diameters ahead of any 


shoulder or increased diameter.  This distance keeps the static ports ahead of any shock waves 


caused by the shoulder.  While presumably this distance could be longer, it would be limited by 


the structural strength of the Pitot-static tube. 


 


Compensated Pitot-Static Tubes 


 


In subsonic flight, nose mounted Pitot-static tubes tend to have positive position corrections 


because of the high pressure area around the nose of the aircraft.  How do we know that?  
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Consider the leading edge of a wing.  The leading edge will have a stagnation point where the 


local ambient pressure is equal to the total pressure.  It follows that for some area around the 


stagnation point the local ambient pressure will be above the freestream ambient pressure but 


below the total pressure.  Since the static ports on the nose mounted Pitot-static tube will be in this 


higher pressure “bow wave”, they will sense a higher than ambient pressure.  A higher pressure at 


the static port will cause the altimeter to read lower than truth and the airspeed indicator to read 


lower than truth. 


 


So why not use our friend Bernoulli to help out here?  If we accelerate a flow, the local ambient 


pressure will decrease.  So if I decrease the pressure from a pressure that is too high, in theory I 


can get the local ambient pressure back to the correct value, right?  Such is the theory behind the 


compensated Pitot-static tube.  As shown in Figure 6.7, the diameter of the exterior of the probe 


increases from the front, which accelerates the airflow just like the upper surface of the wing.  


This reduces the local ambient pressure back to a value close to the freestream ambient pressure. 


 


 
Figure 6.7.  Compensated Pitot-Static Tube 


 


By this method, position errors can be reduced to almost zero at Mach numbers below the critical 


Mach number.  Once shock waves start to form in front of the aircraft nose, the high pressure area 


caused by the aircraft nose goes away, but the compensating effect of the increasing diameter of 


the Pitot-static tube remains.  Therefore, position errors at supersonic speeds tend to increase with 


increasing Mach number.  Additionally, these position errors typically do not generalize well, and 


tend to be altitude dependent.  That is, the position error cannot be characterized by a single curve 


as is typically possible with uncompensated Pitot-static probes. 


 


During the XB-70 test program, air data calibrations were accomplished both with a compensated 


Pitot-static probe and with an uncompensated Pitot-static probe.  The Mach correction as shown in 


Figure 6.8 is reproduced from NASA TN D-6827 Flight Calibration of Compensated and 


Uncompensated Pitot-Static Airspeed Probes and Application of the Probes to Supersonic Cruise 


Vehicles (Ref 15).  In the subsonic regime, the compensated probe had smaller corrections.  


However, supersonically the corrections grew in magnitude with Mach number, whereas the 


corrections for the uncompensated probe remained much closer to zero. 


 


Separate Static Source Compensation 


 


Another way to compensate for position errors is to place an obstruction to the flow in the vicinity 


of the static ports.  If the static ports are located on a probe, this can be done by placing a collar 


around the probe, as shown in Figures 6.5 and 6.9. 


 


If the collar is located just behind the static ports, the static ports will see a higher pressure 


because of the local high pressure area just in front of the collar, similar to the high pressure area 


in front of the aircraft nose as discussed earlier.  This high pressure would reduce altimeter and 


airspeed readings.  If the collar is located ahead of the static ports, the separation behind the collar 


will cause an area of pressure below the ambient air pressure.  This lower pressure would increase 


the altimeter and airspeed readings.  The amount of the compensation can be adjusted by moving 


the collar relative to the static ports. 
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Static Pressure 


Ports


Higher than 


ambient pressure


Reduced local pressure







74 Pitot-Statics and the Standard Atmosphere 


 
Figure 6.8.  XB-70 data from NASA TN D-6827 (Ref 15) 


 


 
 


Figure 6.9.  Static Pressure Compensation 


 


Effects of Non-Flush Static Ports 


 


Generally fuselage mounted static ports are constructed to be flush with the skin.  If the material 


around the static port protrudes into the airstream, as shown in Figure 6.10, the forward lip will 


accelerate the flow, much like the forward portion of a wing.  This can result in a lower pressure 


being sensed at the static port.  While it would seem that this would be a design to be avoided, this 


technique can be used for compensation. 
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Figure 6.10.  Non-Flush Static Port Installation (side view) 


 


Reducing Errors From Sideslip 


 


The static port is designed for the direction of flow to be perpendicular to the axis of the opening.  


If the flow is not perpendicular, then there will be some component of the velocity aligned with 


the opening, and thus the static port will pick up a portion of the total pressure.  This could occur 


with a static port mounted on the side of the fuselage flying with a non-zero sideslip angle.  The 


accepted solution to this problem is to mount static ports on both sides of the fuselage.  The static 


port on the upwind side will see a higher than ambient pressure, but the static port on the 


downwind side will see a lower than ambient pressure.  These two ports are connected by a tube, 


that is, they are “manifolded” together.  The difference in pressure at the two static ports will 


cause air to flow through this tube from the high pressure side to the low pressure side.  This tube 


is connected to the instrument static tube with a tee.  Because the air is moving through the 


manifold tube, the additional total pressure seen at the upwind static port is maintained as velocity 


energy (dynamic pressure), such that the static pressure sensed at the tee is a good approximation 


of the freestream ambient pressure. 


 


Cabin Static/Alternate Static Source 


 


Sometimes non-pressurized aircraft are built with the static pressure fittings of the instruments just 


left open to the air in the cockpit.  This may be done in an effort to simplify the system or by 


someone who doesn’t know any better.  The problem arises because the local ambient pressure in 


the cockpit is not the same as the freestream ambient pressure.  If you’ve ever rolled down a 


window in your car while driving and felt your ears pop with the pressure change, then you get the 


idea.  Thus, the airspeed and altimeter corrections can be changed by opening a window, turning 


on the heater, changing angle of attack, or any number of other unrelated operations.  Good Pitot-


static data require an external static port. 


 


However, venting the static pressure lines into the cabin is suitable as a back-up method.  For an 


unpressurized aircraft in icing conditions, if the primary static ports ice over, an alternate static 


source valve can be opened, venting the static system into the cabin.  While this will introduce 


some errors as mentioned above, these errors would be far less than the errors caused by iced over 


static ports.  In pressurized aircraft, the alternate static source valve is plumbed to a second set of 


static ports. 


 


One day while flying my Bearhawk at 118 KIAS and 6480 feet pressure altitude, I opened the 


alternate static source valve which vented the static system into the cockpit.  The indicated 


airspeed immediately jumped to 131 KIAS and the altitude jumped to 6690 feet.  That was a 13 


knot jump and a 210 feet increase in altitude, all due to induced static system errors. 


 


Position Error Teminology 


 


Yikes!  More subscripts!  Relax…it only gets worse… 


 


Table 6.1 shows the important pressures when talking about position error. 
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Table 6.1 


Position Error Terminology 


 


Pa Freestream Ambient Pressure 


Ps Static Pressure as measured at the static port 


Pp Error in reading ambient pressure (Ps – Pa) 


qc Differential Pressure or “Compressible q” (PT – Pa) 


qcic Sensed Differential Pressure (PT – Ps) 


 


Note that I can measure Ps and qcic.  We use these as approximations of Pa and qc. 


 


Applying Instrument and Position Corrections 


 


Once the instrument and position corrections are known, they are applied simply by adding them 


on in the correct order.  The instrument corrected reading (subscript ic) is the sum of the indicated 


reading (subscript i) and the instrument correction ( and subscript ic).  In equation form, 


 


 Hic = Hi + Hic (D66) 


 


 Vic = Vi + Vic (D67) 


 


 Mic = Mi + Mic (D68) 


 


As discussed earlier, this step is not usually required with DAS data, as the post-flight conversion 


to engineering units is equivalent to this step. 


 


The position corrected reading (subscript pc) then is the sum of the instrument corrected reading 


(subscript ic) and the position correction ( and subscript pc).  In equation form, 


 


 Hpc = Hic + Hpc (D69) 


 


 Vpc = Vic + Vpc (D70) 


 


 Mpc = Mic + Mpc (D71) 


 


Using the subscript pc implies that the value shown was measured and corrected for instrument 


and position errors.  Note the following equivalencies: 


 


 Hc = Hpc + residual errors (D72) 


 


 Vc = Vpc + residual errors (D73) 


 


 M = Mpc + residual errors (D74) 


 


The residual errors can come from many sources.  One known source is hysteresis in mechanical 


instruments.  Selecting the middle value between calibrations for going up and calibrations for 


going down left some residual errors.  Position corrections are a mean value drawn through data 


scatter.  That data scatter or dispersion (variance to the statistician) represents residual errors.  


Because uncertainty exists in all our measurements (at least we think it does), we can never 


account for all of the residual error.  Our best bet is to use the best techniques we can to minimize 


the size of the residual errors. 


 


Hc, Vc, and M are typically thought of as “truth” values.  These are either the conditions we are 


aiming for (such as those called out in a test plan) or the output values of some FTT truth source.  


Hpc, Vpc, and Mpc are considered values measured in flight test which have been corrected for all 
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known errors.  The values (subscript “pc”) are considered our “best estimates” of the truth values.  


We call them “best estimates” rather than the truth values because we know there is uncertainty 


because of the residual errors.  If the uncertainty has been quantified, the estimate can be 


expressed with a “plus or minus” value of uncertainty.  Otherwise, the residual errors are assumed 


zero and the measured and corrected values are used for the remainder of any data reduction.  


 


Position Error Ratio and Pressure Coefficient 


 


As aviators and flight testers, we talk about position error in terms of Hpc, Vpc, and Mpc, 


because these values are in units that we can understand.  However, the real issue at hand is the 


inability of the static port to correctly sense the ambient pressure.  Thus, position error is, strictly 


speaking, a pressure difference, which we represent as Pp.  However, saying that the position 


error is “0.02 pound per square inch” is not very useful for the piloting task, whereas just about 


any pilot can understand the phrase “the airspeed indicator at these conditions reads 2 knots low.”  


The calculation of  Hpc, Vpc, and Mpc puts the position error into units that pilots and engineers 


can understand. 


 


When we assume the total pressure error is zero, then all of the position error arises from the error 


in the static pressure, which is the difference between the measured static pressure and the ambient 


pressure (Pp).  However, Pp by itself is not a very useful number.  For instance, a 1 psi pressure 


error would be a relatively small error if the ambient pressure was 14 psi, but the same 1 psi 


pressure error would be a relatively large error if the ambient pressure was only 5 psi.  Therefore, 


it would seem reasonable to consider the magnitude of the pressure error relative to the ambient 


pressure.  However, it would be easier to use something that we can measure that is related to the 


ambient pressure, namely the static pressure.  Hence we introduce the Position Error Ratio, Pp/Ps.  


By dividing (normalizing) the pressure error by the static pressure, we get a value that for a given 


angle of attack and Mach number remains reasonably constant with altitude changes.  We will also 


see that we can write equations that express  Hpc, Vpc, and Mpc as functions of Pp/Ps. 


 


While  Pp/Ps gives a value that is relatively insensitive to altitude changes, it does vary widely 


with airspeed changes.  It would be convenient to have a similar value that was relatively 


insensitive to airspeed changes as well, at least through the subsonic region.  Let us assume for a 


minute (we’ll justify this a few paragraphs from now) that Pp/Ps grows as a function of the square 


of the Mach number (Mic
2
).  This is reasonable, since we know that pressures in the flow field, 


such as dynamic and total pressures, vary as functions of true airspeed squared (Vt
2
) or Mach 


number squared (M
2
).  Figure 6.11 shows a notional shape of a Pp/Ps curve as a function of Mic


2
.   


 


Since Pp/Ps varies as a function of Mic
2
, to flatten this curve out we need to multiply by another 


value that is a function of 1/Mic
2
.  A suitable value would be the reciprocal of qcic/Ps, and we know 


that qcic/Ps is strictly a function of Mic
2
, as seen here: 
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The shape of the 1/(qcic/Ps) curve is also shown in Figure 6.11.   
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Figure 6.11.  Notional Shapes for Position Error Curves (relative magnitudes adjusted for clarity) 


 


We can form a new parameter, the Position Error Pressure Coefficient, Pp/qcic, defined by  
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 (From D75) 


 


As shown in Figure 6.11, Pp/qcic is reasonably constant with airspeed or Mach number, at least 


much more so than Pp/Ps was.  Because test results from actual aircraft frequently show values of  


Pp/qcic that  are reasonably constant with Mach number, we can accept our initial assumption that 


Pp/Ps is roughly a function of Mach number squared (Mic
2
). 


 


Thus, in Pp/qcic we have an expression for position error that is relatively insensitive to altitude 


and Mach number, at least in subsonic flight.  Please note that in just a minute we will say that 


Pp/qcic is a function of angle of attack and Mach number.  The point here is that the variation of 


Pp/qcic with Mach number in the subsonic realm is small, at least in comparison with the variation 


of Pp/Ps . 


 


As shown in Appendix D, Pp/Ps and Pp/qcic are both functions of angle of attack and Mach 


number. 
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Since Pp/Ps and  Pp/qcic  are functions of the same inputs, they are both valid representations of 


the position error information contained in Pp. 


 


The value of Pp/Ps can be somewhat problematic, since it involves small differences of large 


numbers, which the mathematicians in the group tell us can be overly sensitive.  For example, 


consider this case 


 


 Hc = 3189 feet 


 


 Hpc = +42.7 feet  
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Now consider a change of 1 lb/ft
2
 in the measurement of static pressure, giving 


 


 Pa = 1883 lb/ft
2
 


 


 Ps = 1885 lb/ft
2
 


 


 00106.0
P


P


s


p




 


 


So a change in the fourth significant digit of the static pressure results in a change in the second 


significant digit of Pp/Ps.  This would indicate a caution about too much truncation while 


calculating Pp/Ps. 


 


Presenting Position Corrections 


 


Earlier we stated “Because total pressure errors are generally negligible compared to the errors in 


static pressure, position error is assumed to arise only from static pressure errors.”  The static 


pressure error is represented as Pp.  Based on this statement, all of our position corrections, 


including altitude position correction (Hpc), airspeed position correction (Vpc), and Mach 


position correction (Mpc), are directly related to the static pressure error (Pp).  Expressing this 


idea in mathematical language, 
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These position corrections could also be expressed as functions of Pp/qcic.  Because the three 


“pilot friendly” position corrections are all functions of Pp/Ps, it seems reasonable to present 


position correction in one uniform plot of Pp/Ps.  This idea is shown graphically in Figure 6.12. 


 


Figure 6.12 shows to find position correction data, a Flight Test Technique (FTT), as covered in 


Chapters 7 and 8, would be flown, which would result in measured values for either Hpc, Vpc, or 


Mpc.  Using the appropriate data reduction scheme in Chapter 9, these values would be reduced 


to values of Pp/Ps.  The primary representation would then be a plot of Pp/Ps against instrument 
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corrected Mach number (Mic) or possibly instrument corrected airspeed (Vic).  An equivalent 


presentation could be done using Pp/qcic in place of Pp/Ps if desired. 


 


 
Figure 6.12.  Reducing and Expanding Position Correction Data 


(Chapter 9 refers to “Calculating Position Corrections From the Position Error Ratio”) 


 


Once the position corrections have been reduced to their most basic form as Pp/Ps they can then 


be expanded to create plots for altitude, airspeed, and Mach position correction, also plotted 


against instrument corrected Mach number or instrument corrected airspeed.   


 


Variations in Position Corrections 


 


Because the position error is caused by the flow field around the aircraft, the position error and 


resulting position corrections will be affected by the same variables that affect the flow field.  By 


dimensional analysis, we can see that the factors that cause pressure changes in the flow field can 


be represented by shape, angle of attack (), angle of sideslip (), Mach number (M), Reynolds 


number (Re), and the Prandtl number (Pr).  Of these factors, “it can be shown” (see Appendix D) 


that the most significant factors are angle of attack and Mach number, or in mathematical notation 
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With additional derivation, we can represent the angle of attack in other terms to give 
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Note that the assumptions used in Appendix D to get to this point do not include factors such as 


compensated Pitot-static tubes or non-optimal locations.  In general, the following discussion 


will apply only to subsonic aircraft with uncompensated Pitot-static systems or high-speed 


aircraft with nose mounted uncompensated Pitot-static systems.  Thus, there are airplanes, 


such as the F-15, which will not follow these generalizations. 


 


Angle of attack is going to have the largest variations at low speeds when dynamic pressure is 


low.  Additionally, maneuvering at low speeds will require larger changes to angle of attack to get 


the desired load factors.  Increasing weight will require a higher angle of attack for the same load 
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factor, and changes in altitude will change the dynamic pressure, again requiring a change in angle 


of attack.  The changes in the position error ratio or coefficient caused by angle of attack will be 


seen at low Mach numbers.  At high Mach numbers the angle of attack changes are small and the 


result collapses to a single line.  This behaviour is shown in notional fashion in Figure 6.13. 


 


 
Figure 6.13.  Position Error Coefficient Variations 


 


At Mach numbers from the transonic range and higher, the Mach effects, such as compressibility 


and shock waves, start to affect the position error.  As shown in Figure 6.13, the position error 


coefficient starts to grow in the transonic region as the shock waves approach the static ports.  


Around Mach 1.0 the shock wave passes the static ports and the position error coefficient reduces, 


possibly even changing sign, then stabilizes at a small value as Mach number continues to 


increase. 


 


Because the altitude position correction (Hpc), airspeed position correction (Vpc), and Mach 


position correction (Mpc) are positive functions of Pp/Ps, and thus Pp/qcic, these corrections will 


have shapes similar to Figure 6.13 when plotted against Mach number. 


 


If we look at the position error with respect to airspeed, we will see a similar behaviour.  As 


shown in Appendix D, at low Mach numbers the position error coefficient is primarily a function 


of angle of attack, which can also be represented by 
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so variations due to angle of attack will be represented by varying values of nW.  The altitude 


effects (ic) seen when plotting against Mach number are accounted for by the relationship 


between true airspeed and calibrated airspeed. This behaviour is shown in notional fashion in 


Figure 6.14. 
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Figure 6.14.  Variations in Position Error with Angle of Attack 


 


The position error coefficient will still have the same behaviour as the Mach number increases into 


the transonic region and beyond, but it will look different if we plot against airspeed.  The spike at 


Mach 1 moves as altitude increases because the calibrated airspeed corresponding to Mach 1 


changes, as shown in Figure 6.15. 


 


 
Figure 6.15.  Variations in Position Error with Mach Number 


 


The altitude position correction shows an additional change with altitude.  At the higher Mach 


numbers where angle of attack effects are small, Appendix D shows that for small perturbations  
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For a given position error ratio at a given Mach number, the only variable on the right hand side of 


Equation D102 is temperature.  Thus, as altitude increases, temperature decreases, and thus the 


altitude position correction decreases, as shown in Figure 6.16. 
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Figure 6.16.  Altitude Effects on Altitude Position Correction 


 


A Word of Caution 


 


The preceding analysis has assumed that the total pressure error was zero and that the Pitot-static 


system was uncompensated.  Do not expect that real world Pitot-static data will necessarily follow 


this pattern.  The point is that the corrections can vary with altitude, Mach number, and angle of 


attack.   


 


Sometimes Pitot-static data cannot be generalized, as shown in Figure 6.17.  In the case shown, 


Hpc changes sign with increasing altitude, a behaviour that is not accounted for in any of the 


equations we have used.  As we will see, the methods we have for predicting position corrections 


at a different altitude calculate the corrections at the new altitude for the same Mach number as at 


the original altitude.  There is no accounting for any angle of attack effects.  The assumption is 


that at “operational” Mach numbers the change in angle of attack caused by changing altitudes 


will be negligible.  Behaviour as shown in Figure 6.17 would be most likely caused by changes in 


angle of attack as altitude changes. 


 


 
Figure 6.17.  Position Correction Data Not Suitable for Extrapolation 
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Pitot Statics Gross Buffoonery 


 


A favorite topic of discussion centers around failure states of the Pitot-static system.  Primarily 


this involves what happens if one of the ports is plugged.  This could arise from buffoonery, such 


as failure to remove tape covering the static ports after washing or failing to take the cover off of 


the Pitot tube.  Another conceivable problem would be if a port was plugged with ice while flying 


in icing conditions. 


 


If the Pitot tube was blocked, the airspeed indicator and Mach meter would be affected, since they 


are connected to the total pressure system.  The altimeter and VVI would not be affected since 


they are only connected to the static pressure system.  During takeoff or a level acceleration, the 


total pressure would not increase as expected, while the static pressure would remain relatively 


constant.  As such, the differential pressure (qc) would stay the same, the readings on the airspeed 


indicator and Mach meter would not change as the aircraft accelerated. 


 


In a climb with the Pitot tube blocked, the total pressure would remain constant while the static 


pressure decreased.  The differential pressure would increase as the climb progressed, resulting in 


a constantly increasing indication on the airspeed indicator and Mach meter.  This has caused 


accidents in the past, where a pilot would keep increasing pitch attitude in a climb trying to slow 


back to climb speed as shown on the airspeed indicator, resulting eventually in losing so much real 


airspeed that the aircraft stalled.  In a similar fashion, a blocked Pitot tube in a descent would 


cause a constantly decreasing indication on the airspeed indicator and Mach meter. 


 


On a TPS flight in the past, an F-16 flying on a Monday morning was indicating about 60 knots 


when the airplane was flying somewhere around 250 knots as shown by the INS ground speed.  


After landing, a large amount of dirt was found in the nose Pitot tube, which had apparently blown 


in there over the weekend.  This had caused a partial blockage of the Pitot tube, allowing only part 


of the total pressure to get through.  The F-16 Pitot-static system uses three separate sources for 


total pressure, two of which are located in the nose boom and one is located on a separate probe on 


the side of the fuselage aft of the radome.  If the air data computer sees one reading that does not 


agree with the other two and the other two agree, the first is thrown out.  In this case, two total 


pressure readings were bad, but they were bad by about the same amount.  Hence, the air data 


computer selected the “bad” total pressure as the “good” total pressure. 


 


If the static port is blocked, it affects all of the air data instruments.  During takeoff or a level 


acceleration, the ambient pressure remains effectively constant, so no apparent errors would 


appear in the readings on the altimeter, airspeed indicator, Mach meter, or VVI.  In a constant 


airspeed climb or descent, the static pressure would stay the same because of the blockage, such 


that the altimeter and VVI readings would not change.  In a climb, the total pressure, which is an 


increment above the ambient pressure, decreases because the ambient pressure decreases.  Since 


the static pressure does not change because of the blockage, the differential pressure decreases, 


resulting in decreasing indications on the airspeed indicator and Mach meter.  Likewise, the 


indicated airspeed and Mach number would increase in a constant airspeed descent. 
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Chapter 7 
 


 


Altitude Comparison Flight Test Techniques 
 


The Big Picture 
 


Students always want to see the “Big Picture.”  Mike Machat’s mural “The Golden Age of Flight 


Test” at the AFTC Flight Test Museum is a pretty big picture.  However, it has very little to do 


with calibrating air data systems. 


 


If we can measure an altitude error, an airspeed error, or a Mach error, we can calculate the 


Position Error Ratio.  But how do we measure these errors?  We need to be able to compare the 


cockpit (or DAS) readings to an independent truth source.  The difference will be the error we 


need.  The point of each of the Flight Test Techniques (FTTs) we will discuss is to provide that 


truth data source. 


 


Tower Fly-By 


 


Concept 


 


One of the most time-honored FTTs is the Tower Fly-by.  Pilots like it because it is a license to fly 


very fast very low to the ground.  Public Affairs likes it because it makes good TV.  Air Data 


engineers like it because it is very simple in concept and thus more likely to get accurate data. 


 


The Tower Fly-by is an altitude comparison technique, and the truth altitude of the test aircraft is 


determined through use of similar triangles.  This is shown in Figure 7.1. 


 


 
Figure 7.1.  Tower Fly-by Concept 


 


As the airplane flies past the tower, an observer looks through an eyepiece and notes the position 


of the aircraft on a grid.  Figure 7.2 shows the eyepiece and grid at the Edwards Fly-by tower. 
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Figure 7.2.  Edwards Fly-By Tower Grid and Eyepiece 


 


The distance from the eyepiece to the grid is known, and the interval between the grid lines is 


known.  The distance from the eyepiece to the aircraft is known because the pilot flies directly 


over a reference line, such as the centerline of the runway.  Using the ratio of distances (similar 


triangles), the geometric height of the aircraft above the eyepiece and zero line of the grid can be 


determined.  This geometric difference is converted to a difference in pressure altitude using 


temperature and added to the measured pressure altitude of the tower.  This gives the truth altitude 


that is compared to the cockpit readings. 


 


Each pass yields one datum at one airspeed.  Thus, multiple passes are required to determine the 


correction curve over the airspeed range of the aircraft.  The test aircraft must fly low enough to be 


visible in the grid, with the best accuracy at the zero line of the grid, and decreasing accuracy as 


altitude increases.  The lower limit on altitude is set by safety considerations (typically 50 feet for 


fighter type aircraft and 100 feet for large aircraft) or by avoiding ground effect.  Maintaining an 


altitude above the ground of at least one wingspan is generally sufficient to avoid corrupting the 


data due to ground effect. 


 


Figure 7.3 shows the change in induced drag caused by the ground inhibiting downwash from the 


wing (Ref 16).  This change is presented as a function of altitude above the ground.  This curve 


can be interpreted as the effect of the ground on the flow field around the aircraft.  At an altitude 


equal to one wingspan, the downwash intensity is 99.6 percent of its value well away from the 


ground.  This is considered good enough to ignore the effects of ground effect. 
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Figure 7.3.  Reduction in Induced Drag caused by Ground Effect 


 


Data Requirements 


 


On the aircraft, the critical parameter is indicated altitude (Hi) as the aircraft passes the tower.  The 


altimeter should be set to read pressure altitude (29.92 in the Kollsman window).   


 


Next in importance is the indicated airspeed (Vi).  Indicated airspeed is used to locate the 


calculated altitude position correction (Hpc) on the graph of Hpc vs. Vic.  Indicated temperature 


should be recorded if determining the temperature recovery factor (Kt) is an objective.  Record 


weight to check for Angle of Attack effects.  Record the configuration to determine any 


dependence of position error on aircraft configuration.  Many flight manuals show that the 


correction curve will change when the landing gear or flaps are deployed. 


 


In the tower, record the grid reading of the aircraft as it goes by.  Then record the pressure altitude 


of the zero line of the grid.  Record the ambient air temperature (be sure to record it in the shade).  


In the case where the aircraft is large enough to fill a significant portion of the grid, the reading 


should be made at the point on the aircraft where the altitude transducer (usually the altimeter) that 


is being read in the cockpit is located.  See the Trailing Cone/Trailing Bomb section for an 


explanation of this reasoning.  Alternatively, read the grid at an easily definable location on the 


aircraft that has a known location relative to the altitude transducer.  Making this transformation 


may require measurement or estimation of the aircraft angle of attack.  


 


When introduced to the tower fly-by, almost everyone has the same idea—wouldn’t it be better to 


record the aircraft’s position on the grid photographically?  Recent developments have made this 


less impractical than in the past.  The preferred method for collecting tower fly-by data is still to 


make the grid reading by Mk I eyeball (Mk I Mod 1 if wearing corrective lenses). 


 


There are two primary problems with using a camera to record tower fly-by data: timing and depth 


of field.  At high speeds, the test aircraft will be in the grid for little more than one second.  While 


98.5% 99.6% 99.8%


0.0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1.0


0.0 0.5 1.0 1.5 2.0


Altitude/Wingspan


F
ra


c
ti


o
n


 o
f 


In
d


u
c


e
d


 D
ra


g
 (


G
ro


u
n


d
 E


ff
e


c
t)







88 Pitot-Statics and the Standard Atmosphere 


some film cameras will take a picture immediately upon pressing the shutter release, auto focus 


cameras typically delay taking a picture for more than a second while focusing.  There are ways to 


compensate for these delays, but the risk of missing the picture (taking a picture of the grid with 


no airplane), and thus missing the data is significant.  There are those who would then offer that 


the timing problem could be solved by using a video camera.  In the past, the resolution of video 


images was significantly less than that of still images. 


 


The second problem would be with depth of field.  When properly positioned in the Edwards Fly-


By tower, the camera would be 3.666 feet from the grid but 1379 feet from the aircraft.  Typically 


the grid will be in the near field of view for the camera while the aircraft will be in the far field of 


view, essentially at infinity.  Unless the camera has a very long depth of field, either the grid or the 


aircraft (or both) will be out of focus.  Auto focus cameras tend to focus on the grid, not at infinity.   


 


Reference 13 discusses use of a Polaroid camera in the Edwards Fly-By tower.  To solve the depth 


of field problem, this camera used a lens aperture set at f/4.5 with a “pin-hole” diaphragm which 


gave an effective aperture of f/90.  This is extremely high, as typical camera lenses can only be 


stopped down to about f/16.  To work with this small of a hole, the film used was ISO (formerly 


ASA) 3200, and a typical exposure time was 1/125 second.  The mount for this Polaroid camera 


still exists, as does the camera.  However, the Polaroid company no longer produces the required 


film.  Reference 13 goes on to say “The camera data are considered to be supplemental 


information and should not be obtained in lieu of peep sight readings.” 


 


Tests with GoPro video cameras have shown promising results.  The aperture is f/2.8, but 


according to some Internet sources, because the lens is small and wide angle, the resulting depth of 


field is approximately 8 inches to infinity.  The focus is fixed.  With a camera resolution of 


1920x1080, test shots showed the grid and aircraft to be sufficiently in focus to make a reasonable 


reading of the grid (Figure 7.4).  The frame rate is sufficiently high that 600 knot passes show at 


least 5 frames of the aircraft in view. 


 


 
 


Figure 7.4.  Sample frame capture from GoPro video camera 
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If, understanding these limitations, a camera is used to record tower fly-by data, the camera must 


be positioned with the entry aperture (front lens) at the same distance from the grid and at the 


same level as the eyepiece.  It is highly recommended that the data be collected manually by 


eyeball with the camera used as a backup. 


 


Benefits 


 


The primary benefit of the Tower Fly-By Flight Test Technique is its simplicity.  Because of its 


simplicity and traceability of the “calibrations” (distances, level setup, etc), it is considered the 


most accurate of all of our air data system calibration techniques.  While many test programs will 


use other calibration techniques to collect the majority of the air data system calibration data, they 


will typically also collect tower fly-by data to confirm the data collected by other means.  If you 


ever hear someone say that “Tower Fly-by is such an old technique.  Nobody uses that anymore.”, 


you can tell them that even the F-22 was flying tower fly-bys in 2001. 


 


Drawbacks 


 


Obviously, the Tower Fly-by Flight Test Technique requires some sort of equipment, including a 


grid and an eyepiece.  This does not have to be in a purpose-built tower; in fact, it does not need to 


be in a tower at all.  A grid could be positioned on the ground in such a place that it can look up 


far enough to see the aircraft.  However, the more the aircraft is above the level of the grid, the 


more the data is degraded by angle measurement errors. 


   


Because the test aircraft must be stable in level flight when passing the tower, this technique 


requires a large, unobstructed area for the run-in and departure.   


 


High speed flight close to the ground raises the operational risk.  Of course, this is the very reason 


that this FTT is a favorite with pilots. 


 


The Tower Fly-by FTT can only collect data at low altitudes and essentially only at one altitude.  


This is not very useful for determining the position errors at high altitudes, but it is very useful for 


comparing to other methods, such as pace, which can collect data at other altitudes.  Because of 


the low altitude and proximity of other structures, tower fly-by tests are generally limited to 


subsonic speeds only. 


 


Finally, like any other altitude comparison technique, the accuracy of an airspeed position 


correction (Vpc) calculated from an altitude position correction (Hpc) degrades at lower speeds.    


In a sensitivity analysis, at low speeds the error in the calculated static pressure caused by an error 


in measuring the altitude position correction (Hpc) is on the same order of magnitude as the 


differential pressure, qcic.  This is because at low speeds the total pressure is only slightly more 


than the static pressure.  The error in static pressure makes a significant error in the differential 


pressure, thus causing a large error in the calculated airspeed position correction (Vpc).  At high 


speeds the same error in static pressure is two orders of magnitude less than the differential 


pressure because the total pressure is so much larger.  Thus the error caused in calculating the 


airspeed position correction is much smaller.  Figure 7.5 shows the error in calculating the 


airspeed position correction caused by a 31.4 feet error in the altitude position correction. 
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Figure 7.5.  Resulting error in Vpc from an error in Hpc 


 


Tower Fly-By Variations 


 


The U.S. Naval Test Pilot School uses a variation on the Tower Fly-By FTT.  Instead of flying 


over a line on the ground to determine the distance from the eyepiece to the test aircraft, a 


photograph is taken and stadiametric ranging is used to determine the test aircraft’s height above 


the tower.   


 


The test aircraft is flown over one of several locations, including the St. Marys river just offshore 


from Webster Field, offshore of Point Lookout, or over the runways at Pax River.  The aircraft is 


optically tracked from the theodolite tower to obtain a photo similar to that shown in Figure 7.6.  


As described earlier, at the designated point where the photo is taken, the aircrew record the 


cockpit readings or mark the DAS.  Tower personnel record the pressure altitude and temperature 


at the tower. (Ref 1) 


 


 
 


Figure 7.6.  Stadiametric Tower Fly-By Photograph (Ref 1) 
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The actual length of the test aircraft, Laircraft, is used to scale the distances in the photograph.  The 


height of the aircraft above the tower, haircraft above tower, is determined from 


 


Y
X


L
h aircraft


toweraboveaircraft   


 


where X is the scaled length of the aircraft and Y is the scaled height of the aircraft above a 


marker showing the local level of the camera.  The height above the tower is equivalent to the 


height above the tower determined by reading the grid.  The remainder of the data reduction is 


identical to that shown for the Tower Fly-By FTT. 


 


It is important that the photograph be taken very close to the point of closest approach, when the 


camera is looking perpendicular to the longitudinal axis of the aircraft.  Otherwise the visible 


length of the airplane will be foreshortened.  For example, a photograph taken 15 degrees from 


perpendicular would introduce a 3.4 percent error in measuring the length of the aircraft. 


 


It is also important that the camera be tested for lens distortion before being used for data 


collection. 


 


Another variation that was successfully used at Hurlburt Field FL to do calibrations on a C-130 


used the radar altimeter to provide the “height above tower”.  The aircraft was flown in level flight 


low over a runway.  A runway is not required, but it is important that a wide, flat surface is used to 


ensure the radar altitude returned is actually off of the desired location.  A reasonably low altitude 


should be used such that the temperature can be assumed to be constant from the ground to the 


aircraft’s altitude.  Ground observers are required to record the pressure altitude of the ground and 


the air temperature as the aircraft flies overhead.  At the same time, the aircrew would record the 


cockpit readings or mark the DAS.  At a minimum, the cockpit readings would include indicated 


altitude, indicated airspeed, and radar altitude.  The radar altitude is equivalent to the height above 


the tower determined by reading the grid.  The remainder of the data reduction is identical to that 


shown for the Tower Fly-By FTT. 


 


In a further variation of the radar altimeter technique, a differentially corrected GPS altitude above 


a known location has been used in place of the radar altimeter reading.  The temperature and 


pressure altitude of the known location is recorded as the aircraft flies over. 


 


Pace 


 


Concept 


 


Probably the most obvious (knowing how dangerous it is to use the word obvious in an 


instructional text) method to check the airspeed and altitude calibrations on a test aircraft would be 


to fly it in formation with an aircraft known to have a good airspeed and altitude calibration.  This 


method, known as “pace” as in flying with a pace aircraft, does work very well, just as it would 


seem.  This is, of course, considering that the minor requirement to have a “calibrated” aircraft can 


be met. 


 


If the test aircraft and pace aircraft are sufficiently compatible, they may be flown in formation.  


The altitudes and airspeeds read at each point can be compared directly to find the altitude and 


airspeed position corrections.  In this method, pace is both an altitude and an airspeed comparison 


technique.  It is important to understand that in this case “flying at the same altitude” must be 


interpreted as “flying with the static pressure transducers of both aircraft at the same altitude”.   


While this shouldn’t be a problem when using similar aircraft, such as two F-16s, it can be a very 


real problem in a case such as pacing a C-17 with an F-16.  Because the altitude sensed is the 


altitude of the pressure transducer, it is important that the non-lead airplane adjust altitude until 


both aircraft’s pressure transducers are at the same altitude.  If necessary to fly to some other 


reference point, then the difference in altitude of the transducers must be accounted for. 
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If the aircraft are not compatible in speed range, such as a C-12 and an F-16, a different form of 


the pace method can be used.  The slower aircraft flies at the desired airspeed, and the faster 


aircraft flies past the slower aircraft while keeping the slower aircraft visually on the horizon.  


This results in the faster aircraft passing the slower aircraft at the same altitude.  The altitude in 


each cockpit is read as the aircraft pass.  In this case, the method is only an altitude comparison 


method. 


 


Data Requirements 


 


Data should be recorded in both cockpits (test aircraft and pace aircraft) simultaneously.  This is 


usually accomplished by one person calling “Ready, ready, read” over the radio to the other 


aircraft.  In each aircraft, record altitude, airspeed, and temperature (if calibrating the temperature 


system).  Record the weight and configuration to determine any angle of attack or configuration 


effects. 


 


  Benefits 


 


The Pace FTT is a simple, quick, and easy method to collect position correction data across the 


test aircraft’s altitude and airspeed range.  For this reason, the Pace FTT is a popular method of 


calibrating air data systems at the Air Force Test Center.  As of 2015, the Center has F-16s 


modified to serve as pace aircraft.  However, because the precision pressure transducers used for 


the pace instrumentation are not as robust as the operational pressure transducers, the pace 


instrumentation trays are normally not installed in the aircraft.  One to two days are required to 


reinstall the pace instrumentation. 


 


The Pace FTT can also be used to get a quick check of calibrations on the first flight of an aircraft 


by comparing the test aircraft to the safety chase aircraft.  While the safety chase aircraft may not 


be as finely calibrated as a mission specific pace aircraft, it should be well within operational 


tolerances, and could thus be used to identify any gross errors.  The B-2 used a very non-


traditional air data system, and on the first flight of the first B-2, the air data system was checked 


against the F-16 chase to confirm that it was operating as designed. 


 


Drawbacks 


 


One of the first questions that pops to mind when trying to set up a pace FTT is “How do I 


calibrate the pace aircraft?”  This is especially true if another calibrated aircraft is not readily 


available.  To answer the question, the pace aircraft must be calibrated by other means.  The 


Tower Fly-by FTT can be used to calibrate the altitude system at low altitude, and trailing cone or 


survey FTTs can be used at higher altitudes.  The cloverleaf FTT can be used to calibrate the 


airspeed system. 


 


Because of possible problems with shock wave interactions, the pace FTT is generally limited to 


subsonic speeds.  Other FTTs, such as the survey FTT, are used for supersonic calibrations. 


 


Trailing Cone/Trailing Bomb 


 


Concept 


 


Errors in measuring ambient pressure (position errors) arise because of trying to measure ambient 


air pressure on the surface of the aircraft which has disturbed the air pressure in its effort to fly.  


So what if we trailed a long tube out the back of the aircraft that could pick up the ambient air 


pressure outside the flow field of the aircraft?  This is exactly what the trailing cone and trailing 


bomb methods attempt to do. 


 


The trailing bomb is a bomb-like aerodynamic shape connected to the end of a tube that would 


hang down below the aircraft.  This shape has static pressure ports around its perimeter as shown 
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in Figure 7.7.  The sensed pressure is fed back to the aircraft through the connecting tube.  A 


trailing bomb may also be equipped with a Pitot tube with a separate connecting tube to allow 


measurement of airspeed as well as altitude. 


 


 
Figure 7.7.  Trailing Bomb 


 


In the trailing cone system, the ambient pressure is sensed through the tube itself.  Typically the 


section with the orifices is a metal tube. The remaining tubing is the same diameter as the metal 


tube and made of a flexible material.  Behind the metal tube is another section of flexible tubing 


which is sealed at some point and carries a stabilizing cone.  The stabilizing cone will typically 


have large holes in it to improve its stability.  The sole purpose of the cone is to stabilize the 


tubing in flight.  The general setup of the trailing cone system is shown in Figure 7.8. 


 


 


 
Figure 7.8.  Trailing Cone 


 


Trailing cones intended for use at high speed are frequently constructed with a cable inside the 


tubing from the anchor point to the cone attachment point so that the drag loads are not borne by 


the tubing. 


 


The trailing cone or trailing bomb tubing is connected to a pressure transducer in the airplane.  


This transducer can be an absolute pressure transducer, such as an electrical transducer or a 


mechanical altimeter.  In this case, the transducer would read the truth pressure altitude.  


Alternatively, the tubing would be connected to one side of a differential pressure transducer, with 


the aircraft static pressure being connected to the other side.  In this case, the transducer would 


read the position error (Pp) directly. 


 


Students are frequently surprised that it is not necessary to know the position of the trailing cone 


or bomb relative to the aircraft.  The beauty of this method is that gravity affects the air molecules 


inside the tube just like it does those outside the tube.  Therefore, the hydrostatic equation 
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(Equation A15) still applies inside the tubing.  That is, the pressure inside the tubing decreases 


with increasing altitude, just like the pressure does outside the tubing.  The result of this change in 


pressure is that the pressure altitude read on the transducer is the pressure altitude where that 


transducer is located.  Therefore, we want that transducer on board the aircraft and at a known 


location.  If the transducer was located at the cone end of the system, then it would be necessary to 


know the location of the cone and the temperature profile between the transducer and the aircraft.  


If tubing is used to connect the sensed pressure to the transducer aboard the aircraft, the physics of 


the system works all of that out for us. 


 


So several paragraphs ago I said that the trailing cone or trailing bomb system senses ambient air 


pressure from outside the aircraft’s flow field.  How do we know when it is outside the flow field?  


How do we know when the tube is long enough?  If the tubing length can be changed in flight, the 


proper length can be determined by a simple experiment.  Fly the aircraft at a constant indicated 


altitude and constant airspeed.  Reel out the tubing to some length.  Allow everything to stabilize 


and record the aircraft indicated altitude and the trailing cone/bomb indicated altitude.  Reel the 


tubing out some more, and record the indicated altitudes again.  Repeat until the difference 


between the indicated altitudes remains constant as more tubing is reeled out, as shown in Figure 


7.9.  Any length beyond the length where the difference stopped changing will be an acceptable 


length. 


 


 
Figure 7.9.  Determining Trailing Cone Tubing Length 


 


Historical data can give some idea of an expected tubing length, as shown in Figure 7.10 (Ref 17).  


The required tubing length, as determined empirically by multiple programs, seems to be a loose 


function of wingspan.  This seems reasonable, since the size of the disturbed flow field is 


somewhat determined by wingspan. 


 


Note that longer is not always better.  Tests with an F-16 determined that an optimum tubing 


length was around 60 feet.  This is longer than the nominal envelope would show.  However, tests 


with tubing lengths up to 100 feet showed an increased tendency to oscillations in the tubing. (Ref 


18) 


 


Frequently the trailing cone pressure transducer cannot be collocated with the aircraft static 


pressure transducer.  In an F-16 installation, the pressure transducer was placed at the top of the 


vertical fin above the rudder where a Radar Warning Receiver antenna normally resides.  In this 


case it is necessary to know the relative positions of the two pressure transducers so that their 


difference in altitude can be accounted for.  In the F-16 case, the trailing cone transducer was so 


far behind the aircraft static pressure transducer that it was necessary to record the aircraft pitch 


angle so that the relative vertical positions could be calculated. 


 


1009080706050403020100


1.0


0.8


0.6


0.4


0.2


0.0


-0.2


-0.4


P


in H2O


P = PTrailing Cone Statics – PShips Statics


Minimum Operating


Length


Cone in Aircraft Positive 


Pressure Field 


Extension Length, ft







 Chapter 7  Altitude Comparison Flight Test Techniques 95 


 
Figure 7.10.  Determining Fin-Mounted Trailing Cone Tubing Length (Ref 17) 


 


Data Requirements 


 


For each test point, record the indicated altitude, indicated airspeed, and trailing cone/bomb 


altitude.  Altitude should be stable when data is recorded. 


 


Benefits 


 


Both the trailing bomb and trailing cone systems give an undisturbed static pressure reading, and 


are a truth source aboard the test aircraft (i.e. moves around with the test aircraft, is not tied to a 


ground station or another aircraft).  Trailing bombs have been fitted with Pitot tubes in addition to 


the static ports, giving both a truth altitude and a truth airspeed.  A trailing bomb can also be very 


useful in helicopter testing.  In this case, the bomb can be hung well below the helicopter, below 


where the rotor wake has dissipated to give airspeed and altitude information at low speeds.  


 


Drawbacks 


 


The trailing bomb system needs to be calibrated prior to use.  This can generally be done in a wind 


tunnel to develop a calibration curve against Mach number.   Theoretically the trailing cone 


system has zero position error, although some contractors have been known to calibrate them in 


wind tunnels.  Tower Flyby testing with aircraft equipped with a trailing cone has indicated some 


small position errors in the trailing cone system (Ref 18).  Since both trailing cones and trailing 
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bombs have holes all around the circumference, it would seem that any angle of attack would 


result in air passing in one side and out the other, thus relieving any total pressure buildup. 


 


The tube has a large volume compared to the size of the holes for sensing the pressure.  As a 


result, a noticeable lag can happen when changing altitude quickly.  A lot of molecules have to 


move in or out of the tube to change the pressure in the tube, and when the holes are small, they 


create a restriction to the flow.  Thus, a trailing cone/bomb system would probably not be suitable 


for use during steep climbs or descents.  The best data will be collected when the altitude is 


constant. 


 


The trailing bomb has an upper speed limit of approximately 200 knots.  It is intended to hang 


below the test aircraft.  Around 200 knots the bomb would be more behind the aircraft rather than 


below it because of its aerodynamic drag.  Because of the way the tube pulling the bomb is 


attached, it will become unstable and start to thrash around the sky.  The trailing cone was 


developed to use the same principle at higher speeds.  In terms of stability, the trailing cone does 


not necessarily have an upper speed limit.  However, at high speeds the dynamic pressure may 


collapse the cone, requiring a stronger cone or a smaller cone be used. 


 


As generally used, the trailing cone/bomb system requires a recovery system, which usually 


includes a large reel to hold the tubing.  For transport type aircraft, finding such space is usually 


not a problem, but generally is a problem in small aircraft such as fighters.  If space for a recovery 


system is not available, the alternative is to lay out the trailing cone/bomb next to the aircraft on 


the runway prior to takeoff.  The tubing drags along the runway during takeoff and could be 


damaged.  Additionally, the system can be whipped into the air and smash onto the runway 


because of dirty airflow behind the aircraft.  For aircraft that can open a window or door in flight, 


an alternative is to have a crewmember pass the tubing out the window after takeoff.  This method 


has been used in gliders with good success over the years. 


 


The trailing cone/bomb only provides ambient pressure information and thus cannot be used to 


calibrate temperature sensors. 


 


Survey  


 


Concept 


 


To calibrate our altimeter, we need to know what the truth pressure altitude is at our current 


location.  The basis of the survey method is to determine our position in space by one method, 


commonly referred to as Time-Space-Position-Information, or TSPI.  Then, using a separate 


method, we determine the relationship of pressure altitude and geometric altitude at the time of the 


test.  Knowing the geometric altitude at the time of the test, the corresponding pressure altitude 


can be determined. 


 


 TSPI 
 


Thanks to advances in technology, the TSPI portion of this technique is actually the easy part.  


“Back in the day” this TSPI was typically done by FPS-16 tracking radars.  These radars were 


initially developed for tracking missiles, and were used to track the launches of Explorer 1 and 


Vanguard 1 in 1958.  They were also used for tracking for spacecraft as well.  The radar worked 


best when used in conjunction with a radar transponder.  The radar was capable of azimuth and 


elevation angular errors of less than 0.1 milliradian and range errors of less than 15 feet.  These 


radars worked very well for their stated mission, but as demand for their services decreased, the 


cost of operation rapidly grew until they were very uneconomical. 


 


It is possible to use other TSPI methods, such as Cinetheodolites (also called Phototheodolites), 


which have movie cameras that record azimuth and elevation angles to a target.  A minimum of 


three cinetheodolites are required to get thee dimensional position information.  Compared to 
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radar, these are fairly short range (30 km), so the measureable volume is rather limited for aircraft 


testing.  Again, demand for this method has reduced over the years to where the cost of operation 


grew rapidly. 


 


The technology that has really eclipsed other forms of TSPI is (of course) GPS, or more 


specifically Differential GPS or WAAS GPS.  The specification for WAAS accuracy in the 


vertical direction is 7.6 meters (about 25 feet).  Demonstrated accuracy is actually much better, on 


the order of 1.5 meters (about 5 feet).  This should be within the size of errors that we are trying to 


measure.  Cost is virtually a non-issue, since a suitable GPS is probably already installed in the 


aircraft for other purposes.  If not, suitable handheld GPS units are available at low cost (at least in 


airplane terms). 


 


 Pressure Altitude Map 


 


The second half of a survey method is to obtain the current relationship between pressure altitude 


and geometric altitude.  Several approaches to finding this relationship have been used. 


 


The simplest and relatively cheapest approach is to launch a weather balloon.  This will probably 


need to be explicitly requested for your test, since there are probably no regular weather balloon 


launches near your test location or at the time of your test.  In 2015 the closest regularly scheduled 


weather observation balloon launches to Edwards AFB are at Vandenberg AFB and San Diego, 


both about 130 nautical miles away.  The weather office at Edwards AFB has the capability to 


launch balloons—of course, your project will pay for it. 


 


The balloon itself is just a transport mechanism for the Radiosonde (“sonde” is French and 


German for probe) which has the actual instrumentation in it.  Modern day radiosondes carry a 


GPS unit to determine geometric altitude and wind direction and speed.  Air data are measured by 


a temperature sensor and a humidity sensor.  A radio transmitter telemeters the data back to a 


ground station. 


 


“Wait a minute, Moosebreath!  I thought we needed to know pressure altitude.  You obviously 


forgot to mention the pressure sensor!”  Actually, no I didn’t.  There is no pressure sensor on a 


typical radiosonde.  Seems odd, huh?  A radiosonde measures geometric altitude, temperature, and 


humidity.  Pressure is found knowing the pressure at the launch elevation (measured by a separate 


instrument) and then integrating temperature with altitude to find pressure, in a method very 


similar to how we derived the standard atmosphere.  It is even necessary to convert geometric 


altitudes into geopotential altitudes.  The biggest wrinkle to that is when modeling the real world 


we can no longer assume dry air.  The humidity, also measured, must be considered, which 


complicates the calculations a bit.  This process is covered in gross detail in Appendix G. 


 


So why not use a pressure sensor?  Some designs of radiosondes can use a pressure sensor.  


Besides the additional cost on what is essentially a one-time use disposable unit, there is a 


question of accuracy for the pressure sensor because of the range of pressures involved.  At sea 


level, standard day, atmospheric pressure is 1013 millibars (the weatherman’s preferred unit).  In 


the stratosphere, pressures drop below 100 millibars, or 10 per cent of the sea level value.  It is 


difficult to build a single sensor that will measure accurately over an order of magnitude change.  


Tests have shown that the temperature integration method actually produces more accurate 


pressures at high altitudes than using a pressure sensor. 


 


While the weather balloon provides a relationship between pressure altitude and geometric 


altitude, strictly speaking it only provides that information at one location.  With proper 


considerations, this is still acceptable. 


 


Another method that was used back in the days of radar tracking and is still viable is to use a 


“calibrated aircraft”.  Calibration is not required throughout the flight envelope, but just at the 


airspeed (and to a lesser extent, altitude) that the aircraft will be flying.  This aircraft flies a similar 
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ground track to that flown by the aircraft to be calibrated.  It records pressure altitude and 


geometric altitude though the test corridor.  Depending on the method used, ambient air 


temperature may also be required.  If possible, record position (latitude, longitude) as well.  Unlike 


the weather balloon, this method provides the pressure altitude/geometric altitude relationship over 


a line, not just a point.  This may reduce uncertainty over the weather balloon method, but only if 


the calibration of the aircraft has the same uncertainty (or less) as the weather balloon. 


 


The test aircraft can be used as the “calibrated aircraft” if the altitude calibration is confidently 


known for at least one airspeed.  This calibration could come from some other method, such as a 


Tower Flyby or Turn Regression (described in the Airspeed Comparison section). 


 


When expensive radar tracking was used, the calibrated aircraft would generally make one 


calibration pass.  This approach required measuring ambient air temperature, because temperature 


was required to convert the geometric altitude difference between the calibration altitude and test 


aircraft altitude into a pressure altitude difference.  This requirement also encourages flying the 


calibration runs at low Mach numbers because the effects of uncertainty in the temperature 


measurement are minimized. 


 


Another approach which eliminates the need for a temperature measurement is to fly two 


calibration runs, one slightly above the test altitude, and one slightly below the test altitude.  This 


allows a linear interpolation of the pressure altitude based on the geometric altitudes alone.  This is 


also possible with weather balloon data, as data should be available above and below the test 


altitude. 


 


To take it one step further, if you are concerned with time-varying conditions, it is possible to fly 


calibration runs before and after the test run and build an interpolation model with time as a 


variable.  In practice, when testing in appropriate conditions this is probably not necessary. 


 


So what are “appropriate conditions”?  Especially when using weather balloon data, we need to 


assume that the relationship between pressure altitude and geometric altitude doesn’t change over 


the distance between where the weather balloon was and where the test aircraft was.  On a weather 


map this would be represented by isobars that are far apart.  Figure 7.11 shows isobars from the 


day the image was captured and a notional representation of R-2508.  As shown, the pressure 


change between plotted isobars is four millibars.  The pressure altitude change between isobars 


would be 109 feet at sea level, and 147 feet at 10,000 feet pressure altitude.  On the day as 


depicted, assuming that the weather balloon and test aircraft were within 20 to 30 miles of each 


other the error due to distance would be sufficiently small. 


 


Another quick indication as to the suitability of conditions is to check the wind speed at the test 


altitude.  Every Private Pilot ground school course teaches that when the isobars are close together 


(high pressure gradient with distance) the wind speed is high.  If the isobars are far apart (low 


pressure gradient with distance—what we want) the wind speed will be low.  Storms or fronts in 


the area will make the atmosphere unstable.  Also check the winds aloft forecast for any wind 


shears (sudden changes of direction or speed) or non-linear temperature gradients near the test 


altitude.  Any of these will cause data quality problems. 


 


 Test Aircraft Profile 


 


The test aircraft flies “near” where the pressure survey was conducted, recording indicated altitude 


and geometric altitude, and possibly position.  The efficiency of this method comes from the 


ability to collect data for multiple airspeeds in quick succession.  Thus, typically the test aircraft 


will slowly accelerate level through the test corridor, collecting data continuously across the entire 


airspeed range.  Accelerations should be slow to minimize effects of Pitot-static lag. 
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Figure 7.11.  Sample Isobars 


 


Alternatively, data can be collected while decelerating at a constant altitude.  By climbing to a 


higher altitude and then accelerating in a dive to the test altitude, calibrations can be obtained for 


speeds higher than the maximum sustainable level flight speed. 


 


Data Requirements 


 


For a weather balloon or a calibrated aircraft, geometric altitude and pressure altitude are required.  


For the calibrated aircraft, if only one calibration altitude is mapped, then ambient air temperature 


must be recorded.  If two calibration altitudes are mapped (immediately below and above the test 


altitude) ambient air temperature is not required for calibrating altitude.  Uncertainty can possibly 


be reduced by recording the position (latitude, longitude) of each reading by the calibrated aircraft.  


Ambient air temperature is required if calibrating temperature on the test aircraft. 


 


For the test aircraft, geometric and indicated pressure altitude is required.  Position (latitude, 


longitude) are desired for evaluating uncertainty.  Indicated air temperature is required if 


calibrating temperature on the test aircraft. 


 


If Air Data and Position Data are not recorded on the same data stream, then time will need to be 


recorded in each stream for data correlation. 


 


Benefits 


 


While the survey method may seem more complicated or difficult to understand than other 


methods, it is useful for high altitude calibrations.  It is one of the few methods that can be used 


for supersonic calibrations.  It is also efficient since one pass can calibrate throughout the airspeed 


range for a particular altitude. 
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Drawbacks 


 


Because the passes are flown asynchronously, winds aloft can introduce errors by moving the air 


mass around.  To minimize this error, the pressure altitude survey and the test run should be done 


with as little delay between them as possible. 


 


Errors are introduced by the tracking equipment (radar or GPS).  The tracking system should have 


a significantly smaller uncertainty than the altitude errors being measured. 


 


Ground Calibration 


 


Sometimes it is useful to characterize position errors at airspeeds below flight speeds, such as seen 


during takeoff or landing roll.  Noseboom equipped aircraft, which typically have positive 


corrections, exhibit the somewhat entertaining characteristic of indicated altitudes that descend 


below the runway during the takeoff roll.  Errors in airspeed can affect rotation speeds and thus 


takeoff distance. 


 


Fighter aircraft can have significant difference in position errors with different store 


configurations, which can affect calculating takeoff speeds. 


 


Multi-engine aircraft need to have well defined position errors below takeoff airspeed and in 


ground effect so that accurate values can be known for ground minimum control speed (Vmcg), 


critical engine failure speed, as well as rotation and initial climb speed can be presented to the 


pilot. 


 


Calculating these corrections can be as simple as assuming the runway is flat and using the 


pressure altitude recorded while stationary (M = 0) as the truth value.  Data quality can be 


improved if the slope of the runway is known and included in the calculation. 


 


A more extensive discussion of calibration methods for use in ground effect can be found in 


412TW-TIH-16-02 Determining Pitot-Static Position Error Corrections In-Ground Effect (Ref 


19). 
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Chapter 8 
 


 


Airspeed Comparison Flight Test Techniques 
 


The Big Assumptions 


 


All airspeed comparison (or Mach comparison) methods share two assumptions.  The first is that 


an accurate measurement of ambient temperature is available.  This may require getting the 


temperature system calibrated, or iterative solutions as the temperature system is calibrated. 


 


The second assumption is a big one and is tough to control.  All of these methods assume that the 


wind velocity throughout the maneuvers is constant.  That is, the wind direction does not 


change, and the wind speed does not change.  Wind gusts, gradients, or changes will degrade the 


data quality.   Frequently you will hear that these FTTs should be done in calm winds or early in 


the morning.  The reasoning behind this is that if the wind is calm or very light, the size of any 


gusts or gradients will also be very small.  Theoretically these FTTs could be accomplished in any 


steady wind condition.  In practice, it just doesn’t work out that way. 


 


Ground Speed Course 


 


Concept 


 


If the Tower Fly-by FTT is the Father of all Air Data 


System Calibration FTTs, then the Ground Speed Course 


is the Granddaddy.  This method was in use long before 


the Tower Fly-by.  Quite simply, the aircraft is flown over 


two points on the ground a known distance apart, timing 


how long it takes to fly between them.  Of course, some 


considerations have to be made for wind.  


 


The aircraft is flown over a known distance close to the 


ground as shown in Figure 8.1.  This distance can be a 


runway, two roads, or any other prominent landmarks a 


known distance apart.  To eliminate the effects of steady 


wind, the course is flown in opposite directions for each 


target airspeed.  The average ground speed will equal the 


true airspeed if the wind is constant. 


 


To minimize any effects of non-steady winds, the preferred direction of the ground speed course is 


perpendicular to the wind.  This way, any variations in the wind are mostly perpendicular to the 


airspeed measurement and cause minimal changes.  If flown with a headwind/tailwind, any 


variations in the wind directly affect the airspeed measurement.  Flying when winds are calm gives 


the best results.  Winds over 10 knots will probably have enough variation to pollute the data 


beyond usability, because wind variations will be on the same order of magnitude as the errors 


being measured. 


 


Because the airspeed is measured parallel to the centerline of the aircraft, the centerline of the 


aircraft must be held parallel to the course.  Another way to say this is that the pilot flies the same 


heading as the course and allows the aircraft to blow downwind.  This may be difficult for some 


pilots because they are used to crabbing to track parallel to ground paths such as runways.  To see 


the reason for not crabbing, consider the vectors in Figure 8.2.  If the aircraft is crabbed, the 


airspeed vector is not aligned with the ground course which is being used to measure ground 


speed.  Consider how much the ground speed would be slowed in a crosswind on the order of the 


Wind


Course Track


Distance


Start


End


Figure 8.1.  Ground Speed Course 
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airspeed of the aircraft.  When done properly, the additional ground speed caused by the wind is 


the component of ground speed perpendicular to the course.  Because this speed is perpendicular 


to the course, it does not affect the component of ground speed measured in the direction of the 


course. 


 


                         
 


Figure 8.2.  Not crabbing vs. crabbing on the Ground Speed Course 


 


The headwind/tailwind component of wind (the component aligned with the ground speed course) 


is the only component of the wind that will affect the measured ground speed.  Figure 8.3 shows 


how the measured ground speeds average out to equal the true airspeed for a constant wind. 


 


 
 


Figure 8.3.  Measured ground speeds average out to equal true airspeed 


 


Consider starting the course aligned with the course or on the downwind side of the course such 


that the course remains visible (rather than passing under the aircraft) for the entire run.  


 


Each set of two passes at one airspeed results in one datum point.  Like the Tower Fly-by, the 


speed course must be repeated at each desired airspeed throughout the airspeed envelope. 


 


While flying lower to the ground will allow better timing, do not fly so low that ground effect 


becomes an issue.  Maintain at least one wingspan or more of altitude above the ground.  For 
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improved timing accuracy, hold your head in the same position for each timing hack and call the 


hack as the line passes some visible part of the airplane.  Another method useful on the Edwards 


Speed Course or when using roads is to call the hack when looking straight down the crossing 


line. 


 


Note that the Ground Speed Course on the Edwards lakebed is marked in statute miles (5280 feet), 


not nautical miles.  That should tell you something about how old this FTT is.  Based on the 


Edwards range charts, the course is laid out on a 003-183 heading. 


 


Data Requirements 


 


The primary data include indicated altitude, indicated airspeed, indicated temperature, and time to 


fly the course in each direction.  Secondary data would be weight (to investigate any angle of 


attack effects) and configuration (to investigate any configuration effects). 


 


Benefits 


 


The ground speed course is simple for low speed aircraft and does not require any special 


infrastructure.  A suitable speed course can usually be made from existing items such as a runway 


or roads.  Simplicity of the method should lead to good results. 


 


Drawbacks 


 


As mentioned earlier, non-gusty winds are a must, with the preference being for calm winds.  


Non-steady winds will pollute the data. 


 


Because we are trying to measure errors in airspeed on the order of a few knots, the aim airspeed 


must be held very tightly, such as ±1 knot, with ±0 knots preferred. 


 


Errors in timing directly lead to errors in the results.  Even a one second total error in timing can 


lead to significant errors in the results.  This effectively limits the applicability of this FTT to 


airspeeds of 200 knots or less. 


 


Like the tower fly-by, this FTT requires flight low to the ground.  The course lines available may 


not be perpendicular to the wind—in fact runways tend to be parallel with the wind.  If using a 


runway as the course, steps must be taken to avoid traffic conflicts when flying down the runway 


the opposite direction of normal operations. 


 


Using GPS as a Truth Source 


 


When doing calibrations, unaugmented GPS position, especially on Coarse/Acquisition (C/A) 


code (civilian code), is generally not sufficiently accurate.  However, the GPS ground speed is far 


more accurate, since it is derived from the Doppler shift of the signal, not from differentiating 


position.  The specification accuracy of ground speed from C/A code is 0.10 meters per second, or 


0.19 knots per second.  Since this is smaller than the size of the errors we are trying to measure, 


we should be able to use GPS Ground Speed with good results. 


 


All Altitude Speed Course 


 


Concept 


 


The All Altitude Speed Course was developed and tested in the HAVE PACER II test 


management project during USAF TPS Class 95A.  This method compares the drift corrected GPS 


ground speed to the Pitot-static true airspeed. 
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Like the Ground Speed Course, the All Altitude Speed Course is flown perpendicular to the wind 


to minimize wind effects.  The first challenge is to determine what the wind direction is at altitude.  


Of course, the weather-guessers will tell you what they think the wind direction is at your altitude 


of choice, but based on their record of predicting temperature and rain, you may just want to 


consider that a starting point. 


 


A method of approximating the wind direction is shown in Figure 8.4.   A shallow constant 


airspeed turn is flown. Starting aligned with the expected wind direction is recommended but not 


required.  Based on the calibrated airspeed and temperature, a true airspeed is calculated.  A “whiz 


wheel” can be useful for this calculation.  Note the heading on which the GPS Ground Speed 


matches the calculated true airspeed.   This will be the approximate crosswind heading.  Check the 


ground speed on the reciprocal heading.  Adjust the headings until the ground speeds in both 


directions are approximately equal (within a couple of knots).  The resulting heading will be 


within a few degrees of crosswind and sufficiently close to perpendicular to the wind for the 


purposes of this FTT. 


 


 
 


Figure 8.4.  Determining wind direction at altitude 


 


 


 
 


Figure 8.5.  Calculated true airspeeds (drift corrected groundspeeds) average out to equal true 


airspeed 
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Once the crosswind heading has been determined, fly the aircraft at the aim airspeed and record 


data.  Repeat on the reciprocal heading.  Continue for each aim airspeed.  Similar to the ground 


speed course, the average groundspeed measured will equal the true airspeed for constant wind, as 


shown in Figure 8.5. 


 


Data Requirements 


 


On each pass, record heading, indicated airspeed, indicated temperature, indicated altitude, GPS 


ground speed, and GPS track angle.  Record data multiple times on one pass (every few seconds).  


Any variation in GPS ground speed or track angle may indicate wind gradients. 


 


Benefits 


 


As its name suggests, the All Altitude Speed Course can be done at any altitude, unlike the 


Ground Speed Course which is constrained to altitudes near the ground.  The only special 


instrumentation required is a GPS receiver, which may already be installed in the aircraft.  A C/A 


code receiver is sufficient for this FTT. 


 


Drawbacks 


 


The data reduction depends on knowing the drift angle, which is derived from the heading.  


Depending on the sophistication of the heading system, the compass may be one of the least 


accurate instruments in the cockpit. 


 


Horseshoe GPS Method 


 


Concept 


 


This method was developed by the National Test Pilot School (NTPS) and uses a GPS ground 


speed measurement to calculate the truth source.  The test aircraft is flown at a constant indicated 


airspeed on three orthogonal headings, as shown in Figure 8.6. 


 


 
 


Figure 8.6.  Horseshoe GPS method 


 


The resulting wind triangles are shown in Figure 8.7. 
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Figure 8.7.  Three legged GPS method wind triangles 


 


Data Requirements 


 


On each leg, record indicated airspeed, indicated temperature, indicated altitude, and GPS ground 


speed. 


 


Benefits 


 


This FTT can be applied at any altitude and does not require determining the wind direction.  In 


fact, the wind direction will be determined as an output of the data reduction. 


 


Drawbacks 


 


The data reduction assumes that the three headings flown are orthogonal (90 degrees apart) and 


both turns are to the left.  Accurate and precise heading control is required for good data.  


However, the actual headings relative to the wind are not important. 


 


Cloverleaf 


 


Concept 


 


The cloverleaf technique was developed at the Air Force Flight Test Center in the early 1970s as a 


method for calibrating airspeed at up and away altitudes.  At that time, a tracking radar was used 


to measure the ground speed and track of the test aircraft.  Because of the expense involved in 


operating the radar, use of this method was pretty much limited to calibrating the pace aircraft.  


With the advent of GPS, measuring ground speed and track becomes almost free, so this FTT has 


become more practical in latter years. 


 


Note that this maneuver has nothing to do with the aerobatic maneuver of the same name that you 


learned in pilot training.  A C-130 test plan calling for cloverleafs generated some humorous 


banter with the owning squadron who didn’t understand the difference. 


 


The test aircraft is flown at the aim altitude and airspeed on three headings approximately 120 


degrees apart over the same location, as shown in Figure 8.8.  This was the original vision for the 


technique, and provides the most mathematical independence between legs.  However, the method 


has been done in other shapes, including triangles and squares.  Care must be taken, for the 


constant wind assumption becomes very strained when legs are separated by 20 nautical miles 


because the aircraft is flying at high speeds. 
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Figure 8.8.  Cloverleaf flight path 


 


True airspeed, wind direction and wind speed can be calculated by vector math.  An alternate 


method is to calculate the true airspeed error, wind direction and wind speed by inverting a matrix 


of equations derived from the wind triangles.  While that sounds scary, spreadsheets such as Excel 


and Matlab have functions which invert numerical matrices.  A benefit of calculating the true 


airspeed error instead of the true airspeed is that small variations in indicated airspeed do not 


affect the result, if we assume that the airspeed position correction remains constant over that 


small variation of indicated airspeed. 


 


The stability of the mathematical solution increases with increasing angle between the passes.  


While theoretically the solution could be found from three passes spaced in heading by five 


degrees, the result would have a large uncertainty.  The least uncertainty comes from passes 


spaced by 120 degrees. 


 


Data Requirements 


 


On each pass, record indicated airspeed, indicated temperature, indicated altitude, GPS ground 


speed, and GPS track angle.  If available, recording winds as reported by the aircraft systems can 


give insight to how constant the wind speed and direction is. 


 


Benefits 


 


Unlike the previous GPS methods, the headings do not need to be spaced by an exact amount.  


Each pass only needs to be sufficiently long for the GPS ground speed and track angle to stabilize.  


As with other GPS methods, this FTT can be done at any altitude. 


 


A C/A code GPS is sufficiently accurate for this method.  This would include a commercial 


handheld GPS. 


 


Drawbacks 


 


Like the Ground Speed Course or the Tower Fly-by, each set of three passes only results in one 


datum point (airspeed correction), so it can take a while to calibrate across the speed range.  


Additional uncertainty due to changes in wind direction and wind speed can arise if passes are 


widely separated in position or time. 
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Turn Regression  


 


Concept 


 


As mentioned earlier, all airspeed comparison methods must assume that wind direction and 


velocity are constant for all test passes in various directions.  The uncertainty caused by this 


assumption has been minimized over the years by procedures such as flying in the early morning 


when light winds are common and by minimizing the time and space needed to complete a set of 


passes.  These techniques have met with varying degrees of success. 


 


All of the methods discussed previously are deterministic.  That is, the data reduction returns a 


single value with no information about the uncertainty present in that value.  A desirable change 


would be a method that would return a stochastic value, complete with statistics characterizing the 


uncertainty in that value.  To accomplish this, many more than three measurements are required. 


 


Reference 20 proposed “Orbis Matching”, a method where the aircraft is flown in a level turn at 


constant airspeed and constant load factor for a full circle.  True airspeed and heading are 


recorded, along with GPS ground speed and GPS ground track.  Plotting the northerly component 


of air velocity against the easterly component of air velocity, both calculated from the true 


airspeed and heading, should result in a circle, centered around the origin.  Plotting the northerly 


component of ground velocity against the easterly component of ground velocity, both calculated 


from the GPS ground speed and GPS ground track, results in a spiral path, distorted from a circle 


by the wind.  The Orbis Matching method seeks to determine a wind speed and direction that will 


adjust this path back to a circle.  Once the wind speed and direction are known, the error in true 


airspeed can be calculated. 


 


As mentioned above, cloverleaf data can be analyzed by matrix inversion, which returns an error 


in true airspeed (as opposed to the true airspeed), which has the benefit of minimizing any 


uncertainty due to slightly varying airspeeds.  Reference 21 built on the ideas of Orbis Matching 


and the Cloverleaf to provide stochastic values complete with confidence intervals about the 


solution coefficients. 


 


In the Turn Regression technique, the aircraft is flown in a level turn at constant airspeed and 


constant load factor, as in the Orbis Matching technique.  A complete full circle turn is required, as 


doing a partial turn leads to problems with data statistical independence.  Data are continuously 


recorded by a DAS in a turn, or recorded by hand on multiple straight segments approximating a 


turn.  Each data point is turned into a wind triangle.  A linear regression is run on the collection of 


wind triangles, returning an estimate of the true airspeed error, wind direction, and wind speed.  


Additionally, the regression returns confidence bounds on each estimate, along with a p value to 


characterize the significance of the resulting model.  The regression can be run in Excel, Matlab, 


or many other software packages. 


 


Small confidence intervals will indicate small uncertainties and good data quality.  Larger 


confidence intervals will bring into question the validity of the constant wind assumption for that 


group of test data, and can be a basis for rejecting those results.  High sample rate data may need 


to be decimated to avoid problems with serial correlation.  Data at 1 Hz has been shown to be 


sufficiently independent. 


 


One hidden assumption in the original data reduction is that the measured heading is equal to the 


direction of the component of velocity in the North-East (horizontal) plane.  For aircraft operating 


at cruise speeds and bank angles less than 30 degrees (load factors less than 1.15g), the angle of 


attack is sufficiently close to zero that this assumption is valid.  Reference 22 showed that because 


heading is measured in the body axes and velocity is measured in the stability axes (assuming no 


sideslip), a significant difference arises between these vectors as the angle of attack becomes 


significantly non-zero.  If the data reduction compares the direction of the heading vector and the 


ground track vector, then at load factors of 2g or greater the error in angular measurement is on the 
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order of magnitude of the angle of attack itself.  Reference 22 shows that this error can be greatly 


minimized by incorporating angle of attack and bank angle measurements into the data reduction. 


 


Data Requirements 


 


Record indicated airspeed, indicated temperature, indicated altitude, heading, GPS ground speed, 


and GPS track angle.  Record continuously with a DAS, or record by hand on straight segments, 


turning slightly between segments to approximate a circle.  If available, record angle of attack and 


bank angle, especially if turning at load factors of 2g or more. 


 


Benefits 


 


As discussed above, because the number of data points (equations) is far greater than the number 


of unknowns, stochastic methods can be used.  The additional information from the large number 


of data points is used to give an indication as to the uncertainty present in the data. As with other 


GPS methods, this FTT can be done at any altitude. 


 


A C/A code GPS is sufficiently accurate for this method.  This would include a commercial 


handheld GPS. 


 


Drawbacks 


 


Like the Ground Speed Course or the Tower Fly-by, each turn only results in one datum point 


(airspeed correction), so it can take a while to calibrate across the speed range.  References 23 and 


24 cover an extension to this method, which by making some assumptions about the shape of the 


calibration curve, uses an accelerating or decelerating turn to calibrate most of the airspeed range 


in a single maneuver. 


 


As stated in earlier chapters, the position error and corresponding corrections are functions of 


angle of attack and Mach number.  Position corrections are usually presented for 1g flight.  


Collecting data in a turn does result in a higher angle of attack at a particular airspeed, which can 


change the results.  Higher angles of attack also introduce data measurement problems.  To 


minimize this uncertainty, it is recommended to keep load factors small, such as with bank angles 


no greater than 30 degrees.  If higher load factors are required, angle of attack and bank angle 


should be measured.  For aircraft appropriately equipped, these maneuvers could be flown with an 


autopilot using altitude hold. 
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Chapter 9 
 


 


Data Reduction 
 


NOTE:  The section for each Flight Test Technique (FTT) is written to stand alone.  Each section 


will progress from the collected data through finding the static port position error ratio (Pp/Ps).  


The final section will cover how to use the static port position ratio to calculate the altitude, 


airspeed, and Mach number position corrections. 


 


Tower Fly-By Data Reduction  


 


Overview 


 


The tower fly-by FTT is an altitude comparison technique.  The truth altitude of the aircraft is 


determined by triangulation from the tower, and then compared to the pressure altitude read in the 


cockpit or on a DAS.  To find the altitude position correction (Hpc), we will 


 


 a.  Find the geometric altitude of the aircraft relative to the tower 


 b.  Find the truth pressure altitude 


 c.  Correct cockpit readings for instrument errors 


 d.  Find the altitude position correction  


 e.  Find the static port position error ratio (Pp/Ps) 


 


For purposes of this discussion, we will use the following example data: 


 


 Theodolite Pressure Altitude (Hc
tower


)  2500 feet 


 Grid Reading     5.2 


 Tower Ambient Temperature (Ttest)   5 °C 


 


 Altimeter Instrument Correction (Hic)  +15 feet 


 Airspeed Instrument Correction (Vic)  -2.5 knots 


 


 Indicated Altitude (Hi)    2450 feet 


 Indicated Airspeed (Vi)    425 knots 


 


Find the geometric altitude of the aircraft relative to the tower 


 


The geometric altitude of the aircraft static pressure transducer relative to the tower is found by 


triangulation, as shown in Figure 9.1.  Because this distance is relatively short (less than 600 feet), 


the geopotential altitude difference is assumed equal to the geometric altitude difference. 
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Figure 9.1.  Tower Fly-By Geometry 


 


For Figure 9.1, 


 


 x Eyepiece to Grid Distance 


 y Grid Division Height*Tower Grid Reading 


 z Eyepiece to Fly-By Line Distance 


 


By similar triangles, we see that 
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If we separate the Grid Division Height from the Tower Grid Reading, we can find a grid constant 
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For the Edwards Fly-by Tower, the grid constant is 31.4 feet/division.  Therefore, the aircraft 


geometric altitude above the tower is given by 


 


H = (Grid Constant)(Grid Reading) 
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H = 163.28 feet 


 


Find the truth pressure altitude 


 


To find the truth pressure altitude, we need to convert the geometric altitude above the tower to a 


pressure altitude above the tower.  The relationship between geometric altitude and pressure 
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altitude is dependent on the ratio of the test day temperature and the standard temperature for the 


pressure altitude 


 


 c
std


test H
T


T
H   (B23) 


 


Ttest is measured at the fly-by tower.  We find the standard temperature from the pressure altitude 


measured in the tower.  (From Equations A69 and A78) 
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Tstd = 283.2 K 


 


Rearranging Equation B23, we can get the pressure altitude difference between the aircraft and the 


tower 
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Hc = 166 feet 


 


The truth pressure altitude of the aircraft is then this difference added to the tower pressure 


altitude. 


 


Hc = Hc
tower


 + Hc 


 


Hc = 2500 feet + 166 feet 


 


Hc = 2666 feet  


 


Correct cockpit readings for instrument errors 


 


The instrument corrected altitude and airspeed are calculated by adding the instrument corrections 


to the indicated values. 


 


 Hic = Hi + Hic (D66) 


 


Hic = 2450 feet + (+15 feet) 


 


Hic = 2465 feet 
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 Vic = Vi + Vic (D67) 


 


Vic = 425 knots + (-2.5 knots) 


 


Vic = 422.5 knots 


 


Find the altitude position correction  


 


The altitude position correction is the difference between the instrument corrected altitude and the 


truth pressure altitude. 


 


 Hpc = Hc - Hic (D5) 


 


Hpc = 2666 feet – 2465 feet 


 


Hpc = 201 feet 


 


Find the static port position error ratio (Pp/Ps) 


 


The Position Error, or Pp, is defined as 


 


 Pp  = Ps - Pa (D1) 


 


Therefore, we calculate the static and ambient pressures 


 


 Ps = PSL(1 – 6.87559x10
-6


 Hic)
5.2559
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 Ps = 1934.38 lb/ft
2
 


  


 Pa = PSL (1 – 6.87559x10
-6


 Hc)
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 (Hc  36089.24 feet) (D10) 


 


 Pa = (2116.22 lb/ft
2
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 Pa = 1920.13 lb/ft
2
 


 


Then the static port position error ratio is 
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Pace Data Reduction 


 


Overview 


 


The pace FTT is an altitude comparison technique, or a combination altitude and airspeed 


comparison technique.  If the calibrated (“Pace”) aircraft flies by the test aircraft at the same 


altitude, then it is an altitude comparison technique.  If the calibrated aircraft and test aircraft fly in 


formation, then it is both an altitude and an airspeed comparison technique.  The truth altitude and 


truth airspeed of the aircraft are determined from the instruments in the calibrated aircraft after 


correcting for instrument and position error.  These values are compared to the indicated pressure 


altitude and indicated airspeed read in the test aircraft cockpit or on a DAS.  To find the altitude 


position correction (Hpc) and airspeed position correction (Vpc), we will 


 


 a.  Find the position correction of the pace aircraft 


 b.  Find the instrument and position corrected (“truth”) altitude and airspeed for the pace 


aircraft 


 c.  Correct cockpit readings for instrument errors 


 d.  Find the altitude and airspeed position corrections  


 e.  Find the static port position error ratio (Pp/Ps) 


 


For purposes of this discussion, we will use the following example data: 


 


 Pace coefficients 


 C0      54 feet 


 C1      -324 feet 


 C2      850 feet 


 C3      0 feet 


 C4      0 feet 


 Airspeed Position Correction (Vpc
pace


)  +3 knots 


 


 Altimeter Instrument Correction (Hic
pace


)  +20 feet 


 Airspeed Instrument Correction (Vic
pace


)  -2 knots 


 


 Indicated Altitude (Hi
pace


)    20,000 feet 


 Indicated Airspeed (Vi
pace


)    280 knots 


 


 Test aircraft data 


 Altimeter Instrument Correction (Hic
test


)  -15 feet 


 Airspeed Instrument Correction (Vic
test


)  +3 knots 


 


 Indicated Altitude (Hi
test


)    20,010 feet 


 Indicated Airspeed (Vi
test


)    275 knots 


 


Find the position correction of the pace aircraft 


 


Note:  This step assumes that the position correction curve for the pace aircraft has been supplied 


as coefficients to a polynomial of the form 


 


 Hpc
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Position error curves of this form were used in the past on AFFTC pace aircraft.  A pace aircraft 


may be fitted with a computer system that automatically applies instrument and position 


corrections to the indicated values before displaying them to the crew.  These values are Hpc and 


Vpc.  If using a system like this, skip forward to “Correct cockpit readings for instrument errors.” 


 


The polynomial above assumes that the altitude position error is only a function of Mach number 


and temperature ratio.  This assumes that the pace aircraft is at a sufficiently high airspeed that 


angle of attack effects are negligible and that the Pitot-static probe is uncompensated. 


 


To calculate the altitude position error from the polynomial above, we first need the instrument 


corrected Mach number and standard day temperature ratio at the test altitude.  We can calculate 


these from the instrument corrected altitude and instrument corrected airspeed.  


 


The instrument corrected altitude and airspeed are calculated by adding the instrument corrections 


to the indicated values.  From Equations D66 and D67, 


 


Hic
pace


 = Hi
pace


 + Hic
pace


 


 


Hic
pace


 = 20000 feet + (+20 feet) 


 


Hic
pace


 = 20020 feet 


 


Vic
pace


 = Vi
pace


 + Vic
pace


 


 


Vic
pace


 = 280 knots + (-2 knots) 


 


Vic
pace


 = 278 knots 


  


From this we can get our best number for the standard day temperature ratio at the test altitude. If 


we were really picky, we could iterate after finding Hpc, but the difference would most likely be 


insignificant, i.e. within a foot or two.  From Equation A78, 


 


std
test alt


 = 1 - 6.87559x10
-6


 Hic
pace


 
 


 


std
test alt


 = 1 - 6.87559x10
-6


/feet (20020 feet)
 


 


std
test alt


= 0.8623 


 


To calculate instrument corrected Mach number (Mic
pace


), we need the instrument corrected 


pressure ratio (ic
pace


) and instrument corrected airspeed (Vic
pace


).  To calculate ic
pace


 (from 


Equation A79) 


 


ic
pace


 = (1 - 6.87559x10
-6


 Hic
pace


)
5.2559 


 


ic
pace


 = (1 - 6.87559x10
-6


/feet (20020 feet))
5.2559 


 


ic
pace


 = 0.4592 
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So Mach number would be calculated by (from Equation C118) 
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 Mic
pace


 = 0.6058 


 


Now we can calculate the altitude position correction. 


 


 Hpc
pace


 = (C0 + C1Mic
pace


 + C2Mic
pace


2
 + C3Mic


pace


3
 + C4Mic


pace


4
 + …) std


test alt
 


 


Hpc
pace


 = (54 feet + (-324 feet)(0.6058) + (850 feet) (0.6058)
2
 + (0 feet) (0.6058)


3
 +                      


(0 feet) (0.6058)
4
 + …) (0.8623) 


 


 Hpc
pace


 = 146 feet 


 


Find the instrument and position corrected (“truth”) altitude and airspeed for the 


pace aircraft 


 


So the instrument and position corrected altitude (“truth” altitude) is (from Equation D69) 


 


Hpc
pace


 = Hic
pace


 + Hpc
pace


 


 


Hpc
pace


 = 20020 feet + (+146 feet) 


 


Hpc
pace


 = 20166 feet 


 


Note that if we took this altitude and recalculated std
test alt


 we would get 0.8613, a difference of 0.1 


percent, and would change the altitude position correction to 145.8 feet, or an error of less than a 


foot for using Hic to calculate std
test alt


 instead of iterating on the answer. 
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To calculate instrument and position corrected airspeed, the airspeed position correction would 


have to be provided or calculated from Hpc assuming zero total pressure error. (From Equation 


D70) 


 


Vpc
pace


 = Vic
pace


 + Vpc
pace


 


 


Vpc
pace


 = 278 knots + (+3 knots) 


 


Vpc
pace


 = 281 KCAS 


 


Correct test aircraft cockpit readings for instrument errors 


 


The instrument corrected altitude and airspeed are calculated by adding the instrument corrections 


to the indicated values.  (From Equations D66 and D67) 


 


Hic
test


 = Hi
test


 + Hic
test


 


 


Hic
test


 = 20,010 feet + (-15 feet) 


 


Hic
test


 = 19,995 feet 


 


Vic
test


 = Vi
test


 + Vic
test


 


 


Vic
test


 = 275 knots + (+3 knots) 


 


Vic
test


 = 278 knots 


 


Find the test day altitude and airspeed position corrections 


 


The test day position corrections are the difference between the instrument corrected altitude and 


the truth pressure altitude.  From Equation D5 


 


Hpc
test


 = Hpc
pace


 - Hic
test


 


 


Hpc
test


 = 20,166 feet – 19,995 feet 


 


Hpc
test


 = 171 feet 


 


This assumes that the static pressure transducers for both aircraft are both at the same altitude.  If 


there is a known difference in altitude, then that difference must be included when calculating 


Hpc
test


. 


 


From Equation D6 


 


Vpc
test


 = Vpc
pace


 - Vic
test


 


 


Vpc
test


 = 281 knots – 278 knots 


 


Vpc
test


 = 3 knots 
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Find the Position Error Ratio 


 


The position error ratio can be calculated from the altitude position correction or the airspeed 


position correction.  If the total pressure error is truly negligible, the results from both methods 


will be the same. 


 


If we choose to start with the altitude position correction, we calculate the static and ambient 


pressures 


 


 Ps = PSL(1 – 6.87559x10
-6


 Hic
test


)
5.2559


 (Hic
test


  36089.24 feet) (D8) 


 


 Ps = (2116.22 lb/ft
2
)(1 – 6.87559x10


-6
 (19,995 feet))


5.2559
  


 


 Ps = 972.70 lb/ft
2
 


  


 Pa = PSL (1 – 6.87559x10
-6


 Hpc
pace


)
5.2559


 (Hpc
pace


  36089.24 feet) (D10) 


 


 Pa = (2116.22 lb/ft
2
)(1 – 6.87559x10


-6
 (20,166 feet))


5.2559
  


 


 Pa = 965.75 lb/ft
2
 


 


Then the static port position error ratio is 
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If we choose to start with the airspeed position correction, we calculate the following ratios, From 


Equation C106 
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and from Equation D12 
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Then 
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 Pp = 6.2005 lb/ft
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While this value looks much different than the value determined from the altitude position 


correction, starting with the value determined from the altitude position correction and working 


backwards gives a Vic
test


 of 277.629 knots, which is only 0.370 knots different.  Thus, it would be 


reasonable to say that this example does not show a significant total pressure error. 
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Trailing Cone/Bomb Data Reduction  


 


Overview 


 


The trailing cone or trailing bomb FTT is an altitude comparison technique.  The truth altitude of 


the aircraft is determined by sampling the freestream ambient pressure from outside the flow field 


of the aircraft.  To find the altitude position correction (Hpc), we will 


 


 a.  Correct the trailing cone readings for instrument and position errors 


 b.  Correct cockpit readings for instrument errors 


 c.  Find the altitude position correction  


 d.  Find the static port position error ratio (Pp/Ps) 


 


For purposes of this discussion, we will use the following example data: 


 


 Trailing Cone Altitude (Hi
cone


)    10020 feet 


 Trailing Cone Altimeter Instrument Correction (Hic
cone


) +25 feet 


 Trailing Cone Position Correction (pc
cone


)   +0 feet 


 


 Altimeter Instrument Correction (Hic)   +15 feet 


 Airspeed Instrument Correction (Vic)   -2.5 knots 


 


 Indicated Altitude (Hi)     10000 feet 


 Indicated Airspeed (Vi)     425 knots 


 


Correct the trailing cone readings for instrument and position errors 


 


The truth pressure altitude is calculated by adding the instrument and position corrections to the 


indicated values.  From Equations D66 and D69, 


 


Hc = Hi
cone


 + Hic
cone


 + Hpc
cone


 


 


Hc = 10020 feet + (+25 feet) + (+0 feet) 


 


Hc = 10045 feet 


 


Correct cockpit readings for instrument errors 


 


The instrument corrected altitude and airspeed are calculated by adding the instrument corrections 


to the indicated values. 


 


 Hic = Hi + Hic (D66) 


 


Hic = 10000 feet + (+15 feet) 


 


Hic = 10015 feet 


 


 Vic = Vi + Vic (D67) 


 


Vic = 425 knots + (-2.5 knots) 


 


Vic = 422.5 knots 
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Find the altitude position correction  


 


The altitude position correction is the difference between the instrument corrected altitude and the 


truth pressure altitude. 


 


 Hpc = Hc - Hic (D5) 


 


Hpc = 10045 feet – 10015 feet 


 


Hpc = 30 feet 


 


This assumes that the static pressure transducers for the aircraft and the trailing cone are both at 


the same altitude.  If there is a known difference in altitude, then that difference must be included 


when calculating Hpc. 


 


Find the static port position error ratio (Pp/Ps) 


 


The Position Error is the error in reading the ambient pressure (difference between static and 


ambient pressure), or Pp, defined as 


 


 Pp  = Ps - Pa (D1) 


 


Therefore, we calculate the static and ambient pressures 


 


 Ps = PSL(1 – 6.87559x10
-6


 Hic)
5.2559


 (Hic  36089.24 feet) (D8) 


 


 Ps = (2116.22 lb/ft
2
)(1 – 6.87559x10


-6
 (10015 feet))


5.2559
  


 


 Ps = 1454.48 lb/ft
2
 


  


 Pa = PSL (1 – 6.87559x10
-6


 Hc)
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 (Hc  36089.24 feet) (D10) 


 


 Pa = (2116.22 lb/ft
2
)(1 – 6.87559x10


-6
 (10045 feet))


5.2559
  


 


 Pa = 1452.79 lb/ft
2
 


 


Then the position error ratio is 
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Alternatively, if the trailing cone is connected to one side of a differential pressure sensor with the 


aircraft static system connected to the other side, then the sensor would read Pp directly.  For this 


example, it would read 


 


 Pp = 1.69 lb/ft
2
 


 


To calculate the position error ratio, simply divide by the static pressure. 
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Survey Data Reduction  


 


Overview 


 


The survey FTT is an altitude comparison technique.  The truth altitude of the aircraft is 


determined by comparing its geometric altitude to a pressure altitude map generated by a weather 


balloon or by the same or another aircraft.  To find the altitude position correction (Hpc), we will 


 


 a.  Determine the tapeline (geometric) altitude of the test aircraft 


 b.  Find the truth pressure altitude of the test aircraft 


 c.  Correct cockpit readings for instrument errors 


 d.  Find the altitude position correction  


 e.  Find the static port position error ratio (Pp/Ps) 


 


Determine the tapeline (geometric) altitude of the test aircraft 


 


For purposes of this discussion, we will use the following example data for the test aircraft: 


 


 Indicated Altitude (Hi
test


)     19970 feet 


 Indicated Airspeed (Vi
test


)     425 knots 


 Time       16:04:52 


 


 Altimeter Instrument Correction (Hic
test


)   -15 feet 


 Airspeed Instrument Correction (Vic
test


)   -2.5 knots 


 


At the time 16:04:52, the TSPI data (radar or GPS) give a location of the aircraft and a tapeline 


altitude of 


 


 Tapeline Altitude (htest)     25132 feet 


 


Find the truth pressure altitude of the test aircraft 


 


Our method for finding the truth pressure altitude of the test aircraft depends on how the pressure 


altitude map was measured. 


 


  Weather Balloon 
 


Weather balloon data will come with many columns of information, but the only two that we need 


for this analysis are the pressure and geometric altitude.  For this example, assume we have these 


data 


 


Pressure 


(mBar) 


Geometric Altitude 


(feet) 


463.4 25273 


468.0 25011 
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Yes, those weather guessers love their millibars.  That’s great, but we need pressure altitude.  All 


we need to know is that sea level pressure is 1013.25 millibars.  Then we can find the pressure 


altitude 


 


 
SLP


P
  (A70) 


 


 
mBar25.1013


mBar4.463
   


 


 = 0.45734 


 


 
6


2559.5


c
10x87559.6


1
H






  (Hc  36089.24 feet) (B3) 


 


 
6


2559.5


c
10x87559.6


45734.01
H






   


 


Hc = 20115 feet 


 


So our table of data would now read 


 


Pressure 


(mBar) 


Pressure Altitude 


(feet) 


Geometric Altitude 


(feet) 


463.4 20114 25273 


468.0 19879 25011 


 


To find the truth pressure altitude, we simply interpolate these data at the test aircraft geometric 


altitude (htest) of 25132 feet 


 


 
 
 


  198791987920114
2501125273


2501125132
H testc 






   


 


Hc
test
= 19987 feet 


 


  Calibrated Aircraft – Single Pass 


 


To find the truth pressure altitude at a particular test aircraft airspeed, we want to consult the 


pressure altitude map at the positions closest to where the test aircraft was at that airspeed as it 


accelerated through the measurement corridor.  To determine this location, find the test aircraft 


location (latitude, longitude) at the desired airspeed.  Calculate the distance from this location to 


each location recorded by the calibrated aircraft.   As shown in Appendix F, this distance between 


points calculated by  


 


 cos (Distance Angle1-2) = sin (Lat2) sin (Lat1) + cos (Lat2) cos (Lat1) cos (Long2 – Long1) (F7) 


 


 nm21600*
deg360


AnglecetanDis
cetanDis 21


21



   (F8) 


 


Equation F8 assumes the Distance Angle1-2 is expressed in degrees.  If this angle is calculated in 


radians (as many computer programs do) substitute “2” for “360 deg” in the denominator. 
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Find the location that was at the minimum distance from the test aircraft location.  For this 


example, assume these were your results. 


 


 Tapeline Altitude (hcal)     25202 feet 


 Time       15:59:32 


 


Consulting the data recorded onboard the calibrated aircraft at 15:59:32 


 


 Indicated Altitude (Hi
cal


)     20020 feet 


 Indicated Airspeed (Vi
cal


)     300 knots 


 Indicated Temperature (Ti)     25 °C 


 


 Altimeter Instrument Correction (Hic
cal


)   -10 feet 


 Altimeter Position Correction (Hpc
cal


)   +40 feet 


 Airspeed Instrument Correction (Vic
cal


)   -1.5 knots 


 Airspeed Position Correction (Vpc
cal


)   +1 knots 


 


Temperature Instrument Correction (Tic)   +1 °C 


 Temperature Recovery Factor (Kt)    0.98    


 


The difference in geometric (tapeline) altitude would be 


 


h = hcal - htest 


 


h = 25202 feet - 25132 feet 


 


h = 70 feet 


 


For the calibrated aircraft, the instrument and position corrected altitude and airspeed are 


calculated by adding the instrument and position corrections to the indicated values.  From 


Equations D66 and D69 


 


Hpc
cal


 = Hi
cal


 + Hic
cal


 + Hpc
cal


 


 


Hpc
cal


 = 20020 feet + (-10 feet) + (+40 feet) 


 


Hpc
cal


 = 20050 feet 


 


and from Equations D67 and D70 


 


Vpc
cal


 = Vi
cal


 + Vic
cal


 + Vpc
cal


 


 


Vpc
cal


 = 300 knots + (-1.5 knots) + (+1 knot) 


 


Vpc
cal


 = 299.5 knots 
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To determine the temperature at the test altitude, we need the Mach number of the calibrated 


aircraft.  From Equation A79 


 


 = (1 - 6.87559x10
-6


 Hpc
cal


)
5.2559 


 


 = (1 - 6.87559x10
-6


/feet (20050 feet))
5.2559 


 


 = 0.45858 


 


From Equation C118 
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M = .6509 


 


To convert the tapeline altitude difference to a pressure altitude difference, we need to know the 


standard temperature and the ambient temperature at the test altitude. 


 


For the standard temperature (from Equations A69 and A78) 


 


Tstd = (1 - 6.87559x10
-6


 Hpc
cal


)TSL 


 


Tstd= (1 - 6.87559x10
-6


/feet (20050 feet))(288.15 K)
 


 


Tstd= 248.42 K 


 


For the test temperature (from Equations C185 and C187) 
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To convert the difference in tapeline altitude to a difference in pressure altitude (from Equation 


B23) 


 


std
c


a


T
H h


T
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 feet70
K25.276


K42.248
Hc   


 


Hc= 62.9 feet 


 


The truth pressure altitude for the test aircraft can be found by subtracting the difference in 


pressure altitude from the pressure altitude of the calibrated aircraft. 


 


Hc
test
= Hpc


cal
 - Hc 


 


Hc
test
= 20050 feet – 62.9 feet 


 


Hc
test
= 19987 feet 


 


  Calibrated Aircraft – Pass Above and Below Test Altitude 


 


If pressure altitude map data were recorded above and below the test altitude, a linear regression 


model of pressure altitude can be calculated in terms of geometric altitude and position (or 


distance down track).  This can be done in Excel, Matlab, or many other math packages.  If 


pressure altitude map data were recorded above and below the test altitude, both before and after 


the test run, then the regression model could also be calculated in terms of time, though time will 


probably not be a strong factor if consideration was given to testing in stable weather conditions. 


 


Alternatively, a table similar to the type used in the weather balloon analysis of pressure altitude 


and geometric altitude can be determined for each airspeed of the test aircraft.  Using the latitude 


and longitude of the test aircraft at each airspeed of interest, use the method described above to 


find the closest point of the survey passes and their geometric and pressure altitudes.  With these 


data, interpolate with the test aircraft geometric altitude to find the truth pressure altitude as 


described in the weather balloon section. 


 


For less calculation, simply build a table of geometric versus pressure altitude for one location on 


the survey passes and use it for all test aircraft airspeeds.  This will result in the same uncertainty 


with regards to location as in the weather balloon method. 


 


Correct cockpit readings for instrument errors 


 


For the test aircraft, the instrument corrected altitude and airspeed are calculated by adding the 


instrument corrections to the indicated values.  From Equation D66 


 


Hic
test


 = Hi
test


 + Hic
test


 


 


Hic
test


 = 19970 feet + (-15 feet) 


 


Hic
test


 = 19955 feet 
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and from Equation D67 


 


Vic
test


 = Vi
test


 + Vic
test


 


 


Vic
test


 = 425 knots + (-2.5 knots) 


 


Vic
test


 = 422.5 knots 


 


Find the altitude position correction  


 


The altitude position correction is the difference between the instrument corrected altitude and the 


truth pressure altitude.  From Equation D5 


 


Hpc
test


 = Hc
test


 - Hic
test


 


 


Hpc
test


 = 19987 feet – 19955 feet 


 


Hpc
test


 = 32 feet 


 


Find the static port position error ratio (Pp/Ps) 


 


The Position Error is the error in reading the ambient pressure (difference between static and 


ambient pressure), or Pp, defined as 


 


 Pp  = Ps - Pa (D1) 


 


Therefore, we calculate the static and ambient pressures 


 


 Ps = PSL(1 – 6.87559x10
-6


 Hic
test


)
5.2559


 (Hic  36089.24 feet) (D8) 


 


 Ps = (2116.22 lb/ft
2
)(1 – 6.87559x10


-6
 (19955 feet))


5.2559
  


 


 Ps = 974.33 lb/ft
2
 


  


 Pa = PSL (1 – 6.87559x10
-6


 Hc
test


)
5.2559


 (Hc  36089.24 feet) (D10) 


 


 Pa = (2116.22 lb/ft
2
)(1 – 6.87559x10


-6
 (19987 feet))


5.2559
  


 


 Pa = 973.02 lb/ft
2
 


 


Then the position error ratio is 
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Speed Course Data Reduction 


 


Overview 


 


The speed course FTT is an airspeed comparison technique.  The truth airspeed of the aircraft is 


determined from measurements of ground speed, and then compared to the airspeed read in the 


cockpit or on a DAS.  Even though we refer to it as an airspeed comparison technique, the best 


way to reduce the data is to find the Mach position correction (Mpc), because it does not have the 


altitude dependence that airspeed does.  The basic process is 


 


 a.  Find the truth true airspeed 


 b.  Find the truth Mach number 


 c.  Correct cockpit readings for instrument errors 


 d.  Find the indicated Mach number  


 e.  Find the Mach position correction 


 


If we assume the total pressure error is zero, we can 


 


 f.  Find the position error ratio (Pp/Ps) 


 


For purposes of this discussion, we will use the following example data: 


 


First Leg 


 


 Indicated Airspeed (Vi)    110 knots 


 Indicated Altitude (Hi)    2450 feet 


 Indicated Temperature (Ti)    15 °C 


 Time (t1)     02:02.0 


 Distance (D1)     5 sm 


 


Second Leg 


 


 Indicated Airspeed (Vi)    110 knots 


 Indicated Altitude (Hi)    2400 feet 


 Indicated Temperature (Ti)    15 °C 


 Time (t2)     02:13.0 


 Distance (D2)     5 sm 


 


 Altimeter Instrument Correction (Hic)  -20 feet 


 Airspeed Instrument Correction (Vic)  +2 knots 


 Temperature Instrument Correction (Tic)  -1°C (-1 K) 


 Temperature Recovery Factor (Kt)   0.8 


 


Find the truth true airspeed 


 


If we assume that wind direction and wind speed along the course are constant and the same for 


the runs in both directions, and that the indicated airspeed and indicated altitude are the same for 


both runs, then the true airspeed is the same for both runs and is equal to the average ground speed 


for both runs. 


 


So why do we make a big deal about doing the speed course in low winds and perpendicular to the 


wind?  It’s that first assumption—that the wind is constant.  Most of the time winds will be gusty 


to some extent and these gradients cannot be accounted for in the data reduction.  By doing the 


speed course in low winds and perpendicular winds, the effects of these gusts are minimized. 
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So the Average Ground Speed and thus True Airspeed is given by 
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Vt = 122.9 knots 


 


While not required for our data reduction, the headwind component can be calculated as a measure 


of data quality.  Headwind is given by 
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Headwind = 5.3 knots 


 


Find the truth Mach number 


 


We can find the truth Mach number from the truth true airspeed, but we will need to know the 


local speed of sound at the test conditions.  To find the local speed of sound, we need to know the 


temperature.  Yes, we measured the temperature, but the indicated temperature needs to be 


corrected to ambient before we can use it. 


 


Normally we correct for total temperature rise using Mach number, but that would be tough in this 


case because we’re trying to determine the Mach number.  There is an alternative method using 


true airspeed, which requires knowing the value of Cp for air.  Various values for CP are 
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The ambient temperature is then given by (from Equations C185 and C191) 
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The test temperature ratio is given by (from Equation A69) 
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test = 0.9910 


 


Now we can find the Mach number (from Equation C75) 
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M = 0.1866 


 


Correct cockpit readings for instrument errors 


 


The instrument corrected altitude and airspeed are calculated by adding the instrument corrections 


to the indicated values.  If the indicated values of airspeed or altitude are not identical between 


runs, about the best that we can do is to average the two values. 


 


 Hic = Hi + Hic (D66) 


 


Hic = 2425 feet + (-20 feet) 


 


Hic = 2405 feet 


 


 Vic = Vi + Vic (D67) 


 


Vic = 110 knots + (+2 knots) 


 


Vic = 112 knots 


 


Find the indicated Mach number  


 


So our next step is to determine the indicated Mach number at the test conditions.  We could jump 


straight to the Mach meter equation with calibrated airspeed and pressure altitude, but since we 


will need qcic/PSL later, we’ll calculate that first.  This is the value in the middle of the calibrated 


airspeed equation. 
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Note that because this value was calculated using Vic, this is the pressure ratio seen at the airspeed 


indicator, and thus contains the position error.  This is why the value is qcic/PSL and not qc/PSL. 


 


To find the Mach number we will need qcic/Ps, and to find that we need qcic/PSL and ic.  We’ll find 


ic (which also contains the position error) seen by the altimeter from the instrument corrected 


altitude, Hic.  From Equation A79 


 


ic = (1 - 6.87559x10
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5.2559 


 


ic = (1 - 6.87559x10
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ic = 0.9161 


 


We can now find qcic/Ps 
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This is the number we find in the middle of the true airspeed and Mach equations.  Now we can 


find the instrument corrected Mach number, Mic, which is what a perfect Mach meter in the 


cockpit would have read.  Note that because this Mach is calculated using numbers that contain 


the position error, it too contains the position error. 
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Find the Mach position correction 


 


Now that we know the truth Mach number and the indicated Mach number, the Mach position 


correction can be found simply by subtracting. 


 


 pc = M - Mic (D7) 


 


Mpc = 0.1866 – 0.1768 


 


Mpc = 0.0098 


 


Find the static port position error ratio (Pp/Ps) 


 


From the truth Mach number, we calculate the ratio PT/Pa  
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Doing the same for instrument corrected Mach number 
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The position error ratio can then be calculated directly from these ratios by 
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All Altitude Speed Course Data Reduction 


 


Overview 


 


The All Altitude Speed Course FTT is an airspeed comparison technique.  The truth airspeed of 


the aircraft is determined from measurements of ground speed and track angle, and then compared 


to the airspeed read in the cockpit or on a DAS.  The basic process is 


 


 a.  Find the drift angle  


 b.  Find the adjusted truth true airspeed 


 c.  Find the truth Mach number 


 d.  Correct cockpit readings for instrument errors 


 e.  Find the indicated Mach number 


 f.  Find the truth Mach number 


g.  Find the Mach position correction 


 


If we assume the total pressure error is zero, we can 


 


 h.  Find the position error ratio (Pp/Ps) 


 


For purposes of this discussion, we will use the following example data: 


 


TABLE 9.1 


Example Data 


 


Magnetic 


Heading 


(deg) 


Indicated 


Airspeed 


(knots) 


GPS Track 


(deg) 


GPS Ground 


Speed 


(knots) 


Drift Angle 


(deg) 


Ground 


Speed 


Component 


(knots) 


Adjusted 


Ground 


Speed  


Component 


(knots) 


First Leg 


185 50 177 69.7 -008 69.0 69.0 


185 52 176 72.6 -009 71.7 69.7 


185 49 175 69.1 -010 68.0 69.0 


185 50 174 69.3 -011 68.0 68.0 


185 50 175 70 -010 68.9 68.9 


181 51 172 72.4 -009 71.5 70.5 


180 51 172 71.6 -008 70.9 69.9 


Second Leg 


005 50 020 72.2 015 69.7 69.7 


004 50 019 71.3 015 68.8 68.8 


006 50 019 71.2 013 69.3 69.3 


005 50 020 71.1 015 68.6 68.6 


005 50 019 74.1 014 71.8 71.8 


004 51 020 73.9 016 71.0 70.0 


005 50 020 73.0 015 70.5 70.5 


001 51 018 72.4 017 69.2 68.2 
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First Leg 


 


 Indicated Altitude (Hi)    9020 feet 


 Indicated Temperature (Ti)    17.1 °C 


 


Second Leg 


 


 Indicated Altitude (Hi)    8980 feet 


 Indicated Temperature (Ti)    17.1 °C 


  


Altimeter Instrument Correction (Hic)  -20 feet 


 Airspeed Instrument Correction (Vic)  +0 knots 


 Temperature Instrument Correction (Tic)  -1°C (-1 K) 


 Temperature Recovery Factor (Kt)   0.8 


 


Find the drift angle  


 


The drift angle is the difference between the heading and the track. 


 


Drift Angle = GPS Mag Track – Mag Heading 


 


Results are shown in Table 9.1. 


 


Find the adjusted truth true airspeed 


 


The ground speed component in the heading direction is calculated by 


 


V = GPS Ground Speed * cos(Drift Angle) 


 


Results are shown in Table 9.1. 


 


Eventually we will average the ground speed components in each direction and compare them to 


the true airspeed derived from the aim airspeed (50 knots in this example).  Note, however, that 


the indicated airspeed varied slightly from the aim airspeed.  We will remove some of this error by 


subtracting a knot from the ground speed component for each knot the indicated airspeed exceeds 


the aim airspeed.  Note that this assumes a change of one knot indicated airspeed is the same size 


as a knot of ground speed.  While not exact, it is very close.  The formula is  


 


Vadj = V + (Vaim – Vi) 


 


Results are shown in Table 9.1. 


 


Averaging the adjusted ground speed components in the southerly direction gives 69.29 knots. 


Averaging the adjusted ground speed components in the northerly direction gives 69.61 knots.  


The average of these two numbers gives the adjusted truth true airspeed. 


 


Vt = 69.5 knots 


 


 


 


 


 


 


 


 







 Chapter 9  Data Reduction 137 


 


 


Correct cockpit readings for instrument errors 


 


The instrument corrected altitude and airspeed are calculated by adding the instrument corrections 


to the indicated values.  If the indicated values of airspeed or altitude are not identical between 


runs, about the best that we can do is to average the two values. 


 


 Hic = Hi + Hic (D66) 


 


Hic = 9020 feet + (-20 feet) 


 


Hic = 9000 feet 


 


 Vic = Vi + Vic (D67) 


 


Vic = 50 knots + (+0 knots) 


 


Vic = 50 knots 


 


Find the indicated Mach number  


 


So our next step is to determine the indicated Mach number at the test conditions.  From Equation 


A79 


 


ic = (1 - 6.87559x10
-6
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5.2559 


 


ic = (1 - 6.87559x10
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/feet (9000 feet))
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ic = 0.71481 


 


From Equation C118 
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Find the truth Mach number 


 


We can find the truth Mach number from the truth true airspeed, but we will need to know the 


local speed of sound at the test conditions.  To find the local speed of sound, we need to know the 


temperature.  Now that we know the truth true airspeed, we can use that to find the correct ambient 


temperature.  We will use the alternative method, which requires knowing the value of Cp for air.  


Various values for CP are 
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The ambient temperature is then given by (from Equations C185 and C191) 
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Ta = 15.6 °C = 288.7 K 


 


The test temperature ratio is given by (from Equation A69) 
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test = 1.0019 


 


Now we can find the truth Mach number (from Equation C75) 
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Find the Mach position correction 


 


Now that we know the truth Mach number and the indicated Mach number, the Mach position 


correction can be found simply by subtracting. 


 


 pc = M - Mic (D7) 


 


Mpc = 0.1050 – 0.08937 


 


Mpc = 0.0156 


 


Find the static port position error ratio (Pp/Ps) 


 


From the truth Mach number, we calculate the ratio PT/Pa  
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Doing the same for instrument corrected Mach number 
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The position error can then be calculated directly from these ratios by 
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Horseshoe GPS Data Reduction 


 


Overview 


 


The Horseshoe GPS FTT is an airspeed comparison technique.  The truth airspeed of the aircraft is 


determined from measurements of ground speed on three orthogonal headings, and then compared 


to the airspeed read in the cockpit or on a DAS.  Note that the data reduction method presented 


here assumes left turns between legs.  The basic process is 


 


 a.  Find the wind direction  


 b.  Find the wind speed 


 c.  Find the true airspeed 


 d.  Correct cockpit readings for instrument errors 


 e.  Find the indicated Mach number 


 f.  Find the truth Mach number 


g.  Find the Mach position correction 


 


If we assume the total pressure error is zero, we can 


 


 h.  Find the position error ratio (Pp/Ps) 


 


For purposes of this discussion, we will use the following example data: 


 


First Leg 


 


 Indicated Airspeed (Vi)    175 knots  


 Indicated Altitude (Hi)    15000 feet 


 Indicated Temperature (Ti)    -15 °C 


 GPS Ground Speed    207.0 knots 


 Heading      40° 


 


Second Leg 


 


 Indicated Airspeed (Vi)    175 knots  


 Indicated Altitude (Hi)    15000 feet 


 Indicated Temperature (Ti)    -15 °C 


 GPS Ground Speed    220.0 knots 


 


Third Leg 


 


 Indicated Airspeed (Vi)    175 knots  


 Indicated Altitude (Hi)    15000 feet 


 Indicated Temperature (Ti)    -15 °C 


 GPS Ground Speed    226.0 knots 


 


  


Altimeter Instrument Correction (Hic)  -20 feet 


 Airspeed Instrument Correction (Vic)  +2 knots 


 Temperature Instrument Correction (Tic)  -1°C (-1 K) 


 Temperature Recovery Factor   0.95 
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Find the wind direction  


 


The wind direction relative to the heading of the first leg is given by 
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rel = 19.26° 


 


To get the wind direction relative to North, add the initial heading 


 


 = rel + Leg 1 Heading 


 


 = 19.26° + 40° 


 


 = 59.26° 


 


Find the wind speed 


 


The wind speed is given by the following equation.  The plus or minus is selected so as to give a 


positive quantity within the outermost parentheses.  It may be necessary to try both plus and minus 


and select the most reasonable answer. 
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Vw = 10.07 knots 
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Find the truth true airspeed 


 


The truth true airspeed is given by 
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Vt = 216.5 knots 


 


Correct cockpit readings for instrument errors 


 


The instrument corrected altitude and airspeed are calculated by adding the instrument corrections 


to the indicated values.  If the indicated values of airspeed or altitude are not identical between 


runs, about the best that we can do is to average the three values. 


 


 Hic = Hi + Hic (D66) 


 


Hic = 15000 feet + (-20 feet) 


 


Hic = 14980 feet 


 


 Vic = Vi + Vic (D67) 


 


Vic = 175 knots + (+2 knots) 


 


Vic = 177 knots 


 


Find the indicated Mach number  


 


So our next step is to determine the indicated Mach number at the test conditions.  From Equation 


A79 


 


ic = (1 - 6.87559x10
-6


 Hic)
5.2559 


 


ic = (1 - 6.87559x10
-6


/feet (14980 feet))
5.2559 


 


ic = 0.56480 
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From Equation C118 


 


 





























































































































 111


a


V
2.01


1
5M


7
2


2
7


2


SL


ic


ic
ic    


 


 



















































































































 111


knots48.661


knots177
2.01


56480.0


1
5M


7
2


2
7


2


ic   


 


Mic = 0.35369 


 


Find the truth Mach number 


 


We can find the truth Mach number from the truth true airspeed, but we will need to know the 


local speed of sound at the test conditions.  To find the local speed of sound, we need to know the 


temperature.  Now that we know the truth true airspeed, we can use that to find the correct ambient 


temperature.  We will use the alternative method, which requires knowing the value of Cp for air.  


Various values for CP are 
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The ambient temperature is then given by (from Equations C185 and C191) 
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Ta = -21.9 °C = 251.3 K 


 


The test temperature ratio is given by (from Equation A69) 
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test = 0.87212 
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Now we can find the truth Mach number (from Equation C75) 
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87212.0knots48.661


knots5.216
M   


 


M = 0.35047 


 


Find the Mach position correction 


 


Now that we know the truth Mach number and the indicated Mach number, the Mach position 


correction can be found simply by subtracting. 


 


 pc = M - Mic (D7) 


 


Mpc = 0.35047 – 0.35369 


 


Mpc = -0.00322 


 


Find the static port position error ratio (Pp/Ps) 


 


From the truth Mach number, we calculate the ratio PT/Pa  
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Doing the same for instrument corrected Mach number 
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The position error can then be calculated directly from these ratios by 
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Cloverleaf Data Reduction (Vector Method) 


 


Overview 


 


The preferred method for reducing cloverleaf data is to use the matrix inversion method (discussed 


later).  The vector method requires more assumptions, specifically that the true airspeed on each 


leg must be identical.  Variations in true airspeed between legs will lead to errors in the results.  


The vector method is included here for better understanding of the geometry involved.  Three legs 


of data conceptually lead to three vectors (ground speed).  A solution of three equal length vectors 


(true airspeed) is found which matches the endpoints of the ground speed vectors.  The origin of 


these three vectors defines the wind vector, as shown in Figure 9.2. 


 


 
 


Figure 9.2.  Wind triangles for three passes 


 


The cloverleaf FTT is an airspeed comparison technique.  The truth airspeed of the aircraft is 


determined from measurements of ground speed and track angle, and then compared to the 


airspeed read in the cockpit or on a DAS.  The basic process is 


 


 a.  Correct cockpit readings for instrument errors 


 b.  Find the indicated Mach number  


 c.  Find the truth true airspeed and wind velocity 


 d.  Find the truth Mach number 


 e.  Find the Mach position correction 


 


If we assume the total pressure error is zero, we can 


 


 f.  Find the position error ratio (Pp/Ps) 
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For purposes of this discussion, we will use the following example data: 


 


First Leg 


 


 Indicated Airspeed (Vi)    130 knots 


 Indicated Altitude (Hi)    6000 feet 


 Indicated Temperature (Ti)    11 °C 


 GPS Ground Speed (Vg)    130.3 knots 


 GPS Ground Track (sg)    7° 


 


Second Leg 


 


 Indicated Airspeed (Vi)    130 knots 


 Indicated Altitude (Hi)    6000 feet 


 Indicated Temperature (Ti)    11 °C 


 GPS Ground Speed (Vg)    153.8 knots 


 GPS Ground Track (sg)    114° 


 


Third Leg 


 


 Indicated Airspeed (Vi)    130 knots 


 Indicated Altitude (Hi)    6000 feet 


 Indicated Temperature (Ti)    11 °C 


 GPS Ground Speed (Vg)    122.5 knots 


 GPS Ground Track (sg)    234° 


 


 Altimeter Instrument Correction (Hic)  -20 feet 


 Airspeed Instrument Correction (Vic)  +2 knots 


 Temperature Instrument Correction (Tic)  -1°C (-1 K) 


 Temperature Recovery Factor (Kt)   1.0 


 


Correct cockpit readings for instrument errors 


 


The vector method assumes the true airspeed on each leg is identical.  If the indicated values of 


airspeed or altitude are not identical between runs, about the best that we can do is to average the 


values. 


 


The instrument corrected altitude, airspeed, and temperature are calculated by adding the 


instrument corrections to the indicated values.   


 


 Hic = Hi + Hic (D66) 


 


Hic = 6000 feet + (-20 feet) 


 


Hic = 5980 feet 


 


 Vic = Vi + Vic (D67) 


 


Vic = 130 knots + (+2 knots) 


 


Vic = 132 knots 
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 Tic = Ti + Tic (C185) 


 


Tic = 11 °C + (-1 °C) + 273.15 


 


Tic = 283.15 K 


 


Find the indicated Mach number  


 


So our next step is to determine the indicated Mach number at the test conditions.  We could jump 


straight to the Mach meter equation with calibrated airspeed and pressure altitude, but since we 


will need qcic/PSL later, we’ll calculate that first.  This is the value in the middle of the calibrated 


airspeed equation. 
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Note that because this value was calculated using Vic, this is the pressure ratio seen at the airspeed 


indicator, and thus contains the position error.  This is why the value is qcic/PSL and not qc/PSL. 


 


To find the Mach number we will need qcic/Ps, and to find that we need qcic/PSL and ic.  We’ll find 


ic (which also contains the position error) seen by the altimeter from the instrument corrected 


altitude, Hic.  From Equation A79 


 


ic = (1 - 6.87559x10
-6


 Hic)
5.2559 


 


ic = (1 - 6.87559x10
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/feet (5980 feet))
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ic = 0.80198 


 


We can now find qcic/Ps 
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This is the number we find in the middle of the true airspeed and Mach equations.  Now we can 


find the instrument corrected Mach number, Mic, which is what a perfect Mach meter in the 
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cockpit would have read.  Note that because this Mach is calculated using numbers that contain 


the position error, it too contains the position error. 
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Mic = 0.22256 


 


Find the truth true airspeed and wind velocity 


 


This step involves building the solution matrix.  First we need to find the components of ground 


speed.  For the first leg 


 


 


 Vgx = Vg sin sg (E1) 


 


 Vgx1 = 130.3 sin 7°  


 


 Vgx1 = 15.88 knots  


 


 Vgy = Vg cos sg (E2) 


 


 Vgy1 = 130.3 cos   


 


 Vgy1 = 129.33 knots 


 


 Vgx2 = 140.50 knots 


 


 Vgy2 = -62.56 knots 


 


 Vgx3 = -99.10 knots 


 


 Vgy3 = -72.00 knots 


 


Next we calculate the slope of the line segment between Vg1 and Vg2 and between Vg1 and Vg3 
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 Slope1-2 = -1.5398 


 


 Slope1-3 = 1.7510 
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Next we need the slope of the perpendicular bisector to these two line segments 
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
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 Slope1-2 = 0.6494 


 


 Slope1-3 = -0.5711 


 


The midpoints of the line segments are given by 
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 (xmidpoint1-2, ymidpoint1-2) = (78.19, 33.385) 


 


 (xmidpoint1-3, ymidpoint1-3) = (-41.61, 28.665) 


 


Now we can find the intercepts 


 


  intmidpointmidpo xSlopeyIntercept    (E8) 


 


 Intercept1-2 = 33.385 – 0.6494 (78.19) 


 


 Intercept1-2 = -17.39 


 


 Intercept1-3 = 4.90 


 


Next is the component of the wind in the x direction 
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 Vwx = 18.26 knots 
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This x value for the wind is then inserted in the equation for one of the perpendicular bisectors 


 


 y = mx + b (E6) 


 


 Vwy = 0.6494 (18.26) – 17.39 


 


 Vwy = -5.53 knots 


 


The true airspeed can then be calculated using  
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 Vt = 134.9 knots 


 


Find the Wind Vector 


 


The wind vector would be found by 
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 Vw = 19.08 knots 
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 106.9 deg rees   


 


Two things to note about the calculation of the wind angle.  The “y” and “x” coordinate seem to be 


reversed.  This is because compass directions are defined differently than Cartesian coordinates.  


Rather than being defined counterclockwise from the horizontal (x) axis, directions are defined 


clockwise from the vertical (north, y) axis.  Using the function ATAN2(Vwy, Vwx) in Excel will 


return the proper direction in the proper quadrant. 


 


Secondly, this is the direction of the wind vector, i.e. where the wind is blowing to, not from.  To 


match the traditional method of defining wind direction as the “from” direction, simply add 180 


degrees to get 286.9 degrees. 


 


Find the truth Mach number 


 


We can find the truth Mach number from the truth true airspeed, but we will need to know the 


local speed of sound at the test conditions.  To find the local speed of sound, we need to know the 


temperature.  Now that we know the truth true airspeed, we can use that to find the correct ambient  
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temperature.  We will use the alternative method, which requires knowing the value of Cp for air.  


Various values for CP are 
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The ambient temperature is then given by (from Equations C185 and C191) 
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Ta = 7.6 °C = 280.7 K 


 


The test temperature ratio is given by (from Equation A69) 
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test = 0.97415 


 


Now we can find the truth Mach number (from Equation C75) 
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M = 0.2066 


 


Find the Mach position correction 


 


Now that we know the truth Mach number and the indicated Mach number, the Mach position 


correction can be found simply by subtracting. 


 


 pc = M - Mic (D7) 


 


Mpc = 0.2066 – 0.22256 


 


Mpc = -0.01596 
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Find the static port position error ratio (Pp/Ps) 


 


From the truth Mach number, we calculate the ratio PT/Pa  
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Doing the same for instrument corrected Mach number 
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The position error can then be calculated directly from these ratios by 
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Cloverleaf Data Reduction (Matrix Inversion Method)  


 


The Matrix Inversion method is preferred for reducing cloverleaf data because it solves for the 


true airspeed correction instead of solving for the true airspeed.  This may not sound like a big 


difference, but consider this.  Assume that the airspeed position correction is essentially constant 


over a small range, say ±2 knots.  As long as the true airspeed on each leg is “constant” within ±2 


knots, this method will calculate the correct true airspeed correction.  The result is that this method 


allows more uncertainty in the airspeed input without having a significant effect on the result.  Our 


Test Pilots do their best to fly precisely, but even the best have small variations, which they will 


usually blame on the atmosphere.  Even so, this data reduction method is tolerant of those small 


errors. 


 


The basic process is 


 


 a.  Correct cockpit readings for instrument errors 


 b.  Find the indicated Mach number  


 c.  Find the indicated true airspeed 


 d.  Find the true airspeed error and wind velocity 


 e.  Find the Mach position correction 


 


If we assume the total pressure error is zero, we can 


 


 f.  Find the position error ratio (Pp/Ps) 


 


For purposes of this discussion, we will use the following example data (note these data are the 


same as for the Vector Method with slight variations in airspeed): 


 


First Leg 


 


 Indicated Airspeed (Vi)    131 knots 


 Indicated Altitude (Hi)    6000 feet 


 Indicated Temperature (Ti)    11 °C 


 GPS Ground Speed (Vg)    131.3 knots 


 GPS Ground Track (sg)    7° 


 


Second Leg 


 


 Indicated Airspeed (Vi)    130 knots 


 Indicated Altitude (Hi)    6000 feet 


 Indicated Temperature (Ti)    11 °C 


 GPS Ground Speed (Vg)    153.8 knots 


 GPS Ground Track (sg)    114° 


 


Third Leg 


 


 Indicated Airspeed (Vi)    129 knots 


 Indicated Altitude (Hi)    6000 feet 


 Indicated Temperature (Ti)    11 °C 


 GPS Ground Speed (Vg)    121.5 knots 


 GPS Ground Track (sg)    234° 


 


 Altimeter Instrument Correction (Hic)  -20 feet 


 Airspeed Instrument Correction (Vic)  +2 knots 


 Temperature Instrument Correction (Tic)  -1°C (-1 K) 


 Temperature Recovery Factor (Kt)   1.0 
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Correct cockpit readings for instrument errors 


 


The instrument corrected altitude, airspeed, and temperature are calculated by adding the 


instrument corrections to the indicated values.   


 


 Hic = Hi + Hic (D66) 


 


Hic1 = 6000 feet + (-20 feet) 


 


Hic1 = 5980 feet 


Hic2 = 5980 feet 


Hic3 = 5980 feet 


 


 Vic = Vi + Vic (D67) 


 


Vic1 = 131 knots + (+2 knots) 


 


Vic1 = 133 knots 


Vic2 = 132 knots 


Vic3 = 131 knots 


 


 Tic = Ti + Tic (C185) 


 


Tic1 = 11 °C + (-1 °C) + 273.15 


 


Tic1 = 283.15 K 


Tic2 = 283.15 K 


Tic3 = 283.15 K 


 


Find the indicated Mach number  


 


So our next step is to determine the indicated Mach number at the test conditions.  We could jump 


straight to the Mach meter equation with calibrated airspeed and pressure altitude, but since we 


will need qcic/PSL later, we’ll calculate that first.  This is the value in the middle of the calibrated 


airspeed equation. 
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Note that because this value was calculated using Vic, this is the pressure ratio seen at the airspeed 


indicator, and thus contains the position error.  This is why the value is qcic/PSL and not qc/PSL. 


 


To find the Mach number we will need qcic/Ps, and to find that we need qcic/PSL and ic.  We’ll find 


ic (which also contains the position error) seen by the altimeter from the instrument corrected 


altitude, Hic.  From Equation A79 


 


ic = (1 - 6.87559x10
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 Hic)
5.2559 


 


ic1 = (1 - 6.87559x10
-6


/feet (5980 feet))
5.2559 


 


ic1 = 0.80198 


ic2 = 0.80198 


ic3 = 0.80198 


 


We can now find qcic/Ps 
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This is the number we find in the middle of the true airspeed and Mach equations.  Now we can 


find the instrument corrected Mach number, Mic, which is what a perfect Mach meter in the 


cockpit would have read.  Note that because this Mach is calculated using numbers that contain 


the position error, it too contains the position error. 
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Mic1 = 0.22424 


Mic2 = 0.22256 


Mic3 = 0.22088 


 


 Find the Indicated True Airspeed 


 


The Matrix Inversion Method requires knowing the indicated true airspeed, or the true airspeed 


calculated from the instrument corrected airspeed.  To find the indicated true airspeed, we need to 
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find the ambient temperature.  Since we don’t have the true Mach number, we will use the 


indicated Mach number as our best information.  From Equation C187 
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With this temperature we can calculate the indicated true airspeed (from Equations A69 and C76) 
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 Find the True Airspeed Correction and Wind Velocity 


 


This step involves building the solution matrix.  We need to find the components of ground speed.   


 


 Vgx = Vg sin sg (E1) 


 


 Vgx1 = 131.3 sin 7°  


 


 Vgx1 = 16.00 knots  


 


 Vgy = Vg cos sg (E2) 


 


 Vgy1 = 131.3 cos   


 


 Vgy1 = 130.32 knots 


 


 Vgx2 = 140.50 knots 


 


 Vgy2 = -62.56 knots 


 


 Vgx3 = -98.29 knots 


 


 Vgy3 = -71.41 knots 
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The solution matrix is given by  
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Calculating the numbers gives an initial matrix 
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Using the MINVERSE function in Excel to invert this matrix and multiplying for a new solution  
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Using this new solution vector to recalculate the A matrix we have 
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Using the MINVERSE function in Excel to invert this matrix and multiplying for a new solution  
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Repeating this iteration three more times gives a final solution vector 
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From this we see that the true airspeed correction is –10.3 knots.   


 


Vt = -10.3 knots 


 


Find the Wind Vector (Optional) 


 


The wind vector would be found by 
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Two things to note about the calculation of the wind angle.  The “y” and “x” coordinate seem to be 


reversed.  This is because compass directions are defined differently than Cartesian coordinates.  


Rather than being defined counterclockwise from the horizontal (x) axis, directions are defined 


clockwise from the vertical (north, y) axis.  Using the function ATAN2(Vwy, Vwx) in Excel will 


return the proper direction in the proper quadrant. 


 


Secondly, this is the direction of the wind vector, i.e. where the wind is blowing to, not from.  To 


match the traditional method of defining wind direction as the “from” direction, simply add 180 


degrees to get 287.2 degrees. 


 


Find the Mach Position Correction 


 


We now know the true airspeed correction, but this is not the form that we normally use position 


corrections.  We will convert this true airspeed correction into a Mach correction.  To do this,  


we need to know the local speed of sound at the test conditions.  To find the local speed of sound, 


we need to know the temperature.  Using the true airspeed correction  we can find the truth true 


airspeed, and use that to find the correct ambient temperature.  We will use the alternative method, 


which requires knowing the value of Cp for air.  Various values for CP are 
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The truth true airspeed would be 


 


Vt = Vt
i
 + Vt 


 


Vt = 145.2 knots + (-10.3 knots) 


 


Vt = 134.9 knots 


 


The ambient temperature is then given by (from Equations C185 and C191) 
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Ta = 7.6 °C = 280.6 K 


 


The test temperature ratio is given by (from Equation A69) 
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test = 0.97432 


 


Now we can find the Mach position correction (from Equation C75) 
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Mpc = -0.01583 


 


Find the truth Mach number 


 


Now that we know the indicated Mach number and the Mach position correction, the truth Mach 


number can be found from Equation D7. 


 


  = Mic + pc  


 


M = 0.22256 + (-0.01583) 


 


Mpc = 0.20673 
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Find the static port position error ratio (Pp/Ps) 


 


From the truth Mach number, we calculate the ratio PT/Pa  
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Doing the same for instrument corrected Mach number 
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The position error can then be calculated directly from these ratios by 
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Turn Regression Data Reduction 


 


The Turn Regression method solves for the true airspeed correction instead of solving for the true 


airspeed.  This may not sound like a big difference, but consider this.  Assume that the airspeed 


position correction is essentially constant over a small range, say ±2 knots.  As long as the true 


airspeed on each leg is “constant” within ±2 knots, this method will calculate the correct true 


airspeed correction.  The result is that this method allows more uncertainty in the airspeed input 


without having a significant effect on the result.  Our Test Pilots do their best to fly precisely, but 


even the best have small variations, which they will usually blame on the atmosphere.  Even so, 


this data reduction method is tolerant of those small errors. 


 


Previously discussed data reduction techniques for other FTTs were designed to be accomplished 


with a spreadsheet, a calculator, or, if you go back far enough, a slide rule.  This technique is 


dependent on using a statistical data analysis solver, such as available in Excel, Matlab, or many 


other mathematics packages.  This discussion will only cover setting up the data for input into the 


regression routine and interpretation of the results.  The specifics of running the regression routine 


is left as an exercise to the reader (don’t you hate it when textbooks say that?). 


 


The basic process is 


 


 a.  Correct cockpit readings for instrument errors 


 b.  Find the indicated Mach number  


 c.  Find the indicated true airspeed 


 d.  Set up the regression matrix 


 d.  Find the true airspeed error and wind velocity 


 e.  Find the Mach position correction 


 


If we assume the total pressure error is zero, we can 


 


 f.  Find the position error ratio (Pp/Ps) 


 


A good regression will require many lines of data, which is easy to come by for DAS data.  


Several lines of handheld data will work too, the more the better.  For purposes of this discussion, 


we will only show example data for one line of data.  All other lines would be processed the same 


way. 


 


 Indicated Airspeed (Vi)    71 knots 


 Indicated Altitude (Hi)    4029 feet 


 Indicated Temperature (Ti)    12.7 °C 


 GPS Ground Speed (Vg)    99 knots 


 GPS Ground Track (sg)    103° 


 Heading ()     108.6° 


 


 Altimeter Instrument Correction (Hic)  -20 feet 


 Airspeed Instrument Correction (Vic)  +2 knots 


 Temperature Instrument Correction (Tic)  -1°C (-1 K) 


 Temperature Recovery Factor (Kt)   1.0 
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Correct cockpit readings for instrument errors 


 


The instrument corrected altitude, airspeed, and temperature are calculated by adding the 


instrument corrections to the indicated values.   


 


 Hic = Hi + Hic (D66) 


 


Hic = 4029 feet + (-20 feet) 


 


Hic = 4009 feet 


 


 Vic = Vi + Vic (D67) 


 


Vic = 71 knots + (+2 knots) 


 


Vic = 73 knots 


 


 Tic = Ti + Tic (C185) 


 


Tic = 12.7 °C + (-1 °C) + 273.15 


 


Tic = 284.85 K 


 


Find the indicated Mach number  


 


So our next step is to determine the indicated Mach number at the test conditions.  We could jump 


straight to the Mach meter equation with calibrated airspeed and pressure altitude, but since we 


will need qcic/PSL later, we’ll calculate that first.  This is the value in the middle of the calibrated 


airspeed equation. 
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Note that because this value was calculated using Vic, this is the pressure ratio seen at the airspeed 


indicator, and thus contains the position error.  This is why the value is qcic/PSL and not qc/PSL. 


 


To find the Mach number we will need qcic/Ps, and to find that we need qcic/PSL and ic.  We’ll find 


ic (which also contains the position error) seen by the altimeter from the instrument corrected 


altitude, Hic.  From Equation A79 
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ic = 0.86337 
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We can now find qcic/Ps 
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This is the number we find in the middle of the true airspeed and Mach equations.  Now we can 


find the instrument corrected Mach number, Mic, which is what a perfect Mach meter in the 


cockpit would have read.  Note that because this Mach is calculated using numbers that contain 


the position error, it too contains the position error. 
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Mic = 0.11874 


 


 Find the Indicated True Airspeed 


 


The Turn Regression Method requires knowing the indicated true airspeed, or the true airspeed 


calculated from the instrument corrected airspeed.  To find the indicated true airspeed, we need to 


find the ambient temperature.  Since we don’t have the true Mach number, we will use the 


indicated Mach number as our best information.  From Equation C187 
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With this temperature we can calculate the indicated true airspeed (from Equations A69 and C76) 
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 Set up the regression matrix 


 


As described in Appendix H, the form of the solution matrix is 
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This is the matrix for a single measurement.  Each measurement will have two lines of the same 


form, such that for n independent measurements the A matrix will be size [2n x 3] and the C 


vector will be size [2n x 1].  For the example data point 
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If angle of attack and bank angle are available, improve the solution by substituting V
t
 from 


Equation H16 for  in Equation H8, as shown in Equation H17.  
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 Find the true airspeed error and wind velocity 


 


After setting up the regression matrix, solve for the coefficients (the b vector) in  Matlab using 


pinv.  The confidence intervals of the coefficients can be obtained using regress.  


Alternatively, use the regression in Excel’s Data Analysis Add-in.  The results will look 


something like this. 


 


Regression Statistics      


Multiple R 0.988205      


R Square 0.97655      


Adjusted R Square 0.934674      


Standard Error 2.808905      


Observations 28      


       


ANOVA       


 df SS MS F Significance F 


Regression 3 8214.152 2738.051 347.0304 6.83E-20  


Residual 25 197.2486 7.889945    


Total 28 8411.401     


       


Coefficients Standard 


Error 


t Stat P-value Lower 


95% 


Upper 


95% 


Intercept 0 #N/A #N/A #N/A #N/A #N/A 


Vw_N -2.86277 0.750764 -3.81314 0.000799 -4.40899 -1.31654 


Vw_E 24.02333 0.761965 31.52811 1.19E-21 22.45404 25.59263 


Del_Vt [knots] -0.16658 0.762017 -0.2186 0.828733 -1.73598 1.402822 


 


There are a lot of statistics here, but the key values are 


 


Coefficient Value Lower Confidence  


Bound 


Upper Confidence 


Bound 


Vw
n


 -2.86277 [-4.40899 -1.31654] 


Vw
e
 24.02333 [22.45404 25.59263] 


Vt -0.16658 [-1.73598 1.402822] 


 


The regression says that the expected value for the true airspeed error is -0.17 knots, with 95 


percent confidence that the real value is between -1.74 knots and 1.40 knots, which is a range of 


±1.57 knots.  Winds with more variation and measurement errors in heading and airspeed would 


result in this confidence interval becoming larger.  The confidence interval on the wind 


components will give an idea of the magnitude of the wind variation. 


 


The ANOVA has a Significance F (sometimes called p-value) of well less than 0.05, so this model 


is considered significant.  The significance of the wind components was good, with p-values of 


less than 0.05.  The p-value for the true airspeed error was very much larger than 0.05, which to a 


statistician means that we failed to reject the null hypothesis that the value was statistically equal 


to zero.  That’s okay in this case, because the value may very well be zero.  Zero is certainly in the 


confidence interval, and the confidence interval is reasonable small. 
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Find the Wind Vector (Optional) 


 


The wind vector would be found by 
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Two things to note about the calculation of the wind angle.  The “y” and “x” coordinate seem to be 


reversed.  This is because compass directions are defined differently than Cartesian coordinates.  


Rather than being defined counterclockwise from the horizontal (x) axis, directions are defined 


clockwise from the vertical (north, y) axis.  Using the function ATAN2(Vwn, Vwe) in Excel will 


return the proper direction in the proper quadrant. 


 


Secondly, this is the direction of the wind vector, i.e. where the wind is blowing to, not from.  To 


match the traditional method of defining wind direction as the “from” direction, simply add 180 


degrees to get 276.8 degrees. 


 


Find the Mach Position Correction 


 


We now know the true airspeed correction, but this is not the form that we normally use position 


corrections.  We will convert this true airspeed correction into a Mach correction.  To do this,  


we need to know the local speed of sound at the test conditions.  To find the local speed of sound, 


we need to know the temperature.  Using the true airspeed correction we can find the truth true 


airspeed, and use that to find the correct ambient temperature.  We will use the alternative method, 


which requires knowing the value of Cp for air.  Various values for CP are 
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The truth true airspeed would be 


 


Vt = Vt
i
 + Vt 


 


Vt = 78.0 knots + (-0.17 knots) 


 


Vt = 77.8 knots 
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The ambient temperature is then given by (from Equations C185 and C191) 
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Ta = 10.9 °C = 284.1 K 


 


The test temperature ratio is given by (from Equation A69) 
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test = 0.98577 


 


Now we can find the Mach position correction (from Equation C75) 
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Mpc = -0.000258 


 


Find the truth Mach number 


 


Now that we know the indicated Mach number and the Mach position correction, the truth Mach 


number can be found from Equation D7. 


 


  = Mic + pc  


 


M = 0.11874 + (-0.000258) 


 


Mpc = 0.11848 
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Find the static port position error ratio (Pp/Ps) 


 


From the truth Mach number, we calculate the ratio PT/Pa  


 


   2
7


2


a


T M2.01
P


P
  (M < 1) (D17) 


 


    2
7


2


a


T 0.118482.01
P


P
  


 


 00986.1
P


P


a


T   


 


Doing the same for instrument corrected Mach number 
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The position error can then be calculated directly from these ratios by 
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Calculating Position Corrections from the Position Error Ratio  


 


Given a position error ratio, the altitude, airspeed, and Mach position corrections can be calculated 


regardless of whether the position error ratio was determined from an altitude comparison method 


or an airspeed comparison method, if a few assumptions are made. 


  


The Big Assumptions 


 


To continue our analysis, we need to make a few assumptions. 


 


 a.  Total pressure error is zero 


 


 This assumption says that all of the position error is represented by the error in measuring 


the ambient pressure. 


 


b.  Same angle of attack, or sufficiently high airspeed that angle of attack changes are 


negligible 


 


The position error, represented by Pp/Ps, is a function of lift coefficient (a direct 


function of angle of attack) and Mach number.  For cruise speeds and higher, the angle of attack 


change is very small.  Ignoring angle of attack effects will introduce errors at lower speeds. 


 


c.  Uncompensated Pitot-static probe 


 


Compensated Pitot-static systems may show more of a dependence on angle of attack and 


other factors, to the point that position error data may not generalize to a single curve.  Probes 


mounted on the fuselage (as on the F-15) or under wings may have similar problems.  


Uncompensated probes mounted on nose booms are the most likely to follow the theory presented 


here. 


 


General Method 


 


Our general method will be to 


 


 a.  Find the altitude position correction  


b.  Find the instrument corrected Mach number 


 c.  Find the Mach position correction 


 d.  Find the calibrated airspeed at the standard altitude for the test Mach number 


 e.  Find the airspeed position correction 


 f.  Find the Position Error Pressure Coefficient 


 


For purposes of this discussion, consider the following test point conditions: 


 


 Instrument Corrected Altitude (Hic)   2465 feet  


 Instrument Corrected Airspeed (Vic)  422.5 knots 


 


Based on data collected at these conditions, we have determined: 


 


 Position error ratio (Pp/Ps)   0.0073667 
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The relationships between our position corrections (Hpc and Vpc) and the position error ratio are 


functions of pressure altitude.  Thus, to calculate Hpc and Vpc we must specify what pressure 


altitude we want these values at.  This is typically referred to as the “standard altitude” since we 


are “standardizing” the data to that altitude.  The larger the difference between the test altitude and 


the standard altitude, the larger the uncertainty introduced becomes. 


 


 Standard Altitude (Hstd alt)    2300 feet 


 


Find the Altitude Position Correction 


 


We need to calculate the altitude position correction that would exist if the aircraft were flying at 


the same Mach number at the standard altitude (pressure altitude).  We can find this by choosing 


the standard altitude and using the position error ratio (a function of Mach number and angle of 


attack—here we assume a negligible change in angle of attack due to the change in altitude).  We 


start by finding the ambient pressure at the standard altitude (from Equation D10) 
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Knowing the ambient pressure and the position error ratio, we can calculate the static pressure at 


this altitude (from Equation D28) 
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This is the static pressure that would be seen by the aircraft flying at the test Mach number at the 


standard altitude. From the static pressure we find the static pressure ratio seen at the standard 


altitude (from Equation D29) 


 


 
SL


altstds


altstdic
P


P
    


 


 
2


2


altstdic
ft/lb22.2116


ft/lb59.1960
  


 


 ic
std alt


 = 0.92646  


 


 


 


 


 


 







172 Pitot-Statics and the Standard Atmosphere  


 


and the static pressure altitude (from Equation D30) 
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Finally, the altitude position correction for the test Mach number at the standard altitude (truth 


altitude, Hc, is Hstd alt in this case) is calculated by (from Equation D5) 
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  = Hstd alt – Hic
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  = 2300 feet – 2098 feet 
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  = 202 feet  


 


Find the instrument corrected Mach number 


 


Before finding the Mach correction, we need to determine the instrument corrected indicated 


Mach number at the test conditions.  This would be the Mach number that an accurate (zero 


instrument error) Mach meter would have shown if it were connected to the Pitot-static pressures 


seen at the test conditions.  We could jump straight to the Mach meter equation with calibrated 


airspeed and pressure altitude, but since we will need qcic/Ps later, we’ll calculate that first.  This is 


the value in the middle of the Mach meter equation.  First we’ll get qcic/PSL out of the test 


condition Vic (from Equation D12) 
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Note that because this value was calculated using Vic, this is the differential pressure ratio seen at 


the airspeed indicator, and thus contains the position error.  This is why the value is qcic/PSL and 


not qc/PSL. 


 


 


 


 


 


 







 Chapter 9  Data Reduction 173 


 


 


To find the instrument corrected indicated Mach number we will need qcic/Ps, and to find that we 


need qcic/PSL and ic.  We’ll find ic (which also contains the position error) seen by the altimeter at 


the test conditions from the instrument corrected altitude, Hic.  (from Equation A79) 
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We can now find qcic/Ps (from Equation D29) 
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This is the number we find in the middle of the Mach equation.  Now we can find the instrument 


corrected indicated Mach number, Mic, which is what a perfect Mach meter in the cockpit would 


have read.  Note that because this Mach is calculated using numbers that contain the position error, 


it too contains the position error.  Also, because the relationship between the position error ratio 


and the Mach position correction is not a function of altitude, this value is valid for all altitudes. 
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Find the Mach position correction 


 


Using the position error in the form of Pp/Ps, we can determine qc/Pa from qcic/Ps using the 


following equation:  
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With this we can find Mach number 
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The Mach position correction would then be given by 


 


 Mpc  = M – Mic (D7) 


 


 Mpc  = 0.6739 – 0.6653  


 


 Mpc  = 0.0086  


 


Find the calibrated airspeed at the standard altitude for the test Mach number 


 


Since we are finding the airspeed position corrections at the test Mach number (which is also the 


Mach number at the standard altitude), we must find what the airspeed for that Mach number 


would be at our chosen standard altitude.  Again, this is the process we would use to extrapolate 


data to other altitudes, simply by substituting the desired altitude as the “standard” altitude.  If the 


chosen altitude is significantly different than the test altitude, the airspeed corresponding to the 


test Mach number will be significantly different than the airspeed seen at the test altitude. 


 


Since Mach number (M) can be expressed as solely a function of qc/Pa, then the value of qc/Pa at 


the new altitude will be unchanged for the same Mach number.  With this value and the pressure 


ratio at the new altitude we can determine qc/PSL, from which we can calculate the calibrated 


airspeed at the new altitude for the test Mach number. 
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For the pressure ratio, (from Equation A79) 
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We can now find qc/PSL (from equation A70) 
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From this we get the instrument corrected airspeed at the standard altitude.  This is what the 


corrected instrument would have read at the same Mach number at the standard altitude.  From 


Equation C126 
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Find the airspeed position correction 


 


We know the truth calibrated airspeed at the standard altitude.  To find the airspeed position 


correction, we need to calculate the instrument corrected airspeed at the standard altitude.  We can 


determine qcic/PSL from qc/PSL , PP/Ps , and ic. 
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From this value we can calculate the instrument corrected airspeed at the standard altitude by 


(from Equation D42) 
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   








 113202.05knots48.661V 7


2


altstdic  


 


 Vic
std alt


 = 425 knots 


 


Finally, the airspeed position correction is calculated by (from Equation D6) 


 


 Vpc
std alt


  = Vc
std alt


 – Vic
std alt


  


 


 Vpc
std alt


  = 429 knots – 425 knots 


 


Vpc
std alt


 = 4 knots 


 


Find the Position Error Pressure Coefficient 


 


Sometimes the Position Error Pressure Coefficient (Pp/qcic) is more useful than the Position Error 


Ratio (Pp/Ps).  Since the Position Error Ratio is a function of Mach number, and qcic/Ps 


(calculated above) is solely a function of Mach number, each value of Pp/qcic corresponds to one 


value of Pp/Ps.  We can calculate it by (from Equation D77) 
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But Sir!  I’m starting with the Position Error Pressure Coefficient!  How do I start? 


 


If you are given position error expressed as Pp/qcic instead of Pp/Ps, you will need to determine 


Mic first.  Either this will be given to you or you can determine Mic from Vic and Hic using the 


methods shown earlier in this section.  Actually, you don’t need Mic so much as you need qcic/Ps, 


which you found right before calculating Mic.  Using the same numbers from this section, Pp/Ps 


would be calculated as shown: 
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cic


p


s
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P


q


q
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P 
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
 (D77) 


 


  3456.0021316.0
P


P


s


p




 


 


0073668.0
P


P


s


p




 


 


which is what we started with except for round off errors. 
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Appendix A 
 


 


Standard Atmosphere Heavy Math Section 
 


Equation of State 


 


The Equation of State, also known as the Perfect Gas Law or the Ideal Gas Law, can be expressed 


in several forms.  The derivation of this equation is not presented here.  The popular form used in 


High School Chemistry classes, where most engineers are first exposed to it, is 


 


 PV = NRT (A1) 


 


where  


 


 P = Pressure 


 V = Volume 


 N = Number of molecules (moles) 


 R = Gas Constant 


 T = Temperature 


 


Well, that was fine for chemists, but aero engineers aren’t too interested in counting molecules, 


and it’s tough to build a molecule counter.  However, a given number of air molecules are going to 


have a certain mass, so the Equation of State can be re-written (with a different gas constant) as 


 


 PV = mRT (A2) 


 


where m = mass. 


 


That’s closer, but still not the parameters we were looking for.  Well, mass divided by volume is 


density, which is something that we’re looking for.  Hence, the Equation of State becomes 


 


 P = RT (A3) 


 


As for the gas constant, in this form of the equation, the value for R is the Specific Gas Constant.  


The Specific Gas Constant is related to the Universal Gas Constant (R*) by the relation 


 


 
M


*R
R   (A4) 


 


where M is the mean molecular weight of the gas.  For air below an altitude of 90 kilometers 


 


 
 molelb


lbm
9644.28M



  (A5) 


 


where (lb-mole) is defined by Avogadro’s number which states that there are 2.73179x10
26


 air 


molecules in a lbm (pound mass) of air.  Again, Avogadro’s number in Chemistry class was 


6.02257x10
23


 molecules in a gram (i.e. gram-mole), which may look more familiar.  (Ref 3). 
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Therefore, for the Universal Gas Constant  


 


 
  Rmolelb


lbmft
31.1545*R






  (A6) 


 


we get the Specific Gas Constant for air (converting pounds mass to slugs) 


 


 
 


 
Rslug


lbft
6.1716


slug


lbm
1741.32*


molelb


lbm
9644.28


Rmolelb


lbft
31.1545


M


*R
R


















  (A7) 


 


Or if we wish to use Kelvin temperature instead of Rankine, we multiply by 1.8 to get 


 


 
Kslug


lbft
8.3089


K


R
8.1*


Rslug


lbft
6.1716R
















  (A8) 


 


Hydrostatic Equation 


 


To develop the Hydrostatic Equation, consider a fluid element 


of differential size as shown in Figure A1.  This element has a 


height of dh, and an area on the top and bottom face of dA.  


The element has a weight of W.  This weight can be 


calculated as the mass (m) times the acceleration of gravity 


(g), or  


 


 W = m g (A9) 


 


Alternatively, the mass can be expressed as the density () 


multiplied by the volume (V), so the weight would be 


 


 W =  V g (A10) 


 


We can calculate the volume from our dimensions, giving us 


 


 W =  dA dh g (A11) 


 


We assume that the fluid element is at rest (hence the “static” in the name), so there are no shear 


forces on the fluid element.  Thus, the fluid element must be held in equilibrium by pressure forces 


opposing the weight force.  The fluid element has pressure on the top surface (P) and a slightly 


greater pressure (P + dP) on the bottom surface to offset the fluid element weight.  There are also 


pressures on the side surfaces, but the resulting forces must be equal and opposite on opposing 


sides because the fluid element is stationary. 


 


The difference in the pressures on the top and bottom surfaces would be  


 


 F = P dA - (P + dP) dA (A12) 


 


which after rearranging terms and subtracting out the pressures becomes just 


 


 F = - dP dA (A13) 


 


 


 


Figure A1.  Fluid Element 


W
dh


h


P + dP


P


dA
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Summing the pressure and weight forces in the vertical direction gives us  


 


 F = - dA dh g - dP dA = 0 (A14) 


 


Dividing out the dA and rearranging we get the final version 


 


 dP = - g dh (A15) 


 


Geopotential Altitude 


 


Unfortunately we can’t get our pressure profile with altitude just by integrating the hydrostatic 


equation to the desired altitude, like 


 


  
h


0


P


0


gdhdP  (A16) 


 


because the density and acceleration of gravity are functions of altitude (h).  To help with this 


problem, we would like to replace the acceleration of gravity in Equation A16 with the value of 


the acceleration of gravity at sea level.  To do this, we take the variation out of the acceleration of 


gravity and put it in a new type of altitude that we call Geopotential Altitude (H), defined by 


 


 g dh = gSL dH (A17) 


 


Sir Isaac Newton told us that the relationship between the acceleration of gravity at altitude and 


the acceleration of gravity at sea level for a single body problem is 


 


 


2


SLe


SLe
SL


hR


R
gg























  (A18) 


 


where 


 


 gSL = acceleration of gravity at sea level 


 Re
SL


 = radius of the earth 


 


To get a relationship between geometric altitude and geopotential altitude, we substitute equation 


A18 into equation A17 to get 


 


 dHgdh
hR


R
g SL


2


SLe


SLe
SL 























 (A19) 


 


We’ll divide out the gSL and swap sides to get 
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
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
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This isn’t very useful in the differential form, so we’ll integrate from sea level to the altitude of 


interest. 


 


 
























h


0


2


SLe


SLeH


0


dh
hR


R
dH  (A21) 


 


Since the radius of the earth is a constant (compared to altitude), we can pull it in front of the 


integral. 


 


  
 







h


0
2


SLe


2


SLe


H


0


dh
hR


1
RdH  (A22) 


 


If we use the old integrating trick of considering the quantity (Re
SL


 + h) as the variable u, along 


with the resulting du = 1, the right hand integral becomes 


 


 ttanconsuduu 12




 (A23) 


 


Thus, equation A22 integrates to 
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0SLe
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SLe
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1
RH




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
  (A24) 


 


Solving the definite integral 
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Add the fractions by getting a common denominator 
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Add Re
SL


 together 
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and bring Re
SL


 in 
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or a more useable form 


 


 h
hR


R
H


SLe


SLe























  (A29) 


 


To use geopotential altitude in the Hydrostatic equation, we simply substitute from Equation A17 


into Equation A15 to get 


 


 dP = - gSL dH (A30) 


 


Radius of the Earth 


 


The radius of the earth depends on where you are and what the local elevation is.  Of course, that’s 


way more detailed than what we’re looking for.  What we want is the radius of the earth at sea 


level since we start counting altitude at sea level.  Elevation makes very little difference, as even 


the elevation of Mount Everest adds only one tenth of a percent to the earth’s radius. 


 


People who worry about this sort of thing model the earth as an oblate spheroid, a three-


dimensional surface you would get by rotating an ellipse about its minor (shorter) axis.  The result 


is a shape like you get if you sit on an exercise ball.  The spheroid definition we will use is the 


World Geodetic System 1984, more commonly referred to as WGS 84.  This is the reference 


system currently used by GPS.  From Reference 25, the important numbers are 


 


 Semi-major Axis (a) (radius at the equator)  6,378,137.0 meters 


 Semi-minor Axis (b) (radius at the poles)  6,356,752.3142 meters 


 


The radius at a particular location is the same with longitude, but varies with latitude.  For this 


textbook, we will use the latitude () of Edwards AFB, 34.9 degrees.  The radius of an oblate 


spheroid is given by (Reference 26) 


 


  
   
   22


2222


sinbcosa


sinbcosa
R
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
  (A31) 


 


For WGS-84 at 34.9 degrees latitude, the radius of the earth calculates to  


 


Re
SL


 = 6,371,176.179 meters 


Re
SL


 = 20,902,808.99 feet 


 


Calculating the Standard Atmosphere 


 


To calculate the pressure profile with altitude, we need to integrate the pressure change with 


altitude.  We replaced the acceleration of gravity (varies with altitude) with the acceleration of 


gravity at sea level (constant) by expressing altitude in geopotential feet.  We can eliminate 


density from the integral by dividing the Hydrostatic Equation (Equation A30) by the Equation of 


State (Equation A3), giving 
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dP SL
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If we divide out the density we get 


 


 dH
RT


g


P


dP SL  (A33) 


 


Now we have an expression that we can actually integrate.  gSL and R are constants, and we’ll 


know how T varies with altitude. 


 


Isothermal Regions 


 


For isothermal regions, the relationship of temperature with altitude is simply 


 


 T = constant (A34) 


 


With that established, we will integrate Equation A33 starting at the base altitude (bottom of the 


altitude band, designated by subscript B) to the altitude of interest (no subscript).  When we do 


that, we get 
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SL dH
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 (A35) 


 


These integrals are pretty straightforward, giving the definite integral 
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BH
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BP H
RT


g
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Substituting the limits 


 


  B
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g
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Since the difference of two logarithms is the logarithm of the quotient of the arguments, or 


 


 
b


a
lnblnaln   (A38) 


 


we can change Equation A37 to 
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P


P
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and since 


 


 e
ln x


 = x (A40) 


 


we’ll raise e to both sides to get 
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To determine the density variation with altitude, we return to the Equation of State at the altitude 


of interest and at the base altitude 
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
  (A42) 


  


and since T = TB (isothermal layer) we get 
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Therefore 
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Gradient Regions 


 


For the gradient regions we have a different relationship between temperature and altitude.  We 


call this relationship the temperature lapse rate and define it as 


 


 ttancons
dH


dT
L   (A45) 


 


Rearranging this equation gives 


 


 L dH = dT (A46) 


 


Integrating from the base altitude to the altitude of interest (L is constant with altitude) 
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which becomes 


 


  T
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Substituting the limits 


 


   BB TTHHL   (A49) 


 


Moving TB to the other side and rearranging 


 


  BB HHLTT   (A50) 


 


Dividing by TB gives our final form of the temperature profile 
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To find the pressure profile with altitude, we return to Equation A33 


 


 dH
RT
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P


dP SL  (A33) 


 


We can rearrange Equation A45 to give us another representation of dH 
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Substituting this into the pressure equation gives us 
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Regrouping constants gives 
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which is an equation that we can integrate 
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which gives us 
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Substituting limits 
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Again since 
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we get 
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Raising e to both sides to take care of the logarithms 
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and remembering that  


 


 a
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 = (a
m
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n
 (A60) 


 


we get 
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which becomes 
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Substituting Equation A51 in Equation A62 for the temperature ratio gives 
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Again, returning to the equation of state, we find the density variation with altitude to be 
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Dividing out the Rs and moving the temperature ratio to the other side gives 
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From Equation A62 we can substitute for the pressure ratio 
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And since  
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we can rearrange to 
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Substituting equation A51 for the temperature ratio gives our final version 
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Temperature, Pressure, and Density Ratios 


 


The temperature, pressure, and density ratios are defined as: 
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T
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Troposphere Equations 


 


For the troposphere, the base altitude is sea level.  Therefore, from Reference 3 


 


 TSL = 288.15 K (A72) 


 


 L = -0.0019812 K/ft (A73) 


 


 gSL = 32.1741 ft/sec
2
 (A74) 


 


 R = 3089.8 ft-lb/slug-K (A75) 


 


So 
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 25590.5
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which gives the equations 


 


  = 1 – 6.87559x10
-6


 H (A78) 


 


  = (1 – 6.87559x10
-6


 H)
5.2559


 (A79) 


 


  = (1 – 6.87559x10
-6


 H)
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Stratosphere Equations 


 


The isothermal portion of the stratosphere is defined for an altitude band from 11 kilometers to 20 


kilometers (36,089.24 feet to 65,616.8 feet).  In an isothermal region there is no temperature lapse 


rate.  The base altitude is 11 kilometers.  The base values for temperature, pressure, and density 


come from the troposphere calculations at 11 kilometers, and are 


 


 TB = 216.65 K    = 0.751865 (A81) 


 


 PB = 472.679 lb/ft
2
    = 0.223360 (A82) 


 


 B = 0.0007061 slug/ft
3
     = 0.297075 (A83) 


 


Our equations for isothemal regions are written as ratios of the parameter to its value at the base 


altitude.  However, it is more useful to have ratios of the parameter to the sea level value.  Note 


that  
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  (A84) 


 


Applying this concept and inserting our constants, we get 


 


 ftgeo/10x80637.4
RT


g 5


B


SL 



 (A85) 


 


  = 0.751865 (A86) 


 


  = 0.223360 e
(-4.80637x10


-5
 (H – 36089.24))


 (A87) 


 


  = 0.297075 e
(-4.80637x10


-5
 (H – 36089.24))


 (A88) 


 


Comparing Water Vapor Density to Air Density 


 


Water vapor is less dense than air.  Just how much less dense can be calculated by looking at the 


ratio of the densities.  From the Equation of State (Equation A3), we can solve for density 


 


 
RT


P
  (A89) 


 


In Reference 27 we find the specific gas constant for water vapor to be 


 


 
Rslug


lbft
2762R water
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
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Therefore, the ratio of water vapor density to air density at the same pressure and temperature 


would be given by 


 


 
water


air


air


water


air


water


R


R


TR


P


TR


P







 (A91) 


 


 62.0
2762


1716


R


R


water


air   (A92) 


 


which means that water vapor has a density 0.62 that of air, or 38 percent less than air. 


 


Calculating Density of Humid Air 


 


Understanding partial pressure is the key to understanding gas 


mixtures, such as air and water vapor.  The pressure read on an 


altimeter or a pressure gauge is the sum of the partial pressures of 


air and water vapor.   


 


To calculate the dry air density, we must know the partial pressure 


of the dry air.  One way to find this is to determine the partial 


pressure of water vapor and subtract it from the observed pressure.  


The temperature of the dry air and the water vapor will be the same 


as the observed temperature of the mixture. 


 


For purposes of this discussion, consider the following example: 


 


 Observed Pressure Altitude (Moist): 2302 feet 


 Observed Temperature:   80 °F 


 Relative Humidity:   25 percent 


 


Moist air will refer to the air and water vapor mixture.  Dry air will 


refer to the air alone, and water vapor will refer to the water vapor 


alone. 


 


1.  Determine the saturation pressure of water vapor at 


the observed temperature. 


 


This step finds the partial pressure of the water vapor assuming a 


totally saturated mixture.  This would be when the air/water vapor 


mixture contains the maximum possible amount of water vapor and 


any additional water vapor would immediately condense out. 


 


The saturation pressure of water vapor as a function of temperature 


is shown in Table A1.  Note that small amounts of water vapor can 


still exist even below freezing temperatures. 


 


 


 


 


 


 


 


Table A1 


Saturation Pressure of 


Water (Ref 27 and 28) 


Temp Saturation 


Pressure 


(°F) (psia) 


-20 0.006189 


-15 0.008252 


-10 0.010904 


-5 0.014293 


0 0.018812 


5 0.024117 


10 0.030993 


15 0.039785 


20 0.050591 


25 0.063853 


30 0.080553 


32.018 0.08866 


35 0.09992 


40 0.12166 


45 0.14748 


50 0.17803 


60 0.2563 


70 0.3632 


80 0.5073 


90 0.6988 


100 0.9503 


110 1.2763 


120 1.6945 


130 2.225 
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For the example case,  


 


 T = 80°F (A93) 


 


 Psaturated water = 0.5073 psia (A94) 


 


Table A1 lists the saturation pressure of water against the saturation temperature.  Tables work 


fine if you are calculating by hand, but if you are trying to set up a computer routine an equation is 


much more convenient.  There are many such equations available, all of which are very close.   


 


Generally the most popular is Tetens’ expression (from Appendix G) 


 


 












 T3.237


T5.7


water 10*11.6P  T(°C) > 0 (G16) 


 


 












 T5.265


T5.9


water 10*11.6P  T(°C) < 0 (G17) 


 


 Note: 


 T is the Dew Point in degrees Celsius (°C) 


 Pwater is in millibars 


 


Tetens’ expression is a curve fit to experimental data, not an expression derived from first 


principles.  As such, it is an unusual equation in that temperature is entered in Celsius, not in an 


absolute unit like Kelvin or Rankine.  Additionally, the output unit is millibars.  Conversions can 


be done using the values of sea level pressure 


 


PSL = 2116.22 lb/ft
2
 = 1013.25 mbar 


 


 2.  Determine the water vapor partial pressure. 
 


Relative humidity is defined as the fraction of water vapor present in the air to the maximum 


possible water vapor that can exist at that temperature.  The amount of water vapor present is 


measured by its partial pressure.  The maximum possible partial pressure of water vapor is the 


saturation pressure for water vapor at that temperature.  If the actual partial pressure of the water 


vapor is half of the maximum possible (saturation pressure), then the relative humidity is said to 


be 50 percent.   


 


 Pwater = Psaturated water * Relative Humidity (A95) 


 


 Pwater = 0.5073 psia * 0.25 (A96) 


 


 Pwater = 0.1268 psia = 18.26 lb/ft
2
 (A97) 


 


Optional Step:  Determine the Dew Point. 


 


The Dew Point is defined as the temperature at which the air would become saturated (100 percent 


relative humidity) with the current amount of water vapor.  In thermodynamic terms, it is the 


saturation temperature corresponding to the partial pressure of water vapor (Table A1).  Thus, for 


our example 


 


 Tdew = 41 °F (A98) 


 


 







192 Pitot-Statics and the Standard Atmosphere 


Alternatively, the dew point can be determined by using the partial pressure of water vapor in the 


inverse of Tetens’ expression 


 


 
 


 water10


water10
dew


Plog286.8


527.186Plog3.237
T






  T(°C) > 0 (A99) 


 


 
 


 water10


water10
dew


Plog286.10


694.208Plog5.265
T






  T(°C) < 0 (A100) 


 


 Note:  T is the Dew Point in degrees Celsius (°C), Pwater is in millibars 


 


Alternative method to find water vapor partial pressure. 


 


If the dew point is known, then the partial pressure of water vapor can be determined directly by 


entering Table A1 with the dew point temperature, or by using the dew point temperature in 


Tetens’ expression (Equations G16 and G17).  The saturation pressure corresponding to the dew 


point temperature is the water vapor partial pressure. 


 


3.  Determine the moist air pressure. 
 


The moist air pressure is determined from the observed pressure altitude. 


 


 moist = (1 – 6.87559x10
-6


 Hc)
5.2559


 (A101) 


 


 moist = (1 – 6.87559x10
-6


/feet (2302 feet))
5.2559


  


 


 moist = 0.919566 (A102) 


 


 Pmoist = moist PSL (A103) 


 


 Pmoist = (0.919566)(2116.22 lb/ft
2
)  


 


 Pmoist = 1946 lb/ft
2
 (A104) 


 


4.  Determine the dry air pressure (partial pressure of air). 
 


The partial pressure of air is the observed pressure minus the partial pressure of water vapor.  That 


is 


 


 Pdry = Pmoist - Pwater (A105) 


 


 Pdry = 1946 lb/ft
2
 – 18.26 lb/ft


2
 (A106) 


 


 Pdry = 1928 lb/ft
2
 (A107) 
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5.  Determine the dry air density. 
 


The dry air density is important for applications such as reciprocating engine performance that 


depend on the amount of oxygen available.  The dry air density is calculated using the partial 


pressure of air and the temperature of the moist air (same as the temperature of the dry air) in the 


Equation of State.  The specific gas constant for air (1716 ft-lb/slug-°R) is used. 


 


 
TR


P


air


dry
dry   (A108) 


 


 


 460F80
Rslug


lbft
1716


ft/lb1928 2


dry


















   


 


 dry = 0.002081 slug/ft
3
  (A109) 


 


6.  Determine the water vapor density 


 


The water vapor density is calculated using the partial pressure of water vapor and the temperature 


of the moist air (same as the temperature of the water vapor) in the Equation of State.  The specific 


gas constant for water vapor (2762 ft-lb/slug-°R) is used. 


 


 
TR


P


water


water
water   (A110) 
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 460F80
Rslug


lbft
2762


ft/lb/psia144psia1268.0 2


water


















   


 


 water = 1.2242x10
-5


 slug/ft
3
  (A111) 


 


7.  Determine moist air density 


 


The density of the air/water vapor mixture is the sum of the densities of the dry air and the water 


vapor. 


 


 moist = dry + water (A112) 


 


 moist = 0.002081 slug/ft
3
 + 1.2242x10


-5
 slug/ft


3
  


 


 moist = 0.002093 slug/ft
3
 (A113) 


 


Temperature Variations with Altitude 


 


The standard atmosphere was calculated by solving three equations for three unknowns, namely 


pressure, density, and temperature.  The first two equations, the Equation of State and the 


Hydrostatic Equation, are applicable to any ideal gas and any gas within a gravity field.  In order 


for the Standard Atmosphere to reasonably model the actual atmosphere, the final equation needed 


to come from actual measurements of the atmosphere.  Years of temperature measurements from 


weather balloons, aircraft, sounding rockets, and other sources led to a standard temperature 


profile as shown in Figure A2, a modification of Figure 2.2 shown earlier in this text book.  The 


line shown in Figure A2 represents the mean value of the temperature distribution measured 
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throughout the year at each altitude.  This temperature distribution at any altitude has a very large 


variance, as the temperature changes greatly throughout the year with seasonal variations as well 


as day to day weather patterns and uneven heating from the sun.  The line does not give a good 


representation of the actual temperature profile on any particular day, but gives a good yearly 


average of the temperature and a good representation of the temperature lapse rate on most days. 


 


 
Figure A2.  Temperature Profile, 1962 and 1976 Standard Atmosphere (Ref 3 and 5) 


 


Other sections of this textbook have described how to use this temperature profile to calculate the 


standard atmosphere.  This section endeavors to explain why this temperature profile looks like it 


does.  The material in this section reflects contributions by Col Douglas Wickert of the USAF 


Academy Department of Aeronautics. 


 


The atmosphere is divided into layers based on when the temperature lapse rate changes from 


negative to positive or back to negative.  The lowest layer, the troposphere, has a decreasing 


temperature with increasing altitude.  Above the troposphere, the stratosphere has increasing 


temperature with increasing altitude.  Above the stratosphere, the mesosphere has a decreasing 


temperature with increasing altitude.  Above the mesosphere, the thermosphere has an increasing 


temperature with increasing altitude.  These layers can be seen in striking detail in Figure A3. 


 


Tropospheric Cooling 


 


Figure A4 is based on the left side of Figure I6, and shows how the solar radiation interacts with 


the atmosphere.  The majority of the energy in solar radiation is in the Visible and Near Infrared 


wavelengths.  The atmospheric absorption of energy in these wavelengths is minimal, as shown by 


the small difference in the irradiance that leaves the sun (yellow area) and what makes it to sea 


level (orange area).  Another way of saying that the absorption is minimal is to say the atmosphere 


is transparent to light in these ranges.  This is a good thing, because if the atmosphere was opaque 


to visible wavelengths it would be pretty dark on the surface of the earth and those solar panels on 


your roof wouldn’t be making very much power. 
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Figure A3: Layered structure of atmosphere photographed from the International Space Station at 


an altitude of 183 nm.  The space shuttle Endeavour (STS-130 with Terry Virts, USAFA 1989, 


USAF TPS 98B Test Pilot) is approaching for rendezvous and docking operations.  The 


troposphere (orange layer), stratosphere (white), and mesosphere (blue), and thermosphere (black) 


are well-defined and clearly visible. (NASA Photo)  


 


 
Figure A4.  Spectrum of Solar Radiation (Ref 29) 
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Because the air is mostly transparent to a majority of the solar radiation (light), most of the light 


comes through the atmosphere without interacting with the air.  As shown in Figure A5, a small 


portion of the solar radiation is absorbed by the atmosphere, mostly in the stratosphere, detailed in 


the next section.  The remaining solar radiation arrives at the surface without heating up the air 


directly.  Some of the incident radiation is reflected by the ground and clouds, convenient so that 


we can see.  The remaining radiation, almost half of what arrived at the top of the atmosphere, is 


absorbed by the soil, water, concrete, or whatever the light falls upon, including you.  The energy 


that is absorbed from the light is converted into kinetic energy of the molecules of the surface.  


That’s a fancy way of saying sunlight heats up whatever it falls upon. 


 


 
Figure A5.  The global annual mean Earth’s energy budget for the March 2000 to May 2004 


period (W/m
2
).  The broad arrows indicate the schematic flow of energy in proportion to their 


importance. (Ref 30) 


 


The surface of the earth, now warmed by the sunlight, warms up the air next to it through 


conduction followed by convection, and also by radiating that energy in infrared wavelengths that 


are absorbed by air molecules.  The air at low altitudes warms the air above it through molecular 


interaction and convection, commonly referred to as thermals.  However, because of dry adiabatic 


expansion (covered in Appendix I), as the air rises, the pressure decreases and the air expands and 


cools at a rate of 3° C per 1000 feet of altitude gained.  The sun continues to add energy to the 


system, so more rising air brings more energy up, warming the air more than the Dry Adiabatic 


Lapse Rate would suggest.  Driven by this ground heating, convection, and IR radiation, the end 


result is that with other energy losses, the troposphere ends up on average cooling at a rate of 2°C 


per 1000 feet of altitude gained. 


 


 Stratospheric Heating 


 


If you are like me, your introduction to the “Ozone Layer” was that it was something you heard 


about on the news that some activists were up in arms about because it had holes in it.  Apparently 


this was bad for some reason that wasn’t well explained.  They went on to say that these holes 


were caused by chlorofluorocarbons (CFC), such as dichlorodifluoromethane (Freon 12 or R-12) 
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that was used in our car air conditioners and other refrigeration products.  Now we had to replace 


all of the R-12 with 1,1,1,2-Tetrafluoroethane (R-134a), which apparently was better because it 


didn’t contain chlorine atoms.  It worked like R-12, only not as well (this was only a problem 


when used as a direct replacement in systems designed for R-12—once refrigeration systems were 


designed specifically for R-134a performance was sufficient).  Also we could no longer have 


aerosol spray cans because they were full of R-12.  It seemed like the ozone layer existed just to 


take away our modern conveniences. 


 


So what does this troublesome ozone layer have to do with the Standard Atmosphere?  It turns out 


that the upper part of the stratosphere increases in temperature with increasing altitude as a result 


of the interaction of the ozone layer with ultraviolet light.  This heating is the byproduct of the 


primary purpose of the ozone layer, which is to block ultraviolet light, specifically the UVC 


wavelengths and most of the UVB wavelengths.  Shorter wavelength ultraviolet light is blocked 


by atmospheric nitrogen.  Longer wavelength UVB light will get through to the earth’s surface, 


where it interacts with human skin cells to produce Vitamin D, which is a good thing.  However, 


too much of a good thing isn’t, as overexposure to UVB causes sunburn and skin cancer.  UVA 


light passes right through the ozone layer to the earth’s surface.  UVA is less harmful to DNA and 


generally does not cause skin reddening, however it can lead to long term skin damage and skin 


cancer. 


 


Understanding the interaction of ultraviolet light with the ozone layer will explain the 


stratospheric heating phenomenon.  This process was first explained by Sydney Chapman in 1930, 


and is commonly referred to as the “Chapman Cycle”.  Figure A2 shows the typical altitude range 


for most of the ozone layer.  Figure A4 shows the wavelengths for UVC, UVB, and UVA light. 


 


Figure A6 illustrates the Chapman Cycle, also known as the ozone-oxygen cycle. 


 


 
Figure A6.  Oxygen-Ozone Cycle (NASA graphic) 
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The process is driven by photolysis, the process by which a chemical compound is broken down 


by collision with a photon.  Quantum mechanics teaches us that atomic elements can only exist at 


certain discrete energy states, and for photolysis to work the impacting photon must have just the 


right amount of energy.  The energy of a photon is inversely proportional to its wavelength, so 


photolysis depends on photons travelling at a particular wavelength. 


 


The process starts when a photon of UVC light in the wavelength range of 100-200 nanometers 


(nm) strikes a molecule of stratospheric diatomic oxygen (O2) and splits the molecule into two free 


oxygen atoms. 


 


O2 + h(100-200 nm)  2 O 


 


Oxygen atoms don’t like being alone, but since there aren’t very many free oxygen atoms to bond 


with, the free oxygen atom is most likely to run into a diatomic oxygen molecule and bond with it, 


forming an ozone molecule. 


 


O + O2  O3 + EK 


 


The EK denotes the excess internal energy that was added to the free oxygen atom by the photon 


when the diatomic molecule was split, which is manifested after the reaction as excess kinetic 


energy.  We recognize an increase in kinetic energy as an increase in temperature.  The internal 


energy of the ozone molecule is less than the sum of the internal energy of a diatomic oxygen 


molecule and a separate free oxygen atom, so they begrudgingly stay together. The resulting ozone 


molecule is unstable, though in the stratosphere relatively long-lived.     


 


Photolysis comes up again when the ozone molecule is struck with a UVC or UVB photon, which 


will split the ozone into diatomic oxygen and a free oxygen atom. 


 


O3 + h(240-310 nm)  O2 + O 


 


The photon has again raised the energy level of the diatomic oxygen and free oxygen atom, and 


the free oxygen atom will seek to lower its internal energy again by combining with another 


diatomic oxygen molecule to form ozone. 


 


O + O2  O3 + EK 


 


The process of splitting and reforming ozone molecules happens, on a relative scale, very rapidly. 


Each cycle of the process absorbs the energy of an ultraviolet photon and then releases that energy 


as kinetic energy, raising the temperature of the gas.  This absorption and release of energy occurs 


with no net change in the amount of ozone.  Because some of the ultraviolet photons get absorbed 


at high altitudes, less photons make it down to lower altitudes, as shown in Figure A7.  Thus the 


higher altitudes are warmer than the lower altitudes, resulting in the temperature lapse rate seen in 


Figure A2.  This process is effective enough that all of the UVC radiation and most of the UVB 


radiation are blocked before reaching the earth’s surface. 


 


By comparison to the ozone-oxygen cycle, the splitting of diatomic oxygen happens slower, but 


still contributes to the heating of the stratosphere, as the high energy oxygen atoms combine with 


diatomic oxygen to form ozone. 


 


So it would seem that the ozone is happy constantly breaking up and getting back together, just 


like a bunch of high school teenagers, absorbing and releasing energy the whole time.  So where is 


the problem that leads to ozone depletion? 
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Figure A7: UV absorption increases with decreasing altitude (Ref 31) 


 


As an ozone molecule travels around in the rarified density of the stratosphere, it will mostly 


bump into diatomic oxygen molecules or nitrogen molecules with no reaction other than 


collisions.  However, the ozone molecule will occasionally bump into a free oxygen atom.  The 


internal energy of two diatomic oxygen molecules is less than that of an ozone molecule and a free 


oxygen atom, so they will combine into two diatomic oxygen molecules, releasing the excess 


internal energy as more kinetic energy. 


 


O3 + O  2 O2 + EK 
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For that matter, if two free oxygen atoms happen to find each other before finding a diatomic 


oxygen molecule, they will simply reform a diatomic oxygen molecule, again releasing their 


excess energy as kinetic energy. 


 


O + O  O2 + EK 


 


Certain free radicals can catalyze the breakup of ozone back into oxygen.  Some of these, such as 


hydroxyl (OH) and nitric oxide (NO) occur naturally in the stratosphere.  Others, such as atomic 


chlorine (Cl) and atomic bromine (Br) arrive because of human activity. 


 


Chlorofluorocarbons (CFC) and bromofluorocarbons are released into the troposphere.  At low 


altitudes these compounds are stable and heavier than air.  However, atmospheric mixing through 


thermals and wind shears can carry these molecules high into the stratosphere.  Without the 


protection of the ozone layer at these altitudes, ultraviolet photons photolyze these molecules, 


releasing free chlorine atoms and free bromine atoms. 


 


If a free chlorine atom runs into an ozone molecule, the chlorine will steal one oxygen atom to 


form chlorine monoxide and a diatomic oxygen molecule. 


 


Cl + O3  ClO + O2 + EK 


 


The chlorine monoxide molecule floats around the stratosphere until it runs into a free oxygen 


atom, which steals the oxygen atom from the chlorine to form diatomic oxygen. 


 


ClO + O  Cl + O2 + EK 


 


Thus released, the chlorine atom seeks out another ozone molecule to break down.  This can 


happen as many as 100,000 times.  Eventually the chlorine atom will run into another type of 


molecule, such as methane (CH4).  If this happens, the chlorine atom will be bound up into a 


molecule of hydrogen chloride (HCl), which can be carried downward from the stratosphere into 


the troposphere, where it can be washed away by rain. 


 


 Mesospheric Cooling 


 


Continuing up in altitude into the mesosphere, the density of the oxygen molecules decreases to 


the point that there is not enough absorption of UV radiation to have a warming effect.  There 


aren’t enough oxygen molecules for the UV photons to run into, and if a photon happens to split 


an oxygen molecule, the resulting oxygen atoms are going to have a very hard time finding any 


other oxygen to link up with and release their energy. 


 


However, there is another common molecule to consider that interacts with solar radiation — 


carbon dioxide.  When I was a kid in the 70s, carbon dioxide was a gas that we exhaled and plants 


absorbed.  Plants broke up the molecule, releasing the oxygen for us to breathe and keeping the 


carbon to make plant tissue.  Somewhere along the way in the 21st century, carbon dioxide 


became better known as an evil greenhouse gas that was going to spell doom and the end of life as 


we know it. 


 


How did carbon dioxide gain this evil persona?  Looking at Figure A8, the red lines show the 


peaks of absorption by carbon dioxide at wavelengths of approximately 1900 nm, 2800 nm, 4500 


nm, and 15000 nm.  All of these wavelengths are in the infrared band of electromagnetic radiation.  


The name “greenhouse gas” came about because the Earth, having been warmed by incident solar 


radiation, emits radiation in the infrared bands.  This infrared radiation can be absorbed by carbon 


dioxide molecules by changing their rotational-vibrational movements.  Just as the molecule can 


absorb the radiation, it can also emit radiation.  When the rotational-vibrational movements 


change back to a lower energy state a photon is released in one of these infrared wavelengths.  If 


that photon is released in the direction of the Earth, it imparts energy back into the Earth, keeping 
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it warm.  This gives the impression of being under a giant greenhouse that keeps much of the heat 


from the sun trapped inside. 


 


 
Figure A8.  Atmospheric absorption spectrum (Ref 32) 


 


However, if that same infrared photon goes to the side or up, it is likely to run into another carbon 


dioxide molecule and be absorbed, only to be emitted in some other random direction. 


 


In the mesosphere, infrared radiation to be absorbed by carbon dioxide comes not only from the 


Earth but also directly from the sun.  Because of the very low air density, any infrared photons 


emitted by a carbon dioxide molecule in any direction other than toward the Earth stand very little 


chance of finding another carbon dioxide molecule to be absorbed by, and thus will just continue 


on out into space.  This creates a net outgoing flux of infrared radiation, taking energy away from 


the earth and cooling the mesosphere.  


 


 Thermospheric Heating 


 


The top of the mesosphere is called the mesopause, and is defined as the altitude where the 


temperature stops decreasing.  At a few kilometers above the mesopause (88.743 km geopotential 


altitude (90 km geometric altitude) in the 1962 US Standard Atmosphere, and at 84.852 km 


geopotential altitude (86 km geometric altitude) in the 1976 US Standard Atmosphere) the density 


of the air becomes so low that the individual molecules cannot interact with each other.  The mean 


free path between molecular collisions becomes on the order of 1 km, which is a ridiculous 


distance for something as small as a molecule to travel in hopes of running into another tiny 


molecule.  I’m told it’s sort of like being in the Australian Outback (and I don’t mean the 


Australian themed steakhouse) and looking for another person.  At these altitudes, the idea of a gas 


acting like a continuum falls apart such that the ideal gas assumption fails. 


 


Because of this extremely low density, the molecules stop acting like a group and start acting like 


individuals.  The intense solar and cosmic radiation at the top of the atmosphere provide a 


significant boost to the kinetic energy of the few molecules in the thermosphere.  These molecules 
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get going super-fast, and the molecular-scale temperature (a measure of the average kinetic energy 


of a gas) in the thermosphere increases with altitude.  However, man-made objects in this region 


would seem to be very cold, because the molecules are so scarce that the idea of “sensible 


temperature” (a temperature that can be sensed) is not a meaningful concept. 


 


 Isothermal Regions 
 


You may have noticed that the transitions between atmospheric layers are modeled as isothermal 


(constant temperature) regions, and not as a point transition between decreasing temperature and 


increasing temperature.  In these regions, the factors that cause cooling with altitude and the 


factors that cause heating with altitude interact in such a way as to create a gentle transition from 


one phenomena to the other.  These regions are of significant size on a human scale.  For instance, 


the transition between the cooling of the troposphere and the heating of the stratosphere in the 


standard atmosphere ranges from about 36,000 feet altitude to 65,000 feet altitude.  In this region 


is most of commercial aviation up to all but the highest flying conventional aircraft and drones. 


 


 
Figure A9.  Range of systematic variability of temperature around the U.S. Standard Atmosphere, 


1976 (Ref 5) 


 


But is it reasonable to model these regions with a constant temperature?  Remember that the 


standard temperature of the standard atmosphere is an overall mean value of the expected 


temperature distribution, which has a rather large variance.  In Figure A9, lifted from Reference 5, 


the middle solid line shows the standard temperature profile of the 1976 U.S. Standard 


Atmosphere.  The horizontal arrows show the lowest and highest mean monthly temperatures 
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obtained for any location between the Equator and pole.  That is, the arrows show how much the 


average temperature for any day and any location can move around for each altitude.  Estimates of 


the one-percent maximum and minimum temperatures that occur during the warmest and coldest 


months, respectively, in the most extreme locations are shown by the dashed lines.  With this 


much variation in possible temperatures and the gentle transition from cooling to heating, it is 


quite reasonable to represent portions of these transition areas with a constant temperature profile. 


 


While an isothermal model may seem reasonable based on the distribution of temperatures 


throughout the year, how well does it model the atmosphere on any given day?  Looking at Figure 


A10, an annotated version of Figure I10, we can see the actual temperature profile for a particular 


day.  The air temperature is represented by the red curve and the dew point temperature is 


represented by the blue curve.  The vertical axis shows air pressure in hectopascals (hPa, 


equivalent to millibars) on the left side and pressure altitude on the right side.  In this Skew-T 


presentation, the horizontal axis represents nothing.  Lines of constant temperature are plotted at 


approximately 45 degrees from the vertical, as highlighted by the bold red line (see Appendix I for 


an explanation of why these soundings are plotted in this seemingly odd manner). 


 


As shown in the dashed green ellipses, the temperature from just above the surface up to about 


35,000 feet pressure altitude cuts across the lines of constant temperature, showing a decrease in 


temperature with increasing altitude as expected in the troposphere.  Around 35,000 feet (the 


actual tropopause on any given day will vary in altitude from the standard atmosphere value of 


36,089 feet) the temperature curve turns to follow a line of constant temperature, showing that an 


isothermal model is a reasonable representation of reality in these regions.   


 


 
Figure A10.  Atmospheric sounding showing temperature (red curve) decreasing with altitude up 


to 35,000 feet then maintaining a constant temperature with altitude 
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Appendix B 
 


 


Altitude Measurement Heavy Math Section 
 


Pressure Altitude 


 


In Appendix A we developed the equations for the pressure ratio as  


 


  = (1 – 6.87559x10
-6


 H)
5.2559


 (troposphere) (A79) 


 


  = 0.223360 e
(-4.80637x10


-5
 (H – 36089.24))


 (stratosphere) (A87) 


  


Because we are defining pressure altitude as the altitude given by the standard atmosphere for a 


given pressure, then it follows that we can replace the geopotential altitude (H) in these equations 


with pressure altitude (Hc) 


 


  = (1 – 6.87559x10
-6


 Hc)
5.2559


 (Hc  36089.24 feet) (B1) 


 


  = 0.223360 e
(-4.80637x10


-5
 (H


c
 – 36089.24))


 (Hc > 36089.24 feet) (B2) 


  


Note that these equations are valid for any atmosphere, not just a standard atmosphere.  The 


pressure altitude corresponding to a pressure ratio will always be the same, regardless of the 


geopotential altitude that it occurs at. 


 


(No, I don’t know why pressure altitude is represented by Hc.  The best guess I have is that it is 


sort of like “calibrated altitude” in a similar relationship to true altitude as Vc, “calibrated 


airspeed” is to true airspeed.) 


 


Inverting Equations B1 and B2 by solving for Hc gives 
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2559.5


c
10x87559.6


1
H






  (Hc  36089.24 feet) (B3) 


 


 24.36089
10x80637.4


223360.0
ln


H
5c 














 






 (Hc > 36089.24 feet) (B4) 


 


Density Altitude 


 


In a similar fashion, we can develop an equation for density altitude.  In Appendix A we 


developed the equations for the density ratio as  


 


  = (1 – 6.87559x10
-6


 H)
4.2559


 (troposphere) (A80) 


 


  = 0.297075 e
(-4.80637x10


-5
 (H – 36089.24))


 (stratosphere) (A88) 
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Because we are defining density altitude as the altitude given by the standard atmosphere for a 


given density, then it follows that we can replace the geopotential altitude (H) in these equations 


with density altitude (H) 


 


  = (1 – 6.87559x10
-6


 H)
4.2559


 (H  36089.24 feet) (B5) 


 


  = 0.297075 e
(-4.80637x10


-5
 (H



 – 36089.24))


 (H  36089.24 feet) (B6) 


 


Note that these equations are valid for any atmosphere, not just a standard atmosphere.  The 


density altitude corresponding to a density ratio will always be the same, regardless of the 


geopotential altitude that it occurs at. 


 


Inverting Equations B5 and B6 by solving for H gives 
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1
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  (H  36089.24 feet) (B7) 


 


 24.36089
10x80637.4


297075.0
ln


H
5
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











 



  (H > 36089.24 feet) (B8) 


 


Kollsman Window Shift 


 


The number in the Kollsman window is the pressure at sea level which would make your altimeter 


read field elevation at the current pressure (or pressure altitude), assuming standard sea level 


temperature and standard temperature lapse rate.  Hence, we can figure out what the pressure ratio 


at sea level would be.  For example, let’s assume 


 


 Altimeter Setting = 29.82 (B9) 


 


 
SL


levelsea
P


SettingAltimeter
  (B10) 


 


 
92.29


82.29
levelsea   (B11) 


 


 sea level = 0.9967 (B12) 


 


Then by using Equation B3 we can find the amount of the shift. 
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 Hc = 93 feet  (B14) 
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Pressure Contour Shift With Temperature 


 


Because each pressure altitude corresponds to a particular pressure, the difference between 


pressure altitudes is simply the difference between two pressures.  The hydrostatic equation states 


 


 dP = - gSL dH (A30) 


 


This, of course, is a differential equation, and to be used over any sort of distance it needs to be 


integrated.  We know that density changes with altitude, but if we can limit ourselves to small 


changes in altitude, we can ASSUME that the density is relatively constant.  (Actually, the density 


will drop out in a little bit anyway).  With this assumption, we can integrate Equation A30 to 


 


 P = - gSL H (B15) 


 


Further working with this equation, if we express altitude in terms of pressure altitude, then 


because pressure altitude is defined by standard day conditions, the density would be the standard 


day density at the pressure altitude in question, or 


 


 P = -std gSL Hc (B16) 


 


On the other hand, if we measure the same altitude change in terms of geopotential altitude, then 


the density must be the test day density, or  


 


 P = -test gSL H (B17) 


 


So when I make a climb or descent between two pressure altitudes, the change in pressure can be 


expressed in terms of either pressure altitude or geopotential altitude.  Setting these two 


expressions equal we get 


 


 P = -std gSL Hc = -test gSL H (B18) 


 


Dropping the P from the front and rearranging this equation we get 
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
  (B19) 


 


From this equation, the acceleration of gravity divides out, leaving the ratio of the densities.  


However, we can still work with this equation to put it in more useful terms.  From the Equation 


of State 


 


 P = RT (A3) 


 


Solving for density gives 


 


 
RT


P
   (B20) 


 


Substituting this relationship into Equation B19 
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  (B21) 
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Because the expression for pressure altitude and the expression for geopotential altitude in 


Equation B18 are for the same location in the atmosphere, the two pressures in Equation B21 are 


the same.  Since R is a constant, it divides out as well, leaving 
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c T


T


H


H







  (B22) 


 


Finally, rearranging the equation into a useable form 


 


 c
std


test H
T


T
H   (B23) 


 


Calculating Non-Standard Density 


 


From the Equation of State 


 


 P = RT (A3) 


 


we know that we can calculate density from temperature and pressure.  If we divide the Equation 


of State by the Equation of State at sea level conditions, we get another equation 
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



  (B24) 


 


Dividing out the Rs and replacing the ratios with the standard symbols 


 


  =  (B25) 


 


or solving for the density ratio 


 


 




  (B26) 


 


If needed the density can be calculated from the definition of the density ratio 
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  (A71) 


 


  =  SL (B27) 
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Appendix C 
 


 


Airspeed, Mach, and Temperature Measurement 


Heavy Math Section 
 


Dynamic Pressure 


 


From incompressible flow, we had from Bernoulli’s Equation 


 


 
2


V
PP


2
t


aT



  (C1) 


 


We could rearrange this to 
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V
PP


2
t


aT



  (C2) 


 


From this concept came the definition of dynamic pressure, q, as 


 


 
2


V
q


2
t


  (C3) 


 


True Airspeed Equation 


 


To derive the true airspeed equation, we start with the definition of enthalpy (Ref 27)  


 


 h = u + Pv (C4) 


 


where 


 


 h Specific Enthalpy 


 u Specific Internal Energy 


 P Pressure 


 v Specific Volume 


 


The specific volume is merely the inverse of the density, or 


 


 




1


v  (C5) 


 


We can then take the Equation of State 


 


 P = RT (A3) 


 


Rearranging would give 


 


 RT
P




 (C6) 
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and substituting Equation C5 gives 


 


 Pv = RT (C7) 


 


Also from Reference 27 we find that for an ideal gas (which we are assuming air to act as) 


 


 h = CpT (C8) 


 


 u = CvT (C9) 


 


where 


 


 Cp Coefficient of Specific Heat at Constant Pressure 


 Cv Coefficient of Specific Heat at Constant Volume 


 


Therefore, substituting Equations C8, C9, and C7 into Equation C4 we get  


 


 CpT = CvT + RT (C10) 


 


Dividing out the temperatures 


 


 Cp = Cv + R (C11) 


 


Rearrange to get 


 


 Cp - Cv = R (C12) 


 


Divide through by Cp 
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The ratio of specific heats () is defined as 
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Substituting Equation C14 into Equation C13 gives 


 


 
pC


R1
1 



  (C15) 


 


Recasting the 1 gives 
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and combining 
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Solving for Cp 


 


 
1


R
Cp






  (C18) 


 


Now moving on to the First Law of Thermodynamics for a control volume (Ref 27) 


 


    outoutoutininin pekehmQWpekehmQW    (C19) 


 


where 


 


 outin W,W   Rate of Work Interaction 


 outin Q,Q   Rate of Heat Interaction 


 m   Mass Flow Rate 


 h  Specific Enthalpy 


 ke  Specific Kinetic Energy 


 pe  Specific Potential Energy 


 


Considering the movement of a fluid element through a streamtube, we can eliminate the work 


interaction because no shaft work will exist in the streamtube.   


 


ASSUME:  The flow of air through the streamtube is adiabatic (no heat interactions).  


Actually, this is a fairly reasonable assumption. 


 


So what do we have left of the First Law for this system? 


 


    outin pekehmpekehm    (C20) 


 


We can now divide the mass flow term out, leaving 


 


 (h + ke + pe)in = (h + ke + pe)out (C21) 


 


Because of the low density of air, any change in potential energy, caused by a change in elevation, 


will be very small compared to the changes in enthalpy and kinetic energy.  Therefore, we will 


eliminate the potential energy terms, leaving 


 


 (h + ke)in = (h + ke)out (C22) 


 


Using Equation C8 and the definition of specific kinetic energy (Ref 27), Equation C22 becomes 
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Now we will define our streamtube as beginning well in front of the aircraft at freestream 


conditions (ambient) and ending at a stagnation point (total), such as a Pitot tube.  Therefore, the 


Vin would be the true airspeed, and the Vout would be zero. 
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Solving for total temperature 
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Bring the Cp inside the parentheses to get 
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If we divide through by Ta to get a temperature ratio we get 
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which reduces to 
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Substituting in Equation C18 (you wondered why we derived that…) 
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which can be rearranged to  
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The speed of sound is given by  


 


 aRTa   (C31) 


 


so Equation C30 becomes 
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Mach Number is given by 


 


 
a


V
M t  (C33) 


 


 







 Appendix C  Airspeed, Mach, and Temperature Measurement Heavy Math Section 213 


 


so Equation C32 becomes 
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Note that the only major assumption made to derive Equation C34 was that the flow was adiabatic.  


If we further assume that the flow into the Pitot tube is isentropic, then we can apply the 


isentropic relationship (Ref 27) 
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Applying Equation C35 to Equation C34 gives us 
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Move the exponent to the other side 
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Solving for Mach 
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Using Equation C33 to get velocity (airspeed) back into the equation 
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Isolate the velocity 
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Using Equation C31 
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Replacing RTa with its equivalent from the equation of state (Equation C6) 
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Move the density term to the location we’ll want it later 
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Because of the way our systems (airspeed indicators) are designed, along with some other 


conveniences down the road, we’ll want to use the difference between total and ambient pressure 


instead of total pressure by itself.  To get to this, we’ll add and subtract one to the pressure ratio 


term. 
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Combining the first two fractions over a common denominator 
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Taking the square root of both sides 
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Using  = 1.4 for air 
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Equivalent Airspeed 


 


Equivalent Airspeed is found by removing the dependence on ambient density and replacing it 


with a constant sea level density. 


 


 





































































 11


P


PP
P7


1
V


7


2


a


aT
a


SL
e  (C49) 


 


The relationship between true and equivalent airspeed can be found using the density ratio. 
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Dynamic pressure, defined as 
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can also be expressed in terms of equivalent airspeed.  Rearranging Equation C53 
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and substituting Equation C54 in Equation C3 


 


 
2


V


q


2


e
























  (C55) 


 


 
2


V


q


2
e






  (C56) 


 







216 Pitot-Statics and the Standard Atmosphere 


 
2


V


q


2
e


SL



















  (C57) 


 


 
2


V
q


2
eSL


  (C58) 


 


So two expressions for dynamic pressure are 
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Additionally, dynamic pressure can be expressed in terms of Mach number.  From Equation C33 


we get 
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Substituting in Equation C3 
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Using the definition of the speed of sound (Equation C31) 
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From the Equation of State (Equation A3) we can substitute pressure to get 
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Calibrated Airspeed 


 


Calibrated airspeed is found by replacing the ambient pressure dependence in equivalent airspeed 


with a constant sea level pressure. 
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Differential Pressure Ratios 


 


The one common variable between true, equivalent, and calibrated airspeed is the differential 


pressure.  For ease of notation, we will give the differential pressure a symbol 


 


 qc = PT - Pa (subsonic) (C66) 


 


If we have a way to find qc, then we can work our way between different types of airspeed.  We 


can also use qc to relate airspeeds and Mach numbers.  Using the isentropic relation 
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we can subtract one from both sides 
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to give 
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Using   = 1.4 for air, we have 
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and substituting Equation C66  
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Note that this relationship exists in the middle of both the true airspeed and equivalent airspeed 


equations.   


 


To find qc/Pa from equivalent airspeed, first we look at the speed of sound (Equation C31) and 


divide both sides by the square root of the temperature ratio 
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The right hand side is just the speed of sound at sea level, so  
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Combining with Equation C33 gives 


 


 






SL


t


a


V
M  (C75) 


 


or 
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If we go back to the relationship between true and equivalent airspeeds 
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and substitute Equation C60 we get 
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Substituting Equation C74 we get 
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Substituting Equation B25 gives 
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so solving for Mach number gives 
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Therefore, substituting Equation C80 into Equation C70 
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So far this discussion has been true for subsonic flight.  In supersonic flight, the total pressure 


sensed is the total pressure behind a normal shock wave (PT’), which is less than the freestream 


total pressure (PT).  From Equation 3-80 of Reference 7, we know that the relationship between 


the ambient pressure ahead of the shock wave (Pa) and the ambient pressure behind the shock 


wave (Pa’) is 
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where M is the freestream Mach number.  The Mach number behind the shock wave (M’) is given 


by Equation 3-83 of Reference 7 


 


 


1M
1


2


1


2
M


'M
2


2


2
























  (C83) 


 


Behind the shock, the total pressure and ambient pressure are related by the isentropic relation 


(Equation C36) 
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To relate the total pressure behind the shock (measured in the Pitot tube) to the freestream ambient 


pressure (which will be recovered by some distance behind the shock), we multiply Equation C84 


and Equation C82 to get 
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Modifying Equation C83 
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Substituting Equation C87 for M’ in Equation C85 
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To get to qc/Pa we subtract 1 from both sides 
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For supersonic flow, qc is defined as 


 


 qc = PT’ - Pa (supersonic) (C96) 


 


Substituting the definition of qc and using  = 1.4 for air 
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With some clever multiplying by 1 


 


 1
5.2


5.2


4.2


M8.24.0


25.6


25.6


8.0M6.5


M76.5


P


q 25


5


4.0


4.1


2


2


a


c 












































































 (C98) 


 







 Appendix C  Airspeed, Mach, and Temperature Measurement Heavy Math Section 221 


 


 1
6


1M7


5M35


M36


P


q 22


7


2


2


a


c 

















 























  (C99) 


 


 
 


1
6


1M7


1M75


M36


P


q 22


7


2


2


a


c 

















 























  (C100) 


 


 


Combining like terms 
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Combining constants 
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Remembering that qc in this case is the difference between the sensed total pressure (behind the 


normal shock wave) and the ambient pressure, reintroducing Equation C96 gives 
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Substituting Equation C80, we get the equivalent expression for equivalent airspeed 
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If we consider the case of sea level standard day, then true airspeed is equal to calibrated airspeed 


and using the speed of sound at sea level, we have 
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Additionally the ambient pressure is equal to sea level pressure.  Substituting into Equation C70 


and Equation C102 we get 
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The interesting thing about Equations C106 and C107 is that there is no altitude dependence in 


either equation, so these two equations are valid at any altitude.  The term qc/PSL is significant in 


that this is the value in the center of the calibrated airspeed equation.   


 


The relationship between qc/Pa and qc/PSL is given by 
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Continuity Between Subsonic and Supersonic Pressures 
 


Nature abhors a vacuum, and it doesn’t tolerate discontinuities either.  We can show that the 


differential pressure ratio qc/Pa is continuous at M = 1 by showing that its value and slope are the 


same for both the subsonic and supersonic equations.   


 


For the subsonic case 
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For the supersonic case 
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At M = 1 
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The values of qc/Pa are the same at M = 1. 


 


Taking the derivative of the subsonic case 
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At M = 1 
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Taking the derivative of the supersonic case 
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At M = 1 
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The values of the first derivative of qc/Pa are the same at M = 1. 


 


Finding Mach from Calibrated Airspeed and Pressure Altitude 


 


We can now use calibrated airspeed to find qc/PSL.  Using altitude to find , we can then find qc/Pa.  


From this we can then find Mach number.  Solving Equation C70 for Mach number: 
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Add 1 to both sides 
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Raise both sides to the 2/7 power 
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Subtract 1 from both sides 
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Multiply both sides by 5 
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Taking the square root 
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Substituting from Equations C109 and C106 into Equation C117 
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Note that because Equations C117 and C118 were derived from the subsonic relationships, they 


are only valid for the subsonic case.  It is possible to find values for Vc < aSL and pressure ratio 


that result in a Mach number greater than 1 using Equation C118.  In those cases, the result is 


invalid and must be calculated a different way. 


 


For the supersonic case, we start with Equation C102. 
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Add 1 to both sides 
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Multiplying by a clever form of 1 
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This is as far as we can go with this equation.  Unfortunately, this is an implicit equation, since 


Mach number appears on both sides.  Therefore it must be solved by iteration.   


 


Using the same logic as we used to develop Equations C106 and C107, starting with Equation 


C117 we get an expression for calibrated airspeed less than the speed of sound at sea level 
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or 
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Substituting Equation C110 
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Substituting Equation C70  (note that because C70 is restricted to M < 1, the resulting equation is 


restricted to M <1) 
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For the supersonic case, we modify Equation C124 (with no altitude dependence, M > 1 becomes 


Vc > aSL) 
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Likewise for equivalent airspeed in the supersonic regime, we substitute Equation C80 in Equation 


C124 to get 
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Computing f Factor and Vc 


 


f factor is typically computed for specified values of calibrated airspeed and pressure altitude.  It 


could also be calculated for a specified value of equivalent airspeed and pressure altitude using 


techniques similar to those shown here. 


 


Using the specified calibrated airspeed, calculate qc/PSL using Equation C106 or C107 as 


appropriate. 
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The pressure ratio is calculated from the specified pressure altitude using Equation B1 or B2 as 


appropriate. 
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Using Equation C109 to find qc/Pa 
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we can then calculate Mach number using Equation C117 or C124 as appropriate 
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Equivalent airspeed is then calculated from Mach number using Equation C79 


 


  SLe MaV  (C79) 


 


Now that the corresponding values of equivalent airspeed and calibrated airspeed are known, the f 


factor and Vc are calculated by their definitions. 
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Table C1 enumerates the values of the f factor as a function of pressure altitude and calibrated 


airspeed.  Figure C1 shows how the f factor varies with pressure altitude and calibrated airspeed.   


 


Table C1 


f factor 


 
 Calibrated Airspeed (knots)         


Pressure 


Altitude 


(ft) 


0 50 100 150 200 250 300 350 400 450 500 


0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 


5000 1.0000 0.9998 0.9994 0.9987 0.9978 0.9966 0.9952 0.9936 0.9919 0.9900 0.9881 


10000 1.0000 0.9997 0.9987 0.9972 0.9950 0.9924 0.9893 0.9859 0.9822 0.9782 0.9742 


15000 1.0000 0.9994 0.9978 0.9952 0.9916 0.9872 0.9822 0.9766 0.9706 0.9644 0.9580 


20000 1.0000 0.9992 0.9967 0.9927 0.9874 0.9809 0.9735 0.9654 0.9569 0.9481 0.9393 


25000 1.0000 0.9988 0.9953 0.9896 0.9820 0.9730 0.9629 0.9520 0.9406 0.9291 0.9193 


30000 1.0000 0.9983 0.9934 0.9856 0.9754 0.9633 0.9500 0.9359 0.9215 0.9085 0.8997 


35000 1.0000 0.9977 0.9910 0.9805 0.9670 0.9513 0.9343 0.9167 0.9002 0.8882 0.8813 


36089 1.0000 0.9975 0.9904 0.9792 0.9649 0.9483 0.9305 0.9121 0.8955 0.8839 0.8775 


40000 1.0000 0.9969 0.9879 0.9740 0.9565 0.9367 0.9157 0.8951 0.8793 0.8695 0.8648 


45000 1.0000 0.9959 0.9840 0.9661 0.9441 0.9197 0.8947 0.8741 0.8606 0.8533 0.8509 


50000 1.0000 0.9946 0.9792 0.9566 0.9293 0.9001 0.8734 0.8551 0.8444 0.8396 0.8393 


55000 1.0000 0.9929 0.9733 0.9450 0.9122 0.8788 0.8538 0.8385 0.8306 0.8282 0.8298 


60000 1.0000 0.9909 0.9661 0.9314 0.8925 0.8582 0.8365 0.8245 0.8192 0.8188 0.8220 


65000 1.0000 0.9883 0.9572 0.9154 0.8713 0.8397 0.8217 0.8127 0.8098 0.8111 0.8157 
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 Calibrated Airspeed (knots)         


Pressure 


Altitude 


(ft) 


550 600 650 661.48 700 750 800 850 900 950 1000 


0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 


5000 0.9861 0.9841 0.9822 0.9819 0.9817 0.9822 0.9831 0.9842 0.9853 0.9863 0.9873 


10000 0.9700 0.9660 0.9636 0.9634 0.9636 0.9651 0.9673 0.9696 0.9718 0.9739 0.9759 


15000 0.9516 0.9470 0.9452 0.9453 0.9464 0.9493 0.9528 0.9563 0.9597 0.9629 0.9658 


20000 0.9322 0.9283 0.9279 0.9282 0.9305 0.9349 0.9397 0.9444 0.9489 0.9531 0.9568 


25000 0.9131 0.9107 0.9119 0.9126 0.9161 0.9219 0.9281 0.9340 0.9395 0.9445 0.9490 


30000 0.8951 0.8946 0.8975 0.8986 0.9034 0.9106 0.9179 0.9249 0.9313 0.9371 0.9424 


35000 0.8788 0.8801 0.8848 0.8863 0.8922 0.9007 0.9091 0.9171 0.9243 0.9309 0.9367 


36089 0.8755 0.8772 0.8823 0.8838 0.8899 0.8987 0.9074 0.9156 0.9230 0.9296 0.9356 


40000 0.8645 0.8677 0.8739 0.8758 0.8827 0.8923 0.9018 0.9106 0.9185 0.9256 0.9320 


45000 0.8525 0.8574 0.8650 0.8671 0.8750 0.8856 0.8959 0.9053 0.9138 0.9215 0.9282 


50000 0.8427 0.8490 0.8578 0.8602 0.8687 0.8802 0.8911 0.9011 0.9101 0.9181 0.9252 


55000 0.8346 0.8421 0.8520 0.8545 0.8637 0.8758 0.8873 0.8978 0.9072 0.9155 0.9228 


60000 0.8281 0.8367 0.8473 0.8500 0.8597 0.8724 0.8843 0.8951 0.9048 0.9134 0.9210 


65000 0.8229 0.8323 0.8436 0.8464 0.8565 0.8696 0.8819 0.8930 0.9030 0.9117 0.9195 


 


 


 
 


Figure C1.  f factor 
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Table C2 enumerates the values of the Vc as a function of pressure altitude and calibrated 


airspeed.  Figure C2 shows how the Vc varies with pressure altitude and calibrated airspeed.   


 


Table C2 


Vc factor 


 
 Calibrated Airspeed (knots)         


Pressure 


Altitude 


(ft) 


0 50 100 150 200 250 300 350 400 450 500 


0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 


5000 0.0 0.0 -0.1 -0.2 -0.4 -0.9 -1.4 -2.2 -3.3 -4.5 -6.0 


10000 0.0 0.0 -0.1 -0.4 -1.0 -1.9 -3.2 -4.9 -7.1 -9.8 -12.9 


15000 0.0 0.0 -0.2 -0.7 -1.7 -3.2 -5.3 -8.2 -11.8 -16.0 -21.0 


20000 0.0 0.0 -0.3 -1.1 -2.5 -4.8 -8.0 -12.1 -17.2 -23.4 -30.4 


25000 0.0 -0.1 -0.5 -1.6 -3.6 -6.7 -11.1 -16.8 -23.7 -31.9 -40.4 


30000 0.0 -0.1 -0.7 -2.2 -4.9 -9.2 -15.0 -22.4 -31.4 -41.2 -50.2 


35000 0.0 -0.1 -0.9 -2.9 -6.6 -12.2 -19.7 -29.1 -39.9 -50.3 -59.4 


36089 0.0 -0.1 -1.0 -3.1 -7.0 -12.9 -20.8 -30.8 -41.8 -52.2 -61.3 


40000 0.0 -0.2 -1.2 -3.9 -8.7 -15.8 -25.3 -36.7 -48.3 -58.7 -67.6 


45000 0.0 -0.2 -1.6 -5.1 -11.2 -20.1 -31.6 -44.1 -55.8 -66.0 -74.5 


50000 0.0 -0.3 -2.1 -6.5 -14.1 -25.0 -38.0 -50.7 -62.2 -72.2 -80.3 


55000 0.0 -0.4 -2.7 -8.2 -17.6 -30.3 -43.9 -56.5 -67.7 -77.3 -85.1 


60000 0.0 -0.5 -3.4 -10.3 -21.5 -35.4 -49.1 -61.4 -72.3 -81.5 -89.0 


65000 0.0 -0.6 -4.3 -12.7 -25.7 -40.1 -53.5 -65.6 -76.1 -85.0 -92.1 


 
 Calibrated Airspeed (knots)         


Pressure 


Altitude 


(ft) 


550 600 650 661.48 700 750 800 850 900 950 1000 


0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 


5000 -7.6 -9.6 -11.6 -11.9 -12.8 -13.4 -13.5 -13.5 -13.3 -13.0 -12.7 


10000 -16.5 -20.4 -23.7 -24.2 -25.5 -26.1 -26.2 -25.9 -25.4 -24.8 -24.1 


15000 -26.6 -31.8 -35.6 -36.2 -37.5 -38.0 -37.8 -37.2 -36.3 -35.3 -34.2 


20000 -37.3 -43.0 -46.9 -47.5 -48.6 -48.9 -48.3 -47.2 -46.0 -44.6 -43.2 


25000 -47.8 -53.6 -57.3 -57.8 -58.7 -58.5 -57.6 -56.1 -54.5 -52.7 -51.0 


30000 -57.7 -63.3 -66.6 -67.1 -67.7 -67.1 -65.7 -63.8 -61.8 -59.7 -57.6 


35000 -66.7 -71.9 -74.9 -75.2 -75.5 -74.5 -72.7 -70.5 -68.1 -65.7 -63.3 


36089 -68.5 -73.7 -76.5 -76.8 -77.0 -76.0 -74.1 -71.8 -69.3 -66.9 -64.4 


40000 -74.6 -79.4 -81.9 -82.2 -82.1 -80.7 -78.6 -76.0 -73.3 -70.7 -68.0 


45000 -81.1 -85.6 -87.7 -87.9 -87.5 -85.8 -83.3 -80.5 -77.5 -74.6 -71.8 


50000 -86.5 -90.6 -92.4 -92.5 -91.9 -89.9 -87.1 -84.0 -80.9 -77.8 -74.8 


55000 -91.0 -94.7 -96.2 -96.2 -95.4 -93.1 -90.1 -86.9 -83.6 -80.3 -77.2 


60000 -94.5 -98.0 -99.2 -99.2 -98.2 -95.7 -92.6 -89.1 -85.7 -82.3 -79.0 


65000 -97.4 -100.6 -101.7 -101.6 -100.4 -97.8 -94.5 -90.9 -87.3 -83.9 -80.5 
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Figure C2.  Vc 


 


Mach Is Mach 


 


The catch phrase “Mach is Mach” means that for a given pressure altitude, test day Mach number 


is equal to standard day Mach number.  This is true because true airspeed and the speed of sound 


vary in identical manners to changes in temperature.  To see this, consider what happens to each 


while flying at a constant pressure altitude and constant Mach number with varying ambient air 


temperature. 


 


From Equation C48 
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or substituting qc for PT - Pa 
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Because we are considering a constant pressure altitude, Pa is a constant for this analysis.  


Equations C70 and C102 show us that qc/Pa is strictly a function of Mach number, so if Mach 


number is constant, qc/Pa will be constant.  This leaves true airspeed to vary as the square root of 


the inverse of the density. 
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Solving the equation of state (Equation A3) for density gives 
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Again, Pa is a constant for a constant pressure altitude and the gas constant (R) is just constant, so 


density varies as the inverse of the temperature. 
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Substituting Equation C139 into Equation C137 gives 


 


 TVt   (C140) 


 


The speed of sound is defined by Equation C31 


 


 aRTa   (C31) 


 


The ratio of specific heats () and the gas constant (R) are constants, so the speed of sound varies 


as the square root of temperature 


 


 aTa   (C141) 


 


Since both the speed of sound and true airspeed vary as the square root of temperature, we can say 


that they are proportional to each other. 


 


 aVt   (C142) 


 


Thus, for different temperatures at a given pressure altitude, the true airspeed and speed of sound 


will change by proportional amounts such that the Mach number remains the same.  Hence, Mach 


is Mach. 


 


Differential Pressure and Dynamic Pressure 


 


We can find the relationship between differential pressure and dynamic pressure by a Maclaurin 


series (a Taylor series expanded about x = 0) expansion of qc.  The Maclaurin series is given by 


(Ref 28) 
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For our expression for qc we will use Equation C68, substituting qc for PT – Pa (Equation C66) 
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or rearranging 
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This is true only for the subsonic case, but that is reasonable since we will be expanding about 


M
2
 = 0.  The derivatives will be in terms of the independent variable M


2
.  We could have used M 


and achieved the same results, but since Mach only appears as M
2
, we will use M


2
 as the 


independent variable. 


 


The series we will be looking for is 
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For the first term at M
2
 = 0 
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For the second term, we first differentiate the expression for qc.  Note that Pa is not a function of 


Mach, hence is treated as a constant. 
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Evaluating at M
2
 = 0 
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Inserting into the second term 
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For the third term, we differentiate the expression for dqc/d(M
2
).   
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Evaluating at M
2
 = 0 
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Inserting into the third term 
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For the fourth term, we differentiate the expression for d
2
qc/d(M


2
)


2
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Evaluating at M
2
 = 0 
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Inserting into the fourth term 
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For the fifth term, we differentiate the expression for d
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qc/d(M


2
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Evaluating at M
2
 = 0 
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Inserting into the fifth term 
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Collecting terms back into Equation C143 we have 
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Applying Equation C64 we get the final relationship between differential pressure and dynamic 


pressure 
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Temperature Recovery Factor 


 


The relationship of the total temperature to the ambient temperature is given by 


 


 








 
 2


a


T M
2


1
1


T


T
 (C34) 


 


The instrument error in the temperature measuring device, as a function of indicated or ambient 


temperature, is used to find the instrument corrected temperature from the indicated temperature 


 


 Tic  = Ti + Tic (C185) 


 


where 


 


 Tic Instrument Corrected Temperature 


 Ti Indicated Temperature 


 ic Temperature instrument correction 


 


Sensors are not perfect, and a temperature sensor will typically only register some portion of that 


total temperature rise.  If a sensor registers 90 per cent of the total temperature rise, then we would 


say that sensor has a 90 per cent recovery factor, or 0.9.  The temperature recovery factor is given 


the symbol Kt, and Equation C34 is modified to reflect this as (using  = 1.4 for air) 
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Note the change from total temperature (TT) to instrument corrected temperature (Tic), since if the 


recovery factor is not equal to one (1), then the measured temperature is no longer equal to the 


total temperature. 


 


To find ambient temperature, we rearrange this equation to  
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To find a similar equation in terms of true airspeed instead of Mach number, we start with 
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Multiply both sides by Ta to get 
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Solving for Ta 
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Introducing the temperature recovery factor gives 
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In order to determine the temperature recovery factor, we can rearrange Equation C186 
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If we then plot data points using (Tic/Ta -1) as the “y” parameter and (M
2
/5) as the “x” parameter, 


the results should be a line with a slope of Kt.  To allow for biases in the temperature measuring 


equipment (i.e. doesn’t go to zero at zero), we have the final version of the equation 
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Variable Temperature Recovery Factor 


 


This section is mostly derived from Reference 33, modified to stay consistent with the 


nomenclature of this textbook. 


 


The relationship between total and ambient temperature is given by Equation C34.  This is the 


equation programmed into air data computers to calculate static air temperature (SAT) from 


measured temperature (Tm) values which are very close to total temperature (TT). 


 


If the total temperature sensor is designed such that there are no significant heat sources or thermal 


paths to heat sinks and such that flow over the sensing element is uniform and continuous, the 


sensor will indicate the adiabatic value Tic very closely. 


 


One parameter which relates Tic to TT and Ta is called the recovery factor, defined as follows: 
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Some geometric shapes have constant recovery factors (e.g. the classic flat plate with airflow 


parallel to its surface).  For sensors with a constant adiabatic recovery factor, Equations C43 and 


C193 combine to give Equation C186. 
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However, most sensors exhibit a variable recovery factor, and it is more convenient to use a 


recovery correction defined as 
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Total temperature sensors may exhibit a variable a variable  for Mach values below 1.0 but 


constant  for Mach values above 1.0.  Even though the total temperature (TT) in supersonic flow 


does not change through a shock wave, at supersonic speeds the temperature recovery 


characteristics of the probe may change, due to factors such as choked flow through the probe 


passages. 


 


Once Tic and  are known, TT is calculated by 
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Now that total temperature is known, the ambient temperature can be calculated by 
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The relationships between  and Kt are given by (using  = 1.4 for air) 
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For non-adiabatic conditions, additional parameters are involved in calculating TT and Ta. 
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Appendix D 
 


 


Pitot-Static System Errors Heavy Math Section 
 


Position Errors 


 


For the purposes of this section, total pressure error and errors due to pressure lag will be assumed 


zero.  Therefore, all errors and resulting corrections arise from the inability to accurately measure 


the ambient air pressure.  This error is referred to as the position error and is defined as  


 


 Pp  = Ps - Pa (D1) 


 


where 


 


 Pp Position Error 


 Ps Measured Static Pressure 


 Pa Actual Ambient Pressure 


 


The position error will show up as errors in the altitude, airspeed, and Mach as 


 


 Hp  = Hic - Hc (D2) 


 


where 


 


 Hp Altitude Position Error 


 Hic Instrument Corrected Indicated Altitude 


 Hc Actual Pressure Altitude 


 


 Vp  = Vic - Vc (D3) 


 


where 


 


 Vp Airspeed Position Error 


 Vic Instrument Corrected Indicated Airspeed 


 Vc Actual Calibrated Airspeed 


 


 Mp  = Mic - M (D4) 


 


where 


 


 Mp Mach Position Error 


 Mic Instrument Corrected Indicated Mach Number 


 M Actual Mach Number 
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It is a subtle point, but the way that errors are defined, an error must be subtracted from a 


measured value to calculate the corrected value.  It is considered easier to work with corrections 


which are added to the measured value to calculate the corrected value.  Hence, corrections are 


just negative errors.  The altitude, airspeed, and Mach corrections are defined as 


 


 Hpc  = Hc – Hic = -Hp (D5) 


 


 Vpc  = Vc – Vic = -Vp (D6) 


 


 Mpc  = M – Mic = -Mp (D7) 


 


Note that the difference between an error and a correction is subtle, and flight test personnel will 


frequently say “error” when they really mean “correction.”  Be careful that you know what you’re 


really talking about. 


 


Since we know that the altitude, airspeed, and Mach position corrections are related to the position 


error, we need to derive the equations that characterize this relationship. 


 


Finding Position Error Corrections 


 


The key to characterizing position error is finding PP.    We will look at methods for determining 


Pp from a measured Hpc, Vpc, or Mpc.  Our primary method will be by directly calculating 


pressures, a method suitable for use in spreadsheets or computer programs.   In the interest of 


historical legacy, at the end of this appendix we will also look at Taylor series expansion methods 


as detailed in Reference 12.  Taylor series methods give a single equation method that may have 


been considered more suitable for use with slide rules, but introduced some error in the result. 


 


 
 


For the Pitot-statics class at the USAF Test Pilot School, use the pressure 


method for full credit on exams.  The pressure method gives an exact answer, 


while the Taylor series expansion method will give an approximate answer.  The 


Taylor series expansion methods are included for historical legacy and 


explanation of Herrington (Ref 12). 


 


After determining Pp, then Hpc, Vpc, and Mpc can be calculated.  Again, we will look at 


pressure methods and Taylor series expansion methods. 


 


Finding Position Error From a Measured Altitude Position Correction 


 


An altitude comparison method finds the altitude position correction (Hpc) by measuring an 


instrument corrected altitude (Hic) and comparing it to an independently measured truth pressure 


altitude (Hc). 


 


By modifying Equations B1 and B2 in combination with Equation A70, we can calculate the static 


pressure (Ps) and ambient pressure (Pa). 


 


 Ps = PSL(1 – 6.87559x10
-6


 Hic)
5.2559


 (Hic  36089.24 feet) (D8) 


 


 Ps = PSL 0.223360 e
(-4.80637x10


-5
 (H
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 – 36089.24))


 (Hic > 36089.24 feet) (D9) 


  


 Pa = PSL (1 – 6.87559x10
-6


 Hc)
5.2559


 (Hc  36089.24 feet) (D10) 


 


 Pa = PSL 0.223360 e
(-4.80637x10


-5
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c
 – 36089.24))


 (Hc > 36089.24 feet) (D11) 


CAUTION 
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Now that we have static pressure and ambient pressure, we can find the position error from 


Equation D1.  


 


 Pp  = Ps - Pa (D1) 


 


If we would rather have Pp/Ps then simply divide Pp by Ps from Equation D8 or D9. 


 


Finding Position Error From a Measured Airspeed Position Correction 


 


An airspeed comparison method finds the airspeed position correction (Vpc) by measuring a 


instrument corrected airspeed (Vic) and comparing it to an independently measured truth calibrated 


airspeed (Vc). 


 


For the truth conditions, we use Equations C106 and C107 
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For the instrument corrected indicated airspeed, we find 
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Equation C66 gives the definition of qc 


 


 qc = PT - Pa  (C66) 


 


Replacing the ambient pressure with the measured static pressure gives qcic 


 


 qcic = PT – Ps  (D14) 
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Assuming zero total pressure error (PT = constant), then the difference of qc and qcic is equal to Pp 


 


 qc - qcic = (PT – Pa) – (PT – Ps) = Ps – Pa = Pp  (D15) 


 


Therefore 
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If we would rather have Pp/Ps then simply divide Pp by Ps calculated from Hic in Equation D8 or 


D9. 


 


Finding Position Error From a Measured Mach Position Correction 


 


A Mach comparison method finds the Mach position correction (Mpc) by measuring an 


instrument corrected Mach number (Mic) and comparing it to an independently measured truth 


Mach number (M). 


 


For the subsonic truth conditions, we use Equation C36  
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which using  = 1.4 for air becomes 
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For the supersonic case, we start with Equation C102 
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To get an expression for PT/Pa, from Equation C96 


 


 qc = PT’ - Pa (M > 1) (C96) 


 


then (dropping the primed notation for total pressure) 
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Applying this to Equation C102 gives 
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Substituting static pressure for ambient pressure in Equations D17 and D19 gives 
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The position error can then be calculated directly from these ratios by 
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or without the intervening steps 
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Finding Altitude Position Correction From Position Error  


 


Given a Position Error in the form of Pp/Ps and a desired standard altitude (pressure altitude), 


Hstd alt, we can find the altitude position correction, Hpc, by first finding the ambient pressure 


 


 Pa = PSL(1 – 6.87559x10
-6


 Hstd alt)
5.2559


 (Hstd alt  36089.24 feet) (D10) 
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We need to find Ps using Pa and Pp/Ps.   To find an expression for this, start with Ps multiplied by 


a form of 1 
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Moving Ps to the denominator of the denominator 
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Add and subtract Ps in the denominator 
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Separating the denominator 
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Changing to 1 and applying Equation D1 
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With Equation A70 we find the pressure ratio.  Since we used the static pressure, we add the 


subscript ic to  to indicate that this value includes the position error. 
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which with Equations B3 and B4 will give the instrument corrected altitude, again using the 


subscript ic to indicate the value includes the position error 
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Finally, the altitude position correction is calculated by 


 


 Hpc  = Hc – Hic (D5) 


 


Finding Airspeed Position Correction From Position Error  


 


Given a Position Error in the form of Pp/Ps, the Mach number, M, corresponding to the position 


error, the desired standard altitude (pressure altitude), Hstd alt, and ic from finding the altitude 


position correction above we can find the airspeed position correction, Vpc.  


 


From the Mach number, we find the differential pressure ratio 
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From the standard altitude we can find the pressure ratio 
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or in this case 
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Working toward calibrated airspeed 
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Using Equations C125 or C131 


 


 





























































 11


P


q
5aV


7
2


altstdSL


c
SLaltstdc  



















 89293.0


P


q


SL


c
 (D35) 


 


2
5


2


SL


altstdcaltstdSL


c
SLaltstdc


a


V
7


1
11


P


q
881284.0aV



























































































  



















 89293.0


P


q


SL


c  (D36) 


 


This gives the truth calibrated airspeed at the specified Mach number and standard altitude.  Next 


we need to determine qcic/PSL from the given data to determine Vic. 


 


Starting with qcic/PSL 
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Add and subtract Pa 
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Multiply second term by 1 
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Which gives a useable expression 
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where ic was found by the method shown for determining the altitude position correction. 


 


Next we calculate the instrument corrected airspeed by  
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Finally, the airspeed position correction is calculated by 


 


 Vpc  = Vc – Vic (D6) 


 


Finding Mach Position Correction From Position Error  


 


Given a Position Error in the form of Pp/Ps, an instrument corrected altitude, Hic, and instrument 


corrected airspeed, Vic, we can find the Mach position correction, Mpc. 


 


Modifying Equations C106 and C107 for instrument corrected airspeed 
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Likewise modifying Equations B1 and B2 for instrument corrected altitude 
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To find Mic we need qcic/Ps 
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The instrument corrected Mach number is then found by (from C117 or C124) 
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Next we need an equation to determine qc/Pa from qcic/Ps and Pp/Ps.  Starting with qc/Pa 
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Splitting the fraction 
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Dividing numerator and denominator by Ps 
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Add and subtract values 
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which gives a useable equation 
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With this we can find Mach number 
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The Mach position correction would then be given by 


 


 Mpc  = M – Mic (D7) 


 


Alternatively, if given position error in the form of Pp/Ps, and a truth Mach Number, M, we 


would start by finding qc/Pa 
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Next we need an equation to determine qcic/Ps from qc/Pa and Pp/Ps.  Starting with qcic/Ps 
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Splitting the fraction 
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Multiply by 1 
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Add and subtract 


 


 1
P


PPP


P


PPP


P


q


a


aaT


s


ssa


s


cic 
















 

















 
   (D63) 


 


 1
P


P


P


PP


P


PP


P


P


P


q


a


a


a


aT


s


as


s


s


s


cic 






































 
   (D64) 


 


which gives a useable equation 
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Then the instrument corrected Mach number, Mic, can be determined 
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The Mach position correction would then be given by 


 


 Mpc  = M – Mic (D7) 
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Applying Instrument and Position Corrections 


 


We define the instrument corrections as the negative of the instrument errors, with the correction 


being added to the indicated value to give the instrument corrected value. 


 


 Hic = Hi + Hic (D66) 


 


 Vic = Vi + Vic (D67) 


 


 Mic = Mi + Mic (D68) 


 


From Equations D5 – D7, we add the position corrections to the instrument corrected values to get 


the position and instrument corrected values 


 


 Hpc = Hic + Hpc (D69) 


 


 Vpc = Vic + Vpc (D70) 


 


 Mpc = Mic + Mpc (D71) 


 


If we assume we are only correcting for instrument error and position error, we have the following 


equivalencies: 


 


 Hc = Hpc + residual errors (D72) 


 


 Vc = Vpc + residual errors (D73) 


 


 M = Mpc + residual errors (D74) 


 


Position Error Ratio and Pressure Coefficient 


 


By inspection, the relationship between the two ratios is given by 
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How do we find qcic/Ps?  Starting with Equation C70 
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To find the form of this equation with the position error in it, we replace ambient pressure (Pa) 


with static pressure (Ps). For consistency, qc (PT – Pa) must be replaced with qcic (PT – Ps).  On the 


right side of the equation, the freestream Mach number (M) must be replaced with a version of the 


Mach number which contains the position error, namely Mic.  Thus, after introducing position 


error into Equation C70 we get 
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Applying a similar analysis to Equation C102 gives 
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Position Error Ratio and Coefficient Variations 


 


As stated elsewhere, the sensed static pressure (Ps) is generally different from the freestream 


ambient pressure (Pa) because the aircraft disturbs the flow field.  By dimensional analysis, we can 


see that the factors that cause pressure changes in the flow field can be represented by shape, angle 


of attack (), angle of sideslip (), Mach number (M), Reynolds number (Re), and the Prandtl 


number (Pr).  We can represent this in equation form as 
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By doing what engineers do best, we will assume away some of these effects.  For a fixed static 


port location and fixed geometry, we can ignore the effects of shape as it will not change with 


changing flight conditions.  Note that configuration changes, such as lowering flaps or lowering 


the landing gear, could change the position error through this term.  For this analysis, we will 


assume a constant configuration. 


 


Generally we fly in coordinated flight, so we will ignore the effects of sideslip.  On a relative 


scale, Reynolds number effects are small compared to the other effects of changing altitude and 


airspeed.  If we neglect heat transfer, the Prandtl number is essentially constant.   


 


Therefore, we are left with angle of attack and Mach number as the primary factors affecting the 


Position Error Ratio. 
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Equation D1 shows that Pp is the difference of static and freestream ambient pressure. Any 


relationship containing only the static pressure and the freestream pressure will be a function of 


the same factors shown in Equation D79, so with no loss of generality, we can say 
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As shown in Equations D75 – D77, the relationship between Pp/Ps and Pp/qcic is only a function 


of Mic, so it follows that  
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Finally, since the lift coefficient is a function of the same parameters as the flow field, namely 
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and using the same assumptions, we can say 
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So between Equation D81 and D83 we can come up with  
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So if we assume that lift is equal to the load factor times the weight, the lift equation gives us 
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and substituting Equation C64 
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or using the version containing the position error 
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Using Equation A70 
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Note that the last term (2/SPSL) is made up of constants.  Using Equations D89 and D84 we can 


surmise 


 


 )
nW


,M(f
q


P


ic
ic8


cic


p







   (D90) 


 


Now let’s look at a similar analysis in terms of airspeed.  We know that angle of attack effects will 


be seen primarily at low Mach numbers.  At high Mach numbers, even maneuvers at high load 


factors occur with very small changes in angle of attack from the cruise condition.  At low Mach 


numbers, the typical Mach effects (compressibility, wave drag, etc) will not occur, so we can 


assume that the position error coefficient will be mostly a function of angle of attack, which we 


can represent with lift coefficient (Equation D84). So we have 
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or in terms of equivalent airspeed 
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For low Mach numbers, calibrated airspeed is approximately equal to equivalent airspeed, so we 


can say with minimal loss of accuracy 
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and after introducing position error we have 


 


 
SV


nW2
C


2
icSL


icL



    (D94) 


 


So after removing all of the constants, we have 
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Altitude Correction Variation With Altitude 


 


Equation D80 tells us that position error is a function of angle of attack and Mach number.  If we 


are at a high enough constant Mach number that angle of attack effects are negligible, then the 


Position Error Ratio (Pp/Ps) is a constant.  This implies a constant ratio between the Position 


Error (Pp) and the static pressure (Ps), which is roughly the ambient pressure (Pa), as altitude 


changes.  However, the relationship between a change in pressure and a change in pressure 


altitude is not constant, but depends on the altitude.  Therefore, the altitude position correction 


(Hpc) should change in size with altitude for the same Position Error Ratio. 


 


We can see this by assuming small changes and looking at the hydrostatic equation 
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If we change the differentials to finite differences we can get 
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which by substituting Equations D1 and D2 becomes 
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and substituting Equation D5 gives 
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Divide both sides by static pressure to get the Position Error Ratio 
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Solving for Hpc 
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From the equation of state 


 


 P = RT (A3) 


 


we can solve to get 
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Applying this to Equation D100 we get 
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So if we assume that Pp/Ps is a constant (that is, constant Mach and angle of attack), then the only 


variable on the right side of this equation is temperature.  This lines up with our previous theory, 


as temperature is what affects the difference in geopotential altitude between two different 


pressures. 


 


Finding Position Error From a Measured Altitude Position Correction, Taylor Series 


Expansion Method 


 


The relationship of pressure and altitude is described by the hydrostatic equation 


 


 dP = - g dh (A15) 


 


or in terms of geopotential altitude 


 


 dP = - gSL dH (A30) 


 


which using Equation A71 can be alternatively expressed as 


 


 dP = -SL gSL dH (D103) 


 


To find the position error in terms of geopotential altitude, we must integrate this equation from 


the actual pressure to the indicated (instrument corrected) pressure. 
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By Equation D5, we can replace Hc with Hic + Hpc giving 
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But how do we evaluate a function (in this case altitude) at a value of Hic + Hpc?  From Reference 


28, we can use a Taylor Series expansion, given by 
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Don’t you just love this math stuff?  (Note: In Reference 12, this expansion is incorrectly referred 


to as the Binomial Theorem) 


 


So how do we use this?  The position error would be 
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Using the Taylor series expansion to find the last term gives 
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We won’t go beyond these terms because we will show that any terms beyond these are 


insignificant.  So plugging Equation D109 into D108 and subtracting out like terms, we get 
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We’ll drop the Hic and use the subscript ic to show that the values are evaluated at Hic.  As we’ll 


see later, what we’ll really be interested in is Pp/Ps. To do this, we’ll divide both sides by Ps 


which gives 
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Then multiplying the right side by 1 in the form of PSL/PSL we get 
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which using Equation A70 gives 
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Using Equation B26 we get 
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Now, what about the second term?  From Equation A80 we have 
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Therefore, dic/dHic would be 
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So after inserting constants from Table 1 and Equation D116 into Equation D114 the result is 
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So how many terms do we need?  We can compare the results of the pressure method with the 


results of Equation D117 using the first term and using both terms.  Doing this for a range of 


values gives the results shown in Table D1. 
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TABLE D1 


 


Pp/Ps Errors From Altitude 


 


   1 term 2 term 


Altitude Hpc Hic % Error % Error 


0 0 0 0.00% 0.00% 


 100 -100 0.15% 0.00% 


 200 -200 0.29% 0.00% 


 300 -300 0.44% 0.00% 


 400 -400 0.58% 0.00% 


 500 -500 0.73% 0.00% 


 1000 -1000 1.46% -0.01% 


10000 0 10000 0.00% 0.00% 


 100 9900 0.16% 0.00% 


 200 9800 0.31% 0.00% 


 300 9700 0.47% 0.00% 


 400 9600 0.63% 0.00% 


 500 9500 0.78% 0.00% 


 1000 9000 1.57% -0.01% 


20000 0 20000 0.00% 0.00% 


 100 19900 0.17% 0.00% 


 200 19800 0.34% 0.00% 


 300 19700 0.51% 0.00% 


 400 19600 0.68% 0.00% 


 500 19500 0.85% 0.00% 


 1000 19000 1.70% -0.02% 


30000 0 30000 0.00% 0.00% 


 100 29900 0.18% 0.00% 


 200 29800 0.37% 0.00% 


 300 29700 0.55% 0.00% 


 400 29600 0.74% 0.00% 


 500 29500 0.92% -0.01% 


 1000 29000 1.84% -0.02% 


 


Using the numbers in Table D1 we can get an idea if we need to worry about using the last term in 


Equation D117.  As an example, MIL-P-26292C allows a maximum position error of Pp/qcic of 


0.02 at 0.55M.  At sea level this would correspond to a Hpc of 126 feet.  If this can be considered 


a reasonable value, let’s consider what happens at a Hpc of 300 feet, since some flight test booms 


may have this much error.  At sea level, we would have a 0.44 percent error in calculating Pp/Ps, 


which would correspond to an error in Hpc of 1.32 feet.  This value is well within the instrument 


error.  Even with a grossly large Hpc of 1000 feet at sea level, a 1.46 percent error would be 14.6 


feet, which is still smaller than the 20 foot increment on the altimeter face.  Hence, the second 


term has traditionally been ignored with acceptable loss of accuracy. 
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Therefore, using only the first term of Equation D117 we would have 
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For the Pitot-statics class at the USAF Test Pilot School, use the pressure 


method for full credit on exams.  The pressure method gives an exact answer, 


while the Taylor series expansion method gives an approximate answer.  The 


Taylor series expansion method is included for historical legacy and explanation 


of Herrington (Ref 12). 


 


In Herrington (Ref 12), the equivalent expression to Equation D118 is given as 
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“where s is the standard day air density ratio at Hic.” Let’s update the notation to be consistent 


with the rest of this text using “ic” to identify parameters containing position error. 
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Substituting Equation B26 
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Substituting Equation A70 and rearranging 
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Substituting 29.92138 “Hg for PSL 
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Swapping Ps and Hpc to opposite sides 
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which matches Equation D118 within round off error. 


 


 


 


CAUTION 
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Finding Position Error From a Measured Airspeed Position Correction, Taylor Series 


Expansion Method 


 


For the Taylor Series expansion method, we still start with Equations D12 and D13 as shown in 


the pressure method. 


 


We know that qcic occurs at Vic and qc occurs at Vc.  From Equation D6 we see that  


 


 Vc = Vic + Vpc  (D124) 


 


Thus 


 


 Pp = qcic(Vic + Vpc) – qcic(Vic)  (D125) 


 


Again using the Taylor series expansion of Equation D107, we get 
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The first and last terms subtract out, so we’re left with  
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Let’s work on the first term first for calibrated airspeeds below the sea level speed of sound.  


Rearranging Equation D12 slightly 
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Differentiating, remembering that PSL is a constant, we get 
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Combining terms and rearranging 
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To get the second term in Equation D127, differentiate Equation D130 using the product rule 
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Continuing to combine and rearrange 
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Inserting Equations D130 and D135 into Equation D127 we get 
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But what we really need is Pp/Ps, so we will divide both sides by Ps and using Equation D29 get 
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In Herrington (Ref 12), the equivalent expression to Equation D137 is given as 
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  (Vic  aSL) (Ref 12 5.42) 


 


“PaSL” is the equivalent to “PSL” as used in this text.  Dividing both sides by Ps and using Equation 


D29 
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  (Vic  aSL) (D138) 


 


Relocating the Vpc and aSL and changing exponents to fractions 
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  (Vic  aSL) (D137) 


 


which matches Equation D137. 


 


For calibrated airspeeds above the sea level speed of sound, we start with Equation D13 and solve 


for qcic 


 


 SL
2


5
2


SL


ic


7


SL


ic


SLcic P


1
a


V
7


a


V
921.166


Pq 






























































   (D139) 


 


Since I could never remember the quotient rule, let’s bring up the denominator so that we can 


differentiate by the product rule. 
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Differentiating by the product rule 
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To get the second term in Equation D127, differentiate Equation D146.  Rearranging for the 


product rule 
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Now we have three factors which are functions of Vic.  If the product rule addresses two factors 
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we can nest the product rule to give 


 


   












dx


dw
v


dx


dv
wu


dx


du
vw


dx


)vw(d
u


dx


du
vwuvw


dx


d
  (D149) 


 


Applying equation D149 to Equation D147 we get 
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Substituting Equations D146 and D154 into Equation D127 gives 
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Again, we are more interested in Pp/Ps, so we will divide both sides by Ps and using Equation 


D29 get 
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In Herrington (Ref 12), the equivalent expression to Equation D156 is given as 
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  (Vic  aSL) (Ref 12 5.43) 


 


“PaSL” is the equivalent to “PSL” as used in this text.   
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Dividing both sides by Ps and using Equation D29 
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  (Vic  aSL) (D157) 


 


Relocating the Vpc and aSL, accepting that 1168.45 is the same as 1168.447, and changing 


decimals to fractions 
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which matches Equation D156. 


 


So again we ask, how many terms do we need?  We can see what errors are involved by 


calculating Pp/Ps directly using the pressure method for varying conditions.  To calculate ic, 


divide Equation D1 by PSL 
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where  is for the pressure altitude (Hc) of interest. 


 


Doing this for a range of values gives the results shown in Table D2. 
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TABLE D2 


Pp/Ps Errors From Airspeed at Sea Level 


 


   1 term 2 term 


Vc Vpc Vic % Error % Error 


knots knots knots   


100 0 100 0 0 


 10 90 -5.66% -0.32% 


 20 80 -11.81% -0.62% 


 30 70 -18.56% -0.91% 


 40 60 -26.04% -1.18% 


 50 50 -34.41% -1.43% 


300 0 300 0 0 


 10 290 -3.02% -1.04% 


 20 280 -5.98% -2.04% 


 30 270 -8.88% -3.01% 


 40 260 -11.74% -3.94% 


 50 250 -14.56% -4.83% 


500 0 500 0 0 


 10 490 -3.51% -2.03% 


 20 480 -6.82% -3.95% 


 30 470 -9.96% -5.76% 


 40 460 -12.93% -7.48% 


 50 450 -15.77% -9.11% 


600 0 600 0 0 


 10 590 -4.08% -2.71% 


 20 580 -7.87% -5.22% 


 30 570 -11.40% -7.57% 


 40 560 -14.71% -9.76% 


 50 550 -17.82% -11.81% 


700 0 700 0 0 


 10 690 -4.63% -3.50% 


 20 680 -8.94% -6.66% 


 30 670 -12.97% -9.53% 


 40 660 -16.77% -12.12% 


 50 650 -20.37% -14.45% 


800 0 800 0 0 


 10 790 -5.00% -4.22% 


 20 780 -9.56% -8.02% 


 30 770 -13.73% -11.47% 


 40 760 -17.58% -14.61% 


 50 750 -21.14% -17.47% 


 


Calculating Pp/Ps at other altitudes changes the size of the errors but not significantly.  Looking 


at these errors, we can see that the error involved in using only the first term of the Taylor Series 


expansion is unacceptably large (although many people have used it for years), and even with the 


first two terms the error introduced by the equation is on the same order of magnitude as the 


uncertainty in the measurements.  This problem is true for airspeeds below and above the sea level 


speed of sound.  Reference 12 states “The resulting series may be discontinued after the second 


term with no loss in accuracy for Vpc  50 knots.”  I’m not sure what standard they were using 


for “no loss in accuracy.” 
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Finding Position Error From a Measured Mach Position Correction, Taylor Series 


Expansion Method 


 


For the Taylor Series expansion method, we still start with Equations D20 and D21 as shown in 


the pressure method. 


 


To find the relationship between Pp and Mpc, we need to find out how the static pressure varies 


as the Mach number varies.  We know that Ps occurs at Mic and Pa occurs at M.  From Equation 


D7 we see that  


 


 M = Mic + Mpc  (D160) 


 


So if we can determine the difference Ps – Pa by knowing Mpc, we would have Pp.  So we will 


use the Taylor series expansion of Equation D107 to get 
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The first and second terms subtract out, so we’re left with  
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To find the derivatives, we need an equation for Ps in terms of Mic.  Rearranging Equation D20 


gives (subsonic only) 


 


   2
7


2
ic


Ts


M2.01
P


1


P


1
   (D163) 


 


which we can invert to 
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Differentiating (assuming PT = constant) 
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Since we need static pressure in the final result instead of total pressure, multiply by 1 
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Substituting Equation D20 
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To get the second derivative for the second term, we’ll start by rearranging Equation D169 
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This equation has three terms that are functions of Mic, so we’ll differentiate using the nested 


product rule, as shown in Equation D149, to get  


 


           ic


22
icsic


ic


s
ics


12
ic2


ic


s
2


M2.02M2.011PM4.1
dM


dP
MPM2.014.1


dM


Pd 




















  (D171) 


 


 
   


 


 22
ic


s
2
ic


ic


s


2
ic


ic


2
ic


s


2
ic


s
2


M2.01


PM4.04.1


dM


dP


M2.01


M4.1


M2.01


P4.1


dM


Pd

















   (D172) 


 


Substituting from Equation D169 
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Substituting Equations D169 and D177 into Equation D162, 
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Rearranging 
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In Herrington (Ref 12), the equivalent expression to Equation D179 is given as 
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which by inspection matches Equation D179. 


 


For the supersonic case, we start with Equation D21.  To find the derivatives, we need an equation 


for Ps in terms of Mic.  Rearranging Equation D21 gives  
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which we can invert to 
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Differentiating (assuming PT = constant) 
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Since we need static pressure in the final result instead of total pressure, multiply by 1 
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Substituting Equation D21 
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To get the second derivative for the second term, we’ll start by rearranging Equation D190 
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This equation has four terms that are functions of Mic, so we will nest the product rule again. 
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Combining terms and substituting Equation D190 
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Substituting Equations D190 and D200 into Equation D162, 
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Rearranging 
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In Herrington (Ref 12), the equivalent expression to Equation D202 is given as 
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which by inspection matches Equation D202. 


 


 


 


 


 


 


 


 


 


 







274 Pitot-Statics and the Standard Atmosphere 


So again we ask, how many terms do we need?  We can see what errors are involved by 


calculating Pp/Ps directly using the pressure method for varying conditions.   


 


TABLE D3 


Pp/Ps Errors From Mach 


 


   1 Term 2 Term 


M Mpc Mic %Error %Error 


0.2 0.001 0.199 -0.233% 0.0001% 


0.4 0.001 0.399 -0.090% 0.0001% 


0.6 0.001 0.599 -0.033% 0.0001% 


0.8 0.001 0.799 0.001% 0.0000% 


1 0.001 0.999 0.025% 0.0000% 


1.2 0.001 1.199 0.067% 0.0000% 


1.4 0.001 1.399 0.074% 0.0000% 


1.6 0.001 1.599 0.073% 0.0000% 


1.8 0.001 1.799 0.069% 0.0000% 


2 0.001 1.999 0.065% 0.0000% 


0.2 0.04 0.16 -10.537% 0.1328% 


0.4 0.04 0.36 -3.997% 0.1240% 


0.6 0.04 0.56 -1.544% 0.1042% 


0.8 0.04 0.76 -0.100% 0.0787% 


1 0.04 0.96 0.893% 0.0511% 


1.2 0.04 1.16 2.598% 0.0132% 


1.4 0.04 1.36 2.989% -0.0521% 


1.6 0.04 1.56 2.965% -0.0654% 


1.8 0.04 1.76 2.822% -0.0639% 


2 0.04 1.96 2.649% -0.0583% 


 


Reference 12 states that the one term solution is acceptable for values of Mpc < 0.04.  As seen in 


Table D3, this may be true where other measurements are coarse and flight conditions are at high 


subsonic Mach numbers and above.  The error is large at low Mach numbers.  For all flight 


conditions, the two term solution is quite acceptable. 
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Finding Altitude Position Correction From Position Error, Taylor Series Expansion Method 


 


Inverting Equation D118 gives us an equation to directly calculate the altitude position correction 


within the errors associated with using the Taylor Series expansion. 
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where ic is calculated by (from Equations A78 and A86) 


 


 ic = 1 – 6.87559x10
-6


 Hic (Hc  36089.24 feet)  (D204) 


 


 ic = 0.751865 (Hc > 36089.24 feet)  (D205) 


 


 
 


For the Pitot-statics class at the USAF Test Pilot School, use the pressure 


method for full credit on exams.  The pressure method gives an exact answer, 


while the Taylor series expansion method gives an approximate answer.  The 


Taylor series expansion method is included for historical legacy and explanation 


of Herrington (Ref 12). 


 


Finding Airspeed Position Correction From Position Error, Taylor Series Expansion 


Method 


 


If we only use the first term of Equation D137 (Vic  aSL) we can solve directly for Vpc 
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or for Vic > aSL (from Equation D156) 


 


 

















 










































































































s


p


2


SL


ic
6


SL


ic


2
7


2


SL


ic


icSL
pc


P


P


1
a


V
2


a


V


1
a


V
7


447.1168


a
V   (Vic  aSL) (D207) 


 


 
 


For the Pitot-statics class at the USAF Test Pilot School, use the pressure 


method for full credit on exams.  The pressure method gives an exact answer, 


while the Taylor series expansion method gives an approximate answer.  The 


Taylor series expansion method is included for historical legacy and explanation 


of Herrington (Ref 12). 


 


CAUTION 


CAUTION 
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If we choose to use the first two terms of Equation D137, then we must solve for Vpc using the 


quadratic formula, with (for Vic  aSL) 
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Then Vpc is calculated by 
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As with all second order function solutions, Equation D211 will yield two solutions.  The correct 


solution will be the value of Vpc closest to the value obtained from Equation D206. 


 


For Vic > aSL we would have (from Equation D156) 
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which would be evaluated by Equation D211.  The correct solution will be the value of Vpc 


closest to the value obtained from Equation D207. 
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Finding Mach Position Correction From Position Error, Taylor Series Expansion Method 


 


If we only use the first term of Equation D179 (Mic  1) we can solve directly for Mpc 
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or for Mic > 1 (from Equation D202) 
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For the Pitot-statics class at the USAF Test Pilot School, use the pressure 


method for full credit on exams.  The pressure method gives an exact answer, 


while the Taylor series expansion method gives an approximate answer.  The 


Taylor series expansion method is included for historical legacy and explanation 


of Herrington (Ref 12). 


 


If we choose to use the first two terms of Equation D179, then we must solve for Mpc using the 


quadratic formula, with (for Mic  1) 
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Then Mpc is calculated by 
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As with all second order function solutions, Equation D218 will yield two solutions.  The correct 


solution will be the value of Mpc closest to the value obtained from Equation D214. 
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For Mic > 1 we would have (from Equation D202) 
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which would be evaluated by Equation D218.  The correct solution will be the value of Vpc 


closest to the value obtained from Equation D215. 
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Appendix E 
 


 


Cloverleaf FTT Data Reduction Heavy Math Section 
 


Vector Method 


 


The Cloverleaf FTT data reduction is based on using three wind triangles to calculate the true 


airspeed error and the wind speed and direction.  The necessary assumptions are: 


 


 1.  Indicated Airspeed, and thus True Airspeed is the same on each run 


 2.  Wind Speed and Direction are the same on each run 


 3.  All wind is horizontal (no vertical component) 


 


While we are mostly interested in finding the truth true airspeed, on the way to find the truth true 


airspeed we will also determine the wind speed and wind direction.  With three unknowns, we 


need three equations.  These “equations” are the results of flying three passes, each with its own 


wind triangle.  Figure E1 shows the wind triangles for three passes at arbitrary headings. 


 


 
 


Figure E1.  Wind triangles for three passes 


 


Note that the angles are measured in same direction as headings, as if the positive y axis was 


North and the positive x axis was East. 
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To determine the wind vector, we look at Figure E2. 


 


 
 


Figure E2.  Determining wind speed and direction 


 


In Figure E2, we have drawn a line segment connecting the tips of vectors Vt1 and Vt2, which also 


connects the tips of Vg1 and Vg2.  Because the true airspeed was the same on legs 1 and 2 


(assumed), the vectors Vt1 and Vt2 and the line segment connecting them form an isosceles 


triangle.  From geometry, we know the perpendicular bisector of the side opposite the equal sides 


of an isosceles triangle will pass through the vertex between the equal sides (you remembered that, 


right?).  Note also that this vertex is the tip of the wind vector. 


 


The same type of triangle has been drawn between Vt1 and Vt3, which is also between Vg1 and Vg3.  


If we can find the intersection of the perpendicular bisectors, we can determine the wind vector. 


 


To do the math, we need to convert the ground speed vectors into rectangular coordinates.  For 


each ground speed vector, we apply 


 


 Vgx = Vg sin sg (E1) 


 


 Vgy = Vg cos sg (E2) 


 


The slope of the line segment between Vg1 and Vg2 is given by the rise over run, or 
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which is all fine and good, but we need the slope of the perpendicular bisector.   
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Again, from analytic geometry, we find out that the slope of the perpendicular line is the negative 


inverse of the slope, or  
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1
Slope   (E4) 


 


To find the perpendicular bisector, we need to find the midpoint of the line segment, which can be 


done simply by averaging the x and y values 


 


  

















 



2


VV
,


2


VV
y,x


2gy1gy2gx1gx
intmidpointmidpo  (E5) 


 


Now that we know the slope of the perpendicular bisector and a point that it passes through, we 


can determine the equation of the perpendicular bisector.  Using the slope-intercept form of a line, 


we have 


 


 y = mx + b (E6) 


 


Solving for the intercept gives 


 


 b = y - mx (E7) 


 


so the intercept of the perpendicular bisector is 


 


  intmidpointmidpo xSlopeyIntercept    (E8) 


 


This is accomplished for the line segment between Vg1 and Vg2 and the line segment between Vg1 


and Vg3.  It could also be done between Vg2 and Vg3, with any difference in results giving an 


indication of the uncertainty in the data. 


 


With the equations of two perpendicular bisectors, we can find their intersection, which will be the 


tip of the wind vector.  At the intersection point, the y value of both lines will be the same, so we 


set the two equations equal as 


 


 y = m1x + b1 = m2x + b2 (E9) 


 


Solving for x gives 


 


 m1x + b1 - b2 = m2x (E10) 


 


 b1 - b2 = m2x - m1x (E11) 


 


 b1 - b2 = (m2 - m1)x (E12) 
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Using Equation E13, the x value of the intersection can be found, which will be Vwx.  This x value 


can then be inserted in the equation for either perpendicular bisector to determine the y value of 


the intersection, which will be Vwy. 
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The wind speed will then be given by 
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The wind direction can be found as 
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Note that this returns the vector direction of the wind, that is the direction which it is going.  The x 


value is on top instead of the y value because we are measuring angles clockwise from the y axis 


instead of counterclockwise from the x axis.  


 


To determine the wind direction by the traditional definition (the direction from which it is 


coming), Equation E15 is modified by 180 degrees 


 


 
1 owx


w
wy


V
tan 180


V



 


y   
 
 


 (E16) 


 


To find the True Airspeed, we use the components of one of the true airspeed vectors, found as the 


difference in the components of the corresponding ground speed vector and wind vector 
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2


wx1gxt VVVVV   (E17) 


 


Assuming the wind was the same for each run and each run was at the same calibrated airspeed, 


then this will be the true airspeed for each run. 


 


Alternate Matrix Inversion Method 


 


The necessary assumptions for the Matrix Inversion Method are: 


 


 1.  True Airspeed Error (Vt) is the same on each run 


 2.  Wind Speed and Direction are the same on each run 


 3.  All wind is horizontal (no vertical component) 


 


Figure E3 shows the basic wind triangle for one pass where 
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The vector equation for the basic wind triangle is 


 


 wtg VVV



  (E18) 


 


Breaking the true airspeed into the true airspeed calculated from the instrument corrected airspeed 


and the position error in true airspeed we get 
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  (E19) 


 


Substituting into Equation E18 gives 


 


 wtitg VVVV
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  (E20) 


 


which by rearranging gives 


 


 wgtit
VVVV



  (E21) 


 


Within this equation are three knowns and five unknowns.  The known values are the magnitude 


of Vti, the magnitude of Vg (ground speed) and the direction of Vg (ground track).  The unknowns 


are the direction of Vti, the magnitude of Vt, the direction of Vt, the magnitude of Vw (wind 


speed), and the direction of Vw (wind direction). 


 


For three passes, we have two equations based on our assumptions.  The first equation is that the 


error in indicated airspeed, and thus the error in true airspeed are the same on each run, even with 


slight variations in true airspeed between runs. 
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The second equation is that the direction of the true airspeed error (Vt) and the measured true 


airspeed (Vti) are the same. 
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Thus the magnitude of each true airspeed is given by 


 


 titt VVV   (E24) 


 


Rearranging the basic vector equation (Equation E18) 


 


 wgt VVV
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  (E25) 


 


If this equation holds, then the component equations in the x and y directions must also be true.  


To wit 


 


 Vtx = Vgx - Vwx (E26) 


 


 Vty = Vgy - Vwy (E27) 


 


where the x and y subscripts denote the component in that direction.   
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For the ground speed vector 


 


 Vgx = Vg sin sg (E1) 


 


 Vgy = Vg cos sg (E2) 


 


From our good buddy Pythagoras, we know that  
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Substituting Equations E24, E26, and E27 into Equation E28 gives 
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Multiplying out this equation gives 
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Collecting terms 
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Applying the Pythagorean theorem again to the ground speed components 
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Applying this equation to each of the three runs 


 


 (2 Vt
i
1 + Vt)Vt + (2 Vgx1 - Vwx) Vwx + (2 Vgy1 - Vwy) Vwy = Vg1


2
 - Vt


i
1
2
 (E33) 


 


 (2 Vt
i
2 + Vt)Vt + (2 Vgx2 - Vwx) Vwx + (2 Vgy2 - Vwy) Vwy = Vg2


2
 - Vt


i
2
2
 (E34) 


 


 (2 Vt
i
3 + Vt)Vt + (2 Vgx3 - Vwx) Vwx + (2 Vgy3 - Vwy) Vwy = Vg3


2
 - Vt


i
3
2
 (E35) 


 


Eeek!  Let’s put that in matrix form… 
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Now we just need to solve for Vt, Vwx, and Vwy.  The problem arises that the coefficients in the 


matrix are functions of the variables we are solving for.  To solve for the solution vector, we have 


 


     CxA   (E37) 
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Because the equations are implicit, we will solve it by iteration.  You can start by assuming the 


zero error, zero wind case 
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Use a spreadsheet or Matlab to invert the matrix according to Equation E38.  Use the resulting 


solution vector to recalculate the coefficients in the matrix and repeat.  Continue until the solution 


vector stops changing.  Usually about five iterations is sufficient. 


 


This method still gives a deterministic answer (a single answer) like the vector method, but unlike 


the vector method it is less sensitive to slight variations in true airspeed during data collection. 
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Appendix F 
 


 


Finding Distances and Directions From Latitudes and 


Longitudes 
 


Spherical Trigonometry 


 


In Survey FTT data analysis it is sometimes necessary to determine the distance between two 


points expressed in latitude and longitude.  For the distances usually involved (less than 5 nm) we 


could assume a flat earth, that longitude lines were parallel and figure the conversion from degrees 


longitude to nautical miles as a function of the latitude, but why bother when we can learn to do it 


with spherical trigonometry (Ref 34)?  While the increase in accuracy may be small for these short 


distances, using spherical trigonometry has the added benefit of being useful for determining 


longer distances, such as how far it is from Edwards AFB to Randolph AFB in San Antonio.  


While you’re at it, you can determine what direction to face to point at the destination. 


 


To start this short discussion of spherical trigonometry, let’s agree on some definitions.  See 


Figure F1. 


 


 
Figure F1.  Triangle on a Sphere 


 


Here we see a triangle drawn on a sphere.  Each side of the triangle is an arc of a great circle, and 


represents the shortest distance between its endpoints.  The arcs are represented by lower case 


letters (a, b, c).  The length of each arc is represented as the size of the angle with its vertex at the 


center of the sphere and sides passing through the endpoints of the arc on the surface of the sphere 


(the angle subtended at the center of the sphere).  An example of this is saying that one degree of 


latitude equals 60 nautical miles.   


 


The capital letters (A, B, C) denote the angles between the sides of the triangle as measured on the 


surface of the sphere.  Each angle is opposite the arc with the corresponding lower case letter.  


While it is interesting to note that the sum of A+B+C is always greater than 180 degrees (or  


radians, if you prefer), it’s not really that useful for the problem at hand. 
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Basic Relationships 


 


The Law of Cosines for spherical triangles allows us to calculate the length of an arc from the 


lengths of the other two arcs and the opposite angle. 


 


 cos a = cos b cos c + sin b sin c cos A (F1) 


  


The Law of Sines for spherical triangles allows us to calculate an angle if one other angle is 


known, and the sides opposite the known and unknown angles are known. 


 


 
Csin


csin


Bsin


bsin


Asin


asin
  (F2) 


 


While we all know that the earth is an oblate spheroid (a flattened ball), we will consider it to be a 


perfect sphere, which will be sufficient for our purposes.  Knowing that one degree of latitude 


equals 60 nm, we find the circumference of the earth to be 


 


 Earth Circumference = 360° Latitude * 60 nm/deg = 21,600 nm (F3) 


 


We will also consider both points to be located at sea level, ignoring any additional distance 


caused by being farther from the center of the earth of by differences in elevation.  Since we are 


most interested in relative distances (i.e. which two points are closest), we can accept the small 


additional error from this simplifying assumption. 


 


We will also assume that all vertex angles and angles subtended by the sides are less than 180°. 


 


Distance Between Two Points 


 


Let’s say you decide that you want to travel to AFPC to check your records for the upcoming 


promotion board (that’s what we did in the days before the Internet).  You find the following 


coordinates for Edwards AFB and Randolph AFB: 


 


Location Latitude (deg min) Longitude (deg min) Latitude (deg) Longitude (deg) 


EDW 34° 54’ N 117° 53’ W 34.9° -117.883° 


RND 29° 32’ N 98° 17’ W 29.533° -98.283° 


 


Note that by convention, North latitudes and East longitudes are considered positive, and South 


latitudes and West Longitudes are considered negative.  The minutes portion of the angles have 


been converted into decimal degrees by dividing by 60.  This keeps the sine and cosine functions 


on your calculator happier. 


 


Now we set up our triangle as shown in Figure F2. 


 


In Figure F2, point A represents the North Pole, and the 


size of angle A is the difference between the longitudes. 


 


Point B is Edwards AFB, and the arc BB’ is the latitude of 


Edwards AFB.  The arc c is then equal to 90° minus the 


latitude of Edwards AFB. 


 


Point C is Randolph AFB, and the arc CC’ is the latitude 


of Randolph AFB.  The arc b is then equal to 90° minus 


the latitude of Randolph AFB. 


 


 
Figure F2.  Spherical Triangle Setup 







 Appendix F  Finding Distances and Directions From Latitudes and Longitudes 289 


Since we want to know the length of arc a, we use the Law of Cosines to get 


 


 cos a = cos b cos c + sin b sin c cos A (F1) 


 
 cos a = cos (90°-LatRND) cos (90°-LatEDW) + sin (90°-LatRND) sin (90°-LatEDW) cos (LongRND – LongEDW) 


 


 cos a = cos (90-29.533) cos (90-34.9) + sin (90-29.533) sin (90-34.9) cos ((-98.283) – (-117.883)) 


 


 cos a = 0.95427 


 


 a = 17.394° 


 


That’s the size of the angle subtended at the center of the earth from Edwards AFB to Randolph 


AFB, but not what you thought you asked for.  Since we know that 360° of arc on the surface of 


the earth is 21600 nm, we can get the distance from Edwards AFB to Randolph AFB by 


 


 nceCircumfere*
360


a
cetanDis   (F4) 


 


 nm21600*
360


394.17
cetanDis   


 


 Distance = 1043 nm 


 


Well, that’s the answer we wanted, but that equation is rather painful with all of the “90 minus” 


stuff in it.  We didn’t fight to stay awake in trigonometry class just to let this sort of thing go 


unmodified.  Digging through a bunch of dusty old notes, we find the trigonometric identities that 


we once had memorized 


 


 cos (90 – x) = sin x (F5) 


 


 sin (90 – x) = cos x (F6) 


 


Using these identities, we can rewrite the Law of Cosines for the special case of using latitudes as  


 


 cos (Distance Angle1-2) = sin (Lat2) sin (Lat1) + cos (Lat2) cos (Lat1) cos (Long2 – Long1) (F7) 


 


 nm21600*
deg360


AnglecetanDis
cetanDis 21


21



   (F8) 


 


For our example, we would have 


 
 cos (DistanceEDW-RND) = sin (29.533) sin (34.9) + cos (29.533) cos (34.9) cos ((-98.283) – (-117.883)) 


 


 cos a = 0.95427 


 


 a = 17.394° 
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Direction to Another Point 


 


Now let’s say that we’ve been cleared direct from Edwards to Randolph, what True Course (TC) 


do we want to start on?  For this we will use the Law of Sines with the arc length opposite the 


angle, the arc length between the points, and the angle at the North Pole.  So to find angle B, we 


need b, a, and A.  Using the Law of Sines, solving for sin B we have 


 


 
Csin


csin


Bsin


bsin


Asin


asin
  (F2) 


 


 
asin


bsin
AsinBsin   


 


Using latitudes and longitudes this would give 


 


  
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asin


Lat90sin
Long - LongsinBsin RND


o


EDWRND



  


 


     
 


394.17sin


533.2990sin
117.883-- 98.283-sinBsin



  


 


 sin B = 0.97491 


 


 B = 77.1° or 102.9° 


 


Note that there will always be two possible angles for each problem.  To determine which is 


correct, look at the relative latitudes between the points.  If the destination latitude is greater than 


the departure latitude, the angle will be less than 90° or greater than 270° (i.e. north  of  east/west).  


If the destination latitude is less than the departure latitude, the angle will be between 90° and 


270° (i.e. south of east/west).  Also note that for angles between 180° and 360°, the inverse sine 


function on most calculators will return a negative angle (-180° to 0°).  Add 360° to the possible 


results and apply the latitude test above to get the proper angle. 


 


As we did before, let’s apply Equation F6 to make this easier.  Then we have  


 


    
 


 21


2
1221


cetanDissin


Latcos
LongLongsinTCsin



   (F9) 


 


For our example, we would have 


 


       
 
 394.17sin


533.29cos
117.883- - 98.283-sinTCsin 21   


 


 sin (TC1-2) = 0.97491 


 


 TC1-2 = 77.1° or 102.9° 
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Appendix G 
 


 


Weather Balloon Heavy Math Section 
 


Weather Balloons and Radiosondes 


 


Weather balloons can be used to provide a sounding of wind, temperature, humidity, and pressure 


altitude level with respect to geometric altitude.  It is this last bit of information that makes them 


useful for Pitot-static calibrations.  Most aircraft can be equipped with a differential GPS or 


WAAS augmented GPS to give a readout of geometric altitude to go with the aircraft 


measurement of pressure altitude.  These data could even be provided by some handheld GPS 


units that are WAAS capable.  By consulting the weather balloon data, the truth pressure altitude 


for the flight geometric altitude can be found, and this truth pressure altitude can be compared to 


the aircraft measured pressure altitude to determine the altitude position correction. 


 


At Edwards AFB, weather balloons are launched only by request, not on a regular time interval.  


The following information on weather balloons used at Edwards AFB was provided by Mr. Phil 


Harvey, Staff Meteorologist: 


 


Edwards AFB uses a Lockheed Martin LMG6 sounding system to track their 


LMS6 radiosonde - the instrument package (carried by a balloon rising 


approximately 1,000 feet per minute) - to heights of up to 100,000 feet.  The 


LMS6 radiosonde contains a GPS receiver along with a temperature and 


humidity sensor.  These data are transmitted every second and received by the 


LMG6.  The LMG6 has a ground based, surveyed GPS receiver for differential 


GPS correction.  Geometric altitude is measured directly and pressure is 


computed rather than measured.  The pressure computations and all other 


meteorological computations are made with standard meteorological formulas.  


Preliminary data are processed in real time with final reduction occurring 


immediately after run termination.  The minimum time between flights is two 


hours.  Information from this service includes wind speed (Kts) and direction 


(true), temperature (C), dew point (C), pressure (millibars), relative humidity 


(%), refractive index (N), density (G/M3) and velocity of sound (Kts).  All other 


output units or derived parameters are the responsibility of the user to compute. 


 


The rms altitude accuracy of GPS geometric heights, with differential 


correction, is approximately five (5) meters.  This is somewhat better near the 


surface, since the surveyed geometric height of the launch point as a starting 


point is used for height calculations. 


 


The range of wind measurement is 0 to 180 m/s.  The resolution is 0.1 m/s.  The 


accuracy of wind velocity is better than +/- 0.3 m/s (RMS of magnitude of 


vector difference in an intercomparison between systems).  The range of wind 


direction is 0 to 360 degrees with a minimum precision of 1 degree. 


 


In 2005, the World Meteorological Organization conducted a major 


intercomparison of GPS radiosonde systems in Mauritius.  The GPS winds 


accuracy for all systems that used differential GPS for windfinding, with proper 


filtering for balloon motion, etc., were characterized as follows by WMO:  


 


Typical random errors in wind component [u, v] measurements for GPS 


radiosondes were most probably between 0.2 and 0.4 ms-1 (1 s.d.) in the 


troposphere and 0.3 to 0.5 ms-1 (1 s.d.) in the stratosphere. 
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Here is some other information regarding the LMS6 radiosonde: 


 


Pressure (Derived from Differentially Corrected GPS Geometric Height Values) 


Measuring Range: 1080 hPa to 3 hPa 


Accuracy: Better than 0.5 hPa (rms) 


Resolution: 0.1 hPa 


 


Temperature Sensor 


Type: Chip Thermistor 


Range: -90C to +60C 


Accuracy: 0.2C * 


0.3C * in daylight above 20 kms 


Response Time (63.2%, 6 m/s): 


1000 hPa < 0.75 Secs 


10 hPa < 8 Secs 


Resolution: 0.1C 


 


Humidity Sensor 


Type: Capacitance 


Range: 0 to 100% RH; 


+45C to -60C 


Accuracy: +/-5% RH * up to 20 hPa 


Response Time: 


1000 hPa, 6 m/s, +25C < 1.5 Secs 


1000 hPa, 6 m/s, -10C < 10 Secs 


1000 hPa, 6 m/s, -40C < 50 Secs 


Resolution: 1% RH 


 


Code Correlating GPS Receiver 


Number of Channels: 12 


Cold Start Acquisition Time: 45 Secs 


(nominal) 


Reacquisition Time: 0.1 Secs (nominal) 


Range: 0 to 100% RH; 


 


Wait A Minute!  You Don’t Measure Pressure? 


 


Yep.  That’s right!  He said “Geometric altitude is measured directly and pressure is computed 


rather than measured.”  The instrument package in the radiosonde consists of “a GPS receiver 


along with a temperature and humidity sensor.”  Just like we did for the Standard Atmosphere (see 


Appendix A), the radiosonde measures a temperature profile (temperature versus geometric 


altitude) and then we integrate to find the pressure profile using the equation of state and 


hydrostatic equation.   


 


When we did this for the Standard Atmosphere, we assumed the air was dry.  Now we are dealing 


with the real world, and humidity is an issue we can’t ignore.  Additionally, the differential GPS 


returns altitude in geometric feet, but we need to use geopotential feet to do the integration.  Yes, 


there’s not a lot of difference between geometric and geopotential feet, but that difference 


accumulates to create a significant error when we integrate numerically over several hundred 


intervals.  Fear not!  The math isn’t any worse than anything we’ve already seen in this book. 


 


The data we will need from the radiosonde are the geometric altitude, temperature, and dewpoint.  


The numerical integration will be done over the intervals between data points.  Where needed, the 


subscript “1” will denote the values at the bottom of the altitude interval, and the subscript “2” 


will denote the values at the top of the altitude interval. 


 


Figure G1.  Radiosonde 
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First, we convert the geometric altitudes (h) to geopotential altitudes (H) 


 


 h
hR


R
H


SLe


SLe























  (A29) 


 


 Re
SL


 = 20,902,808.99 ft  (radius of the earth at mean sea level at 34.9° latitude) 


 


Next we have to deal with the humidity.  The problem is that the specific gas constant (R) of water 


is different than the specific gas constant for air.  The trick to get around this is to find a “virtual 


temperature” which would be the temperature of a parcel of dry air that has the same density as the 


actual humid air at the same pressure.  Starting with the Equation of State 


 


 P = RT (A3) 


 


we rearrange to solve for density 


 


 
RT


P
  (G1) 


 


By the concept of partial pressures, we know that the air pressure is the sum of the partial pressure 


of dry air and the partial pressure of the water vapor (rearrangement of Equation A105) 


 


 Pmoist = Pdry + Pwater (G2) 


 


For a parcel of air, its mass is equal to the sum of the mass of dry air and the mass of water vapor.  


Since these masses occupy the same volume, we can say that the overall density of the air parcel is 


the sum of the densities of the dry air and the water vapor. 


 


 waterdry
waterdry


moist
V


m


V


m
  (G3) 


 


Substituting equation G1 we get 


 


 
moistwater


water


moistair


dry


virtualair


moist
moist


TR


P


TR


P


TR


P
  (G4) 


 


where the subscript “moist” refers to the humid air, “dry” refers to the air molecules in the parcel, 


and “water” refers to the water vapor molecules in the parcel.  Note that both the dry air and water 


vapor are expressed at the “moist” (humid) temperature.  This is because both gases are at the 


same temperature as the moist air.  The virtual temperature will be the temperature that will 


calculate the proper density of the moist air while using the specific gas constant (R) for air 


instead of whatever specific gas constant would be appropriate for that particular mixture of air 


and water, which would change based on the humidity. 


 


To begin our derivation, we factor out the moist temperature 


 


 
moistwater


water


air


dry


virtualair


moist


T


1


R


P


R


P


TR


P


















  (G5) 
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and move the moist temperature to the other side 


 


 
water


water


air


dry


air


moist


virtual


moist


R


P


R


P


R


P


T


T
  (G6) 


 


Dividing through 


 


 
moist


air


water


water


air


dry


virtual


moist


P


R


R


P


R


P


T


T


















  (G7) 


 


Combining terms on the right hand side 


 


 
moist


air


water


water


moist


air


air


dry


virtual


moist


P


R


R


P


P


R


R


P


T


T
  (G8) 


 


Rearranging 


 


 
moist


water


water


air


moist


dry


virtual


moist


P


P


R


R


P


P


T


T
  (G9) 


 


Add and subtract Pwater  


 


 
 


moist


water


water


air


moist


waterwaterdry


virtual


moist


P


P


R


R


P


PPP


T


T




  (G10) 


 


Substitute Equation G2 


 


 
moist


water


water


air


moist


watermoist


virtual


moist


P


P


R


R


P


PP


T


T




  (G11) 


 


Rearranging 


 


 
moist


water


water


air


moist


water


virtual


moist


P


P


R


R


P


P
1


T


T
  (G12) 


 


Factoring 


 


 
moist


water


water


air


virtual


moist


P


P


R


R
11


T


T


















  (G13) 


 


Solving for Tvirtual 


 


 


moist


water


water


air


moist
virtual


P


P


R


R
11


T
T























  (G14) 
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Substituting for Rair = 1716 ft-lb/slug-°R and Rwater = 2762 ft-lb/slug-°R 


 


 


moist


water


moist
virtual


P


P
379.01


T
T





  (G15) 


 


which matches the equation provided by Phil Harvey. 


 


To calculate the virtual temperature, Tmoist is the measured temperature of the air.  Pmoist would be 


the measured pressure of the air, except that we’re trying to calculate the pressure of the air.  We’ll 


come back to that in a minute. 


 


First, we need to get a value for the vapor pressure of the water vapor (Pwater).  Table A1 lists the 


saturation pressure of water against the saturation temperature.  Tables work fine if you are 


calculating by hand, but if you are trying to set up a computer routine an equation is much more 


convenient.  According to Phil Harvey, there are many such equations available, all of which are 


very close.  Generally the most popular is Tetens’ expression 


 


 












 T3.237


T5.7


water 10*11.6P  T(°C) > 0 (G16) 


 


 












 T5.265


T5.9


water 10*11.6P  T(°C) < 0 (G17) 


 


 Note: 


 T is the Dew Point in degrees Celsius (°C) 


 Pwater is in millibars  (PSL = 1013.25 mBar) 


 


Tetens’ expression is a curve fit to experimental data, not an expression derived from first 


principles.  As such, it is an unusual equation in that temperature is entered in Celsius, not in an 


absolute unit like Kelvin or Rankine.  Additionally, the output unit is millibars, which is fine in 


this case, because most meteorological pressure data is reported in millibars. 


 


The final equation we need to calculate the pressures is the equation to calculate the new pressure 


based on the virtual temperature.  The assumption we will make is that the temperature in the 


interval remains constant.  This is quite reasonable when working with balloon data at a rate of 


1Hz, which gives an interval approximately 16 feet high.  Even with 100 foot data as published for 


balloon data this is not too rash of an assumption.  We already have this equation for isothermal 


layers from Appendix A 


 


 


 BHH
BRT


SLg


B


e
P


P

















  (A41) 


 


Expressing this equation in terms of our interval from condition 1 to 2 


 


 


 1H2H
virtualTairR


SLg


12 ePP























  (G18) 


 


To improve our accuracy, we will use an average virtual temperature for the interval instead of the 


temperature at the bottom of the interval.  Since we don’t know the pressure at the top of the 


interval (that’s what we’re trying to calculate) we will iterate a little bit to find it. 
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To demonstrate the method, we will consider the following balloon data. 


 


 Bottom of  Interval 


 Geometric Altitude (h1) 2400 feet 


 Temperature (T1) 10.1 °C 


 Dew Point (Tdp,1) -6.6 °C 


 Pressure (P1) 941.6313 mBar 


 


 Top of Interval 


 Geometric Altitude (h2) 2500 feet 


 Temperature (T2) 9.7 °C 


 Dew Point (Tdp,2) -6.6 °C 


 


First we will convert the Geometric Altitude to Geopotential Altitude. 


 


 h
hR


R
H


SLe


SLe























  (A29) 


 


 2400
feet2400feet .9920,902,808


feet .9920,902,808
H1 














   


 


H1 = 2399.724 feet 


 


H2 = 2499.701 feet 


 


Next we find the water vapor pressure using Tetens’ expression and the dew point temperatures. 


 


 












 T5.265


T5.9


water 10*11.6P  T(°C) < 0 (G17) 


 


 


 
 





















6.65.265


6.65.9


1,water 10*11.6P   


 


Pwater,1 = 3.4983 mBar 


 


Pwater,2 = 3.4983 mBar 


 


Calculate the virtual temperature at the bottom of the interval 


 


 


moist


water


moist
virtual


P


P
379.01


T
T





  (G15) 


 


 
 


mBar941.6313


mBar4983.3
379.01


K15.2731.10
T 1,virtual






   


 


Tvirtual,1 = 283.6494 K 
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We would do the same thing for the top of the interval, but we don’t know the pressure there yet, 


since that’s what we are trying to calculate.  We’ll start out assuming the virtual temperature is just 


equal to the measured temperature at the top of the interval. 


 


Tvirtual,2 = 9.7 + 273.15 


 


Tvirtual,2 = 282.85 K 


 


Average the virtual temperatures to get the mean virtual temperature 


 


 
2


K85.282K6494.283
T virtualmean



   


 


Tmean virtual = 283.2497 K 


 


Before we calculate the new pressure at the top of the interval, we need a value for the 


acceleration of gravity (gSL).  Usually a nominal value of 32.2 ft/sec
2
 is sufficient, but the rounding 


errors caused by insufficient significant digits can add up after hundreds of iterations.  The 


acceleration of gravity is not constant everywhere, and varies with position.  An approximation of 


the local acceleration of gravity based on latitude is given by 


 


 
    


100


Latitude*2cos10x9.5Latitude*2cos10x6373.21665.980
g


263


SL


 
  (G19) 


 


For Edwards AFB, the latitude is 34° 54.4853’ or 34.908088 degrees.  Inserting this value in 


Equation G19 gives 


 


 
2SL


sec


m
797733.9g    


 
2SL


sec


ft
1448.32g    


 


which is notably different from 32.2 ft/sec
2
. 


 


Using the preliminary estimate of the virtual temperature, we calculate our first estimate of 


pressure at the top of the interval. 


 


 


 1H2H
virtualTairR


SLg


12 ePP























  (G18) 


 


  
 


 feet 2399.724feet 2499.701


K2497.283K2sec/2ft8.3089


2sec/ft1448.32


2 emBar941.6313P




















































   


 


P2 = 938.1799 mBar 
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Now that we have an estimate of the pressure at the top of the interval, we can calculate the virtual 


temperature at the top of the interval 


 


 


moist


water


moist
virtual


P


P
379.01


T
T





  (G15) 


 


 
 


mBar1799.389


mBar4983.3
379.01


K15.2737.9
T 2,virtual






   


 


Tvirtual,2 = 283.2503 K 


 


Calculating a new mean virtual temperature 


 


 
2


K2503.283K6494.283
T virtualmean



   


 


Tmean virtual = 283.4498 K 


 


With the new mean virtual temperature, we calculate the pressure at the top of the interval 


 


 


 1H2H
virtualTairR


SLg


12 ePP



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
















  (G18) 


 


  
 


 feet 2399.724feet 2499.701


K4498.283K2sec/2ft8.3089


2sec/ft1448.32


2 emBar941.6313P








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








































   


 


P2 = 938.1823 mBar 


 


We could continue the iteration, but since the only change was in the thousandth of a millibar, this 


is probably far enough. 


 


To find the pressure altitude, we first find the pressure ratio 


 


 
SLP


P
  (A70) 


 


 
mBar25.1013


mBar1823.938
   


 


 92591.0   
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and then calculate pressure altitude 


 


 
6


2559.5


c
10x87559.6


1
H






  (Hc  36089.24 feet) (B3) 


 


 
6


2559.5


c
10x87559.6


92591.01
H






   


 


Hc = 2114.514 feet 


Error Analysis 
 


So just how good are these calculations?  The algorithm above was used to calculate pressures for 


weather balloon data over Edwards AFB, using the geometric altitude (100 foot increments), 


temperature, and dew point.  These pressures were compared to the published pressures from the 


weather balloon data. 


 


Figure G2 shows the error between the calculated pressure interval and the “truth” pressure 


interval from the weather balloon data for each altitude increment.  The average value of the error 


shown in Figure G2 is -0.00148 feet. 


 


 
 


Figure G2.  Interval Pressure Altitude Error 


 


Figure G3 shows the cumulative error of the calculated Pressure Altitude compared to the “truth” 


pressure altitude from the weather balloon data.  The cumulative error remains less than seven feet 


even after integrating over 34,000 feet.  This is quite sufficient, since the rms altitude accuracy of 


the geometric altitudes from the weather balloon is approximately 5 meters, or about 16 feet. 
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Figure G3.  Cumulative Pressure Altitude Error 
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Appendix H 
 


 


Turn Regression Heavy Math Section 
 
Note:  This appendix is essentially lifted directly from Reference 21. 


 
Regression of Turn Data 


 


This data reduction is motivated by Al Lawless’ “Orbis Matching” technique (Reference 20) and 


Wayne Olson’s Cloverleaf data reduction (Reference 35 and 36).  By adding a single 


measurement, these previous iterative solutions can be replaced with a single least squares 


regression.  Olson’s method required iterations, whereas this Turn Regression technique converges 


in a single step; furthermore, the noise in the data is captured via confidence intervals about the 


solution coefficients. The Orbis and Cloverleaf techniques both solved for components of wind 


and determined the total velocity error; that is precisely what the Turn Regression technique 


provides. 


 


 
Figure H1.  Velocity Vectors and Angles 


 


The velocity vectors and angles are depicted in Figure H1. It can be seen that: 


 


 wtg VVV



  (H1) 


 


Heading angle, , is referenced from North to the true velocity vector, tV



.  The track angle, g, is 


associated with ground speed, gV



, also measured from North.  The vector wV



is in the direction 


the wind is blowing “to”.  Both are positive in the clockwise direction.  Heading angle, , is the 


new measurement which makes the regression possible.  By separating the vectors into North, n, 


and East, e, components the summation creates a set of linear equations.  Every data point creates 


two equations, one for North and one for East.  All the data points create multiple equations with 


unknown coefficients. These coefficients are solved via least squares, or regression. 


 


The first step is to separate the vectors into North and East components: 


 


 Vg
n
 = Vt


n
 + Vw


n
 (H2) 


 Vg
e
 = Vt


e
 + Vw


e
  


 


N


E


Vt


Vw


Vg


g
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Ground speed is measured from GPS data. The wind speed components, Vw
n
 and Vw


e
, are 


unknowns. True velocity is a Pitot-static measurement, Vt
i
 , but it has an unknown correction, Vt; 


these sum to give the truth value, Vt
c
: 


 


 Vt
c
 = Vt


i
 + Vt (H3) 


 


Thus the components of true velocity are: 


 


 Vt
n
 = Vt


c 
cos = Vt


i 
cos + Vt cos (H4) 


 Vt
e
 = Vt


c 
sin = Vt


i 
sin + Vt sin  


 


Similarly, the magnitude of ground speed is Vg and the components are: 


 


 Vg
n
 = Vg


 
cosg (H5) 


 Vg
e
 = Vg


 
sing  


 


Combining Equations H2, H4, and H5 produces: 


 


 Vt
i 
cos + Vt cos + Vw


n
 = Vg cosg (H6) 


 Vt
i 
sin + Vt sin + Vw


e
 = Vg sing  


 


Next, put the unknowns Vw
n
, Vw


e
, and Vt on the left and the measured values on the right: 


 


 Vw
n
 + Vt cos = Vg cosg - Vt


i 
cos (H7) 


 Vw
e
 + Vt sinVg sing - Vt


i 
sin  


 


Now, the unknowns are all linear terms so Equation H7 can be rewritten in matrix form: 
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This has the form [A][b] = [c], but Equation H8 is for a single measurement. Recall a single 


measurement provides two components (namely North and East). During a turn multiple 


measurements will be recorded. If there are n independent measurements, then the [A] matrix will 


be size [2n x 3] and [c] will be size [2n x 1]. Thus, Equation H9 depicts the full regression matrix: 
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Or, to be more compatible with a vector operation, in Excel or Matlab, Equation H9 can be written 


as: 
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 (H10) 


 


Which simply equals a vector version of the original Equation H8, where 1 and 0  are vectors size 


[n x 1]. 


 


 


































































sinVsinV


cosVcosV


V


V


V


sin10


cos01


itgg


itgg


t


ew


nw


 (H11) 


 


Notice that the coefficients in [b] are still scalars, so the full equation is still [c] = [A][b]. The 


solution for [b] is not unique, so the goal is to find [b] to minimize the error [c] - [A][b], which 


would be zero for a perfect solution. Taking the square of the error turns this into a least squares 


error solution, which can be solved by minimizing the cost in Equation H12 using calculus of 


variations. 


 


 [J] = ([c] – [A][b])
T
([c] – [A][b]) (H12) 


 


Equation H12 can be expanded to: 


 


 [J] = ([c]
T
 – [b]


T
 [A]


T
)([c] – [A][b])  


 


 [J] = [c]
T
[c] – [b]


T
 [A]


T
[c] – [c]


T
[A][b] + [b]


T
[A]


T
[A][b]) (H13) 


 


Thus, take the partial derivative of [J] with respect to [b] and set it equal to zero to find the local 


extremum, e.g. minimum: 
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 (H14) 


 


thus 


 


 [b]
T
[A]


T
[A] = [c]


T
[A]  


 


taking the transpose of both sides gives: 


 


  [A]
T
[A][b] = [A]


T
[c]  
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Then pre-multiply both sides by the inverse of [A]
T
[A] gives the solution to [b] as: 


 


  [b] = ([A]
T
[A])


-1
[A]


T
[c] (H15)  


 


The term ([A]
T
[A])


-1
[A]


T
 is also called the “pseudoinverse” of [A], and is efficiently computed in 


Matlab using pinv.  The confidence intervals of the coefficients can be obtained using Matlab’s 


regress, or Excel regression in the Data Analysis Add-in. The vector [b] contains the desired 


unknowns Vw
n
, Vw


e
, and Vt . Use measured Vt


i
 , computed Vt , and Equation H3 to get Vt


c
 .  


Temperature is required to compute the speed of sound to convert this corrected true airspeed to 


Mach Number. The static pressure error Pp can then be computed from this computed truth 


source for Mach number and the measured Mach number.  Hence, this is a velocity technique for 


computing static pressure error Pp , which is reliant on the regression described above and a 


temperature measurement. 


 


Modifications for Higher Load Factors 


 


One hidden assumption in the original data reduction is that the measured heading is equal to the 


direction of the component of velocity in the North-East (horizontal) plane.  For aircraft operating 


at cruise speeds and bank angles less than 30 degrees (load factors less than 1.15g), the angle of 


attack is sufficiently close to zero that this assumption is valid.  Reference 22 showed that because 


heading is measured in the body axes and velocity is measured in the stability axes (assuming no 


sideslip), a significant difference arises between these vectors as the angle of attack becomes 


significantly non-zero. 


 


Figure H2 shows an aircraft flying at a 10 degree angle of attack.  The heading is measured along 


the attitude vector, in this example measured by an inertial navigation system (INS), aligned with 


the body axes.  The true airspeed vector acts along the velocity vector, aligned with the stability 


axes. 


 


 
Figure H2.  Heading (from Attitude Vector) in body axes, Velocity in stability axes (Ref 22) 


 


If the aircraft is flying straight and level, as shown on the left half of Figure H3, then the velocity 


vector and heading are co-aligned when viewed from the North-East (or Earth horizontal) plane.  


 


If the aircraft enters a right-hand turn at 60° bank, as shown on the right half of Figure H3, the 


direction of the true airspeed velocity vector would be 8.7° behind the yaw angle measured by the 


aircraft. This is enough to significantly affect the solution. 
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Figure H3.  Aircraft Velocity and Heading when Level or Turning (Ref 22) 


 


To determine the North-East plane direction of the velocity vector for comparison to the GPS 


track vector, the attitude vector (heading) must be rotated into the North-East plane.  Because a 


level turn is assumed, the velocity vector will be in the North-East plane.  Rather than do a three-


dimensional coordinate transformation, the necessary transformation can be simplified to  


 


 V
t 
=  –  sin  


 


where 


 


  Heading 


  Angle of Attack 


  Bank Angle 


 


To account for significant angle of attack and bank angle, substitute V
t
 from Equation H16 for  


in Equation H8, as shown in Equation H17.  
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Appendix I 
 


 


Soaring Weather and Air Data 
 


Dry Adiabatic Lapse Rate 


 


Sustained soaring flight depends on the vertical movement of air in the atmosphere, and vertical 


movement of air depends on the stability of the air.  Stability of the atmosphere depends on 


buoyancy, and buoyancy depends on density.  If the less dense air lies under the more dense air, 


buoyancy forces will force the less dense air to rise. 


 


However, atmospheric stability is not as simple as “put the less dense air on top of the more dense 


air” since air density depends on pressure and temperature (Equation A3).  As we showed in 


Chapter 2, pressure and temperature change with altitude.  In the Standard Atmosphere the 


pressure and temperature change with altitude in a very specific way which is naturally stable.  


Not so much in the real world, where solar heating and other forces conspire to make the 


atmosphere locally unstable. 


 


Imagine a parcel or “bubble” of air which for some reason starts to move upward.  As this parcel 


rises, the pressure of the air surrounding the parcel decreases with altitude.  The mass of air in the 


parcel is a constant, so to match the surrounding pressure the parcel must expand.  Your buddy the 


Thermodynamicist reminds you that when a fixed mass of gas expands at a particular pressure, 


represented by Pdv, the result is known as “boundary work” (Ref 27).  After all, it takes work to 


compress air in a bicycle pump, and that same air can do work on its environment if allowed to 


expand.  So if our parcel of air expands, and thus is doing work on its environment, the act of 


doing work requires that energy is coming from somewhere.  The only source of energy that the 


air parcel has available comes from its internal energy.  Removing internal energy to do the work 


of expansion results in the temperature of the air parcel decreasing.  What is of interest to us is the 


rate that temperature decreases as the parcel climbs in altitude. 


 


Since we’re talking about an exchange of energy, let’s start back at the First Law of 


Thermodynamics for a control mass (Ref 27). 


 


 Win + Qin + m(u + ke +pe)in = Wout + Qout + m(u + ke +pe)out (I1) 


 


where 


 


 Win , Wout Work Interaction 


 Qin , Qout  Heat Interaction 


 m  Mass  


 u  Specific Internal Energy 


 ke  Specific Kinetic Energy 


 pe  Specific Potential Energy 


 


ASSUME:  The air parcel has no heat interactions with the surrounding air, which results in 


an adiabatic process (Qin = Qout).  For a differential change in height (altitude), assume the motion 


(momentum) of the air is small, so that the change in kinetic energy is small compared to the other 


energy exchanges (kein ≈ keout).  Assume the mass of the air is small and the change in height is 


small such that the change in potential energy is small compared to the other energy changes 


(pein ≈ peout).  Any work interaction will be boundary work (no shaft work is involved). 
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After applying these assumptions and rearranging slightly, we get 


 


 -(Wout - Win) = m(uout - uin) (I2) 


 


Dividing by mass to deal with specific work (w) 


 


 -(wout - win) = (uout - uin) (I3) 


 


Changing to differential notation for differential changes 


 


 -dw = du (I4) 


 


For an ideal gas, Reference 27 tells us that the specific internal energy can be represented as 


 


 u = CvT (C9) 


 


where Cv is the Coefficient of Specific Heat at Constant Volume. 


 


As mentioned above, the only work interaction (dw) involved with this system is boundary work, 


expressed as Pdv.  Also substituting the differential form of Equation C9 into Equation I4, we get 


 


 -Pdv = CvdT (I5) 


 


To differentiate the pressure-volume product, we apply the product rule 


 


 d(Pv) = Pdv + vdP (I6) 


 


Rearranging to get an expression for Pdv 


 


 -Pdv = vdP - d(Pv) (I7) 


 


Substituting Equation I7 into Equation I5 


 


 vdP - d(Pv) = CvdT (I8) 


 


The specific volume is merely the inverse of the density, or 


 


 




1


v  (C5) 


 


and from the Equation of State 


 


 Pv = RT (C7) 


 


Substituting Equations C5 and C7 into Equation I8 


 


   v
dP


d RT C dT 



      (I9) 


 


and since R is a defined constant 


 


 v
dP


RdT C dT 



      (I10) 
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Combining the differential temperatures on the same side 


 


  v
dP


C R dT 



       (I11) 


 


and since we know for a perfect gas 


 


 Cp = Cv + R (C11) 


 


Substituting Equation C11 into Equation I11 


 


 p
dP


C dT



       (I12) 


 


Recalling the form of the Hydrostatic Equation in terms of Geopotential Altitude 


 


 dP = - gSL dH (A30) 


 


and rearranging 


 


 SL
dP


g dH 



          (I13) 


 


Substituting Equation I13 into I12 


 


 -gSLdH = CpdT (I14) 


 


Getting the differentials together 


 


 SL


p


gdT


dH C



         (I15) 


 


which gives the Dry Adiabatic Lapse Rate (DALR).  Lapse rate because it gives the variation of 


temperature with altitude for a parcel of air undergoing adiabatic expansion.  Dry because we use 


the value of Cp for dry air.   


 


Inserting values of  


 


 gSL = 32.1741 ft/sec
2
 (Table 1, Chapter 2) 


 


Rlbm


lbfft
72.186


Rlbm


BTU
24.0


Ksec


ft
10814


K


mph
5027


K


knots
3796


Ksec


m
1005C


2


222


2


2


p







  


 


 


 


 


 


 


 


 


 


 


 







310 Pitot-Statics and the Standard Atmosphere 


we find 


 


 
2


2


2


ft
32.1741


secDALR
ft


10814
sec K





           


 


 DALR = -0.00297523 K/ft (I16) 


 


which rounding to a reasonable number gives the frequently quoted -3 °C/1000 feet. 


 


It turns out that treating the air as dry works well enough even if the air has some humidity, as 


long as the air parcel is not saturated (less than 100 per cent relative humidity).  The mass of the 


water vapor is very small compared to the mass of the air.  At 100 per cent humidity and 80 °F, the 


mass of the water vapor is only about 3 per cent the mass of the air, and even less with lower 


humidity.  While the specific heat at constant pressure (Cp) of water differs from the Cp of air, the 


slight difference for such a small percentage of the total gas has such a small effect that we choose 


to ignore it at the level of accuracy that we need.  However, when the humidity reaches 100 per 


cent and the water vapor starts to condense, the energy released from the latent heat of 


vaporization becomes very significant, but that will be covered later when we talk about moist 


adiabatic expansion. 


 


Dry Adiabatic Expansion 


 


To further investigate this idea of adiabatic expansion, let us consider the relationship for pressure 


change with height in regions with a linear temperature lapse rate 
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SLg


BB T


T


P


P







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






  (A62) 


 


To generalize the equation between any two points in the region, label the base (B) as point (1) 


and the point of interest as point (2). 
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1 1


P T


P T
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        (I17) 


 


If we set the lapse rate (L) to the Dry Adiabatic Lapse Rate 


 


 SL


p


gdT
L


dH C



         (I18) 


 


Then the exponent of Equation I17 becomes 


 


 
p pSL SL


SL


C Cg g


RL R g R


 
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 Appendix I  Soaring Weather and Air Data 311 


 


Substituting Equation I19 into I17 


 


 


Cp


R2 2


1 1


P T


P T


 
  
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    (I20) 


 


From Appendix C 


 


 
pC


R1







 (C17) 


 


 


 


Inverting Equation C17 and substituting into Equation I20 gives 


 


 
1


1


2


1


2


T


T


P


P 













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
  (C35) 


 


which was previously introduced as an isentropic relationship.  Indeed, if we also assume that the 


adiabatic expansion of an air parcel is a reversible process, then the expansion would also be 


isentropic.  Equation C35 is used for many isentropic processes, such as flow through an ideal 


turbine.  Knowing the pressure and temperature at the entrance to the turbine and the pressure at 


the exit of the turbine, Equation C35 can be used to calculate the exit temperature of the turbine. 


Likewise, if the pressure and temperature of an air parcel is known at the initial altitude, and the 


pressure is known at the altitude to which the parcel is lifted, then Equation C35 can be used to 


find the temperature at the final altitude.  The Dry Adiabatic Lapse Rate can tell the final 


temperature based on a change in altitude.  Equation C35 can tell the final temperature based on a 


change of pressure. 


 


Atmospheric Stability 
 


To investigate atmospheric stability, we will first use a simple diagram of pressure altitude plotted 


against temperature, as shown in Figure I1.  For reference, on this plot we will draw several lines 


with a slope of the Dry Adiabatic Lapse Rate (Equation I16), approximately -3 °C/1000 feet.  


Referred to as “Dry Adiabats”, these lines show the path taken by a rising parcel of air as it cools 


by adiabatic expansion. 


 


We have seen that an unsaturated (humidity less than 100 per cent) air parcel that is somehow 


lifted will undergo adiabatic expansion.  If the surrounding atmosphere has an actual temperature 


lapse rate equal to the Dry Adiabatic Lapse Rate (represented in Figure I1 by the thick solid red 


line), then the air parcel will always be in thermodynamic equilibrium with the surrounding air.  


Having the same density as the surrounding air, no buoyant forces exist on the air parcel, and thus 


it will have no tendency to further rise or sink (Figure I1 dashed arrow).  This atmosphere is said 


to have neutral stability. 
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Figure I1.  Neutral Atmospheric Stability 


 


Figure I2 shows the normal lapse rate (thick solid red line) of the Standard Atmosphere in the 


troposphere (2 °C/1000 feet).  Because the air temperature does not decrease as fast as the Dry 


Adiabatic Lapse Rate with increasing altitude, it is considered stable.  An air parcel lifted from Sea 


Level (dashed arrow) will always be colder than the surrounding air as it expands adiabatically.  


Because the air parcel is colder and at the same pressure, its density is higher than the surrounding 


air and buoyant forces will push it back down.  Hence, the air is content to stay where it is, and is 


thus considered stable.  It is nice that, on “average”, the atmosphere is stable.  If it wasn’t, it would 


be constantly churning up and down.  There would always be turbulence, and the idea of a 


“smooth flight” would be unknown.  While glider pilots might like that, the rest of the population 


would complain that “we never get to have a nice day”. 


 
Figure I2.  Standard Atmosphere (Stable) 
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An even more stable atmosphere can be created by a temperature inversion, as shown in Figure I3.  


A temperature inversion exists when the temperature on the ground is cooler than the air 


immediately above it.  Like the case shown in Figure I2, any air parcel lifted from the ground 


(assumed to be a Sea Level in this example) will always be colder than the air surrounding it.  


Again, this means that the air parcel has a higher density than the surrounding air, and buoyant 


forces will push the air parcel back down from whence it came. 


 


 
Figure I3.  Temperature Inversion (Stable) 


 


Temperature inversions are so stable that they tend to trap suspended particulates in the air, such 


as dust.  An inversion can usually be visually identified by a layer of hazy air next to the surface 


which abruptly stops at the top of the inversion.  The air is so stable that it is quiescent (calm 


winds), so there is little to no motion to disperse the suspended particulates. 


 


So how does a temperature inversion form?  A common method is through radiation.  After the 


sun sets, the ground no longer receives solar radiation to warm it up, so it starts to cool down.  The 


primary method the ground releases energy to cool is through emitted infrared radiation.  Under 


cloudy or overcast skies, this infrared radiation reflects off of the clouds and right back to the 


ground, so little cooling takes place.  If the sky is clear, the infrared radiation continues out into 


space and the ground cools as energy is released.  If the wind is calm, then the air next to the 


ground will cool by contact with the colder ground.  Since air insulates reasonably well, this 


cooling will only reach a few thousand feet or less into the atmosphere.  The air next to the ground 


cools, but the air above remains unchanged, resulting in warmer air above colder air.  Wind 


interferes with this cooling, as it sweeps away the air next to the cold ground and replaces it with 


other air before the air has a chance to cool significantly. 


 


Figure I4 shows an unstable temperature profile.  In this case, air temperature decreases faster with 


increasing altitude than the Dry Adiabatic Lapse Rate.  Depending on how the air cooled to this 


condition, it might still not be moving vertically.  Once a parcel of air, say at Sea Level for this 


example, is disturbed and started upward, it will remain warmer than the surrounding air even as it 


cools through adiabatic expansion.  As shown in Figure I4, this parcel could continue rising as 


high as 12,000 feet.  Because the air once started in motion will continue in motion, this air is 


considered unstable.   
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Figure I4.  Unstable Temperature Profile 


 


 
 


The air parcel at ground level can be disturbed and started on its upward journey by many 


different mechanisms, including those as simple as wind or a cold front passage.  As told in 


Reference 37, 


 


These “trigger” processes can be quite pronounced or subtle in nature.  As 


discussed last month, terrain heating can result in the movement of air up a slope 


resulting in the release of rising air off or near ridges or mountains.  Light winds 


can act as a “trigger” that encourages the release of warmed air from its surface 
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Frost Formation 


 


A special form of temperature inversion leads to frost formation.  The dew point is the 


temperature that a parcel of humid air would have to be cooled to (at constant pressure) for the 


water vapor in it to start condensing.  That is, the temperature at which the relative humidity 


would be 100 percent.  The frost point is similar, except that it is the temperature at which the 


water vapor will deposit on a surface as ice without going through the liquid phase.  Of course, 


the frost point is only defined for sub-freezing temperatures, and is equal to the dew point 


when temperature is 0 °C.  At colder temperatures, the frost point is always slightly warmer 


(less negative) than the dew point, such that frost will always form first as the air cools.  This 


avoids violations of the Second Law of Thermodynamics, as it would be embarrassing to find 


liquid water on a sub-freezing surface in sub-freezing air.  However, this process does have 


significant hysteresis.  If the frost point is -5 °C, frost will not form until the surface and air 


have cooled to -5 °C or below.  Once formed, that frost will remain until the surface and air 


warm above 0 °C. 


 


Frost can be predicted to be present when the following conditions are present: 


 


 1.  Air temperature below or recently below freezing 


 2.  Dew point spread is small (relatively high humidity) 


 3.  Calm winds 


 4.  Clear sky 
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source area.  Human activity such as vehicular movement or farming operations 


can trigger convection.  At a soaring contest some years back, a towplane was 


dispatched to retrieve a sailplane that reported low in altitude over a remote 


airstrip.  The towpilot arrived while the sailplane was still struggling to stay aloft 


and so he landed awaiting the sailplane’s expected landing.  To the towpilot’s 


amazement the sailplane climbed away to fly home as the towplane landing 


triggered the last thermal of the day off the airstrip.  


 


Solar radiation can destabilize an otherwise stable atmosphere.  Figure I5 shows the same standard 


atmosphere that was stable in Figure I2, except later in the day after the sunshine has warmed the 


ground (at Sea Level in this example).  The ground has in turn warmed the air immediately above 


it, but because air is mostly an insulator, this heating does not go very high.  This sets up a very 


unstable gradient near the ground.  As demonstrated in Figure I5, if a trigger event disturbs a 


parcel of air at the ground and starts it rising, that parcel will continue rising to as high as 10,000 


feet. 


 
Figure I5.  Standard Atmosphere With Terrestrial Heating 


 


Figure I6 shows that the majority of the solar radiation reaches the earth in the visible wavelengths 


(Ref 29).  Some energy does arrive in the near infrared wavelengths, but is mostly absorbed by 


water in the atmosphere, and the irradiance value drops off quickly with longer wavelengths.  


From this we can conclude that the ground will be warmed mostly by light we can see, indicating 


the possibility of thermals.  Shadows, such as those caused by clouds obscuring the sun, indicate 


that thermal production is much less likely. 


 


Strong winds also reduce thermal production as the air does not dwell long enough over the terrain 


to be heated.  Of course, strong winds may create other forms of lift. 
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Figure I6.  Spectrum of Solar Radiation (Ref 29) 


 


Skew-T/Log-P Diagram 
 


The presentation of temperature soundings (temperature plotted directly with altitude) as shown in 


Figures I1 – I5 may be intuitive, but can be improved upon to create a more information-rich 


depiction.  Consider an actual temperature profile as shown in Figure I7.  The sounding line uses a 


lot of the horizontal dimension showing a decrease in temperature.  The angle between the lines of 


constant temperature (isotherms) and the dry adiabats is roughly 45 degrees (depending on the 


scales chosen).  The angles between the sounding and the dry adiabats are small, making it 


difficult to determine where they actually intersect. 


 


In 1947, N. Herlofson proposed a modification to the emagram (a log-Pressure versus temperature 


plot, very similar to Figures I1-I5).  Instead of the isotherms being vertical, they are skewed to run 


at about 45 degrees from lower left to upper right, as highlighted in Figure I8.  Instead of plotting 


altitude on the vertical axis, the air pressure is plotted on a logarithmic scale.  The resulting 


presentation is referred to as a Skew-T/Log-P diagram.  The “Skew-T” refers to the skewed 


isotherms, and “Log-P” refers to the presentation of pressure on the vertical scale. 


 


This seems like a very strange way to draw a plot, so there must be a good reason for it, and 


indeed there is.  By skewing the isotherms, the angle between the isotherms and the dry adiabats 


(shown highlighted in Figure I9) is opened up to an almost right angle.  A further benefit is that 


the temperature sounding (heavy red line) is now mostly vertical instead of leaning to the left.  


This makes the presentation of the sounding fit better on the plot.  Compare the temperature 


sounding shown in Figure I7 with the same temperature sounding in Figure I10. 


 


So why Log-P for the vertical scale instead of altitude?  Meteorologists created this format, so 


they got to say what it looked like.  Meteorologists don’t care so much about altitude as they do 


pressure, because the thermodynamic processes of weather depend much more on the local 


pressure of the air, and not so much on distance from the ground.  However, by cleverly plotting 
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the pressure not linearly but logarithmically, pressure altitude is presented very close to linearly on 


the vertical axis.  Note that the vertical axis on the left side of the plot is marked as pressure in 


hectopascals (hPa) and the vertical axis on the right side of the plot is marked in feet of pressure 


altitude.  Some Skew-T/Log-P presentations may use pressure units of millibars.  One millibar is 


one hectopascal. 


 


How does plotting pressure logarithmically produce an almost linear altitude scale?  For the 


standard atmosphere in the troposphere, the standard temperature ratio and pressure ratio are given 


by  


 


  = 1 – 6.87559x10
-6


 H (A78) 


 


  = (1 – 6.87559x10
-6


 H)
5.2559


 (A79) 


 


Substituting A77 into A78 we get  


 


  = std 
5.2559


 (I21) 


 


Since the temperature ratio () is linear with altitude, this means that the pressure ratio () is an 


equation of the general form 


 


  = ax
n
 (I22) 


 


which is a power law.  When a power law is plotted logarithmically (logarithmic scale for input 


and output) the result is a line.  When a power law is plotted semi-logarithmically (one linear scale 


and one logarithmic scale) the result is close to a line.  In the case of Log-P, the pressure altitude 


comes out close enough to linear that it provides a visual picture that matches our idea of what 


altitude should look like. 


 


For the standard atmosphere in the stratosphere, the standard pressure ratio is given by 


 


  = 0.223360 e
(-4.80637x10


-5
 (H – 36089.24))


 (A87) 


 


This is of the general form  


 


  = ae
x
 (I23) 


 


which when plotted on a logarithmic scale will produce a linear pressure altitude. 


 


Because of the skewed temperature presentation and the slight non-linearity of pressure altitude, 


the dry adiabats become slightly curved instead of straight as shown in Figures I1-I5. 


 


The Skew-T/Log-P chart typically presents two soundings.  The squiggly line to the right, usually 


shown in red, is the temperature measurement.  The squiggly line to the left, usually shown in 


blue, is the dew point measurement, which is very useful for determining humidity and predicting 


cloud layers. 


 


The Skew-T/Log-P charts shown here also present wind data on the right side.  The red wind 


barbs show the direction and strength of the wind for each altitude (the altitude at the tip of the 


wind barb).  A continuous blue curve next to the wind barbs shows the wind speed for each 


altitude. 


 


These Skew-T/Log-P charts are readily available for you, courtesy of the United States 


government.  Current and forecast charts are available at https://rucsoundings.noaa.gov/ for many 


different atmospheric models at almost any location you desire.  That’s a key point—the charts are 



https://rucsoundings.noaa.gov/
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not actual weather balloon data, because there are only a limited number of regular weather 


balloon soundings, and they are probably not at the point you are interested in.  Thus, the charts 


are produced from model data.  If you are interested in getting data from actual weather balloon 


soundings, those are available at http://weather.uwyo.edu/upperair/sounding.html courtesy of the 


University of Wyoming. 


 


Also shown on the Skew-T/Log-P chart are the moist adiabats, highlighted in Figure I11.  These 


differ from the dry adiabats, and show the path of adiabatic cooling for saturated air, that is air 


with 100 percent humidity.  As we have seen earlier, a rising air parcel expands adiabatically as 


the pressure decreases, resulting in a temperature decrease.  However, when the air parcel cools to 


its dew point, something else happens thermodynamically.  At the dew point, the water vapor 


starts to condense, and in doing so releases its latent heat of vaporization.  This is the energy  


originally used to evaporate the water (phase change from liquid to gaseous).  This released energy 


has to go somewhere, and it goes to increasing the temperature of the air parcel.  Because the 


temperature of the air parcel increases, its density decreases, which results in more buoyant forces 


pushing the air parcel upward.  Because of this extra energy release, a saturated air parcel will rise 


a lot more than a dry (unsaturated) air parcel for the same temperature decrease.  If you are 


thinking that this explains a lot about thunderstorm formation, you would be correct. 


 


Inspection of the moist adiabats shows them to be quite different from the dry adiabats at warm 


temperatures.  This difference comes from the energy release of the condensing water vapor.  


However, further inspection shows that below about -30 °C, the moist adiabats essentially parallel 


the dry adiabats.  This can be explained with a look back at Table A1, which shows the saturation 


pressure of water as a function of temperature.  Saturation pressure is directly proportional to the 


amount of water vapor present in saturated air.  At high temperatures, air supports large amounts 


of water vapor, but as temperature goes down, the amount of water vapor required to reach 100 


percent humidity rapidly drops off in a very non-linear fashion.  Thus, at high temperatures, large 


amounts of energy are released from the water vapor condensation in saturated air.  This explains 


the amount of energy present in thunderstorms, which tend to form in warm weather, not cold.  


Very cold saturated air has very little water vapor present in it to release energy while condensing, 


so the cold air ends up acting very much like dry air. 


 


Figure I12 shows the notional path of an air parcel that reaches saturation.  Initially the air parcel 


is unsaturated (humidity less than 100 percent), so as it rises it undergoes adiabatic expansion, 


cooling along the path of a dry adiabat.  When the air parcel cools to the dew point, the humidity 


is 100 percent, and the water vapor starts to condense.  The released energy heats the air, which 


continues to rise along the moist adiabat.  While technically interesting, this is of little practical 


use to the soaring pilot, because once the water vapor starts condensing, clouds start to form, and 


inside a cloud is where few glider pilots want to be. 


 



http://weather.uwyo.edu/upperair/sounding.html
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Figure I7.  Temperature Profile at Mountain Valley Airport, 22 UTC, 13 March 2014 


 


 
Figure I8.  Skew-T/Log-P Chart With Isotherms Highlighted 
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Figure I9.  Skew-T/Log-P Chart With Dry Adiabats Highlighted 


 
Figure I10.  Skew-T/Log-P Chart for Mountain Valley Airport, 22 UTC, 13 March 2014 
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Figure I11.  Skew-T/Log-P Chart With Moist Adiabats Highlighted 


 


 
Figure I12.  Path of a Rising Air Parcel That Reaches Saturation 
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Is It a Good Soaring Day? 


 


Looking at the Skew-T/Log-P plots can give us insight to what sort of atmospheric stability can be 


expected and thus what thermal lift may be present for soaring.  These example Skew-T/Log-P 


plots were collected over a period by Lt Col Lynn “Jinx” Gawell. 


 


The plot shown in Figure I10 has potential for being a good soaring day.  The temperature 


sounding below 12,000 feet pressure altitude roughly parallels the dry adiabats, indicating neutral 


stability.  A reasonable difference between the temperature and dew point implies a sky clear of 


clouds.  A clear sky will allow sunshine through to warm up the ground.  If the ground warms up 


sufficiently to warm the air next to it, it will destabilize the lower atmosphere.  A trigger to get the 


warm air parcel to start rising could easily result in that parcel continuing to rise to as high at 


15,000 feet. 


 


A typical non-aviation weather forecast will speak of clouds as clear, few, scattered, broken, or 


overcast, but will not specify the altitude of the base of the clouds.  Looking at Figure I13, we see 


the dew point and temperature are equal from about 24,000 feet pressure altitude to 25,000 feet 


pressure altitude.  When the temperature and dew point are equal, the air will be saturated and the 


water vapor will likely condense.  Thus, in this case we would expect a high, thin layer of clouds 


that might block the sun from reaching the ground.  Additionally the low altitudes are showing a 


stable slope (significantly less lapse rate than the Dry Adiabatic Lapse Rate), such that any air that 


was heated by the ground would probably not rise very far.  Thus, few if any thermals would be 


expected on this day. 


 


Figure I14 shows an even worse day.  The intersection of the temperature and dew point between 


about 10,000 feet pressure altitude and 15,000 feet pressure altitude implies a thick band of 


clouds.  (Theoretically the dew point can never be greater than the temperature, as this would 


mean a relative humidity greater than 100 percent.  The portion of the dew point line to the right of 


the temperature line around 14,000 feet pressure altitude is an error, probably either in 


measurement or plotting.)  Additionally, there is a strong temperature inversion near the ground, 


with temperature increasing about 4 °C initially, and then remaining constant for about 2,000 feet 


pressure altitude.  The lack of sun because of the clouds, the temperature inversion, and the fairly 


strong low-altitude winds all point to a very low probability of thermals on this day. 


 


In Figure I12, well, you might as well stay home.  The overlapping dew point and temperature at 


low altitude implies fog and low clouds, so you couldn’t even fly to pattern altitude.  The low 


altitude temperature inversion is very stable and would discourage thermal production.  More 


clouds around 17,000 feet will block even more sun.  Finally, the strong winds at low altitudes 


will mix the air and discourage thermal production. 
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Figure I13.  High Altitude Clouds 


 
Figure I14.  Temperature Inversion, Medium Altitude Clouds 
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Total Energy as a Guide to Atmospheric Motion 
 


After releasing the tow rope, a glider will always descend relative to the air mass around it, 


overcoming aerodynamic drag by using a component of gravitational force as thrust.  In a 


quiescent atmosphere, a glider will continue to descend until it returns to earth, where the landing 


gear provides the needed lift. 


 


Glider pilots increase glider flight times by taking advantage of a non-quiescent atmosphere, 


exploiting the fact that air moves not only horizontally, but also vertically.  By finding an air mass 


rising relative to the earth faster than the glider is descending relative to the air mass, the glider 


will actually gain altitude relative to the earth.  To identify such a rising air mass, it would seem 


that the glider pilot would only need to note the increase of altitude on the altimeter.  Better yet, 


the pilot can use a sensitive rate of climb instrument (usually called a variometer, see Chapter 3) to 


show a climb, or at least a diminished rate of descent.  Some gliders are indeed set up this way, to 


include older trainers, such as the Schweizer SGS 2-33. 


 


Such a system works after a fashion, but has a significant flaw.  The descent or climb rate shown 


on the variometer accurately reflects the glider’s vertical movement relative to the earth.  It will 


show the glider descending because of normal aerodynamic drag.  It will also show changes in the 


descent rate, or even a climb, caused by atmospheric vertical motion (lift or sink).  It will also 


show a climb if the pilot merely pulls on the stick and climbs as airspeed decreases.  Pilots 


frequently refer to this as “trading airspeed for altitude”.  Since the glider is indeed climbing 


relative to the earth and atmosphere, the variometer shows a climb.  Glider pilots call this a “stick 


thermal” because the indications briefly look like you have found a thermal. 


 


However, that’s not what you as a glider pilot really want to know.  You would like an instrument 


to show you when the air mass around the glider is rising (or falling), while ignoring any altitude 


changes caused by changing airspeed.  Your buddy the Physics major reminds you that the 


interchange of altitude and airspeed can be explained as the interchange of potential and kinetic 


energy.  Ah, yes.  Energy.  That always was such a useful way to explain physics. 


 


Altitude is directly related to potential energy as  


 


 Potential Energy = PE = mgh (I24) 


 


Changing the geometric altitude (h) to geopotential altitude (H) allows us to use a constant 


acceleration of gravity (gSL) 


 


 PE = mgSLH (I25) 


 


Airspeed is related to kinetic energy as  


 


 
2
t


1
Kinetic Energy KE mV


2
           (I26) 


 


and the total energy (ignoring internal energy, which in this case will not be interacting with 


potential or kinetic energy) is the sum of potential energy and kinetic energy. 


 


 
2


SL t
1


Total Energy mg H mV
2


          (I27) 


 


In the Earth centered reference frame, gravity is a conservative force, and thus cannot add or 


extract any energy from this system.  Therefore, any changes in kinetic energy solely caused by 


maneuvering will exactly match changes in potential energy.  Aerodynamic drag is a non-


conservative force which will constantly extract energy from the system.  Vertical atmospheric 
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motion creates a non-conservative force that can either add energy to the system (lift) or extract 


energy from the system (sink).  You, the glider pilot, don’t really care about the actual total energy 


of the system.  What you care about is how it changes.  You know how the aerodynamic drag 


extracts energy from the system.  Any variation around that is either lift adding energy or sink 


extracting energy.  If you had a system that could output the rate of energy change at any given 


moment, you could seek out the lift and run away from the sink. 


 


The great thing about looking at the rate of energy change (derivative of total energy) is that it 


eliminates any stick thermals from our output.  Because gravity is a conservative force, gains in 


altitude caused by losses of airspeed do not show up in the output.  Only changes due to 


aerodynamic drag and atmospheric vertical movement show up in the output.  Our challenge is to 


find a measurement method that measures changes in energy. 


 


Differentiating Equation I27 gives 


 


 
   2


t


SL


d Vd Energy dH 1
mg m


dt dt 2 dt
         (I28) 


 


Now we invoke one of those tricks that engineers do so well.  Like so many other analyses, 


instead of thinking of the glider moving through an atmosphere frame of reference, we will focus 


on the air moving around the glider in a glider frame of reference.  Our math major buddies tell us 


that these are equivalent systems. 


 


Since the air is the object of interest, let’s divide Equation I28 with a unit volume of air.  This 


gives the convenient result of  


 


 
   2


t


SL


d Vd Energy1 dH 1
g


Vol dt dt 2 dt
         (I29) 


 


Because we are interested in eliminating any output change caused by a “stick thermal”, let’s set 


the change in total energy to zero. 


 


 
 2


t


SL


d VdH 1
0 g


dt 2 dt
          (I30) 


 


Wait a minute, Moosebreath!  Equation I30 looks strangely familiar.  The first term looks like the 


Hydrostatic Equation (Equation A15) which would mean it was -dPa.  The second half looks like 


the derivative of dynamic pressure from Bernoulli’s equation.  Writing it in those terms would 


give 


 


 adP dq
0


dt dt



         (I31) 


 


If we integrate this equation with time, we get 


 


 0 = -Pa + q + C (I32) 


 


Aha!  An integration constant!  Usually we forget about those, but in this case it is important.  


Let’s move it to the other side and call it a pressure, since everything else in the equation is a 


pressure. 


 


 P = Pa - q (I33) 
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So to create our total energy measurement sensor, we need a sensor that can produce a pressure 


equal to the difference between the ambient pressure and the dynamic pressure. 


 


TIME OUT!  If you’re like me, you get nervous whenever Bernoulli’s Equation is trotted out or 


we start talking about dynamic pressure (q) rather than differential pressure (qc).  Bernoulli’s 


Equation comes with a lot of assumption baggage, but in this case that’s okay.  We’re talking 


about gliders, which always fly “slowly”, well within the incompressible flow region.  Rest 


securely in the knowledge that we aren’t violating any 


important assumptions. 


 


Venturi Total Energy Probes 


 


So how can we build a sensor to produce the pressure 


given in Equation I33?  One approach is to use a venturi, 


as shown in Figure I15.  A venturi accelerates the flow 


through the throat, reducing its pressure below ambient.  


How do we design a venturi to reduce the ambient 


pressure precisely by a value equal to the dynamic 


pressure?  


 


Going back to Bernoulli’s Equation, we know that the 


total pressure anywhere in the flow will be constant, so 


we can say 


 


 P1 + q1 = P2 + q2 (I34) 


 


Rearranging to solve for the dynamic pressure at the throat 


 


 q2 = P1 - P2 + q1 (I35) 


 


 


To get the desired pressure, we know from equation I33 that the pressure at station 2, where it is 


measured, must be equal to  


 


 P2 = P1 – q1 (I36) 


 


Substituting Equation I36 into Equation I35 


 


 q2 = P1 – (P1 – q1) + q1 (I37) 


 


which without the parentheses becomes 


 


 q2 = P1 – P1 + q1 + q1 (I38) 


 


and thus 


 


 q2 = 2q1 (I39) 


 


So the venturi should be designed such that the dynamic pressure at the throat is twice that of the 


freestream.  Breaking up the dynamic pressure into its component parts 


 


 
2 2
2 1V V


2
2 2


 
        (I40) 


 


1 2


Figure I15.  Total Energy Venturi 
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The density should remain constant since the flow is slow enough to be incompressible.  Dividing 


out the density and the “2” 


 


 2 2
2 1V 2V       (I41) 


 


Taking the square root of both sides 


 


 2 1V 2 V         (I42) 


 


which means that the venturi must accelerate the flow at the throat to 1.414 times the original 


airspeed.  To find the contraction ratio necessary to do this, we use the incompressible version of 


the continuity equation 


 


 A1V1 = A2V2 (I43) 


 


which becomes 


 


 2 1


1 2


A V


A V
         (I44) 


 


Substituting Equation I42 into Equation I44 


 


 2 1


1 1


A V


A 2 V
         (I45) 


 


or  


 


 2


1


A 1


A 2
       (I46) 


 


So the area of the throat must be 0.707 times the size of the venturi entrance.  To find the 


relationship of the radii 


 


 2 2
2 1


1
r r


2
         (I47) 


 


Dividing out pi and taking the square root of both sides gives 


 


 2 14


1
r r


2
         (I48) 


 


Thus, the radius of the throat must be 0.841 times the radius of the inlet.  The diameters will be of 


the same ratio.  This ratio is shown in the venturi in Figure I15, which is a surprisingly small 


contraction.  Figure I16 shows an actual installed total energy venturi. 
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Figure I16.  Total Energy Venturi on a DG-1000 


 


Tube Total Energy Probes 


 


Another approach to creating a total energy sensor is to use a small diameter cylinder in cross flow 


with a small hole on the back side.  One type is called a “Braunschweig Tube”, which in 


Reference 38 was described as “the Braunschweig tube, described in Ref. 7, uses the same 


principles applied in developing the probes discussed in this report.  However, they are more 


difficult to make, and were found to be more sensitive to manufacturing tolerances.” 


 


To understand how this approach works, consider the definition of the pressure coefficient (CP) 


(Ref 11) 


 


 a
p


P P
C


q



           (I49) 


 


where P is the pressure at the point of interest, which is non-dimensionalized by the ambient 


pressure (Pa) and the dynamic pressure (q).  According to Equation I33, we want to create a 


pressure that is equal to the difference of the ambient pressure and the dynamic pressure.  In terms 


of a pressure coefficient, that would look like 


 


 
 a a


p


P q P
C


q


 
         (I50) 


 


It can be shown that this results in the simple condition of  


 


 CP = -1 (I51) 


 


The proof is left as an exercise to the reader.  (Really?  Stop complaining.  It’s only one step, and 


it’s hardly even algebra.) 


 


A small cylinder at low Reynolds number in cross 


flow will undergo laminar separation at approximately 


the widest cross section (90 degrees around from the 


stagnation point).  This separation creates a low 


pressure area (below ambient pressure) that decreases 


in pressure as the airspeed increases.  See Figure I17. 


 


 


 


 


Figure I17.  Cylinder in Cross Flow 





Low Pressure Area







 Appendix I  Soaring Weather and Air Data 329 


 


This concept was described very well in Reference 38, which is reproduced here: 


 


There are many aerodynamic shapes that produce pressure distributions with 


local pressure coefficients of -1.0, but they are often very sensitive to flow 


conditions or variations in angle of attack, Reynolds number, etc.  For instance 


there may be several locations on an airfoil where CP = -1.0, but the locations 


are likely to vary sensitively with angle of attack. 


 


A literature search of pressure distributions over various shapes indicated the 


possibility of using a cylinder, because the typical two-dimensional pressure 


distribution around a cylinder shows pressure coefficient values of -1.0 at about 


55° to 60° from the stagnation point (Fig. 2 (Figure I18 in this document)).  


However, the gradient is very steep at this position and it would be necessary to 


locate pressure orifices quite precisely.  In addition, this location would be very 


sensitive to variations in flow angle.  What is more interesting about the pressure 


distributions for cylinders at relatively low Reynolds numbers is the fact that the 


pressure coefficients are nearly constant around the aft side of cylinders from 


about 100° to 180°, and for a wide range of Reynolds number are well within 10 


percent of the desired CP = -1.0 value. 


 


 
Figure I18.  Figure 2 of Reference 38 
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After numerous wind tunnel and flight tests, Reference 38 drew the following findings and 


conclusions: 


 


The best probe configurations tested had the following characteristics: 


 


1.  Cylindrical tube, diameter of 3/16- to 1/4-inch. 


2.  Tube end squared off with very slight bevel of sharp edge. 


3.  Aft facing pressure orifice, a drilled hole about 1/3 the tube diameter (1/16- 


to 3/32-inch). 


4.  Center of hole located at a distance two times the tube diameter from the end 


of the tube (3/8- to 1/2-inch). 


5.  Probe swept forward about 20° with respect to flow direction. 


6.  Probe mounted in free-stream air, extending a minimum of 5 to 6 inches from 


the aircraft. 


7.  Vertical tail location good; aft fuselage acceptable. 


 


Such a probe, coupled with a good variometer in a leak-free system, should 


provide the following: 


 


1.  Good total energy rate information over a flight range from 40 to at least 150 


mph; altitudes from sea level to at least 20,000 feet. 


2.  Insensitivities to normal yaw, pitch, and roll attitude variations. 


3.  Drag of a typical installation at 100 mph is about one-tenth of a pound. 


 


An installed Total Energy probe is shown in Figure I19. 


 


 
 


Figure I19.  Total Energy Probe on an ASK-21 


 


So What Exactly Is Going On Here? 
 


After all of that math, let’s come back to some concepts here.  A variometer (Figure 3.7, Chapter 


3) simply connected to a source of static pressure is a rate of climb indicator.  The same 


variometer connected to a Total Energy sensor with a pressure coefficient of -1 will indicate 


energy being extracted from or added to “the system”. 


 


Things that extract energy from the system are aerodynamic drag and descending air currents 


(sink).  In quiescent air at constant airspeed the variometer will show energy leaving the system as 


a descent rate.  Sink also causes the glider to descend.  In both cases, the ambient pressure 


increases while the dynamic pressure remains constant, hence the pressure at the Total Energy 


probe increases. 
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Things that add energy to the system are the launch system (tension on the tow rope) and 


ascending air currents (lift).  As the glider gains altitude behind the tow plane, the variometer 


shows the energy entering the system as a climb rate.  Atmospheric lift also causes the glider to 


climb.  In both cases, ambient pressure decreases while dynamic pressure remains constant, hence 


the pressure at the Total Energy probe decreases.  Additionally, energy is added to the system as 


the glider accelerates for takeoff.  This acceleration increases the dynamic pressure, which causes 


the pressure at the Total Energy probe to decrease.  Thus, a variometer connected to a Total 


Energy probe will show a climb while accelerating level for takeoff.  Bet you never noticed that, 


huh?  You were too busy paying attention to the piloting task (as you should be). 


 


To understand the case of the stick thermal, we must first understand that in steady-state flight the 


pressure in the variometer system is not static pressure, but is a lower pressure, equal to the 


ambient pressure minus the dynamic pressure (Equation I33).  This pressure drops from the 


ambient pressure during the takeoff run as dynamic pressure increases.  If the pilot then pulls on 


the stick to point the nose uphill, trading airspeed for altitude, two things happen: 


 


1.  The increase in altitude decreases the ambient pressure. 


2.  The decrease in speed decreases the dynamic pressure. 


 


As we have seen through the math, if the Total Energy probe operates at a pressure coefficient 


of -1, then the decrease in the ambient pressure will identically match the decrease in dynamic 


pressure, and their difference (measured at the Total Energy probe) will remain constant.  Thus, 


the variometer should show no change during a “stick thermal”. 
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Appendix J 
 


 


Example Pitot-Static Sensor Installations 
 


This appendix contains photographs of Pitot-static sensor (Pitot tubes, static ports) on a collection 


of historical aircraft.  This will give the reader a background in how installations have been made 


in the past for evaluating new installations. 


 


Aircraft are ordered (mostly) by their military designation. 


 


Most of these aircraft were photographed at the Flight Test Museum at Edwards AFB and at the 


Pima Air Museum in Tucson AZ. 
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Douglas A-26 (B-26) Invader 


 


 
 


 
 


Pitot tube near nose 


 


Cessna A-37 Dragonfly 


 


 
 


 
 


Flight test Pitot-static YAPS boom 


 


 
 


Pitot tube on vertical tail 


 


 
 


Static port on fuselage side 
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McDonnell ADM-20C Quail 


 


 
 


 
 


Presumed mounting point for Pitot boom on right wingtip 


 


 
 


Static port on side of fuselage 


Ryan AWM-34J Firebee 


 


 
 


 
 


Pitot-static tube on vertical tail 
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Beechcraft AT-7 Navigator 


 


 
 


 
 


Pitot tube on long strut under nose 


 


Beech AT-11 Kansan 


 


 
 


 
 


Pitot tube under nose 
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Cessna AT-17 Bobcat 


 


 
 


 
 


Pitot-static tube under nose 


 


Hawker Siddeley AV-8C Harrier 


 


 
 


 
 


Pitot tube on nose boom 


 


 
 


Static port just under canopy 
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Douglas B-18B Bolo 


 


 
 


 
 


Pitot-static tube on wing 


 


Consolidated B-24 Liberator 


 


 
 


 
 


Pitot Tube near nosewheel 
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North American B-25 Mitchell 


 


 
 


 
 


Pitot-static tube on boom on right wing 


 


Boeing B-29 Superfortress 


 


 
 


 
 


Two Pitot tubes under left nose 


 


 
 


Static port on side of fuselage 
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Boeing B-52G Statofortress 


 


 
 


 
 


Three Pitot tubes visible, one high, one in the middle of the 


picture, and one low near sensor pod 


 


On side of fuselage, 


Pitot tube up high, 


three static ports in 


middle, and AOA 


vane low 


 


Martin B-57E Canberra 


 


 
 


 
 


Pitot-static tube on side of fuselage 
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Convair B-58A Hustler 


 


 
 


 
 


Pitot-static tube on nose boom 


Vultee BT-13A Valiant 


 


 
 


 
 


Pitot-static tube on left wing 
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North American BT-14 Yale 


 


 
 


 
 


Pitot-static tube on right wing 


 


Beech C-12C Huron 


 


 
 


 
 


Two Pitot tubes under nose 


 


 
 


Two static ports on aft fuselage 
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McDonnell Douglas C-17 Prototype (T-1) 


 


 
 


 
 


C-17 T-1 used this flight test YAPS boom 


 


 
 


Pitot-static tube with AOA and sideslip vanes 


 


Lockheed C-36A Electra 


 


 
 


 
 


Two Pitot-static tubes under nose 
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Beech C-45J Expeditor 


 


 
 


 
 


Two Pitot-static tubes under nose 


 


 
 


Pitot-static tube 


 


Curtiss C-46 Commando 


 


 
 


 
 


Two Pitot tubes under nose 
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Douglas C-47 Skytrain 


 


 
 


 
 


Dual Pitot tubes under nose 


 


Douglas C-54D Skymaster 
 


 
 


 
 


Pitot tube on side of fuselage.  Static port is circle in 


yellow stripe 
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Fairchild C-82A Packet 


 


 
 


 
 


Two Pitot tubes in nose 


 


Fairchild C-119C Flying Boxcar 


 


 
 


 
 


Two Pitot tubes on nose 


 


 
 


Static port on side of fuselage 
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Cessna C-120 


 


 
 


 
 


Pitot tube on left wing 


 


Fairchild C-123B Provider 


 


 
 


 
 


Pitot tube on side of nose 


 


 
 


Static port on side of fuselage 
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Douglas C-124C Globemaster II 


 


 
 


 
 


Pitot tube on side of fuselage 


 


 
 


Static port in red circle left of door 


 


Lockheed C-130A Hercules 


 


 
 


 
 


Pitot tube under windows 


 


 
 


Static ports on side of fuselage 
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Convair C-131F Samaritan 


 


 
 


 
 


Pitot tube on side of fuselage 


 


 
 


Static ports on fuselage 


Douglas C-133B Cargomaster 


 


 
 


 
 


Pitot tube under nose 


 


 
 


Static ports under window on fuselage 
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Lockheed C-140 JetStar 


 


 
 


 
 


Pitot tube and static port on fuselage 


 


Cessna C-150 


 


 
 


 
 


Pitot tube under left wing 


 


 
 


Static port on left cowl 
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Sikorsky CH-3 


 


 
 


 
 


Pitot-static tubes above cockpit 


 


 
 


Pitot-static tube 


 


Ryan-Temco D-16 Twin Navion 


 


 
 


 
 


Pitot tube under right wing just in front of flap 


 


 
 


Static port on fuselage side 
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Boeing EB-47E Stratojet 


 


 
 


 
 


Pitot tube on side of fuselage 


 


 
 


Static ports on side of fuselage 


Lockheed EC-121 Warning Star 


 


 
 


 
 


Two Pitot tubes on side of fuselage.  Three static ports 


inside red oval 
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Douglas F3D-2 SkyKnight 


 


 
 


 
 


Pitot tube in front of canopy 


 


 
 


Static port just aft of radome 


 


McDonnell F3H-2 Demon 


 


 
 


 
 


Pitot tube at front of canopy 


 


 
 


Static port on fuselage side 


 


 
 


Additional Pitot-static tube on wing tip 


 







354 Pitot-Statics and the Standard Atmosphere 


McDonnell F-4C Phantom II 


 


 
 


 
 


Pitot tube on vertical tail.  Lower tube is input for flight 


control “q-feel” system 


 


 
 


Static port on radome.  AOA cone behind radome 


 


McDonnell Douglas F-4E Phantom II 


 


 
 


 
 


Pitot-static tube on nose 


 


 
 


Note shape of compensated Pitot-static probe 


 







 Appendix J  Example Pitot-Static Sensor Installations 355 


 


Vought F4U Corsair 


 


 
 


 
 


Pitot-static tube on left wing (folded) 


 


Douglas F-6A Skyray 


 


 
 


 
 


Pitot tube above nose 
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Grumman F7F Tigercat 


 


 
 


 
 


Pitot tube under left wing 


 


Vought F-8A Crusader 


 


 
 


 
 


Pitot tube on side of nose 
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Grumman F9F-4 Panther 


 


 
 


 
 


Pitot tube under wing 


 


 
 


Static port on side of fuselage 


Grumman F9F-8 Cougar 


 


 
 


 
 


Pitot tube under wing 


 


 
 


Static port on side of fuselage between “star and bar” and 


“JET” 
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Grumman F-11F Tiger 


 


 
 


 
 


Pitot-static tube on vertical tail 


 


McDonnell Douglas F-15 Eagle 


 


 
 


 
 


Black cover over Pitot-static tube behind radome 
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General Dynamics F-16XL 


 


 
 


 
 


Flight test YAPS boom on nose.  Pitot-static tube at front 


is a standard F-16 Pitot-static probe. 


 


McDonnell Douglas F/A-18 Hornet 


 


 
 


 
 


Pitot-static tube and AOA probe on fuselage 
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Republic F-84C Thunderjet 


 


 
 


 
 


Pitot tube on vertical tail 


 


 
 


Static port on fuselage 


 


Republic F-84F Thunderstreak 


 


 
 


 
 


Pitot tube in inlet 


 


 
 


Static port on side of fuselage 
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North American F-86H Sabre 


 


 
 


 
 


Pitot-static boom on right wing 


 


 


North American F-86L Sabre 


 


 
 


 
 


Pitot-static boom on right wing 
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Northrop F-89J Scorpion 


 


 
 


 
 


Pitot tube on side of fuselage (over the “O”) and static 


ports in red circle 


 


 


 


Lockheed F-94C Starfire 


 


 
 


 
 


Pitot tube under nose and static port on side of fuselage 
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North American F-100C Super Sabre 


 


 
 


 
 


Pitot-static tube on boom under nose.  Boom could fold 


upwards in front of inlet for protection on the ground. 


 


McDonnell F-101B Voodoo 


 


 
 


 
 


Pitot-static boom on nose 
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Lockheed F-104A Starfighter 


 


 
 


 
 


Pitot-static boom on nose 


 


 
 


Note compensated static ports 


 


Republic F-105 Thunderchief 


 


 
 


 
 


Pitot-static boom on nose 


 


 
 


Note compensated static ports 
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Convair F-106B Delta Dart 


 


 
 


 
 


Pitot-static boom on nose 


 


General Dynamics F-111A Aardvark 


 


 
 


 
 


Compensated Pitot-static probe on nose 


 


 







366 Pitot-Statics and the Standard Atmosphere 


Focke-Achgelis Fa 330 Bachstelze 


 


 
 


A German gyro-kite (autogyro) towed behind a submarine 


to spot ships from a higher altitude 


 


 
 


Note the simple Pitot-static tube and very short hoses for 


the altimeter and airspeed indicator located at the pilot’s 


feet. 


 


North American FJ-4B Fury 


 


 
 


 
 


Pitot-static tube on right wingtip 
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Piasecki H-25 Retriever 


 


 
 


 
 


Pitot tube under nose 


 


 


Sikorsky H-37 Mojave 


 


 
 


 
 


Pitot tubes on fuselage side 


 


 
 


Static ports on aft fuselage 
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Grumman HU-16C Albatross 


 


 
 


 
 


Pitot tube under left wing 


 


 
 


Static port in blue part of bar on fuselage 


 


 


Grumman J4F Widgeon (Modified) 


 


 
 


 
 


Pitot-static tube on boom on right wing 
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Sikorsky JRS-1 (S-43) 


 


 
 


 
 


Pitot tube above cockpit 


Boeing KC-97G Stratofreighter 


 


 
 


 
 


Pitot tube on lower fuselage near nose 


 


 
 


Static ports on lower fuselage 
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Lockheed L-049 Constellation 
 


 
 


 
 


Pitot-static tubes under nose 


 


NASA M2-F1 


 


 
 


 
 


Pitot-static tube on nose 
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Mikoyan Gurevich MiG-15UT Midget 
 


 
 


 
 


Pitot-static tube on boom on right wing 


 


Mikoyan Gurevich MiG-17 Fresco 
 


 
 


 
 


Pitot-static tube on boom on left wing 
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Mikoyan Gurevich MiG-21 Fishbed 


 


 
 


 
 


Pitot-static tube over nose inlet 


 


Aero L-39 Albatros 


 


 
 


 
 


Pitot-static tube on left wing 
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Government Aircraft Factories N22S Nomad 


 


 
 


 
 


Pitot tube on side of fuselage 


 


 
 


Static ports on side of fuselage 


Gloster NF-11 Meteor 


 


 
 


 
 


Pitot-static boom on left wing 


 


 
 


Static ports are thin slots, not holes 
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Cessna O-2 Skymaster 


 


 
 


 
 


Pitot tube under left wing 


 


Grumman OV-1 Mohawk 


 


 
 


 
 


Pitot tube on nose.  Note that Pitot tube is not aligned with 


the horizontal, but is parallel to the surface to align with 


the local flow 


 


 
 


Static port on fuselage side under left window.  Note 


compensation behind port 
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North American Rockwell OV-10 Bronco 


 


 
 


 
 


Pitot tube on nose 


 


 


Bell P-63 KingCobra 


 


 
 


 
 


Pitot tube on left wing 


 


 
 


Static port on fuselage 
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Lockheed P-80B Shooting Star 


 


 
 


 
 


Pitot tube under fuselage.  Static port in red circle on 


fuselage 


 


Piper PA-48 Enforcer 


 


 
 


 
 


Pitot tube under right wing 
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Fairchild PT-19 


 


 
 


 
 


Pitot tube on right wing 


 


Ryan PT-22 Recruit 


 


 
 


 
 


Pitot tube on left wing 
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Sikorsky R-4 


 


 
 


 
 


Pitot-static tube on rotor mast 


 


Martin RB-57D Canberra 


 


 
 


 
 


Pitot tube on nose.  Static port in red circle on fuselage 
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Sud-Aviation SE-210 Caravelle 


 


 
 


 
 


Pitot tube on side of fuselage 


 


 
 


Static ports on side of fuselage 


Lockheed SR-71A Blackbird 


 


 
 


 
 


Pitot-static tube on nose.  Tube on side is a four hole AOA 


and sideslip probe 
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Lockheed T-1A SeaStar 


 


 
 


 
 


Pitot tube on strut under nose.  Static ports in red circles on 


fuselage 


 


 


 


North American T-6 Texan 


 


 
 


 
 


Pitot-static tube on right wing 
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North American T-28B Trojan 


 


 
 


 
 


Pitot tube on right wing 


 


 
 


Static port on aft fuselage 


 


Convair T-29B Flying Classroom 


 


 
 


 
 


Three Pitot tubes on nose 


 


 
 


Four static ports on side of fuselage 
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Lockheed T-33A Shooting Star 
 


 
 


 
 


Pitot tube on side of fuselage 


 


 
 


Static port on nose in red circle 


 


Cessna T-37B Tweet 


 


 
 


 
 


Pitot tube on nose 


 


 
 


Static port on aft fuselage 
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Northrop T-38A Talon 


 


 
 


 
 


Pitot-static tube on noseboom 


 


 
 


AOA vane on fuselage side 


 


 
 


This static port is part of the cabin pressurization system 


 


North American T-39 Sabreliner 


 


 
 


 
 


Pitot tube and static ports on left fuselage 
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General Motors TBM Avenger 


 


 
 


 
 


Pitot tube on left wing (folded) 


 


Convair TF-102A Delta Dagger 


 


 
 


 
 


Pitot-static boom on nose 
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Schweizer TG-3A (SGS 2-12) 


 


 
 


 
 


Pitot tube on nose 


 


Taylorcraft TG-6 


 


 
 


A WW-II training glider used to train pilots for flying the 


CG-4A cargo glider.  It was built by removing the engine 


from a Taylorcraft L-2 and adding a third pilot position 


where the engine had been.  Because of the increase in side 


area up front the vertical fin size was increased 


 


 
 


Note Pitot tube above forward canopy 
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DeHavilland U-6 Beaver 


 


 
 


 
 


Pitot-static tube on boom on left wing 


 


Beechcraft U-8D Twin Bonanza 


 


 
 


 
 


Pitot tube under left wing 


 


 
 


Static port on fuselage side 
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Piper U-11 Aztec 


 


 
 


 
 


Pitot tube under left wing 


 


Douglas VC-118 Liftmaster (DC-6) 


 


 
 


 
 


Pitot tube and static port on left nose 
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Lockheed VC-121 Constellation 


 


 
 


Two Pitot tubes on long struts under nose 


 


Boeing VC-137 Stratoliner 


 


 
 


 
 


 
 


Pitot tube and temperature probes 
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Vickers 744 Viscount 


 


 
 


 
 


Pitot tube and static port on side of fuselage 


 


 


Douglas WB-66D Destroyer 


 


 
 


 
 


Pitot tube in front of nose gear 
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Bell X-1 


 


 
 


 
 


Pitot-static probe on nose 


 


 
 


Pitot-static probe on each wingtip 


 


Northrop X-4 


 


 
 


 
 


Pitot-static tube on nose 
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Bensen X-25B 


 


 
 


 
 


Wind gauges at pilot’s feet used for airspeed indication 


 


Boeing X-36 


 


 
 


 
 


Teeny-tiny YAPS head with Pitot-static tube 
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Ling-Temco-Vought YA-7D Corsair II 


 


 
 


 
 


Flight test Pitot-static probe with four hole AOA and 


sideslip probe 


 


 
 


Pitot-static probes above nose 


 


Fairchild Republic YA-10B 


 


 
 


 
 


Pitot-static tube on right wing 


 


 
 


Close up of Pitot-static tube 
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Boeing YC-14 


 


 
 


Boeing YC-14 in rear 


 


 
 


Three Pitot-static tubes on side of nose, with AOA vane 


near bottom.  Identical sensors are installed on opposite 


side of the fuselage 


 


McDonnell Douglas YC-15 


 


 
 


 
 


Pitot-static probes on fuselage 


 


 
 


Pitot-static probe 
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Lockheed YF-22 Raptor 


 


 
 


 
 


Pitot-static tube on nose boom 
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Appendix K 
 


 


Pitot-Statics Glossary 
 


Pitot-static theory is challenging enough to understand, and it doesn’t help that there are so many 


similar parameters with minor but important differences.  These differences are typically denoted 


by subscripts.  This glossary is provided as an easy method for tracking down the specific meaning 


of any symbol in this book.  Symbology used in this book is consistent with the Flight Test 


Engineering Handbook (Ref 12), and thus may vary from other references. 


 


a speed of sound 


aSL speed of sound at sea level (defined constant) 


b wingspan; intercept 


C integration constant 


°C degrees Celsius (Centigrade) 


CL
ic
 lift coefficient calculated using Vic 


Cp pressure coefficient; coefficient of specific heat at constant pressure 


Cv coefficient of specific heat at constant volume 


D1 distance, first leg of speed course 


D2 distance, second leg of speed course 


dA incremental area 


DALR dry adiabatic lapse rate 


dh incremental geometric altitude 


dH incremental geopotential altitude 


Distance1-2 distance on spherical earth between location 1 and location 2 


Distance 


Angle1-2 


angle between location 1 and location 2 with vertex at the center of the earth 


dP incremental pressure 


dT incremental temperature 


°F degrees Fahrenheit 


f pressure correction factor (often incorrectly called the "compressibility" correction factor), 


f = Ve/Vc 


g acceleration of gravity 


GS ground speed 


gSL acceleration of gravity at the sea level geopotential surface (defined constant) 


H geopotential altitude 


H change in geopotential altitude 


h geometric altitude (tapeline altitude); specific enthalpy 


HB base altitude 


Hc pressure altitude 


hcal geometric (tapeline) altitude of calibrated aircraft 


Hc
test


 pressure altitude of the test aircraft 


Hc
tower


 pressure altitude measured in fly-by tower at the elevation of the grid zero line 


Hc change in pressure altitude; difference in pressure altitude of test and calibrated aircraft 


h change in geometric (tapeline) altitude  


Hi indicated altitude 


Hi
cal


 indicated altitude of calibrated aircraft 


Hi
cone


 indicated altitude of trailing cone transducer 


Hi
pace


 indicated altitude of pace aircraft 
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Hi
test


 indicated altitude of test aircraft 


Hic instrument corrected altitude 


Hic
pace


 instrument corrected altitude of pace aircraft 


Hic
std alt


 instrument corrected altitude at desired standard altitude 


Hic
test


 instrument corrected altitude of test aircraft 


Hic altitude instrument error correction 


Hic
cal


 altitude instrument error correction of calibrated aircraft 


Hic
cone


 altitude instrument error correction of trailing cone 


Hic
pace


 altitude instrument error correction of pace aircraft 


Hic
test


 altitude instrument error correction of test aircraft 


Hp altitude position error 


Hpc instrument and position corrected altitude  (Hpc = Hc + residual errors) 


Hpc
cal


 instrument and position corrected altitude of calibrated aircraft 


Hpc
cone/bomb


 instrument and position corrected altitude from trailing cone or bomb 


Hpc
pace


 instrument and position corrected altitude of pace aircraft 


Hpc
smoke


 instrument and position corrected altitude of smoke trail 


Hpc
test


 instrument and position corrected altitude of test aircraft 


Hpc altitude position correction 


Hpc
cal


 altitude position correction of calibrated aircraft 


Hpc
cone


 altitude position correction of trailing cone 


Hpc
pace


 altitude position correction of pace aircraft 


Hpc
std alt


 altitude position correction at desired standard altitude 


Hpc
test


 altitude position correction at test conditions 


Hstd alt desired standard altitude 


htest geometric (tapeline) altitude of test aircraft 


h change in geometric (tapeline) altitude 


H density altitude 


K Kelvin 


KCAS knots calibrated airspeed 


KEAS knots equivalent airspeed 


KE kinetic energy 


ke specific kinetic energy 


KIAS knots indicated airspeed 


Kt temperature recovery factor 


KTAS knots true airspeed 


L temperature lapse rate 


Lat1 Latitude of location 1 


Lat2 Latitude of location 2 


Long1 Longitude of location 1 


Long2 Longitude of location 2 


M Mach number; mean molecular weight 


M’ Mach number immediately behind shock wave 


m slope; mass 


mdry mass of dry air 


mwater mass of water vapor 


m  mass flow rate 


Mi indicated Mach number 


Mic instrument corrected Mach number 
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Mic Mach number instrument error correction 


Mic
pace


 instrument corrected Mach number of pace aircraft 


Mp Mach position error 


Mpc instrument and position corrected Mach Number  (Mpc = M + residual errors) 


Mpc Mach number position correction 


N number of molecules (moles) 


n load factor 


P pressure 


Pa ambient pressure 


Pa’ ambient pressure immediately behind shock wave 


Pa
std alt


 ambient pressure at desired standard altitude 


PB pressure at base altitude 


Pdry partial pressure of dry air 


PE potential energy 


pe specific potential energy 


Pmoist pressure of moist (humid) air 


Ps static pressure as measured by the static port 


PSL pressure at sea level (defined constant) 


Ps
std alt


 static pressure at desired standard altitude 


PT total pressure 


PT' total pressure measured behind a normal shock wave 


P change in pressure 


Pp error in reading ambient pressure (Ps - Pa) 


Pp/Ps static port position error ratio 


Pp/qcic position error pressure coefficient 


Pr Prandtl number 


Psaturated 


water 


saturation pressure of water vapor 


Pwater partial pressure of water vapor 


q dynamic pressure 


qc differential pressure (PT - Pa) 


qcic instrument corrected differential pressure (PT - Ps) 


Qin heat interaction into the system 


inQ  rate of heat interaction into the system 


Qout heat interaction out of the system 


outQ  rate of heat interaction out of the system 


R specific gas constant for air (defined constant) 


R* universal gas constant (defined constant) 


Rair specific gas constant for air (defined constant) 


Rwater specific gas constant for water vapor (defined constant) 


°R degrees Rankine 


Re Reynolds number 


Re
SL


 radius of the sea level geopotential surface (essentially the radius of the earth) 


S wing planform area 


T temperature 


t elapsed time over speed course 


t1 elapsed time over first leg of speed course 


t2 elapsed time over second leg of speed course 


Ta ambient temperature 


Ta
i
 ambient air temperature based on instrument corrected airspeed or instrument corrected Mach 


number 
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TB temperature at base altitude 


Tdew dew point temperature 


Ti indicated temperature 


Tic instrument corrected temperature  


Tic temperature instrument error correction 


Tin temperature into the streamtube 


Tmoist temperature of moist (humid) air 


Tout temperature out of the streamtube 


TSL temperature at sea level (defined constant) 


Tstd standard day temperature at a given altitude 


TT total temperature 


Ttest temperature at test conditions 


Tvirtual virtual temperature: temperature of dry air with same density as humid air at the same pressure 


u specific internal energy 


V volume 


v specific volume 


Vaim aim airspeed 


Vadj adjusted ground speed 


Vc calibrated airspeed 


Vc pressure correction factor (often incorrectly called the "compressibility" correction factor), 


Vc = Ve - Vc 


Vc
std alt


 calibrated airspeed at the desired standard altitude 


Ve equivalent airspeed 


Vg ground speed 


Vg
e
 ground speed, Easterly component 


Vg
n
 ground speed, Northerly component 


Vgx x component of ground speed 


Vgy y component of ground speed 


Vi indicated airspeed 


Vi
cal


 indicated airspeed of calibrated aircraft 


Vi
pace


 indicated airspeed of pace aircraft 


Vi
test


 indicated airspeed of test aircraft 


Vic instrument corrected airspeed 


Vic
pace


 instrument corrected airspeed of pace aircraft 


Vic
std alt


 instrument corrected airspeed at desired standard altitude 


Vic
test


 instrument corrected airspeed of test aircraft 


Vic airspeed instrument error correction 


Vic
cal


 airspeed instrument error correction of calibrated aircraft 


Vic
pace


 airspeed instrument error correction of pace aircraft 


Vic
test


 airspeed instrument error correction of test aircraft 


Vin airspeed into streamtube 


Vout airspeed out of streamtube 


Vp airspeed position error 


Vpc instrument and position corrected airspeed, calibrated airspeed (Vpc = Vc + residual errors) 


Vpc
cal


 instrument and position corrected airspeed of calibrated aircraft 


Vpc
pace


 instrument and position corrected airspeed of pace aircraft 


Vpc airspeed position correction 


Vpc
cal


 airspeed position correction of calibrated aircraft 


Vpc
pace


 airspeed position correction of pace aircraft 
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Vpc
std alt


 airspeed position correction at the desired standard altitude 


Vpc
test


 airspeed position correction of test aircraft 


Vt true airspeed 


Vt true airspeed error 


Vt
adj


 adjusted true airspeed 


Vt
c
 true airspeed “corrected” (sum of indicated true airspeed plus true airspeed correction 


Vt
e
 true airspeed, Easterly component 


Vt
i
 true airspeed based on instrument corrected airspeed or instrument corrected Mach number  


Vt
n
 true airspeed, Northerly component 


Vw wind speed 


Vw
e
 wind speed, Easterly component 


Vw
n
 wind speed, Northerly component 


Vwx wind speed, x component 


Vwy wind speed, y component 


W weight 


Win work interaction into the system 


win specific work interaction into the system 


inW  rate of work interaction into the system 


Wout work interaction out of the system 


wout specific work interaction out of the system 


outW  rate of work interaction out of the system 


x fly-by tower eyepiece to grid distance 


y fly-by tower grid division height * grid reading 


z fly-by tower eyepiece to fly-by line distance 


 angle of attack 


 sideslip 


 ratio of specific heats, Cp/Cv,  = 1.4 for air 


 pressure ratio, P/PSL 


B pressure ratio at base altitude 


ic pressure ratio based on instrument corrected pressure altitude, Hic 


ic
pace


 pressure ratio based on instrument corrected pressure altitude, Hic, of pace aircraft 


ic
test


 pressure ratio based on instrument corrected pressure altitude, Hic, of test aircraft 


sea level pressure ratio at sea level on a non-standard day 


std alt pressure ratio at the chosen standard altitude 


ic
std alt


 pressure ratio based on instrument corrected pressure altitude, Hic, at desired standard altitude 


moist pressure ratio of moist (humid) air 


 variable temperature recovery factor 


 temperature ratio, T/TSL 


B temperature ratio at base altitude 


ic temperature ratio based on instrument corrected pressure altitude, Hic 


std standard day temperature ratio at a given altitude 


std
std alt


 standard day temperature ratio at the chosen standard altitude 


std
test alt


 standard day temperature ratio at the test altitude 


test temperature ratio at test conditions 


 frequency 


 density 


a ambient density 


B density at base altitude 
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dry density of dry air 


moist density of moist (humid) air 


SL density at sea level 


std standard day density at a given altitude 


test density at test conditions 


water density of water vapor 


 density ratio, /SL 


B density ratio at base altitude 


ic density ratio based on instrument corrected pressure altitude, Hic 


std standard day density ratio at a given altitude 


g GPS ground track 


 bank angle; latitude 


 heading; wind direction 


rel wind direction relative to heading 


V
t
 direction of velocity vector in North-East (Earth horizontal) plane 
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