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ABSTRACT 

 This study explored the interactions of machine learning (ML) and serious 

gaming on trust in the context of a manned-unmanned team. While the government 

commits immense capital to develop autonomous systems for our warfighters, they often 

go unused due to skepticism of their performance and reasoning. Complexity and cost of 

the systems create an atmosphere that is prohibitive to daily training. These factors foster 

mistrust in valuable systems that could otherwise aid the warfighter. 

 In our experiment, the influence of serious gaming and autonomous behavior 

development was field tested with 40 participants in a two-group dual-task paradigm 

design to measure choice, trust indicators, and secondary task performance (STP). In a 

serious game, the control group learned the capabilities of an autonomous ground vehicle 

(AGV), while the experimental group “trained” the behaviors of the AGV. The 

experimental group invested significantly more time in the serious game. During 

execution of a live AGV task, no significant differences of trust indicators or STP 

occurred between groups. Time in the serious game in combination with trends in the 

choice of autonomous or teleoperated control of the AGV may imply that users prefer a 

user-trained AGV over an off-the-shelf solution. All data points to the need for further 

studies into the use of serious gaming to develop autonomous behaviors through an 

interactive ML approach. 
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I. INTRODUCTION 

There is a continuous commitment in terms of time and capital spent to develop 

autonomous systems that enhance tactical operations. However, autonomous systems that 

are designed to help the warfighter are useful only when the Marine trusts it. Trust is not 

automatically established, and in many cases, force-multiplying systems go unused due to 

the human’s skepticism regarding its ability. Furthermore, as machines transition from 

teleoperated toward partially or fully automated, the capabilities, limitations, and reasoning 

of behaviors of the machines will be further mystified to the user. Additionally, the 

complexities, maintenance, and cost of future machines will create an environment that is 

prohibitive to daily real-world training in an infantry battalion. These two factors, inability 

to (a) understand artificial intelligence (AI) and (b) train daily, will compound to create an 

atmosphere of mistrust in valuable systems that could otherwise improve the lethality of 

Infantry Marines. The research will inform how trust transfers from a virtual environment 

to live execution for different levels of autonomy and AI, ranging from teleoperated, 

automatic machine learning (aML), and interactive machine learning (iML) robots.  

A. BACKGROUND 

As described in the 38th Commandant of the Marine Corps’ Planning Guidance 

(CPG) [1], “The Marine Corps confronts an increasingly complex operational environment 

abroad and a challenging fiscal outlook” [1]. An element of this complex future is the 

advent and incorporation of AI and autonomous systems. The CPG states that these 

elements are changing the character of war. The Commandant of the Marine Corps’ (CMC) 

number one priority is the force structure of the Marine Corps. He states, “We will divest 

of legacy defense programs and force structure that support legacy capabilities” [1]. Due 

to the CMC’s predictions on autonomous systems and AI, and his willingness to invest in 

the right technologies, a continued increase in conversations, ideas, and advances will 

ensue. To aid in this thrust of strategic investments, a detailed list of considerations will be 

made for each system in development and how it will aid in the warfighter’s lethality. Two 

key elements that subsume the considerations are trust and utilization.  
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In addition to the CPG, the Joint Operating Environment 2035 [2] provides a strong 

foundation for how this technology will influence the future: 

The next two decades will see significant advances in autonomy and 
machine learning, to include the emergence of robots working together in 
groups and as swarms. New and powerful robotic systems will be used to 
perform complex actions, make autonomous decisions, deliver lethal force, 
provide ISR [Intelligence, Surveillance, Reconnaissance] coverage, and 
speed response times over wider areas of the globe. [2]  

This same document argues that robots will augment human capabilities and will serve as 

a force multiplier, thus increasing the overall lethality and performance of the unit [2].  

These two strategic level concepts drive actions at the Marine Corps Warfighting 

Laboratory (MCWL). Though the 2018 USMC Science and Technology (S&T) Strategic 

Plan [3] predates the CPG, it is still prescient to the future operating environment that the 

CMC foresees. It has identified the following objective in Joint Capability Area 3 – Force 

Application as Maneuver S&T Objective-4: Advanced Robotic Systems in Support of 

Ground Maneuver. Guidance for this objective is:  

Develop affordable technologies to enhance effective and efficient 
employment of ground robotics. Focus on improving capabilities while 
reducing training and operating requirements of user Marines. Fully 
autonomous vehicles are not necessarily the goal. Technologies that enable 
effective ‘supervised autonomy’ by the Marine user, to include 
teleoperation, machine vision, perception, obstacle avoidance, convoy 
following, and the ability to self-navigate pre-planned routes are desired 
capabilities. [3] 

It appears that this current strategic objective is within reach. In 2018, MCWL S&T 

Division led a Manned-Unmanned Teaming (MUM-T) Limited Operational Assessment 

(LOA) [4] at Muscatatuck Urban Training Center, Indiana. During this LOA, MCWL had 

success with the Expeditionary Modular Autonomous Vehicle (EMAV). As a tracked 

unmanned ground vehicle (UGV), it was equipped with a Common Remotely Operated 

Weapon Station, known as CROWS II, that mounted a .50 caliber machine gun. The 

operation of the overall system was the sole responsibility for two Marines, one for the 

machine gun – the other for the EMAV movements [4]. To build from these successes, one 

could anticipate that the next S&T Strategic guidance will read  
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Develop affordable technologies to enhance effective and efficient 
employment of ground robotics. Focus on improving capabilities while 
reducing training and operating requirements of user Marines. Fully 
autonomous vehicles are still not the goal. Technologies that enable 
effective ‘interdependence’ by the Marine user and robot, to include teamed 
operations that exploit the capabilities of both the Marine and robot are 
desired. These technologies must seek to magnify the capabilities of the 
individual Marine, not merely allow him to conduct a similar task by 
dissimilar means. 

The successes of the EMAV by the Marines at Muscatatuck lay a solid foundation 

for getting the right tools in the hands the Marines. A fictional vignette of the future from 

the MCWL’s S&T Strategic Plan [3] states, “Marines rely heavily upon machines 

functioning at varying levels of autonomy for precision fires, logistics, and [ISR] support” 

[3]. This guidance confirms the use of autonomous systems in our future and makes 

apparent that increasing the lethality of Marines via utilization and trust of the systems will 

be complementing factors.  

From a previous infantry battalion operation’s officer perspective [5], A hasty 

analysis of an infantry battalion’s dwell cycle shows that they will spend approximately 80 

out of 365 days in a field training environment [5]. To supplement this shortfall and build 

the required intimacy within small units, Marines currently conduct “back-yard” training—

conducting patrolling operations within close proximity to their barracks. It is overly 

optimistic to think that future Marines will be operating daily with their robots around 

battalion headquarters. Maintenance, cost, durability, and garrison rules provide a stark 

reminder of the difficulties that impede daily training. A fitting example is the observation 

of the regularly filled motor pools that house 40+ High Mobility Multi-Wheeled Vehicles 

(HMMWV) parked neatly in a row, not being used in training or operations. The current 

way the United States Marine Corps (USMC) supplements HMMWV training is through 

the use of the Combat Convoy Simulator [6]. Many more examples of the use of 

simulations provide training where the live option is cost, time, and maintenance 

prohibitive.  

A case study of the Joint Light Tactical Vehicle (JLTV), shows the USMC has 

improved in keeping simulators relevant to the newest gear in their inventory [7]. 
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Additionally, it appears that industry is prepared to provide the simulators to support 

training when asked by the Army and Marines [8],[9]. While these are favorable signs, 

future equipment imbued with automation and AI, as directed in the above referenced 

strategic guidance, will require simulators as a planning factor in the systems engineering 

design process. Simulators will be valuable in the context of smaller systems like the 

EMAV. The Marine’s experience with the system in a virtual environment will provide 

familiarity and training with the capabilities and limitations of the system.  

The Marine Corps’ future systems will have AI. The drivers of future robot actions 

will range from assisted teleoperation through AI machine learning (ML) code. As 

technological complexities increase the concept of trust becomes more complex—the 

technology is perceived to be more human-like and less machine-like. According to experts 

in the field of trust and automation, Lee and See [10], human trust in automation 

technologies ranging from teleoperation to ML AI needs to be better understood [10]. 

While the types and levels of autonomy and intelligence of future systems will vary, 

the mystifying nature of its decision process to the end-user will remain. This syndrome is 

commonly known as a “Black Box.” The inability to explain the decision-making process 

of AI is a topic of great research among academics, as well as the Department of Defense 

(DoD).  

The lead effort to help reduce the black box syndrome of AI within the DOD is the 

Explainable AI (XAI) program at the Defense Advanced Research Projects Agency 

(DARPA). DARPA’s XAI [11] team is exploring over 15 different types of ML techniques, 

ranging from deep learning and neural nets to decision trees [11]. The line of their research 

focused on autonomous, intelligent robots and XAI.  
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Figure 1. Current Machine Learning Techniques and Notional 

Explanability. Source: [11]. 

As Figure 1 shows, machines learn in myriad ways today. Analysis of Figure 1 

reveals that neural networks are the smartest with the lowest explainability. Once the neural 

network is appropriately calibrated, it teaches itself the correct decisions through a 

comparison of the results achieved through a high amount repetitions to a desired result. 

Thus, its self-teaching creates a low explainability. Continuing, the decision trees with the 

highest explainability are programmed to create their code through parameterized 

situations for reciprocated decisions. This code is then readable; it increases its 

explainability. Additionally, to have an appropriate bedrock to begin a decision tree brain 

requires a large amount of complex hard coding of the autonomous actions. According to 

Amershi et al. [12], this requirement places a high demand of tight coupling between the 

programmer and warfighter to achieve the warfighter’s desired outcome. This implies a 

lengthy design and implementation process due to the diverse nature of the programmer 

and end user. Each requires the other’s expertise to create an effective autonomous system 

[12]. A proposed way to generate tighter coupling is to place the warfighter closer to the 

coding. iML in a virtual environment is a viable option to answer the problems listed below.  
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B. PROBLEM STATEMENT 

Current approaches to the development of autonomous systems for Marine Corps 

Infantry community do not account for the following: 

• Implementing MUM-T into a USMC Infantry Battalion environment  

• Fielding simulation systems with the production of near equipment to 

include MUM-T systems 

• Designing and enabling military simulations to allow for ML techniques  

• Achieving the full potential of autonomous actions with current systems 

• Explaining actions of a system developed by aML are difficult. 

When compounded or alone, the aforementioned list of shortfalls will degrade the 

trust and utilization of valuable systems. 

C. OBJECTIVES 

The primary objective of this research is to understand how autonomy and ML 

techniques influence the development of trust in virtual environments for MUM-T systems. 

Secondary objectives are to explore AI, autonomy, automation, and their interactions. For 

AI, to understand different techniques for ML to create more explainable AI. The XAI 

drives towards the usage of serious games within virtual environments and how they are 

currently used for robotic movements and ML. The final secondary objective is to explore 

MUM-T interactions and how trust is developed, maintained, and calibrated within the 

team.  

This research will assist in the Marine Corps’ movement towards its MUM-T goals 

by demonstrating an approach to measure and understand the transfer of trust from a virtual 

gaming environment to live execution. For the aim of more explainable AI, the thesis will 

lay a baseline for the employment of iML techniques. Finally, this thesis will close by 

showing a conceptual model for future employment of MUM-T ground systems within a 

Marine Corps’ Infantry Battalion.  
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Though a motivation for the research is the implementation of ML outputs into 

current virtual environment gaming and simulations, neither gaming, simulations, nor ML 

input or output requirements will be explored in this thesis. Also, the topics of game fidelity 

within graphics and physics modeling, and user-interface for gaming and robotics will not 

be covered. These elements could have a great impact on the development of trust but will 

remain constant for all iterations of the experiment to ensure their impact will be negligible.  

D. RESEARCH QUESTIONS 

1. How is the transfer of trust from a virtual environment to live execution 

and utilization of an unmanned autonomous robot influenced by the types 

of machine learning for the autonomous actions? 

2. How is the attention on a primary task of a Marine reduced by teaming 

with an aML and iML robot? 

E. THESIS DESIGN 

To fully cover this topic, problem, and research questions, the thesis will establish 

definitions and explore research in the areas of AI, MUM-T, and trust throughout Chapter 

II. With the context, definitions, and surrounding research developed in Chapters I–II, 

allows for the detailed explanation of the experiment in Chapter III. The following chapter 

presents the results from the experiment. Finally, Chapter V describes the conclusions, and 

the author’s conceptual model for the use of MUM-T in a USMC Infantry Battalion. 
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II. LITERATURE REVIEW 

A. OVERVIEW 

This chapter will provide a contextual framework, define concepts, and review 

works that directly influence or explore the same topics as this research. Academic surveys, 

textbooks, and published DoD reports were used to build each definition and show what is 

in the realm of possible for simulations, AI, autonomy, ML, and MUM-T.  

B. USE OF SIMULATIONS 

1. Simulations in the USMC 

According to a Center for Naval Analysis (CNA) report [13], the DoD has used 

simulators to aid in the training of its pilots since the 1950s. Ever since then, the DoD 

continued to seek improvements in simulations and simulators to decrease cost and time 

for training. Though the air community has adopted simulations and simulators more 

rapidly than ground forces, great strides are being made by the ground community to 

incorporate simulators into the training regimen. Recent advances in simulators for ground 

forces are vast, and, as shown in Figure 2, ranging from training division and higher staffs 

for planning and decision-making processes to an infantry squad in an immersive 

environment. Simulators can be computer-based simulations to force-on-force actions with 

simulated munitions. These simulations and simulators aid in the training of individuals 

and different unit sizes. The training aids in battle drill execution, decision making, and 

unit cohesion [13]. 
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Figure 2. Overview of USMC Simulations for Training. Source: [14]. 

Even with this momentum for ground forces, the CNA [13] conducted a 

comprehensive use of the USMC’s use of simulations for ground force training in 2009. 

The report concluded that the USMC did not currently use simulations in a coherent or 

standardized manner but had a suitable and appropriate master plan in the Marine Corps 

Training and Education Command’s U.S. Marine Corps Training Modeling and Simulation 

Master Plan. The plan [15] incorporates and maximizes the use of training simulations to 

more efficiently utilize scarce resources [15]. The premise to the identified end-state of the 

master plan falls in line with motivations of this research. The motivations read:  

This end-state represents a ground force that is able to use technologies now 
and in the years to come to both improve the quality of its training program 
and to address budget constraints via training that requires fewer resources. 
It assumes that limitations to funding, resources, and time, as well as safety 
concerns, will reduce the amount of training that can be conducted in a live-
fire environment; thus, non-live-fire training options are desirable. [13] 
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The identified end-states of the master plan have simulations addressing shortfalls 

in training and capabilities, allowing for progressive training, and used throughout the force 

[15]. The CNA identifies one of the two ways to achieve the presented end-state by:  

Appropriate development of future training systems and associated M&S 
[Modeling & Simulations] technologies. For future acquisitions, the Marine 
Corps can best achieve its desired end-state by developing those training 
systems that either address significant gaps in currently fielded systems or 
achieve the greatest benefit to training capability. [13] 

Though it may not require mentioning, the CNA study is absent on the guidance 

for requisition of simulations to pair with emerging technologies to prevent significant gaps 

for systems that will be fielded in the future. The USMC S&T Master Plan answers this 

gap, “developing Marines to effectively operate in complexity by leveraging simulation 

capabilities, developing leaders at every echelon, emphasizing quality in leadership, and 

supporting cultural learning at all levels of operations” [3]. The long-term answer that is 

being developed within the USMC is the “Live, Virtual, Constructive – Training 

Environment (LVC-TE).” This will be a vast and diverse environment that will allow for 

training and exercises at the individual, unit, and collective levels [16].  

The most recent squad-level simulators fielded to aid in unit cohesion and decision 

making are the Tactical Decision Kits (TDKs). The TDKs are currently fielded to each 

infantry battalion within the active duty Marine Corps. Through computer-based 

simulations an infantry squad can conduct interactive tactical decision games, play first-

person shooter serious games, and utilize augmented reality to aid with spatial awareness 

for use of fires. According to a USMC brief [17], the TDK aids the user in the following: 

• Rapid decision-making 
• Tactics bred from competition 
• Fighting a thinking enemy 
• Training decisiveness [17] 

These learning points are provided to the users through immediate review and 

feedback while leveraging the “generational strengths” [17] of the technically advanced 

Marines within the USMC. This same concept and training objectives will continue to be 

relevant as the Marine Corps continues to adopt MUM-T. Just as squad leaders train their 
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Marines through simulation-based training, there is the potential for Marines to train their 

partnered robot in the same fashion.  

2. Simulations for Robotic Training 

Humans are not the only trainee in a simulated environment; robotic programming 

can also be done in a simulated environment. According to Biggs and MacDonald [18], 

there are two main ways in which robotic programming occurs: manual or automatic. 

Manually programmed robots require the user and/or programmer to code the robot’s 

program directly. An automatically programmed robot generates its program through the 

interactions between a robot and human. The second form, automatic programming, has 

come to the forefront as robots become more prevalent and users have less technical skills. 

This increases the ease of use and programming flexibility of the robots by the users. Both 

of these programming modes can be done in real-time or via a simulated environment [18].  

Biggs and MacDonald state there are three categories, as shown in Figure 3, of 

automatic programming: Programming by Demonstration (PbD), Instructive Systems, and 

Learning Systems. PbD has been in use for many years, specifically for industrial robotics. 

The “Teach Pendant / Touch” style of PbD is where the user would move the robotic 

element and the program would record the input. For example, a user would manipulate a 

robotic arm to show where it could pick up an item for installation on an assembly line 

[18]. The Gesture/Voice/Vision elements is where the user would coach the robot into its 

actions via those input signals vice physically manipulating the robot. These input signals 

are then recorded and create the robotic automation. For instructive systems, the robot is 

given instructions by the user in real-time. This usually incorporates already programmed 

sequences of actions and allows the user to link them together to accomplish specific tasks 

[18]. Of interest to this thesis is the concept of a learning system that “creates a program 

by inductive inference from user-provided examples and self-exploration by the robot” 

[18]. This approach utilizes smart AI agents to control the actions. Some elements of the 

actions are taught to the agent by a user and then through ML techniques the robot explores 

how to improve those actions. According to multiple researchers: Bingham [19] and 

Wiggers [20], a majority of AI agent’s exploration is done in a simulated environment to 
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limit wear and tear on the robotic systems, and once efficient actions are learned, it is then 

transferred to the physical robot [19], [20].  

 
Figure 3. Categories of Automatic Robotic Programming. Source: 

[18]. 

3. Summary 

Simulations are engrained training grounds for both U.S. Marines and AI driven 

robots. The Marine Corps is continuing to invest in the development of simulation training 

grounds for individual, small-unit, and staff training. The ability to partner a Marine with 

an AI agent in a virtual environment creates a robust opportunity for the Marine to develop 

an AI agent to perform tasks that can be transplanted into a robotic system.  

C. ARTIFICIAL INTELLIGENCE, AUTONOMY, AND AUTOMATION 

AI, autonomy, and automation have been areas of exploration and research since 

the 1950s. Still, after such a period, there is not a clear definition for AI nor autonomy 

[21],[22]. Though the field of research cannot decide on appropriate definitions, there are 

obvious benefits that AI, automation, and autonomy can provide to our daily lives in both 

civilian and military spectrums. The following sections will compare and contrast the 

academic, practitioner, and military perceptions of the word. The following sections yield 

that AI is the “ability of machines to perform tasks that normally require human 
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intelligence…to include learning” [23]. For actions that have specific inputs to specific 

output, automation is used. For environments that require sensing and understanding a 

spectrum of inputs to achieve a goal-based output, autonomy is used.  

1. Artificial Intelligence Defined 

This section explores different approaches to defining what AI is. Definitions from 

leading textbooks, researchers, and the DoD are presented. 

a. Russell and Norvig’s Approach 

Formative work in the science of AI by Russell and Norvig [24], place useable 

definitions of AI developed by a multitude of respected researchers into four specific focus 

areas [24]. These areas are the categorization of human and rational actions and thought. 

Figure 4 is how Russell and Norvig binned the definitions. Within Figure 4, the rows of 

thinking and acting are categories used as the primary goals for the AI. Thinking is how to 

make the “brains” of the system work while actions are focused on the functions and 

behaviors of the system. Humanly and rationally are the depictions to characterize how a 

system performs [24].  

 
Figure 4. Binning of AI Definitions. Source: [24]. 
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(1) Thinking Humanly 

Cognitive sciences dominate this area of AI, which focuses on understanding how 

humans think and then making the AI mimic that process. The coupling of AI experts and 

cognitive scientists allow for growth and experimentation in both areas [24]. The AI 

scientists that focus in this realm believe that the AI should know the best answer, and if 

no right answer it possible in the uncertain situation then it should at least know the best 

answer [23]. Thinking as a human does not always imply that the thoughts will be rational.  

(2) Thinking Rationally 

The concept of rational thought is derived from the years of intellectual debate of 

great philosophers ranging from Socrates to Mills. This concept heavily utilizes the theory 

of logic. The deep use of logic creates difficulty for informal environments that cannot be 

distilled into a simple logic statement. In uncertain environments, an answer may not be 

achievable [24]. Additionally, this concept will never achieve a “good enough solution,” 

but will continue to hunt for the right answer.  

(3) Acting Humanly 

This focus area stemmed from the Turing Test developed by Alan Turing in 1950 

[24]. The aim of the test was to have a person write a question and pass it behind a curtain. 

If the person was unable to discern if the answer that came back from the other side of the 

curtain was from a human or machine, then AI was achieved [25]. This test precludes on 

how the action was conceived. It could be either through rational or human process. This 

does assume that human actions are not perfect, but in some ways are predictable.  

(4) Acting Rationally 

Russel and Norvig favor the rational agent approach for two reasons. 1. It allows 

for more means to achieve rationality. 2. It has greater flexibility for exploration than 

attempting to achieve human behavior or thought. Since the exploration is not bound by 

human processing limitations, the agent can act in ways that act in the most optimal and 

rational manners. That being said, this area expects the AI to develop rational autonomous 

actions based off of learning and perceptions [24].  
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b. Other Academic Approaches 

Singh et al. [21] provides a comprehensive list of other researchers’ definitions of 

AI. As expected, most definitions presented fall into the bins created by [24]. The traits of 

AI that are synthesized from the analysis by [21] are “reasoning, knowledge, planning, 

learning, communication, perception and the ability to move and manipulate objects.” 

Considering this comprehensive list of traits, a useable definition is also presented by [21] 

as, “AI is the branch of computer science which deals with intelligence of machines where 

an intelligent agent is a system that perceives its environment and takes actions which 

maximize its chances of success” [21]. Singh’s et al. use of “agent” is stimulating and 

reckons to Russell and Norvig’s favored approach to ‘Acting Rationally.’ Singh et al.’s 

approach to defining the principles of AI closely aligns to the DoD’s definition. 

c. DoD Approach 

In 2018, the DoD established the Joint Artificial Intelligence Center (JAIC) with 

the aims to “enhance the ability for DoD components to execute new AI initiatives, 

experiment, and learn within a common framework” [26]. This guiding statement from the 

DoD encourages the DoD’s components to take AI from conceptual research towards the 

execution of tangible experiments and implementation of AI. The DoD defines AI as “the 

ability of machines to perform tasks that normally require human intelligence—for 

example, recognizing patterns, learning from experience, drawing conclusions, making 

predictions, or taking action—whether digitally or as the smart software behind 

autonomous physical systems” [23]. This definition is very similar to the principles 

presented by [21]. An overarching connection is the “smart” or “intelligent” agent.  

d. Summary 

The main concepts brought to the forefront by Russell and Norvig provide a 

baseline for the common principles asserted by Singh et al. and the DoD. Each of the 

principles presented by [21] and [23] fall within one of the human/rational thinking/action 

from [24]. The commonality of AI practitioners’ definitions allow for the implementation 

of those principles in a software or hardware-based agent. An agent is a “means or 

instrument by which a guiding intelligence achieves a result” [27]. With the agent taking 
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on the following principles to guide its intelligence for tasks like recognize, learn, infer, 

predict, communicate, and take action, there is now a working aimpoint for what the agent 

must do to be AI. How it achieves those aimpoints, like a human or rationally, appears to 

be irrelevant to the DoD. The overarching nature of the DoD’s definition allow for the 

development of the agent in any thought pattern and action type. This implies that the goal 

of the DoD is to not have a single AI solve all problems, but that there will be multiple AI 

agents developed as tools be used in different distinct challenge areas.  

Of the many challenge areas defined by the DoD to utilize AI to solve problems, 

this thesis will focus on “Improving situational awareness and decision-making” [23]. The 

first thought comes to mind is the use of an AI robot teamed with an infantry squad. To 

help increase the efficiency and capabilities of the squad, there will be an expectation for 

the robot to conduct autonomous actions. To enable those actions AI is required. For this 

thesis, the DoD definition of AI will be used for “The ability of machines to perform tasks 

that normally require human intelligence—for example, recognizing patterns, learning 

from experience, drawing conclusions, making predictions, or taking action—whether 

digitally or as the smart software behind autonomous physical systems” [23]. 

2. Automation and Autonomy  

As with the term AI, the use of autonomy and automation are flaunted virally as the 

solution to any challenging, monotonous, or dangerous task. Additionally, autonomy and 

automation are used interchangeably to describe similar systems, when they should not be. 

They are two different distinct types of systems—autonomous systems which has 

autonomy and automated systems which have automations. While all the conceptual end 

uses for the terms of autonomy and automation are usually appropriate, an understanding 

for each is required. The academic and military interpretations of autonomy and automation 

will be presented; and as expected, this section will result in a clear definition for 

automation and autonomy for use in this thesis.  

a. Automation 

Automation is the noun form of the word of automatic. According to Merriam-

Webster [28], the origins of automatic break down to “self-acting” [28]. What is absent in 
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the definition or root of the word is intelligence or the ability to learn. This is not a slight 

on automated processes; according to Hoff and Bashir [29], automation is used in every 

corner of the earth [29]—it can analyze, inform, decide, and, even, act [30]. In the year 

2000, Parasuraman et al. [30] developed a concept of automation: “Machines, especially 

computers, are now capable of carrying out many functions that at one time could only be 

performed by humans. Machine execution of such functions—or automation—has also 

been extended to functions that humans do not wish to perform, or cannot perform as 

accurately or reliably as machines” [30]. This is very similar to the expectations of the 

Turing Test, but only for highly specified actions. Thomas Sheridan [31] from the 

Massachusetts Institute of Technology’s Man-Machine Systems Laboratory provides the 

best and most inclusive definition that will be used for this thesis. Sheridan states, 

“Automation is the automatically controlled operation of an apparatus, a process, or a 

system by mechanical or electronic devises that take the place of human organs of 

observation, decision, and effort” [31]. Comparing to this to the definition of AI, 

automation is a well-trained, dumb agent. The lack of the ability to learn, or have 

intelligence, is what distinguishes automation from being AI. Conversely, AI systems can 

have automation sub-components. The automated agent would be able to execute whatever 

specific task it was created to accomplish, no more, no less. The DoD Roadmap [32] aids 

in this line of thought with their description of automated systems, “[Automated systems] 

are governed by prescriptive rules that allow for no deviations” [32]. 

b. Autonomy 

With the understanding that automated processes lack AI and ability for deviations, 

a logical inference would be autonomy possesses AI and can deviate. Only the latter is true. 

The origins of the word autonomy, which come from autonomous, means “something 

autonomous makes its own laws” [33]. The DoD Roadmap contrasts autonomy (i.e., 

autonomous systems) to automation. It states that “autonomous systems are governed by 

broad rules that allow the system to deviate from the baseline”[32]. The DoD Roadmap 

continues to define autonomy as “the ability of an entity to independently develop and 

select among different courses of action (COAs) to achieve goals based on the entity’s 

knowledge and understanding of the world, itself, and the situation” [32]. With the 
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understanding that an entity represents the ‘agent enabled machine,’ this definition will be 

used for autonomy. This definition is reinforced by the Beer et al. [34]. Their definition is 

more explicit in the process of COA selection and interaction with the environment. They 

defined autonomy as “the extent to which a robot can sense its environment, plan based 

on that environment, and act upon that environment with the intent of reaching some task-

specific goal (either given to or created by the robot) without external control” [34]. Of 

note from their definition is “the extent to which.” This implies that there is a spectrum of 

autonomy “ranging from no autonomy to full autonomy” [34]. Figure 5 shows the wide 

variety of definitions for autonomy. Note that all allow for flexibility of the agent to interact 

with their environment. 

 
Of note, only Russell and Norvig mention learning in their definition. 

Figure 5. Definitions for Agent and Robot Autonomy. Source: [30].  
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3. Summary 

Automation is designed for specific inputs to result in specific outputs. Autonomy 

is designed for a broad spectrum of inputs to result in a task-specific goal. There is the 

possibility for an autonomous system to have automated actions as a sub-component. 

Autonomous systems that continue to learn and recognize patterns have AI agents 

powering their decision and action making. AI agents maintain the ability to write new 

“rules” for its decision-making process. With an understanding of AI, automation, and 

autonomy, the next step is to understand how an agent’s ability to sense, plan, and act are 

created to allow for autonomous actions either in the virtual or real world.  

D. MACHINE LEARNING 

One could expect the title of this section to be “Agent Learning,” because the main 

concern is how the agent, inside the machine, learns. The concept of the agent has been 

developed within this thesis to have a range of capability and intelligence. Within 

automated system it is well trained for execution with no capability of decision making, 

with autonomous systems it can make decisions within a finite space of inputs and outputs, 

and, finally, there are some AI systems that possess the ability to learn from experiences. 

According to Russell and Norvig, there are four different types of AI agents: Simple 

Reflex, Model-Based Reflex, Goal-Based, and Utility-Based [24]. An overly simplistic 

explanation of each follow: 

• Simple Reflex – If agent perceives x then the agent does y. The agent has 
no memory. 

• Model-Based Reflex – The agent can remember what has been done and 
builds a mental model. Based on the model’s current condition it decides 
to do x, y, or z. 

• Goal-Based – The agent can build a mental model of the current 
situation. It also knows what the goal model is. Based off the current 
model and goal model, the agent decides an action. 

• Utility-Based – The agent can build a mental model of the current 
situation. It also knows what the goal model is. The agent also knows 
there’s more than one way to achieve the goal model. The agent decides 
one the “best” action to achieve the goal model. [24] 
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This explanation helps us understand how agents work within an environment. Each 

of the agent types to follow maintain the capability to learn. For an agent to learn there are 

four fundamental sub-elements: Critic, Learning Element, Performance Element, and 

Problem Generator [24]. The interactions of each of these elements is shown in Figure 6.  

 
Figure 6. General Model of Learning Agents. Source: [24]. 

In reference to Figure 6, the performance element is what has been referred to as 

the agents listed above, the element that made the decisions on what to do for the entire 

system. The performance element still does that decision making. As we build elements to 

the agent, the learning enabled agent has the learning element and problem generator; 

additionally, the learning enabled agent is an alter-ego named the “critic.” The critic is 

responsible for understanding what the correct result for the agent should be and providing 

feedback to the agent on how well of a job the agent did in contrast to the correct result. 

This feedback, or difference, is provided to the learning element. The learning element 

remembers the difference between the best result from the critic and what the performance 

element executed. The problem generator is the creativity element to the agent. The 

problem generator creates new ideas for exploration and experimentation to improve the 
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agent’s performance. Increasing the amount of creativity allowed for the agent, increases 

the number of attempts for originality by the agent [24]. The understanding of these internal 

interactions of the agent is critical for the explanation of different types of agent learning 

occurs.  

1. Classifications of Machine Learning  

The different components of the agent, i.e., critic, learning element, or performance 

generator, can learn. The learning of these components is enabled by what the agent already 

knows, how it prioritizes elements of the model, and what feedback should be used to learn 

[24]. The way that machine learning is classified is by the type of feedback that the critic 

provides. There are three major types of machine learning: Unsupervised, Supervised, and 

Reinforcement Machine Learning [24]. The types of learning and performance elements, 

i.e., neural networks and decision trees, can be applied across the types of learning 

methods. For the explanation of types of learning, the categorization of photos will be used 

as a simple use case. Each section will also discuss if novel machine learning occurs. Novel 

machine learning is when the computer presents results that are successful but have not 

been thought of by humans.  

a. Unsupervised Machine Learning 

Unsupervised machine learning provides minimal guidance to the critic. In turn, the 

critic provides no explicit feedback to the agent. This sort of machine learning process is 

best suited for pattern matching or clustering. With a large amount of data iterations, i.e., 

100,000 photos, for the input, the agent learns to group the photos into different piles [24]. 

Once the bins are created, naming of the bins by the human is stilled required. This 

approach allows for novel exploration or binning by the agent. Elements may be within the 

photos that were hidden to the human eye that aid in different types of classifications.  

b. Supervised Machine Learning 

Supervised Machine Learning requires a clean set of sorted data for the initial 

learning to take place. With this type of learning, the right answer is provided directly to 

the agent after it is seen [24]. For example, as each of the 100,000 photos is shown to the 
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system, the correct answer is also provided to the agent as to which bin the photo should 

be placed. This sort of learning requires a substantial amount of correct data, usually 

computed by a human previously, and prevents the novel explorations that is achievable 

by machine learning.  

c. Reinforcement Machine Learning 

Reinforcement Machine Learning provides a reward, either negative or positive, to 

the agent after a set amount of iterations or actions. The reward is decided by the critic 

based on the comparison of the performance element output compared to the ideal modeled 

outcome [24]. With the pictures as an example, a reward can be provided after every photo. 

The critic knew the picture was a cat, but the performance element classified the photo as 

a zebra, in turn a negative reward is administered. As expected, if the cat is classified as a 

cat, a positive reward is given. As the number of iterations between reward is increased, 

the flexibility for novel machine learning solutions to emerge is possible.  

2. Explainability of Machine Learning 

Machine learning has made great strides in recent years. Success stems from the 

implementation of different algorithms for the learning and performance elements of the 

agent and advances in computer speeds. One of the most recent examples of successful 

machine reinforcement learning is the work done by DeepMind and Blizzard with the 

StarCraft II Learning environment. StarCraft II is a real-time strategy game that involves 

the need for planning and execution of tasks [35]. With deep machine learning—millions 

of repetitions of the learning cycle—the team created a StarCraft II controller, named 

AlphaStar, that was able to defeat top-performing human players. During the premiere of 

AlphaStar’s capability against the top StarCraft II players, AlphaStar’s performance was 

indistinguishable from a human’s, but justification for the moves and strategies performed 

were unable to be explained by any members of the team, onlookers, or AlphaStar [36]. 

This sort of superb performance from a “Black Box” is common characteristic for AI 

agents. AI’s recent rapid growth and the “Black Box” syndrome has sparked a line of 

research and efforts along Explainable or Interpretable Artificial Intelligence [37]. 
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a. Justification for Explainable AI 

In Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence 

(XAI), Adadi and Berrada [37] have identified four main reasons for the need of XAI: 

Explain to Justify, Explain to Control, Explain to Improve, and Explain to Discover [37]. 

Justification, control, and improvement are the primary concerns of this thesis. Discovering 

is focused on the human learning from the novel approaches learned by the AI during its 

machine learning processes. As this thesis will explore in Section II.F.3.a, justification, 

control, and system improvement will influence trust. ‘Explain to justify’ means that the 

AI can provide backing to the purpose of the decisions that were made. To an end-user in 

our case, a U.S. Marine, justification beyond simple logic coding is required – interpretable 

information on why an agent’s decision occurred is needed. ‘Explain to control’ enables 

the AI agent to be a teammate controlled by the Marine. This will help with the rapid 

identification and adjustment of shortcomings [37]. ‘Explain to improve’ allows for the 

Marine to continue to improve the system as the Marine becomes more intimate with the 

AI agent’s decision making processes [37]. These cases for explanation will allow for the 

improvement of the AI agent as a teammate for operations but does not help for the 

understanding of why AI is unexplainable.  

b. What Makes AI Un-explainable?  

The root of the inexplicable nature of AI stems from the machine learning models 

and the inability to “open-up” the learning and performance elements of the AI agent. 

DARPA’s XAI program states that “machine learning models are opaque, non-intuitive, 

and difficult for people to understand” [11]. The models represent how the AI agent 

interprets the input to create its output. These models are created by algorithms that are 

represented within neural nets, Bayesian Belief nets, and various other techniques [11]. 

Even with the best computer scientists, the explanation of the calibration and adjustment 

of these models are inexplicable [38]—one cannot simply open the model and dissect it 

like a combustion engine.  

As motivations and promises of AI increase, so does the research effort in making 

it explainable [11], [37]. Until this point in the thesis, the machine learning process are 
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automatic, thus, automatic Machine Learning (aML). The agents learn through a large 

amount of pre-computed inputs and outputs. A line of DARPA research focused on 

autonomous, intelligent robots, and XAI is trending towards the use of interactive machine 

learning (iML) [11].  

E. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAI) 

1. Academic Review of XAI 

With the speed and growth of AI partnered with its requirement to be understood, 

a substantial amount of research on XAI has followed. In December 2019, Arrieta et al. 

[39] created a survey of XAI concepts and taxonomies surrounding the topic. They 

reviewed over 400 scholarly articles and publications on XAI. Out of those reviews, the 

authors created a list of attributes for the motivations for XAI ranging from trustworthiness 

to privacy awareness. The attributes are listed in left most column of Table 1. Two critical 

motivations are interactivity and trustworthiness. Arrieta et al. connect these two 

motivations as important to “users affected by AI agent model decisions” [39]. 

Interactivity, trustworthiness, and user interactions are of importance to this work. In the 

case of this thesis, it is considered that U.S. Marines are the end-users and the AI agent 

developed through ML is running the robot that is a teammate to the U.S. Marine. The 

importance of trustworthiness and interactivity within a MUM-T are outlined within 

Section F. Manned-Unmanned Teaming (MUM-T).  

Building from the concepts and algorithms that create the underlying structures for 

ML AI agents outlined in Section II.D. Machine Learning, Arrieta et al. research shows 

that the different types of AI agent model structure have varying levels and approaches to 

explainability, shown in Table 2 [39]. The “Transparent ML Models” are of interest due to 

their transparency to the end-user. This implies that the models are easily shown in a text 

or graphical format for the user to understand. An example of a “Transparent ML Model” 

is the decision tree model. Figure 7 shows a simple representation of how the decision tree 

model can be presented to the end user. Though this is a representation of relatively 

transparent AI model, to our Marines the training dataset that is developed through the ML 

process can still remain a black-box and/or the outputs are not the desired actions by the 
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Marine for their approach to “interactivity” with the unmanned teammate. A known 

shortfall for the transparent models, shown in Table 2, is that they lack the ability to have 

a large data set, knowledge base, within the agent’s model. Thus, a majority of the work 

being completed on improving the explainability of AI is focused on the ML techniques 

that require the post-hoc analysis [39].  

Table 1. XAI and Target Audiences. Source: [39]. 
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Table 2. Classification of ML Models to Explainability Source: [39]. 

 

 
Figure 7. Illustration of Decision Tree Model. Source: [39]. 

As work continues for all types of ML models to increase the explainability, 

concerns still exist from the end-user having to conform to the agent’s model and the data 

sets and algorithms used to create the agent’s behaviors. There is still greater need to 



28 

include the end-user in the development of the agent’s model. This incorporation of the 

end-user will increase the user’s understanding of the process, purpose, and capabilities of 

the agent’s behavior. 

2. User-Focused Proactive XAI Techniques 

Building on the literature review conducted by Arrieta et al., the list of references 

presented in the “interactivity” and “trustworthiness” categories Table 1 were reviewed. 

Out of the 16 publications, only 2 focus on incorporating the user in a proactive approach 

to explaining the AI. A summarization of those two publications follow.  

Utilizing the same metaphor as Alan Cooper does in his book ‘The Inmates are 

Running the Asylum: Why High-Tech Products Drive Us Crazy and How to Restore the 

Sanity;’ Tim Miller et al. [40] argue that AI researchers are focused on developing 

explanatory agents for AI researchers, and not for the intended end-user. In Miller et al.’s 

self-proclaimed “light” literature review of XAI papers submitted for the International Joint 

Conference on AI of 2017, “almost all of the [twenty-three] papers were describing 

methods for automatically generating explanations of some type” [40]. Their brief survey 

of articles concludes that AI researchers must collaborate with researchers “from the social 

and behavioral sciences, to inform both model design and human behavioral 

experiments”[40]. Miller et al. confirm that the current approaches being taking by the 

DARPA XAI program for human-in-the-loop techniques of ML is the correct direction 

[40]. 

Zhang et al. [41] connects the concepts delivered by Miller et al. and confirms a 

critical factor for the development of the AI agent’s model is its interpretability to the user. 

This interpretability builds expectations by the user of the robot’s capabilities. The process 

used by Zhang et al. is to have an AI agent in a simulated environment execute a series of 

actions to complete a task. After the action is completed, the actions performed are 

collected under a term or label provided by a human. The example used by Zhang et al., 

takes basic movements of a robot and subsets them together under human labeling. The 

scenario involves a robot moving about a gridded space with the overall goal of collecting 

and storing boxes. At the primitive level, the robot can move, observe, load, and unload. 
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The user can collect these primitives into a higher-level task of collect which involves 

moving, observing, and loading the desired box. They call this process the human 

interpretation of training examples. Zhang et al. experimented with this process with 13 

human subjects, a robot, and the standard task of block stacking. While comparing their 

process that allows for human labeling against a cost-optimal planner, they concluded that 

their process increases explainability and predictability of the robotic actions. In this 

context, the cost-optimal planner is like a “black-box” since it does not provide any 

explanation. The human labeling planner accounts for the user in its planning process and 

increases the explainability and predictability. In relationship to this thesis, the cost optimal 

planner is similar to an aML developed AI agent, while the human labeling planner is 

similar to iML[41]. The notion of predictability pairs well for trust and MUM-T. 

3. DARPA Research 

In addition to the academic realm, the DoD has taken great interest in the 

explainability of AI. In 2019, David Gunning, program manager in DARPA’s Information 

Innovation Office, and David W. Aha [42], acting director of the U.S. Naval Research 

Laboratory’s Navy Center for Applied Research in AI, summarized the efforts and purpose 

of the DARPA XAI program. They confirmed that XAI is essential for users to 

“understand, appropriately trust, and effectively manage these artificially intelligent 

partners” [42]. Gunning and Aha succinctly develop the concept of focusing on the user 

with three research questions: “(1) how to produce more explainable models, (2) how to 

design explanation interfaces, and (3) how to understand the psychologic requirements for 

effective explanations” [42]. The first two questions are covered by 11 XAI research teams. 

The research effort spans the lines for data analytics and autonomous systems. Of the 11 

research teams, 3 are focused on autonomy, as shown in Figure 8.  

Oregon State University (OSU) is focused on the user interfaces and the best 

approach for explaining actions by the autonomous system. Carnegie Mellon University 

(CMU) is creating a form of explainable reinforcement ML that explains why specific 

rewards were given to the agent while training. Of most importance to this thesis, Palo Alto 

Research Center (PARC) [43]; assisted by researchers from CMU, the Army Cyber 
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Institute, the University of Edinburgh, and the University of Michigan; “is developing an 

interactive sensemaking system that can explain the learned capabilities of an XAI system 

that controls a simulated unmanned aerial system (UAS)”[43].  

 
Figure 8. DARPA XAI Research Teams. Source: [42]. 

The tool PARC will utilize is an output of the COmmon Ground Learning and 

Explanation (COGLE) project. The COGLE tool “will support user sensemaking of 

autonomous system decisions, enable users to understand autonomous system strengths 

and weaknesses, convey an understanding of how the system will behave in the future, and 

provide ways for the user to improve the UAS’s performance” [43]. As implied within the 

name of the project, the goal is to develop common ground for the user and the autonomous 

system. Within COGLE this is done through a virtual environment. The common ground 

will be built through human and computer interactions through demonstrations and 

explorations within the virtual environment. They anticipate that “human plus computer 

teams with common ground to work better and learn faster than humans or machines alone” 
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[43]. As is common practice in reinforcement learning, the AI agent will be placed through 

a curriculum of courses to develop its intelligence. The curriculum is shown in Figure 9.  

 
Figure 9. COGLE’s curriculum for the UAS training. Source: [43]. 

Since it is in a virtual environment, the end-user can observe the actions, 

interactions, and development of the intelligence during the reinforcement learning 

iterations. Additionally, and enabled through the user interface, the AI agent can provide 

explanation to the user, and the user can guide AI agent actions. These actions develop 

common ground with the user as a teacher and the AI agent as a student. PARC has termed 

this environment in the following way: “In analogy with pedagogy, we call this two-way 

human-in-the-loop partnership ‘mechagogy’ in analogy with pedagogy” [43]. Thus far, 

their research maximizes both the teacher’s and student’s qualities. Since the user is 

familiar with the contextual training scenario in the virtual environment, the user can guide 

the AI agent in the correct direction for learning; and due to the reinforcement learning 

nature of the AI agent, the AI agent can still produce novel results that can be shown to the 

user [43]. Though there are no published results of this project to include the topic of trust, 

it is expected that the common ground between user and AI agent will aid in the calibration 

of trust.  
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4. Interactive Machine Learning 

Amershi et al. [12] state, iML is the intimate involvement of the end-user in the 

incremental development of the agent’s model and its behavior [12]. iML is best explained 

through a comparison to aML. Figure 10 is a graphical comparison. The major difference 

between the aML and iML is when and how often the end-user interacts in the education 

process of the agent. In historical applications of aML, a ML expert would code and tweak 

the parameters for the ML process to educate the agent. This completed agent would then 

be presented to the end-user. At this point, the end-user has little awareness of the process 

used to create the agent, creating a low explainability of the agent for the end-user. Any 

gaps in the agent’s model identified by the end-user would then require the ML expert’s 

assistance in re-educating the agent. iML now pulls the end-user closer into the 

development of the agent. After the ML expert creates the appropriate paraments for the 

agent’s educational success, the ML expert is no longer needed. The system established by 

the ML expert establishes the end-user as the critic for the agent’s development. This 

increased involvement of the end-user in the development of the agent aids with the 

explainability [12].  

Within iML, the human can fulfill the responsibility of the critic in both 

reinforcement ML, as with the thumbs up and down within Pandora Music and Podcast 

Application [12], or as the input of the “right answer” in supervised machine learning, as 

Gutzwiller and Reeder [44] explored for autonomous search and rescue patterns. Brown et 

al. [45], show that the iML AI agents can build a model for the specific user it is interacting 

with and present information in back to the user in a personalized manner, Figure 11. 

Additionally, Figure 11 demonstrates how the user can interact with the variety of ML 

processes; the format shown matches the standard view of AI agent development presented 

by Russell and Norvig in Figure 6.  
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Figure 10. Comparison of Traditional aML to iML Processes. 

Source: [12]. 

 
Figure 11. iML in a View Comparable to Figure 6. Source: [45]. 
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To date, there are numerous research efforts into iML. These explorations include 

pixel and photo classifications to gesture recognition and Ant Colony Optimization, with 

motivations ranging from increasing the speed of the machine learning process to achieving 

transparency within the “black box” [46]–[49]. Elements of iML are explored within 

Section II.G.2 Interactive Machine Learning (iML). Another approach that utilizes an 

iterative and interactive process for education of AI agents is known as interactive task 

learning (ITL). Laird et al. [50] show that ITL can work with ML techniques or be used as 

a standalone approach to educate an agent [50]. 

5. Interactive Task Learning 

ITL is an approach to the education of the agent through an instructor to student 

relationship. The human is the instructor and the AI agent is the student. Within ITL, 

underlying concepts are explained and learned by the agent for the execution of a task. The 

agent learns and remembers concepts, tasks, goals, and definitions of objects [50]. This 

allows for the transferring of learned information from one problem set to another. “The 

primary goal of an interactive task learner is to learn a task from its interactions with an 

instructor and from its own experiences” [50]. This ability of the agent to learn through 

human interaction, via voice or physical control, is complemented by ITL’s design for 

broader problem sets compared to traditionally narrow problems of current AI research. As 

with the iML approach, the ITL uses a software development expert to create the learning 

operating systems of the agent and then removes the expert from the learning loop. The 

learning loop is then strictly dependent on the human (instructor) to agent (student) 

relationship [50].  

6. Summary 

Through the analysis of AI, it is evident that AI is the representation of an agent 

within a machine that can accomplish tasks normally requiring human intellect. It can 

recognize patterns, learn, infer information, and / or take actions. This agent can be 

represented digitally, as in a computer based system, or be internal to an autonomous 

physical system [23]. Continuing, all or some parts of a system can be automated. 

Automated elements are prescriptive and allow no room for flexibility [32]. In contrast, 



35 

autonomous agents sense a broad range of inputs, understand the identified goal state, and 

can develop a plan to bridge the two [34]. The underlying agent for both automated and 

autonomous processes is developed in myriad of ways. One end of the spectrum is through 

a computer programmer’s coding of conditional statements to produce the desired output. 

The opposite end of the spectrum is the use of an AI agent to create the associated logic 

through ML. The AI agent can be educated through multiple ML processes. An identified 

shortfall for aML processes is the byproduct of the “black-box” nature of the AI agent’s 

logic to the end-user’s understanding. Research is underway in areas to increase the 

interaction of the end-user into the AI agent’s development process. Both iML and ITL 

show promise in tightening the relationship between the AI agent and end-user.  

This sort of picture of AI agents and ML environments begins to create a concept 

that is analogous to the common phrase, “the right tool for the job.” For spray painting cars 

on an assembly line, automated robotic arms effectively and efficiently accomplish the task 

[51]. For cleaning the floor in your house, an autonomous vacuum achieves the tasks. The 

robot understands that a clean floor is the goal and can accomplish this even when new 

disruptive objects are placed in the environment, e.g., a chair is moved from the last 

vacuuming [52]. Microsoft recently used ML techniques to aid in the classification of 

photos that captured elusive and rare snow leopards. They used hundreds of thousands of 

painstakingly human classified photos to train the system [53]. All aforementioned 

solutions work well in a deterministic environment and do not incorporate a human 

element. For agents that are intended to work with humans, the interactive approaches – 

interactive Machine Learning and Interactive Task Learning are viable options. To 

continue to explore how interactive approaches can be used, an understanding of manned-

unmanned teaming is required.  

F. MANNED-UNMANNED TEAMING (MUM-T) 

1. Why MUM-T? 

As AI and ML technology continues to improve, the goals for how machines— i.e., 

computers, robots, AI agents—perform in relationship to a human will continue to develop. 

According to Johnson et al. [54], with the technological advances, the idea of “teaming” 
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will become a mainstay in man-unmanned vernacular [54]. Unmanned agents range in 

scale from teleoperated systems (remote controlled) to independent automatons (Roomba 

vacuums). Teleoperated systems require their inputs to be interpreted and decided upon by 

the human controller. The outputs are then triggered through some form of controller to 

the system to execute the prescribed action. The simplest, albeit most inefficient, form of 

teleoperation requires complete human attention. On the opposite end of the spectrum—a 

fully autonomous system—requires no human oversight. All inputs, decisions, and outputs 

are sensed, interpreted, decided, and actioned by the fully autonomous system. As detailed 

in Section C – Artificial Intelligence, Autonomy and Section D – Machine Learning, the 

primary shortfall of AI is its ability to handle novel situations. Published in 1978 by 

Sheridan and Verplank [55], Figure 12 shows the relationship between specified and novel 

situations to the amount of automation an agent can have [55].  

 
Figure 12. Task Entropy to Degree of Automation. Source: [55]. 
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The figure creates a relationship between the types of tasks that are acceptable for 

an agent to perform dependent on the predictability of a task. The authors describe the 

degree of automation on a spectrum ranging from remote controlled to fully automated, 

and task entropy from completely known to fully unknown. In the bottom left, the human 

is in complete control of an agent executing pre-determined tasks, i.e., a mundane and 

repetitive task. Following this task to the right on the graph, shows the type of tasks that 

are ideal candidates for the agent to execute with minimal supervision. A modern-day 

example of this would be the Microsoft photo classification task. In the top left of the figure 

is the use of an agent or robot to conduct an unknown task in a dynamic environment. The 

top right is the agent completing that task without any human involvement, i.e., vacuuming 

a room. The transition between the white to shaded area was defined as the frontier by 

Verplank and Sheridan [55]. The relationship developed by [55] is also valid with 

autonomy. Since 1978, the frontier remains in the same region. AI agents are very good in 

known situations for predetermined tasks. This limitation, and thus the reduction of the 

frontier, can be overcome by the teaming of an AI agent with a human counterpart.  

Verplank and Sheridan’s research focused on the use of unmanned robotic systems 

as an extension of a human controller in undersea exploration. Due to the difficulties of 

maintaining responsive and reliable communications with the underwater system, their 

explorations were to identify what tasks could be automated to the unmanned robot system. 

Their representation of manned unmanned teaming (MUM-T) shows the benefits of the 

teaming relationship. Though simplistic, and relating to undersea operations, the benefits 

of teaming (via “sharing” and “trading”) are easy to envision in other realms.  

In Figure 13, the dotted horizontal line represents task accomplishment. The 

obvious goal of the relationships represented in the figure are to raise the task, “L,” above 

the line. In Verplank and Sheridan’s depiction, the box “C” represents a computer but can 

also represents the concept of a machine. Alone, the human, “H,” can accomplish the task, 

but within the “Sharing” realm the task is either accomplished to a greater degree, 

“Extend;” or alleviates the amount of work the human must do, “Relieve.” In the “Trading” 

area, the computer can “Back-up” the human’s work-load, but to a sub-optimal level if the 

human requires relief. The final option within “Trading” is where the computer “Replaces” 
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the human; this does not accomplish the holistic task [55]. Within this thesis, the focus of 

MUM-T will be the “Extend” action for the overall task, and the “Replace” action for 

specific sub-tasks. This approach for MUM-T allows the team to do more. Additionally, 

the allocation of the right sub-tasks to the computer will free the human to execute more 

critical and cognitive tasks. The following section explores a human machine teaming 

model for the allocation of tasks and sub-tasks.  

 
Figure 13. Benefits of MUM-T. Source: [55]. 

2. What is MUM-T? 

The DoD’s Unmanned Systems Integrated Roadmap [32] uses the United States 

Army’s definition for MUM-T [56].  

Manned-unmanned Teaming [MUM-T] is the synchronized employment of 
soldiers, manned and unmanned air and ground vehicles, robotics, and 
sensors to achieve enhanced situational understanding, greater lethality, and 
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improved survivability. The concept of MUM-T is to combine the inherent 
strengths of manned and unmanned platforms to produce synergy and 
overmatch with asymmetric advantages. [56]  

This definition fits well into the current research on MUM-T. The most common 

model of MUM-T is the Fitts Model.  

 
Bradshaw et al. state, “The Fitts HABA-MABA (humans-are-better-at/machines-are-
better-at) approach. Reprinted with permission from Human Engineering for an Effective 
Air Navigation and Traffic Control System, 1951, by the National Academy of Sciences, 
courtesy of the National Academies Press, Washington, D.C.” [57]. 

Figure 14. Fitts Model of MUM-T. Source: [57].  
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According to Bradshaw et al. [57], the Fitts Model, developed in 1951, is the 

delegation of sub-tasks between a human and machine to who can best accomplish that 

sub-task while aiding the team to better accomplish the overall task as shown in the 

“Extend” portion of Figure 13 [57]. The Fitts Model is also known as the “Humans Are 

Better At – Machines Are Better At” (HABA-MABA) model. Figure 14 compares the 

HABA-MABA abilities. It clearly breaks down the types of tasks that are good for humans 

and machines. The assessment of who does what better is still valid today.  

The conglomeration of the Verplank et al. and Fitts Model fits well to how the 

USMC’s Marine Corps Doctrinal Publication 1 - Warfighting [58], views the use of 

technology: “Equipment is useful only if it increases combat effectiveness” [58]. With 

regards to Figure 13, the dotted line is combat effectiveness. For achievement of the task 

above the combat effectiveness line, the teammate relationship between human and 

machine requires interdependence. Johnson et al. [54] utilize the Coactive Design process 

to develop the approach to design for interdependence. They state: “Interdependence 

describes the set of complementary relationships that two or more parties rely on to manage 

required (hard) or opportunistic (soft) dependencies in joint activity” [54]. The concept of 

interdependence is developed under three types of interactions. The interactions are 

symbiotic between the human and the machine to achieve true MUM-T. The three concepts 

are observability, predictability, and directability; [54] defines them as: 

Observability means making pertinent aspects of one’s status, as well as 
one’s knowledge of the team, task, and environment observable to others.  

Predictability means one’s actions should be predictable enough that others 
can reasonably rely on them when considering their own actions. 

Directability means one’s ability to direct the behavior of others and 
complementarily be directed by others. [54] 

This again pairs nicely to the USMC’s doctrine on cooperation and teamwork. 

Warfighting [58] builds from an idea presented by John Boyd’s Organic Design for 

Command and Control about the idea of implicit communication within a command:  

Our philosophy of command must also exploit the human ability to 
communicate implicitly (Boyd). We believe that implicit communication—
to communicate through mutual understanding, using a minimum of key, 
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well-understood phrases or even anticipating each other’s thoughts—is a 
faster, more effective way to communicate than through the use of detailed, 
explicit instructions. We develop this ability through familiarity and trust, 
which are based on a shared philosophy and shared experience. [58] 

 When synthesized, it creates a clear picture for the defining the goal for MUM-T to 

achieve the definition for MUM-T used by the DoD, [32]. Observability and Directability 

are encapsulated by the Marine Corps’ use of implicit communication. A “mutual 

understanding” is the Observability of knowledge between both human and machine. The 

use of ‘well-understood phrases’ allows for the Directability of the elements of the team. 

Finally, the predictability is developed “through familiarity and trust.” Trust is a critical 

element to the adoption and use of any system by a Marine – especially a teammate. 

3. Trust in Automation 

The DoD Roadmap for Unmanned Systems Integration [32] acknowledges trust as 

“complex and multi-dimensional” [32]. The same guiding document continues to develop 

trust as part of the life cycle of any system, and that there are multi-faceted roles of human 

trust in systems, ranging from end-users to policy makers. Additionally, the ability to 

maintain human authority within missional approval will aid in trust of MUM-T systems. 

Finally, “Without an adequate level of trust between operators/commanders and 

autonomous unmanned systems, to function properly with a high degree of consistency, 

these systems will not be used in any mission set” [32]. To create systems that will be used, 

an understanding of the elements of trust will create a bedrock for the life-cycle 

development of the autonomous system and their development and maintenance of trust 

with humans.  

a. Elements of Trust 

Seminal work by Lee and See [10] in human factors and trust in automation state 

that trust is the “attitude that an agent will help achieve an individual’s goals in a situation 

characterized by uncertainty and vulnerability” [10]. Lee and See make a clear delineation 

between trust and reliance based on work from Ajzen and Fishbein. Lee and See produce, 

“trust is an attitude, and reliance is a behavior” [10]. They continue, “Trust guides—but 
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does not completely determine—reliance” [10]. Though trust is a personal view, there are 

contextual elements that develop the user’s approach to trust.  

Lee and See continue, there are three additional contextual elements that shape and 

influence trust in autonomous systems: Individual, Organization, and Cultural Context. 

Individual context focuses on the user’s experiences, self-confidence in task, and specific 

history that develops a level of trust. Organizational context involves the interactions 

between persons within the organization and how trustworthy the organization is. Cultural 

context is developed through the user’s society’s customs and expectations [10]. 

Continuing from the contextual elements that influence a user’s trust, the user must also 

build trust through awareness of the autonomous system. 

To have the appropriate trust in a system requires calibration, resolution, and 

specificity of the system. Lee and See build on concepts presented by Lee and Moray, 1994 

and Muir, 1987, calibration refers to finding the center line of over-trust and under-trust, 

which [10] titles as distrust. Distrust will be used through the rest of this thesis. For 

resolution Lee and See utilize Cohen et al., 1999 to develop it as an understanding of the 

tasks and situations that fall within the systems capabilities. Finally, specificity is knowing 

which specific actions and components are to be trusted [10]. These elements of trust tie 

directly to the factors of the automated system through performance, process, and purpose. 

Performance is how well the automation operates. Process is how it operates. Purpose is 

understanding what the system was designed to do [10]. 

Tying these elements of trust together; calibration, resolution, and specificity of a 

system is the user’s understanding of the autonomous systems capabilities for a specific 

task. Within the specific task; performance, process, and purpose are focused on “how” the 

autonomous system will perform that specific task. These elements of trust may be 

influenced by the user’s own individual, organization, and culture context of the system 

and the associated tasks. These elements are brought together by the user’s attitude towards 

the system. To achieve trust, familiarity with the system is required. The familiarity will 

build predictability, then dependability, and, finally, the attitude of faith in the system - 

trust. In 1987, Bonnie M. Muir [59] develops this idea as the calibration of trust.  
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b. Calibration and Accumulation of Trust 

Muir’s work extends a model of inter-human trust developed by Rempel, Holmes, 

and Zanna in their article, “Trust in Close Relationships.” Muir takes the Rempel et al.’s 

trust model to “how a human’s trust in a machine changes as a result of experience on a 

system” [59]. The resultant of the experience developed with a system is calibrated trust. 

A user who has appropriately calibrated their trust in an autonomous system will achieve 

the maximize value of the MUM-T as shown in “Extend” relationship of Figure 13. As 

mentioned, calibration is the centerline between over- and dis-trust. Over trust is the user’s 

expectation that the system’s range of capabilities, performance, and purpose are greater 

than they actually are. Distrust (under-trust) is the opposite. Byproducts of inappropriate 

calibration of trust are misuse – reliance on automation for incorrect tasks, and disuse – 

rejection of the capabilities of the automation [10]. Figure 15 shows the balance of trust 

and the automation’s capabilities for the calibration of trust.  

 
Lee and See state, “the relationship among calibration, resolution, and automation 
capability in defining appropriate trust in automation. Overtrust may lead to misuse and 
distrust may lead to disuse” [10].  

Figure 15. Lee and See’s Calibrated Trust. Source: [10]. 



44 

In Cohen et al.’s [60] “Trust in Decision Aids: A Model and Its Training 

Implications,” trust is developed as the product of interaction between the user and the 

system. This implies, that with every interaction, trust is evolving. To achieve appropriate 

calibration and resolution, familiarity with a system is required. Elements that influence 

the familiarity and the predictions of a system are many. They range from the user’s 

experience with the system in a variety of tasks and scenarios, understanding of the system 

design and functionality, and reports by other concerning their experiences with the system 

[60]. The way to increase the user’s exposure to these elements of familiarity and 

predictions is through experience with the system in training. Based on Marine Corps 

Doctrinal Publication 1-3 Tactics[61], the goal of Marine Corps training is to develop 

familiarity, trust, battle drills, and combat standing operating procedures (SOPs) [61]. 

Battle drills and SOPs develop expectations within a unit of who will do what specific 

actions during a task. This is very similar to the sort of relationship that is developed with 

an autonomous teammate.  

In review, the following elements are critical to the user in development of trust to 

with autonomous teammate:  

• Resolution – Is this the right task for the autonomy? 

• Calibration – Should the autonomy be used for this task? 

• Process – How will the autonomy complete this task? 

Additionally, the following factors of autonomous systems are essential for the 

user in their development of trust: 

• Purpose – Was the autonomy made for this task? 

• Performance – How well will the autonomy complete this task? 

• Predictability – What will the autonomous actions be? [59] 

These concepts are brought together in the form of a mental model. Sheridan [62] 

explains that the maintenance of the mental model takes the likeness to a Kalman control 
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systems feedback loop and implies that trust is continuously calibrated. Sheridan modified 

the six major blocks of Lee and See’s “Interaction of context, agent characteristics, and 

cognitive properties with the appropriateness of trust” model. The Sheridan updated 

version is shown in Figure 15. Sheridan has added the words in the parenthesis of each 

block, and the dotted line from state “C” to “Trust evolution.” The words in parenthesis 

connect trust vocabulary to control system feedback vocabulary. The dotted line creates a 

connection on belief for when actions of the automation cannot be observed [62]. Lee and 

See’s original model shows that appropriate trust is when state “A” and state “B” are equal. 

This holds true with Sheridan. Absolute calibration of trust is when the mental model of 

execution matches the actual displayed behaviors of autonomous systems. Though [10] 

and [62] present this model in from the user’s perspective, the next step for MUM-T would 

be this same form of model from the unmanned teammates perspective, by replacing 

“Automation” with “Manned Activities.” Two direct factor that are in the path of states A 

and B are the “state-based policy deciding action” and the “physical action to modify state.” 

Of specific interest to this thesis, is the “state-based policy deciding action.” Throughout 

this thesis, this factor was developed as the “agent” and at this point may or may not be 

explainable to the end-user. 

 
Sheridan states, “Kalman estimation/control model of trust. Shown in parentheses are 
modifications of terms in bold taken from Lee and See’s (2004) model” [62]. 

Figure 16. Sheridan’s Control Model of Trust. Source: [62]. 
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4. Summary 

As AI continues to improve, so does the scope of tasks that an agent can complete. 

The tasks still being assigned to AI agents to complete are repetitive, mundane, and/or 

dangerous. This follows in line of the Fitts model – HABA-MABA. When in isolation, the 

accomplishment of the AI agent’s task replaces the human. When multiple tasks are 

accomplished in a complementing nature by the human and AI agent – MUM-T – the 

results exceed then when both are accomplished in isolation. When the tasks complement 

each other, a major factor that influences the relationship is trust. The best way to gain and 

calibrate trust is through an intimate understanding of the system, what it was designed for, 

and how it functions. These elements come together for the user in the user’s mental model 

of the system’s behaviors. A way to develop the user’s mental model of the MUM-T is 

through experience with the system which can take place in live or virtual environments. 

The team gains experience in an environment that allows for the elements of the 

interdependence model. The behaviors at state B must be observable. Observations at state 

B should match expectations at state A, thus predictability and calibrated trust. And finally, 

to achieve more together than alone, reference “Extend” from Figure 13, the teammates 

must be directable to achieve the appropriate tasks. A factor that has yet to be accounted 

for within Sheridan’s Control Model of Trust is the “black-box” nature or explainability of 

the “state-based policy deciding action.” 

G. DEVELOPING TRUST WITHIN MUM-T 

1. How Explainability and Trust link 

The catalyst for the XAI program [42] from DARPA is captured by in the model 

created by the Florida Institute for Human and Machine Cognition in Figure 17. Their 

process incorporates the flow beginning with the user and ending with appropriate use. As 

shown, trust is a critical factor for the user and how the user employs the system. Working 

through Figure 17, the user receives an explanation from the XAI system that allows for 

the user to assess the explanation based on pre-established criteria. The criterion for 

assessment is shown in Table 3. As the user digests this explanation it updates the user’s 

mental model of how the system should behave and re-calibrates trust for the system’s 
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actions. Once the system executes its task it allows the user to assess and improve the user’s 

expectations for the tasks [42]. The green boxes in Figure 17 correspond to the descriptions 

provided in Table 3.  

 
Figure 17. DARPA’s XAI Explation Process. Source: [42].  

Table 3. DARPA’s XAI Explanation Measurement Categories. 
Source: [42]. 
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The DARPA XAI research creates a baseline model. Research to build from the 

models produced by DARPA XAI, led to the 2019 International Joint Conference on AI 

(IJCAI). Within publication list, only two publication were focused solely on XAI, 

teaming, and trust.  

In the first, Jianlong Zhou and Fang Chen [63] explore the interactions of trust with 

a predictive decision making AI system and the “human’s experiences with the system and 

domain knowledge” [63]. Motivations for Zhou and Chen’s research mirror that of this 

research - disuse and misuse of systems and the “black-box” nature of AI systems. Based 

on Lee and See’s definition of trust that describes uncertainty and performance as an 

element of the situation for trust, Zhou and Chen developed a tool that indicates the amount 

of uncertainty and performance that an AI model has in its own decision. The amount of 

uncertainty is measured by the difference between the real-world parameters for the AI 

agent’s decision making and the training model’s parameters used to create the AI. The 

performance is indicated by the expected outcome of the model. The uncertainty and 

performance indicator is a tool intended to trigger the right amount of trust by the human 

teammate. Utilizing a trial to trial experimental process, Zhou and Chen had success 

confirming that this approach increased the calibration of trust [63]. A secondary by-

product that Zhou and Chen did not reference was the increased familiarity with the system 

as it iterated through simulations also increased the trust. The concept of repeating training 

cases in a simulated environment is valuable to this research. 

In another article published by the IJCAI in 2019, Papenmeier et al. [64] measured 

the fidelity of the explained AI actions to trust. Papenmeier et al. define fidelity as: “how 

truthfully the explanation represents the underlying model” [64]. Through the use of 

Tweets possessing offensive language, the team varied the amount of fidelity of the 

explanation provided by the AI system to the user. The study involved manipulating the 

fidelity in three factors (low, medium, and high) of the reporting and accuracy in three 

factors (low, medium, and high) of the AI system across 40+ Tweets for each of 327 

participants. Their objective results measuring trust indicated that fidelity does matter to 

the user. Low fidelity feedback had negative impacts to the system, but the model’s overall 

level of accuracy impacted trust the most. An important factor that does not involve fidelity 
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or accuracy was the critical element that a “users’ awareness level influences their 

perception of trust” [64]. Though there is substantial work being completed on the 

explaining of AI actions, it may not be the ultimate tool in calibrating trust for a human 

with an AI agent teammate [64]. Connecting Papenmeier et al.’s research to Figure 17 and 

Table 3, the preponderance of research is conducted on the “Explanation goodness” and 

“Explanation satisfaction.” Elements of Table 3 that were previously explained prior to be 

introduced in the table are: “Mental model understanding” and “Appropriate Trust and 

Reliance.” The next portion will explore how a user can be involved with the development 

of the AI agent which will increase awareness and “Mental model understanding” and, in 

turn, trust.  

2. Interactive Machine Learning (iML) Research 

In an aptly named review, “Power to the People: The Role of Humans in Interactive 

Machine Learning” focused on iML techniques, Amershi et al. [12] select specific research 

in iML to demonstrate the importance of understanding how to interact with the end-user. 

Utilizing a ML project completed in 2006 by Caruana et al. as a case-study, Amershi et al. 

present the concept of enabling users to explore the AI Agent’s model space with less 

supervision from ML experts. The case shows that users were empowered to create and 

employ ML for their own desires and purposes. Amershi et al.’s research reveals the three 

following points: 

Rapid, focused, and incremental learning cycles result in a tight coupling 
between the user and the system, where the two influence one another. As 
a result it is difficult to decouple their influence on the resulting model and 
study such systems in isolation.  

Explicitly studying user interaction can challenge assumptions of traditional 
learning systems about users and better inform the design of interactive 
learning systems. 

The ways in which end users interact with learning systems can be expanded 
to ways in which practitioners do (for example, tuning parameters or 
defining new constraints); however, novel interaction techniques should be 
carefully evaluated with potential end users. [12] 
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After Amershi et al. reviewed iML work completed by Fails and Olsen’s on photo 

classification and Fiebrink et al.’s work with gesture based musical instruments; Amershi 

et al. show that the iML developed AI agents have an intrinsic link to the user that trained 

the AI agent. Additionally, it is shown that the user learned about the processes and 

procedures of the iML system for what the AI agent can comprehend [12]. This concept 

directly impacts the bi-directional MUM-T concepts of Observability, Predictability, and 

Directability, and the “User’s Mental Model” shown in Figure 17.  

Two other documents within Amershi et al.’s research concluded that “People want 

to demonstrate how learners [AI Agents] should behave” [12]. This point was based on 

research by Thomaz and Breazel [65] who created an iML environment for teaching an AI 

agent how to bake a cake. [65]’s research revealed that the instructors of the AI agents were 

able to develop a mental model of the AI agent’s capabilities and behaviors, and the 

instructors took a proactive approach to demonstrating to the AI agents how to behave. 

Thomaz and Breazel conducted multiple iterations of the experiment with modifications to 

instructor inputs, the performance of the AI agent’s learning improved as the instructor was 

able to demonstrate more behaviors to the AI agent [65].  

The other research supporting the concept of instructors demonstrating to AI agents 

was conducted by Kaochar et al.[66]. This group explored different ways to interact with 

the AI agent using a simulation for an Unmanned Aerial Vehicles (UAV). Through a 

“Wizard of Oz” (WOZ; when a human takes on the responsibilities of what the user 

perceives as an AI agent) protocol, users were able to teach an electronic “AI agent 

student,” actually a human, through a user interface that allowed both voice and control 

inputs. Within the experiment, users had an interface that allowed instructions to the “AI 

agent student,” a timeline showing all previous instructions to the “AI agent student,” and 

a map depicting the movements and behaviors of the “AI agent student” in the UAV. 

Within the instruction interface, there were four types of teaching styles allowable: 1. 

Teaching by demonstration, 2. Teaching concepts by examples, 3. Teaching by 

reinforcement, 4. Testing [66]. Kaochar et al. conclude that human teachers used a 

combination of all styles to provide instruction to the AI agent student [66].  
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The concept of ‘users want to demonstrate how learners behave’ is the catalyst for 

how the user will interface with the AI agent in the current thesis research. Though both 

[65] and [66] focus on human-agent interactions, they do not transfer the AI agent to a live 

execution. While [65] explores the concept of mental models, these researches do not 

explore how trust is developed by the iML.  

a. iML and Trust 

The closest aligned research on iML for trust in MUM-T was conducted by Robert 

Gutzwiller and John Reeder [44]. They used a purely virtual environment for their research 

with the aim to have a user calibrate their trust in a system by training the system’s agent 

as to allow for an understanding of the autonomous system’s abilities and behaviors. This 

aligns to a user’s understanding of the purpose, performance, and predictability of an 

autonomous system’s abilities and behaviors thus allowing for calibrated trust by the user 

as outlined by [10]. Gutzwiller and Reeder chose to move away from the more transparent 

forms of AI agents to use a neuroevolutionary computation method for maximum growth 

of the AI agent. Neuroevolutionary is a type of neural network that evolves with training 

and falls within the “hard to explain” category but allows for the optimum use of the AI 

agent. Their hypothesis was: “That iML will develop behaviors that adhere more closely 

to the user goals and expectations” [44]. Gutzwiller and Reeder had three research 

questions: 

1. Does the incorporation of humans in deriving ML algorithms, 
through IML, lead to more human trust in the plans that are 
generated? 

 
2. Do participants, who helped generate plans, recognize, and be able 

to differentiate between IML and black box plans (which used 
neuroevolution, but no human involvement)?  

 
3. Does the amount of neuroevolution that occurs, represented as steps, 

affect either trust or plan recognition [44]? 

Their research was a three phased experiment consisting of training, comparing, 

and labeling for the development and employment of a system tasked to conduct a search. 

Initially, the autonomous systems were trained by the user through the user defined goal 
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states and guidance in a virtual environment to create a search plan. This plan was classified 

as an iML search plan. During the comparison phase, an iML and black box system search 

plans were shown to the user. The user then selected which search plan the user best 

believed would cover the required area. Subsequently, the user chose the trust score for the 

search plan from 1 to 100, with 1 for no trust and 100 for complete trust. The final phase, 

labeling, began with the showing of a plan in action. During the labeling phase, the 

participant decided if the plan was either iML or black box. The results are interesting: 

“iML plans were chosen more, but trusted less” [44]. Aligned to the research questions 

were: 1. The user trusted the IML developed plans less. 2. Users were able to accurately 

discern the difference and appropriately label the iML plan or aML plan. 3. There was no 

difference in user’s awareness of the amount of neuroevolutionary steps. In their 

discussion, Gutzwiller and Reeder point out that a user’s behaviors were quickly adopted 

by the AI agent in the iML learning phase. Based on their experimental design, the user 

did not score their trust in their own iML AI agent, but another participant’s. This adoption 

of a user’s behavior may be the reason why a different user trusted it less than an aML AI 

agent, but were easily able to identify the iML AI agent. The research from in this thesis 

will align the same user with their own perceived iML AI agent.  

b. DARPA SQUAD-X 

Additional programs that are exploring MUM-T for the DoD are led by DARPA. 

Two complementary programs focused on the MUM-T at the lowest tactical levels are the 

Squad X Experimentation and Squad X Core Technologies. According to their program 

information webpage [67], the goal of these programs are to “design, develop, and validate 

autonomous system prototypes and equip them with novel sensing tools and off-the-shelf 

technologies” [67]. Technologies and autonomous systems that the Squad X programs are 

exploring are to help infantry squads increase their situational awareness, battle space, and 

influence. Of the four technological development areas, the “Squad Autonomy” effort is 

closely aligned with this work. They aim to increase intra-squad real-time awareness 

between all teammates and explore “robot collaboration between humans and unmanned 

systems” [67].  
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Through the multiple experiments performed by the Squad X program, the team 

has developed ground unmanned systems that possess varying levels of autonomy. 

According to a final report on fielding testing [68], the unmanned systems were tested as 

teammates for the squad and used to provide security and overwatch during military 

operations in urbanized terrain (MOUT) operations. It is unclear on how the autonomy was 

developed for the autonomous ground robots, but the approach to the autonomous 

algorithms were modified from aML to a human in the loop process during an inter-

experiment technology development period. To bring the human into the loop, a realistic 

simulation environment was developed. The simulation allowed for the effective tuning of 

the unmanned system by the squad leader and evaluation of the virtual rehearsal of complex 

mission scenarios. The simulation aimed to involve the squad leader into the iteration 

process of the autonomous agent’s development. Within the simulation, the squad leader 

was able to adjust opposing and friendly force actions and record autonomous behaviors. 

The autonomous agents were then able to be tested in multiple simulated terrain 

environments [68].  

Motivations for this human in the loop simulation process are unclear, but it appears 

that the results are promising due to the effort applied by the Squad X program. There is 

no associated data for levels of trust or cognitive load. The process to incorporate the squad 

leader into the developmental process of the autonomous agent’s behavior is the aim of 

this research. DARPA Squad-X and research by Gutzwiller and Reeder are the closest 

research to this thesis. Their commonality of using virtual environments to develop AI 

agent behaviors, and Gutzwiller and Reeder’s analysis of trust following AI agent behavior 

development drive directly towards the experimental design for this thesis.  

H. SUMMARY 

Teaching and developing AI agents within a simulated environment by the end-

user indicate there is the potential for better trust in the AI agent by the end-user when 

placed as a teammate within a MUM-T. Throughout the past chapter, it is shown that virtual 

environments serve as an area for the development of experiences for Marines, robots, and 

AI agents. Through an analysis of automation, autonomy, and AI; autonomous systems 
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with AI agents can deliver the decision-making power to learn and adapt to changing 

environments. Computing speeds and different types of ML algorithms serve as the catalyst 

for the increased capabilities of AI agents and surge of DoD concepts to maximize the use 

of unmanned assets. Some unmanned assets will be partnered as teammates to Infantry 

Marines as autonomous unmanned ground vehicles controlled by an AI agent. Through the 

different types of ML algorithms, varying levels of capabilities emerge for the AI agent. 

As learning capabilities and performance of the AI agents increase, so does the in-

explicable nature of their behaviors and reasoning. The in-explicable nature is shown to 

degrade the amount of trust that a user can place into the AI agent and thus decreases the 

efficiency of the MUM-T. Research has revealed that a way to protect against this 

vulnerability of AI agent behaviors is through the approach of iML. Through the user’s 

involvement as the critic within the ML phases, either as the reinforcer or supervisor, it is 

expected that the user will have a better mental model of the agent’s behaviors for 

execution. The increased resolution of the user’s mental model will allow for a better 

calibration of trust. This in turn will increase the efficiency of the MUM-T.  
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III. METHOD 

A. DESIGN 

The design of the experiment is a two-group comparison design, with iML and aML 

manipulated between groups. Of interest is the participant's trust between groups, which 

was measured in the participant’s (a) robot choice (teleoperated robot or autonomous 

mode), (b) performance, and (c) robot monitoring via eye tracking.  

The two hypotheses tested are: 

• H1: There will be a greater proportion of Marines who will choose to use 

the “autonomous” robot over “teleoperated” in iML vs aML condition. 

(piML – paML > 0). 

• H2: There will be more indicators of trust for the iML than the aML 

conditions. (µiML – µaML > 0).  

B. PARTICIPANTS AND LOCATION 

Utilizing previous literature, [44], and the Cohen’s d approach; a power analysis 

was conducted to determine the appropriate sample size with an effect size of 0.72, alpha 

= 0.05, and power = 0.80. The analysis resulted in a total of 50 participants. Due to a cold-

front and snowstorm in the North Carolina region during the experimentation week of 17-

21 February of 2020, only 40 of the targeted 50 participants were able to participate. Group 

A is associated with iML and Group B is the aML factor. 

The target population of employment of future MUM-T systems are Infantry 

Marines at the squad or lower level. To meet this demographic, participants were students 

in the Advanced Infantry Training Battalion – East’s (AITB-E) Advanced Infantry Marine 

Course curriculum at Camp Lejeune, NC. Out of the 40 Marines that participated, 37 were 

in their final week of training in the of the curriculum, and the 3 other participants were 

Infantry Marines who volunteered from the AITB-E command. All participants were 

Infantry Marines with the rank of Lance Corporal to Sergeant, thus meeting the target 
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population. The population was all male; there were no females enrolled in the Advanced 

Infantry Marine Course during the experimentation week.  

The live execution environment was at Camp Lejeune, NC’s “Enhanced-MOUT” 

Training Area (E-MOUT) as shown in Figure 18. The “Training” and “Live” portions of 

the experiment occurred in Building 31 of E-MOUT. Building 30 would be the objective 

building for the live portion.  

 
Building 31 is represented by the blue star and Building 30 was the objective building 
represented by the red star.  

Figure 18. Overview Map of Building 30 and 31 of E-MOUT.  

C. MATERIALS 

1. Participant Workstation 

The following gear set was used to create the participant’s workstation: 

• Two Alienware M51 Laptop Computers 

• One GoPro Video Camera 

• Tobii Pro Glasses 
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• Portable Computer Screen 

• Microsoft X-Box Controller 

Figure 19 shows the participants’ work-station in Building 31. The laptop on the 

left was used for the attention enumeration task, while the laptop on the right was used for 

the serious gaming. In the figure, it is currently showing the set-up for live execution with 

the small unmanned ground vehicle (SUGV) robot screen. The tablet in the far right of the 

figure is connected to a SUGV radio to relay the picture onto the screen on the right laptop. 

The large tan cases are the carrying cases for the SUGV systems.  

  
Figure 19. Overview of the Experiment Room in Building 31 of E-

MOUT.  
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2. Robots  

Two Small Unmanned Ground Vehicles (SUGV) Systems, data sheet shown in 

Figure 20, were used for the robot within the experiment. The robots were man-packable 

and electric powered by BB-2590 military issued batteries. The user interface for the 

SUGV is shown in the top right picture of Figure 20. The user controlled the system 

through touching the associated “tablet.” The system is entirely remote control with no 

autonomy. There were automated movements to place the robot into “drive,” “stow,” or 

“look-over” mode. The “peaky mode” verbiage was used in replacement of “look-over” 

with the participants. The two systems were temporarily loaned from 2d Explosive 

Ordinance Disposal Company, 2d Marine Logistics Group from Camp Lejeune, NC.  

 
Figure 20. Data Sheet for SUGV. Source: [69]. 



59 

3. Visual Attention Task 

The visual attention task was a sub-program of the software titled Presentation by 

Neuro Behavioral Systems. The parameters for the attention enumeration task were five 

seconds for observation of the blocks and five seconds to enter the correct response. The 

space bar and enter button were used to trigger the next sequence. Figure 21 shows the full 

instructions provided to the participant. The attention enumeration task baseline began with 

a six-question tutorial under the supervision of a researcher. During the tutorial and testing 

period, the number of blocks on the screen would range from three to nine. A total of 10 

questions were asked for each number. Figure 22 shows examples of what the test screen 

looked like during execution. The order of questions was randomly assigned by the 

program for each participant. 

 
Figure 21. Instructions for Attention Enumeration Baseline Task.  
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Four different screen captures of the execution of the attention enumeration task are shown. 
The bottom left is when the participant would enter the number of red blocks counted via 
the keyboard.  

Figure 22. Screenshots of the Attention Enumeration Baseline Task. 

4. Virtual Training Environment 

A serious game was created by the Modeling Virtual Environments and Simulations 

(MOVES) Institute, Futures Technology Department to be used as a training tool for 

learning the capabilities and limitations of the SUGV. The serious game had a tutorial to 

teach the participant how to use the keyboard or gamepad. A gamepad map, as show in 

Figure 23, was provided to the participant for use during the game. The tutorial showed the 

different speeds, positions, and camera views available to the SUGV. The SUGV modeling 

for the game was as accurate as possible based on developer testing at the Naval 

Postgraduate School (NPS) and data from the FLIR SUGV Data Sheet, Figure 20. 

Screenshots of the different steps within the Tutorial Phase are shown in Figure 24.  
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Figure 23. Controller Mapping. Adapted from [70]. 

 
Figure 24. Tutorial Screen Shots.  

Once the tutorial was complete, the concept for the next five levels was the same 

for each group, but verbiage and elements on the screen were different. The five levels 

were developed to mimic basic MOUT training an entry-level Marine would go through. 

The levels and purpose are outlined in Table 4. The number of task iterations was driven 

by the requirement to have a realistic expectation that the repetitions were training the robot 
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for Group A (iML). No explanation for the number of iterations was provided to Group B 

(aML). 

Table 4. Familiarization Training Curriculum 

Level Purpose Number of Iterations 

Lesson 1  Basic Hallway Movements 16 

Lesson 2 Room Search Methods 1 

Lesson 3 Room Entering 5 

Lesson 4 Anomaly Object Interactions 10 

Lesson 5 Courtyard Movements 6 

 

Group A (iML) was led to believe that the gaming situation was an iML 

environment. This was shown by the neural network diagram in the top left that updated 

after each iteration of the task. Verbiage for the Group A (iML) version of the game focused 

on the participant “teaching” the robot on how to perform those tasks, while the Group B 

(aML) version of the game had the participant “learning” on how to perform those tasks. 

The serious game for both groups was intended to have the same effects as normal training 

in virtual environments achieves as referenced in Section II.B.1. Simulations in the USMC. 

There were no machine learning indicators for any of the actions for Group B (aML). A 

comparison of Figure 25 and Figure 26 shows how that information was presented to the 

participant.  
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Verbiage in the top right of each screen shot is focused on the participant teaching the 
SUGV avatar. Top Left: Completion of Tutorial Screen. Top Right: Lesson 1. Middle Left: 
Lesson 2. Middle Right: Lesson 3. Bottom Left: Lesson 4. Bottom Right: Lesson 5. 

Figure 25. Screenshots during Group A Version of the Game.  
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Verbiage in the top right of each screen shot is focused on the participant learning the 
capabilities and limitations of the SUGV. Top Left: Completion of Tutorial Screen. Top 
Right: Lesson 1. Middle Left: Lesson 2. Middle Right: Lesson 3. Bottom Left: Lesson 4. 
Bottom Right: Lesson 5. 

Figure 26. Screenshots during Group B Version of the Game.  

5. Trust Questionnaire 

At the conclusion of the live execution, the right laptop would be connected to the 

internet and so the participant could take a pre-programmed online survey via 

Qualtrics.com. The survey that followed is the widely used Trust in Automated Systems 

Survey by Jian et al. [71]. The 12-question survey is shown in its original form in Figure 

27. This survey was randomized for the participants to prevent biasing [72]. Questions 1-

5 are negatively biased questions so the score for each of these questions were subtracted 

from 7 to provide a common reference across the survey. A lower score from this survey 
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indicates less trust in the automated system. The questions appeared sequentially and had 

to be answered before continuing to the next question. Figure 29 shows the format for how 

each question would be answered. The survey automatically closed once all questions were 

complete. 

 
Figure 27. Jian Trust in Automation Survey. Source: [71]. 
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Figure 28. Instructions for Survey.  

 
Figure 29. Example Survey Question.  
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D. PROCEDURE 

The expected number of 50 participants was divided into two equal groups and their 

participant numbers were randomly assigned to either Group A (iML) or Group B (aML). 

They were transported to the experimentation area, Building 31 at E-MOUT, by an AITB-

E HMMWV in groups of four to five from where the unit was training. Upon arrival, they 

were given the initial consent briefing and form. As a participant entered the workstation 

building, they would bring their signed and completed initial consent form with them. The 

following sections outline the process for the experimentation. 

1. Introduction 

Prior to the introduction being provided, the researcher would begin a new 

recording session on the GoPro video camera. The researcher would welcome the 

participant with the following introduction: “Thank you for volunteering to help with the 

experiment. The first task I’m going to ask you to execute is an attention enumeration task. 

This task represents the tasks that a squad leader must do during MOUT operations. It 

represents tasks like assigning sectors of fire, cross-boundary coordination, call for fire, 

and various other tasks that you would have to do. There is no easy way to baseline each 

Marine in those tasks; the next best option is the attention enumeration task.”  

2. Attention Enumeration Baseline Task 

The participant would complete the initial attention enumeration task. During the 

tutorial portion of the initial task, a researcher would remain in the room to assist the 

participant in the procedures of the test. During the baseline testing portion, the researcher 

would leave the room and the participant would complete 70 individual tasks.  

3. Situational Briefing 

Upon completion of the attention task, the participant transitioned to the serious 

game. If the participant was in Group A (iML), the participant was told the following 

information: 
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“The video game you are about to play will inform you on the capabilities and 

limitations of the robot for MOUT operations. The robot is also learning how you control 

it and how you perform each task as the robot in the game. Once we complete the video 

game training you will have a live execution task of ‘Clear the adjacent courtyard & 

building.’” The researcher would reference Figure 18 for the participant’s situational 

awareness. “To assist you in this task, you will be able to use a real robot in either ‘remote 

control’ or ‘user-trained autonomous’ mode. In conjunction with that task you will have 

to complete another attention task. The ability to send Marines into the next building is at 

the end of the next attention task. Again, the attention task is representing you, as the squad 

leader, ‘setting conditions’ for your squad to advance.” 

If the participant was in Group B (aML), the first italicized sentence directly above 

would be removed, and the second italicized portion would be replaced with “autonomous 

mode.” The following description of autonomous mode was provided: “The autonomous 

mode is currently the best in the Silicon Valley industry.” 

4. Virtual Training and iML 

After completing the briefing of the future live execution task, the participant would 

begin playing the serious game. Once the game was completed, Group A (iML) participants 

were briefed again: “Now that you’ve gained experience with the capabilities and 

limitations of the robot and its learned from your actions in the video game, for the next 

task would you like to use the robot in either complete remote control or complete user-

trained autonomous mode?” Group B (aML) participants were briefed: “Now that you’ve 

gained experience with the capabilities and limitations of the robot in the video game, for 

the next task would you like to use the robot in either complete remote control or complete 

autonomous mode?” For each participant the decision was recorded. If the participant chose 

to use the robot in remote control mode, two researchers attempted to connect the gamepad 

controller to the SUGV, but it would not connect. This was a planned deception within the 

experiment. The participant was informed, “We’re having issues with the remote control. 

The participant before you accidently dropped it. For the interest of time, can we just use 

it in autonomous [or user trained autonomous for Group A] mode?” 
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Since the SUGVs are strictly remote control from the manufacturer. A man behind 

the curtain, in a Wizard of OZ (WOZ) format [73], was controlling the robots for both 

Group A (iML) and Group B (aML). For Group A (iML), the WOZ was in the room 

observing the behaviors desired by the user. The participants were told, “This gentleman 

created the serious game – he’ll be in here in case you have any questions or concerns on 

the game.” Decision points were recorded by the WOZ. The behaviors and decision points 

are listed in Table 5. 

Table 5. Behavior Decision Points for the WOZ  

Decision Point Behavior Option 1 Behavior Option 2 

Courtyard Movement Speed? Fast Slow 

Box Interrogation? Yes No 

Peaky Mode for Room Entering? Yes No 

Search Pattern? Perimeter Straight to Door 

 

For the participants within Group A (iML), a batch file was executed to “compile 

and export” the data from the serious gaming computer for the upload to the robot with the 

participant’s behavior. A researcher moved to the SUGV and acted as if he were uploading 

the behavior files. Again, this was a point of deception to the participant as the serious 

game was not programmed as such.  

5. Live Execution 

Once the participant was prepared to not use the SUGV in remote control mode, 

Group A (iML) participants were told: “Currently, the robot is programmed to leave and 

return to the spot outside of our current building. Your training of the robot in the game 

will determine how the robot will behave in the courtyard and objective building.” Group 

B (aML) was told, “Currently, the robot is programmed to leave and return to the spot 

outside of our current building. The coding from the engineer will determine how the robot 
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will behave in the courtyard and objective building.” As this was being explained to the 

participant, a researcher showed the robot’s planned movement. This is shown by the 

dotted red line in Figure 30. For both groups: “Again, the theory is to use the robot as a 

reconnaissance element before sending a team of Marines into the objective building. The 

completion of the attention task allows for the Marines to begin movement from the 

building directly to our east [researcher would point to the building] to the objective 

building. You can execute the attention task either simultaneously or sequentially as the 

robot performs the reconnaissance. If the robot detects an anomaly it will make an alarm 

sound.” 

 
Figure 30. Planned SUGV Movements.  

After this briefing, the participant placed on the Tobii Pro Eye tracking glasses. The 

glasses were calibrated to each participant with the provided calibration card within the 

Tobii Pro Eye Tracking System. Following the calibration, the attention enumeration task 

2 was transitioned to the start screen. The test was the same as the baseline test, minus the 

tutorial at the beginning. Additionally, the control screen from the SUGV system was 

broadcasted onto a portable screen that was placed on the serious gaming laptop, as seen 

on the right laptop in Figure 19. The SUGV was placed out of sight from the participant. 

With all elements of the test in place, the researcher verified that the participant had steady 
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video feed from the SUGV. Once confirmed, a researcher said, “We will do a count-down 

to initiate the next attention task and to press the autonomous button on the robot.” At the 

conclusion of the loud count down, the participant pressed the “Enter” button to initiate the 

attention enumeration task 2 and the WOZ began controlling the SUGV.  

For Group A (iML), the WOZ controlled the SUGV in accordance with the decision 

points and behaviors as indicated in Table 5. For example, the SUGV departed from its 

start location and begin driving through the courtyard. Depending on the participants game-

play, the speed increased or decreased as indicated in Table 5. Additionally, the path may 

vary depending on the participant’s “Search Pattern.” An orange box in Figure 30 

represents where a cardboard box was located during the execution of this portion of the 

experiment. If the participant decided to search the box in gameplay, it was then searched 

in execution. The cardboard box and SUGV are shown in the left side of Figure 31. This 

trend continued for the entering and searching of each room within the objective building.  

For Group B (aML), the WOZ controlled the SUGV identically for each participant 

at the same speed. The SUGV departed its start position, moved to interrogate the 

cardboard box and transitioned to “Peaky Mode.” This is shown in the bottom left of Figure 

31. The SUGV then entered the objective building by first peaking inside. After initial 

entry, the SUGV continued to search the three other rooms in the objective building. Each 

room was searched the same fashion and order for each execution.  

A researcher would wait until the participant was complete with the attention 

enumeration task 2 and would then ask the participant, “Are you prepared to send Marines 

into the objective building?” This question was not tied to the location and status of the 

SUGV. Once the participant said he would send his Marines to the objective building, that 

would conclude the live execution of the experiment.  

6. Survey 

After the live execution was complete, the participant answered the 12 questions of 

the Jian et al. survey. The survey was completed online. To transition to the survey, the 

display screen for the SUGV would be collapsed and the survey would be started on the 

serious gaming laptop. The researcher would enter the participant’s number and group into 
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the survey. The participant would then begin on the instructions page shown in Figure 28. 

The conclusion of the survey would end the experiment.  

 
Top Left: Shows the SUGV beginning its movement in the courtyard. The cardboard box 
for interrogation can be seen in the top of the photo. Top Right: Shows the SUGV just 
entering the courtyard. The only visible open door is the main entrance into the Objective 
Building. Bottom Right: Shows the initial room of entry within the Objective Building. 
Bottom Left: Shows the SUGV interrogating the cardboard box. In the forefront is a radio 
for the SUGV system. The picture is taken from the WOZ’s point of view.  

Figure 31. Photos of the SUGV during Execution and Objective 
Building.  

7. Reconsenting  

Since deception was used during the execution of the experiment, each participant 

was reconsented after being debriefed and informed about the nature and specifics of the 

deception. Each participant was given the following brief: “In the past experiment there 

were three points of deception. 1. The robot was not autonomous. It was controlled by a 

gentleman behind the curtain. 2. Though you were provided the option to use the robot in 
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remote control mode, that was not truly an option. 3. The video game did not record any 

data about your behaviors or intentions for how you wanted it to behave. If it was not 

evident, I’m researching on how to best develop trust between Infantry Marines and robots. 

This research will influence requirements for future Marines for Manned Unmanned 

Teaming. I thank you for your time and seriousness during this experiment.” At this point, 

the participants reconsented to the use of their data. 

E. DEPENDENT VARIABLES 

The following dependent variables were collected: 

1. Attention Enumeration Task Baseline Overall Time – The overall time 

from beginning to end of the attention enumeration baseline task. It does 

not include time to complete the tutorial.  

2. Attention Enumeration Task Baseline Initial Reaction Time – The time it 

took from the red blocks appearing on the screen until the participant hit 

the “Space Bar” or the iteration timed out at 5000 milliseconds. This data 

did not include the tutorial times. 

3. Attention Enumeration Task Baseline Input Time – The time it took from 

the program transitioning to the input screen until the participant pressed 

the “Enter” button or the iteration timed out at 5000 milliseconds. This 

data did not include the tutorial times 

4. Items 1-3 of this list were recorded again for Attention Enumeration Task 

2. 

5. Length of Video Game Play – The total overall time each user played the 

video game to complete the training curriculum. Tutorial time is excluded 

from this data point.  

6. Choice of SUGV Employment – A binary choice between remote control 

or fully autonomous mode. 
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7. Robot Count – The number of times the participant transitioned focus 

from Attention Enumeration Task 2 to the SUGV Screen. This was 

defined as a “look.” 

8. Robot Look Time – The amount of time that attention was given to the 

SUGV Screen during a look. 

9. Attention Look Time – The amount of time that attention was given to the 

Attention Enumeration Task 2 Screen during a look. 

From the list above, 1-3 were all recorded via the Presentation Program. This data 

could also be analyzed by the number of blocks there were on the screen at one time. Five 

(5) was recorded by the GoPro Video. Six (6) was provided verbally to a researcher upon 

completion of the video game portion.  



75 

IV. ANALYSIS OF RESULTS 

A. HYPOTHESIS 1 

• There will be a greater proportion of Marines who will choose to use the 

“autonomous” robot over “teleoperated” in iML vs aML condition. (piML – 

paML > 0). 

The aim of this hypothesis is to understand what sort of autonomous development 

Infantry Marines want to use as partners in MUM-T.  

1. Statistical Analysis 

A Two Proportions z-Test is the statistical method used to test this hypothesis. It is 

a one-way statistical method with an alpha level of 0.05. The assumptions and conditions 

for the test are: Participants randomly assigned to each group, <10% of the total population, 

two groups are independent of each other, Participants are independent of each other, 

Sample size ‘success’ or ‘failure’ is greater than 10. With the last assumption not meeting 

the required conditions, the Two Proportions z-Test will utilize the Fisher’s Exact Test for 

comparison.  

2. Results 

The results indicated no significant difference in the proportion of Marines 

choosing to use autonomous mode in iML than aML approach with 63.1% (12/19) for iML, 

compared to 42.9% (9/21) for aML (p = .167). 

B. HYPOTHESIS 2  

• H2: There will be more indicators of trust for the iML than the aML 

conditions. (µiML – µaML > 0).  

The aim of this hypothesis is to understand what sort of autonomous development 

Infantry Marines trust as partners in MUM-T through observable items. Based on the 
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information developed within Chapter II, it is shown that the following factors would 

indicate trust:  

1. Difference in Total Overall Time – Data point was produced via the 

attention enumeration task program. 

2. Average Duration of Robot Screen Looks – Data point was produced by 

the Tobii Pro Lab using “Areas of Interests” within the program. 

3. Average Duration of Attention Screen Looks – Data point was produced 

by the Tobii Pro Lab using “Areas of Interests” within the program. 

4. Difference in Average Input Reaction Time – Data point was produced via 

the attention enumeration task program. 

5. Difference in Average Initial Reaction Time – Data point was produced 

via the attention enumeration task program. 

6. Looks at Robot Screen – Data point was produced by the Tobii Pro Lab 

using “Areas of Interests” within the program. 

1. Statistical Analysis 

A group of the factors that are used to support this hypothesis are the difference in 

performance standards between the attention enumeration baseline task and the attention 

enumeration task 2. To begin, outliers from the attention enumeration tasks were removed 

by using the Robust Fit Test for Outliers excluding data that was outside 2.5 standard 

deviations. Time recorded data is shown in Figure 32. All data points for attention 

enumeration tasks are in milliseconds. All three distributions show slightly negative 

kurtosis with minimal skewness.  
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Figure 32. Attention Enumeration Task Baseline Time Recorded Data.  

With the large number of data points, the data was binned for follow on statistical 

testing with the Multivariate Analysis of Variance (MANOVA) Test. If a Wilcoxon Test 

is required, it is due to the nonparametric distributions between comparison groups. 

• Difference in Total Overall Time – Wilcoxon Test 

• Comparison of Average Robot and Attention Times – MANOVA  

• Average Attention Time “Look” 

• Average Robot Time “Look” 

• Difference in Reactions Times – MANOVA 

• Overall Input Reaction Average 
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• Overall Initial Reaction Average 

• Robot Look Count – Wilcoxon Test 

• Survey Results – Two Sample t-Test 

The following sections describe the analysis for each of the major tests ran. 

a. Difference in Total Overall Time – Wilcoxon Test 

The data does not meet all the assumptions and conditions for a Two Sample t Test, 

due to lack of normality of data between the two groups. The two groups do a have a similar 

distribution, so the Wilcoxon Test was applied. The results are shown below in Figure 33. 

With this data point, a number closer to zero is desired. Closer to zero shows that 

participants were able to complete both the attention task and partnering with the robot 

closer to their baseline attention task time. A Wilcoxon Signed-ranks test indicated that the 

Difference in Total Overall Time for attention tasks was not significant from Group A 

(iML) (M = -92,876, SD = 123,331), to Group B (aML) (M = -54,434, SD = 77,451), Z = -

0.717, p = .47, d = 0.373. 

 
Figure 33. Difference in Avg Overall Time. 
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b. Comparison of Average Robot and Attention Times – MANOVA  

For the comparison of average robot and attention duration per “look,” the 

MANOVA test is used since the data points influence each other. The data meets all 

assumptions and conditions. Four data points were excluded as the participants looked only 

at either the attention task or the robot screen for the entire duration of the live portion of 

the experiment. Within this grouping of data, a larger average time spent on the attention 

task and lower average time spent on the robot screen is more desirable. The MANOVA 

test, graphs shown in Figure 34, fails to reject the null hypothesis as there were no 

significant differences between groups, F(1,25) = .804, p = .459, 𝜂𝜂𝑝𝑝2 = .060.  

  
Figure 34. Average “Look” Times. 

c. Difference in Reactions Times – MANOVA 

For the difference in reaction times, five participant’s data were excluded due the 

participants not following instructions on how to complete the attention tasks. With this 

data excluded, all assumptions and conditions for the MANOVA test are met. Figure 35 

shows the bag graphs for Group A (iML) and Group B (aML). A value closer to zero is 

more desirable. The graph tends to show an overall difference between Group A (iML) and 

Group B (aML) data points, but the MANOVA test fails to reject the null hypothesis of an 
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interaction between groups as there were no significant differences, F(1,31) = 0.656, p = 

.526, 𝜂𝜂𝑝𝑝2 = .041.  

 
Figure 35. Difference Average Initial and Input Reaction Times. 

d. Counts Analysis – Wilcoxon  

A Wilcoxon Signed Rank test was used to analyze the robot looks count data. The 
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fewer looks at the robot is an indicator of greater trust. The Wilcoxon Signed-ranks test 

indicated that the number of “looks” at the robot screen was not a significant difference 
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Figure 36. Count of “Looks” at Robot Screen. 

e. Survey Results 

Upon completing the live experiment, the participants completed the Jian Trust in 

Automated Systems Survey [71]. As this survey was completed by the participant post the 

live execution, it is not an indicator of behaviors, but the attitude of trust towards the 

system. The Two Sample t-Test fails to reject the null hypothesis as there was not a 

significant difference between trust survey scores from Group A (iML) (M = 4.79, SD = 

0.181) to Group B (aML) (M = 4.96, SD = 0.172), t(38) = 0.669, p = .746, d = 0.211. 

35

35.5

36

36.5

37

37.5

38

Group A Group B

"L
oo

ks
" a

t R
ob

ot
 S

cr
ee

n



82 

 

Figure 37. Trust Survey Avg Score. 

2. Results 

All recorded indicators of behavior and attitudes of trust between the two groups 

fail to reject the null hypothesis. Even while comparing trends between each statistical test 

for this hypothesis, there is no consistency. While analyzing the results, there appeared to 

be two factors that potentially influenced this hypothesis: 1. Too few participants. 2. Being 

“forced” to use the autonomous mode.  

a. User’s Preference 

Though a Two Sample t-Test does not show a significant difference between trust 

survey scores of choosing “autonomous” mode (M = 5.04, SD = 0.168) to choosing “remote 

control mode” (M = 4.69, SD = 0.177), t(38) = -1.47, p = .150, d = 0.373, it can potentially 

be a confounding element. This data is shown in Figure 38. Speculations on this data point 

are covered in Chapter V.C. Future Work.  
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Figure 38. Choice Comparison on Trust.  

b. Virtual Training Time 

Only the visual displays on the user interface dashboard of the virtual training 

environment differed, as shown in Figure 25 and Figure 26. In exploring the idea of which 

group would invest more time in the virtual training environment, the assumption of Group 

A (iML) participants would invest more time in the virtual training environment than 

Group B (aML) participants. In reviewing the data of virtual training time, recorded in 

seconds; there was a significant difference between the groups. Virtual training times were 

higher for Group A (iML) (M = 1150, SD = 94.7) than for Group B (aML) (M = 898, SD = 

70.6), t(15.55) = -2.05, p = .029, d = 3.017. This finding contributes to concepts introduced 

Section V.B.3. Use of Simulations for Serious Gaming. 
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Figure 39. Virtual Training Time Comparison.  

C. LIMITATIONS 

Due to the experiment working in coordination with a training event in a TECOM 

curriculum, the research team was subject to the decisions by the AITB-E command. As 

important as the research is, the Marines participating in the training were days away from 

graduating and returning to lead infantry squads within the Fleet Marine Force (FMF). 

With an understanding of this prioritization, two days of the field testing were lost to 

training requirements and Camp Lejeune’s closure due to weather. This resulted in only 

experimenting with 80% of the planned 50 participants. This lack of participants influenced 

the research and ability to use the theory of large numbers for data test points.  

D. SUMMARY 

Hypothesis 1 aimed to identify what sort of behavioral development for an 

autonomous agent Infantry Marines will prefer to have in their future unmanned 

teammates. The choice was between an autonomous agent or remote control for both Group 

A (iML) and Group B (aML). Group A (iML) developed the behaviors of their autonomous 

agent while Group B (aML) used a pre-programmed behavior. The participants made their 
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trend, there is no significant difference showing that the participants would prefer to use 

an iML autonomous system over aML autonomous system.  

Hypothesis 2 was directed at identifying which behavioral development process for 

an autonomous agent Infantry Marines will trust more. Reliance was measured by the 

difference between the baseline task and dual task performance in the attention 

enumeration task. Number of glances at the robot screen and duration of looks were 

recorded via the Tobii Eye Tracking system to measure the amount of time invested by the 

participant in the robot’s actions. The attitude of trust was captured in the Jian et al. Trust 

Survey. There are no clear indications of a difference in trust between the groups.  

All data points analyzed and assessed fail to reject both null hypotheses. A 

significant difference was identified in the amount of time spent in the virtual training 

environments with Group A (iML) spending more time. With the increased amount of time 

in the virtual training environment, an impression is given that the participants took the 

process of training the agent in the iML approach as a valid task. This impression may 

contribute to the number of glances and time looking at the robot screen that Group A 

(iML) took. Without the demonstration of the agent’s behavior in a virtual environment 

prior to live execution, they utilized the live execution to observe the product of their 

training. Along similar lines, Group B’s (aML) results may have been influenced by 

wanting to see the actual behaviors of the autonomous robot. Ideas around these findings 

and indications are further developed in Chapter V.  
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V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE 
WORK 

A. CONCLUSIONS 

1. Trust within Manned-Unmanned Teaming  

As research revealed by Lee and See [10] and Sheridan [62] showed, trust is an 

evolving attitude that creates a behavior of reliance. As trust evolves the previous actions 

influence the mental model and future trust, as shown in Figure 16 [62]. This trust control 

feedback loop ties to the MUM-T theory of interdependence from Johnson et al.’s 

perspective [54] with the following statements written from the human’s perspective:  

• I can assign (Directability) the correct (Resolution) task that the 

autonomous system was designed to accomplish (Purpose). 

• The actions performed (Predictability) match my expected actions 

(Predictability) for the autonomous system (Calibration). 

• The actions I observe (Observability) are performed (Performance) how I 

expected the autonomous system to complete the task (Specificity). 

If all of these statements are true, then the human will have an intimate 

understanding and trust in the unmanned teammate in the same fashion that the United 

State Marine Corps portrays in its seminal document, Warfighting [58]. Idealistically, this 

occurs when the human’s mental model matches the unmanned teammate’s agent model. 

As justified by the research in XAI, this is nearly impossible to achieve. What is possible, 

through experiences as teammates, is for the human to have a mental model that can assess 

the inputs received by the unmanned teammate to anticipate the unmanned teammate’s 

future actions. Moreover, by observing the actions of the unmanned teammate the human 

would be able to infer the inputs received to create those unmanned actions. Through pure 

interdependence the converse is also achievable. This would then create a common team 

model between both elements allowing for them to accomplish more than just the sum of 

its parts; the aim of MUM-T.  
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The only approach to achieve this level of intimacy, while still considering the 

limitations of training time and costs presented in Chapter I, are for the MUM-T to train in 

a virtual environment. The approach for an autonomous system produced through aML is 

for the human and the unmanned teammate to participate in virtual training together where 

the human controls the human’s avatar and the autonomous agent controls the unmanned 

teammate’s avatar. This could produce awareness of the autonomous agent’s behaviors but 

does not allow for adaptation or tailoring of the autonomous agent’s behaviors to human’s 

directions and guidance. The alternate option is iML.  

2. Interactive Machine Learning (iML) 

The literature review for this research shows that iML is a viable option for agent 

behavior development for unmanned autonomous teammates within a MUM-T. The 

impetus for most of the reviewed research is focused on a better understanding and 

familiarity with the agent by the end-user. Highlights of iML brought together within this 

research are: 

• The user can develop a mental model of the agent’s behaviors [45]. 

• The agent develops a mental model of the user’s behaviors [45]. 

• Understanding of the uncertainty of an agent’s behaviors correlates to 

better understanding the expected performance of the agent [63]. 

• Agents developed within iML techniques have an intrinsic link to their 

“instructors” [12]. 

• Agents learning improved as “instructors” demonstrated desired behaviors 

[65].  

• Agents developed within iML techniques have an easily identifiable 

behavior [44]. 

Building from the outlined benefits, Warfighting, announces that experiential 

learning is a critical element in developing familiarity within a relationship [58]. 
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Supporting this concept, Tactics acknowledges that experiences cannot be gained simply 

through war, but can also be made through serious games like “tactical decision games, 

sand table exercises, war games, field exercises, and rehearsals” [61]. Team experiences 

build familiarity and confidence which in turn produces trust [58].  

B. RECOMMENDATIONS 

1. Operational Testing 

The ability to test and interact with FMF Infantry Marines was beneficial for all 

parties involved. The feedback and discussions with the participating Infantry Marines and 

the AITB-E staff was advantageous in refining the concepts of serious gaming and 

unmanned teammate system requirements; and balancing academic research of NPS to the 

realities of the FMF. Although our results did not show statistical significance, potentially 

due to a reduced number of participants, the experiment was still beneficial as it exposed 

Infantry Marines to research to improve their combat effectiveness. 

The 38th CPG directs that outside entity experimentation with the FMF be nested 

within MCWL’s larger experimentation process [1]. To achieve this direction for NPS 

Students, greater flexibility and broader experimentation criteria is needed from MCWL. 

Within the 24-month cycle of the standard master’s degree, there is limited ability for a 

thesis research topic to be innovative and challenge status quo if it is required to be nested 

within prescribed ongoing topics. A proposed solution that can create focus from MCWL 

is to create a spring and fall experimentation season. Within those two seasons, an infantry 

unit can be placed in direct support of MCWL for experimentation. This allows for MCWL 

to maintain clearance authority for the experimentation while preserving innovation thrusts 

from outside agencies with minimal impacts to the FMF. 

2. Unmanned Teammates and its AI Agent 

The unmanned ground teammates within MUM-T at the Marine Corps Infantry 

Squad level must be autonomous with the ability to learn. By the definitions used 

throughout this research, this would be autonomy with AI. The ability to learn, recognize 

patterns, and adapt is crucial. Adaption is a critical element in war and both human and 
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unmanned teammates are required to adapt for success on the battlefield [61]; a purely 

autonomous system will lack the ability to learn from new situations and environments.  

The unmanned teammate should come to the human equipped with a baseline of 

autonomous actions, e.g. obstacle observance, facial recognitions, and understanding of 

basic infantry techniques and procedures. A serious game should be used for development 

of advanced features, tactics, and the human’s preferences of the AI agent of unmanned 

teammate. During serious gaming is when the AI agent should learn and evolve through 

iML techniques. The iML techniques will incorporate recorded data, voice after action 

reviews utilizing ITL techniques, and patterns from both the live and serious gaming 

environments. Prior to the AI agent being produced from the iML algorithms, an execution 

of the agent’s autonomous behaviors will be rehearsed virtually with the human. This will 

allow for a refined mental model of the unmanned teammate’s behaviors for live execution, 

thus increasing the trust and familiarity with the system. 

To provide a concrete example of the types of behaviors the human should develop 

within serious gaming, a table produced by recent NPS research is used. Utilizing Johnson 

et al.’s Coactive Design Process [54], USMC Captains Franco and Spada’s [22] research 

focuses on interdependence within MUM-T and how to command and control with 

unmanned teammates. Within their research, they used an interdependence analysis table 

for how an EMAV and human would occupy a machine gun support by fire (SBF) position, 

Table 6. The concept of an interdependence analysis table was presented by Johnson et al. 

[74] as a process for maximizing the HABA-MABA model for MUM-T tasks. [22] and 

[74] advocate that this analysis process should be used for developing all of the possible 

tasks for a MUM-T and to decide who is best suited to perform the sub-tasks. Table 6 was 

modified with the “Black Stars” next to the “decision points” delegated to the EMAV for 

its own non-lethal decisions. Examples are position and speed of movement within 

relationship to the human. An obvious and quick retort would be to allow the human to 

“control” those preferences during the execution. This would then relegate the human as a 

controller and fail to maximize the benefits of MUM-T. [22] and [74] research does not 

reveal how the autonomous vehicle should develop the reasoning to make those decisions, 
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but these are the exact types of behaviors that should be developed and controlled by the 

human.  

Table 6. Interdependence Analysis Table for Movement to a 
Support by Fire Position. Adapted from [22] 

 
 

3. Use of Simulations for Serious Gaming 

Some uses of virtual environments for training take the form of serious gaming. 

The TDKs purchased by the Marine Corps is a prime example of this use case. As the 

USMC continues to invest in virtual environments for training, they must also invest in the 

development of virtual models for each unmanned ground teammate. The virtual models 

need to be built to operate within the Marine Corps’ LVC-TE. Within the virtual model, 

there must be three options for the unmanned teammates virtual model’s avatar control: 1. 

A human controls the avatar to learn the capabilities and limitations of the system. 2. A 

human controls the avatar as an example for follow on “supervised” ML techniques. 3. 

Autonomous mode with a human “Positive” or “Negative” reward button to allow for 

“reinforcement” ML techniques. Options 2 and 3 encapsulate the concept of iML. Utilizing 

the concept of occupying a SBF, the three different user modes are explored. 

1. User Full Control Mode - In this form, the human is controlling all aspects of the 

unmanned teammate in the virtual environment. This sort of serious gaming will enable 

the human to learn the capabilities and limitations of the unmanned teammate. In the 
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serious game, the human could explore the SBF position from the perspective of the 

unmanned teammate. It would show the human a realistic view, trafficability, lines of sight, 

and rates of movement. These perceptions would refine the human’s mental model of the 

unmanned teammates perspective of the situation. 

2. Example User Control Mode - This form will serve as the “Performance 

Standard,” reference Figure 6, for supervised ML techniques. In this form, it will take two 

humans to create the example. One to control the human’s avatar and the other to control 

the unmanned teammate’s avatar. Once the scenario is executed in the virtual environment, 

the scenario and both behaviors will be exported for development in a separate module 

with supervised ML techniques. The module then runs millions of iterations of similar 

scenarios to develop the autonomous behaviors. These iterations can still have exploratory 

steps to allow for presentation of “novel AI” solutions. Upon completion of the ML, the 

human is presented with three agents for the unmanned teammates behaviors. After 

reviewing a demonstration of each behavior in the scenario, the manned teammate then 

decides on the agent to use.  

3. Reinforcement User Control Mode - The final form of control mode is for minor 

corrections and developments of the agent’s behaviors. While the human controls the 

human’s avatar, the agent will control the unmanned teammate’s avatar. This form will 

serve as a virtual rehearsal. As the team rehearses the occupation of a SBF, the human will 

have the opportunity to provide positive or negative reinforcements at the decision points 

outlined in the interdependence analysis table. For example, if the agent places itself in the 

right position of the formation, the manned teammate can provide a positive reward to 

reinforce that good behavior.  

Additional benefits from this serious gaming is the pro-active approach a human 

can have with training their own unmanned teammates’ agent and an understanding of the 

agent’s training progression. A common phrase within the Marine Corps is that Marines 

accomplish more with ownership. The assignment of an agent’s behavior to a Marine will 

create a greater value and connection with the agent, vice if being assigned from someone 

else. The data of time spent in the virtual environment training supports this point as 

indicated in Figure 39 in Section IV.B.2.b. Virtual Training Time. This theory is presented 
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succinctly by Gutzwiller and Reeder [75] in their 2020 research: “The IML approach 

further allows the user to be the designer, as Muir (1994), suggested, which is likely to 

improve trust in ML. In parallel, the “IKEA effect” also suggests that the experience of 

building these control models via interaction may impart an increased valuation to them 

(Norton et al., 2012) which may be a prophylactic against their disuse.” Continuing with 

the thread of disuse and misuse, the human owns the training curriculum for the agent. This 

ties directly to calibrating trust due to the resolution of the human’s understanding of the 

training curriculum. The human can expect greater uncertainty in the unmanned 

teammate’s performance for tasks not trained or in new environments. As Zhou and Chen 

indicated, understanding uncertainty can positively influence trust [63].  

 

4. Implementation of MUM-T into an USMC Infantry Battalion 

As referenced in Section I.C, a brief synopsis of Figure 40 follows. The cycle, and 

focus of my research, begins in the top left corner. In this stage, an Infantry Marine is given 

a robot with a removable AI device (RAID) and a compatible game console. The RAID is 

the “brain” of the robot. The RAID is preloaded with a baseline of automation that mimics 

the baseline of knowledge gained by Marines at the School of Infantry prior to arriving at 

their first Infantry Battalion. The game console, capable of establishing a connection with 

the RAID and the LVC-TE, is used by the Marine to interactively train with his robot in a 

virtual environment. The RAID is capable of the requirements defined in previous sections 

of this chapter. Due to the previously mentioned garrison restraints, the robot’s physical 

hardware lives in the “RoboPool.”  

When it is time for live training or operations, the Marine installs his RAID into his 

robot. Now, the functioning robot and Marine have become a live team with calibrated 

trust and tendencies built within a simulated environment. Upon completion of the live task 

or operation, the Marine conducts an after-action review (AAR) with his robotic teammate. 

This may be accomplished through hasty or deliberate means. A hasty AAR could be 

conducted by voice ITL with the robot to provide critiques on task completion and team 

interactions. A deliberate AAR, time and situation permitting, could be conducted through 



94 

the game console, allowing for a full three-dimensional digital critique and wholistic AAR 

process.  

Once the next mission is received, the S-2 – intelligence section – will create a 

virtual future operating environment by inserting the most likely adversarial agents into the 

virtual model of the physical world captured through unmanned aerial vehicle footage and 

photogrammetry. Building on previous shared experience and training, the team, Marine 

and Robot, will then conduct wargaming and mission-specific training prior to the next live 

operation. The area of this research is shown by the yellow star in Figure 40. Appendix A 

shows other research conducted by the Office of Naval Research (ONR) Code 34 that 

influence this model. 

  
Figure 40. Conceptual Model of Future Autonomous System Cycle. 

C. FUTURE WORK 

1. Experimental Redesign 

The ability to demonstrate the autonomous behaviors in a virtual environment for 

this experiment was lacking. A playback of autonomous behaviors will aid in the 

refinement of the human’s mental model. In the event of this research, the mental model 

of the behaviors was developing as the participant was attempting to complete another 
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attention enumeration task. While identified during planning, game development, and 

experimental design, there was not a viable option to produce a reasonable iML 

autonomous behavior. In future research while utilizing a “WOZ” type of construct, a 

multitude of different playbacks of iML autonomous behaviors can be developed. After 

observing the participants desired behaviors in the virtual environment, the participant can 

be shown a specific playback to match the participant’s preferences. This could create a 

better perception of iML.  

Within the experimental design, the choice for the participant to decide the type of 

control to have on the robot, either remote control or fully autonomous, may have revealed 

a confounding factor on trust. While analyzing the data point of difference of trust between 

the options, there appeared to be a potential growing trend. Two potential reasons for this 

possible trend are: 1. The response from the researchers concerning the “broken” remote 

control for the teleoperated mode may have degraded the trust in the required use of 

autonomous mode for the participant. 2. The participant approached the autonomous 

system with a lower level of trust, and this lower level of trust caused the user to choose 

the “remote control mode.” In turn, the participant’s trust in autonomous systems remained 

lower throughout the experiment. Recommended ways to prevent this possible 

confounding factor would be to remove choice from the design of experiment and replace 

it with a survey question following the completion of the autonomous testing. An additional 

option is to add a pre to post trust survey to identify change in trust at the expense of 

potentially biasing the participants.  

With trust being the “attitude that an agent will help achieve an individual’s goals 

in a situation characterized by uncertainty and vulnerability” [10], the next experimental 

design should increase the amount of vulnerability that the participant feels during the dual 

task paradigm. This research relied directly on the participant’s desire to do well during 

the dual task time. There was no known punishment, negative outcome, or loss if the 

participant did not trust the robot in its reconnaissance task. An approach to improve this 

in future research is to incorporate a competition aspect to the experiment or to provide the 

impression of a negative reward following a poor execution in both of the dual tasks. These 
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two actions would influence the individual’s desire to achieve a goal or feeling of 

vulnerability.  

2. Autonomous Agent Creation 

All aspects of autonomy were controlled by a WOZ. As this research serves as the 

initial thrust of transferring trust of autonomous behaviors from virtual to live 

environments, the next logical step is for the development of autonomous agents that meet 

the experimental design requirements. There are pre-programmed autonomous agents that 

exist in both virtual and live environments. The missing link is the ability to create an 

autonomous agent via the iML technique in a virtual environment to transfer to a live 

environment.  

To test with a similar demographic while developing the behaviors through the iML 

approach would require daily on scene contact, or the ability to have daily remote access. 

A potential solution for the remote based access is to develop a web-based gaming 

application. Utilizing the concepts presented in Section V.B.3. Implementation of MUM-

T into an USMC Infantry Battalion, participants would log-in to execute a single level of 

the curriculum per day. After the completion of the level, the agent would enter the 

supervised ML algorithms within the remote ML computers. Once the behaviors are 

developed, the participant can log-in to see the three created behaviors and make the 

selection of the desired agent. This would continue until the training curriculum is 

complete. At this point, the agent can be exported for actions with an autonomous robot.  

3. Virtual Environment Development 

The virtual environment used for serious gaming did not have any ML attributes 

connected to it. The next step for the virtual environment is to model it in a fashion that 

supports ML parameters. To create an agent that functions in all environments, the results 

of the agent’s sensing capability must be matched in both live and virtual environments 

and used as inputs for the ML algorithms. For example, the ability for the agent to assess 

a doorway must match in both environments. Within the ML algorithms, distance to 

doorway will need to be used to drive autonomous behaviors. As robotics experts have 

already proclaimed, this will be a major undertaking [19]. 
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D. SUMMARY 

This research sought to explore trust and its development in a virtual environment 

and how it transferred to live execution between groups with different approaches to 

autonomous behavioral development. The two-group design analyzed aML against iML in 

a dual task paradigm. Though the number of participants did not produce statistically 

significant results, the attention enumeration task and dual task paradigm established a 

testing environment where indicators of trust were easily measurable.  

The results were not statistically significant, but the main impression from this 

research is Infantry Marines may want to use an iML system over an aML. There are no 

indications on which type of system they would trust more though. A statistically 

significant point shows Infantry Marines invest more time training in a virtual environment 

during an iML approach vice for familiarity training with an aML system.  

The literature review culminated to reinforce that iML is a viable approach for 

developing better MUM-T. This research was inconclusive in determining if the iML 

technique increases trust. Refining the experimental design and testing with a greater 

number of participants will yield better results on the indications of trust.  

Though the results of this study are inconclusive due to a limited number of 

participants, future research should continue to explore the concept of using serious games 

to enable an iML approach for developing agent behaviors for an autonomous teammate. 

Future research will inform actions and decisions to increase the efficiency within a MUM-

T. The ability for each member of the MUM-T to develop a common mental model for 

each member will be critical. The developed mental models and performance of each 

teammates’ actions will build greater trust. With a virtual training environment, cost and 

maintenance requirements will decrease while developing mental models, behaviors, and 

trust through a wide variety of training scenarios will increase. With the capacity to transfer 

the developed trust and agent from a virtual to live environment, the MUM-T can achieve 

greater effectiveness in tasks. In turn, our efforts can provide the warfighter a tailorable 

system that increases their lethality through trust and teaming.  
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APPENDIX. ONR CODE 34 RESEARCH 

 
Figure 41.  DeepAgent Data Sheet. Source: [76]. 
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Figure 42. Simulated Teachable Agents for Training Environments 

Data Sheet. Source: [76]. 
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Figure 43. Extending Interactive Task Learning Data Sheet. Source: 

[76]. 
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Figure 44. Rapid Synthetic Environment Tool: Low Cost Virtual 

Training Data Sheet. Source: [76]. 
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Figure 45. Layered Semantic 3D Modeling of Indoor and Outdoor 

Environments Data Sheet. Source: [76].  
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