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ABSTRACT 

 What can we learn from analyzing how a learner operates within an e-learning 

system? This research examines an adaptive education system known as CHUNK 

Learning. This system converts educational material into a network composed of nodes, 

or CHUNKs of educational content, and edges that represent the connections between 

some of the nodes. As of now, learners have freedom of maneuver to navigate within the 

system at their leisure. Each of their actions is a piece of data that can be used by an 

instructor to comprehend whether a learner is effectively learning or not. The CHUNK 

Learning system has not yet utilized this valuable data to improve the complex 

teaching–learning process that occurs in an e-learning environment. We propose a 

solution to this problem by utilizing user analytics based on two criteria: number of 

completed educational modules and the number of content views. We conduct two 

different mathematical approaches based on statistical analysis and network science that 

allow for a thorough analysis of user data to determine vital trends that enhance the 

situational awareness of CHUNK Learning. We look to determine user competency 

scores that may reveal troubling areas of deficiency that may enable instructors to tailor 

their teaching methods to address each user’s specific needs. In addition, we can further 

personalize learning to meet user needs by determining the optimal learning content for 

each course. 
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Executive Summary

Today’s students are more exposed to technology in the classroom than their pre-
decessors. The use of technology has become a way of life for modern society yet
traditional pedagogy in a brick-and-mortar institution still remains the norm. Recent
studies point toward an improved learning experience for students when e-learning is
involved. E-learning can offer instructors a systematic and adaptive process to learn
valuable details about their students and gain the versatility to model their courses
using student input.

This thesis examines data from the e-learning system named CHUNK Learning. This
system builds a network of individual CHUNKs that each contain a plethora of learn-
ing content such as videos, sample code, research papers and PowerPoint presenta-
tions. Currently, CHUNK Learning is a platform that uses learners’ profiles through
the information provided by the user. While this information is useful, users may
not accurately fill out their profile or even update them after initially creating them.
Therefore, we propose a dynamic approach using a mathematically-based algorithm
to provide an analysis of the content users studied in order to guide the faculty that
utilize CHUNK Learning in support of their courses. Additionally, through modeling
user interactions as networks, we also introduce a second algorithm that allows us
to discover which educational modules in a course are most representative of that
course.

The first algorithm is based on a statistical analysis of CHUNK user data that
measures two particular user attributes: CHUNK completion rates and completed
CHUNK views. This algorithm utilizes the z-score standardization method which
enables us to place each user into a specific group based on their z-scores related to
these two attributes. The output of the algorithm assigns each user a competence
level that can be used by instructors to make personalized recommendations to their
students that may improve the teaching-learning process.

The second algorithm utilizes a network science approach that analyzes the connec-
tions between users and completed CHUNKs to build an individual network within
each course. We use tools of network science to determine the most important selec-

xv



tion of CHUNKs based upon the results of multiple parameters.

The combined user-centric approach within CHUNK Learning may serve as a model
for other e-learning systems to follow. While the course data was limited to graduate
students from NPS, we may extract additional critical feedback from applying these
algorithms to students at all education levels.
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CHAPTER 1:
Introduction

1.1 Motivation
In a world dominated by globalization and advancing technologies, learners are ex-
posed to various pedagogies, each with their own set of advantages and disadvantages.
Instructors possess an innate responsibility to ensure the best possible learning en-
vironment for their students and must strive to improve their methods each day.
Most educational institutions today implement some form of traditional education
where student success remains highly dependent upon how well each student adapts
to their instructor’s teaching style. By exploring the use of non-traditional pedago-
gies, instructors can incorporate new technologies to optimize the teaching-learning
process.

1.2 Problem Statement
Researchers at the Naval Postgraduate School (NPS) in Monterey, CA, USA, devel-
oped a competency-based electronic-learning (e-learning) system, known as Curated
Heuristic Using a Network of Knowledge (CHUNK) for Continuum of Learning, that
allows students to conduct learning at their own pace in a non-linear manner [1]. This
is done through the CHUNK Learning environment which emphasizes a personalized
and adaptive approach to education. The latest system relies on students to create
and update a user profile that allows learning to be modeled upon personal attributes
such as educational background, skills and interests. The system works well until
current students fail to regularly update their profile. Although CHUNK Learning
aims to provide a tailored learning path for each student in this manner, there are
other methods that can be used to match content that is specific to each student.
Very often, traditional pedagogy dictates that students must adapt to their instruc-
tor’s teaching philosophy in order to adeptly understand a given subject. Though
this methodology may be useful for some students, there are others who might suffer
either due to lack of clarity from the instructor or the arduous nature of the mate-
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rial at hand. These students may be ill-equipped to join a 21st century workforce
that “must be able to address dynamic situations, think critically, and solve prob-
lems by accessing and analyzing information” [2]. If instructors are able to better
understand their students especially how they approach learning, then surely the
teaching-learning process would lead to a more pleasant and rewarding experience for
both parties. Students would likely buy-in to this type of approach when instructors
effectively respond to their feedback. Therefore, we are motivated to incorporate a
bottom-up approach to e-learning, where student analytics point out key attributes of
a student to provide instructors with clear feedback on areas of concern surrounding
the educational content. We aim to identify students by their competence levels in a
course at any given time.

Moreover, instructors are often faced with situations where they have limited time to
cover an entire course or they meet students who are exploratory learners that may
express interest towards a couple of topics within the course. This is an interesting
problem that often leads instructors to arbitrarily choose topics that they believe are
the best representation of the course material based on their experience. The CHUNK
Learning system possesses the versatility to recommend particular CHUNKs given its
interconnected structure. We can use network science analysis to provide clarity on
which topics may be the most important based on student interactions in the CHUNK
Learning system.

1.3 Purpose
In this project, we develop a statistical analysis algorithm that is dependent upon
student data in CHUNK Learning to generate a score for each student based on
competency and interest. This algorithm provides the potential for instructors to
have a snapshot of each student’s learning capability. We specifically look at two
areas of student analytics: content completion rate and content views. This data
provides us with critical feedback that allows instructors to gauge where each of their
students are at any given point in the material. In doing so, instructors can facilitate
a student’s personalized path to identify whether he or she needs to spend more time
on a particular topic or would benefit from learning supplementary content to gain
additional expertise.

2



The second objective is to conduct a network science analysis of the connections
between students and the educational content. We believe that the analysis will
reveal a course’s highest priority topics based on network science parameters. This
unique perspective will improve the CHUNK Learning system’s ability to meet the
competing demands of students who are interested in learning about subjects outside
of their required coursework but within a limited time frame. Ultimately, the analysis
may provide future students a personalized and efficient package of content to learn.

1.4 Thesis Structure
We have organized this thesis into five chapters to include Introduction, Background,
Data and Methodology, Results and Analysis, and Future Work and Recommenda-
tions. In Chapter II, we describe important background information highlighting the
various theories that dominate our project. Next, in Chapter III, we outline the data
and the methodologies necessary to develop each of the two algorithms. In Chapter
IV, we present the results and findings of our statistical analysis and network science
analysis. Finally, we give our recommendations for future work and conclusions in
Chapter V.

3
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CHAPTER 2:
Background

Within this chapter, we investigate a variety of concepts that must be explained
before continuing further. We provide key findings from various fields of study ap-
plicable to e-learning and introduce important definitions that formulate the base of
our mathematical models. Specifically, we will discuss key terminology relating to
the following topics: adaptive learning, competency learning, statistics, graph theory,
network science, and CHUNK Learning.

2.1 Adaptive Learning Theory
A traditional learning environment has been the established norm for centuries with
key advantages such as valuable face-to-face mentorship between students and instruc-
tors, and group projects where students work together and learn from each other. Yet,
with society’s growing dependence on technology, there is an abundance of research
indicating that e-learning solves many of the issues that impact a traditional learning
atmosphere [3]. E-learning harnesses today’s technologies to develop a viable educa-
tional package that can used by anyone who is connected to the internet. E-learning
is the act of utilizing electronic devices like cell phones and tablets to “support in-
dividual learning or organizational performance goals” [3]. This learning method
has gained favor in developing countries such as India and Malaysia due to its key
advantage of affordability [4]. In addition, e-learning greatly enhances a classroom
environment through the introduction of supplementary resources. Instructors can
take full advantage of e-learning to implement a dynamic educational approach such
as blended learning, an approach that combines traditional learning and the internet
to create an enhanced learning experience for students. Further, organizations rely on
e-learning to reduce travel expenses and training time involved with traditional face-
to-face learning [3]. Research has demonstrated that “information and communication
technology-based interventions generally resulted in positive impact over traditional
learning” but these gains have failed to reshape the world’s perspective on standard
pedagogies [4]. Thus, we introduce adaptive learning, an important concept that
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utilizes e-learning and may fundamentally change how we view modern-day teaching
and learning.

Adaptive learning is the dynamic process where e-learning shapes content based upon
“student performance” [5]. The advancement of technology has led to the development
of complex systems, capable of gathering refined data which utilize different learning
analytics to identify the correct approach to a student’s learning path. Adaptive
learning is able to provide effective learning by supporting diverse learning paths and
materials to fit learners’ unique needs and lifestyles [6].

An adaptive educational system (AES) combines e-learning and adaptive learning
together with the fundamental principle that all learners are unique. Therefore, we
must account for their different attributes to allow for seamless communication and in-
struction between instructor and student. These attributes may include each learner’s
depth of knowledge on a particular subject, their preferred style of learning, and other
cognitive skills they might possess [4]. Thus, AESs must account for a large number
of variables relating to the characteristics of each and every user. When applied to a
class of diverse students, this process becomes increasingly complex.

Among various individual characteristics, learning styles are considered to be im-
portant factors in e-learning, and due consideration of these factors is necessary in
delivering a quality learning experience to learners. Manochehr found that if learning
content was successfully linked to student’s learning styles, then the quality of learn-
ing may be improved [7]. Yet, several new learning style-based AESs were developed
to deliver adaptive learning to students and their results have been contentious, un-
able to positively impact academic achievement [4]. While learning styles are critical
to understanding different types of learners, we must not solely consider one single as-
pect of student learning when creating an AES, as this alone cannot make a profound
difference towards enhancing the teaching-learning process. Therefore, the develop-
ment of AESs must aim to combine learning styles with other parameters to provide
a much fuller and adequate adaptive learning experience to the learner. Thus, we
introduce one of those cognitive parameters, working memory.

Baddeley defines working memory as “a brain system that provides temporary stor-
age and manipulation of the information necessary for such complex cognitive tasks

6



as language comprehension, learning, and reasoning” [8]. It is not to be confused
with short-term memory which refers only to momentary storage of any information
being processed. Additionally, individuals who possess a high working memory ca-
pacity are not necessarily more intelligent than those individuals with a low working
memory capacity. Yet, there have been encouraging studies which support the claim
that working memory is directly correlated to a person’s fluid intelligence [9]. In the
context of an AES, instructors will need to compensate for their students’ varying
levels of working memory capacity, where certain academic topics may overload some
students, discouraging them from fully engaging in the learning process [4]. Tsianos
et al. suggest that students with low working memory capacity can improve to lev-
els of medium or high working memory capacity when their instructors are able to
tailor content to match their capacity [10]. Ultimately, this research suggests that
accounting for cognitive measures such as learning styles and working memory can
potentially enrich the learner’s experience in an AES such as CHUNK Learning.

2.2 Competency Learning Theory
Moving into the 21st Century, the rigid demands of workplaces have transitioned
from one of physical inputs towards a knowledge-based economy that emphasizes
the intellect of employees [11]. This certainly indicates that companies will seek to
hire viable employees who possess specialized training and multiple certifications.
It seems reasonable that these employees would benefit greatly from competency-
based education (CBE), a pedagogy that ensures students can properly demonstrate
what they have learned and understand the different applications it may have [11].
CBE, as described by Spady, is an adaptive process that properly instructs, measures
and certifies an individual in a flexible time frame to determine if he or she has
met competency-driven learning outcomes [12]. Instructors use CBE to introduce
a more comfortable learning experience to their students, one in which they can
learn at their own pace. Self-directed learning provides students with the freedom
to explore and choose their own education needs. CBE prioritizes a student’s time,
allowing them to learn exactly when they want to. CBE programs aim to improve
various skills such as studying habits, use of implicit knowledge and critical thinking
that effectively prepare students for real-world challenges [2]. According to Gardner,
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the goal of CBE programs is purely to indicate a learner’s competency by “written
or other demonstration of knowledge of a subject or a particular skill, often those
reflecting workplace experiences and responsibilities” [11]. This enables students to
navigate through content at their own pace based on their demonstration of the
required knowledge. Students enrolled in CHUNK Learning would surely benefit
from the system knowing exactly what their competence level is in a given topic.
This nests with the CHUNK Learning system’s goal to assess users through the use
of competency-based assessments.

2.3 Statistical Theory
The study of statistics provides the foundation for how we must observe and inter-
act with the data we collect. This discipline enables us to make smart judgments
and enhance our decision-making when presented with situations of uncertainty and
variation [13]. Statistics equip us with essential tools to collect vital information and
develop findings. Essentially, we can make inferences from our data to generalize
across differing populations. Among the various visual techniques that can be used in
statistics, we are interested specifically in displaying histograms for our discrete data.
A histogram is a type of plot that presents the frequency distribution of a set of data
that is usually either discrete or continuous. The data in this project is discrete so we
construct a histogram by “subdividing the measurement axis into a suitable number
of classes, such that each observation is contained in exactly one class” [13]. We also
refer to these classes as bins, and we will look to distribute our data into equal bin
widths.

We now list a number of terms that will be referenced throughout the thesis. We
start with this definition of variance.

Definition 2.3.1 Variance

Variance, denoted by σ2, is given by σ2 =
∑

(xi−µ)2
n

, where xi − µ is the
deviation of the ith observation from the population mean, µ, and n is the
size of the population [13].

8



As can be seen from Definition 2.3.1, the variance is simply the average of the squared
deviations from the population mean. It is used to measure the variability in a given
population. From the variance, we are able to derive the standard deviation.

Definition 2.3.2 Standard Deviation

Standard deviation, denoted by σ, is the square root of the variance, σ =√
σ2 [13].

The standard deviation can be interpreted as the size of a typical or representative
deviation from the population mean within a given set of data. Within CHUNK
Learning, computing the standard deviation allows us to obtain a measure represent-
ing how much a typical learner’s usage of CHUNK learning differs from the average
user within each course. It is the unit of length upon which this project’s statistical
analysis algorithm depends on.

Within data sets, there are multiple variables that have different measurement stan-
dards. Statistical tools, like the computation of a z-score, enable us to establish a
standard among these variables in order to compare performance and conduct analysis
among slightly differing populations.

Definition 2.3.3 Z-score

Z-score is the number of standard deviations by which the raw score’s value
is above or below the mean value [13]. The equation is given by:

Z =
x− µ
σ

We can utilize the z-score as a means to effectively standardize the data we will use
in this project since we must be able to interpret the data for differing courses, each
with a contrasting number of students and learning requirements.

9



2.4 Graph Theory and Network Science
In this section, we discuss new mathematical concepts, graph theory and network
science, that allow us to represent data as interconnected graphs and networks.

2.4.1 Graph Theory
Graph theory is one of the newest fields within mathematics, first arising in the early
18th century, and did not become an official branch of mathematics until the late 19th
century [14]. Despite its infancy, this area of study allows for a different perspective
when studying a multitude of different problems. Graph theory introduces the use
of graphs as a means to model the relationships that exist in nature, allowing for
connections to develop in places that may surprise us. When applied to an AES, we
are left with an entirely unique and more holistic perspective than most mathematical
applications, to include statistics, offer. Graph theory allows us to understand the
essential framework needed to employ the vast array of tools contained within network
science that are robust enough to conduct a comprehensive quantitative analysis.
Thus, we list the following terms and their associated definitions to provide a basic
understanding of graph theory and how it is applied to this thesis.

Definition 2.4.1 Graph

A graph G consists of a finite nonempty set V of objects called vertices
(the singular is vertex) and a set E of 2-element subsets of V called edges.
The sets V and E are the vertex set and edge set of G, respectively. So
a graph G is a pair (actually an ordered pair) of two sets V and E. For
this reason, some write G = (V,E) [14].

There is much interest that may arise when building graphs from the data collected
in a learning system, especially an e-learning system where data is easily accessible
and usually quite robust. In these e-learning graphs, the vertices, also known as
nodes, represent the set of students and the learning content they each participate in,
whereas the edges are the 2-element subsets that join the students and the learning
content together. As we look particularly closer at nodes and edges, we may be drawn
to their particular degree.
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Definition 2.4.2 Degree

The degree of a vertex v in a graph G is the number of edges incident with
v and is denoted by degG v or simply by deg v if the graph G is clear from
the context. Also, deg v is the number of vertices adjacent to v [14].

The graph theory term, degree, is an important parameter that provides valuable
information about the data set used in the project. When applied to CHUNK Learn-
ing, high degree users are those who have completed a high number of CHUNKs. On
the contrary, users are deemed as having low degree if they completed a low amount
of CHUNKs. This parameter will be largely influential during the network analysis
since nodes with high degree may be more correlated to importance when compared
with nodes of lesser degree.

2.4.2 Network Science
The ideology we discussed in graph theory now gives us the opportunity to introduce
network science, the mathematical approach we will take to transform graphs into
networks. Newman first described network science as a way to interpret the complex
“behaviour of real-world networked systems” [15]. Definition 2.4.1 can be modified to
interpret complex networks, rather than purely laying focus on the relations between
nodes and edges. Simply, networks are much more versatile than graphs, as they
allow us to model different phenomena that exist in the world from biological to
social phenomena. Newman offered this definition of a network:

Definition 2.4.3 Network

A network is a simplified representation that reduces a system to an ab-
stract structure capturing only the basics of connection patterns and little
else [15].

While the primary view of educational content within the CHUNK Learning system
itself is a large network, we are able to make smaller networks out of the individual
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courses that exist within this larger network. Moreover, network science possesses
data analysis tools to analyze and extract valuable connections that exist within the
network among the various nodes and edges. As network science looks to analyze
the data through a network, one of the most common measures is the identification
of influential nodes within the scope of the network. We use the term, centrality,
to denote the most important nodes contained in the entire network. Two of the
most commonly used types of centrality measures include eigenvector centrality and
betweenness centrality, which will be used for this project.

Definition 2.4.4 Centrality

Eigenvector centrality is the principal eigenvector of the adjacency matrix
defining the network. Betweenness centrality is the share of times that a
vertex i needs a vertex k (whose centrality is being measured) in order to
reach a vertex j via the shortest path [16].

For this project, we are interested in identifying the CHUNKs that have high centrality
because influential educational content may significantly impact a user’s experience
with the CHUNK Learning system. As a result, these influential nodes can inform
the CHUNK Learning system as to which CHUNKs to prioritize, enhancing the or-
ganization and layout of the material. Next, we explore the usefulness of the k-core,
a subgraph that possesses useful properties when fully analyzed. Unlike centrality
which looks at the importance of single nodes, the k-core examines subgraphs or sets
of nodes that together are more important than the rest of the subgraphs within the
network.

Definition 2.4.5 k-core

A maximal connected subgraph, where the elements of the subgraph are
connected to at least k other elements of the same subgraph; alternatively:
the union of all k-shells with indices greater or equal to k, where the k-
shell is defined as the set of consecutively removed nodes and belonging
links having a degree ≤ k [17].
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For our research, we will be using the concept of the k-core to determine valuable
subgraphs that exist within the CHUNK Learning network that allow us to pinpoint
the group of the most influential educational content presented to users. We aim
to obtain a core-periphery structure for each subgraph to uncover core nodes and
differentiate them from less important periphery nodes. According to Csermely, “the
network core can be regarded as a highly degenerate segment of the complex system,
where the densely intertwined pathways can substitute and/or support each other”
[17]. Through the use of k-core analysis, we can identify the core CHUNKs of a
specified course in the CHUNK Learning network to aid both instructor and learner
in the teaching-learning process.

2.5 CHUNK Learning
We now introduce the CHUNK Learning project in more details, first its interface
and then the learning process.

2.5.1 The CHUNK Learning Interface
This section reveals important terminology specific to the system we use during this
project. We use CHUNK Learning terms to explain the breakdown of educational
material into individual nodes that facilitate an adaptive learning approach. The
CHUNK Learning Explorer (Figure 2.1) is the system’s graphical user interface (GUI).

In this figure, the key provided on the left hand side of the interface displays many
of the important terms that make up the anatomy of the CHUNK Learning system.
The largest nodes in the system are called topics. Each topic represents a single
educational course encompassing one academic term, usually either a quarter or a
semester. Therefore, we use the terms topic and course interchangeably. Next, each
topic is divided further into individual units, similar to chapters within a course’s text-
book. These units contain one or more CHUNKs, the building blocks of the CHUNK
Learning interface. Moreover, the CHUNK is broken further down into four separate
CHUNKlets that model a “Why-How-Methodology-Assessment format” [1]. Finally,
each CHUNKlet contains one or more Activities. Cleven describes these activities
as the smallest form of educational content that learners interact with which may
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Figure 2.1: CHUNK Learning Explorer interface

content items such as “videos, webinars, codes, games, articles, [or] assessments” [18].

2.5.2 The CHUNK Learning Process
The goal of CHUNK Learning is to provide a customized experience for each learner
where their needs and skills are fully taken into consideration. This system diverges
from the traditional education model, optimizing the content in a manner that lever-
ages a learner’s learning styles and problem-solving methods. The experience be-
tween a student and an instructor is significantly enhanced through various modes of
feedback which act to effectively process and optimize the educational material [1].
Learning is facilitated through the completion of various CHUNKlets within a single
CHUNK. Since the CHUNK Learning system is a functioning prototype and not a
full-scale operating system, some features are not optimal. One of those features is
the manner in which students complete content. As a learner completes the activities
in a CHUNKlet, he or she must manually click on the completion checkbox as seen
in Figure 2.2.

A CHUNKlet may contain a single activity or multiple activities. Upon completing
the last activity within a CHUNKlet, the system credits the learner with a com-
pleted CHUNKlet. As previously discussed, a CHUNK contains multiple CHUN-
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(a) An incomplete Activity

(b) A completed Activity

Figure 2.2: Process of completing an Activity within a CHUNKlet in CHUNK
Learning

Klets arranged in a “Why-How-Methodology-Assessment” format. Figure 2.3 shows
the various “Why-How-Methodology-Assessment” components of a CHUNK as dis-
played using the CHUNK Learning interface.

Generally, the “Why” CHUNKlet consists of one or more video or reading activi-
ties that explain the general importance behind a specific topic. The intent of this
CHUNKlet is to arouse interest from the student by providing a short and insightful
motivation to learn. The “How” CHUNKlet is comprised of one or more 3-5 minute
video or reading activities that detail the applications of a topic. Students may find
that this CHUNKlet provides a more in-depth understanding of the topic in an en-
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Figure 2.3: Various components of a CHUNK

gaging and entertaining manner. Next, the “Methodology” CHUNKlet is the heart of
the CHUNK and contains all the relevant instructional material ranging from read-
ing assignments and video lectures to PowerPoint presentations, coding exercises,
and practical exercises [19]. This CHUNKlet is where the learning happens, and the
instructor can truly tailor content in a feasible manner that is best suited for their
students. Lastly, the “Assessment” CHUNKlet is used to evaluate student learning or
skill acquisition at the conclusion of a CHUNK. This CHUNKlet typically consists
of a summative assessment activity including tests, quizzes, homework assignments,
laboratory exercises, or research projects [19]. Any assessment that instructors would
use in a traditional classroom setting can be adapted to an “Assessment” CHUNKlet.

Most CHUNKlets are optional, providing the learner the flexibility to explore as much
or as little of the material based on his/her interests. Therefore, the successful com-
pletion of any one “Assessment” CHUNKlet will reward the student with a completed
CHUNK. However, instructors are also able to make “Why”, “How”, or “Methodology”
CHUNKlets mandatory. In these cases, the user must complete all activities within
all mandatory CHUNKlets as well as one “Assessment” CHUNKlet before the system
will reward the student with credit for a completed CHUNK. Within the CHUNK
Explorer, the color of the CHUNK will change colors from red to blue to denote that
the CHUNK is complete. For the purposes of this study, we identify three different
types of CHUNKs in the system: required CHUNKs, recommended CHUNKs, and
optional CHUNKs. A required CHUNK consists of learning content that is necessary
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to achieving the instructor’s learning objectives for a specified course. The instructor
identifies these CHUNKs on the course syllabus. A recommended CHUNK, also iden-
tified by the instructor as relevant to the course, contains learning content that acts
as supplementary material the user may choose to complete for expanded learning.
An optional CHUNK is any CHUNK that is available within CHUNK Learning but
completely outside the scope of the current course that the user is enrolled in.

The exploration of the various topics in this thesis provide the necessary framework to
create algorithms that allow us to interpret the meanings behind various user actions
in the CHUNK Learning environment. The research on adaptive learning and compe-
tency learning establish the purpose for conducting an analysis of CHUNK Learning
as these educational concepts become increasingly known and utilized throughout the
world. We then incorporate the mathematical tools within statistics, graph theory
and network science to develop each of these algorithms and provide the necessary
analysis to reveal key trends among users enrolled in CHUNK Learning. The follow-
ing chapter explains the CHUNK Learning data we use and the methodology for the
statistical analysis algorithm and the network science analysis algorithm.
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CHAPTER 3:
Data and Methodology

This chapter describes the data obtained from the CHUNK Learning network. Ad-
ditionally, we discuss the methodology and the algorithm involved in the statistical
analysis approach. Then, we reveal the methodology of the network science analysis
approach using the network analysis and visualization program, Gephi [20].

3.1 CHUNK Learning Data for our Analysis
We collected data and performed our analysis on a total of 68 CHUNK Learning users
enrolled in three different courses at NPS.

We perform our analysis on the following three data sets: MA4027 - Graph The-
ory, OS3307 - Modeling Practices for Computing, and OS3604 - Statistics and Data
Analysis. This data was sourced directly from the CHUNK Learning system and
gathered for the entire academic quarter in 2019 and 2020. All three courses utilized
a flipped classroom learning approach for portions of the course, in which students
are tasked with completing the course’s assigned CHUNKs for the week before phys-
ically attending class where they cover additional learning material to increase their
understanding.

The MA4027 course was taught by Professor Ralucca Gera and employed two days
of self-guided learning, followed by two days of in-class learning. Prof. Gera did not
enforce that required CHUNKs had to be completed in order to receive course credit.
Instead, users were prompted to select two quizzes to be completed from among the
assessment CHUNKlets covered that week. The OS3307 and OS3604 courses, both
taught by Professor Michelle Isenhour, provided students with three days of self-
guided CHUNK Learning and two days of in-class attendance to discuss the material
and complete a group lab activity. In contrast, Prof. Isenhour, did require that
students complete CHUNKs to earn credit for the course. We are interested in the
differences between each of the courses as a result of instructor guidance. The required
CHUNK totals from each course are listed in Table 3.1.
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Course # of CHUNKs
Required

MA4027 24
OS3307 44
OS3604 43

Table 3.1: Required number of CHUNKs per course

The table displays a varied number for the required CHUNKs pertaining to each
course. We notice that OS3307 required the highest amount, while MA4027 required
the least. Due to this variability, we are curious to know the effect produced by a
course containing a higher amount of content to keep the interest of the students.
The names of each required CHUNK can be found in Appendix A.1. We will look to
incorporate this data in Section 3.1.1.

3.1.1 Statistics Data
For our statistical analysis approach, we must first conduct a thorough analysis of
the CHUNK Learning data collected on each of the 68 students. The completion of
learning content throughout the quarter by students in these three courses is modeled
in Figure 3.1.

Through inspection of this data, we can deduce that each class experienced widespread
variability in relation to frequency and date completed. For example, MA4027 and
OS3604 saw the highest amount of content completed during the beginning of the
quarter, whereas OS3307 saw its highest total during the middle of the quarter. This
can be attributed to a number of factors such as: due-outs assigned by the instructor
or users taking the opportunity to work ahead and complete additional CHUNKs
in their course. Also, we note multiple peaks in the data occur on Mondays, while
multiple troughs in the data occur during the weekends. This evidence points toward
the general trend that users are likely to complete their assignments at the beginning
of the academic week rather than in their off time on Saturdays and Sundays.

From the CHUNK Learning user data, we extract two subsets that can be interpreted
to measure student performance across all three courses. This tailored data may
enable the system to make substantial improvements towards the student learning
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Figure 3.1: CHUNK Learning completion report

process that occurs each time a student interacts with a particular CHUNK. We are
interested in potentially determining how proficient each student was when engaged
in CHUNK Learning for their coursework.

The first subset is the number of CHUNKs completed per user which can be found
in Figure 3.2.

We would like to compare a user’s number of completed CHUNKs to the number
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Figure 3.2: Histogram plot of the number of completed CHUNKs among 68
students.

of CHUNKs mandated by their instructors. This information may reveal important
trends such as the following: users are satisfied with learning only their assigned
course material or users are very interested in learning about fields well outside their
current scope of study. Additionally, this information allows us to learn each user’s
completion rate within the course by observing whether users are completing more
than, equal to or less than the required amount of CHUNKs that are assigned to
them by their instructors. The histogram plot shows a wide range of the number of
CHUNKs being completed by students from each of the three courses. We observe
that the [30, 40] bin had the highest frequency with 31 and the [0, 10] bin had the
lowest frequency at 2. The data is largely skewed by the fact that each course had a
different amount of required CHUNKs, so the MA4027 students would have a much
lower average of completed CHUNKs than the students in OS3307 and OS3604. We
must account for these variations to effectively utilize the data for a proper statistical
analysis.

The second subset of data contains each user’s view counts for completed CHUNKs.
This value measures the number of times that a user opens a CHUNK with the
intention of completing its corresponding learning material. With this information,
we are able to potentially gauge a user’s interest level in the specified course’s learning
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content. A sample of this data is listed in Table 3.2.

Table 3.2: The number of completed CHUNK views for 10 users
User Course # of Completed CHUNK Views
1 MA4027 102
2 MA4027 360
3 MA4027 318
4 OS3307 232
5 OS3307 284
6 OS3307 208
7 OS3604 271
8 OS3604 239
9 OS3604 465
10 OS3604 449

This table represents trends dissimilar to that of Figure 3.2 since there is a wide
distribution of completed CHUNK views within each of the course. Although OS3307
contained more required content than MA4027, two users within MA4027 had more
content views than three users from OS3307. Many would simply point to the fact
that those MA4027 students found the content to be more interesting and valuable
than the three OS3307 students. Although this may be the case, we can shift our
focus from the student to the learning content itself. As we further inspect the data,
we may notice that some CHUNKs are much more interesting than its counterparts.
To deduce which CHUNKs these are, we change our mode of analysis to that of
network science.

3.1.2 Network Science Data
To properly conduct our network science analysis of the CHUNK Learning data, we
must first determine the appropriate relationship to model. Just like in Section 3.1.1,
we are interested in the relationship between CHUNK Learning users and the learning
content they study. Here, the nodes are of two types: CHUNK Learning users and
the CHUNKs from CHUNK Learning. Then each edge represents a connection made
between a user and a CHUNK that he or she has watched or completed. We develop
a graph that models the various interactions between users and this content.

23



Once the network is created, We are interested in observing which CHUNKs are most
popular and appealing to new students that could potentially be recommended to a
user that would like to just sample ideas of a topic before deciding on a deep dive
into the topic. So in our case, we are considering the topics that are studied the most
and that connect all the CHUNKs of a specific topic. We use the network modeling
visualization and analysis program, Gephi, to visualize and run some analysis of
such graphs. An example of the completed CHUNK-User network can be found in
Figure 3.3.

Figure 3.3: Completed CHUNK-User network

We use the following colors to depict CHUNKs, users, and their connections in this
network: blue represents nodes and edges related to MA4027, purple represents nodes
and edges related to OS3307, and green represents nodes and edges related to OS3604.
This network reveals that among the total number of nodes and edges, the majority
belong to OS3604 and OS3307. As a result, OS3604 and OS3307 CHUNKs may
be more influential than MA4027 CHUNKs. To reduce a course having too much
influence as a result of having more nodes, we instead analyze the subgraphs of the
network that correspond to CHUNKs and Users from a single course. Therefore, we
examine the interactions between users and CHUNKs contained within each of the
three courses separately. We use the following colors to represent a type of node:
red, blue, cyan, and yellow. A red node represents a user, a blue node represents
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a required CHUNK, a cyan node represents a recommended CHUNK, and a yellow
node represents an optional CHUNK. Also, nodes with a high degree are sized larger
than nodes with a low degree. We display the network

We display the CHUNK-User network and its degree distribution for MA4027 in
Figure 3.4.

Figure 3.4: MA4027 CHUNK-User network view and degree distribution

This figure shows the 38 nodes are made up of eight students, 24 required CHUNKs
and 6 recommended CHUNKs. We notice that the top three nodes by degree are all
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users and the user nodes are for the most part larger than the CHUNK nodes. This
is a result of the fact that there are many more CHUNKs than students.

We now bring attention to Figure 3.5 representing the users and CHUNKs of the
OS3307 course.

Figure 3.5: OS3307 CHUNK-User network view and degree distribution

OS3307 network’s 86 nodes are made up of 34 students, 55 required CHUNKs and
8 recommended CHUNKs. In this network, the student nodes continue to have the
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highest degree, though there are several required CHUNKs that are similar in degree
to some of the students. We can explain this trend due to the higher number of
students in the class, which makes the ratio of students to CHUNKs more evenly
balanced.

We present the nodes and edges of the OS3604 network in Figure 3.6.

Figure 3.6: OS3604 CHUNK-User network view and degree distribution

This network displays 77 nodes made up of 26 students, 40 required CHUNKs, 5
recommended CHUNKs and 6 optional CHUNKs. The network and degree distribu-
tion for OS3604 both look very similar to that of OS3307 since they possess a similar
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amount of students and CHUNKs.

We would like to explore which CHUNKs were the most important within each topic
based on key concepts such as k-core and betweenness centrality. Moreover, we are
curious to see if these parameters are more likely to reveal required CHUNKs than the
other types. Further, we look to determine whether learning content was prioritized
during a certain period in the course, whether early on or later towards the final
examinations.

3.1.3 Limitations
Though the CHUNK Learning data used in this project has enormous potential in
developing important solutions that can be implemented in other AESs as well, there
are certain limitations that must be addressed. First, we must consider the back-
ground of the users analyzed in this study. All 68 users attend NPS, a graduate
school with both homogeneous and heterogeneous characteristics. Its student popu-
lation mostly consists of military officers from the U.S. Navy and other U.S. military
branches, but there are also international students who are military officers in their
home countries. These users are also enrolled in either an Applied Mathematics or
Operations Research course, both in the science, technology, engineering, and math-
ematics (STEM) field of study, so they may have very similar learning approaches.

The second limitation is that the data is potentially affected by human error that
occurs when users navigate in CHUNK Learning. Here, we present two different
types of human error specific to CHUNK Learning. The first type, or Category 1, is
an error of commission. Applied to our situation, errors of commission happen when a
user clicks complete on an Activity (Figure 2.2) even though he/she did not complete
the activity. As a result, the user would be credited with a high number of completed
CHUNKs but have a much lower number of completed CHUNKs views. This case
occurs when users engage in negligent behavior and simply aim to get credit for
learning with minimal effort. Unfortunately, the current CHUNK Learning system,
which is still a prototype, does not currently contain any controls, such as mandatory
time limits or click tracking, to prevent such behaviors. The second type of error,
or Category 2, is an error of omission. Errors of omission occur when a user simply
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forgets to click the complete checkbox after completing an Activity. Therefore, a user
would have a low number of completed CHUNKs but, potentially, a high number of
completed CHUNK views. This is a knowledge-base error and can occur as a result
of the user being unaware that they need to perform additional actions to complete
an activity, in which case the instructor may have not properly instructed the user
on how to use the system.

3.2 Methodology Overview
This section outlines the methods we perform to conduct a statistical and network
science analysis of user engagement within CHUNK Learning. In Section 3.2.1, we
discuss the statistical analysis approach to user analytics within CHUNK. Further,
we discuss the construction of the algorithm that is aimed to equip the instructor
with deeper knowledge of their students, ultimately allowing them to make major
improvements to their learning paths. Then in Section 3.2.2, we introduce the net-
work science analysis methodology that provides deeper insights from the user data
available to us such as the identification of the most important CHUNKs in a course.

3.2.1 Statistical Analysis Approach
We use this tailored data to identify key trends that exist within each class of
users. In order to proceed, we must determine the value of two specific variables:
the completed CHUNKs/required CHUNKs (CR) score and the views of completed
CHUNKs/completed CHUNKs (VC) score. This data allows us to solve for the two
variables that the project’s main methodology is based on. We know that CHUNK
is competency-based learning, but we can still use analytics to determine user profi-
ciency within a CHUNK. We identify the standards as: does not meet the standard,
partial meets the standard, meets the standard, and exceeds the standard. These
standards can be represented as Level 1, Level 2, Level 3, Level 4 respectively.

We now introduce a few definitions that will help with our analysis, by creating ways
of measuring completed content as a fraction of required content, and representing
the number of times a user views content he/she completed as a fraction of completed
content. We compute these ratios based on the number of completed CHUNKs. We
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may be able to unearth varying patterns of user activity that exist within CHUNK
Learning so that we can better understand how to improve each user’s experience.
First, we start by defining CR, which enables us to examine whether or not users are
completing their required CHUNKs as prescribed by their instructors.

Definition 3.2.1 Let Ci be the amount of content (i.e., CHUNK) completed per user
i, and Rj be the amount of content required for course j. We define CRi as:

CRi =
Ci
Rj

CRi provides a value that represents completion rate or the extent to which a user
completed more than, equal to or less than the amount of content required for course
j. This value, although useful, is not standardized across the different courses and
requires an additional step to produce a normalized score for each user in every course.
Hence, we compute a z-score for each CRi, as referenced in Definition 2.3.3.

Definition 3.2.2 Let CRi be the amount of completed content divided by the amount
of content required in course j per user i, CRj be the average CR among the entire
population in course j, and σj be the standard deviation for the CR in course j. We
define ZCR for each user i as:

ZCR =
CRi − CRj

σj

We use this z-score to standardize CR, and we now represent it as the user’s content
CR score. Each user has a CR score corresponding to completion rates for CHUNKs.
We aim to use these scores to indicate one component of competence based purely on
a user’s completion rate.

Next, we introduce the concept of VC, which provides the foundation for calculating
a user’s interest level.

Definition 3.2.3 Let Vi be the number of times user i viewed the content he/she
completed, and Ci be the amount of content completed by user i. We define the VCi

30



score as:
VCi =

Vi
Ci

VCi provides a ratio of completed content views to completed content for each user
i. This value, like CRi, must be standardized to account for differences between each
of the courses and so we also compute a z-score for VCi, which we represent as ZV C .

Definition 3.2.4 Let VCi be the ratio of completed content views to completed con-
tent for each user i in course j, V Cj be the average V C among the entire population
in course j, and σj be the standard deviation for the V C in course j. We define the
ZV C for user i as:

ZV C =
V Ci − V Cj

σj

We again use the z-score to standardize the V C and introduce ZV C as the VC score,
a method to measure the learning interest of a user. We calculate CHUNK VC scores
for each user enrolled in a course.

We look to incorporate the CR and VC scores into an algorithm to clearly identify
learners by their competence level. We coin this algorithm the standardized algorithm
of required CHUNKs (STAR). STAR measures the overall competence level of each
student within their class by their STAR score. Each user’s CR and VC z-scores will
be assigned to one of four ratings: very high (VH), high (H), low (L) and very low
(VL). The criteria for these ratings are as follows:

1. Very High: Z ≥ 1

2. High: 1 > Z > 0

3. Low: 0 < Z < −1
4. Very Low: Z ≤ −1

With these ratings, we are able to classify the whole range of student scores. We
obtain each user’s STAR score using a point system, where both the CR and VC
scores have an assigned point total. We accomplish this by allocating points to each
of the four ratings in the following manner:
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1. Very High: 3 points
2. High: 2 points
3. Low: 1 points
4. Very Low: 0 points

The creation of these four ratings allows for users to fall under one of 16 different
combinations that can be used to describe the possible types of users that exist based
upon CR and VC scores. Furthermore, we can assign point values to each of these
groups and determine a manner in which to assign each one into competence levels
ranging from Level 1 to Level 4. We introduce this as the STAR Rating System. We
list and describe these 16 groups in Table 3.3.

Table 3.3: Description of the STAR Rating System groups
Groups Description
VL/VL user completes few required CHUNKs and barely views the content
VL/L user completes few required CHUNKs and views some content
L/VL user completes some required CHUNKs and barely views the content
L/L user completes some required CHUNKs and views some content
VL/H user completes few required CHUNKs and views most of the content
H/VL user completes most of the required CHUNKs, but barely views the content
VL/VH user completes few required CHUNKs, but views all of the content
L/H user completes some required CHUNKs and views most of the content
H/L user completes most of the required CHUNKs and views some content

VH/VL user completes all required CHUNKs, but barely views the content
L/VH user completes some required CHUNKs, views all of the content
VH/L user completes all required CHUNKs and views some content
H/H user completes most of the required CHUNKs and views most of the content
H/VH user completes most of the required CHUNKs and views all of the content
VH/H user completes all required CHUNKs and views most of the content
VH/VH user completes all required CHUNKs and views all of the content

We can use these 16 combinations to represent the variability in learning experienced
among the students in MA4027, OS3307 and OS3604. These groups also unlock
potentially critical trends that may be specific to a certain course or its instructor.
Moreover, we are able to assign STAR points to these groups, which provide the
metric for determining a user’s competence level. The STAR Rating System is shown
in Table 3.4.
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Table 3.4: The STAR Rating System includes 16 different user groups based
on CR and VC scores

Groups Points Competency
Level

VL/VL 0 1
VL/L 1 1
L/VL 1 1
L/L 2 2
VL/H 2 2
H/VL 2 2*
VL/VH 3 2**
L/H 3 2**
H/L 3 3*

VH/VL 3 3*
L/VH 4 3**
VH/L 4 3
H/H 4 3
H/VH 5 4
VH/H 5 4
VH/VH 6 4
* Category 1 Human Error
** Category 2 Human Error

We are specifically interested in the VH/VL and VL/VH combinations, which high-
lights students whom display extreme polarity regarding CR and VC, and are at
the most risk for Category 1 human error and Category 2 human error respectively.
There are also four other user groups which may have the potential for human error.
We note that the L/H and L/VH groups are at low-risk for Category 1 human error,
whereas the H/VL and H/L groups are at low-risk for Category 2 human error.

Our statistical analysis of the combined CR and VC scores will use the following
methodology:

STAR: a CHUNK Learning User Competency Algorithm

1. First, extract CHUNK Learning data for a user i.
2. Solve for CRi as referenced in Definition 3.2.1 .
3. Use the CRi to find the user’s ZCR as explained in Definition 3.2.2.
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4. Assign rating #1 to user based on their CR score.
5. Compute VCi as referenced in Definition 3.2.3.
6. Use VCi to determine the user’s ZV C , as outlined in Definition 3.2.4.
7. Assign rating #2 to user based on their CR score.
8. Use both ratings to determine user group and competence level according to

the STAR Rating System in Table 3.4.

3.2.2 Network Science Analysis Approach
For this thesis, we aim to identify the most important subgroup within the network
through the use of network analysis within CHUNK Learning. Specifically, we focus
on determining the core of each course’s network and the centrality of CHUNKs within
each course. We look to conduct a k-core analysis to segregate the network’s core
from its periphery. Then, we conduct an in-depth analysis of betweenness centrality
and eigenvector centrality among all course CHUNKs.

In Gephi, we can learn many important details of a network by applying filters which
aim to remove certain types of nodes. For this project, we apply the k-core filter as
seen in Figure 3.7.

By removing each of the lower order k-cores, we are able to truly segregate the
network’s core for each of the three courses. This core may reveal the set of CHUNKs
that are most influential based on students’ patterns of accessing the content. At
this point, we introduce the following methodology to determine a network’s core in
Gephi.

Identifying the Core of a Network:

1. In Gephi, import each course’s completed CHUNK data to obtain a network.
2. Use k-core filter within the Topology folder to filter lower order k-cores.
3. Increase the number in k-core settings until the network is completely empty.
4. Decrease the number by the value 1 to reveal the network’s core.

Moreover, we are interested particularly in the amount of influence that each node
has, specifically the influence of a single CHUNK. In order to discover this data,
we will analyze betweenness centrality and eigenvector centrality, both indicators of
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Figure 3.7: k-core filter

importance, within CHUNK Learning. We display the calculations we will use in
Figure 3.8.

Next, we discuss how we are able to use the internal algorithms within Gephi to
determine centrality values for our networks.

Determining the Centrality of a Network:

1. Import each course’s completed CHUNK data into Gephi.
2. Run Average Path Length and Eigenvector Centrality calculations under the

Statistics tab.
3. Switch to the Data Laboratory, and observe the betweenness centrality and

eigenvector centrality values for each of the nodes.

We seek to gain insight on which CHUNK may be of most value within its network.
With the use of these tools, we analyze the CHUNK Learning system from a dif-
ferent lens. Gephi allows us to visualize how well-connected each CHUNK is within
its network and we are able to conduct valuable analysis on the strength of these
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Figure 3.8: Centrality algorithm in Gephi

connections. This data can be easily utilized by the system to develop an abridged
version of a course that may give explorers a highly efficient and effective first look
into whether a course may be right for them.

This chapter presented this project’s CHUNK Learning data and the various math-
ematical methodologies we implemented for our analysis. In the next chapter, we
display the results of the STAR algorithm to determine CR score, VC score, STAR
ratings, STAR groups and STAR levels for each user. Then, we describe the results
of the network science analysis in Gephi to discover the most important CHUNKs in
MA4027, OS3307 and OS3604.
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CHAPTER 4:
Results and Analysis

The following chapter discusses the results of the two analysis methods used in this
thesis. Section 4.1 examines the results of the statistical analysis using the STAR
Algorithm on our CHUNK Learning user data. Section 4.2 presents the results of the
network science algorithm using Gephi. Moreover, we identify whether key trends
exist in each analysis that can provide deeper insight into user engagement within
CHUNK Learning.

4.1 Statistical Analysis Results
We break down the statistical analysis for MA4027, OS3307 and OS3604 into three
parts: (1) CR and VC scores, (2) STAR groups, and (3) STAR competence levels. We
display the results for MA4027 in Section 4.1.1, OS3307 in Section 4.1.2 and OS3604
in Section 4.1.3.

4.1.1 MA4027 Results and Analysis
This section presents the results and analysis of the Statistical Analysis methodology
applied to the eight students in the MA4027 course. First, we show the CR and VC
scores with their corresponding ratings in Table 4.1.

Table 4.1: MA4027 ZCR and ZV C scores and ratings

User ID ZCR
Score

ZCR
Rating

ZV C
Score

ZV C
Rating

User 3 -0.66 L 0.76 H
User 8 0.66 H 0.92 H
User 55 -1.38 VL -1.52 VL
User 57 -0.56 L -1.21 VL
User 61 -0.25 L -0.56 L
User 62 1.07 VH 1.16 VH
User 65 1.58 VH 0.13 H
User 68 -0.46 L 0.32 H
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Among the eight students, the ZCR scores range from −1.38 to 1.58, while the ZV C
scores range from −1.52 to 1.16. There is not much disparity between the minimum
and maximum scores which may be a result of the relatively small number of students
in the class. We also notice that the students fared worse in ZCR with five students
having a low or very low rating but fared better in ZV C with five students scoring a
high rating or better. This trend indicates that most of the students did not prioritize
completion of the required CHUNKs, which is consistent with Prof. Gera’s instruction
stating that required CHUNKs completion was not necessary to obtain course credit.
Next, we display the breakdown of users by STAR group in Figure 4.1.

Figure 4.1: MA4027 STAR analysis

In Figure 4.1, there are seven different groups represented by the eight MA4027
students, which indicates a wide array of CHUNK Learning experiences. Within
the course, we note that one student represented the best group, VH/VH, and one
student represented the worst group, VL/VL. In addition, there were two students
in the L/H category which we identify as cases of low-risk Category 2 human error.
These cases are further highlighted in Figure 4.2.

In Figure 4.2, we observe the distribution of students by STAR level. It is evident
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Figure 4.2: MA4027 STAR levels

* Category 1 Human Error, ** Category 2 Human Error

that three students performed well and exceeded the standard whereas the other five
students fell into a STAR Level 2 or lower. We can attribute the high percentage
of students below the standard to the preponderance of low ZCR scores. With this
data, Prof. Gera can easily prioritize her time to these five students, starting with
the two students placed in STAR Level 1 who do not meet the standard. Moreover,
she can address any existing issues concerning the two students that were at low
risk for Category 2 human error. In the analysis of this small class size, the STAR
system easily recognizes students that may need additional assistance inside CHUNK
Learning.

4.1.2 OS3307 Results and Analysis
In this section, we display the results and analysis of the Statistical Analysis method-
ology on the 34 students within the OS3307 course. First, we show a portion of the
CR and VC scores with their ratings in Table 4.2.

The ZCR analysis shows a much larger range of scores from −2.52 to 1.91 compared
to MA4027 since there are many more students. We see increased variability due to
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Table 4.2: Sample of OS3307 ZCR and ZV C scores and ratings

User ID ZCR
Score

ZCR
Rating

ZV C
Score

ZV C
Rating

User 28 1.56 VH -1.09 VL
User 32 1.09 VH -1.36 VL
User 33 1.91 VH -0.09 L
User 34 1.09 VH -0.89 L
User 45 1.91 VH 3.02 VH
User 49 1.09 VH 0.28 H
User 56 -1.01 VL -0.40 L
User 58 -1.12 VL 0.13 H
User 59 -1.59 VL 1.19 VH
User 60 -1.59 VL -0.42 L
User 66 -2.52 VL 0.28 H

11 students earning a VH or VL rating, 32.3% of the class. OS3307’s ZV C scores
also experienced higher variability with scores ranging from −1.36 to 3.02 and nine
students scoring a VH or VL rating. We point out one specific user, User 45, who
had a profound impact on the rest of the data as a VH/VH user with a ZCR = 1.91

and ZV C = 3.02. As a result of this extremely high ZV C score, we determined that
19 out of 34 students received a low or very low rating in ZV C . We recall that
Prof. Isenhour mandated the completion of required CHUNKs in the course which
should have resulted in a much tighter distribution with ZCR scores closer to the
sample mean of 0. Instead, students like User 45 with extremely high z-scores can
negatively affect the rest of the z-scores in the course. We now display the STAR
analysis in Figure 4.3.

In Figure 4.3, we observe that users were placed into 15 out of the 16 possible STAR
combinations, with zero users in the VL/VL group. The effect of User 45 is even
further evident since there is one VH/VH user and no VL/VL users, unlike the distri-
bution in MA4027. By inspection, we notice two users in the VH/VL group, indicative
of high-risk for Category 1 human error, and one user in the VL/VH group, indicative
of high-risk for Category 2 human error. Prof. Isenhour may be able to now prioritize
these students as high-risk for human error through the use of the STAR algorithm.
Users in these groups may easily see their competence levels raise by resolving these
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Figure 4.3: OS3307 STAR analysis

errors. We now present the competence levels of OS3307 in Figure 4.4.

When we breakdown student scores into STAR levels, we notice a similar distribution
to that MA4027. We observe 15 students in Levels 1 and 2, earning a partially
meets the standard rating or lower, compared to 14 students in Levels 3 and 4. The
remaining five students fell into levels potentially affected by Category 1 and Category
2 human error. So, the STAR algorithm reveals a total of 20 students that may need
additional instruction with the 3 students in Level 1 requiring the most attention.
Prof. Isenhour may be able to utilize the STAR system to effectively determine which
students to focus her time towards.

4.1.3 OS3604 Results and Analysis
This section presents the results and analysis of the Statistical Analysis methodology
applied to the 24 students in the OS3604 course. First, we show a sample of the CR
and VC scores with their corresponding ratings in Table 4.3.

The ZCR analysis for OS3604 displays a similar range of scores to that of OS3307
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Figure 4.4: OS3307 STAR levels

* Category 1 Human Error, ** Category 2 Human Error

Table 4.3: Sample of OS3604 ZCR and ZV C scores and ratings

User ID ZCR
Score

ZCR
Class

ZV C
Score

ZV C
Class

User 12 1.81 VH 0.40 H
User 19 -1.30 VL -0.28 L
User 20 2.50 VH -0.15 L
User 26 -1.13 VL -0.64 L
User 29 1.46 VH -1.11 VL
User 30 -1.30 VL -0.08 L
User 4 -2.17 VL 1.61 VH

with scores from −2.17 to 2.50 but shows less dispersion. We note there were only
seven students with a VH or VL rating, 26.9% of the total class. Though, OS3604’s
ZV C scores showed little variation in comparison to OS3307. Unlike in the previous
courses, there were no students with a VH/VH or VL/VL rating. We introduce the
STAR analysis for OS3604 in Figure 4.5.

Through inspection of the STAR group distribution in Figure 4.5, there is significant
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Figure 4.5: OS3604 STAR analysis

concentration in the middle of the graph. This trend indicates that the majority of
students in OS3604 scored closer to the mean scores for both ZCR and ZV C . The dis-
tribution was positively affected by the high number of students in the H/L category,
the largest STAR group in the class. We can deduce that the students in OS3604 were
generally more motivated to complete course content and more interested in learning
course content than students in MA4027 and OS3307. We can correlate this positive
effect to Prof. Isenhour’s directions to complete required CHUNKs. Next, we present
the STAR levels of OS3604 in Figure 4.6.

The STAR level breakdown for OS3604 reveals that the majority of students, 15 out
of 26, met the standard and achieved a STAR level of 3 or higher. While OS3604 had
more students with possible human error than OS3307, it had a much lower number
of students at a STAR level of 2 or lower. Based on these results, Prof. Isenhour
may be able to determine key differences between her two courses that allowed the
students in OS3604 to thrive. Just like in OS3307, Prof. Isenhour would isolate the
three students with a STAR level of 1 to pinpoint the direct cause of their low scores.
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Figure 4.6: OS3604 STAR levels

* Category 1 Human Error, ** Category 2 Human Error

4.2 Network Science Analysis Results
For the Network Science analysis of MA4027, OS3307 and OS3604, we focus on the
two following parameters: (1) k-core and (2) betweenness and eigenvector central-
ity. We explain the results and analysis of MA4027 in Section 4.2.1, OS3307 in
Section 4.2.2 and OS3604 in Section 4.2.3.

4.2.1 MA4027 Results and Analysis
In this section, we outline the results of the network science analysis conducted on the
CHUNK-User MA4027 Network. First, we display the results of the k-core analysis
in Figure 4.7.

We reduced the original MA4027 network of 38 nodes and 117 edges to a 6-core
network of 12 nodes and 36 edges. In terms of nodes, we are left with 3 required
CHUNKs and 3 recommended CHUNKs. All of these CHUNKs were presented in
the first two weeks of the course. Thus, we may deduce that user activity was high-
est during the onset of the course as some users declined in activity as the course
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Figure 4.7: MA4027 k-core analysis

progressed. Moreover, these CHUNKs may have been accessed more throughout the
course since they were elementary and representative topics, a goal that we have for
this research.

Next, we list the top CHUNKs for each centrality measure in Tables 4.4 and 4.5,
where CHUNKs are highlighted in yellow if they appear in both rankings.

Through inspection, we clearly see the centrality results are quite similar for both
betweenness centrality and eigenvector centrality. It is important to notice the overlap
between the k-core and the centralities results. Moreover, centralities bring to light
more topics. By measuring the centrality values of the MA4027 CHUNKs, we are
introduced to two additional CHUNKs, Narrated Assessments and Overleaf, that were
not previously included within the k-core analysis. Thus, Prof. Gera can efficiently
choose among these eight CHUNKs to potentially offer a half-course or smaller course
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Table 4.4: Top 5 MA4027 CHUNKs based on betweenness centrality
CHUNK
Name

Betweenness
Centrality

Bipartite Graphs 35.61
Narrated Assessments 29.60

MA4027 Syllabus and Overview 16.86
Gephi 16.86

Overleaf 13.49

Table 4.5: Top 5 MA4027 CHUNKs based on eigenvector centrality
CHUNK
Name

Eigenvector
Centrality

Bipartite Graphs 0.52
Gephi 0.5

MA4027 Syllabus and Overview 0.5
The Degree of a Vertex and Counting Friendships 0.47

Standard Terminology in Graph Theory 0.47

offering to exploratory students.

4.2.2 OS3307 Results and Analysis
In this section, we discuss the results of the network science analysis conducted on the
CHUNK-User OS3307 Network. We now introduce the results of the k-core analysis
in Figure 4.8.

The k-core analysis revealed a 23-core network for OS3307. The core eliminated 26

nodes and 309 edges from the network. There are 60 total nodes, composed of 30
students and 30 required CHUNKs.

After analyzing the CHUNKs in the core, we observe that the chosen CHUNKs had
the highest degree among the entire group and were introduced throughout the course
as opposed to the first few weeks as in MA4027. It is important to point out that no
recommended CHUNKs are part of the core, further proving that required CHUNKs
possess more value than recommended CHUNKs.

Next, we discuss the centrality analysis for OS3307 in Tables 4.6 and 4.7.
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Figure 4.8: OS3307 k-core analysis

Table 4.6: Top 5 OS3307 CHUNKs based on betweenness centrality
CHUNK
Name

Betweenness
Centrality

Selecting a Statistical Programming Environment 48.71
Introduction to Modeling Practices for Computing 48.71

Introduction to Stat. Modeling and Sim. with Python 48.71
Introduction to CoCalc.com 48.71

Understanding Discrete Data and Distributions 46.09

The tables clearly indicate four required CHUNKs that appear in both rankings for
betweenness centrality and eigenvector centrality. Each of the rankings had a different
fifth CHUNK which is a result of the two contrasting approaches towards centrality.
Unlike in MA4027, each of these CHUNKs were found in the network’s core analysis.
Therefore, Prof. Isenhour would be able to effectively build a smaller course using
each of these seven CHUNKs.

47



Table 4.7: Top 5 OS3307 CHUNKs based on eigenvector centrality
CHUNK
Name

Betweenness
Centrality

Introduction to Modeling Practices for Computing 0.88
Selecting a Statistical Programming Environment 0.88

Introduction to Stat. Modeling and Sim. with Python 0.88
Introduction to CoCalc.com 0.88

Introduction to Hypothesis Testing 0.87

4.2.3 OS3604 Results and Analysis
In this section, we outline the results of the network science analysis conducted on the
CHUNK-User OS3604 Network. We now introduce the results of the k-core analysis
in Figure 4.9.

Figure 4.9: OS3604 k-core analysis

We reduced the original OS3604 network of 77 nodes and 842 edges to a 20-core
network of 52 nodes and 635 edges. For the nodes, we are left with 24 required
CHUNKs and 2 recommended CHUNKs.

Next, we discuss the centrality analysis for OS3604 in Tables 4.8 and 4.9.
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Table 4.8: Top 5 OS3604 CHUNKs based on betweenness centrality
CHUNK
Name

Betweenness
Centrality

Conducting Multiple Comparisons in ANOVA 31.15
Conducting One-Sample Hypothesis Tests 31.15

Conducting Paired-Sample Hypothesis Tests 31.15
Conducting Two-Sample Hypothesis Tests 31.15

Introduction to Confidence Intervals 31.15

Table 4.9: Top 5 OS3604 CHUNKs based on eigenvector centrality
CHUNK
Name

Eigenvector
Centrality

Conducting Multiple Comparisons in ANOVA 0.83
Conducting One-Sample Hypothesis Tests 0.83

Conducting Paired-Sample Hypothesis Tests 0.83
Conducting Two-Sample Hypothesis Tests 0.83

Introduction to Confidence Intervals 0.83

Through inspection, we clearly see there is no difference for the top five CHUNKs
according to betweenness centrality and eigenvector centrality. We continue to notice
a strong correlation between the CHUNKs in the network’s core and the highest
ranked CHUNKs in terms of centrality as each of these CHUNKs were contained
within the network’s core. Therefore, Prof. Isenhour would be able to effectively
design future courses emphasizing the use of these required CHUNKs.

In the next chapter, we summarize our findings from the statistical analysis approach
and the network analysis approach. Further, we discuss recommendations for future
work and the conclusion of the thesis.
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CHAPTER 5:
Future Work and Recommendations

The main objective of this research was to determine a user-centric approach to AESs
by investigating user performance within the CHUNK Learning platform. We were
primarily concerned with analyzing real CHUNK Learning user data from the live
system’s reports, specifically related to content completion and content views.

Our purpose was to assign each user with a competence level that improves the overall
situation awareness of the AES and hence, the effectiveness of the teaching-learning
process. The development of the STAR algorithm addresses many questions that
were previously unanswered in the current model of CHUNK Learning especially
concerning how users navigate through their coursework in the system. Moreover,
the network science algorithm to analyze connections between users and CHUNKs
grouped and ranked educational content in terms of importance, providing another
useful system tool to both instructors and students.

While both algorithms can be viewed as successful, each one still faces some major
challenges that prevent the output of precise results that enable perfectly tailored
recommendations to improve student learning. In this chapter, we present a summary
of the main takeaways from our analysis in Section 5.1, discuss future enhancements
to both algorithms in Section 5.2 and then finalize with conclusions in Section 5.3.

5.1 Summary
The statistical analysis of the CHUNK Learning data revealed some noticeable trends
specific to each course. For MA4027, we found that there was better performance
in VC scores compared to CR scores, which clearly correlates to the course’s flexible
position towards CHUNK completion. In OS3307, we observed the profound effect
of a single CHUNK user in the VH/VH group. User 45’s high VC score had a highly
negative effect towards the other students’ VC scores as 56% of the class achieved
a low rating or worse. OS3604 achieved the best results out of the three courses as
58% of the class had a STAR level of 3 or better. This result supports the trend
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that courses which enforced CHUNK completion performed better than those that
did not. In general, the STAR Rating System easily segregated eight students who
earned a STAR level 1 out of the 68 students in the three courses.

The network science analysis showed mostly consistent results among the three
courses. For MA4027, three recommended CHUNKs were found in the network’s
core. This was surprising because we initially believed the core to feature CHUNKs
from the required CHUNK list. In contrast, the centrality analysis revealed only
required CHUNKs but there was overlap between the two methods. The results for
OS3307 and OS3604 were closely related as both courses exclusively featured required
CHUNKs when ranking CHUNKs according to k-core and centrality. Thus, the net-
work analysis results were indeed relevant and could be used to determine which
CHUNKs were most important in each respective course.

5.2 Future Work
In this section, we present a number of suggestions to improve the methodology in
the thesis. We propose new ways to enhance the STAR algorithm In Section 5.2.1
and then discuss improvements for the network analysis approach in Section 5.2.2.

5.2.1 STAR Algorithm Improvements
First, the algorithm may benefit by introducing a reference score for CR and VC.
In terms of CR, we can use the instructor’s number of required CHUNKs. In terms
of VC, it can be the instructor’s guidance for number of views per specific CHUNK.
For example, it may be reasonable to suggest two views per activity of a required
CHUNKlet within a CHUNK.

Next, we can weigh CR and VC points to potentially give one score more value than
the other. Currently, both scores have an equal weight, but an instructor might value
CR more than VC. For example, an instructor may choose to apply the following
weights: wCR = 0.67 and wV C = 0.33. By increasing the weight of CR over VC,
students will be given a STAR score that is more dependent upon how many CHUNKs
they complete in the course.
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Further, we are interested in how to best incorporate different cognitive parameters
into an AES. Our methodology introduced two groups, VH/VL and VL/VH, that
were deemed the highest risk for the Category 1 and Category 2 errors identified
in Section 3.1.3. A more in-depth analysis of this research may uncover that these
groups are related to working memory capacity. Specifically, we would like to prove if
the VH/VL group is connected to a high working memory capacity and if the VL/VH
group is connected a to a low working memory capacity.

Moreover, we may determine new trends by analyzing the data at the CHUNKlet
level within each course. We can compare STAR groups and levels to those achieved
at the CHUNK level to discover if there are any discrepancies between the two.

5.2.2 Network Science Algorithm Improvements

We can possibly enhance the network science algorithm and its results through the
following changes. First, we can incorporate additional network science parameters to
find the optimal selection of CHUNKs within a course. For instance, we can calculate
each course network’s modularity and then run community detection to separate
CHUNKs into multiple communities. This would possibly correlate to the results of
the k-core analysis and substantiate which CHUNK group is dominant in the network.
Some other possible parameters to consider for individual CHUNK importance are:
closeness centrality and eccentricity.

Next, we can also include additional edges within the CHUNK-User network to form
a more robust network for analysis. One approach is to create edges between nodes
based on course prerequisites, which can be further tailored by instructors.

Lastly, we can explore the use of network analysis computer programs other than
Gephi. One of these programs, Cytoscape, is an open-source platform with vari-
ous applications specifically designed to visualize and analyze networks just like the
CHUNK-User networks we developed [21]. New programs may provide deeper insight
into modeling student actions within CHUNK Learning.

53



5.3 Conclusions
The results of this project enabled CHUNK Learning to identify each user by a
STAR group and level which represented some form of a competence level. While
the analysis was useful for a homogeneous group of graduate-level students, we must
be able to apply these algorithms to all levels of educations including secondary
education and undergraduate education. We can then gain further understanding of
different patterns of learning at varying ages. It is important to analyze students
at the undergraduate level, especially those in their first and second years as these
students may lack the discipline and motivation to learn from an AES.

Moreover, we can prevent errors from affecting our CHUNK Learning user data by
installing certain restrictions in the system. These restrictions may be able to reduce
human errors such as the Category 1 and Category 2 errors referenced in this thesis
from impacting the STAR algorithm and the network science algorithm. For instance,
we can prevent users from clicking complete on CHUNKs without viewing activities
by forcing them to spend the recommended amount of time in each CHUNK.

Lastly, CR/VC scores were highly dependent upon instructors ensuring that students
knew how to navigate and explore course content in the CHUNK Learning Explorer.
Future studies must ensure that each user has attended a class or at least completed
a tutorial on CHUNK Learning to prevent future errors from diminishing the quality
of the data.
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APPENDIX: Supplementary CHUNK Data

A.1 Required CHUNK list
In this section, we list the required CHUNKs for each course. These tables represent
a plethora of learning content that the instructors presented to their students, varying
on a week-by-week basis.

Table A.1: MA4027 required CHUNK list
Week CHUNK Description

1

Gephi
Overleaf for Documents Containing Mathematical Expressions

MA 4027 Syllabus, Homework & Schedule
Narrated Assessments

Network Profile Summary (NPS)

2

Standard Terminology in Graph Theory
Common Classes of Graphs

Distance in Graphs
Neighborhoods in Graphs

3
The Degree of a Vertex and Counting Friendships

Regular Graphs
Degree Sequences

4
The Definition of Isomorphism
Isomorphism as a Relation

Isomorphism Proofs

5 Bridges
Trees

6 Cut-Vertices
Blocks

7 Eulerian Graphs
Hamiltonian Graphs

8 Vertex Colorings

9 Planar Graphs
Embedding Graphs on Surfaces
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Table A.2: OS3307 required CHUNK list
Week CHUNK Description

1

Introduction to Modeling Practices for Computing
Selecting a Statistical Programming Environment

Introduction to CoCalc.com
Getting Started: The Python Programming Environment

Introduction to Statistical Modeling and Simulation with Python

2
Using Tabular Summaries to Describe Data
Using Visual Displays to Describe Data

Using Numerical Summaries to Describe Data

3

Introduction to Probability
Understanding Conditional Probability and Bayes’ Theorem

Understanding Discrete Data and Distributions
Understanding Continuous Data and Distributions

4 Modeling with Discrete Distributions
Modeling with Continuous Distributions

5

Constructing a Point Estimate
Introduction to Confidence Intervals
Estimating the Mean of a Population

Estimating the Proportion of a Population
Introduction to Hypothesis Testing

Conducting One-Sample Hypothesis Tests

6

Introduction to Simple Linear Regression
Modeling Using Simple Linear Regression

Using Linear Regression to Make Predictions
Assessing Adequacy of a Linear Regression Model

Introduction to Multiple Linear Regression
Constructing Regression Models with Categorical Variables

7
Introduction to Modeling and Simulation

Monte Carlo Simulation
Reliability Modeling

8
Introduction to Discrete Event Simulation

Transforming Event Graphs into Discrete Event Simulations
Generating Statistical Models from a Discrete Event Simulation

9
Introduction to Queuing Models

Computing Measures of Performance in Queuing Models
Measuring Network Performance

10
Introduction to Design of Simulation Experiments

Creating Full Factorial Designs
Creating Fractional Factorial Designs
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Table A.3: OS3604 required CHUNK list
Week CHUNK Description

1

Introduction to Statistics and Data Analysis
Selecting a Statistical Programming Environment

Using Visual Displays to Describe Data
Using Numerical Summaries to Describe Data

2

Point Estimation
Introduction to Confidence Intervals
Estimating the Mean of a Population

Estimating the Proportion of a Population
Estimating Population Variance

3 Introduction to Hypothesis Testing
Conducting One-Sample Hypothesis Tests

4 Conducting Two-Sample Hypothesis Tests
Conducting Paired-Sample Hypothesis Tests

5 Conducting Single-Factor Analysis of Variance
Conducting Multiple Comparisons in ANOVA

6 Conducting Two-Factor Analysis of Variance
Conducting Multi-Factor Analysis of Variance

7
Introduction to Simple Linear Regression
Modeling using Least Squares Regression

Using Linear Regression to Make Predictions

8
Assessing Adequacy of a Regression Model
Introduction to Multiple Linear Regression
Introduction to Binomial Logistic Regression

9 Conducting Analysis Using Categorical Data
Constructing Regression Models with Categorical Variables
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