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ABSTRACT

This study explored the interactions of machine learning (ML) and serious
gaming on trust in the context of a manned-unmanned team. While the government
commits immense capital to develop autonomous systems for our warfighters, they often
go unused due to skepticism of their performance and reasoning. Complexity and cost of
the systems create an atmosphere that is prohibitive to daily training. These factors foster
mistrust in valuable systems that could otherwise aid the warfighter.

In our experiment, the influence of serious gaming and autonomous behavior
development was field tested with 40 participants in a two-group dual-task paradigm
design to measure choice, trust indicators, and secondary task performance (STP). In a
serious game, the control group learned the capabilities of an autonomous ground vehicle
(AGV), while the experimental group “trained” the behaviors of the AGV. The
experimental group invested significantly more time in the serious game. During
execution of a live AGV task, no significant differences of trust indicators or STP
occurred between groups. Time in the serious game in combination with trends in the
choice of autonomous or teleoperated control of the AGV may imply that users prefer a
user-trained AGV over an off-the-shelf solution. All data points to the need for further
studies into the use of serious gaming to develop autonomous behaviors through an
interactive ML approach.
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l. INTRODUCTION

There is a continuous commitment in terms of time and capital spent to develop
autonomous systems that enhance tactical operations. However, autonomous systems that
are designed to help the warfighter are useful only when the Marine trusts it. Trust is not
automatically established, and in many cases, force-multiplying systems go unused due to
the human’s skepticism regarding its ability. Furthermore, as machines transition from
teleoperated toward partially or fully automated, the capabilities, limitations, and reasoning
of behaviors of the machines will be further mystified to the user. Additionally, the
complexities, maintenance, and cost of future machines will create an environment that is
prohibitive to daily real-world training in an infantry battalion. These two factors, inability
to (a) understand artificial intelligence (Al) and (b) train daily, will compound to create an
atmosphere of mistrust in valuable systems that could otherwise improve the lethality of
Infantry Marines. The research will inform how trust transfers from a virtual environment
to live execution for different levels of autonomy and Al, ranging from teleoperated,

automatic machine learning (aML), and interactive machine learning (iML) robots.

A BACKGROUND

As described in the 38th Commandant of the Marine Corps’ Planning Guidance
(CPG) [1], “The Marine Corps confronts an increasingly complex operational environment
abroad and a challenging fiscal outlook” [1]. An element of this complex future is the
advent and incorporation of Al and autonomous systems. The CPG states that these
elements are changing the character of war. The Commandant of the Marine Corps’ (CMC)
number one priority is the force structure of the Marine Corps. He states, “We will divest
of legacy defense programs and force structure that support legacy capabilities” [1]. Due
to the CMC’s predictions on autonomous systems and Al, and his willingness to invest in
the right technologies, a continued increase in conversations, ideas, and advances will
ensue. To aid in this thrust of strategic investments, a detailed list of considerations will be
made for each system in development and how it will aid in the warfighter’s lethality. Two

key elements that subsume the considerations are trust and utilization.



In addition to the CPG, the Joint Operating Environment 2035 [2] provides a strong
foundation for how this technology will influence the future:

The next two decades will see significant advances in autonomy and

machine learning, to include the emergence of robots working together in

groups and as swarms. New and powerful robotic systems will be used to

perform complex actions, make autonomous decisions, deliver lethal force,

provide ISR [Intelligence, Surveillance, Reconnaissance] coverage, and
speed response times over wider areas of the globe. [2]

This same document argues that robots will augment human capabilities and will serve as
a force multiplier, thus increasing the overall lethality and performance of the unit [2].

These two strategic level concepts drive actions at the Marine Corps Warfighting
Laboratory (MCWL). Though the 2018 USMC Science and Technology (S&T) Strategic
Plan [3] predates the CPG, it is still prescient to the future operating environment that the
CMC foresees. It has identified the following objective in Joint Capability Area 3 — Force
Application as Maneuver S&T Objective-4: Advanced Robotic Systems in Support of
Ground Maneuver. Guidance for this objective is:

Develop affordable technologies to enhance effective and efficient

employment of ground robotics. Focus on improving capabilities while

reducing training and operating requirements of user Marines. Fully
autonomous vehicles are not necessarily the goal. Technologies that enable
effective ‘supervised autonomy’ by the Marine user, to include
teleoperation, machine vision, perception, obstacle avoidance, convoy
following, and the ability to self-navigate pre-planned routes are desired

capabilities. [3]

It appears that this current strategic objective is within reach. In 2018, MCWL S&T
Division led a Manned-Unmanned Teaming (MUM-T) Limited Operational Assessment
(LOA) [4] at Muscatatuck Urban Training Center, Indiana. During this LOA, MCWL had
success with the Expeditionary Modular Autonomous Vehicle (EMAV). As a tracked
unmanned ground vehicle (UGV), it was equipped with a Common Remotely Operated
Weapon Station, known as CROWS 11, that mounted a .50 caliber machine gun. The
operation of the overall system was the sole responsibility for two Marines, one for the
machine gun — the other for the EMAYV movements [4]. To build from these successes, one

could anticipate that the next S&T Strategic guidance will read
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Develop affordable technologies to enhance effective and efficient
employment of ground robotics. Focus on improving capabilities while
reducing training and operating requirements of user Marines. Fully
autonomous vehicles are still not the goal. Technologies that enable
effective ‘interdependence’ by the Marine user and robot, to include teamed
operations that exploit the capabilities of both the Marine and robot are
desired. These technologies must seek to magnify the capabilities of the
individual Marine, not merely allow him to conduct a similar task by
dissimilar means.

The successes of the EMAV by the Marines at Muscatatuck lay a solid foundation
for getting the right tools in the hands the Marines. A fictional vignette of the future from
the MCWL’s S&T Strategic Plan [3] states, “Marines rely heavily upon machines
functioning at varying levels of autonomy for precision fires, logistics, and [ISR] support”
[3]. This guidance confirms the use of autonomous systems in our future and makes
apparent that increasing the lethality of Marines via utilization and trust of the systems will

be complementing factors.

From a previous infantry battalion operation’s officer perspective [5], A hasty
analysis of an infantry battalion’s dwell cycle shows that they will spend approximately 80
out of 365 days in a field training environment [5]. To supplement this shortfall and build
the required intimacy within small units, Marines currently conduct “back-yard” training—
conducting patrolling operations within close proximity to their barracks. It is overly
optimistic to think that future Marines will be operating daily with their robots around
battalion headquarters. Maintenance, cost, durability, and garrison rules provide a stark
reminder of the difficulties that impede daily training. A fitting example is the observation
of the regularly filled motor pools that house 40+ High Mobility Multi-Wheeled Vehicles
(HMMWV) parked neatly in a row, not being used in training or operations. The current
way the United States Marine Corps (USMC) supplements HMMWYV training is through
the use of the Combat Convoy Simulator [6]. Many more examples of the use of
simulations provide training where the live option is cost, time, and maintenance

prohibitive.

A case study of the Joint Light Tactical Vehicle (JLTV), shows the USMC has

improved in keeping simulators relevant to the newest gear in their inventory [7].
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Additionally, it appears that industry is prepared to provide the simulators to support
training when asked by the Army and Marines [8],[9]. While these are favorable signs,
future equipment imbued with automation and Al, as directed in the above referenced
strategic guidance, will require simulators as a planning factor in the systems engineering
design process. Simulators will be valuable in the context of smaller systems like the
EMAV. The Marine’s experience with the system in a virtual environment will provide

familiarity and training with the capabilities and limitations of the system.

The Marine Corps’ future systems will have Al. The drivers of future robot actions
will range from assisted teleoperation through Al machine learning (ML) code. As
technological complexities increase the concept of trust becomes more complex—the
technology is perceived to be more human-like and less machine-like. According to experts
in the field of trust and automation, Lee and See [10], human trust in automation

technologies ranging from teleoperation to ML Al needs to be better understood [10].

While the types and levels of autonomy and intelligence of future systems will vary,
the mystifying nature of its decision process to the end-user will remain. This syndrome is
commonly known as a “Black Box.” The inability to explain the decision-making process
of Al is a topic of great research among academics, as well as the Department of Defense
(DaD).

The lead effort to help reduce the black box syndrome of Al within the DOD is the
Explainable Al (XAI) program at the Defense Advanced Research Projects Agency
(DARPA). DARPA’s XAl [11] team is exploring over 15 different types of ML techniques,
ranging from deep learning and neural nets to decision trees [11]. The line of their research

focused on autonomous, intelligent robots and XAl.
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Figure 1. Current Machine Learning Techniques and Notional

Explanability. Source: [11].

As Figure 1 shows, machines learn in myriad ways today. Analysis of Figure 1
reveals that neural networks are the smartest with the lowest explainability. Once the neural
network is appropriately calibrated, it teaches itself the correct decisions through a
comparison of the results achieved through a high amount repetitions to a desired result.
Thus, its self-teaching creates a low explainability. Continuing, the decision trees with the
highest explainability are programmed to create their code through parameterized
situations for reciprocated decisions. This code is then readable; it increases its
explainability. Additionally, to have an appropriate bedrock to begin a decision tree brain
requires a large amount of complex hard coding of the autonomous actions. According to
Amershi et al. [12], this requirement places a high demand of tight coupling between the
programmer and warfighter to achieve the warfighter’s desired outcome. This implies a
lengthy design and implementation process due to the diverse nature of the programmer
and end user. Each requires the other’s expertise to create an effective autonomous system
[12]. A proposed way to generate tighter coupling is to place the warfighter closer to the

coding. iML in a virtual environment is a viable option to answer the problems listed below.



B. PROBLEM STATEMENT

Current approaches to the development of autonomous systems for Marine Corps
Infantry community do not account for the following:

o Implementing MUM-T into a USMC Infantry Battalion environment

o Fielding simulation systems with the production of near equipment to
include MUM-T systems

o Designing and enabling military simulations to allow for ML techniques

. Achieving the full potential of autonomous actions with current systems

Explaining actions of a system developed by aML are difficult.

When compounded or alone, the aforementioned list of shortfalls will degrade the

trust and utilization of valuable systems.

C. OBJECTIVES

The primary objective of this research is to understand how autonomy and ML
techniques influence the development of trust in virtual environments for MUM-T systems.
Secondary objectives are to explore Al, autonomy, automation, and their interactions. For
Al, to understand different techniques for ML to create more explainable Al. The XAl
drives towards the usage of serious games within virtual environments and how they are
currently used for robotic movements and ML. The final secondary objective is to explore
MUM-T interactions and how trust is developed, maintained, and calibrated within the

team.

This research will assist in the Marine Corps’ movement towards its MUM-T goals
by demonstrating an approach to measure and understand the transfer of trust from a virtual
gaming environment to live execution. For the aim of more explainable Al, the thesis will
lay a baseline for the employment of iML techniques. Finally, this thesis will close by
showing a conceptual model for future employment of MUM-T ground systems within a

Marine Corps’ Infantry Battalion.



Though a motivation for the research is the implementation of ML outputs into
current virtual environment gaming and simulations, neither gaming, simulations, nor ML
input or output requirements will be explored in this thesis. Also, the topics of game fidelity
within graphics and physics modeling, and user-interface for gaming and robotics will not
be covered. These elements could have a great impact on the development of trust but will

remain constant for all iterations of the experiment to ensure their impact will be negligible.

D. RESEARCH QUESTIONS

1. How is the transfer of trust from a virtual environment to live execution
and utilization of an unmanned autonomous robot influenced by the types

of machine learning for the autonomous actions?

2. How is the attention on a primary task of a Marine reduced by teaming
with an aML and iML robot?

E. THESIS DESIGN

To fully cover this topic, problem, and research questions, the thesis will establish
definitions and explore research in the areas of Al, MUM-T, and trust throughout Chapter
Il. With the context, definitions, and surrounding research developed in Chapters I-II,
allows for the detailed explanation of the experiment in Chapter Il1. The following chapter
presents the results from the experiment. Finally, Chapter V describes the conclusions, and

the author’s conceptual model for the use of MUM-T in a USMC Infantry Battalion.
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Il. LITERATURE REVIEW

A. OVERVIEW

This chapter will provide a contextual framework, define concepts, and review
works that directly influence or explore the same topics as this research. Academic surveys,
textbooks, and published DoD reports were used to build each definition and show what is

in the realm of possible for simulations, Al, autonomy, ML, and MUM-T.

B. USE OF SIMULATIONS
1. Simulations in the USMC

According to a Center for Naval Analysis (CNA) report [13], the DoD has used
simulators to aid in the training of its pilots since the 1950s. Ever since then, the DoD
continued to seek improvements in simulations and simulators to decrease cost and time
for training. Though the air community has adopted simulations and simulators more
rapidly than ground forces, great strides are being made by the ground community to
incorporate simulators into the training regimen. Recent advances in simulators for ground
forces are vast, and, as shown in Figure 2, ranging from training division and higher staffs
for planning and decision-making processes to an infantry squad in an immersive
environment. Simulators can be computer-based simulations to force-on-force actions with
simulated munitions. These simulations and simulators aid in the training of individuals
and different unit sizes. The training aids in battle drill execution, decision making, and

unit cohesion [13].
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Figure 2. Overview of USMC Simulations for Training. Source: [14].

Even with this momentum for ground forces, the CNA [13] conducted a
comprehensive use of the USMC’s use of simulations for ground force training in 2009.
The report concluded that the USMC did not currently use simulations in a coherent or
standardized manner but had a suitable and appropriate master plan in the Marine Corps
Training and Education Command’s U.S. Marine Corps Training Modeling and Simulation
Master Plan. The plan [15] incorporates and maximizes the use of training simulations to
more efficiently utilize scarce resources [15]. The premise to the identified end-state of the
master plan falls in line with motivations of this research. The motivations read:

This end-state represents a ground force that is able to use technologies now

and in the years to come to both improve the quality of its training program

and to address budget constraints via training that requires fewer resources.

It assumes that limitations to funding, resources, and time, as well as safety

concerns, will reduce the amount of training that can be conducted in a live-
fire environment; thus, non-live-fire training options are desirable. [13]
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The identified end-states of the master plan have simulations addressing shortfalls
in training and capabilities, allowing for progressive training, and used throughout the force
[15]. The CNA identifies one of the two ways to achieve the presented end-state by:

Appropriate development of future training systems and associated M&S

[Modeling & Simulations] technologies. For future acquisitions, the Marine

Corps can best achieve its desired end-state by developing those training

systems that either address significant gaps in currently fielded systems or
achieve the greatest benefit to training capability. [13]

Though it may not require mentioning, the CNA study is absent on the guidance
for requisition of simulations to pair with emerging technologies to prevent significant gaps
for systems that will be fielded in the future. The USMC S&T Master Plan answers this
gap, “developing Marines to effectively operate in complexity by leveraging simulation
capabilities, developing leaders at every echelon, emphasizing quality in leadership, and
supporting cultural learning at all levels of operations” [3]. The long-term answer that is
being developed within the USMC is the “Live, Virtual, Constructive — Training
Environment (LVC-TE).” This will be a vast and diverse environment that will allow for

training and exercises at the individual, unit, and collective levels [16].

The most recent squad-level simulators fielded to aid in unit cohesion and decision
making are the Tactical Decision Kits (TDKSs). The TDKs are currently fielded to each
infantry battalion within the active duty Marine Corps. Through computer-based
simulations an infantry squad can conduct interactive tactical decision games, play first-
person shooter serious games, and utilize augmented reality to aid with spatial awareness
for use of fires. According to a USMC brief [17], the TDK aids the user in the following:
Rapid decision-making
Tactics bred from competition

Fighting a thinking enemy
Training decisiveness [17]

These learning points are provided to the users through immediate review and
feedback while leveraging the “generational strengths” [17] of the technically advanced
Marines within the USMC. This same concept and training objectives will continue to be
relevant as the Marine Corps continues to adopt MUM-T. Just as squad leaders train their
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Marines through simulation-based training, there is the potential for Marines to train their

partnered robot in the same fashion.

2. Simulations for Robotic Training

Humans are not the only trainee in a simulated environment; robotic programming
can also be done in a simulated environment. According to Biggs and MacDonald [18],
there are two main ways in which robotic programming occurs: manual or automatic.
Manually programmed robots require the user and/or programmer to code the robot’s
program directly. An automatically programmed robot generates its program through the
interactions between a robot and human. The second form, automatic programming, has
come to the forefront as robots become more prevalent and users have less technical skills.
This increases the ease of use and programming flexibility of the robots by the users. Both

of these programming modes can be done in real-time or via a simulated environment [18].

Biggs and MacDonald state there are three categories, as shown in Figure 3, of
automatic programming: Programming by Demonstration (PbD), Instructive Systems, and
Learning Systems. PbD has been in use for many years, specifically for industrial robotics.
The “Teach Pendant / Touch” style of PbD is where the user would move the robotic
element and the program would record the input. For example, a user would manipulate a
robotic arm to show where it could pick up an item for installation on an assembly line
[18]. The Gesture/Voice/Vision elements is where the user would coach the robot into its
actions via those input signals vice physically manipulating the robot. These input signals
are then recorded and create the robotic automation. For instructive systems, the robot is
given instructions by the user in real-time. This usually incorporates already programmed
sequences of actions and allows the user to link them together to accomplish specific tasks
[18]. Of interest to this thesis is the concept of a learning system that “creates a program
by inductive inference from user-provided examples and self-exploration by the robot”
[18]. This approach utilizes smart Al agents to control the actions. Some elements of the
actions are taught to the agent by a user and then through ML techniques the robot explores
how to improve those actions. According to multiple researchers: Bingham [19] and

Wiggers [20], a majority of Al agent’s exploration is done in a simulated environment to
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limit wear and tear on the robotic systems, and once efficient actions are learned, it is then
transferred to the physical robot [19], [20].

Automatic

Programming

Learning Programming Instructive
Systems by Systems
Demonstration

Teach Pendant/
Touch

Gesture/Voice/
Vision

Figure 3. Categories of Automatic Robotic Programming. Source:
[18].

3. Summary

Simulations are engrained training grounds for both U.S. Marines and Al driven
robots. The Marine Corps is continuing to invest in the development of simulation training
grounds for individual, small-unit, and staff training. The ability to partner a Marine with
an Al agent in a virtual environment creates a robust opportunity for the Marine to develop

an Al agent to perform tasks that can be transplanted into a robotic system.

C. ARTIFICIAL INTELLIGENCE, AUTONOMY, AND AUTOMATION

Al, autonomy, and automation have been areas of exploration and research since
the 1950s. Still, after such a period, there is not a clear definition for Al nor autonomy
[21],[22]. Though the field of research cannot decide on appropriate definitions, there are
obvious benefits that Al, automation, and autonomy can provide to our daily lives in both
civilian and military spectrums. The following sections will compare and contrast the
academic, practitioner, and military perceptions of the word. The following sections yield

that Al is the “ability of machines to perform tasks that normally require human
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intelligence...to include learning” [23]. For actions that have specific inputs to specific
output, automation is used. For environments that require sensing and understanding a

spectrum of inputs to achieve a goal-based output, autonomy is used.

1. Artificial Intelligence Defined

This section explores different approaches to defining what Al is. Definitions from

leading textbooks, researchers, and the DoD are presented.

a. Russell and Norvig’s Approach

Formative work in the science of Al by Russell and Norvig [24], place useable
definitions of Al developed by a multitude of respected researchers into four specific focus
areas [24]. These areas are the categorization of human and rational actions and thought.
Figure 4 is how Russell and Norvig binned the definitions. Within Figure 4, the rows of
thinking and acting are categories used as the primary goals for the Al. Thinking is how to
make the “brains” of the system work while actions are focused on the functions and
behaviors of the system. Humanly and rationally are the depictions to characterize how a

system performs [24].

Thinking Humanly
"The exciting new effort to make comput-
ers think - .. machines with minds, in the

full and literal sense." (Haugeland, 1985)

"[The automation of] activities that we
associate with human thinking, activitics
such as decision-making, problem solv-
ing, learning .. ." (Hellman, 1978)

Thinking Rationally
"The study of mental faculties through the

use of computational models."
(Charniak and McDermott, 1985)

"The study of the computations that make

it possible to perceive, reason, and act.”
Winston, 1992)

Acting Humanly

"The art of creating machines that per-
form functions that require intelligence
when performed by people.” (Kurzweil,
19900

"The study of how to make computers do
things at which, at the moment, people are
better." (Rich and Knight, 1991)

Acting Rationally

"Computatonal Intelligence is the study
of the design of intelligent agents.” (Poole
et at, 1998)

"Al ...is concerned with intelligent be
havior in artifacts.” (Nilsson, 1998)

Figure 4.

Binning of Al Definitions. Source: [24].




1) Thinking Humanly

Cognitive sciences dominate this area of Al, which focuses on understanding how
humans think and then making the Al mimic that process. The coupling of Al experts and
cognitive scientists allow for growth and experimentation in both areas [24]. The Al
scientists that focus in this realm believe that the Al should know the best answer, and if
no right answer it possible in the uncertain situation then it should at least know the best
answer [23]. Thinking as a human does not always imply that the thoughts will be rational.

(2) Thinking Rationally

The concept of rational thought is derived from the years of intellectual debate of
great philosophers ranging from Socrates to Mills. This concept heavily utilizes the theory
of logic. The deep use of logic creates difficulty for informal environments that cannot be
distilled into a simple logic statement. In uncertain environments, an answer may not be
achievable [24]. Additionally, this concept will never achieve a “good enough solution,”
but will continue to hunt for the right answer.

(3) Acting Humanly

This focus area stemmed from the Turing Test developed by Alan Turing in 1950
[24]. The aim of the test was to have a person write a question and pass it behind a curtain.
If the person was unable to discern if the answer that came back from the other side of the
curtain was from a human or machine, then Al was achieved [25]. This test precludes on
how the action was conceived. It could be either through rational or human process. This

does assume that human actions are not perfect, but in some ways are predictable.

(4)  Acting Rationally

Russel and Norvig favor the rational agent approach for two reasons. 1. It allows
for more means to achieve rationality. 2. It has greater flexibility for exploration than
attempting to achieve human behavior or thought. Since the exploration is not bound by
human processing limitations, the agent can act in ways that act in the most optimal and
rational manners. That being said, this area expects the Al to develop rational autonomous

actions based off of learning and perceptions [24].
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b. Other Academic Approaches

Singh et al. [21] provides a comprehensive list of other researchers’ definitions of
Al. As expected, most definitions presented fall into the bins created by [24]. The traits of
Al that are synthesized from the analysis by [21] are “reasoning, knowledge, planning,
learning, communication, perception and the ability to move and manipulate objects.”
Considering this comprehensive list of traits, a useable definition is also presented by [21]
as, “Al is the branch of computer science which deals with intelligence of machines where
an intelligent agent is a system that perceives its environment and takes actions which
maximize its chances of success” [21]. Singh’s et al. use of “agent” is stimulating and
reckons to Russell and Norvig’s favored approach to ‘Acting Rationally.” Singh et al.’s
approach to defining the principles of Al closely aligns to the DoD’s definition.

C. DoD Approach

In 2018, the DoD established the Joint Artificial Intelligence Center (JAIC) with
the aims to “enhance the ability for DoD components to execute new Al initiatives,
experiment, and learn within a common framework” [26]. This guiding statement from the
DoD encourages the DoD’s components to take Al from conceptual research towards the
execution of tangible experiments and implementation of Al. The DoD defines Al as “the
ability of machines to perform tasks that normally require human intelligence—for
example, recognizing patterns, learning from experience, drawing conclusions, making
predictions, or taking action—whether digitally or as the smart software behind
autonomous physical systems” [23]. This definition is very similar to the principles
presented by [21]. An overarching connection is the “smart” or “intelligent” agent.

d. Summary

The main concepts brought to the forefront by Russell and Norvig provide a
baseline for the common principles asserted by Singh et al. and the DoD. Each of the
principles presented by [21] and [23] fall within one of the human/rational thinking/action
from [24]. The commonality of Al practitioners’ definitions allow for the implementation
of those principles in a software or hardware-based agent. An agent is a “means or

instrument by which a guiding intelligence achieves a result” [27]. With the agent taking
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on the following principles to guide its intelligence for tasks like recognize, learn, infer,
predict, communicate, and take action, there is now a working aimpoint for what the agent
must do to be Al. How it achieves those aimpoints, like a human or rationally, appears to
be irrelevant to the DoD. The overarching nature of the DoD’s definition allow for the
development of the agent in any thought pattern and action type. This implies that the goal
of the DoD is to not have a single Al solve all problems, but that there will be multiple Al

agents developed as tools be used in different distinct challenge areas.

Of the many challenge areas defined by the DoD to utilize Al to solve problems,
this thesis will focus on “Improving situational awareness and decision-making” [23]. The
first thought comes to mind is the use of an Al robot teamed with an infantry squad. To
help increase the efficiency and capabilities of the squad, there will be an expectation for
the robot to conduct autonomous actions. To enable those actions Al is required. For this
thesis, the DoD definition of Al will be used for “The ability of machines to perform tasks
that normally require human intelligence—for example, recognizing patterns, learning
from experience, drawing conclusions, making predictions, or taking action—whether

digitally or as the smart software behind autonomous physical systems” [23].

2. Automation and Autonomy

As with the term Al, the use of autonomy and automation are flaunted virally as the
solution to any challenging, monotonous, or dangerous task. Additionally, autonomy and
automation are used interchangeably to describe similar systems, when they should not be.
They are two different distinct types of systems—autonomous systems which has
autonomy and automated systems which have automations. While all the conceptual end
uses for the terms of autonomy and automation are usually appropriate, an understanding
for each is required. The academic and military interpretations of autonomy and automation
will be presented; and as expected, this section will result in a clear definition for

automation and autonomy for use in this thesis.

a. Automation

Automation is the noun form of the word of automatic. According to Merriam-

Webster [28], the origins of automatic break down to “self-acting” [28]. What is absent in
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the definition or root of the word is intelligence or the ability to learn. This is not a slight
on automated processes; according to Hoff and Bashir [29], automation is used in every
corner of the earth [29]—it can analyze, inform, decide, and, even, act [30]. In the year
2000, Parasuraman et al. [30] developed a concept of automation: “Machines, especially
computers, are now capable of carrying out many functions that at one time could only be
performed by humans. Machine execution of such functions—or automation—nhas also
been extended to functions that humans do not wish to perform, or cannot perform as
accurately or reliably as machines” [30]. This is very similar to the expectations of the
Turing Test, but only for highly specified actions. Thomas Sheridan [31] from the
Massachusetts Institute of Technology’s Man-Machine Systems Laboratory provides the
best and most inclusive definition that will be used for this thesis. Sheridan states,
“Automation is the automatically controlled operation of an apparatus, a process, or a
system by mechanical or electronic devises that take the place of human organs of
observation, decision, and effort” [31]. Comparing to this to the definition of Al,
automation is a well-trained, dumb agent. The lack of the ability to learn, or have
intelligence, is what distinguishes automation from being Al. Conversely, Al systems can
have automation sub-components. The automated agent would be able to execute whatever
specific task it was created to accomplish, no more, no less. The DoD Roadmap [32] aids
in this line of thought with their description of automated systems, “[Automated systems]
are governed by prescriptive rules that allow for no deviations” [32].

b. Autonomy

With the understanding that automated processes lack Al and ability for deviations,
a logical inference would be autonomy possesses Al and can deviate. Only the latter is true.
The origins of the word autonomy, which come from autonomous, means “something
autonomous makes its own laws” [33]. The DoD Roadmap contrasts autonomy (i.e.,
autonomous systems) to automation. It states that “autonomous systems are governed by
broad rules that allow the system to deviate from the baseline”[32]. The DoD Roadmap
continues to define autonomy as “the ability of an entity to independently develop and
select among different courses of action (COASs) to achieve goals based on the entity’s

knowledge and understanding of the world, itself, and the situation” [32]. With the
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understanding that an entity represents the ‘agent enabled machine,’ this definition will be
used for autonomy. This definition is reinforced by the Beer et al. [34]. Their definition is
more explicit in the process of COA selection and interaction with the environment. They
defined autonomy as “the extent to which a robot can sense its environment, plan based
on that environment, and act upon that environment with the intent of reaching some task-
specific goal (either given to or created by the robot) without external control” [34]. Of
note from their definition is “the extent to which.” This implies that there is a spectrum of
autonomy “ranging from no autonomy to full autonomy” [34]. Figure 5 shows the wide
variety of definitions for autonomy. Note that all allow for flexibility of the agent to interact

with their environment.

Definitions of Agent and Robot Autonomy

“The robot should be able to carry out its actions and to refine or modify the task and
its own behavior according to the current goal and execution context of its task.”

“Autonomy refers to systems capable of operating in the real-world environment
without any form of external control for extended periods of time.”

“An autonomous agent is a system situated within and a part of an environment that
sense that environment and acts on it, over time, in pursuit of its own agenda and so as
to effect what it senses in the future;” “Exercises control over its own actions.™

“An  Unmanned System’s own ability of sensing, perceiving, analyzing,
communicating, planning, decision-making. and acting, to achieve goals as assigned
by its human operator(s) through designed HRI ... The condition or quality of being
self-governing.”

“‘Function autonomously’ indicates that the robot can operate, self-contained. under
all reasonable conditions without requiring recourse to a human operator. Autonomy
means that a robot can adapt to change in its environment (the lights get turned off) or
itself (a part breaks) and continue to reach a goal.”

“A rational agent should be autonomous—it should learn what it can to compensate
for partial or incorrect prior knowledge.”

“Autonomy refers to a robot’s ability to accommodate variations in its environment.
Different robots exhibit different degrees of autonomy; the degree of autonomy is
often measured by relating the degree at which the environment can be varied to the
mean time between failures, and other factors indicative of robot performance.”

“Autonomy: agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal states.”

Alami et al., 1998,
p.316

Bekey, 2005, p. 1
Franklin &
Graesser, 1996, p.

25

Huang, 2004, p. 9

Murphy, 2000, p. 4

Russell & Norvig,
2003, p. 37

Thrun, 2004, p. 14

Wooldridge &
Jennings, 1995, p.
116

Of note, only Russell and Norvig mention learning in their definition.

Figure 5.
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3. Summary

Automation is designed for specific inputs to result in specific outputs. Autonomy
is designed for a broad spectrum of inputs to result in a task-specific goal. There is the
possibility for an autonomous system to have automated actions as a sub-component.
Autonomous systems that continue to learn and recognize patterns have Al agents
powering their decision and action making. Al agents maintain the ability to write new
“rules” for its decision-making process. With an understanding of Al, automation, and
autonomy, the next step is to understand how an agent’s ability to sense, plan, and act are

created to allow for autonomous actions either in the virtual or real world.

D. MACHINE LEARNING

One could expect the title of this section to be “Agent Learning,” because the main
concern is how the agent, inside the machine, learns. The concept of the agent has been
developed within this thesis to have a range of capability and intelligence. Within
automated system it is well trained for execution with no capability of decision making,
with autonomous systems it can make decisions within a finite space of inputs and outputs,
and, finally, there are some Al systems that possess the ability to learn from experiences.
According to Russell and Norvig, there are four different types of Al agents: Simple
Reflex, Model-Based Reflex, Goal-Based, and Utility-Based [24]. An overly simplistic

explanation of each follow:

¢ Simple Reflex — If agent perceives x then the agent does y. The agent has
no memory.

e Model-Based Reflex — The agent can remember what has been done and
builds a mental model. Based on the model’s current condition it decides
to do x, y, or z.

e Goal-Based — The agent can build a mental model of the current
situation. It also knows what the goal model is. Based off the current
model and goal model, the agent decides an action.

e Utility-Based — The agent can build a mental model of the current
situation. It also knows what the goal model is. The agent also knows
there’s more than one way to achieve the goal model. The agent decides
one the “best” action to achieve the goal model. [24]
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This explanation helps us understand how agents work within an environment. Each
of the agent types to follow maintain the capability to learn. For an agent to learn there are
four fundamental sub-elements: Critic, Learning Element, Performance Element, and

Problem Generator [24]. The interactions of each of these elements is shown in Figure 6.
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Figure 6. General Model of Learning Agents. Source: [24].

In reference to Figure 6, the performance element is what has been referred to as
the agents listed above, the element that made the decisions on what to do for the entire
system. The performance element still does that decision making. As we build elements to
the agent, the learning enabled agent has the learning element and problem generator;
additionally, the learning enabled agent is an alter-ego named the “critic.” The critic is
responsible for understanding what the correct result for the agent should be and providing
feedback to the agent on how well of a job the agent did in contrast to the correct result.
This feedback, or difference, is provided to the learning element. The learning element
remembers the difference between the best result from the critic and what the performance
element executed. The problem generator is the creativity element to the agent. The

problem generator creates new ideas for exploration and experimentation to improve the
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agent’s performance. Increasing the amount of creativity allowed for the agent, increases
the number of attempts for originality by the agent [24]. The understanding of these internal
interactions of the agent is critical for the explanation of different types of agent learning

occurs.

1. Classifications of Machine Learning

The different components of the agent, i.e., critic, learning element, or performance
generator, can learn. The learning of these components is enabled by what the agent already
knows, how it prioritizes elements of the model, and what feedback should be used to learn
[24]. The way that machine learning is classified is by the type of feedback that the critic
provides. There are three major types of machine learning: Unsupervised, Supervised, and
Reinforcement Machine Learning [24]. The types of learning and performance elements,
i.e., neural networks and decision trees, can be applied across the types of learning
methods. For the explanation of types of learning, the categorization of photos will be used
as a simple use case. Each section will also discuss if novel machine learning occurs. Novel
machine learning is when the computer presents results that are successful but have not

been thought of by humans.

a. Unsupervised Machine Learning

Unsupervised machine learning provides minimal guidance to the critic. In turn, the
critic provides no explicit feedback to the agent. This sort of machine learning process is
best suited for pattern matching or clustering. With a large amount of data iterations, i.e.,
100,000 photos, for the input, the agent learns to group the photos into different piles [24].
Once the bins are created, naming of the bins by the human is stilled required. This
approach allows for novel exploration or binning by the agent. Elements may be within the

photos that were hidden to the human eye that aid in different types of classifications.

b. Supervised Machine Learning

Supervised Machine Learning requires a clean set of sorted data for the initial
learning to take place. With this type of learning, the right answer is provided directly to

the agent after it is seen [24]. For example, as each of the 100,000 photos is shown to the
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system, the correct answer is also provided to the agent as to which bin the photo should
be placed. This sort of learning requires a substantial amount of correct data, usually
computed by a human previously, and prevents the novel explorations that is achievable
by machine learning.

C. Reinforcement Machine Learning

Reinforcement Machine Learning provides a reward, either negative or positive, to
the agent after a set amount of iterations or actions. The reward is decided by the critic
based on the comparison of the performance element output compared to the ideal modeled
outcome [24]. With the pictures as an example, a reward can be provided after every photo.
The critic knew the picture was a cat, but the performance element classified the photo as
a zebra, in turn a negative reward is administered. As expected, if the cat is classified as a
cat, a positive reward is given. As the number of iterations between reward is increased,

the flexibility for novel machine learning solutions to emerge is possible.

2. Explainability of Machine Learning

Machine learning has made great strides in recent years. Success stems from the
implementation of different algorithms for the learning and performance elements of the
agent and advances in computer speeds. One of the most recent examples of successful
machine reinforcement learning is the work done by DeepMind and Blizzard with the
StarCraft Il Learning environment. StarCraft Il is a real-time strategy game that involves
the need for planning and execution of tasks [35]. With deep machine learning—millions
of repetitions of the learning cycle—the team created a StarCraft 1l controller, named
AlphaStar, that was able to defeat top-performing human players. During the premiere of
AlphaStar’s capability against the top StarCraft Il players, AlphaStar’s performance was
indistinguishable from a human’s, but justification for the moves and strategies performed
were unable to be explained by any members of the team, onlookers, or AlphaStar [36].
This sort of superb performance from a “Black Box” is common characteristic for Al
agents. Al’s recent rapid growth and the “Black Box” syndrome has sparked a line of

research and efforts along Explainable or Interpretable Artificial Intelligence [37].
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a. Justification for Explainable Al

In Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence
(XAl), Adadi and Berrada [37] have identified four main reasons for the need of XAl:
Explain to Justify, Explain to Control, Explain to Improve, and Explain to Discover [37].
Justification, control, and improvement are the primary concerns of this thesis. Discovering
is focused on the human learning from the novel approaches learned by the Al during its
machine learning processes. As this thesis will explore in Section 11.F.3.a, justification,
control, and system improvement will influence trust. ‘Explain to justify’ means that the
Al can provide backing to the purpose of the decisions that were made. To an end-user in
our case, a U.S. Marine, justification beyond simple logic coding is required — interpretable
information on why an agent’s decision occurred is needed. ‘Explain to control’ enables
the Al agent to be a teammate controlled by the Marine. This will help with the rapid
identification and adjustment of shortcomings [37]. ‘Explain to improve’ allows for the
Marine to continue to improve the system as the Marine becomes more intimate with the
Al agent’s decision making processes [37]. These cases for explanation will allow for the
improvement of the Al agent as a teammate for operations but does not help for the

understanding of why Al is unexplainable.

b. What Makes Al Un-explainable?

The root of the inexplicable nature of Al stems from the machine learning models
and the inability to “open-up” the learning and performance elements of the Al agent.
DARPA’s XAl program states that “machine learning models are opaque, non-intuitive,
and difficult for people to understand” [11]. The models represent how the Al agent
interprets the input to create its output. These models are created by algorithms that are
represented within neural nets, Bayesian Belief nets, and various other techniques [11].
Even with the best computer scientists, the explanation of the calibration and adjustment
of these models are inexplicable [38]—one cannot simply open the model and dissect it

like a combustion engine.

As motivations and promises of Al increase, so does the research effort in making

it explainable [11], [37]. Until this point in the thesis, the machine learning process are
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automatic, thus, automatic Machine Learning (aML). The agents learn through a large
amount of pre-computed inputs and outputs. A line of DARPA research focused on
autonomous, intelligent robots, and XAl is trending towards the use of interactive machine
learning (iML) [11].

E. EXPLAINABLE ARTIFICIAL INTELLIGENCE (XAl)
1. Academic Review of XAl

With the speed and growth of Al partnered with its requirement to be understood,
a substantial amount of research on XAl has followed. In December 2019, Arrieta et al.
[39] created a survey of XAl concepts and taxonomies surrounding the topic. They
reviewed over 400 scholarly articles and publications on XAl. Out of those reviews, the
authors created a list of attributes for the motivations for XAl ranging from trustworthiness
to privacy awareness. The attributes are listed in left most column of Table 1. Two critical
motivations are interactivity and trustworthiness. Arrieta et al. connect these two
motivations as important to “users affected by Al agent model decisions” [39].
Interactivity, trustworthiness, and user interactions are of importance to this work. In the
case of this thesis, it is considered that U.S. Marines are the end-users and the Al agent
developed through ML is running the robot that is a teammate to the U.S. Marine. The
importance of trustworthiness and interactivity within a MUM-T are outlined within
Section F. Manned-Unmanned Teaming (MUM-T).

Building from the concepts and algorithms that create the underlying structures for
ML Al agents outlined in Section 11.D. Machine Learning, Arrieta et al. research shows
that the different types of Al agent model structure have varying levels and approaches to
explainability, shown in Table 2 [39]. The “Transparent ML Models” are of interest due to
their transparency to the end-user. This implies that the models are easily shown in a text
or graphical format for the user to understand. An example of a “Transparent ML Model”
is the decision tree model. Figure 7 shows a simple representation of how the decision tree
model can be presented to the end user. Though this is a representation of relatively
transparent Al model, to our Marines the training dataset that is developed through the ML

process can still remain a black-box and/or the outputs are not the desired actions by the
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Marine for their approach to “interactivity” with the unmanned teammate. A known
shortfall for the transparent models, shown in Table 2, is that they lack the ability to have
a large data set, knowledge base, within the agent’s model. Thus, a majority of the work
being completed on improving the explainability of Al is focused on the ML techniques

that require the post-hoc analysis [39].

Table 1. XAl and Target Audiences. Source: [39].

XAI Goal Main target audience (Fig. 2) References

Domain experts, users of the model
affected by decisions

Domain experts, managers and
Causality executive board members, [35. 38, 39, 40, 41, 42, 43]
regulatory entities/agencies

Trustworthiness [5, 10, 24, 32, 33, 34, 35, 36, 37]

[5. 44, 21, 26, 45, 30, 32, 37, 38, 39, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70,71, 72,73,74,75,76,77,
78, 79, 80, 81, 82, 83, 84, 85]
[5.44,21, 25,26, 45, 30,32, 34, 35,37, 38,41, 46, 49,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65,
66, 68, 69, 70, 71, 72, 73, 74. 75, 76, 77, 78, 79, 86,
87, 88, 89, 59, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
Informativeness ~ All 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113,114, 115, 116, 117, 118, 119, 120, 121,
122,123, 124,125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,
144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154]

Transferability — Domain experts, data scientists

Domain experts, developers, [5. 45, 35, 46, 48, 54, 61, 72, 88, 89, 96, 108, 117,

Confidence managers, rcgru]ulury 119, 155]
entities/agencies
Fairness Users affected by model decisions, [5, 24, 45, 35, 47,99, 100, 101, 120, 121, 128, 156,
B regulatory entities/agencies 157, 158]

[21, 26, 30, 32, 37, 50, 53, 55, 62, 67, 68, 69, 70, 71,
74, 75,76, 86,93, 94, 103, 105, 107, 108, 111, 112,
113, 114, 115, 124, 129]

Product owners, managers, users

Accessibility affected by model decisions

Domain experts, users affected by
model decisions

Users affected by model decisions,
regulatory entities/agencies

Interactivity [37, 50, 59, 65, 67, 74, 86, 124]

Privacy awareness [89]
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Table 2.  Classification of ML Models to Explainability Source: [39].
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Figure 7. Illustration of Decision Tree Model. Source: [39].

As work continues for all types of ML models to increase the explainability,
concerns still exist from the end-user having to conform to the agent’s model and the data

sets and algorithms used to create the agent’s behaviors. There is still greater need to
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include the end-user in the development of the agent’s model. This incorporation of the
end-user will increase the user’s understanding of the process, purpose, and capabilities of

the agent’s behavior.

2. User-Focused Proactive XAl Techniques

Building on the literature review conducted by Arrieta et al., the list of references
presented in the “interactivity” and “trustworthiness” categories Table 1 were reviewed.
Out of the 16 publications, only 2 focus on incorporating the user in a proactive approach

to explaining the Al. A summarization of those two publications follow.

Utilizing the same metaphor as Alan Cooper does in his book ‘The Inmates are
Running the Asylum: Why High-Tech Products Drive Us Crazy and How to Restore the
Sanity;” Tim Miller et al. [40] argue that Al researchers are focused on developing
explanatory agents for Al researchers, and not for the intended end-user. In Miller et al.’s
self-proclaimed “light” literature review of XAl papers submitted for the International Joint
Conference on Al of 2017, “almost all of the [twenty-three] papers were describing
methods for automatically generating explanations of some type” [40]. Their brief survey
of articles concludes that Al researchers must collaborate with researchers “from the social
and behavioral sciences, to inform both model design and human behavioral
experiments”[40]. Miller et al. confirm that the current approaches being taking by the
DARPA XAl program for human-in-the-loop techniques of ML is the correct direction
[40].

Zhang et al. [41] connects the concepts delivered by Miller et al. and confirms a
critical factor for the development of the Al agent’s model is its interpretability to the user.
This interpretability builds expectations by the user of the robot’s capabilities. The process
used by Zhang et al. is to have an Al agent in a simulated environment execute a series of
actions to complete a task. After the action is completed, the actions performed are
collected under a term or label provided by a human. The example used by Zhang et al.,
takes basic movements of a robot and subsets them together under human labeling. The
scenario involves a robot moving about a gridded space with the overall goal of collecting

and storing boxes. At the primitive level, the robot can move, observe, load, and unload.
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The user can collect these primitives into a higher-level task of collect which involves
moving, observing, and loading the desired box. They call this process the human
interpretation of training examples. Zhang et al. experimented with this process with 13
human subjects, a robot, and the standard task of block stacking. While comparing their
process that allows for human labeling against a cost-optimal planner, they concluded that
their process increases explainability and predictability of the robotic actions. In this
context, the cost-optimal planner is like a “black-box” since it does not provide any
explanation. The human labeling planner accounts for the user in its planning process and
increases the explainability and predictability. In relationship to this thesis, the cost optimal
planner is similar to an aML developed Al agent, while the human labeling planner is

similar to iML[41]. The notion of predictability pairs well for trust and MUM-T.

3. DARPA Research

In addition to the academic realm, the DoD has taken great interest in the
explainability of Al. In 2019, David Gunning, program manager in DARPA’s Information
Innovation Office, and David W. Aha [42], acting director of the U.S. Naval Research
Laboratory’s Navy Center for Applied Research in Al, summarized the efforts and purpose
of the DARPA XAl program. They confirmed that XAl is essential for users to
“understand, appropriately trust, and effectively manage these artificially intelligent
partners” [42]. Gunning and Aha succinctly develop the concept of focusing on the user
with three research questions: “(1) how to produce more explainable models, (2) how to
design explanation interfaces, and (3) how to understand the psychologic requirements for
effective explanations” [42]. The first two questions are covered by 11 XAl research teams.
The research effort spans the lines for data analytics and autonomous systems. Of the 11

research teams, 3 are focused on autonomy, as shown in Figure 8.

Oregon State University (OSU) is focused on the user interfaces and the best
approach for explaining actions by the autonomous system. Carnegie Mellon University
(CMU) is creating a form of explainable reinforcement ML that explains why specific
rewards were given to the agent while training. Of most importance to this thesis, Palo Alto
Research Center (PARC) [43]; assisted by researchers from CMU, the Army Cyber
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Institute, the University of Edinburgh, and the University of Michigan; “is developing an
interactive sensemaking system that can explain the learned capabilities of an XAl system
that controls a simulated unmanned aerial system (UAS)”[43].

Explanation User
Training Data ’—.[ Euamy ] [ Mm.mm }
[ Explanation HUS&FSMiSf&ImDnJ
Le?fr::w . Explainable | Explanation = =
Processg Model Interface Model J_'[ Performance J
CP Area Performer Explainable Model Explanation Interface e ]—b[ApproprialeUse]
UCB Deep Learning Reflexive and Rational
Both CRA Causal Model Induction Narrative Generation IHMC
UCLA Pattern Theory+ 3-Level Explanation
osu Adaptive Programs Acceptance Testing
Autonomy PARC Cognitive Modeling Interactive Training
CcMU Explainable RL XRL Interaction
SRI Deep Learning Show-and-Tell Explanations
Raytheon BBN Deep Learning Argumentation and Pedagogy
Analytics uTD Probabilistic Logic Decision Diagrams
TAMU Mimic Learning Interactive Visualization
Rutgers Model Induction Bayesian Teaching

Figure 8. DARPA XAl Research Teams. Source: [42].

The tool PARC will utilize is an output of the COmmon Ground Learning and
Explanation (COGLE) project. The COGLE tool “will support user sensemaking of
autonomous system decisions, enable users to understand autonomous system strengths
and weaknesses, convey an understanding of how the system will behave in the future, and
provide ways for the user to improve the UAS’s performance” [43]. As implied within the
name of the project, the goal is to develop common ground for the user and the autonomous
system. Within COGLE this is done through a virtual environment. The common ground
will be built through human and computer interactions through demonstrations and
explorations within the virtual environment. They anticipate that “human plus computer

teams with common ground to work better and learn faster than humans or machines alone”
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[43]. As is common practice in reinforcement learning, the Al agent will be placed through

a curriculum of courses to develop its intelligence. The curriculum is shown in Figure 9.
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Figure 9. COGLE’s curriculum for the UAS training. Source: [43].

Since it is in a virtual environment, the end-user can observe the actions,
interactions, and development of the intelligence during the reinforcement learning
iterations. Additionally, and enabled through the user interface, the Al agent can provide
explanation to the user, and the user can guide Al agent actions. These actions develop
common ground with the user as a teacher and the Al agent as a student. PARC has termed
this environment in the following way: “In analogy with pedagogy, we call this two-way
human-in-the-loop partnership ‘mechagogy’ in analogy with pedagogy” [43]. Thus far,
their research maximizes both the teacher’s and student’s qualities. Since the user is
familiar with the contextual training scenario in the virtual environment, the user can guide
the Al agent in the correct direction for learning; and due to the reinforcement learning
nature of the Al agent, the Al agent can still produce novel results that can be shown to the
user [43]. Though there are no published results of this project to include the topic of trust,
it is expected that the common ground between user and Al agent will aid in the calibration

of trust.
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4. Interactive Machine Learning

Amershi et al. [12] state, IML is the intimate involvement of the end-user in the
incremental development of the agent’s model and its behavior [12]. iML is best explained
through a comparison to aML. Figure 10 is a graphical comparison. The major difference
between the aML and iML is when and how often the end-user interacts in the education
process of the agent. In historical applications of aML, a ML expert would code and tweak
the parameters for the ML process to educate the agent. This completed agent would then
be presented to the end-user. At this point, the end-user has little awareness of the process
used to create the agent, creating a low explainability of the agent for the end-user. Any
gaps in the agent’s model identified by the end-user would then require the ML expert’s
assistance in re-educating the agent. iML now pulls the end-user closer into the
development of the agent. After the ML expert creates the appropriate paraments for the
agent’s educational success, the ML expert is no longer needed. The system established by
the ML expert establishes the end-user as the critic for the agent’s development. This
increased involvement of the end-user in the development of the agent aids with the

explainability [12].

Within iML, the human can fulfill the responsibility of the critic in both
reinforcement ML, as with the thumbs up and down within Pandora Music and Podcast
Application [12], or as the input of the “right answer” in supervised machine learning, as
Gutzwiller and Reeder [44] explored for autonomous search and rescue patterns. Brown et
al. [45], show that the iIML Al agents can build a model for the specific user it is interacting
with and present information in back to the user in a personalized manner, Figure 11.
Additionally, Figure 11 demonstrates how the user can interact with the variety of ML
processes; the format shown matches the standard view of Al agent development presented

by Russell and Norvig in Figure 6.
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To date, there are numerous research efforts into iML. These explorations include
pixel and photo classifications to gesture recognition and Ant Colony Optimization, with
motivations ranging from increasing the speed of the machine learning process to achieving
transparency within the “black box” [46]-[49]. Elements of iML are explored within
Section 11.G.2 Interactive Machine Learning (iML). Another approach that utilizes an
iterative and interactive process for education of Al agents is known as interactive task
learning (ITL). Laird et al. [50] show that ITL can work with ML techniques or be used as
a standalone approach to educate an agent [50].

5. Interactive Task Learning

ITL is an approach to the education of the agent through an instructor to student
relationship. The human is the instructor and the Al agent is the student. Within ITL,
underlying concepts are explained and learned by the agent for the execution of a task. The
agent learns and remembers concepts, tasks, goals, and definitions of objects [50]. This
allows for the transferring of learned information from one problem set to another. “The
primary goal of an interactive task learner is to learn a task from its interactions with an
instructor and from its own experiences” [50]. This ability of the agent to learn through
human interaction, via voice or physical control, is complemented by ITL’s design for
broader problem sets compared to traditionally narrow problems of current Al research. As
with the iML approach, the ITL uses a software development expert to create the learning
operating systems of the agent and then removes the expert from the learning loop. The
learning loop is then strictly dependent on the human (instructor) to agent (student)

relationship [50].

6. Summary

Through the analysis of Al, it is evident that Al is the representation of an agent
within a machine that can accomplish tasks normally requiring human intellect. It can
recognize patterns, learn, infer information, and / or take actions. This agent can be
represented digitally, as in a computer based system, or be internal to an autonomous
physical system [23]. Continuing, all or some parts of a system can be automated.
Automated elements are prescriptive and allow no room for flexibility [32]. In contrast,
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autonomous agents sense a broad range of inputs, understand the identified goal state, and
can develop a plan to bridge the two [34]. The underlying agent for both automated and
autonomous processes is developed in myriad of ways. One end of the spectrum is through
a computer programmer’s coding of conditional statements to produce the desired output.
The opposite end of the spectrum is the use of an Al agent to create the associated logic
through ML. The Al agent can be educated through multiple ML processes. An identified
shortfall for aML processes is the byproduct of the “black-box™ nature of the Al agent’s
logic to the end-user’s understanding. Research is underway in areas to increase the
interaction of the end-user into the Al agent’s development process. Both iML and ITL

show promise in tightening the relationship between the Al agent and end-user.

This sort of picture of Al agents and ML environments begins to create a concept
that is analogous to the common phrase, “the right tool for the job.” For spray painting cars
on an assembly line, automated robotic arms effectively and efficiently accomplish the task
[51]. For cleaning the floor in your house, an autonomous vacuum achieves the tasks. The
robot understands that a clean floor is the goal and can accomplish this even when new
disruptive objects are placed in the environment, e.g., a chair is moved from the last
vacuuming [52]. Microsoft recently used ML techniques to aid in the classification of
photos that captured elusive and rare snow leopards. They used hundreds of thousands of
painstakingly human classified photos to train the system [53]. All aforementioned
solutions work well in a deterministic environment and do not incorporate a human
element. For agents that are intended to work with humans, the interactive approaches —
interactive Machine Learning and Interactive Task Learning are viable options. To
continue to explore how interactive approaches can be used, an understanding of manned-

unmanned teaming is required.
F. MANNED-UNMANNED TEAMING (MUM-T)

1.  Why MUM-T?

As Al and ML technology continues to improve, the goals for how machines—i.e.,
computers, robots, Al agents—perform in relationship to a human will continue to develop.

According to Johnson et al. [54], with the technological advances, the idea of “teaming”

35



will become a mainstay in man-unmanned vernacular [54]. Unmanned agents range in
scale from teleoperated systems (remote controlled) to independent automatons (Roomba
vacuums). Teleoperated systems require their inputs to be interpreted and decided upon by
the human controller. The outputs are then triggered through some form of controller to
the system to execute the prescribed action. The simplest, albeit most inefficient, form of
teleoperation requires complete human attention. On the opposite end of the spectrum—a
fully autonomous system—requires no human oversight. All inputs, decisions, and outputs
are sensed, interpreted, decided, and actioned by the fully autonomous system. As detailed
in Section C — Artificial Intelligence, Autonomy and Section D — Machine Learning, the
primary shortfall of Al is its ability to handle novel situations. Published in 1978 by
Sheridan and Verplank [55], Figure 12 shows the relationship between specified and novel
situations to the amount of automation an agent can have [55].
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Figure 12. Task Entropy to Degree of Automation. Source: [55].
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The figure creates a relationship between the types of tasks that are acceptable for
an agent to perform dependent on the predictability of a task. The authors describe the
degree of automation on a spectrum ranging from remote controlled to fully automated,
and task entropy from completely known to fully unknown. In the bottom left, the human
is in complete control of an agent executing pre-determined tasks, i.e., a mundane and
repetitive task. Following this task to the right on the graph, shows the type of tasks that
are ideal candidates for the agent to execute with minimal supervision. A modern-day
example of this would be the Microsoft photo classification task. In the top left of the figure
is the use of an agent or robot to conduct an unknown task in a dynamic environment. The
top right is the agent completing that task without any human involvement, i.e., vacuuming
a room. The transition between the white to shaded area was defined as the frontier by
Verplank and Sheridan [55]. The relationship developed by [55] is also valid with
autonomy. Since 1978, the frontier remains in the same region. Al agents are very good in
known situations for predetermined tasks. This limitation, and thus the reduction of the

frontier, can be overcome by the teaming of an Al agent with a human counterpart.

Verplank and Sheridan’s research focused on the use of unmanned robotic systems
as an extension of a human controller in undersea exploration. Due to the difficulties of
maintaining responsive and reliable communications with the underwater system, their
explorations were to identify what tasks could be automated to the unmanned robot system.
Their representation of manned unmanned teaming (MUM-T) shows the benefits of the
teaming relationship. Though simplistic, and relating to undersea operations, the benefits

of teaming (via “sharing” and “trading”) are easy to envision in other realms.

In Figure 13, the dotted horizontal line represents task accomplishment. The
obvious goal of the relationships represented in the figure are to raise the task, “L,” above
the line. In Verplank and Sheridan’s depiction, the box “C” represents a computer but can
also represents the concept of a machine. Alone, the human, “H,” can accomplish the task,
but within the “Sharing” realm the task is either accomplished to a greater degree,
“Extend;” or alleviates the amount of work the human must do, “Relieve.” In the “Trading”
area, the computer can “Back-up” the human’s work-load, but to a sub-optimal level if the
human requires relief. The final option within “Trading” is where the computer “Replaces”
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the human; this does not accomplish the holistic task [55]. Within this thesis, the focus of
MUM-T will be the “Extend” action for the overall task, and the “Replace” action for
specific sub-tasks. This approach for MUM-T allows the team to do more. Additionally,
the allocation of the right sub-tasks to the computer will free the human to execute more
critical and cognitive tasks. The following section explores a human machine teaming

model for the allocation of tasks and sub-tasks.
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Figure 13. Benefits of MUM-T. Source: [55].

2. What is MUM-T?

The DoD’s Unmanned Systems Integrated Roadmap [32] uses the United States
Army’s definition for MUM-T [56].
Manned-unmanned Teaming [MUM-T] is the synchronized employment of

soldiers, manned and unmanned air and ground vehicles, robotics, and
sensors to achieve enhanced situational understanding, greater lethality, and
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improved survivability. The concept of MUM-T is to combine the inherent
strengths of manned and unmanned platforms to produce synergy and
overmatch with asymmetric advantages. [56]

This definition fits well into the current research on MUM-T. The most common
model of MUM-T is the Fitts Model.

HUMANS SURFPASS MACHINES IN THE:

detection perception

judgmant

Induction

Impravisation

langterm
mamaory

Ahbility to detect small amounts of visual or acoustic energy

Ability to perceive pattemns of light or sound

Ability to improvise and use flexible procedures

Ability to store very large amounts of information for long periods
and to recall relevant facts at the appropriate time

Ability to reason inductively

+  Ability to exercise judgment

MACHINES SURPASS HUMANS [N THE:

«  Ability to respond quickly to control signals, and to apply
greal foree smoothly and precisely
Ability to perform repetitive, routine tasks
Ability to store information briefly and then to erase it completely
Ability to reason deductively, including computational ability
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Bradshaw et al. state, “The Fitts HABA-MABA (humans-are-better-at/machines-are-
better-at) approach. Reprinted with permission from Human Engineering for an Effective
Air Navigation and Traffic Control System, 1951, by the National Academy of Sciences,
courtesy of the National Academies Press, Washington, D.C.” [57].

Figure 14. Fitts Model of MUM-T. Source: [57].
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According to Bradshaw et al. [57], the Fitts Model, developed in 1951, is the
delegation of sub-tasks between a human and machine to who can best accomplish that
sub-task while aiding the team to better accomplish the overall task as shown in the
“Extend” portion of Figure 13 [57]. The Fitts Model is also known as the “Humans Are
Better At — Machines Are Better At” (HABA-MABA) model. Figure 14 compares the
HABA-MABA abilities. It clearly breaks down the types of tasks that are good for humans
and machines. The assessment of who does what better is still valid today.

The conglomeration of the Verplank et al. and Fitts Model fits well to how the
USMC’s Marine Corps Doctrinal Publication 1 - Warfighting [58], views the use of
technology: “Equipment is useful only if it increases combat effectiveness” [58]. With
regards to Figure 13, the dotted line is combat effectiveness. For achievement of the task
above the combat effectiveness line, the teammate relationship between human and
machine requires interdependence. Johnson et al. [54] utilize the Coactive Design process
to develop the approach to design for interdependence. They state: “Interdependence
describes the set of complementary relationships that two or more parties rely on to manage
required (hard) or opportunistic (soft) dependencies in joint activity” [54]. The concept of
interdependence is developed under three types of interactions. The interactions are
symbiotic between the human and the machine to achieve true MUM-T. The three concepts
are observability, predictability, and directability; [54] defines them as:

Observability means making pertinent aspects of one’s status, as well as
one’s knowledge of the team, task, and environment observable to others.

Predictability means one’s actions should be predictable enough that others
can reasonably rely on them when considering their own actions.

Directability means one’s ability to direct the behavior of others and
complementarily be directed by others. [54]

This again pairs nicely to the USMC’s doctrine on cooperation and teamwork.
Warfighting [58] builds from an idea presented by John Boyd’s Organic Design for
Command and Control about the idea of implicit communication within a command:

Our philosophy of command must also exploit the human ability to

communicate implicitly (Boyd). We believe that implicit communication—

to communicate through mutual understanding, using a minimum of key,
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well-understood phrases or even anticipating each other’s thoughts—is a
faster, more effective way to communicate than through the use of detailed,
explicit instructions. We develop this ability through familiarity and trust,
which are based on a shared philosophy and shared experience. [58]

When synthesized, it creates a clear picture for the defining the goal for MUM-T to
achieve the definition for MUM-T used by the DoD, [32]. Observability and Directability
are encapsulated by the Marine Corps’ use of implicit communication. A “mutual
understanding” is the Observability of knowledge between both human and machine. The
use of ‘well-understood phrases’ allows for the Directability of the elements of the team.
Finally, the predictability is developed “through familiarity and trust.” Trust is a critical

element to the adoption and use of any system by a Marine — especially a teammate.

3. Trust in Automation

The DoD Roadmap for Unmanned Systems Integration [32] acknowledges trust as
“complex and multi-dimensional” [32]. The same guiding document continues to develop
trust as part of the life cycle of any system, and that there are multi-faceted roles of human
trust in systems, ranging from end-users to policy makers. Additionally, the ability to
maintain human authority within missional approval will aid in trust of MUM-T systems.
Finally, “Without an adequate level of trust between operators/commanders and
autonomous unmanned systems, to function properly with a high degree of consistency,
these systems will not be used in any mission set” [32]. To create systems that will be used,
an understanding of the elements of trust will create a bedrock for the life-cycle
development of the autonomous system and their development and maintenance of trust

with humans.

a. Elements of Trust

Seminal work by Lee and See [10] in human factors and trust in automation state
that trust is the “attitude that an agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability” [10]. Lee and See make a clear delineation
between trust and reliance based on work from Ajzen and Fishbein. Lee and See produce,

“trust is an attitude, and reliance is a behavior” [10]. They continue, “Trust guides—but
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does not completely determine—reliance” [10]. Though trust is a personal view, there are

contextual elements that develop the user’s approach to trust.

Lee and See continue, there are three additional contextual elements that shape and
influence trust in autonomous systems: Individual, Organization, and Cultural Context.
Individual context focuses on the user’s experiences, self-confidence in task, and specific
history that develops a level of trust. Organizational context involves the interactions
between persons within the organization and how trustworthy the organization is. Cultural
context is developed through the user’s society’s customs and expectations [10].
Continuing from the contextual elements that influence a user’s trust, the user must also

build trust through awareness of the autonomous system.

To have the appropriate trust in a system requires calibration, resolution, and
specificity of the system. Lee and See build on concepts presented by Lee and Moray, 1994
and Muir, 1987, calibration refers to finding the center line of over-trust and under-trust,
which [10] titles as distrust. Distrust will be used through the rest of this thesis. For
resolution Lee and See utilize Cohen et al., 1999 to develop it as an understanding of the
tasks and situations that fall within the systems capabilities. Finally, specificity is knowing
which specific actions and components are to be trusted [10]. These elements of trust tie
directly to the factors of the automated system through performance, process, and purpose.
Performance is how well the automation operates. Process is how it operates. Purpose is
understanding what the system was designed to do [10].

Tying these elements of trust together; calibration, resolution, and specificity of a
system is the user’s understanding of the autonomous systems capabilities for a specific
task. Within the specific task; performance, process, and purpose are focused on “how” the
autonomous system will perform that specific task. These elements of trust may be
influenced by the user’s own individual, organization, and culture context of the system
and the associated tasks. These elements are brought together by the user’s attitude towards
the system. To achieve trust, familiarity with the system is required. The familiarity will
build predictability, then dependability, and, finally, the attitude of faith in the system -
trust. In 1987, Bonnie M. Muir [59] develops this idea as the calibration of trust.
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b. Calibration and Accumulation of Trust

Muir’s work extends a model of inter-human trust developed by Rempel, Holmes,
and Zanna in their article, “Trust in Close Relationships.” Muir takes the Rempel et al.’s
trust model to “how a human’s trust in a machine changes as a result of experience on a
system” [59]. The resultant of the experience developed with a system is calibrated trust.
A user who has appropriately calibrated their trust in an autonomous system will achieve
the maximize value of the MUM-T as shown in “Extend” relationship of Figure 13. As
mentioned, calibration is the centerline between over- and dis-trust. Over trust is the user’s
expectation that the system’s range of capabilities, performance, and purpose are greater
than they actually are. Distrust (under-trust) is the opposite. Byproducts of inappropriate
calibration of trust are misuse — reliance on automation for incorrect tasks, and disuse —
rejection of the capabilities of the automation [10]. Figure 15 shows the balance of trust

and the automation’s capabilities for the calibration of trust.

Overtrust: Trust exceeds p
system capabilities,

leading to misuse .
Calibrated trust: Trust

matches system capabilities,
leading to appropriate use

Distrust: Trust falls short
of system capabilities,
leading to disuse

Trust

Good resolution: A range of
system capability maps onto
the same range of trust

Poor resolution: A large range
of system capability maps onto
a small range of trust

]
1

Automation capability
(trustworthiness)

Lee and See state, “the relationship among calibration, resolution, and automation
capability in defining appropriate trust in automation. Overtrust may lead to misuse and
distrust may lead to disuse” [10].

Figure 15. Lee and See’s Calibrated Trust. Source: [10].
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In Cohen et al.’s [60] “Trust in Decision Aids: A Model and Its Training
Implications,” trust is developed as the product of interaction between the user and the
system. This implies, that with every interaction, trust is evolving. To achieve appropriate
calibration and resolution, familiarity with a system is required. Elements that influence
the familiarity and the predictions of a system are many. They range from the user’s
experience with the system in a variety of tasks and scenarios, understanding of the system
design and functionality, and reports by other concerning their experiences with the system
[60]. The way to increase the user’s exposure to these elements of familiarity and
predictions is through experience with the system in training. Based on Marine Corps
Doctrinal Publication 1-3 Tactics[61], the goal of Marine Corps training is to develop
familiarity, trust, battle drills, and combat standing operating procedures (SOPs) [61].
Battle drills and SOPs develop expectations within a unit of who will do what specific
actions during a task. This is very similar to the sort of relationship that is developed with

an autonomous teammate.

In review, the following elements are critical to the user in development of trust to

with autonomous teammate:

o Resolution — Is this the right task for the autonomy?
. Calibration — Should the autonomy be used for this task?
. Process — How will the autonomy complete this task?

Additionally, the following factors of autonomous systems are essential for the

user in their development of trust:

. Purpose — Was the autonomy made for this task?
o Performance — How well will the autonomy complete this task?
o Predictability — What will the autonomous actions be? [59]

These concepts are brought together in the form of a mental model. Sheridan [62]

explains that the maintenance of the mental model takes the likeness to a Kalman control
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systems feedback loop and implies that trust is continuously calibrated. Sheridan modified
the six major blocks of Lee and See’s “Interaction of context, agent characteristics, and
cognitive properties with the appropriateness of trust” model. The Sheridan updated
version is shown in Figure 15. Sheridan has added the words in the parenthesis of each
block, and the dotted line from state “C” to “Trust evolution.” The words in parenthesis
connect trust vocabulary to control system feedback vocabulary. The dotted line creates a
connection on belief for when actions of the automation cannot be observed [62]. Lee and
See’s original model shows that appropriate trust is when state “A” and state “B” are equal.
This holds true with Sheridan. Absolute calibration of trust is when the mental model of
execution matches the actual displayed behaviors of autonomous systems. Though [10]
and [62] present this model in from the user’s perspective, the next step for MUM-T would
be this same form of model from the unmanned teammates perspective, by replacing
“Automation” with “Manned Activities.” Two direct factor that are in the path of states A
and B are the “state-based policy deciding action” and the “physical action to modify state.”
Of specific interest to this thesis, is the “state-based policy deciding action.” Throughout
this thesis, this factor was developed as the “agent” and at this point may or may not be

explainable to the end-user.

Information analysis
and belief formation | A

(discrepancy in i
estimation of state)

I

Display
(measurement of
result of action)

Trust evolution Automation
(internal or mental &+ (physical reality
model of reality) E of cause-effect)
"
B i
RS :
)
Intention formation| | Reliance action
(state-based policy ‘C » (physical action
deciding action) to modify state)

Sheridan states, “Kalman estimation/control model of trust. Shown in parentheses are
modifications of terms in bold taken from Lee and See’s (2004) model” [62].

Figure 16. Sheridan’s Control Model of Trust. Source: [62].
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4, Summary

As Al continues to improve, so does the scope of tasks that an agent can complete.
The tasks still being assigned to Al agents to complete are repetitive, mundane, and/or
dangerous. This follows in line of the Fitts model - HABA-MABA. When in isolation, the
accomplishment of the Al agent’s task replaces the human. When multiple tasks are
accomplished in a complementing nature by the human and Al agent — MUM-T - the
results exceed then when both are accomplished in isolation. When the tasks complement
each other, a major factor that influences the relationship is trust. The best way to gain and
calibrate trust is through an intimate understanding of the system, what it was designed for,
and how it functions. These elements come together for the user in the user’s mental model
of the system’s behaviors. A way to develop the user’s mental model of the MUM-T is
through experience with the system which can take place in live or virtual environments.
The team gains experience in an environment that allows for the elements of the
interdependence model. The behaviors at state B must be observable. Observations at state
B should match expectations at state A, thus predictability and calibrated trust. And finally,
to achieve more together than alone, reference “Extend” from Figure 13, the teammates
must be directable to achieve the appropriate tasks. A factor that has yet to be accounted
for within Sheridan’s Control Model of Trust is the “black-box” nature or explainability of
the “state-based policy deciding action.”

G. DEVELOPING TRUST WITHIN MUM-T
1. How Explainability and Trust link

The catalyst for the XAl program [42] from DARPA is captured by in the model
created by the Florida Institute for Human and Machine Cognition in Figure 17. Their
process incorporates the flow beginning with the user and ending with appropriate use. As
shown, trust is a critical factor for the user and how the user employs the system. Working
through Figure 17, the user receives an explanation from the XAl system that allows for
the user to assess the explanation based on pre-established criteria. The criterion for
assessment is shown in Table 3. As the user digests this explanation it updates the user’s
mental model of how the system should behave and re-calibrates trust for the system’s
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actions. Once the system executes its task it allows the user to assess and improve the user’s

expectations for the tasks [42]. The green boxes in Figure 17 correspond to the descriptions

provided in Table 3.
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Figure 17. DARPA’s XAl Explation Process. Source: [42].
Table 3. DARPA’s XAl Explanation Measurement Categories.
Source: [42].
Measure Description
ML Model performance

Various measures (on a per-challenge problem area

basis)

Explanation Effectiveness

Explanation goodness
Explanation satisfaction
Mental model understanding
User task performance

Appropriate Trust and Reliance

Accuracy/performance of the ML model in its given domain (to
understand whether performance improved or degraded relative to
state-of-the-art nonexplainable baselines)

Features of explanations assessed against criteria for explanation
goodness

User’s subjective rating of explanation completeness, usefulness,
accuracy, and satisfaction

User's understanding of the system and the ability to predict the system's
decisions/behavior in new situations

Success of the user performing the tasks for which the system is designed
to support

User's ability to know when to, and when not to, trust the system's
recommendations and decisions
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The DARPA XAl research creates a baseline model. Research to build from the
models produced by DARPA XAl, led to the 2019 International Joint Conference on Al
(NCAI). Within publication list, only two publication were focused solely on XAl,

teaming, and trust.

In the first, Jianlong Zhou and Fang Chen [63] explore the interactions of trust with
a predictive decision making Al system and the “human’s experiences with the system and
domain knowledge” [63]. Motivations for Zhou and Chen’s research mirror that of this
research - disuse and misuse of systems and the “black-box” nature of Al systems. Based
on Lee and See’s definition of trust that describes uncertainty and performance as an
element of the situation for trust, Zhou and Chen developed a tool that indicates the amount
of uncertainty and performance that an Al model has in its own decision. The amount of
uncertainty is measured by the difference between the real-world parameters for the Al
agent’s decision making and the training model’s parameters used to create the Al. The
performance is indicated by the expected outcome of the model. The uncertainty and
performance indicator is a tool intended to trigger the right amount of trust by the human
teammate. Utilizing a trial to trial experimental process, Zhou and Chen had success
confirming that this approach increased the calibration of trust [63]. A secondary by-
product that Zhou and Chen did not reference was the increased familiarity with the system
as it iterated through simulations also increased the trust. The concept of repeating training

cases in a simulated environment is valuable to this research.

In another article published by the IJCAI in 2019, Papenmeier et al. [64] measured
the fidelity of the explained Al actions to trust. Papenmeier et al. define fidelity as: “how
truthfully the explanation represents the underlying model” [64]. Through the use of
Tweets possessing offensive language, the team varied the amount of fidelity of the
explanation provided by the Al system to the user. The study involved manipulating the
fidelity in three factors (low, medium, and high) of the reporting and accuracy in three
factors (low, medium, and high) of the Al system across 40+ Tweets for each of 327
participants. Their objective results measuring trust indicated that fidelity does matter to
the user. Low fidelity feedback had negative impacts to the system, but the model’s overall
level of accuracy impacted trust the most. An important factor that does not involve fidelity
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or accuracy was the critical element that a “users’ awareness level influences their
perception of trust” [64]. Though there is substantial work being completed on the
explaining of Al actions, it may not be the ultimate tool in calibrating trust for a human
with an Al agent teammate [64]. Connecting Papenmeier et al.’s research to Figure 17 and
Table 3, the preponderance of research is conducted on the “Explanation goodness” and
“Explanation satisfaction.” Elements of Table 3 that were previously explained prior to be
introduced in the table are: “Mental model understanding” and “Appropriate Trust and
Reliance.” The next portion will explore how a user can be involved with the development
of the Al agent which will increase awareness and “Mental model understanding” and, in

turn, trust.

2. Interactive Machine Learning (iML) Research

In an aptly named review, “Power to the People: The Role of Humans in Interactive
Machine Learning” focused on iML techniques, Amershi et al. [12] select specific research
in iML to demonstrate the importance of understanding how to interact with the end-user.
Utilizing a ML project completed in 2006 by Caruana et al. as a case-study, Amershi et al.
present the concept of enabling users to explore the Al Agent’s model space with less
supervision from ML experts. The case shows that users were empowered to create and
employ ML for their own desires and purposes. Amershi et al.’s research reveals the three
following points:

Rapid, focused, and incremental learning cycles result in a tight coupling

between the user and the system, where the two influence one another. As

a result it is difficult to decouple their influence on the resulting model and
study such systems in isolation.

Explicitly studying user interaction can challenge assumptions of traditional
learning systems about users and better inform the design of interactive
learning systems.

The ways in which end users interact with learning systems can be expanded
to ways in which practitioners do (for example, tuning parameters or
defining new constraints); however, novel interaction techniques should be
carefully evaluated with potential end users. [12]
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After Amershi et al. reviewed iML work completed by Fails and Olsen’s on photo
classification and Fiebrink et al.’s work with gesture based musical instruments; Amershi
et al. show that the iML developed Al agents have an intrinsic link to the user that trained
the Al agent. Additionally, it is shown that the user learned about the processes and
procedures of the iML system for what the Al agent can comprehend [12]. This concept
directly impacts the bi-directional MUM-T concepts of Observability, Predictability, and
Directability, and the “User’s Mental Model” shown in Figure 17.

Two other documents within Amershi et al.’s research concluded that “People want
to demonstrate how learners [Al Agents] should behave” [12]. This point was based on
research by Thomaz and Breazel [65] who created an iML environment for teaching an Al
agent how to bake a cake. [65]’s research revealed that the instructors of the Al agents were
able to develop a mental model of the Al agent’s capabilities and behaviors, and the
instructors took a proactive approach to demonstrating to the Al agents how to behave.
Thomaz and Breazel conducted multiple iterations of the experiment with modifications to
instructor inputs, the performance of the Al agent’s learning improved as the instructor was
able to demonstrate more behaviors to the Al agent [65].

The other research supporting the concept of instructors demonstrating to Al agents
was conducted by Kaochar et al.[66]. This group explored different ways to interact with
the Al agent using a simulation for an Unmanned Aerial Vehicles (UAV). Through a
“Wizard of Oz” (WOZ; when a human takes on the responsibilities of what the user
perceives as an Al agent) protocol, users were able to teach an electronic “Al agent
student,” actually a human, through a user interface that allowed both voice and control
inputs. Within the experiment, users had an interface that allowed instructions to the “Al
agent student,” a timeline showing all previous instructions to the “Al agent student,” and
a map depicting the movements and behaviors of the “Al agent student” in the UAV.
Within the instruction interface, there were four types of teaching styles allowable: 1.
Teaching by demonstration, 2. Teaching concepts by examples, 3. Teaching by
reinforcement, 4. Testing [66]. Kaochar et al. conclude that human teachers used a

combination of all styles to provide instruction to the Al agent student [66].
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The concept of ‘users want to demonstrate how learners behave’ is the catalyst for
how the user will interface with the Al agent in the current thesis research. Though both
[65] and [66] focus on human-agent interactions, they do not transfer the Al agent to a live
execution. While [65] explores the concept of mental models, these researches do not

explore how trust is developed by the iML.

a. iML and Trust

The closest aligned research on iML for trust in MUM-T was conducted by Robert
Gutzwiller and John Reeder [44]. They used a purely virtual environment for their research
with the aim to have a user calibrate their trust in a system by training the system’s agent
as to allow for an understanding of the autonomous system’s abilities and behaviors. This
aligns to a user’s understanding of the purpose, performance, and predictability of an
autonomous system’s abilities and behaviors thus allowing for calibrated trust by the user
as outlined by [10]. Gutzwiller and Reeder chose to move away from the more transparent
forms of Al agents to use a neuroevolutionary computation method for maximum growth
of the Al agent. Neuroevolutionary is a type of neural network that evolves with training
and falls within the “hard to explain” category but allows for the optimum use of the Al
agent. Their hypothesis was: “That iML will develop behaviors that adhere more closely

to the user goals and expectations” [44]. Gutzwiller and Reeder had three research

questions:

1. Does the incorporation of humans in deriving ML algorithms,
through IML, lead to more human trust in the plans that are
generated?

2. Do participants, who helped generate plans, recognize, and be able
to differentiate between IML and black box plans (which used
neuroevolution, but no human involvement)?

3. Does the amount of neuroevolution that occurs, represented as steps,

affect either trust or plan recognition [44]?

Their research was a three phased experiment consisting of training, comparing,
and labeling for the development and employment of a system tasked to conduct a search.

Initially, the autonomous systems were trained by the user through the user defined goal
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states and guidance in a virtual environment to create a search plan. This plan was classified
as an iML search plan. During the comparison phase, an iML and black box system search
plans were shown to the user. The user then selected which search plan the user best
believed would cover the required area. Subsequently, the user chose the trust score for the
search plan from 1 to 100, with 1 for no trust and 100 for complete trust. The final phase,
labeling, began with the showing of a plan in action. During the labeling phase, the
participant decided if the plan was either iML or black box. The results are interesting:
“IML plans were chosen more, but trusted less” [44]. Aligned to the research questions
were: 1. The user trusted the IML developed plans less. 2. Users were able to accurately
discern the difference and appropriately label the iML plan or aML plan. 3. There was no
difference in user’s awareness of the amount of neuroevolutionary steps. In their
discussion, Gutzwiller and Reeder point out that a user’s behaviors were quickly adopted
by the Al agent in the iML learning phase. Based on their experimental design, the user
did not score their trust in their own iML Al agent, but another participant’s. This adoption
of a user’s behavior may be the reason why a different user trusted it less than an aML Al
agent, but were easily able to identify the iML Al agent. The research from in this thesis

will align the same user with their own perceived iML Al agent.

b. DARPA SQUAD-X

Additional programs that are exploring MUM-T for the DoD are led by DARPA.
Two complementary programs focused on the MUM-T at the lowest tactical levels are the
Squad X Experimentation and Squad X Core Technologies. According to their program
information webpage [67], the goal of these programs are to “design, develop, and validate
autonomous system prototypes and equip them with novel sensing tools and off-the-shelf
technologies” [67]. Technologies and autonomous systems that the Squad X programs are
exploring are to help infantry squads increase their situational awareness, battle space, and
influence. Of the four technological development areas, the “Squad Autonomy” effort is
closely aligned with this work. They aim to increase intra-squad real-time awareness
between all teammates and explore “robot collaboration between humans and unmanned

systems” [67].
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Through the multiple experiments performed by the Squad X program, the team
has developed ground unmanned systems that possess varying levels of autonomy.
According to a final report on fielding testing [68], the unmanned systems were tested as
teammates for the squad and used to provide security and overwatch during military
operations in urbanized terrain (MOUT) operations. It is unclear on how the autonomy was
developed for the autonomous ground robots, but the approach to the autonomous
algorithms were modified from aML to a human in the loop process during an inter-
experiment technology development period. To bring the human into the loop, a realistic
simulation environment was developed. The simulation allowed for the effective tuning of
the unmanned system by the squad leader and evaluation of the virtual rehearsal of complex
mission scenarios. The simulation aimed to involve the squad leader into the iteration
process of the autonomous agent’s development. Within the simulation, the squad leader
was able to adjust opposing and friendly force actions and record autonomous behaviors.
The autonomous agents were then able to be tested in multiple simulated terrain

environments [68].

Motivations for this human in the loop simulation process are unclear, but it appears
that the results are promising due to the effort applied by the Squad X program. There is
no associated data for levels of trust or cognitive load. The process to incorporate the squad
leader into the developmental process of the autonomous agent’s behavior is the aim of
this research. DARPA Squad-X and research by Gutzwiller and Reeder are the closest
research to this thesis. Their commonality of using virtual environments to develop Al
agent behaviors, and Gutzwiller and Reeder’s analysis of trust following Al agent behavior

development drive directly towards the experimental design for this thesis.

H. SUMMARY

Teaching and developing Al agents within a simulated environment by the end-
user indicate there is the potential for better trust in the Al agent by the end-user when
placed as a teammate withina MUM-T. Throughout the past chapter, it is shown that virtual
environments serve as an area for the development of experiences for Marines, robots, and

Al agents. Through an analysis of automation, autonomy, and Al; autonomous systems
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with Al agents can deliver the decision-making power to learn and adapt to changing
environments. Computing speeds and different types of ML algorithms serve as the catalyst
for the increased capabilities of Al agents and surge of DoD concepts to maximize the use
of unmanned assets. Some unmanned assets will be partnered as teammates to Infantry
Marines as autonomous unmanned ground vehicles controlled by an Al agent. Through the
different types of ML algorithms, varying levels of capabilities emerge for the Al agent.
As learning capabilities and performance of the Al agents increase, so does the in-
explicable nature of their behaviors and reasoning. The in-explicable nature is shown to
degrade the amount of trust that a user can place into the Al agent and thus decreases the
efficiency of the MUM-T. Research has revealed that a way to protect against this
vulnerability of Al agent behaviors is through the approach of iML. Through the user’s
involvement as the critic within the ML phases, either as the reinforcer or supervisor, it is
expected that the user will have a better mental model of the agent’s behaviors for
execution. The increased resolution of the user’s mental model will allow for a better

calibration of trust. This in turn will increase the efficiency of the MUM-T.
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1. METHOD

A. DESIGN

The design of the experiment is a two-group comparison design, with iML and aML
manipulated between groups. Of interest is the participant's trust between groups, which
was measured in the participant’s (a) robot choice (teleoperated robot or autonomous
mode), (b) performance, and (c) robot monitoring via eye tracking.

The two hypotheses tested are:

o H1: There will be a greater proportion of Marines who will choose to use
the “autonomous” robot over “teleoperated” in iML vs aML condition.

(pimL — pamL > 0).

. H2: There will be more indicators of trust for the iML than the aML

conditions. (MimL — MamL > 0).

B. PARTICIPANTS AND LOCATION

Utilizing previous literature, [44], and the Cohen’s d approach; a power analysis
was conducted to determine the appropriate sample size with an effect size of 0.72, alpha
= 0.05, and power = 0.80. The analysis resulted in a total of 50 participants. Due to a cold-
front and snowstorm in the North Carolina region during the experimentation week of 17-
21 February of 2020, only 40 of the targeted 50 participants were able to participate. Group
A is associated with iIML and Group B is the aML factor.

The target population of employment of future MUM-T systems are Infantry
Marines at the squad or lower level. To meet this demographic, participants were students
in the Advanced Infantry Training Battalion — East’s (AITB-E) Advanced Infantry Marine
Course curriculum at Camp Lejeune, NC. Out of the 40 Marines that participated, 37 were
in their final week of training in the of the curriculum, and the 3 other participants were
Infantry Marines who volunteered from the AITB-E command. All participants were

Infantry Marines with the rank of Lance Corporal to Sergeant, thus meeting the target

55



population. The population was all male; there were no females enrolled in the Advanced

Infantry Marine Course during the experimentation week.

The live execution environment was at Camp Lejeune, NC’s “Enhanced-MOUT”
Training Area (E-MOUT) as shown in Figure 18. The “Training” and “Live” portions of
the experiment occurred in Building 31 of E-MOUT. Building 30 would be the objective

building for the live portion.

Current Building *

Objective Building

Google

e

Building 31 is represented by the blue star and Building 30 was the objective building
represented by the red star.

Figure 18. Overview Map of Building 30 and 31 of E-MOUT.

C. MATERIALS
1. Participant Workstation

The following gear set was used to create the participant’s workstation:

. Two Alienware M51 Laptop Computers
. One GoPro Video Camera

. Tobii Pro Glasses
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. Portable Computer Screen

° Microsoft X-Box Controller

Figure 19 shows the participants’ work-station in Building 31. The laptop on the
left was used for the attention enumeration task, while the laptop on the right was used for
the serious gaming. In the figure, it is currently showing the set-up for live execution with
the small unmanned ground vehicle (SUGV) robot screen. The tablet in the far right of the
figure is connected to a SUGV radio to relay the picture onto the screen on the right laptop.

The large tan cases are the carrying cases for the SUGV systems.

Figure 19. Overview of the Experiment Room in Building 31 of E-
MOUT.
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2. Robots

Two Small Unmanned Ground Vehicles (SUGV) Systems, data sheet shown in
Figure 20, were used for the robot within the experiment. The robots were man-packable
and electric powered by BB-2590 military issued batteries. The user interface for the
SUGYV is shown in the top right picture of Figure 20. The user controlled the system
through touching the associated “tablet.” The system is entirely remote control with no

autonomy. There were automated movements to place the robot into “drive,” *“stow,” or
“look-over” mode. The “peaky mode” verbiage was used in replacement of “look-over”
with the participants. The two systems were temporarily loaned from 2d Explosive

Ordinance Disposal Company, 2d Marine Logistics Group from Camp Lejeune, NC.

DETAILS

Accessones

Flatbed Backpack - Accommodates SUGY, controfler, batteries and accessamnes

Adaptive Spacialty Prabe Toal Kit for PackBot and SUGY - four spacialty toaks
for cutting, raking, scraping and probing [EDs a r hazards

Disruptors 2nd the Fring Cantrod Systam - sccommadates recoiliess disruptors
Uses a third-party firing circuit

Product Specifications

Weight - Mobility platform, 306 b {13.8 kgl

manipulator and 2 BB-7557

batteries

Runtime Up to & hours

Muability - Speed Up to 6.2 mph {10 kmy/h)

Mobility - Agility ern radies tum

Mability - Slopes 407 [ascend, descend) 307 Latarsl

Mability - Vertical Obstacles

Mobility - Stair Chmbing

Manipubator Lift =22 I |10 k) close-in
12 Ib {5.4 kg at max extension
124" (61 cmi]
Awaraness Faur (4) cameras
Compatible the Wizve Relay® MANET, to form
in whic 3
samiessly apesa

Expanzion Multiple payload ports. multipla

sansors and disruptors supported
Controllar uPping® Multi-Aobot Control System
Expart Aagulations EAR

Figure 20. Data Sheet for SUGV. Source: [69].
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3. Visual Attention Task

The visual attention task was a sub-program of the software titled Presentation by
Neuro Behavioral Systems. The parameters for the attention enumeration task were five
seconds for observation of the blocks and five seconds to enter the correct response. The
space bar and enter button were used to trigger the next sequence. Figure 21 shows the full
instructions provided to the participant. The attention enumeration task baseline began with
a six-question tutorial under the supervision of a researcher. During the tutorial and testing
period, the number of blocks on the screen would range from three to nine. A total of 10
questions were asked for each number. Figure 22 shows examples of what the test screen
looked like during execution. The order of questions was randomly assigned by the
program for each participant.

Figure 21. Instructions for Attention Enumeration Baseline Task.

59



Four different screen captures of the execution of the attention enumeration task are shown.
The bottom left is when the participant would enter the number of red blocks counted via
the keyboard.

Figure 22. Screenshots of the Attention Enumeration Baseline Task.

4. Virtual Training Environment

A serious game was created by the Modeling Virtual Environments and Simulations
(MOVEYS) Institute, Futures Technology Department to be used as a training tool for
learning the capabilities and limitations of the SUGV. The serious game had a tutorial to
teach the participant how to use the keyboard or gamepad. A gamepad map, as show in
Figure 23, was provided to the participant for use during the game. The tutorial showed the
different speeds, positions, and camera views available to the SUGV. The SUGV modeling
for the game was as accurate as possible based on developer testing at the Naval
Postgraduate School (NPS) and data from the FLIR SUGV Data Sheet, Figure 20.
Screenshots of the different steps within the Tutorial Phase are shown in Figure 24.
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XBox One Controller Map For Unity3D

Thermal Off .L\\ RT

——————@ Turbo
‘,// Thermal ON

LB
Thermal Off &\ \
N

Drive Control

~——@ Peaky Made On/Off

Camera control
Peaky mode must be ON

Figure 23. Controller Mapping. Adapted from [70].

Friee: | (kargoronel) or LI [armema ] in fecs o colns mite

Figure 24. Tutorial Screen Shots.

Once the tutorial was complete, the concept for the next five levels was the same
for each group, but verbiage and elements on the screen were different. The five levels
were developed to mimic basic MOUT training an entry-level Marine would go through.
The levels and purpose are outlined in Table 4. The number of task iterations was driven

by the requirement to have a realistic expectation that the repetitions were training the robot

61



for Group A (iML). No explanation for the number of iterations was provided to Group B

(aML).
Table 4. Familiarization Training Curriculum
Level Purpose Number of Iterations
Lesson 1 Basic Hallway Movements 16
Lesson 2 Room Search Methods 1
Lesson 3 Room Entering 5
Lesson 4 Anomaly Object Interactions | 10
Lesson 5 Courtyard Movements 6

Group A (IML) was led to believe that the gaming situation was an iIML

environment. This was shown by the neural network diagram in the top left that updated

after each iteration of the task. Verbiage for the Group A (iML) version of the game focused

on the participant “teaching” the robot on how to perform those tasks, while the Group B

(aML) version of the game had the participant “learning” on how to perform those tasks.

The serious game for both groups was intended to have the same effects as normal training

in virtual environments achieves as referenced in Section I1.B.1. Simulations in the USMC.

There were no machine learning indicators for any of the actions for Group B (aML). A

comparison of Figure 25 and Figure 26 shows how that information was presented to the

participant.
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Verbiage in the top right of each screen shot is focused on the participant teaching the
SUGV avatar. Top Left: Completion of Tutorial Screen. Top Right: Lesson 1. Middle Left:
Lesson 2. Middle Right: Lesson 3. Bottom Left: Lesson 4. Bottom Right: Lesson 5.

Figure 25. Screenshots during Group A Version of the Game.
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Verbiage in the top right of each screen shot is focused on the participant learning the
capabilities and limitations of the SUGV. Top Left: Completion of Tutorial Screen. Top
Right: Lesson 1. Middle Left: Lesson 2. Middle Right: Lesson 3. Bottom Left: Lesson 4.
Bottom Right: Lesson 5.

Figure 26. Screenshots during Group B Version of the Game.

5. Trust Questionnaire

At the conclusion of the live execution, the right laptop would be connected to the
internet and so the participant could take a pre-programmed online survey via
Qualtrics.com. The survey that followed is the widely used Trust in Automated Systems
Survey by Jian et al. [71]. The 12-question survey is shown in its original form in Figure
27. This survey was randomized for the participants to prevent biasing [72]. Questions 1-
5 are negatively biased questions so the score for each of these questions were subtracted

from 7 to provide a common reference across the survey. A lower score from this survey
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indicates less trust in the automated system. The questions appeared sequentially and had
to be answered before continuing to the next question. Figure 29 shows the format for how
each question would be answered. The survey automatically closed once all questions were
complete.

Chiecidist for Trust between Peopie and Automation

Below is a kst of staternent for evaluaiing rust between people and aulomation. There are several scales
for you iz rate intensity of your fealing of trust, or your impression of the system while operating a maching.
Please mark an "x" on each ine &t the point which best describes your fesling or your impression.

Mote: not ot all=1: extremelvsT)
1 Tha systam is deceptive
1 1 1 1 i 1 ]
1 2 3 4 5 8 T
2 The systam behaves in an undemandad Mannar
L 1 1 1 i 1 ]
1 2 3 4 5 [ T
3 | am sumpicious of the systern’s infent, aclion, or outputs
L 1 1 i | 1 ]
1 2 3 4 5 8 T
4 | am wary of the system
L L 1 1 1 L ]
1 2 a 4 5 [] T
5 Tha system's actions will have a harmmiul or infutous outcome
L 1 1 i 1 1 1
1 2 3 4 5 1 T
1 | am confident in the system
L | 1 I 1 1 ]
1 2 3 4 5 [] T

1 2 3 4 [ ] 7
8 Tha wystem has integrity
L 1 1 1 L 1 J
1 2 3 4 5 [] 7

1 2 E] 4 [] [ 7
11 | can trust the system
| 1 1 1 | 1 ]
1 2 3 4 ] [] 7
12 | am tamiliar with the system
L 1 1 ] ]
1 2 3 4 5 € 7

Figure 27. Jian Trust in Automation Survey. Source: [71].
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The following is a list of statemenits for evaluating trust between people and automation.
There are several scales for you to rate intensity of your feeling of trust or your impression
of the system while operating a machine. Please choose a point which best describes your
feeling or your impression on your experience with the ground robot.

Continue

Figure 28. Instructions for Survey.

100%

The system provides security.

1 - Mot at all

(]

T - Extremely

Figure 29. Example Survey Question.
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D. PROCEDURE

The expected number of 50 participants was divided into two equal groups and their
participant numbers were randomly assigned to either Group A (iML) or Group B (aML).
They were transported to the experimentation area, Building 31 at E-MOUT, by an AITB-
E HMMWYV in groups of four to five from where the unit was training. Upon arrival, they
were given the initial consent briefing and form. As a participant entered the workstation
building, they would bring their signed and completed initial consent form with them. The

following sections outline the process for the experimentation.

1. Introduction

Prior to the introduction being provided, the researcher would begin a new
recording session on the GoPro video camera. The researcher would welcome the
participant with the following introduction: “Thank you for volunteering to help with the
experiment. The first task I’m going to ask you to execute is an attention enumeration task.
This task represents the tasks that a squad leader must do during MOUT operations. It
represents tasks like assigning sectors of fire, cross-boundary coordination, call for fire,
and various other tasks that you would have to do. There is no easy way to baseline each

Marine in those tasks; the next best option is the attention enumeration task.”

2. Attention Enumeration Baseline Task

The participant would complete the initial attention enumeration task. During the
tutorial portion of the initial task, a researcher would remain in the room to assist the
participant in the procedures of the test. During the baseline testing portion, the researcher

would leave the room and the participant would complete 70 individual tasks.

3. Situational Briefing

Upon completion of the attention task, the participant transitioned to the serious
game. If the participant was in Group A (iML), the participant was told the following

information:
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“The video game you are about to play will inform you on the capabilities and
limitations of the robot for MOUT operations. The robot is also learning how you control
it and how you perform each task as the robot in the game. Once we complete the video
game training you will have a live execution task of ‘Clear the adjacent courtyard &
building.”” The researcher would reference Figure 18 for the participant’s situational
awareness. “To assist you in this task, you will be able to use a real robot in either ‘remote
control’ or ‘user-trained autonomous’ mode. In conjunction with that task you will have
to complete another attention task. The ability to send Marines into the next building is at
the end of the next attention task. Again, the attention task is representing you, as the squad

leader, ‘setting conditions’ for your squad to advance.”

If the participant was in Group B (aML), the first italicized sentence directly above
would be removed, and the second italicized portion would be replaced with “autonomous
mode.” The following description of autonomous mode was provided: “The autonomous

mode is currently the best in the Silicon Valley industry.”

4. Virtual Training and iML

After completing the briefing of the future live execution task, the participant would
begin playing the serious game. Once the game was completed, Group A (iML) participants
were briefed again: “Now that you’ve gained experience with the capabilities and
limitations of the robot and its learned from your actions in the video game, for the next
task would you like to use the robot in either complete remote control or complete user-
trained autonomous mode?” Group B (aML) participants were briefed: “Now that you’ve
gained experience with the capabilities and limitations of the robot in the video game, for
the next task would you like to use the robot in either complete remote control or complete
autonomous mode?” For each participant the decision was recorded. If the participant chose
to use the robot in remote control mode, two researchers attempted to connect the gamepad
controller to the SUGV, but it would not connect. This was a planned deception within the
experiment. The participant was informed, “We’re having issues with the remote control.
The participant before you accidently dropped it. For the interest of time, can we just use

it in autonomous [or user trained autonomous for Group A] mode?”
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Since the SUGVs are strictly remote control from the manufacturer. A man behind
the curtain, in a Wizard of OZ (WOZ) format [73], was controlling the robots for both
Group A (iML) and Group B (aML). For Group A (iML), the WOZ was in the room
observing the behaviors desired by the user. The participants were told, “This gentleman
created the serious game — he’ll be in here in case you have any guestions or concerns on
the game.” Decision points were recorded by the WOZ. The behaviors and decision points

are listed in Table 5.

Table 5. Behavior Decision Points for the WOZ

Decision Point Behavior Option 1 Behavior Option 2
Courtyard Movement Speed? Fast Slow

Box Interrogation? Yes No

Peaky Mode for Room Entering? | Yes No

Search Pattern? Perimeter Straight to Door

For the participants within Group A (iML), a batch file was executed to “compile
and export” the data from the serious gaming computer for the upload to the robot with the
participant’s behavior. A researcher moved to the SUGV and acted as if he were uploading
the behavior files. Again, this was a point of deception to the participant as the serious

game was not programmed as such.

5. Live Execution

Once the participant was prepared to not use the SUGV in remote control mode,
Group A (iML) participants were told: “Currently, the robot is programmed to leave and
return to the spot outside of our current building. Your training of the robot in the game
will determine how the robot will behave in the courtyard and objective building.” Group
B (aML) was told, “Currently, the robot is programmed to leave and return to the spot

outside of our current building. The coding from the engineer will determine how the robot
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will behave in the courtyard and objective building.” As this was being explained to the
participant, a researcher showed the robot’s planned movement. This is shown by the
dotted red line in Figure 30. For both groups: “Again, the theory is to use the robot as a
reconnaissance element before sending a team of Marines into the objective building. The
completion of the attention task allows for the Marines to begin movement from the
building directly to our east [researcher would point to the building] to the objective
building. You can execute the attention task either simultaneously or sequentially as the
robot performs the reconnaissance. If the robot detects an anomaly it will make an alarm

sound.”

Current Building *

Objective Building Jh

Figure 30. Planned SUGV Movements.

After this briefing, the participant placed on the Tobii Pro Eye tracking glasses. The
glasses were calibrated to each participant with the provided calibration card within the
Tobii Pro Eye Tracking System. Following the calibration, the attention enumeration task
2 was transitioned to the start screen. The test was the same as the baseline test, minus the
tutorial at the beginning. Additionally, the control screen from the SUGV system was
broadcasted onto a portable screen that was placed on the serious gaming laptop, as seen
on the right laptop in Figure 19. The SUGV was placed out of sight from the participant.

With all elements of the test in place, the researcher verified that the participant had steady

70



video feed from the SUGV. Once confirmed, a researcher said, “We will do a count-down
to initiate the next attention task and to press the autonomous button on the robot.” At the
conclusion of the loud count down, the participant pressed the “Enter” button to initiate the
attention enumeration task 2 and the WOZ began controlling the SUGV.

For Group A (iML), the WOZ controlled the SUGV in accordance with the decision
points and behaviors as indicated in Table 5. For example, the SUGV departed from its
start location and begin driving through the courtyard. Depending on the participants game-
play, the speed increased or decreased as indicated in Table 5. Additionally, the path may
vary depending on the participant’s “Search Pattern.” An orange box in Figure 30
represents where a cardboard box was located during the execution of this portion of the
experiment. If the participant decided to search the box in gameplay, it was then searched
in execution. The cardboard box and SUGV are shown in the left side of Figure 31. This

trend continued for the entering and searching of each room within the objective building.

For Group B (aML), the WOZ controlled the SUGYV identically for each participant
at the same speed. The SUGV departed its start position, moved to interrogate the
cardboard box and transitioned to “Peaky Mode.” This is shown in the bottom left of Figure
31. The SUGV then entered the objective building by first peaking inside. After initial
entry, the SUGV continued to search the three other rooms in the objective building. Each

room was searched the same fashion and order for each execution.

A researcher would wait until the participant was complete with the attention
enumeration task 2 and would then ask the participant, “Are you prepared to send Marines
into the objective building?” This question was not tied to the location and status of the
SUGV. Once the participant said he would send his Marines to the objective building, that

would conclude the live execution of the experiment.

6. Survey

After the live execution was complete, the participant answered the 12 questions of
the Jian et al. survey. The survey was completed online. To transition to the survey, the
display screen for the SUGV would be collapsed and the survey would be started on the
serious gaming laptop. The researcher would enter the participant’s number and group into
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the survey. The participant would then begin on the instructions page shown in Figure 28.

The conclusion of the survey would end the experiment.

Top Left: Shows the SUGV beginning its movement in the courtyard. The cardboard box
for interrogation can be seen in the top of the photo. Top Right: Shows the SUGV just
entering the courtyard. The only visible open door is the main entrance into the Objective
Building. Bottom Right: Shows the initial room of entry within the Objective Building.
Bottom Left: Shows the SUGV interrogating the cardboard box. In the forefront is a radio
for the SUGV system. The picture is taken from the WOZ’s point of view.

Figure 31. Photos of the SUGV during Execution and Objective
Building.

7. Reconsenting

Since deception was used during the execution of the experiment, each participant
was reconsented after being debriefed and informed about the nature and specifics of the
deception. Each participant was given the following brief: “In the past experiment there
were three points of deception. 1. The robot was not autonomous. It was controlled by a

gentleman behind the curtain. 2. Though you were provided the option to use the robot in
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remote control mode, that was not truly an option. 3. The video game did not record any
data about your behaviors or intentions for how you wanted it to behave. If it was not
evident, I’m researching on how to best develop trust between Infantry Marines and robots.
This research will influence requirements for future Marines for Manned Unmanned
Teaming. | thank you for your time and seriousness during this experiment.” At this point,

the participants reconsented to the use of their data.

E. DEPENDENT VARIABLES
The following dependent variables were collected:

1. Attention Enumeration Task Baseline Overall Time — The overall time
from beginning to end of the attention enumeration baseline task. It does
not include time to complete the tutorial.

2. Attention Enumeration Task Baseline Initial Reaction Time — The time it
took from the red blocks appearing on the screen until the participant hit
the “Space Bar” or the iteration timed out at 5000 milliseconds. This data

did not include the tutorial times.

3. Attention Enumeration Task Baseline Input Time — The time it took from
the program transitioning to the input screen until the participant pressed
the “Enter” button or the iteration timed out at 5000 milliseconds. This

data did not include the tutorial times

4, Items 1-3 of this list were recorded again for Attention Enumeration Task
2.
5. Length of Video Game Play — The total overall time each user played the

video game to complete the training curriculum. Tutorial time is excluded

from this data point.

6. Choice of SUGV Employment — A binary choice between remote control

or fully autonomous mode.
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7. Robot Count — The number of times the participant transitioned focus
from Attention Enumeration Task 2 to the SUGV Screen. This was

defined as a “look.”

8. Robot Look Time — The amount of time that attention was given to the

SUGV Screen during a look.

9. Attention Look Time — The amount of time that attention was given to the

Attention Enumeration Task 2 Screen during a look.

From the list above, 1-3 were all recorded via the Presentation Program. This data
could also be analyzed by the number of blocks there were on the screen at one time. Five
(5) was recorded by the GoPro Video. Six (6) was provided verbally to a researcher upon

completion of the video game portion.
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IV. ANALYSIS OF RESULTS

A. HYPOTHESIS 1

o There will be a greater proportion of Marines who will choose to use the
“autonomous” robot over “teleoperated” in iML vs aML condition. (pimL —

PamL > 0).

The aim of this hypothesis is to understand what sort of autonomous development

Infantry Marines want to use as partners in MUM-T.

1. Statistical Analysis

A Two Proportions z-Test is the statistical method used to test this hypothesis. It is
a one-way statistical method with an alpha level of 0.05. The assumptions and conditions
for the test are: Participants randomly assigned to each group, <10% of the total population,
two groups are independent of each other, Participants are independent of each other,
Sample size ‘success’ or ‘failure’ is greater than 10. With the last assumption not meeting
the required conditions, the Two Proportions z-Test will utilize the Fisher’s Exact Test for

comparison.

2. Results

The results indicated no significant difference in the proportion of Marines
choosing to use autonomous mode in iML than aML approach with 63.1% (12/19) for iML,
compared to 42.9% (9/21) for aML (p = .167).
B. HYPOTHESIS 2

. H2: There will be more indicators of trust for the iML than the aML

conditions. (MimL — MamL > 0).

The aim of this hypothesis is to understand what sort of autonomous development

Infantry Marines trust as partners in MUM-T through observable items. Based on the
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information developed within Chapter Il, it is shown that the following factors would

indicate trust:

1.

1.

Difference in Total Overall Time — Data point was produced via the

attention enumeration task program.

Average Duration of Robot Screen Looks — Data point was produced by
the Tobii Pro Lab using “Areas of Interests” within the program.

Average Duration of Attention Screen Looks — Data point was produced

by the Tobii Pro Lab using “Areas of Interests” within the program.

Difference in Average Input Reaction Time — Data point was produced via

the attention enumeration task program.

Difference in Average Initial Reaction Time — Data point was produced

via the attention enumeration task program.

Looks at Robot Screen — Data point was produced by the Tobii Pro Lab
using “Areas of Interests” within the program.

Statistical Analysis

A group of the factors that are used to support this hypothesis are the difference in

performance standards between the attention enumeration baseline task and the attention

enumeration task 2. To begin, outliers from the attention enumeration tasks were removed

by using the Robust Fit Test for Outliers excluding data that was outside 2.5 standard

deviations. Time recorded data is shown in Figure 32. All data points for attention

enumeration tasks are in milliseconds. All three distributions show slightly negative

kurtosis with minimal skewness.

76



4 = Average Initial Reaction Time

— 4Quantiles 4 '~ Summary Statistics
l—@—| 100.0% maximum 3057.085714  Mean 21394882
99.5% 3057.085714  Std Dev 500.94698
e 97.5% 3057.085714  Std Err Mean B4.675494
90.0% 2920157143 Upper 95% Mean 23115695
75.0% quartile 2516.171429  Lower 95% Mean 1967.4069
500% median 2129014286 N 35
25.0% quartile 1813.442857  Skewness -0.074154
’_}—l 100% 15300457142 Kurtosis 0271773
2.5% 1068.471429
1000 1H0s 20 2d A0 05% 1068.471429
0.0% minimum 1068471429
4 » Average Input Reaction Time
4 Quantiles 4 ~ Summary Statistics
}—@—i 1000% maximum 1610.842857 Mean 971.95598
90.5% 1610842857  Std Dev 289.90649
97.5% 1610842857  Std Err Mean 47.660334
90.0% 13484485714  Upper 95% Mean 1068.6156
75.0% quartile 1168.2857145  Lower 95% Mean B875.29635
50.0% median 9808 N 37
25.0% quartile 77571428575  Skewness 0.1787241
1_| 10.0% 554.99142854 Kurtosis -0.303687
2.5% 407 4428571
400 600 800 1000 1200 1400 1600 1800 05% 407.4428571
0.0% minimum 407.4428571
4 = Total Overall Time (milli-seconds)
4 Quantiles 4 = Summary Statistics
l—@—| 1000% maximum 3665115 Mean 259175.13
99.5% 366511.5 Std Dev 43767.28
97.5% 3665115  Std Err Mean 7506.0265
90.0% 31510575  Upper 95% Mean 274446.26
75.0% quartile 2916738  Lower 95% Mean 243904.01
50.0% median 25649775 N 34
25.0% quartile 225142425  Skewness 03460098
10.0% 204085.7 Kurtosis -0.298302
25% 179176.7
200000 250000 300000 350000 oa ey
0.0%  minimum 179176.7

Figure 32. Attention Enumeration Task Baseline Time Recorded Data.

With the large number of data points, the data was binned for follow on statistical
testing with the Multivariate Analysis of Variance (MANOVA) Test. If a Wilcoxon Test

is required, it is due to the nonparametric distributions between comparison groups.

o Difference in Total Overall Time — Wilcoxon Test

o Comparison of Average Robot and Attention Times —- MANOVA
o Average Attention Time “Look”
o Average Robot Time “Look”

o Difference in Reactions Times — MANOVA

J Overall Input Reaction Average
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. Overall Initial Reaction Average
o Robot Look Count — Wilcoxon Test

. Survey Results — Two Sample t-Test

The following sections describe the analysis for each of the major tests ran.

a. Difference in Total Overall Time — Wilcoxon Test

The data does not meet all the assumptions and conditions for a Two Sample t Test,
due to lack of normality of data between the two groups. The two groups do a have a similar
distribution, so the Wilcoxon Test was applied. The results are shown below in Figure 33.
With this data point, a number closer to zero is desired. Closer to zero shows that
participants were able to complete both the attention task and partnering with the robot
closer to their baseline attention task time. A Wilcoxon Signed-ranks test indicated that the
Difference in Total Overall Time for attention tasks was not significant from Group A
(iML) (M = -92,876, SD = 123,331), to Group B (aML) (M = -54,434, SD = 77,451), Z = -
0.717,p=.47,d = 0.373.
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Figure 33. Difference in Avg Overall Time.
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b. Comparison of Average Robot and Attention Times - MANOVA

For the comparison of average robot and attention duration per “look,” the
MANOVA test is used since the data points influence each other. The data meets all
assumptions and conditions. Four data points were excluded as the participants looked only
at either the attention task or the robot screen for the entire duration of the live portion of
the experiment. Within this grouping of data, a larger average time spent on the attention
task and lower average time spent on the robot screen is more desirable. The MANOVA
test, graphs shown in Figure 34, fails to reject the null hypothesis as there were no

significant differences between groups, F(1,25) = .804, p = .459, n; = .060.
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Figure 34. Average “Look” Times.

C. Difference in Reactions Times —- MANOVA

For the difference in reaction times, five participant’s data were excluded due the
participants not following instructions on how to complete the attention tasks. With this
data excluded, all assumptions and conditions for the MANOVA test are met. Figure 35
shows the bag graphs for Group A (iML) and Group B (aML). A value closer to zero is
more desirable. The graph tends to show an overall difference between Group A (iML) and

Group B (aML) data points, but the MANOVA test fails to reject the null hypothesis of an
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interaction between groups as there were no significant differences, F(1,31) = 0.656, p =
526, n;; = .041.
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Figure 35. Difference Average Initial and Input Reaction Times.
d. Counts Analysis — Wilcoxon

A Wilcoxon Signed Rank test was used to analyze the robot looks count data. The
data is non-parametric with similar distributions and meets assumptions for testing. The
fewer looks at the robot is an indicator of greater trust. The Wilcoxon Signed-ranks test
indicated that the number of “looks” at the robot screen was not a significant difference
from Group A (iML) (M = 37.18, SD = 36.80), to Group B (aML) (M = 36.61, SD = 27.34),
Z=-0.215, p =.817,d = 0.018, compared in Figure 36.
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Figure 36. Count of “Looks” at Robot Screen.
e. Survey Results

Upon completing the live experiment, the participants completed the Jian Trust in
Automated Systems Survey [71]. As this survey was completed by the participant post the
live execution, it is not an indicator of behaviors, but the attitude of trust towards the
system. The Two Sample t-Test fails to reject the null hypothesis as there was not a
significant difference between trust survey scores from Group A (iML) (M = 4.79, SD =
0.181) to Group B (aML) (M = 4.96, SD = 0.172), t(38) = 0.669, p = .746, d = 0.211.
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2. Results

All recorded indicators of behavior and attitudes of trust between the two groups
fail to reject the null hypothesis. Even while comparing trends between each statistical test
for this hypothesis, there is no consistency. While analyzing the results, there appeared to
be two factors that potentially influenced this hypothesis: 1. Too few participants. 2. Being

“forced” to use the autonomous mode.

a. User’s Preference

Though a Two Sample t-Test does not show a significant difference between trust
survey scores of choosing “autonomous” mode (M =5.04, SD = 0.168) to choosing “remote
control mode” (M = 4.69, SD =0.177), t(38) =-1.47, p = .150, d = 0.373, it can potentially
be a confounding element. This data is shown in Figure 38. Speculations on this data point

are covered in Chapter V.C. Future Work.
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b. Virtual Training Time

Only the visual displays on the user interface dashboard of the virtual training
environment differed, as shown in Figure 25 and Figure 26. In exploring the idea of which
group would invest more time in the virtual training environment, the assumption of Group
A (iML) participants would invest more time in the virtual training environment than
Group B (aML) participants. In reviewing the data of virtual training time, recorded in
seconds; there was a significant difference between the groups. Virtual training times were
higher for Group A (iML) (M = 1150, SD = 94.7) than for Group B (aML) (M =898, SD =
70.6), t(15.55) = -2.05, p =.029, d = 3.017. This finding contributes to concepts introduced
Section V.B.3. Use of Simulations for Serious Gaming.
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Figure 39. Virtual Training Time Comparison.

C. LIMITATIONS

Due to the experiment working in coordination with a training event in a TECOM
curriculum, the research team was subject to the decisions by the AITB-E command. As
important as the research is, the Marines participating in the training were days away from
graduating and returning to lead infantry squads within the Fleet Marine Force (FMF).
With an understanding of this prioritization, two days of the field testing were lost to
training requirements and Camp Lejeune’s closure due to weather. This resulted in only
experimenting with 80% of the planned 50 participants. This lack of participants influenced
the research and ability to use the theory of large numbers for data test points.

D. SUMMARY

Hypothesis 1 aimed to identify what sort of behavioral development for an
autonomous agent Infantry Marines will prefer to have in their future unmanned
teammates. The choice was between an autonomous agent or remote control for both Group
A (iML) and Group B (aML). Group A (iML) developed the behaviors of their autonomous
agent while Group B (aML) used a pre-programmed behavior. The participants made their
decision after training in a virtual environment with the system. While there seems to be a
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trend, there is no significant difference showing that the participants would prefer to use

an iML autonomous system over aML autonomous system.

Hypothesis 2 was directed at identifying which behavioral development process for
an autonomous agent Infantry Marines will trust more. Reliance was measured by the
difference between the baseline task and dual task performance in the attention
enumeration task. Number of glances at the robot screen and duration of looks were
recorded via the Tobii Eye Tracking system to measure the amount of time invested by the
participant in the robot’s actions. The attitude of trust was captured in the Jian et al. Trust

Survey. There are no clear indications of a difference in trust between the groups.

All data points analyzed and assessed fail to reject both null hypotheses. A
significant difference was identified in the amount of time spent in the virtual training
environments with Group A (iML) spending more time. With the increased amount of time
in the virtual training environment, an impression is given that the participants took the
process of training the agent in the iML approach as a valid task. This impression may
contribute to the number of glances and time looking at the robot screen that Group A
(iML) took. Without the demonstration of the agent’s behavior in a virtual environment
prior to live execution, they utilized the live execution to observe the product of their
training. Along similar lines, Group B’s (aML) results may have been influenced by
wanting to see the actual behaviors of the autonomous robot. Ideas around these findings
and indications are further developed in Chapter V.
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V. CONCLUSIONS, RECOMMENDATIONS, AND FUTURE
WORK

A CONCLUSIONS
1. Trust within Manned-Unmanned Teaming

As research revealed by Lee and See [10] and Sheridan [62] showed, trust is an
evolving attitude that creates a behavior of reliance. As trust evolves the previous actions
influence the mental model and future trust, as shown in Figure 16 [62]. This trust control
feedback loop ties to the MUM-T theory of interdependence from Johnson et al.’s

perspective [54] with the following statements written from the human’s perspective:

o I can assign (Directability) the correct (Resolution) task that the

autonomous system was designed to accomplish (Purpose).

. The actions performed (Predictability) match my expected actions
(Predictability) for the autonomous system (Calibration).

. The actions | observe (Observability) are performed (Performance) how |

expected the autonomous system to complete the task (Specificity).

If all of these statements are true, then the human will have an intimate
understanding and trust in the unmanned teammate in the same fashion that the United
State Marine Corps portrays in its seminal document, Warfighting [58]. Idealistically, this
occurs when the human’s mental model matches the unmanned teammate’s agent model.
As justified by the research in XAl, this is nearly impossible to achieve. What is possible,
through experiences as teammates, is for the human to have a mental model that can assess
the inputs received by the unmanned teammate to anticipate the unmanned teammate’s
future actions. Moreover, by observing the actions of the unmanned teammate the human
would be able to infer the inputs received to create those unmanned actions. Through pure
interdependence the converse is also achievable. This would then create a common team
model between both elements allowing for them to accomplish more than just the sum of
its parts; the aim of MUM-T.
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The only approach to achieve this level of intimacy, while still considering the
limitations of training time and costs presented in Chapter I, are for the MUM-T to train in
a virtual environment. The approach for an autonomous system produced through aML is
for the human and the unmanned teammate to participate in virtual training together where
the human controls the human’s avatar and the autonomous agent controls the unmanned
teammate’s avatar. This could produce awareness of the autonomous agent’s behaviors but
does not allow for adaptation or tailoring of the autonomous agent’s behaviors to human’s
directions and guidance. The alternate option is iML.

2. Interactive Machine Learning (iML)

The literature review for this research shows that iML is a viable option for agent
behavior development for unmanned autonomous teammates within a MUM-T. The
impetus for most of the reviewed research is focused on a better understanding and
familiarity with the agent by the end-user. Highlights of iML brought together within this

research are:

o The user can develop a mental model of the agent’s behaviors [45].
o The agent develops a mental model of the user’s behaviors [45].
o Understanding of the uncertainty of an agent’s behaviors correlates to

better understanding the expected performance of the agent [63].

o Agents developed within iML techniques have an intrinsic link to their

“instructors” [12].

o Agents learning improved as “instructors” demonstrated desired behaviors
[65].
o Agents developed within iML techniques have an easily identifiable

behavior [44].

Building from the outlined benefits, Warfighting, announces that experiential

learning is a critical element in developing familiarity within a relationship [58].

88



Supporting this concept, Tactics acknowledges that experiences cannot be gained simply
through war, but can also be made through serious games like “tactical decision games,
sand table exercises, war games, field exercises, and rehearsals” [61]. Team experiences
build familiarity and confidence which in turn produces trust [58].

B. RECOMMENDATIONS
1. Operational Testing

The ability to test and interact with FMF Infantry Marines was beneficial for all
parties involved. The feedback and discussions with the participating Infantry Marines and
the AITB-E staff was advantageous in refining the concepts of serious gaming and
unmanned teammate system requirements; and balancing academic research of NPS to the
realities of the FMF. Although our results did not show statistical significance, potentially
due to a reduced number of participants, the experiment was still beneficial as it exposed

Infantry Marines to research to improve their combat effectiveness.

The 38th CPG directs that outside entity experimentation with the FMF be nested
within MCWL’s larger experimentation process [1]. To achieve this direction for NPS
Students, greater flexibility and broader experimentation criteria is needed from MCWL.
Within the 24-month cycle of the standard master’s degree, there is limited ability for a
thesis research topic to be innovative and challenge status quo if it is required to be nested
within prescribed ongoing topics. A proposed solution that can create focus from MCWL
is to create a spring and fall experimentation season. Within those two seasons, an infantry
unit can be placed in direct support of MCWL for experimentation. This allows for MCWL
to maintain clearance authority for the experimentation while preserving innovation thrusts

from outside agencies with minimal impacts to the FMF.

2. Unmanned Teammates and its Al Agent

The unmanned ground teammates within MUM-T at the Marine Corps Infantry
Squad level must be autonomous with the ability to learn. By the definitions used
throughout this research, this would be autonomy with Al. The ability to learn, recognize

patterns, and adapt is crucial. Adaption is a critical element in war and both human and
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unmanned teammates are required to adapt for success on the battlefield [61]; a purely

autonomous system will lack the ability to learn from new situations and environments.

The unmanned teammate should come to the human equipped with a baseline of
autonomous actions, e.g. obstacle observance, facial recognitions, and understanding of
basic infantry techniques and procedures. A serious game should be used for development
of advanced features, tactics, and the human’s preferences of the Al agent of unmanned
teammate. During serious gaming is when the Al agent should learn and evolve through
IML techniques. The iML techniques will incorporate recorded data, voice after action
reviews utilizing ITL techniques, and patterns from both the live and serious gaming
environments. Prior to the Al agent being produced from the iML algorithms, an execution
of the agent’s autonomous behaviors will be rehearsed virtually with the human. This will
allow for a refined mental model of the unmanned teammate’s behaviors for live execution,

thus increasing the trust and familiarity with the system.

To provide a concrete example of the types of behaviors the human should develop
within serious gaming, a table produced by recent NPS research is used. Utilizing Johnson
et al.’s Coactive Design Process [54], USMC Captains Franco and Spada’s [22] research
focuses on interdependence within MUM-T and how to command and control with
unmanned teammates. Within their research, they used an interdependence analysis table
for how an EMAYV and human would occupy a machine gun support by fire (SBF) position,
Table 6. The concept of an interdependence analysis table was presented by Johnson et al.
[74] as a process for maximizing the HABA-MABA model for MUM-T tasks. [22] and
[74] advocate that this analysis process should be used for developing all of the possible
tasks for a MUM-T and to decide who is best suited to perform the sub-tasks. Table 6 was
modified with the “Black Stars” next to the “decision points” delegated to the EMAYV for
its own non-lethal decisions. Examples are position and speed of movement within
relationship to the human. An obvious and quick retort would be to allow the human to
“control” those preferences during the execution. This would then relegate the human as a
controller and fail to maximize the benefits of MUM-T. [22] and [74] research does not

reveal how the autonomous vehicle should develop the reasoning to make those decisions,
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but these are the exact types of behaviors that should be developed and controlled by the

human.

Table 6. Interdependence Analysis Table for Movement to a
Support by Fire Position. Adapted from [22]

Machine
tomation Interface
| Camenn TUIDAR/GPS[Track Control] .50 Cal Machine Gun | Kilswitch] Perception | Cognition | Action

Milestones Tasks Subtasks s

Identify formation for movement | N'A

Get into decided formation

-
Kl

Maintain dispersion throughout | [In
movement

Movement to

Supportby | Movementto SBF Position
Fire Position Danger Zone Avoidance

Obstacle Avoidance

3. Use of Simulations for Serious Gaming

Some uses of virtual environments for training take the form of serious gaming.
The TDKSs purchased by the Marine Corps is a prime example of this use case. As the
USMC continues to invest in virtual environments for training, they must also invest in the
development of virtual models for each unmanned ground teammate. The virtual models
need to be built to operate within the Marine Corps’ LVC-TE. Within the virtual model,
there must be three options for the unmanned teammates virtual model’s avatar control: 1.
A human controls the avatar to learn the capabilities and limitations of the system. 2. A
human controls the avatar as an example for follow on “supervised” ML techniques. 3.
Autonomous mode with a human “Positive” or “Negative” reward button to allow for
“reinforcement” ML techniques. Options 2 and 3 encapsulate the concept of iML. Utilizing

the concept of occupying a SBF, the three different user modes are explored.

1. User Full Control Mode - In this form, the human is controlling all aspects of the
unmanned teammate in the virtual environment. This sort of serious gaming will enable

the human to learn the capabilities and limitations of the unmanned teammate. In the
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serious game, the human could explore the SBF position from the perspective of the
unmanned teammate. It would show the human a realistic view, trafficability, lines of sight,
and rates of movement. These perceptions would refine the human’s mental model of the

unmanned teammates perspective of the situation.

2. Example User Control Mode - This form will serve as the “Performance
Standard,” reference Figure 6, for supervised ML techniques. In this form, it will take two
humans to create the example. One to control the human’s avatar and the other to control
the unmanned teammate’s avatar. Once the scenario is executed in the virtual environment,
the scenario and both behaviors will be exported for development in a separate module
with supervised ML techniques. The module then runs millions of iterations of similar
scenarios to develop the autonomous behaviors. These iterations can still have exploratory
steps to allow for presentation of “novel Al” solutions. Upon completion of the ML, the
human is presented with three agents for the unmanned teammates behaviors. After
reviewing a demonstration of each behavior in the scenario, the manned teammate then

decides on the agent to use.

3. Reinforcement User Control Mode - The final form of control mode is for minor
corrections and developments of the agent’s behaviors. While the human controls the
human’s avatar, the agent will control the unmanned teammate’s avatar. This form will
serve as a virtual rehearsal. As the team rehearses the occupation of a SBF, the human will
have the opportunity to provide positive or negative reinforcements at the decision points
outlined in the interdependence analysis table. For example, if the agent places itself in the
right position of the formation, the manned teammate can provide a positive reward to

reinforce that good behavior.

Additional benefits from this serious gaming is the pro-active approach a human
can have with training their own unmanned teammates’ agent and an understanding of the
agent’s training progression. A common phrase within the Marine Corps is that Marines
accomplish more with ownership. The assignment of an agent’s behavior to a Marine will
create a greater value and connection with the agent, vice if being assigned from someone
else. The data of time spent in the virtual environment training supports this point as

indicated in Figure 39 in Section 1V.B.2.b. Virtual Training Time. This theory is presented
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succinctly by Gutzwiller and Reeder [75] in their 2020 research: “The IML approach
further allows the user to be the designer, as Muir (1994), suggested, which is likely to
improve trust in ML. In parallel, the “IKEA effect” also suggests that the experience of
building these control models via interaction may impart an increased valuation to them
(Norton et al., 2012) which may be a prophylactic against their disuse.” Continuing with
the thread of disuse and misuse, the human owns the training curriculum for the agent. This
ties directly to calibrating trust due to the resolution of the human’s understanding of the
training curriculum. The human can expect greater uncertainty in the unmanned
teammate’s performance for tasks not trained or in new environments. As Zhou and Chen

indicated, understanding uncertainty can positively influence trust [63].

4. Implementation of MUM-T into an USMC Infantry Battalion

As referenced in Section 1.C, a brief synopsis of Figure 40 follows. The cycle, and
focus of my research, begins in the top left corner. In this stage, an Infantry Marine is given
a robot with a removable Al device (RAID) and a compatible game console. The RAID is
the “brain” of the robot. The RAID is preloaded with a baseline of automation that mimics
the baseline of knowledge gained by Marines at the School of Infantry prior to arriving at
their first Infantry Battalion. The game console, capable of establishing a connection with
the RAID and the LVC-TE, is used by the Marine to interactively train with his robot in a
virtual environment. The RAID is capable of the requirements defined in previous sections
of this chapter. Due to the previously mentioned garrison restraints, the robot’s physical
hardware lives in the “RoboPool.”

When it is time for live training or operations, the Marine installs his RAID into his
robot. Now, the functioning robot and Marine have become a live team with calibrated
trust and tendencies built within a simulated environment. Upon completion of the live task
or operation, the Marine conducts an after-action review (AAR) with his robotic teammate.
This may be accomplished through hasty or deliberate means. A hasty AAR could be
conducted by voice ITL with the robot to provide critiques on task completion and team

interactions. A deliberate AAR, time and situation permitting, could be conducted through
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the game console, allowing for a full three-dimensional digital critique and wholistic AAR

process.

Once the next mission is received, the S-2 — intelligence section — will create a
virtual future operating environment by inserting the most likely adversarial agents into the
virtual model of the physical world captured through unmanned aerial vehicle footage and
photogrammetry. Building on previous shared experience and training, the team, Marine
and Robot, will then conduct wargaming and mission-specific training prior to the next live
operation. The area of this research is shown by the yellow star in Figure 40. Appendix A
shows other research conducted by the Office of Naval Research (ONR) Code 34 that

influence this model.

Training the Al: RoboPool: Live Op:
+ Simulations by Al [REEITES GG PN + Maintenance Deploy Execution w/
= iMLin a Virtual Boot-Up calibrated trust

Environment

I Focus area of this research. I

e1eq Yyy pling

Build Simulation

After Action Review:

Virtual Environment Dev: * Hasty — Operator
+ UAV = 3D Terrain Creation Transition to Next Real World Operation led by Voice
* 52 Implement EnSit * Deliberate — Serious

gaming of previous
live operation

Figure 40. Conceptual Model of Future Autonomous System Cycle.

C. FUTURE WORK
1. Experimental Redesign

The ability to demonstrate the autonomous behaviors in a virtual environment for
this experiment was lacking. A playback of autonomous behaviors will aid in the
refinement of the human’s mental model. In the event of this research, the mental model

of the behaviors was developing as the participant was attempting to complete another
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attention enumeration task. While identified during planning, game development, and
experimental design, there was not a viable option to produce a reasonable iML
autonomous behavior. In future research while utilizing a “WOZ” type of construct, a
multitude of different playbacks of iML autonomous behaviors can be developed. After
observing the participants desired behaviors in the virtual environment, the participant can
be shown a specific playback to match the participant’s preferences. This could create a

better perception of iML.

Within the experimental design, the choice for the participant to decide the type of
control to have on the robot, either remote control or fully autonomous, may have revealed
a confounding factor on trust. While analyzing the data point of difference of trust between
the options, there appeared to be a potential growing trend. Two potential reasons for this
possible trend are: 1. The response from the researchers concerning the “broken” remote
control for the teleoperated mode may have degraded the trust in the required use of
autonomous mode for the participant. 2. The participant approached the autonomous
system with a lower level of trust, and this lower level of trust caused the user to choose
the “remote control mode.” In turn, the participant’s trust in autonomous systems remained
lower throughout the experiment. Recommended ways to prevent this possible
confounding factor would be to remove choice from the design of experiment and replace
it with a survey question following the completion of the autonomous testing. An additional
option is to add a pre to post trust survey to identify change in trust at the expense of

potentially biasing the participants.

With trust being the “attitude that an agent will help achieve an individual’s goals
in a situation characterized by uncertainty and vulnerability” [10], the next experimental
design should increase the amount of vulnerability that the participant feels during the dual
task paradigm. This research relied directly on the participant’s desire to do well during
the dual task time. There was no known punishment, negative outcome, or loss if the
participant did not trust the robot in its reconnaissance task. An approach to improve this
in future research is to incorporate a competition aspect to the experiment or to provide the

impression of a negative reward following a poor execution in both of the dual tasks. These
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two actions would influence the individual’s desire to achieve a goal or feeling of

vulnerability.

2. Autonomous Agent Creation

All aspects of autonomy were controlled by a WOZ. As this research serves as the
initial thrust of transferring trust of autonomous behaviors from virtual to live
environments, the next logical step is for the development of autonomous agents that meet
the experimental design requirements. There are pre-programmed autonomous agents that
exist in both virtual and live environments. The missing link is the ability to create an
autonomous agent via the iML technique in a virtual environment to transfer to a live

environment.

To test with a similar demographic while developing the behaviors through the iML
approach would require daily on scene contact, or the ability to have daily remote access.
A potential solution for the remote based access is to develop a web-based gaming
application. Utilizing the concepts presented in Section V.B.3. Implementation of MUM-
T into an USMC Infantry Battalion, participants would log-in to execute a single level of
the curriculum per day. After the completion of the level, the agent would enter the
supervised ML algorithms within the remote ML computers. Once the behaviors are
developed, the participant can log-in to see the three created behaviors and make the
selection of the desired agent. This would continue until the training curriculum is

complete. At this point, the agent can be exported for actions with an autonomous robot.

3. Virtual Environment Development

The virtual environment used for serious gaming did not have any ML attributes
connected to it. The next step for the virtual environment is to model it in a fashion that
supports ML parameters. To create an agent that functions in all environments, the results
of the agent’s sensing capability must be matched in both live and virtual environments
and used as inputs for the ML algorithms. For example, the ability for the agent to assess
a doorway must match in both environments. Within the ML algorithms, distance to
doorway will need to be used to drive autonomous behaviors. As robotics experts have

already proclaimed, this will be a major undertaking [19].
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D. SUMMARY

This research sought to explore trust and its development in a virtual environment
and how it transferred to live execution between groups with different approaches to
autonomous behavioral development. The two-group design analyzed aML against iML in
a dual task paradigm. Though the number of participants did not produce statistically
significant results, the attention enumeration task and dual task paradigm established a

testing environment where indicators of trust were easily measurable.

The results were not statistically significant, but the main impression from this
research is Infantry Marines may want to use an iML system over an aML. There are no
indications on which type of system they would trust more though. A statistically
significant point shows Infantry Marines invest more time training in a virtual environment

during an iML approach vice for familiarity training with an aML system.

The literature review culminated to reinforce that iML is a viable approach for
developing better MUM-T. This research was inconclusive in determining if the iML
technique increases trust. Refining the experimental design and testing with a greater

number of participants will yield better results on the indications of trust.

Though the results of this study are inconclusive due to a limited number of
participants, future research should continue to explore the concept of using serious games
to enable an iIML approach for developing agent behaviors for an autonomous teammate.
Future research will inform actions and decisions to increase the efficiency withina MUM-
T. The ability for each member of the MUM-T to develop a common mental model for
each member will be critical. The developed mental models and performance of each
teammates’ actions will build greater trust. With a virtual training environment, cost and
maintenance requirements will decrease while developing mental models, behaviors, and
trust through a wide variety of training scenarios will increase. With the capacity to transfer
the developed trust and agent from a virtual to live environment, the MUM-T can achieve
greater effectiveness in tasks. In turn, our efforts can provide the warfighter a tailorable

system that increases their lethality through trust and teaming.
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APPENDIX. ONR CODE 34 RESEARCH

AT A GLANCE

WHAT IS IT?

DeephAgent is a system that

autematically learns realistic behaviors
for entities in complex simulation
environments using deep
reinforcement kearning.

HOW DOES IT WORK?
DespAgent uses newral networks to
estimate the future reward and best
action given the current simulation
state. These neural networks are
improved by playing against existing
other neural networks or by observing
human players.

WHAT WILL IT ACCOMPLISH?
DespAgent will simplify the process of
developing complex behaviors in
simulations. Rather than having an
artificial intelligence expert manually
encode domain knowledge from a
subject matter expert, DeepAgent will
automatically learn behaviors through
a combination of self exploration and
observations of humans.

POINT OF CONTACT:
OMNR Code 34

Dr. Peter Squire
peter.squire@navy.mil

ABOUT:

Woark for this effort is perfformed by
Soar Technolegy under OMR contract
MNEB8335-18-C-0538.

OFFICE OF NAVAL RESEARCH

Distribution A. Approved for public release: distribution unlimited. (OMR DC
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Training simulations enable warfighters to develop skills without putting their safety at risk
or incurming costs typically associated with training such as fuel, munitions, etc.
Unfortunately, simulations used for infantry training require additional operators to control
friendly and enemy units which limits their ability to train unit leaders. By replacing operators
with artificially intelligent agents (Als). the cost and legistical challenges of training individual
users is reduced and simulation-based training can be focused on higher echelon users.
Artificially intelligent agents are typically time consuming to develop, requiring an Al expert
and subject matter expert. DeepAgent aims to automatically learn these Al agents using
deep reinforcement leaming. This approach offers a number of benefits over hand coding
Al agents:

- Complex behaviors. Deep networks can leam complex behaviors without any prior
domain knowledge by playing in simulation (e.g. AlphaGo leamed to play Go better than
human professionals).

= MNowvel strategies. Al agents can explore novel stratagies that were never taught to
them by a subject matter expert. These strategies may be more effective than those
used by humans.

= Lower cost. Training an Al agent using deep reinforcement leaming does not require a
subject matter expert to define the behavior and an Al expert to program the behavior.

O this effort, we are developing algorithms to suppeort automatically leaming behaviors
using deep reinforcement learning in training simulations. DeepAgent has leamed
behaviors across a variety of domains including first-person Unity simulations. Atar, and
Starcraft. The system supports training using multiple algorithms, deep network
architectures, state representations, action representations, and simulafion environments.
In addition to leaming through self exploration, DeepAgent will use imitation leaming to
leamn through examples provided by humans.

Research Challenges and Oppertunities:

= Evaluate and improve on state of the art deep reinforcement learning algorithms

= Develop state and action representations for first person-shooter training simulations
* |ncorporate human examples into the Al agent leaming process

www.onr.navy.mil

M: 43-5708-19
DeepAgent Data Sheet. Source: [76].
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ONR Program Code 34

AT A GLANCE

WHAT IS IT?

STATE is a system for creating
intelligent, adaptive agents and
generating virtwal terrain for Small
Unit Decision-Making (SUDM)
simulated training envircnments.

HOW DOES IT WORK?

= A Virtual Terrain Procedural
Content Gensrator enables rapid
creation of large numbers of virtual
temrains cwver which Red Force
agents leam to reason

= A Behavior Engine implements
agent perception and action based
on principals of recognition-primed
decision making

= An Agent Behavior Learning Engine
optimizes agent behavior using
simulation data and feedback from
instructors

WHAT WILL IT
ACCOMPLISH?

= STATE will support SUDM training
developers through effective and
cost-efficient terrain generation and
implementation in simulation-based
environments

STATE will support SUDM training
through intelligent allies and
adversaries in training
envirenments

POINT OF CONTACT:

ONR Code 34
Dir. Peter Squire

peter.squire@navy.mil

ABOUT:

Woark for this effort is perfformed by
Charles River Analytics, Inc.,
Cambrdge, MA, under OMR
Conftract# MO0D14-18-C-2053.

OFFICE OF NAVAL RESEARCH

Distribution A_ Approved for public release, distribution is wnlimited.

Approved, DCNE 43-5708-10
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STATE: Simulated Teachable Agents
for Training Environments

Training simulations that cumrently support Small Unit Decision-Making (SUDM) training are
laborious to configure and expensive to manage with live personnel, which results in
training that is limited in scope. Curmrent simulations reguire numerous training instructors,
called "pucksters,” to configure and control simulated scenarios and entities, driving up the
manpower costs of conducting simulation-based training.

The goal of STATE is to reduce the cost of simulation-based SUDM training by creating

on~-demand virtual terrain and software agents that act as pucksters.

Simulated Teachable Agents for Training Environments (STATE) features:

= AVirtual Terrain Procedural Content Generator to create a robust testing environment
for virtual agents

= Atemain-reasoning application programming interface (AP} to enable agents to
perceive the terrain and environment, build situation awareness, and act.

= A Behavior Engine that implements agent perception and action based on principals of
recognition-primed decision making

= An Agent Behavior Leamning Engine that incorporates Deep Reinforcement Leaming
Bayesian reasoning. and Monte-Carlo Tree Search to configure agent parameters

Creating intelligent, adaptive computer-generated force technology for virtual training is
espacially challenging in the Marine Corps operational context. The pace, procimity, and
range of possible offensive and defensive actions in Small Unit operations induces very
challenging complexity in modeling requirements. STATE meets this challenge by providing
a suite of tools that empowers trainers to improve agent behavior via automated leaming
and scales to meet future training needs at low cost.

RESEARCH CHALLENGES AND OPPORTUNITIES:

= Establishing sufficient variation in virtual terrains te support the evaluation of agent
leaming algarithms

Implementing agent-based terrain reasoning, perception, and behavior that supports
accurate modeling of components of Marine SUDM information gathering, situational
assessment, and decision making

Designing for integration with ONMR S&T areas such as the Decision Making Leaming
Management System (DM-LMS) for inspection by Marine Corps Instructors and Leaders,
and the Simulation Tailored Training and Assessment (ST2A) framework to direct agent
behavior and provide scenaros for testing and execution

www.onr.navy.mil

Simulated Teachable Agents for Training Environments

Data Sheet. Source: [76].
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ONR Program Code 34

AT A GLANCE

WHAT IS IT?

Teaching Al robots completely new
tasks from interactive natural
language instruction while they are
actively working with a humamn.
Instructions can be used to extend
previous behaviors, or define
completely new tasks.

HOW IT WORK?
Building on the Soar cognitive
architecture, we are creating an
instructable robot that processes
natural language, creates an intermnal
semantic representation of the
instructions, and then interprets those
instruction within the current situation.
It uses the current context to
disambiguate and ground the
instructions. If it doesn't understand
the instructions, it interactively asks
for help. Animportant challenge is
being able to use knowledge gained
from previous instruction for new
situations so robot does not need to
leam everything from scratch.

WHAT WILL IT ACCOMNPLISH?
This will allow robots to adapt quickly
ta new envirenments and new tasks,
eliminating the need for off line
programming. It has the potential to
make robots much more useful in the
field.

POINT OF CONTACT:
ONR Code 34
Dir. Peter Squire
peter.squire@navy. mil

ABOUT:

Work for this effort is performed by
The University of Michigan under
OMR Grant NOOD14-18-1-2337

S&T OPPORTUNITY September 2019

Extending Interactive Task Learning

How can robots leam new tasks through natural language?

Important characteristics of Interactive Task Learning are that it is:

= Inmstructive: Teaching is primarily through natural language

= Mized-Initiative: Both the instructor and agent can initiate interaction

= Situated: Teaching ccours through a shared experience

» Comprehensive: Leams all aspects of a task: goal, policy/procedure, actions, constraints, ..
= General: Learns navigation tasks, puzzles & games. On four robotic platforms

=  One-Shot: Agent leamns a task during a single teaching interaction

» Compositional: Reuses concepts and tasks from previous instructions for new tasks

Deliver the package to the soar | Deliver is 2 new task. Agent initiates
office. interaction.

What is the goal? ]

The goal is that the package is in

the soar office. Agent parses language.

Creates task representation.

realizes it needs the package.
[ Please give me the package. ]
Doesn't know where the soarofficeisso it
asks for help.
[ How do | get to the soar office? ]

Follow tha right wall until the
second intersaction.

Follow the right wall until you
see 3 door.

¥ou are at the soar office. Follows directions to get to the soar office.

Deduces that if person takes the package,
it will be in soar office and goal achieved.

[ Please take the package. ]

Using causal reasoning, it generalizes the
solution. In the future, it can deliver any
maoveable object to any room.

RESEARCH CHALLENGES AND OPPORTUNITIES:

* Support leaming a wide range of task formulations: goal, procedural, hierarchical, combined.
* Support leaming a wide range of types of actions: physical, mental, perceptual, ...

» Extending to real-word domain: interior guard.

* Learn multiple meanings of ambiguous concepts based on context.

OFFICE OF NAVAL RESEARCH www.onr.navy.mil
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Figure 43. Extending Interactive Task Learning Data Sheet. Source:

[76].
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ONR Code 34

AT A GLANCE

WHAT IS IT?

RSET is a software platform used to
reduce the time and technical costs
associated with producing virtual
training environments of building
interiors. By streamlining the process
used to genserate simulations, users
with limited expertise will be able to
build, augment, and train in virtual
environments based off real-world 20
SCans.

HOW DOES IT WORK?

= A4 3D Scan is captured from a real-
world environment. RSET is scanner-
agnostic.

= The captured 3D data is run through
an improvement algorithm to identify
key features useful to the simulation
engine. This improved data is loaded
into RSET.

= Users can swap between 30 data
sets, connect multiple scans together,
add features to the 3D data, explore
the environment on a desktop or in
VR. run force-on-force simulations,
and more.

WHAT WILL IT ACCOMPLISH?
RSET reduces the time and technical
skill required to gensrate simulation
environments by wusing 30 scanning. It
makes simulation use available to
maore Warfighters by automating the
workflow used today. It also expands
the available tools used to interact with
and train in these environmenis.

POINT OF CONTACT:
OMR Code 34

Cr. Peter Squire

peter squire@navy mil

ABOUT:

Work for this effort is perfformed by
Enomalies, LLC under ONR Contract
NOO0014-16-C-1001

OFFICE OF NAVAL RESEARCH

S&T OPPORTUNITY September 2019

Rapid Synthetic Environment Tool:
Low Cost Virtual Training

Virtual training environments offer endless opportunities for the Warfighter to train and
familiarize themselves with a variety of scenaros and locales. While significantly less
expensive than training in physical environments, virtual training still requires the use of a
specialized team well-versed in 30 game engine development, mesh editing, and data
optimization. When attempting to replicate a real-wordd envircnment within a virtwal training
engine, the required skill increases aven further.

Objective
To reduce the time and technical costs associated with the creation of virtual training
environments modeled after real world locations, thereby enabling Warfighters with imited

technical experence the ability to create, modify, and interact with simulation environments|
in the most advantageous circumstances.

Enomalies’ Rapid Synthetic Environment Tool (RSET) is a suite of software sclutions and
sernvices designed to overcome the challenge of simplifying terrain data capture and import
into & simulation engine.

The usage scenarno for RSET is described below:

= 3D Scanning — To create an environment based off a real-word location, data about that
environment must be captured. RSET is designed to be "scanner agnostic”, meaning a wide
variety of scan methods can be employed to capture that data. Enomalies has developed a
specialized pipeline to turn regular cell phone and action cam photos and videos into
explorable meshes via photogrammetry (Structure from Motion ).

= Mesh Improvements — A hands-free algorithm used to improve the mesh will extract useful
data from the captured 3D environment, such as doors, lights, and furniture. This
information will be used to help tailor the game engine to the training-specific requirements.
= Simulation — The improved mesh is loaded into RSET, where users can explore the
space, design Al simulations, run multi-player encounters, or augment the captured
environment with their own 30 objects and renders. Enomalies has received positive
feedback from school administrators and local police departments regarding RSET in its
private sector use as a school safety and training tool.

RESEARCH CHALLENGES AND OPPORTUNITIES:

» After-Action Review tools used to pull meaningful training data from videas/photos used
in the Structure from Motion Pipeline.

» Expand SFM Pipeline functionality to increase scan fidelity using trained Al models

* Metworked force-on-force simulations with meodification tools built in.

* |nterior Position Reckoning to determine rough interior location of user in previoushy
scanned structure

www.onr.navy.mil
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Figure 44.

Rapid Synthetic Environment Tool: Low Cost Virtual

Training Data Sheet. Source: [76].
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ONR Code 34

AT A GLANCE

WHAT 1S 1T?

A hybrid 3D segmentation pipeline

to obtain rich, hierarchical
semantic attributions for 30 point
cloud data

= Mixes neural networks with
domain knowledge and commaon-
sense rules

= Jointly processes 20 images and
3D data for complementary cues

= Fills in missing data using
contextual information leamed
from training data

= Assigns class labels to different
objects, parts and terrain areas in
a coarse-te-fine fashion

HOW DOES IT WORK?

= 3D point cloud scan of a target
scene is created using LIDAR,
RGBD sensors or structure-from-
motion

= Local geometry, appearance and
sumounding context is utilized to

afttach category labels to 30 points

WHAT WILL IT ACCOMPLISH?
Automate a big chunk of the data
annotation process currently in
place to obtain desired attributes

= Provide a framework to unify
existing rule-based algorthms or

knowledge bases with more state-

of-the-art deep learning methods

= Opens up possibilities for
semantically-informed target
search, navigation planning or
combat training

POINT OF CONTACT:
ONR Code 34
Dir. Peter Squire
peter.squire@navy. mil

ABOUT:

Work for this effort is performed by
[your company/university/lab] under
OMR Grant # NOD014-17-1-2848.

OFFICE OF NAVAL RESEARCH

S&T OPPORTUNITY September 2019

Layered Semantic 3D Modeling from
Large-Scale 3D Point Clouds for
Indoor and Outdoor Environments

Colorized 3D
Point Cloud Input

'y
‘dlu

Segmentation

Rich semantic atiributions in large scene models, when available, greatly enhance
situational awareness of warfighters as well as their capabilities for surveillance and mission
plamning. They can be used to manually inspect and analyze a scene in detail or to navigate
through it and interact with it in an augmented/mixed reality training setup._

The objective of this program is to utilize the geometry, texture and context of outdoor
scenes io compute such semantic attributions in a fully automated fashion. Aside from
providing semantic information directly useful for a warfighter, the fully automated nature of
this process greatly reduces the need for cumbersome manual annotations. State-of-the-art
deep nebwork architectures will be used together with domain knowledge and handcrafted
rules in a hybrid system where available rules constrain the training process of the neural
networks that fill in additional information implicit in annotated data. This novel framework
that unifies rule-based algorithms with neural networks is capable of providing very accurate
segmentation results, especially when large amount of annotated data is not available,
which is often the case with 3D data.

The resulting high-quality semantic attributions open up further possibilities to efficiently
search for and locate targets or plan navigation trajectories using these rich semantics and
contextual information explicitly contained within our novel, graph-based representation.
Through its data-driven ability to reason about context, our system will allow a warfighter to
waork effectively with partial or incomplete data.

The system is currently able to efficiently represent the contextual information presentin a
scene and use it to segment different object, part and terain categeries in a point cloud
data. We also have a working proof-of-concept for a framework that unifies logical rules with
deep networks. Mext milestone is to extend this proof-of-concept to contain a set of rules
regarding cutdoor scenes that would be mast useful for teaching the neural networks fo
avoid making some common-sense mistakes.

RESEARCH CHALLENGES AND OPPORTUNITIES:

» A pipeline that can deal with full, complex scenes, which is significantly more challenging
than individual objects

Computational bottlenecks: Increased dimensionality of 30 data puts additional strain on
computational demands of deep neural networks and obtaining sufficiently high-resolution
3D results requires innowvative network designs.

Designing a nowvel hybrid system that effectively mix a neural netwerk with domain
knowledge and handcrafied rules

Effective joint processing of 30 models and associated imagery with poses for increased
reliability

www.onr.navy.mil
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Figure 45.

Layered Semantic 3D Modeling of Indoor and Outdoor

Environments Data Sheet. Source: [76].
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