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ABSTRACT 

Advances in the development of deep neural networks and other machine learning 

(ML) algorithms, combined with ever more powerful hardware and the huge amount of 

data available on the internet, has led to a revolution in ML research and applications. 

These advances have massive potential for military applications at the tactical level, 

particularly in improving situational awareness and speeding kill chains. One opportunity 

for the application of ML to an existing problem set in the military is in the analysis of 

Synthetic Aperture Radar (SAR) imagery. Synthetic Aperture Radar imagery is a useful 

tool for imagery analysts because it is capable of capturing high-resolution images at 

night and regardless of cloud coverage. There is, however, a limited amount of publicly 

available SAR data to train a machine learning model. This thesis seeks to demonstrate 

that transfer learning from a convolutional neural network trained on the ImageNet 

dataset is effective when retrained on SAR images. It then compares the performance of 

the neural network to shallow classifiers trained on features extracted from images passed 

through the neural network. This thesis shows that cross-modality transfer learning from 

features learned on photographs to SAR images is effective and that shallow 

classification techniques show improved performance over the baseline neural network in 

noisy conditions and as training data is reduced.
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

The analysis and classification of targets within imagery captured by aerial and 

space-based systems provides the Intelligence Community and military geospatial 

intelligence (GEOINT) personnel with important insights into adversary force dispositions 

and intentions. Satellite imagery has also entered the mainstream thanks to openly available 

tools like Google Earth. The high resolution of space-based sensors and common use of 

overhead imagery in everyday life means that, with the exception of decoys and 

camouflage, an average person is now reasonably capable of identifying objects in electro-

optical (EO) imagery. EO images are, however, limited by cloud coverage and daylight. 

About half of the time when a satellite in low earth orbit can image a target it is night, 

necessitating the use of either an infrared (IR) or a synthetic aperture radar (SAR) sensor. 

SAR has the additional advantage over EO/IR sensors of being all-weather. It is not 

obscured by cloud, dust or smoke cover that can render EO/IR systems ineffective.   

Although a trained analyst is need to create imagery intelligence (IMINT) products 

for targeting purposes or to discriminate high fidelity decoys, an untrained person is 

generally able to identify objects in EO imagery. This is not the case for both IR and SAR 

images. Even basic analysis of SAR images requires a trained imagery analyst. Scanning 

an entire swath of SAR imagery is a repetitive and time consuming task that currently 

requires human expertise, but importantly not creativity. This makes it an ideal problem 

for machine learning.  

Automated target recognition (ATR) seeks to reduce the total workload of analysts 

so that their effort can be spent on the more human-centric tasks like presenting and 

explaining intelligence to a decision maker. ATR is also intended to reduce the time from 

collection to exploitation by screening images at machine speeds rather than manually. 

SAR ATR is complicated by the available data to train and assess machine learning models. 

Unlike other image classification tasks that are studied today, such as those to support self-

driving vehicles, there is not a large and freely available amount of training data for 
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researchers. The paucity of training data requires creative solutions to achieve acceptable 

model performance, particularly with respect to the level needed to support a targeting 

decision by a military commander. 

B. PURPOSE AND RESEARCH QUESTIONS 

The primary goal of this thesis is to demonstrate that a transfer learning approach 

using a model pre-trained on photographs can be applied to achieve high precision and 

recall rates on Synthetic Aperture Radar (SAR) images of tactically meaningful targets. 

This thesis will also explore the utility of a two-step classification method where a 

convolutional neural network is used to extract features from test images for classification 

by shallow classifiers. Shallow classifiers are machine learning algorithms that do not rely 

on layers of artificial neurons, rather they use statistical or spatial methods to do regression 

or assign labels. Classification performance of this multistep method will be compared to 

the base CNN from which features were extracted as the training dataset is reduced and 

noise is added to the dataset. This thesis will therefore address the following research 

questions: 

1. Can transfer learning from a model pre-trained on photographs be 

effective for SAR images? 

2. Does using a neural network as a feature extractor for input into a shallow 

classification algorithm improve model performance? 

3. What shallow classification technique provides the greatest benefit to 

classification accuracy? 

4. Does a shallow classification method trained on features extracted from a 

neural network perform better in noisy conditions or with a small training 

dataset? 

C. THESIS ORGANIZATION 

Chapter II discusses the technical background of convolutional neural networks, 

transfer learning and previous work on SAR ATR. Chapter III describes the MSTAR 
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dataset, the structure of the neural network, training of the network and how intermediate 

features were extracted from the model prior to classification. Chapter IV compares the 

performance of transfer learning approaches and the performance of neural networks to 

shallow classifiers trained on extracted features. Chapter V looks at how the results address 

the research questions and areas of future research that could be conducted to further this 

project. 
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II. TECHNICAL BACKGROUND 

A. SYNTHETIC APERTURE RADAR 

Synthetic Aperture Radar (SAR) is a radar mounted to a moving platform that uses 

the platform’s motion to approximate the effect of a large antenna. The high resolution that 

can be achieved by creating a radar with an effective aperture much greater in size than is 

physically possible allows for radar returns to be processed into images similar to what can 

be achieved with a camera (Skolnik, 1981). SAR imagery provides an important tool for 

the United States Intelligence Community and military IMINT analysts because of its all-

weather, day/night collection capability. Additionally, some wavelengths that SAR 

imaging systems operate in have a degree of foliage and ground penetrating capability 

allowing for the detection of buried objects or objects under tree cover that would not be 

observable by electro-optical sensors. 

These important advantages of SAR imaging for IMINT analysts do come with 

some significant drawbacks inherent to SAR images. Because SAR images are not true 

optical images they are susceptible to noise generated by constructive and destructive 

interference between radar reflections that appear as bright or dark spots called “speckle” 

in the image (Skolnik, 1981). Also, various materials and geometries will reflect the radar 

pulses differently creating blobs or blurs that can obscure the objects physical dimensions. 

SAR sensors operate in three primary modes, strip map, spotlight and inverse SAR. In strip 

map mode the SAR sensor is fixed and collects a swath of radar returns to be processed 

into an image. While operating in spotlight mode the physical antenna dwells on the desired 

target as the sensor moves through its path. The longer dwell time on the target allows for 

higher resolution as well as more average speckle (Skolnik, 1981). The different 

operational modes of the SAR sensors can change the way a target is represented in the 

formed SAR image. These issues, as well as problems caused by Doppler shift in moving 

objects and radar shadows, make the identification and classification of objects in SAR 

images a difficult and tedious task requiring a well-trained and experienced analyst.  

Figure 1 demonstrates the difficulties an imagery analyst would face when identifying 

targets in SAR imagery. The vehicles that are easily recognizable as cars in the EO image 
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become blurs in SAR. The static display aircraft are also difficult to identify. The wing of 

the pictured aircraft is only distinguishable by the radar shadow it casts, and the dimensions 

of the helicopters also become difficult to determine. Figure 2 is a photograph of the same 

model of aircraft shown in Figure 1 and is representative of the type of photographs that 

make up the ImageNet database. The ImageNet dataset and transfer learning will be 

discussed in further detail later in this chapter, but it is clear that the type of features learned 

on photographs, even of the same equipment as those in SAR images, will be significantly 

different.  

Figure 1. Comparison of EO and SAR Overhead Images. Adapted from 
Google (n.d.) and Sandia National Laboratories (n.d.). 

 
Pictured are static display aircraft at Kirtland Air Force Base, New Mexico. This 
comparison demonstrates the way objects in SAR imagery are not always easily 
identifiable by laymen and require a trained analyst to identify targets. 
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Figure 2. Grumman HU-16B Albatross. Source: U.S. Air Force (n.d.). 

 

B. FUNDAMENTALS OF NEURAL NETWORKS 

A neural network is, at its most basic, a function that learns to take some input and 

map it to an output. In image classification this means taking the red, green, blue (RGB) 

values of each pixel as an input value, performing a function and selecting the strongest 

output as the most likely class. A neural network is made up of artificial neurons, that 

similarly to a biological neuron are stimulated by an input and stimulate other neurons to 

create a response. This biological analogy does not truly hold up on closer inspection, but 

it provides a framework for thinking about how a neural network behaves. The operation 

of the most basic form of artificial neuron is shown in Figure 3. The neuron sums weighted 

inputs then applies an overall bias. The summed inputs and bias are compared to a set 

threshold value. If the output exceeds the threshold, the output is defined as 1, if it is less 

than the threshold it is defined as 0 (Nielsen, 2015). This creates a model for making a very 

simple decision where inputs that are more heavily weighted have greater impact on a 

binary true or false decision. 
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Figure 3. The Artificial Neuron. Adapted from Nielsen (2015). 

 

Linking many of these neurons together into layers creates a neural network. To 

return to the biological model the neurons are linked to each other as in the brain and 

activations of neurons in turn activate other neurons. One of the common ways of 

describing the middle layers of a neural network is by calling them hidden layers since the 

user often has little insight into what the network is doing in between the input and the 

output that the network provides. Figure 4 depicts a basic 4-layer neural network with 2 

hidden layers. The layers in the example neural network are fully connected layers where 

every neuron in a layer is connected to every other neuron in the next layer. Modern image 

classification techniques make use convolutional layers that only connect one portion of a 

layer to the next. Convolutional layers and convolutional neural networks (CNN) made up 

of these layers are discussed in the next section.  
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Figure 4. A Basic Neural Network. Source: Nielsen (2015). 

 

The response of individual neurons in a neural network can be made more precise 

by applying a more complex activation function than a simple threshold. Rather than a 

binary on/off response the neuron will activate with a strength based on the activation 

function. This allows for activations of some neurons to have a greater impact on the neural 

networks final output if they are more strongly activated than other neurons. The rectified 

linear unit (ReLU) activation function is a commonly used activation function since it 

removes negative activations, is computationally cheap, and simplified training by 

reducing the need for pre-training (Glorot et al., 2011). Equation (1) shows an input/output 

equation for the rectifier used in the ReLU activation. 

 ( ) max(0, )f x x=   (1) 

In the output layer two common activations are the sigmoid function and the 

softmax function. The sigmoid function compresses all outputs to a range between zero 

and one, allowing for a perceptron’s output to be expressed as a probability of belonging 

to a class when making a binary classification. The softmax function is a generalized form 

of the sigmoid and allows for a probabilistic assignment of a label when there are more 

than two classes. The equation for the sigmoid is given in Equation (2). 
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C. CONVOLUTIONAL AND POOLING LAYERS 

One of the most powerful image classification tools to emerge in recent years is the 

CNN. Convolutional layers provide several advantages over fully connected layers such as 

shift invariance, and reduced parameterization. In a convolutional layer a kernel of a given 

height, width, and depth is convolved with an input and the output of that function becomes 

the input to the next layer. The kernel is then shifted by a chosen stride length and the 

process is repeated. The height and width of the kernel act as the window while the kernel 

depth represents the number of filters within the kernel (Stewart, 2019). An example of 

how the convolution function using a simple 3x3x1 kernel is applied to a region is shown 

in Figure 5. The convolutional filters provide a means of efficiently describing the local 

neighborhood of a pixel and can identify meaningful features in an image. These filters are 

convolved throughout the image slowing them to identify features wherever they appear in 

an image. Moving the filters across the image and identifying features within a small 

window allows CNNs to be shift invariant. This is useful since one cannot assume that an 

object will appear in the same location within an image every time it imaged.  

Figure 5. The Convolution Operation. Source: Stewart (2019).  
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Another advantage of convolutional layers is the reduced parameterization required 

to train the convolutional filters. Since even a relatively small 128x128 pixel RGB image 

requires a network with 49,152 inputs, if each pixel input is connected to every neuron in 

the next layer and if each subsequent hidden layer is also fully connected the number of 

parameters would quickly grow to the point of computational infeasibility. The use of a 

convolutional layer limits the number of weights that need to be saved and updated with 

each training iteration to the number of parameters within the kernel multiplied by the 

depth of the previous layer. Additionally, local connectivity between layers means that a 

single strong activation from a neuron is not propagated across the entire next layer as 

would occur with a fully connected layer.  

Convolutional layers are often followed by pooling layers as a further means to 

reduce the feature space of each layer (Stewart, 2019). Two primary pooling techniques 

are max pooling and average pooling. In max pooling a pooling filter of a given size is 

stepped through the layer and the greatest value within the filter becomes the output. In 

average pooling the average of the values within the filter are the output. Pooling layers 

work to create denser representations of the previous layers and reduce the computational 

requirements for the CNN.  

D. TRANSFER LEARNING 

CNNs require a very large amount of data to train an accurate model and it is not 

uncommon for datasets with tens or even hundreds of thousands of images to be needed. 

Transfer learning presents one possible solution when training a CNN on a limited dataset 

by leveraging knowledge from a previously learned source task to aid in learning a new 

target task (Pan & Yang, 2010). In an image classification problem transfer learning works 

by training a CNN on a very large number of images and freezing the parameters for a 

certain number of layers before training further layers and the final classification layer 

(Kang & He, 2016). Low and mid-level features are likely common across even dissimilar 

datasets which allows the model to leverage these pre-learned features to reduce the 

training time and training data. Alternatively, one could attempt to transfer all the weights 

and biases and only retrain the final model output layer, or a more limited model top. While 
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this could have the advantage of being computationally cheaper and faster, it is more likely 

to run into the problem of negative transfer. Transfer learning requires that the source and 

target tasks not be too dissimilar. If the source task, such as classifying full color 

photographs, is drastically different from the target task, like classifying overhead SAR 

images, the transfer learning method may handicap the model performance (Pan & Yang, 

2010).  

E. IMAGENET AND ILSVRC 

ImageNet is an open source labeled image database organized in a branching 

hierarchical method of “synonym sets” or “synsets.” For example, the “tank” synset is 

found in a tree going from vehicle to wheeled vehicle to self-propelled vehicle to armored 

vehicle to tank. Figure 6 provides another example of how images are grouped together. 

As of the writing of this thesis the ImageNet database consists of over 14 million labeled 

images organized into over 21,000 synsets. ImageNet is intended to function as a training 

and benchmarking resource for image recognition tasks, and due to the relationship with 

the WordNet lexical database could also be used to strength semantic understanding of 

scenes (Deng et al., 2009).  

Figure 6. Example Hierarchy of Synsets. Source: Deng (2009). 

 

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is one of the 

leading challenges for computer vision tasks. Started in 2010, the ILSVRC classification 

and localization task consists of a subset of 1000 non-overlapping synsets for which 
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researchers train classifiers and submit their generated labels for unlabeled test images. The 

transfer learning approach explored in this thesis uses a model pre-trained on the ILSVRC-

2014 dataset that consisted of 1.2 million images across the 1000 classes (Russakovsky et 

al., 2015). 

F. SHALLOW CLASSIFIERS 

The use of multilayered neural networks for machine learning is also called deep 

learning. Shallow machine learning techniques do not rely on hidden layers to learn 

features and classify new data points. This often reduces the computational resources 

needed to implement shallow machine learning methods, but also often reduces the 

flexibility to deal with a problem like image classification where the possible feature space 

for an image is functionally infinite. The three “shallow” techniques used in this thesis are 

k-nearest neighbor (kNN), support vector machines (SVM) and random forests (RF). 

1. K-Nearest Neighbor 

K-nearest neighbor (kNN) is a classification algorithm where k represents the 

number of neighboring points that the classifier will examine when making a determination 

about what label to assign the new data point. When a data point is classified the classifier 

measures the distance from the new data point to the k nearest neighbors and assigns the 

data point the label that corresponds to the label of the largest number of neighboring points 

as shown in Figure 7. Weights can also be applied to the distances measured between the 

test point and neighboring points to increase the value of nearby neighbors when making a 

classification 
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Figure 7. Example of kNN. Adapted from Theobald (2017). 

 
For this example, k is set to three. If an unweighted classifier is trying to assign the star to 
a specific class, it would assign it to the green circle class because of the three nearest 
objects two are green circles. 

 

2. Support Vector Machines 

Support vector machines shares many similarities with a logistic regression but 

rather than attempting to minimize the distance from all data points to the hyperplane that 

divides classes, the goal is to maximize the distance from the hyperplane to the nearest 

point in the divided clusters as shown in Figure 8. This reduces sensitivity to outliers and 

reduces the likelihood of misclassifying data points (Gandhi, 2018). In the case of non-

linearly separable like that shown in Figure 9, the “kernel trick” can be applied to map the 

data into a higher dimensional space where a hyperplane may be found to separate the data.  
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Figure 8. Example SVM Classifier. Adapted from Theobald (2017). 

 

 

Figure 9. Non-Linearly Separable Data Transformed into Three-Dimensions. 
Adapted from Theobald (2017). 
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3. Random Forests 

The final shallow classification algorithm used in this thesis is random forests. 

Random forests leverage decision trees that use binary splits to create branching decisions. 

In a random forest multiple different decision trees are run on a randomly selected subset 

of features to predict the class label. The decision trees also make splits based on different 

binary decisions. As demonstrated in Figure 10, the model then compares the predicted 

labels generated by the individual decision trees and the majority label is then assigned to 

the data point. By spreading the classification across multiple trees the random forest 

compensates for error in any single decision tree (Yiu, 2019).  

Figure 10. Example of Random Forest. Source: Yiu (2019).  
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G. RELATED RESEARCH 

Due its availability and ease of access for researchers, the Moving and Stationary 

Target Acquisition and Recognition (MSTAR) dataset has become the standard dataset for 

SAR image classification research. The MSTAR dataset is described in greater detail in 

the methodology section. Initial work on the SAR ATR problem was conducted to support 

the Defense Advanced Research Projects Agency’s Semi-Automated IMINT Processing 

(SAIP) project which grew out of the operational experience of hunting for Iraqi mobile 

ballistic missile launchers in the Gulf War. A template matching method pursued by the 

Lincoln Laboratories reported good results but required the construction of 72 templates 

per target class covering all orientations of the target (Novak et al., 1997). Research 

supporting the SAIP project was eventually able to produce 95.8% accuracy on the 10-

class MSTAR dataset. There was, however, a notable reduction in performance when faced 

with certain real-world situations such as having a self-propelled artillery piece deployed 

in a revetment or a tank that has additional armor applied to it. Lincoln Laboratories was 

able to overcome these situations through the creation of additional templates (Novak, 

2000). Since this research were in support of the SAIP program some data explored is not 

publically available today. SAR ATR research of the public MSTAR dataset using shallow 

classification methods also generally produced good results. An approach using an SVM 

classifier for a three-class subset of MSTAR targets with two confuser vehicles reported 

93.4% accuracy (Bryant & Garber, 1999). An SVM method proposed by Zhao achieved 

91% accuracy in a three-class test (Zhao & Principe, 2001). while a Bayesian classifier 

reported 95.05% accuracy in a 10-class test (O’Sullivan et al., 2001).  

In recent years, the work on classification of SAR imagery has focused on CNNs. 

In 2015, Morgan showed that a relatively small CNN could achieve 92.1% accuracy across 

10-classes of the MSTAR dataset roughly in line with the shallow methods previously 

explored. Morgan’s method also showed that a network trained on nine of the MSTAR 

target classes could be retrained to include a tenth class 10–20 times faster than training a 

10-class classifier from scratch. The ability to more easily adapt the model to changes in 

target sets represents an advantage over shallow classification techniques (Morgan, 2015). 

This is especially valuable in a military ATR context given the fluid nature of military 
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operations where changes to the order of battle may necessitate updating a deployed ATR 

system. In order to overcome the limitations caused by the relatively small number of 

images in the MSTAR dataset researchers explored transfer learning from a CNN pre-

trained on simulated SAR images. Artificial SAR images were generated by using ray 

tracing software and detailed computer aided design models of target systems. They 

showed that model performance was improved, especially in cases where the amount of 

training data was reduced (Malmgren-Hansen et al., 2017). The technique of generating 

simulated SAR images for training could also be valuable in a military SAR ATR context 

where an insufficient amount of training data for some systems may exist. 

Chen and Wang explored several approaches to deep learning and feature extraction 

for the MSTAR dataset. A method where the convolutional kernels were trained using a 

sparse auto-encoder using randomly sampled image patches resulted in 84.7% accuracy 

across 10 classes (Chen & Wang, 2014). The employment of a clever data augmentation 

scheme that sampled several 88x88 pixel patches from each training image in the MSTAR 

dataset increased the training dataset to 2700 images per class. This larger dataset allowed 

a CNN to achieve 99.1% accuracy on average across 10 classes (Wang et al., 2015). 

While many CNNs use a softmax activation in the output layer of multi-class 

classifiers, there is evidence that SVM classifiers can outperform the softmax activation 

for some classification tasks (Tang, 2013). A multi-step classification process with transfer 

learning from ImageNet to MSTAR and feature extraction for training an SVM classifier 

was explored by Mufti et al. in 2018. Their methodology compared the performance of an 

SVM classifier trained on mid-level feature data extracted from multiple layers from 

AlexNet, GoogLeNet, and VGG16 neural networks without retraining the feature 

extracting network (Al Mufti et al., 2018). The basic workflow of this methodology is 

shown in Figure 11. 
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Figure 11. CNN to SVM Methodology. Source: Mufti (2018). 

 

In the preprocessing step a center 50x53 pixel chip was extracted to reduce noise 

around the target. Two augmentations were performed on the training dataset, the mean 

grey level was subtracted and a Laplacian of the Gaussian filter was performed to 

emphasize target edges (Al Mufti et al., 2018). Combining these augmentations with the 

original images tripled the size of the training dataset. They reported 99.1% accuracy when 

classifying targets based on features extracted from mid-level convolutional layers from 

AlexNet. The best performance reported by Mufti et al. from the VGG16 architecture was 

92.3% from a mid-level convolutional layer, but only 49.2% and 46.3% from features 

extracted in the last two fully connected layers. 

Although not focused on SAR images, the application of transfer learning to remote 

sensing target detection and classification was previously studied at the Naval Postgraduate 

School by Lieutenant Katherine Rice in 2018. Rice showed that a CNN classifier trained 

on a photographic dataset could be retrained to perform remote sensing classification of 

EO satellite images of ships at sea with a recall of .99 and precision of .98 when retrained 

on a dataset contained 2000 images. This research supports that a transfer learning 

approach between modalities is feasible (Rice, 2018). Rice’s approach to transfer learning 

is the foundation for the approach taken in this thesis. 
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III. METHODOLOGY 

A. MSTAR DATASET 

The MSTAR dataset is a publicly available dataset consisting of synthetic aperture 

radar images of the following 10 classes of military vehicles: 

1. 2S1: former Soviet Union (FSU) self-propelled artillery 

2. BMP-2: FSU infantry fighting vehicle 

3. BRDM-2: FSU armored reconnaissance vehicle 

4. BTR-60: FSU armored personnel carrier 

5. BTR-70: FSU armored personnel carrier 

6. D7: Caterpillar tractor frequently used in combat engineering roles 

7. T-62: FSU main battle tank 

8. T-72: FSU main battle tank 

9. ZIL-131: FSU general purpose 6x6 truck 

10. ZSU-23-4: FSU self-propelled anti-aircraft gun 

The final class is the Sandia Laboratories implementation of cylinders (SLICY). 

The SLICY consisting of simple geometric shapes such as cylinders, edge reflectors, and 

corner reflectors which could be used for calibration of sensors or for modeling the 

propagation of radar reflections.  
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Figure 12. Example Photographs and MSTAR Images by Class. Adapted 
from U.S. Air Force (1996), Leahy (1994), and Torin (2008).   

 

The dataset was collected at a 15-degree and a 17-degrees look angle in September 

1995 at the Redstone Arsenal, Huntsville, AL, by the Sandia National Laboratory SAR 

sensor platform. The sensor was operated in spotlight mode producing images with a 1-

foot resolution. The dataset consists of 128x128 pixel greyscale images representing one 

of the few publicly available SAR datasets and therefore a commonly studied dataset for 

SAR ATR. The total number of images per class are described in Table 1. Since there is 

not a consistent number of images per class, 200 images collected from a 17-degree look 

angle were randomly selected from each class as the training data. The test set consisted of 

2700 images collected at a 15-degree look angle and generated by dropping a single image 

from the 10 vehicle classes and three SLICY images. 
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Table 1. Number of SAR Images per Class 

 17 degree look angle 15 degree look angle 
2S1 299 274 
BMP-2 233 195 
BRDM-2 298 274 
BTR-60 256 195 
BTR-70 233 196 
D7 299 274 
T-62 298 273 
T-72 232 196 
ZIL-131 299 274 
ZSU-23-4 299 274 
SLICY 274 288 
Total 3020 2713 

 

B. NETWORK ARCHITECTURE 

The CNN architecture employed in this thesis is a modified VGG16 architecture 

(Simonyan & Zisserman, 2015). The original VGG16 architecture is shown in in  

Figure 13. The numbers on the convolutional layers represent the kernel window and depth 

while the number on the fully connected layers is the number of neurons in the layer. The 

VGG16 architecture consists of linked convolutional and pooling blocks made up of two 

or three convolutional layers and a pooling layer before ending with three fully connected 

layers. The final layer uses a softmax activation to determine the class label. The network 

employs a 3x3 kernel and a stride of one so that each pixel is the center of a convolutional 

step.  
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Figure 13. VGG16 Architecture. Adapted from Simonyan and Zisserman 
(2015). 

 

The base architecture is modified for this thesis as shown in Figures 14 and 15. The 

model top of three fully connected layers is replaced with a new model top consisting of a 

fully connected layer, a dropout layer to mitigate overfitting, and two final fully connected 

layers with a softmax activation for classification. For the partial transfer learning approach 

the model is initialized with the ImageNet weights and has the first two convolutional/

pooling blocks frozen for training to take advantage of the broad feature detection of the 

pre-trained network (Rice, 2018). This thesis expands on the partial transfer learning 

approach by exploring a full transfer of weights in the convolutional base. This is achieved 

by freezing all convolutional and pooling layers and only training the new model top.  

Figure 14. Modified VGG16 with Partial Transfer Learning and 11-Class 
Output. Adapted from Rice (2018). 
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Figure 15. Modified VGG16 with Full Transfer Learning and 11-Class 
Output. Adapted from Rice (2018). 

 

Figure 16 shows process of the multistep methods. A SAR image is passed through 

the CNN to extract features from the second fully connected layer. The extracted features 

are saved as a 1024-dimensional vector and used to train the shallow classifiers. Test data 

is also passed through the CNNs in order to vectorized the images which are then used to 

evaluate the performance of the shallow classifiers against the softmax activation layer of 

the base CNN. 

Figure 16. Multistep Classifier Using a CNN for Feature Extraction. Adapted 
from Rice (2018). 

 

C. TENSORFLOW, KERAS API, AND ORANGE TOOLKIT 

The previously described models are implemented using the Keras application 

program interface (API) with TensorFlow as the backend. TensorFlow is an open source 
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Python machine learning library developed by Google. TensorFlow greatly reduces the 

programing workload for implementing deep learning. Rather than having to build a CNN 

from scratch, TensorFlow allows for the creation of models by calling functions to create 

layers with given parameters It also provides visualization tools for learning rate, training 

time, and other useful information in the evaluating the training process of a deep learning 

model. The Keras API is capable of running on top of other machine learning libraries in 

addition to TensorFlow and has a prebuilt VGG16 available. The Keras API is a more user-

friendly interface with the TensorFlow library. The ImageNet weights available in Keras 

are ported from Visual Geometry Group at Oxford University that developed the VGG16 

architecture for ILSVRC-2014 localization and classification tasks (Simonyan & 

Zisserman, 2015). 

Orange is an open source data science and machine learning toolkit that allows 

users to easily manipulate data through a graphical user interface. Orange has several built 

in machine learning algorithms and simplifies the data management and preprocessing 

requirements to allow users to experiment with approaches to machine learning and data 

science (Demšar et al., 2004). 

D. MEASURES OF PERFORMANCE AND EXPERIMENTAL SETUPS 

1. Measures of Performance 

The primary methods for measuring the model performance in this thesis are recall 

and precision. Recall is the proportion of targets that are correctly classified by the model. 

Recall can also be thought of as the true positive rate. Precision is measure of the 

percentage of true positives over total positives. High recall indicates that the model 

correctly classifies targets while high precision indicates that the model does not have many 

false positives. Both measures have their origins in data retrieval but are a standard way of 

measuring machine learning performance. 

  
True PositivesRecall =  

Total Targets in Class
 (3) 
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 True PositivesPrecision = 
Total Predicted Positives

 (4) 

2. Experiment 1 

In Experiment 1, the CNN is trained without transfer learning on 200 training 

images per class with a 20% validation split. The same training dataset is applied to the 

partial transfer learning and full transfer learning approaches depicted in Figures 13 and 

14. These models form the basis for the feature extraction comparisons in follow on 

experiments. 

3. Experiment 2 

Experiment 2 explores the utility of CNNs as feature extractors for training shallow 

classifiers. Features are extracted from the last fully connected layer prior to the final output 

layer of the CNN as depicted in Figure 16 for both the training and test datasets and are 

saved as a 1024-dimensional vector representing each image. The vectorized feature 

representations of the images are run through the Orange workflow pictured in Figure 17. 

Performance is then compared between the base CNNs and kNN, SVM, and Random 

Forest classifiers trained and evaluated on the extracted features. For the kNN classifier k 

was set to 11 and weighted Euclidian distance was used to determine which class label to 

assign to test images. A sigmoid kernel was used in the SVM classifier, and the random 

forest consisted of 10 decision trees. The parameters for the shallow classifiers are 

unchanged in Experiments 3 and 4. 
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Figure 17. Orange Workflow 

 

4. Experiment 3 

For Experiment 3, random Gaussian noise was added to the images from the 

datasets test and training datasets. Two noise levels were set to a random value up to 5% 

and 20% of the max pixel value to create low-noise and high-noise tests. An example of 

the resulting image in the high-noise dataset is shown in Figure 18. The noise added images 

are then classified by the CNN and multistep process without retraining the CNN in order 

to test the robustness of the classifiers to noise. The CNNs were retrained on the high-noise 

images and features extracted from the noise added training dataset were used to train the 

shallow classifiers. 
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Figure 18. Comparison of Original Image and 20% Noise Added Image 

 

5. Experiment 4 

Experiment 4 seeks to determine how model performance of the partial transfer 

learning approach is affected as the size of the training dataset is reduced. The training 

dataset is reduced from 200 images per class by randomly selecting 100 images per class 

from the total available training data to create a new reduced training set. The process was 

repeated to select 50 images per class from the total available training dataset for a second 

reduced training set. The partial transfer learning approach is then applied with the reduced 

training datasets, and the shallow classifiers are trained as in Experiment 2.  
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IV. RESULTS AND ANALYSIS 

A. EXPERIMENTAL RESULTS 

1. Experiment 1 

Table 2 compares the performance of the CNN trained without transfer learning on 

the MSTAR data to the two transfer learning approaches described in Figures 13 and 14. 

The partial transfer learning approach shows some moderate improvement over the CNN 

trained exclusively on the MSTAR data. The full transfer learning of all convolutional 

weights and only retraining the CNN top did not match the performance of the non-transfer 

learning approach, suggesting some negative transfer occurs in the later convolutional 

layers. The transfer learning approach also had the advantage of converging much more 

quickly than the CNN initialized with random weights. Figure 19 shows the training loss 

and training accuracy of the CNN trained without transfer learning and the partial transfer 

learning method. 

Table 2. Comparison of CNN Performance.  

 
VGG16 Trained 

Exclusively on SAR 
VGG16 with Partial 
Transfer Learning 

VGG16 with Full Transfer 
Learning 

Class Precision Recall Precision Recall Precision Recall 
Average 0.957 0.954 0.980 0.980 0.883 0.878 
2S1 1.000 0.810 0.996 0.945 0.962 0.560 
BMP-2 0.949 0.969 0.969 0.954 0.831 0.686 
BRDM-2 0.993 1.000 1.000 1.000 0.985 0.978 
BTR-60 0.984 0.959 0.995 0.948 0.774 0.933 
BTR-70 0.995 0.954 0.950 0.979 0.851 0.764 
D7 0.982 0.978 0.996 0.985 0.980 0.886 
T-62 0.931 0.842 0.960 0.978 0.914 0.897 
T-72 0.956 0.995 0.956 0.995 0.776 0.979 
ZIL-131 0.894 0.985 0.996 0.996 0.850 0.974 
ZSU-23-4 0.848 1.000 0.968 1.000 0.798 1.000 
SLICY 0.997 1.000 0.997 1.000 0.997 1.000 

This table compares the performance of the architectures described in Figures 14 and 15 
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Figure 19. Comparison of Training Loss and Accuracy 

 
The left graph depicts the training accuracy and loss of a CNN initialized with random 
weights. The right graph shows a model trained with the partial transfer learning method 
described in Figure 14. The training loss of the transfer learning model descends much 
more rapidly than the model trained exclusively on the MSTAR dataset. Similarly, the 
transfer learning method’s accuracy more rapidly approaches 1. 

 

2. Experiment 2 

The multistep method using shallow classifiers trained on features extracted from 

the CNN showed some improvement in recall over the base CNN, particularly in the lowest 

performing classes in the base CNN like the 2S1 and T-62. The multistep method also saw 

generally higher performance in precision as well, once again well outperforming the base 

CNNs, particularly in the low precision classes such as the ZSU-23-4. As shown in  

Table 3, all shallow classifiers showed improved average performance over the base CNN 

that was not pre-trained. Tables 4 and 5 show the multistep classifier performance 

compared to the CNNs pre-trained on ImageNet. The kNN classifier matched the partial 

transfer learning model’s performance and exceeded the SVM classifier. In the full transfer 

learning approach the kNN and SVM classifiers exceeded the CNN’s average performance 

in both precision and recall.  
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Table 3. Comparison of Multistep Classifier without Transfer Learning 

 
VGG16 Trained 

Exclusively on SAR 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.957 0.954 0.977 0.976 0.977 0.976 0.973 0.973 
2S1 1.000 0.810 1.000 0.905 1.000 0.886 0.996 0.964 
BMP-2 0.949 0.969 0.969 0.974 0.959 0.969 0.945 0.969 
BRDM-2 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
BTR-60 0.984 0.959 0.983 0.918 0.979 0.974 0.949 0.954 
BTR-70 0.995 0.954 0.959 0.969 0.989 0.964 0.984 0.964 
D7 0.982 0.978 0.993 0.989 0.993 0.974 0.982 0.996 
T-62 0.931 0.842 0.967 0.974 0.950 0.974 0.949 0.967 
T-72 0.956 0.995 0.942 1.000 0.961 1.000 0.965 0.995 
ZIL-131 0.894 0.985 0.941 0.993 0.951 0.993 0.951 0.989 
ZSU-23-4 0.848 1.000 0.972 1.000 0.955 1.000 0.975 1.000 
SLICY 0.997 1.000 1.000 1.000 1.000 1.000 0.997 1.000 

 

Table 4. Comparison of Multistep Classifier with Partial Transfer Learning  

 
VGG16 with 

Transfer Learning 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.980 0.980 0.980 0.980 0.976 0.976 0.970 0.970 
2S1 0.996 0.945 0.993 0.938 0.996 0.934 0.989 0.963 
BMP-2 0.969 0.954 0.940 0.964 0.951 0.897 0.936 0.907 
BRDM-2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
BTR-60 0.995 0.948 0.984 0.948 0.979 0.948 0.968 0.928 
BTR-70 0.950 0.979 0.974 0.944 0.926 0.959 0.934 0.938 
D7 0.996 0.985 0.996 0.989 0.996 0.985 0.974 0.960 
T-62 0.960 0.978 0.944 0.985 0.944 0.985 0.961 0.989 
T-72 0.956 0.995 0.960 0.995 0.942 0.995 0.928 0.985 
ZIL-131 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.963 
ZSU-23-4 0.968 1.000 0.978 1.000 0.975 1.000 0.961 1.000 
SLICY 0.997 1.000 1.000 1.000 1.000 1.000 0.993 1.000 
See Figure 14 for architecture of base CNN and Figure 16 for architecture of multistep classifier. 
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Table 5. Comparison of Multistep Classifier with Full Transfer Learning 

 
VGG16 with 

Transfer Learning 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.883 0.878 0.917 0.912 0.913 0.908 0.842 0.838 
2S1 0.962 0.560 0.983 0.634 0.994 0.579 0.880 0.458 
BMP-2 0.831 0.686 0.811 0.820 0.792 0.747 0.688 0.670 
BRDM-2 0.985 0.978 0.982 0.989 0.964 0.982 0.945 0.941 
BTR-60 0.774 0.933 0.871 0.902 0.892 0.851 0.750 0.804 
BTR-70 0.851 0.764 0.814 0.851 0.871 0.831 0.723 0.790 
D7 0.980 0.886 0.971 0.974 0.974 0.971 0.905 0.872 
T-62 0.914 0.897 0.934 0.938 0.934 0.938 0.856 0.875 
T-72 0.776 0.979 0.824 0.985 0.841 0.979 0.774 0.897 
ZIL-131 0.850 0.974 0.848 0.978 0.831 0.974 0.797 0.850 
ZSU-23-4 0.798 1.000 0.916 1.000 0.916 1.000 0.822 0.996 
SLICY 0.997 1.000 0.990 1.000 0.993 1.000 0.993 1.000 
See Figure 15 for architecture of base CNN and Figure 16 for architecture of multistep classifier. 
 

3. Experiment 3 

The sensitivity of CNNs to noise is clearly demonstrated by the drop in CNN 

performance presented in Table 6 when even low amounts of random noise are introduced. 

With 20% random noise the models become totally ineffective as shown in Table 7. 

Although the performance of the full transfer learning method is not acceptable in any real 

world context, it is the least impacted by noisy images seeing a drop in average recall of 

.131 as compared to .185 and .281 for the CNN trained exclusively on SAR data and the 

partial transfer learning approach respectively. 
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Table 6. Comparison of CNN Performance on Low-Noise Images without 
Retraining 

 
VGG16 Trained 

Exclusively on SAR 
VGG16 with Partial 
Transfer Learning 

VGG16 with Full 
Transfer Learning 

Class Precision Recall Precision Recall Precision Recall 
Average 0.854 0.769 0.828 0.699 0.808 0.747 
2S1 0.748 0.996 0.471 0.381 0.778 0.604 
BMP-2 0.585 0.959 0.663 0.820 0.435 0.892 
BRDM-2 1.000 0.110 1.000 0.051 0.957 0.729 
BTR-60 0.968 0.778 0.993 0.763 0.702 0.814 
BTR-70 0.981 0.267 1.000 0.195 0.900 0.369 
D7 0.689 0.996 0.820 0.952 0.660 0.938 
T-62 0.973 0.934 0.876 0.835 0.932 0.456 
T-72 0.979 0.939 0.944 0.944 0.977 0.667 
ZIL-131 0.505 0.938 0.351 0.996 0.630 0.872 
ZSU-23-4 0.967 0.641 0.991 0.777 0.920 0.886 
SLICY 1.000 0.989 1.000 0.975 0.996 0.986 

Table 7. Comparison of CNN Performance on High-Noise Images without 
Retraining 

 
VGG16 Trained 

Exclusively on SAR 
VGG16 with Partial 
Transfer Learning 

VGG16 with Full 
Transfer Learning 

Class Precision Recall Precision Recall Precision Recall 
Average 0.177 0.115 0.035 0.169 0.296 0.250 
2S1 0.110 0.996 0.197 0.891 0.216 0.469 
BMP-2 0.260 0.165 0.000 0.000 0.158 0.675 
BRDM-2 0.000 0.000 0.000 0.000 0.111 0.084 
BTR-60 0.581 0.093 0.000 0.000 0.199 0.706 
BTR-70 1.000 0.010 0.000 0.000 0.429 0.077 
D7 0.000 0.000 0.000 0.000 0.600 0.560 
T-62 0.000 0.000 0.000 0.000 0.000 0.000 
T-72 0.000 0.000 0.000 0.000 0.000 0.000 
ZIL-131 0.000 0.000 0.186 0.971 0.545 0.176 
ZSU-23-4 0.000 0.000 0.000 0.000 1.000 0.004 
SLICY 0.000 0.000 0.000 0.000 0.000 0.000 

 

Tables 8, 9, and 10 show the model performance after retraining on the high-noise 

dataset. The pre-trained CNNs do not match the performance of the CNN trained 

exclusively on MSTAR data. The trend in Experiment 2 of improved average accuracy of 

shallow classifiers trained on features from CNNs holds with noisy data as well. The kNN 
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and SVM classifiers outperformed the models from which features were extracted in both 

precision and recall. The addition of noise more negatively impacts the transfer learning 

approaches compared to a CNN trained from scratch on noisy data.  

Table 8. Comparison of Multistep Classifier without Transfer Learning 
Trained on 20% Noisy Images 

 
VGG16 without 

Transfer Learning 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.928 0.925 .931 .929 .936 .933 .923 .919 
2S1 0.941 0.817 .977 .795 .977 .795 .944 .736 
BMP-2 0.727 0.933 .756 .845 .759 .876 .690 .861 
BRDM-2 0.953 0.886 .933 .912 .937 .927 .924 .934 
BTR-60 0.948 0.845 .907 .902 .923 .871 .873 .887 
BTR-70 0.950 0.872 .926 .897 .935 .892 .929 .867 
D7 0.961 0.985 .982 .974 .978 .978 .989 .978 
T-62 0.938 0.897 .915 .912 .934 .934 .934 .890 
T-72 0.936 0.979 .927 .979 .905 .979 .917 .964 
ZIL-131 0.897 0.985 .909 .985 .937 .985 .927 .978 
ZSU-23-4 0.964 0.978 .954 .985 .951 .989 .947 .978 
SLICY 0.993 1.000 .993 .996 .990 1.000 .997 1.000 

 

Table 9. Comparison of Multistep Classifier with Partial Transfer Learning 
Trained on 20% Noisy Images 

 
VGG16 with 

Transfer Learning 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.904 0.907 0.915 0.916 0.920 0.922 0.900 0.903 
2S1 1.000 0.634 0.963 0.766 0.981 0.758 0.922 0.784 
BMP-2 0.720 0.784 0.748 0.825 0.759 0.845 0.783 0.820 
BRDM-2 0.928 0.941 0.947 0.912 0.942 0.945 0.928 0.897 
BTR-60 0.888 0.897 0.930 0.887 0.903 0.912 0.869 0.887 
BTR-70 0.826 0.928 0.873 0.913 0.894 0.908 0.880 0.862 
D7 0.967 0.967 0.964 0.967 0.953 0.974 0.923 0.971 
T-62 0.948 0.879 0.935 0.897 0.964 0.893 0.911 0.864 
T-72 0.846 0.985 0.883 0.964 0.879 0.964 0.879 0.969 
ZIL-131 0.914 0.974 0.890 0.974 0.910 0.960 0.871 0.938 
ZSU-23-4 0.928 0.989 0.934 0.978 0.937 0.982 0.948 0.938 
SLICY 0.983 1.000 1.000 0.996 0.997 1.000 0.990 1.000 

See Figure 14 for architecture of base CNN and Figure 16 for architecture of multistep classifier. 
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Table 10. Comparison of Multistep Classifier with Full Transfer Learning 
Trained on 20% Noisy Images 

 
VGG16 with 

Transfer Learning 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.768 0.771 0.784 0.773 0.793 0.785 0.698 0.693 
2S1 0.840 0.385 0.847 0.385 0.816 0.407 0.602 0.355 
BMP-2 0.502 0.562 0.459 0.608 0.506 0.634 0.369 0.521 
BRDM-2 0.796 0.758 0.795 0.780 0.796 0.817 0.716 0.656 
BTR-60 0.702 0.825 0.745 0.753 0.731 0.814 0.569 0.701 
BTR-70 0.708 0.672 0.696 0.692 0.712 0.672 0.560 0.503 
D7 0.892 0.821 0.839 0.861 0.904 0.824 0.794 0.846 
T-62 0.708 0.783 0.805 0.699 0.783 0.728 0.635 0.596 
T-72 0.729 0.938 0.743 0.949 0.748 0.928 0.699 0.856 
ZIL-131 0.824 0.842 0.828 0.821 0.824 0.857 0.800 0.718 
ZSU-23-4 0.807 0.890 0.780 0.919 0.794 0.919 0.809 0.806 
SLICY 0.944 1.000 0.944 1.000 0.960 1.000 0.946 0.993 

See Figure 15 for architecture of base CNN and Figure 16 for architecture of multistep classifier. 
 

4. Experiment 4 

Building off of the performance of the partial transfer learning method with shallow 

classifiers shown in Experiments 1 and 2, Experiment 4 seeks to determine the partial 

transfer learning method’s performance as training data is reduced. Multistep classification 

methods showed significant improvements over the base model as the size of the training 

dataset decreased as shown in Tables 11 and 12. When the training data was reduced to 

100 images per class the multistep classifiers all performed better on average than the base 

CNN. Both the kNN and SVM classifiers maintained precision and recall performance 

above .95 while the base CNN performance dropped to .907 for recall and .904 for 

precision. When the training dataset was reduced to 50 images per class all multistep 

classifiers continued to outperform the baseline model and saw much better performance 

on difficult targets like the BTR-60, BTR-70 and T-62. 
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Table 11. Performance of Multistep Classifier with Partial Transfer Learning 
Trained on 100 Images per Class 

 
 
 

 
VGG16 with 

Transfer Learning 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.918 0.906 0.960 0.959 0.958 0.957 0.929 0.926 
2S1 0.963 0.670 1.000 0.875 1.000 0.872 1.000 0.700 
BMP-2 0.978 0.902 0.971 0.856 0.977 0.876 0.947 0.830 
BRDM-2 0.996 0.967 0.989 0.996 0.996 1.000 0.982 0.989 
BTR-60 0.967 0.912 0.907 0.959 0.913 0.974 0.819 0.954 
BTR-70 0.989 0.923 0.934 0.949 0.945 0.944 0.899 0.918 
D7 0.836 0.912 0.989 0.971 0.974 0.949 0.924 0.938 
T-62 0.745 0.882 0.949 0.963 0.925 0.949 0.917 0.938 
T-72 0.883 0.964 0.937 0.990 0.937 0.990 0.955 0.969 
ZIL-131 0.974 0.828 0.941 0.985 0.964 0.974 0.881 0.952 
ZSU-23-4 0.791 1.000 0.938 1.000 0.907 0.996 0.901 1.000 
SLICY 0.979 1.000 1.000 1.000 0.997 1.000 0.990 1.000 

See Figure 14 for architecture of base CNN and Figure 16 for architecture of multistep classifier. 

 

Table 12. Performance of Multistep Classifier with Partial Transfer Learning 
Trained on 50 Images per Class 

 
VGG16 with 

Transfer Learning 
CNN Feature 

Extractor + kNN 
CNN Feature 

Extractor + SVM 
CNN Feature 

Extractor + RF 
Class Precision Recall Precision Recall Precision Recall Precision Recall 
Average 0.808 0.770 0.879 0.874 0.867 0.862 0.822 0.806 
2S1 0.980 0.707 0.959 0.777 0.958 0.758 0.900 0.722 
BMP-2 0.569 0.830 0.706 0.732 0.751 0.716 0.681 0.639 
BRDM-2 0.957 0.989 0.993 0.989 0.997 0.993 0.971 0.993 
BTR-60 0.935 0.371 0.889 0.742 0.745 0.814 0.707 0.670 
BTR-70 0.641 0.605 0.741 0.805 0.775 0.708 0.667 0.667 
D7 0.648 0.795 0.840 0.883 0.861 0.842 0.775 0.681 
T-62 0.853 0.640 0.883 0.919 0.864 0.868 0.855 0.779 
T-72 0.785 0.918 0.923 0.928 0.908 0.908 0.961 0.892 
ZIL-131 0.889 0.615 0.888 0.842 0.902 0.879 0.854 0.835 
ZSU-23-4 0.626 1.000 0.848 1.000 0.778 1.000 0.678 0.989 
SLICY 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 

See Figure 14 for architecture of base CNN and Figure 16 for architecture of multistep classifier. 

 

B. ANALYSIS 

The partial transfer learning approach of transferring low-level features 

outperformed the full transfer learning approach on both the original and noisy images. 

While a model trained exclusively on noisy SAR data performed better on noisy images 
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the performance of the partial transfer learning method is notable on the clean dataset. SAR 

images are significantly different from the photographs that compose the ImageNet dataset. 

However, the filters in the early convolutional layer are designed to detect relatively simple 

features like edges and corners. Figure 20 shows an example of the filters in the first 

convolutional layer. The features that create strong activations in these filters such as 

brightness gradients, edges, or corners are not uncommon and could be applied to 

dissimilar datasets. In later layers the features that the model is attempting to resolve 

become less transferable which increases the likelihood of negative transfer as seen in 

Experiment 1. 

Figure 20. Example Filters from First Convolutional Layer. 

  

The performance of the kNN classifier compared to the softmax activation for 

neural network output is notable. Multistep classifier performance on the most difficult 

classes for the CNN was significantly better in several of the tests. When trained on 50 

images the CNN only achieved a recall score of .371 on the BTR-60 class, well below the 

.742 and .814 of the kNN and SVM classifiers. In the same test the base CNN had recall 

rates below .65 for the BTR-70, T-62, and ZIL-131, while the kNN and SVM classifiers 

were able to achieve results for these cases with a recall above .8. There are also large 

reductions in precision for some classes that are not mirrored in the multistep method. The 



40 

nature of the SVM and kNN algorithms may provide greater robustness under the evaluated 

circumstances when compared to the CNN classifiers. The support vectors and number of 

neighbors used to classify new data points do not rely on a probability the way a softmax 

activation does and therefore are less likely to be affected as harshly by a reduced sample 

size. Since the kNN algorithm calculates the distance to all training data points the 

computational cost of the kNN algorithm increases with the volume of training data used. 

The good performance of the kNN method as the training data is reduced as described in 

this thesis is represents a computationally cheap way to build a future classifier.  

Excepting the performance of models on noisy data prior to retraining, all models 

performed well in both recall and precision on the SLICY target. Performance on the 

SLICY class is of interest because it demonstrates the model’s ability to discriminate a 

non-valid target from a valid target. All other classes, with the exception of the D7, are 

former Soviet Union military equipment. Up-armored versions of the D7 and related 

equipment are often used in combat engineering roles. In a military context this means they 

are likely to be a valid target. The classification of a SLICY as any other class would 

indicate the model is accepting a clearly invalid target as a valid target. As demonstrated 

by the high precision in this class across the experiments valid targets are very infrequently 

classified as a SLICY and the high recall indicates that the random objects are not being 

accepted as valid targets.  
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V. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

When examining the research questions proposed in this thesis we can make the 

following observations: 

1. Can transfer learning from a model pre-trained on photographs be 

effective for SAR images? 

• Partial transfer learning of low-level features from photographs to 

SAR imagery is effective for training a neural network both for 

classification and feature extraction. Transfer learning of features 

from early convolutional blocks from a CNN pre-trained on 

ImageNet showed improved performance over the CNN trained 

only on MSTAR data. Full transfer of features from the 

convolutional and pooling layers had lower performance than both 

the partial transfer learning approach and the CNN trained 

exclusively on SAR imagery. 

2. Does using a neural network as a feature extractor for input into a shallow 

classification algorithm improve model performance? 

3. What shallow classification technique provides the greatest benefit to 

classification accuracy? 

• A retrained neural network can function as an efficient feature 

extractor for training a shallow classifier. The performance of the 

kNN and SVM classifiers trained on features extracted from the 

retrained CNN exceed the performance of the CNN. Methods such 

as kNN and SVM classifiers are a potentially useful replacement 

for the softmax activation common in the final layer of a neural 

network. 
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4. Does a shallow classification method trained on features extracted from a 

neural network perform better in noisy conditions or with a small training 

dataset? 

• Multistep classification methods using a shallow classifier trained 

on features extracted from a neural network outperformed the base 

neural network when tested on noisy data and as the amount of 

training data decreases. As the training dataset was reduced in size 

the performance of the shallow classifiers, particularly the kNN 

and SVM classifiers was less negatively impacted than the 

retrained CNN. 

The National Geospatial-Intelligence Agency manages a GEOINT Professional 

Certification program. The GPC certificates are available for a fundamentals and 10 

specializations, including imagery analysis and geospatial analysis. Tests are scored based 

on a Modified Angoff method where a subject matter expert determines the probability that 

a hypothetical minimally competent examinee would answer a question correctly (National 

Geospatial-Intelligence Agency, 2017). IMINT analysis also often relies on the user’s 

experience and confidence in their own work providing responses such as “possible main 

battle tank” or “likely BMP-2.” The inherently subjective nature by which the GPC is 

scored, and the confidence based assessments of IMINT analysts make a direct comparison 

of model performance to expert level difficult to determine.  

Both the baseline model employing transfer learning and the shallow classifiers 

using a neural network as a feature extractor performed with a high degree of accuracy and 

would be valuable in an operational context as an aid to IMINT analysts. The multistep 

classification technique also shows that a very large training dataset does not need to be 

developed and a system could be trained with as few as 100 unaugmented training images 

per class. This presents an opportunity for an operational SAR ATR model to be updated 

based on the current units in a specific area of operations or on vehicles that are modified 

or damaged in a way that prevents accurate classification by the CNN or multistep 

classifier. 
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B. FUTURE WORK 

This thesis focused on developing and refining techniques to create an accurate 

classifier of tactical equipment in SAR images based on a limited training dataset. It did 

not compare the model developed and tested to the current accuracy of a trained imagery 

analyst. A future thesis could be written on this topic by comparing the time and accuracy 

of an imagery analyst working alone to classify a number of targets to the model and to an 

imagery analyst who is aided by an image classifier. As the Marine Corps does not 

currently have a standard for imagery analyst accuracy this research would also help to 

establish a baseline for expert level performance that can be compared to future 

improvements in machine learning for remote sensing applications. 

The MSTAR dataset also was not collected using current DOD remote sensors. 

Future research could be conducted under conditions that more closely mirror the 

operational environment in which a fully developed model would be fielded. This includes 

target detection in a complete scene, a task that was not required due to the format of the 

MSTAR dataset where the target appears centered in a relatively small image. This thesis 

does, however, provide a technical demonstration that transfer learning from one modality 

to another has potential to make the development of accurate models with limited training 

data sets easier.  

Further work could also be done to explore a kNN classifier as a replacement for 

the classification output of a neural network. kNN performance when trained on features 

extracted from mid-level convolutional layers and from other neural network architectures 

could be studied for SAR images or in other classification tasks. The optimal size for 

vectorized images for input to a kNN classifier could also prove a fertile area of study as 

the distance measurements used in the kNN algorithm become less computationally 

expensive with smaller vectors. 
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