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1 Summary 
 

The FENCE was a project managed by AFRL under the Defense Advanced Research Project Agency 
(DARPA) Media Forensics (MediFor) Program to design a set of reliable forensic tools based on the 
visual analysis of image physical properties. The final aim was to design and deploy a set of tools 
able to detect and locate several kinds of image manipulations working in a completely automatic 
way. The proposed idea was to design a process that should involve the automatic 
detection/localization of scene level characteristics that typically require the human assistance.  

According to this proposed project path, a set of tools for the automatic detection of asymmetric 
cropping of digital images were designed first. In particular, we developed two different approaches 
for cropping detection: (i) a detector based on image meta-data analysis, and (ii) a method exploiting 
geometrical characteristic of the scene in order to estimate image projective invariants that can be 
used to assess the integrity of the image. After that, we developed a novel technique to detect face 
splicing based on the physical analysis of the imaged scene. We started from the hypothesis that a 
possible splice in the image is noticed when, in the same image, light coefficients computed from 
different parts of the scene or objects exhibit relevant differences. In particular, we designed tools 
that, if the image under test contains at least two faces, tries to determine if one of the faces has been 
spliced by means of the comparison of a set of light-related features. A dissimilarity in these features 
will expose the presence of a splicing. While the performance of these methods under controlled 
scenarios, described in the papers (Fanfani, et al., 2020)  and (Fanfani, et al., 2019) has been higher 
than the state of the art, results in the MediFor Evaluations have not been satisfying and these research 
paths have been discontinued. 

Our research activity then shifted towards a second path for the manipulation of digital videos. In 
particular, we designed two novel techniques for unsupervised forensic analysis of video file 
containers. The core idea is the fact that different manufacturers, models and software processing 
produce videos with subtle differences in the file container structure and content. The first algorithm 
is able to analyze video containers by providing a formal metric to automatically quantify the 
dissimilarity between two containers. The measure accounts for both the container structure and 
content, and has proven to be effective in distinguishing videos whose integrity is preserved from 
videos whose integrity is compromised. After that, we introduced a new container-based method 
capable not only to provide an indication of integrity, but also to identify the software used to perform 
a video manipulation. This was achieved by using a decision-tree-based classifier applied to a 
vectorial representation of the video container structure. Extensive experiments were carried out on 
publicly available datasets and during MediFor evaluations, showing excellent results for the integrity 
verification task. The proposed techniques are shown to be able to also automatically detect 
manipulations that are performed without video re-encoding, which is an unprecedented achievement 
for a video forensic algorithm. Moreover, the proposed approaches require an extremely small 
computational cost as opposed to existing techniques based on the video stream analysis. Our two 
tools achieved the highest AUC scores in the video manipulations task of MediFor evaluations, while 
at the same time being among the least computationally expensive algorithms. 

The third research path involved the analysis of PRNU) on images and videos acquired by 
smartphones. It is known that PRNU is a unique trace left into the content by the sensor that allows 
to link an image or video to the originating device. However, smartphones exhibit several peculiarities 
that does not allow the application of the usual PRNU extraction and detection, thus requiring proper 
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countermeasures. In particular, we worked on three sub-topics: (i) a method for hybrid camera 
identification, that uses PRNU from images and videos; (ii) a calibration technique that can be reliably 
used to estimate the scale factors relating different acquisition modalities (image, video, and stabilized 
video) of a given device and a laboratory setup to deeply understand Electronic Image Stabilization 
(EIS). Then, (iii) a method exploiting deep neural networks to register PRNU signal under small scale 
and rotation transformations is presented. While the first two topics had a publication as output, the 
last research was not closed at the end of the Project. Moreover, the tools were not ready for their 
inclusion on the MediFor evaluations, such that only internal experimental results are shown. 

All these three research topics are described in this Final Performance Report. For each of them, we 
have a section divided into an introduction part, a methodology description, the analysis of the results 
and some final conclusions. 
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2 Content and meta-data based image integrity verification 
Introduction 

Across the years, a great attention has been devoted to signal-based methods for image forgery 
detection with interesting results, even in automatic frameworks. Nevertheless, these methods are 
often ineffective when the investigated content undergoes a processing chain that may partially or 
completely spoil the traces left by previous operations. On the other hand, scene-based solutions can 
cope effortlessly with non-native contents, but they are not popular yet in the forensic domain, as they 
usually require specific features that are both difficult to detect and prone to noise, thus making it 
quite arduous to avoid altogether manual intervention. The first part of our research has been devoted 
to design new scene-based algorithms that show improved performance with respect to the state of 
the art. In particular, we worked on two problems: cropping detection, and face splicing detection. 

Cropping is a simple yet powerful way to maliciously alter the content and the meaning of an image. 
Despite its communication impact, the forensic community has historically investigated this kind of 
forgery less than other image manipulations like splicing, copy-move or removal. The few solutions 
presented in literature are signal-based methods that look for blocking artefacts arising from image 
compression (Bruna, et al., 2011) (Li, et al., 2009). However, such solutions have problems dealing 
with images saved with a high-quality factor or after simple re-compression operations. For these 
reasons, during the MediFor project, we developed two different approaches for cropping detection: 
(i) a detector based on image meta-data analysis, and (ii) a method exploiting geometrical 
characteristic of the scene in order to estimate image projective invariants that can be used to assess 
the integrity of the image. 

Concerning face splicing, this attack is achieved by inserting into an original image a human face 
retrieved from a different photo. This manipulation is one of the most critical since it deals with 
people’s identity and can be used to produce images where specific subjects are inserted into a 
particular and misleading context. During the Medifor Program we developed a novel technique to 
detect face splicing based on the physical analysis of the imaged scene. Previous works exploiting 
physical traces in the image try to directly extract and estimate the light parameters (i.e., the light 
source position, color and intensity) on each single face in the image and to detect inconsistencies 
indicating possible tampering. These parametric models that describe the interaction between light 
and environment are based on the spherical harmonics representation (Ramamoorthi & Hanrahan, 
2001) (Basri & Jacobs, 2003). A possible splice in the image is noticed when, in the same image, 
light coefficients computed starting from different parts of the scene or objects exhibit relevant 
differences. In particular, light coefficients are estimated from occluding boundaries in (Johnson & 
Farid, 2007), and from human faces in (Peng, et al., 2015) (Peng, et al., 2016) (Peng, et al., 2017), 
after retrieving their 3D shape. To the best of our knowledge, the complex model described in (Peng, 
et al., 2017), enriched to overcome the strict assumption of the spherical harmonics representation, 
represents the current state-of-the-art in face splicing, but still shows the main drawbacks inherent in 
retrieving the spherical light coefficients. Differently, our new approach tries to indirectly analyze 
physical discrepancies as alterations measured on histograms that statistically model the interaction 
between a single face, with its own geometry and shape, and light.  
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2.1 Methodology 

2.1.1 Meta-data based cropping detector 
A naïve cropping attack can be spotted by checking some meta-data of an image, without requiring 
complex analysis on the image content. In Figure 1 the flow chart of the cropping detector is 
presented. 

Figure 1: flow-chart of the meta-data based cropping detector. 

As can be seen, at first the make, model and resolution of the probe image are extracted from the 
image meta-data. Then the system uses the retrieved make and model to extract standard resolution 
values from a built-in database that includes several camera models. In the case that the model is 
found in the dataset, if the standard resolution matches the probe resolution, the input image is labeled 
as pristine. On the other hand, if no meta-data are available in the probe, or if the probe model is not 
found in the dataset, or if there is no match between the database standard resolution and the probe 
resolution, the system performs two additional test. Firstly it checks if the image has dimensions 
divisible by 8 (since the JPEG compression works with 8x8 blocks): if the check fails, the probe is 
labeled as forged; otherwise, it verifies the image aspect ratio and labels the image as pristine or 
forged depending whether the probe has standard aspect ratio (e.g. 4/3, 16/9, etc.) or not. 

2.1.2 Geometric-based cropping detector 
This tool is based on the assumption that in modern cameras, the image principal point (PP) – i.e. the 
projection of the camera focal center to the image plane – falls near the image center (CC). By 
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observing the position of the PP with respect to CC, we can assess if the image was pristine (PP 
coincides with CC) or cropped. Note that only asymmetric crops can be detected. 

PP estimation is a known topic in computer vision and photogrammetry, strictly related to the camera 
calibration problem. When the camera is available, accurate off-line techniques exploiting a known 
pattern in the scene can be used to calibrate it (Zhang, 2000). The calibration problem can also be 
solved in the absence of the original camera, if images taken with that camera are available, in which 
case the problem is better known as self-calibration. Several self-calibration techniques exist, which 
differ according to the type of visual data (videos, image collections, single images) and operating 
conditions (e.g., in a video, fixed vs changing camera parameters) (Szeliski, 2010). Self-calibration 
of single images typically relies on a priori information about the scene structure, which can be 
exploited to infer the calibration parameters (Colombo, et al., 2006) (Guillou, et al., 2000). Structural 
information of special relevance to applications is that of Manhattan World scenes (Coughlan & 
Yuille, 1999), where it is assumed that the scene includes man-made structures like buildings, giving 
rise to sets of lines having mutually orthogonal directions in 3D (Deutscher, et al., 2002) (Pflugfelder 
& Bischof, 2005). These lines, once projected onto the image plane using a pinhole camera model, 
can be used to estimate the vanishing points of the scene. In case of Manhattan World scenes, most 
of the image lines are projection of mutually orthogonal 3D directions. Exploiting this knowledge, it 
is possible to estimate the intrinsic camera parameters, that also includes the location of image PP by 
solving a linear system. 

Transferring to the forensic domain computer vision techniques, which typically assume genuine 
images, make the task of camera calibration (and specifically PP estimation) even more challenging 
– for example, PP is often initially assumed to be in the image center, and then either used as is or 
slightly refined. Conversely, in common forensic scenarios, only images of unknown origin are 
available, and no a priori assumptions can be made about parameters. This means that any parameter 
to be exploited for tampering detection must be extracted directly from (possibly manipulated) image 
data, without any prior information about it. 

This tool is designed to detect evidence of cropping in a large collection of images. This requires that 
the algorithm operates in an automatic way, being also capable to decide autonomously whether the 
image at hand is tractable (i.e., it meets the Manhattan-world scene assumption) or not.  
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The algorithm is designed as follows. After 
detection of straight lines, these are clustered in 
order to estimate a set of three vanishing points 
related to mutually orthogonal directions in 3D. 
From them, vanishing points are computed and a 
first candidate PP is obtained. Evidence of 
cropping is then established with a statistical 
analysis of a cloud of putative PPs extracted from 
the image with a Monte Carlo process. Two 
heuristic criteria are then introduced to discard 
intractable images:  

(i) MaxAngle: as reported in (Row & Reid, 2012),
a triangle joining vanishing points related to three
mutually orthogonal directions in the 3D space
can't have angles greater than 90∘. If a greater
angle is found among the extracted VPs, the image
is opted-out immediately, without wasting
additional time on its analysis.

(ii) MaxDist: the distance between the ground
truth PP and the cropped image center (normalized
w.r.t. the diagonal of the cropped image) can be
expressed as a function of the cropping factor 𝛼𝛼 ∈
[0,1[ as

𝒮𝒮(α) =
α

2(1 − α) 

Since we assumed to handle cropping factors up to 
50%, with maximum expected distance equal to 
𝒮𝒮(1/2) = 0.5, the image at hand is opted-out 
without entering the Monte Carlo analysis if the 
first candidate PP distance w.r.t the CC exceeds 
0.5.  

In Figure 2, a graphical representation of the 
developed pipeline is reported. Further details can 
be found in our publication (Fanfani, et al., 2020). 

Note also that a preliminary analysis on the 
reliability of PP estimation in the forensic 
scenarios was reported in our paper (Iuliani, et al., 
2017). 

Figure 2: geometric cropping detector pipeline. 
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2.1.3 Face splicing detector by means of FISH descriptors 
Under the assumption of convex and Lambertian surfaces with fixed albedo and distant light sources, 
the image intensity values of points in the scene only depend on their associated surface normals. In 
the case of faces, the resulting channel-wise mapping function L: R𝟛𝟛 → R from normals n = [x y z]T, 
z > 0 to a color channel intensity of the image I = L(n) can be statistically modeled using a 
histogram-based representation, referred to as Face Intensity-Shape Histogram (FISH), computed as 
follows. 

Given a face in the image and its associated 3D shape model, we first pre-process the model so as to 
remove face regions strongly violating the assumptions above. These areas include neck and ears 
(that yield poorly estimated normals), mouth, eyes and eyebrows (that have a different albedo and 
reflectance with respect to face skin), and saturated areas. 

FISH bins i = 0, … , b are sampled according to the vertexes of a semi-icosphere (i.e., the simplicial 
polyhedron at subdivision level 3 approximating a semi-sphere limited to the positive z-axis, b =
304). Each bin corresponds to a distinct quantized surface normal ni. FISH bin values Ii = L(ni) for 
each color channel are computed via Gaussian kernel density estimation as explained hereafter. Let 
Ik�  and nk� be respectively the intensity value and the associated normal of a point on the masked face. 
Then: 

Ii = �
wik

wi
Ik�

k

 

where the sum is over the masked face pixels, with weights 

wi = �wik
k

 

computed from the Gaussian distribution 

zik =
1

√2πσ
e−

1
2�
arccos(ni⋅nk� )

2σ �
2

 

subject to an influence cutoff threshold τ 

wik = zik if 
𝑧𝑧𝑖𝑖𝑖𝑖
∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖

>  τ 

or 0 otherwise. 

The standard deviation σ used to define the kernel bandwidth is equal to the average angular distance 
between two adjacent vertexes of the icosphere. 

By concatenating the bin values for each channel, the final FISH descriptor L is obtained. FISH 
descriptors can be used to compare faces in a probe image. The more two FISH descriptors are similar, 
the more the corresponding faces are likely to be exposed to the same light conditions. 

 

A possible definition of the distance 𝒟𝒟(𝑎𝑎, 𝑏𝑏) between two FISH descriptors 𝐿𝐿𝑎𝑎 and 𝐿𝐿𝑏𝑏 associated to 
faces a and b is 
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where 𝐼𝐼𝑖𝑖𝑎𝑎 = 𝐿𝐿𝑎𝑎(𝑛𝑛𝑖𝑖), 𝐼𝐼𝑖𝑖𝑏𝑏 = 𝐿𝐿𝑏𝑏(𝑛𝑛𝑖𝑖), ∥⋅∥ is the Euclidean norm---chosen experimentally, as it gives the 
best results---and 𝑤𝑤𝑖𝑖

𝑎𝑎, 𝑤𝑤𝑖𝑖
𝑏𝑏 are the bin weights. 

However, unhandled skin albedo would result in an incorrect FISH-based face matching. In order to 
remove skin color effects when comparing two FISH descriptors 𝑳𝑳𝒂𝒂 and 𝑳𝑳𝒃𝒃, we developed and tested 
two normalization strategies. The first strategy consists of simply pre-normalizing 𝑳𝑳 by the mean 
RGB value 𝝁𝝁 of the associated masked face, under the common assumption that albedo is a scale 
factor, i.e. 

𝐼𝐼𝚤̇𝚤 = 𝐿̇𝐿(𝑛𝑛𝑖𝑖) = 𝐿𝐿(𝑛𝑛𝑖𝑖)/μ 

channel-wise, so that 

𝒟𝒟′(𝑎𝑎, 𝑏𝑏) = 𝒟𝒟�𝐿𝐿𝑎̇𝑎 , 𝐿𝐿𝑏̇𝑏� 

In the second strategy, the albedo characterizing 𝑳𝑳𝒂𝒂 is replaced with that of 𝑳𝑳𝒃𝒃 taking into account 
color saturation, i.e., 

𝐼𝐼𝑖𝑖𝑎𝑎→𝑏𝑏 = 𝐿𝐿𝑎𝑎→𝑏𝑏(𝑛𝑛𝑖𝑖) = min �255, 𝐿𝐿𝑎𝑎(𝑛𝑛𝑖𝑖)  
μ𝑏𝑏
μ𝑎𝑎
� 

and vice-versa, so that 

𝒟𝒟′′(𝑎𝑎, 𝑏𝑏) = min�𝒟𝒟(𝐿𝐿𝑎𝑎, 𝐿𝐿𝑏𝑏→𝑎𝑎),𝒟𝒟(𝐿𝐿𝑏𝑏 ,𝐿𝐿𝑎𝑎→𝑏𝑏)� 

2.1.3.1 Automatic face splicing detection 

Figure 3: face splicing detection pipeline. 

We employed the FISH descriptor to develop a fully automated pipeline for face splicing detection 
that can be divided into the following three steps (see Figure 3): 

• Face detection. The method proposed in (Mathias, et al., 2014) is used, also registering on
each recognized face using 68 landmarks according to the face alignment algorithm of (Xiong
& la Torre, 2013).
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• Face shape and normals estimation. Face landmarks computed at the previous step are used 
to register a 3D Morphable Model (3DMM) and to obtain an estimate of the face shape. In 
particular, we adopted the solution presented in (Zhu, et al., 2015), combining the Basel Face 
Model (Paysan, et al., 2009) and the Face Warehouse  model (Cao, et al., 2014) in order to be 
able to adapt the model to both identity and expression. As an alternative approach, we also 
tested the recent method proposed in (Trigeorgis, et al., 2017) based on convolutional neural 
networks.   

• FISH descriptors extraction and comparison. As previously described. 

Note that, in the case that only two faces are detected, the pipeline can detect the occurrence of 
tampering, but is unable to indicate which of the two is the tampered face, while, if more than two 
faces are found, the spliced face can be localized as the one with the greatest distance in terms of 
FISH descriptors from the other faces. 

2.2 Results 

2.2.1 Results for meta-data based cropping detector 
We tested our meta-data based cropping detector on MFC19‐EvalPart1‐Image‐Ver1, that is a part of 
the Media Forensics Challenge dataset built by the NIST for the MediFor Project and used as 
benchmark to evaluate the developed algorithms during the four project years,  obtaining the 
following results: AUC = 0.59 in the case of no selective scoring, while, limiting to crop manipulation 
(i.e. Selective Scoring CROP), an AUC = 0.70 is obtained, not a bad result considering also that its 
running time is about 3 seconds per probe. Note that this tool cannot provide any localization of the 
tampering, neither does it have heuristics to opt-out probes. 

2.2.2 Results for geometric-based cropping detector 
We deeply tested our geometric-based cropping detector on several publicly available datasets 
including man-made scenes, showing good performance and high robustness w.r.t. re-compression, 
enhancement, and blurring operations. Please refer to our published paper (Fanfani, et al., 2020). 
Also, in the supplementary material, we reported additional plots of ROC curves. 

On the other hand, this tool was also tested on MFC19‐EvalPart1‐Image‐Ver1 obtaining AUC of 0.49 
and 0.52 with no selective scoring, respectively for no opt-out and opt-out. Considering only cropping 
attack (i.e. selective scoring CROP), it achieved AUC of 0.49 and 0.51 in the case of no opt-out and 
with opt-out.  

The different performance obtained in the public dataset with respect to those achieved on MFC 
evaluation, indicate how this method is strongly dependent on the input probe scene: when dealing 
with general kind of scenes in the MFC dataset, a drop in performance is obtained. Also, we can 
observe that the heuristic criteria used in the software, while effective in discarding wrongly estimated 
probes, are not sufficient to discriminate between tractable scenes (i.e. man-made scenes) and 
intractable ones. 

2.2.3 Results for face splicing detection  
Detailed results on publicly available datasets are reported in our journal paper (Fanfani, et al., 2019). 
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Hereafter in Table 1, we report results obtained on the MFC19‐EvalPart1‐Image‐Ver1 dataset during 
MediFor evaluation. Note that, the method opted-out probes if less than two faces are found in the 
image, since in that case no comparison are possible. 

Table 1: AUC values of face splicing detection results on MFC19. 

No OptOut OptOut 
No selective scoring 0.53 0.58 
Selective scoring [FaceManip] 0.70 0.64 

2.3 Conclusions 
During the MediFor project, we developed two cropping detectors, one based on the analysis of image 
meta-data, the other based on geometric/projective constraints to detect cropping. Intermediate results 
were obtained: while the meta-data based detector can achieve interesting results on cropping attacks, 
this is strongly related to the quality of the manipulation: we think that an attacker with some 
experience and knowledge of the detector could easily fool this software. On the other hand, the 
geometric based detector offers a higher robustness to anti-forensic attack, and since it exploits a 
projective invariant of the image, it cannot be easily fooled. However, its application is strongly 
limited to particular kinds of scenes, and its use in-the-wild should be careful unless a high confidence 
scene classification (not available at this moment) is used to filter out intractable probes. 

Moreover, we proposed a novel approach to face splicing detection based on light analysis. The novel 
FISH descriptor is designed according to a statistical representation based on histograms, implicitly 
mapping image intensities and 3D normal vectors. FISH can alleviate the impact of the low accuracy 
of the 3D face model, typically strongly affecting the methods based on spherical harmonics.  

While the performance of the proposed methods under controlled scenarios, described in papers  
(Fanfani, et al., 2020)  and (Fanfani, et al., 2019) are of interest, the results in the MediFor Evaluation 
have not been satisfying, such that these research paths have been discontinued. 
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3 Container-based video integrity verification 

3.1 Introduction 
Integrity verification of digital videos is still mostly an uncharted territory; there are, however, several 
studies regarding integrity verification of images, where the approach is to analyze the file format 
and metadata and determine their compatibility, completeness, and consistency with respect to the 
context in which it is assumed the resource has been created. More specifically, JPEG coding data, 
Exchangeable image file format (Exif) metadata and thumbnail size have been studied: since each 
acquisition device and processing software usually adopts customized quantization tables, it is 
possible to exploit these differences to address the source identification problem (Kee, et al., 2011). 
Subsequent studies revealed that the file structure, too, contains a lot of information about the history 
of a content, while being much more difficult to extract and modify for a user than metadata. 
Available editing software and metadata editors, in fact, do not have the functionality to modify such 
low-level information, like the internal order of the core file structures (Gloe, 2012). 

These studies have been recently extended to digital videos too. In (Gloe, et al., 2014), Gloe et al. 
explore the low-level characteristics represented by metadata and low-level file format information, 
with an emphasis on the structure of the video file container. Indeed, video standards prescribe only 
a limited number of characteristics for the data container formats, thus leaving a lot of discretion to 
the manufacturer; this lead to differences that can be exploited for forensic purposes. However, while 
providing a pioneering exploration of video container formats from a forensic viewpoint, the manual 
approach proposed in (Gloe, et al., 2014) reduces the forensic capabilities on new generation media 
where the containers may be huge, deeply nested and strongly variable among different models; 
furthermore the discriminative power of some container features can be hardly quantified by manual 
inspection. 

We designed a new approach (Iuliani, et al., 2018) for unsupervised analysis of video file containers 
by providing a formal metric to automatically quantify the dissimilarity between two containers. The 
measure accounts for both the container structure and content, and has proven to be effective in 
distinguishing videos whose integrity is preserved from videos whose integrity is compromised.  

The method proposed in (Iuliani, et al., 2018) merely detects a loss of integrity, without providing a 
human-interpretable explanation of the reasoning behind its decisions. Then, we introduced a 
container-based method to identify the software used to perform a video manipulation. This is 
achieved by using a decision-tree-based classifier applied to a vectorial representation of the video 
container structure. Decision Trees (Quinlan, 1986) are a non-parametric learning method used for 
classification problems in many signal processing fields. Their key feature is the ability to break down 
a complex decision-making process into a collection of simpler decisions. The proposed method 
(Yang, et al., 2020), simply called EVA (Efficient Video Analysis), offers several forensic 
opportunities, such as: identifying the manipulating software (e.g. Adobe Premiere, ffmpeg, . . . ); 
providing additional information related to the original content history, such as the source device 
operating system. The process is extremely efficient since a decision can be taken by checking the 
presence of a small number of features, independent of the video length or size. Furthermore, EVA 
can provide a simple explanation for the process leading to an outcome, since container symbols used 
to take a decision can be inspected.  
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These two methods are based on the analysis of the structure of the file containing the video. Indeed, 
most smartphones and compact cameras output videos in mp4, mov, or 3gp format. This video 
packaging refers to the same standard, ISO/IEC 14496 Part 12 (ISO/IEC 14496, 2008) that defines 
the main features of MP4 (ISO/IEC 14496, 2003) and MOV (Apple Computer, Inc., 2001), containers 
while leaving a wide margin for those who implement it. In Figure 4 we provide an example of an 
MP4-like container, a tree like structure describing the video file with respect to three aspects: how 
the bytes are organized (physical aspect); how the audio/video streams are synchronized (temporal 
aspect);and how the latter two aspects are linked (logical aspect). Each node (atom) is identified by a 
unique 4-byte code. It consists of a header which describes its role in the container and possibly some 
associated data. The first atom to appear in a container has to be ftyp, since it defines the best usage 
and compatibility of the video content. 

We represent the video container as a labelled tree where internal nodes are labelled by atoms names 
(e.g. moov) and leaves are labelled by field-value attributes (e.g. @stuff: MovieBox). To take into 
account the order of the atoms, each XML-node is identified by a 4-byte code of the corresponding 
atom along with an index that represents the relative position with respect to the other siblings at a 
certain level. 

Figure 4: Video container example 
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3.2 Methodology 

3.2.1 Video analysis based on container dissimilarities 
Given a video 𝑋𝑋, its container is then represented as an ordered collection of atoms 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛, possibly 
nested. Each atom can be described as a set of field-value attributes  𝑎𝑎𝑖𝑖 =  �𝜔𝜔1(𝑎𝑎𝑖𝑖), … ,𝜔𝜔𝑚𝑚_𝑖𝑖(𝑎𝑎𝑖𝑖)�. By 
combining the two previous descriptions, the video container can be characterized by the set of field-
value attributes 𝑋𝑋 = {𝜔𝜔1, … ,𝜔𝜔𝑚𝑚}, each with its associated path 𝑃𝑃𝑋𝑋(𝜔𝜔𝑖𝑖) that is the ordered list of atoms 
to be crossed to reach 𝜔𝜔𝑖𝑖 in 𝑋𝑋 starting from the root.  

In summary, the video container structure is completely described by a list of 𝑚𝑚 field-value attributes 
𝑋𝑋 = {𝜔𝜔1, … ,𝜔𝜔𝑚𝑚}, and their corresponding paths {𝑃𝑃𝑋𝑋(𝜔𝜔1), … ,𝑃𝑃𝑋𝑋(𝜔𝜔𝑚𝑚)}.  

When a video is processed in any way, even without further encoding, the container structure is 
strongly altered with respect to its native structure. Conversely, the file containers of native content 
generated from a specific source device are expected to have a small intra-variability, caused by 
differences in the device settings. More generally, given a video 𝑋𝑋 whose integrity has to be assessed, 
and a native reference video 𝑋𝑋′ coming from the same supposed device model, their container 
structure dissimilarities can be exploited to expose evidences of integrity violation, as follows: we 
define their similarity 𝑆𝑆(𝑋𝑋,𝑋𝑋′) as the percentage of shared field-values with corresponding paths.  
Then, their dissimilarity can be computed as the mismatching percentage of all field-values, i.e., 
𝑚𝑚𝑚𝑚(𝑋𝑋,𝑋𝑋′) =  1 − 𝑆𝑆(𝑋𝑋,𝑋𝑋′). To preserve symmetry we compute as final metric 𝐷𝐷(𝑋𝑋,𝑋𝑋′) =
(𝑚𝑚𝑚𝑚(𝑋𝑋,𝑋𝑋′) + 𝑚𝑚𝑚𝑚(𝑋𝑋′,𝑋𝑋))/2. Technical details related to this computation are reported in (Iuliani, 
et al., 2018) 

3.2.2 Video analysis based on decision trees 
A video container 𝑋𝑋 can be characterized by the set of symbols {𝑠𝑠1, … , 𝑠𝑠𝑚𝑚}, where 𝑠𝑠𝑖𝑖 can be: (i) the 
path from the root to any field (value excluded), also called field-symbols; (ii) the path from the root 
to any field-value(value included), also called value-symbols.  

An example of this representation can be: 

s1 = [ftyp/@majorBrand] 

s2 = [ftyp/@majorBrand/isom] 

… 

si = [moov/mvhd/@duration] 

si+1 = [moov/mvhd/@duration/73432]  

Overall, we denote with Ω the set of all unique symbols 𝑠𝑠1, … , 𝑠𝑠𝑀𝑀 available in the world set of digital 
video containers Χ =  {𝑋𝑋1, … ,𝑋𝑋𝑁𝑁}. Similarly, Γ =  {𝐶𝐶1, … ,𝐶𝐶𝑆𝑆} denotes a set of possible origins (e.g., 
Huawei P9, Apple iPhone 6s). Given a container 𝑋𝑋, the different structure of its symbols {𝑠𝑠1, … , 𝑠𝑠𝑚𝑚}  
can be exploited to assign the video to a specific class 𝐶𝐶𝑢𝑢. For this purpose binary decision trees 
(Safavian & Landgrebe, 1991) are employed to build a set of hierarchical decisions. In each internal 
tree node, the input data is tested against a specific condition; the test outcome is used to select a child 
as the next step in the decision process. More specifically, in our approach we adopted the growing-
pruning-based Classification And Regression Trees (CART) (Breiman, 2017). Given the size of 
unique symbols |Ω| = M , a video container  𝑋𝑋 is converted into a vector of integers X =  {𝑥𝑥1, … , 𝑥𝑥𝑀𝑀} 



Approved for Public Release; Distribution Unlimited. 
14 

where 𝑥𝑥𝑖𝑖 is the number of times that 𝑠𝑠𝑖𝑖 occurs into X. This approach is inspired by the bag-of-words 
representation (Schütze, et al., 2008) used to reduce variable-length documents to a fixed-length 
vectorial representation. Note that X contains several symbols that are not representative of any class, 
thus contributing to class intra-variability only (e.g. information related to video length, acquisition 
date and time). These symbols are useless to determine the source of a video and they should be 
possibly removed. Thus, we pre-filtered the data as explained in (Yang, et al., 2020). 

3.3 Results 

3.3.1 Video analysis based on container dissimilarities 
We tested the proposed techniques on the VISION dataset (Shullani, et al., 2017), analyzing 31 
portable devices of 8 major brands that leads to an available collection of 578 videos in the native 
format plus their corresponding social versions (YouTube and WhatsApp are considered). 

We considered four different scenarios of integrity violation: 

• WhatsApp: the video is exchanged through the WhatsApp social platform, that performs a
strong modification of both the data stream and file container structure (the video is re-
encoded and possibly downscaled);

• YouTube: the video is exchanged through the YouTube. The videos were uploaded via the
YouTube web interface and downloaded at the maximum resolution available with ClipGrab.

• FFmpeg: the video is cut after 10 seconds using FFmpeg, but without re-encoding the stream;
• ExifTool: only datetime-related metadata are edited using ExifTool.

For each of the four cases, we adopted the following procedure: we considered the set of videos 
𝑋𝑋1, … ,𝑋𝑋𝑁𝑁𝑖𝑖 available for each device 𝐶𝐶𝑖𝑖, and we computed the intra-class dissimilarities between two 
native videos 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐷𝐷�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗� ∀𝑖𝑖 ≠ 𝑗𝑗. For simplicity we denote with 𝐷𝐷𝑜𝑜𝑜𝑜 this set of dissimilarities. 
Then, we considered the corresponding inter-class dissimilarities 𝐷𝐷𝑖𝑖,𝑗𝑗𝑡𝑡 =  𝐷𝐷�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗𝑡𝑡� ∀𝑖𝑖 ≠ 𝑗𝑗 between a 
native video 𝑋𝑋𝑖𝑖 and the corrupted version 𝑋𝑋𝑗𝑗𝑡𝑡 obtained with the tool 𝑡𝑡  (WhatsApp, YouTube, FFmpeg, 
or ExifTool) applied to 𝑋𝑋𝑗𝑗 . We denote with 𝐷𝐷𝑜𝑜𝑎𝑎𝑡𝑡  this set of dissimilarities.  

By applying this procedure to all the considered devices, we collected 2890 samples for both 𝐷𝐷𝑜𝑜𝑜𝑜 and 
any of the four 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 . The results of this test are reported in Figure 5: the first column (ID) indicates 
the unique number identifying the device according to the VISION Dataset nomenclature, the 
“Original” column shows the minimum and maximum values of the intra-class dissimilarity 𝐷𝐷𝑜𝑜𝑜𝑜 
obtained for each device; the “Altered” column reports the minimum and maximum values of the 
inter-class statistics 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡  for all the considered tools (WhatsApp, YouTube, FFmpeg, or ExifTool); 
the “AUC-Alt” column shows the Area Under Curve summarizing the performance of the proposed 
method in distinguishing original and altered videos: as it clearly appears from the table, in most of 
the devices the maximum value of 𝐷𝐷𝑜𝑜𝑜𝑜 is lower than the minimum value of 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 , thus indicating that 
the two classes can be separated perfectly; this corresponds to the value 1 of the AUC; for some 
devices this does not hold, but in every case the AUC is very close to 1, indicating that the errors are 
limited.  
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Figure 5: Video Integrity Verification Performance 

In a second test, we showed that we can correctly identify when a video, although native, does not 
belong to a specific camera model. To this end, we built the inter-class dissimilarities 𝐷𝐷�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗 � ∀𝑖𝑖 ≠
𝑗𝑗, where 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 are native videos belonging to different camera models. We denote with 𝐷𝐷𝑜𝑜𝑜𝑜 this 
set of dissimilarities. We report the results of this test in Figure 5: in the “Other Devs” column the 
minimum and maximum of the inter-class statistics 𝐷𝐷𝑜𝑜𝑜𝑜; in the “AUC-Devs” column the AUC 
summarizing the performance in distinguishing the two classes 𝐷𝐷𝑜𝑜𝑜𝑜 and 𝐷𝐷𝑜𝑜𝑜𝑜. Results highlight that 
the adopted measure is very good in separating a query native video from native videos belonging to 
other devices, since AUC values are always higher than 0.96. 

Eventually, in the last column “AUC-All” we reported the AUC summarizing the performance in 
distinguishing between 𝐷𝐷𝑜𝑜𝑜𝑜 and all inter-class statistics 𝐷𝐷𝑜𝑜𝑜𝑜 =  𝐷𝐷𝑜𝑜𝑜𝑜  ∪  𝐷𝐷𝑜𝑜𝑜𝑜, so we have joined the 
two previous cases.  

Summarizing, for the video integrity verification tests we obtained perfect discrimination for videos 
altered by social network or FFmpeg, while for ExifTool we obtain an AUC greater than 0.82 on 70% 
of the considered devices. It can be noted that, using state of the art methods based on data stream 
analysis, it would be nearly impossible to detect cutting with FFmpeg, since no re-encoding occurs; 
still, cutting an arbitrary portion of the video can be considered a realistic and powerful attack. 

We highlight that the comparison between a video reference and a video query requires on average 
just 0.15 seconds (the computational cost has been computed on an Intel(R) Core(TM) i7-3770 CPU 
at 3.40GHz, running all algorithms by means of Python 2.7). 
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3.3.1.1 MediFor Evaluation 
Finally, during the MediFor evaluation, the proposed method achieved an AUC of 0.98 and 0.99 on 
the MFC19 and MFC20 datasets respectively (the tool is tagged as unifi-ed209 in Figure 6).   

Figure 6: Performance on MediFor evaluation 

Note that, with the latest version of the tool, we were able to process a video, independently on its 
length and size, within few tens of seconds (see Table 2). 

Table 2: Performance of video container analysis on MFC 2020 

File Format #Videos Ave Time (s) Max Time (s) 
.mp4 514 12.40 25.61 
.mov 128 17.16 167.55 
.3gp 41 13.57 15.37 
.avi 27 12.23 87.30 
.mts 12 N/A N/A 
.mxf 18 N/A N/A 

3.3.2 Video analysis based on decision trees 
We performed tests under several scenarios: 

• Integrity verification and comparison with other state of the art methods;
• Manipulation characterization and brand identification;
• Integrity verification on social media contents;
• Blind scenario where no hypothesis is made on the investigated content
• MediFor evaluation on MFC20

3.3.2.1 Integrity Verification 
The first relevant experimental question is whether the proposed approach is capable of distinguishing 
between pristine and tampered videos. To answer it, we created a new collection of videos, starting 
from the VISION dataset (Shullani, et al., 2017), that includes native videos from 35 smartphones of 
11 different brands. As it would have not been feasible to perform the editing operations, upload, and 
download of all the videos in VISION, we selected 4 videos for each device, thus obtaining a total of 
140 pristine videos. Then, we created 1260 (140 x 9 editing operations) tampered videos, both 
automatically generated with ffmpeg and Exiftool, and manually created through Kdenlive, 
Avidemux and Adobe Premiere: Furthermore, all the produced contents (140 pristine videos and 1260 
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tampered ones) were exchanged through various social media platforms. Technical details related to 
the contents generation are available in (Yang, et al., 2020). 

The container structure is extracted from each video by means of the MP4 Parser library (Apache, 
s.d.). Note that, due to how the dataset was built, some value-symbols are always present in some 
classes even if they are not relevant for their identification. For instance, all the cut videos have the 
same duration even if this is not, per se, relevant for identifying the editing. As this could lead to 
artificially higher performance, we manually removed the value-symbols associated to some fields as 
detailed in (Yang, et al., 2020).  

In order to estimate the real-world performance of the proposed method we adopted an exhaustive 
leave-one-out cross-validation strategy. We partitioned our dataset in 34 subsets, each one of them 
containing pristine, manipulated, and social-exchanged videos belonging to a specific device. We 
performed each of the experiments hereby described 34 times, each time keeping one of the subsets 
out as test set, and using the remaining 33 for training our model. In this way, test accuracies collected 
after each iteration are computed on videos belonging to an unseen device. We reported the mean 
accuracies obtained among all the iterations as confusion matrices. During the training we assigned 
to each class a weight inversely proportional to the class frequency. We used the decision trees 
algorithms available as part of scikit-learn (Pedregosa, et al., 2011), a freely available Python toolkit 
for machine learning. We trained our method to distinguish between the two classes “Pristine” 
(containing 136 videos) and “Tampered”(containing 1224 videos). We obtained a global balanced 
accuracy of 98.5%, failing only for videos produced by D12 (Table 2).  

We also compared our method with two recently proposed algorithms for video integrity (Iuliani, et 
al., 2018), (Güera, et al., 2019). In Table 3 we report the mean global accuracy and the average 
runtime per fold for the proposed approach and for those two methods. EVA outperforms the 
approach proposed by Guera et al. both in effectiveness and efficiency. When compared with Iuliani 
et al., EVA shows slighter better performance but a much faster computing time. Indeed, the cost for 
a decision tree analysis is O(1) since the output is reached in a constant number of steps; on the 
contrary, in Iuliani et al. O(N) comparisons are required since all the N reference set examples must 
be compared with a tested video. Furthermore, EVA often provides a simple explanation for the 
outcome.  

Table 3: Performance comparison 

 Balanced 
Accuracy 

Training  
Time (sec.) 

Testing 
Time (sec.) 

Guera et al. 0.67 347 <1 
Iuliani et al. 0.85 N/A 8 
EVA 0.98 31 <1 

3.3.2.2 Manipulation Characterization 
We also performed a set of experiments designed to show that the proposed method, as opposed to 
the state of the art, is also capable of identifying the manipulating software and then we tried to answer 
the following questions:  

A. Software identification: Is the proposed method capable of identifying the software used to 
manipulate a video? If yes, is it possible to identify the operating system of the original video? 
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B. Integrity Verification on Social Media: Given a video from a social media platform (YouTube,
Facebook, TikTok or WeiBo), can we determine whether the original video was pristine or
tampered?

C. Blind scenario: Given a video that may or may not have been exchanged through a social
media platform, is it possible to retrieve some information on the video origin?

3.3.2.3 Software identification 
In this scenario we only analyze videos that either are native, or that have undergone a manipulation. 
This time, however, we trained our algorithm to classify which software has been used to tamper the 
video, if any. Our classes are thus: “native” (136 videos), “Avidemux” (136 videos), “Exiftool”(136 
videos), “ffmpeg” (680 videos), “Kdenlive” (136 videos),and “Premiere” (136 videos). In this 
experiment EVA obtained a global balanced accuracy of 97:6%; the detailed results, reported in Table 
4, show that the algorithm achieved a slightly lower accuracy in identifying ffmpeg with respect to 
the other tools. This is reasonably due to the fact that ffmpeg library is used by other software and, 
internally, by Android devices.  

Table 4: Integrity verification performance 

Native Avidemux Exiftool ffmpeg Kdenlive Premiere 
Native 0.97 0.03 
Avidemux 1.00 
Exiftool 0.01 0.99 
ffmpeg 0.01 0.90 0.09 
Kdenlive 1.00 
Premiere 1.00 

3.3.2.4 Integrity Verification on Social Media 
In this scenario we tested YouTube, Facebook, TikTok and Weibo videos to determine whether they 
were pristine or manipulated prior the upload. A summary of the results obtained by our method is 
reported in Table 5. We achieved global balanced accuracies of 0.76, 0.80, 0.79, and 0.60 on 
Facebook, TikTok, Weibo, and Youtube, respectively (see Table 5).  

Table 5: EVA performance on social media contents 

Accuracy TNR TPR 
Facebook 0.76 0.40 0.86 
TikTok 0.80 0.51 0.75 
Weibo 0.79 0.45 0.82 
Youtube 0.60 0.36 0.74 

Such results are characterized by low true negative rates, and thus it cannot be considered effective 
in this scenario, as many tampered videos are incorrectly classified as pristine. The poor performance 
is mainly due to the social media transcoding process that flattens the containers almost independently 
of the video origin. As an example, after YouTube transcoding, videos produced by Avidemux and 
by Exiftool have exactly the same container representation. We do not know how the videos are 
processed by the considered platforms due to the lack of public documentation, but we can assume 
that uploaded videos undergo custom/multiple processing. Indeed, social media videos need to be 
viewable on a great range of platforms, and thus need to be transcoded to multiple video codecs and 
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adapted for multiple resolution and bitrate. Thus, it seems plausible that those operations could 
discard most of the original container structure.  

3.3.2.5 Blind scenario 
In this scenario we considered videos that may or may not have been exchanged through a social 
media platform and we would like to extract the most complete information possible. We used all the 
videos in our dataset and we trained our classifier to distinguish (i) whether the video was downloaded 
from a social media platform; (ii) whether the video has been tampered and, if so, which software has 
been used; (iii) whether the original video belong to an Android or iOS device. As a summary we 
found no performance decay with respect to the previous scenarios. Even without any prior 
knowledge of the video origin, we are still able to distinguish between native and tampered videos. 
Our method is also able of correctly identifying videos belonging to YouTube, Facebook, TikTok 
and Weibo, even though in this case it is not possible to make further claims on the video authenticity. 
Detailed results are reported in (Yang, et al., 2020).  

3.3.2.6 MediFor Evaluation 
EVA was tested during the MFC20 evaluation. In Figure 7 we report the AUC achieved on MFC20 
(the method is labeled as unifi_dt). We obtained an area of 0.94. Note that we have a single point 
within the AUC since the method does not provide a soft score. When compared to the baseline 
method (labeled as unifi), EVA achieved slightly lower performance. However, it is extremely 
efficient since it performs analysis in less than a second (see Table 6). 

 

Figure 7: Performance of EVA on MFC20 

Table 6: EVA performance on MFC20 

File Format #Videos Ave Time (s) Max Time (s) 
.mp4 514 0.39 0.55 
.mov 128 0.39 0.55 
.3gp 41 12.70 13.85 
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3.4 Conclusions 
We introduced two novel techniques for unsupervised forensic analysis of video file containers. The 
core idea is to exploit the differences in the file container structure and content introduced by different 
manufacturers, models and software processing.  

Extensive experiments were carried out on publicly available datasets and during MediFor 
evaluations, showing excellent results for the integrity verification task. The proposed techniques are 
shown to be able to also automatically detect manipulations that are performed without video re-
encoding, which is an unprecedented achievement for a video forensic algorithm. Moreover, the 
proposed approaches exhibit an extremely small computational cost as opposed to existing techniques 
based on video stream analysis. Moreover, the second proposed algorithm, in case of tampered 
videos, is able to characterize the software that performed the manipulation with an accuracy of 
97.6%, even when the video is cut without re-encoding. As opposed to the state of the art, the 
proposed method is extremely efficient and can provide a simple explanation for its decisions. A new 
experimental dataset of 7000 videos was also created and shared with the research community, 
including contents generated with five editing tools and four social media platforms. The current 
limitation of the method is that a container based approach can identify whether the video belongs to 
a social medial platform, but it cannot be effectively applied on such contents for authenticity 
assessment, since the transcoding operation wipes out most of the forensic traces from the video 
container.  

We achieved the highest AUC scores in the video manipulations task of MediFor evaluations, while 
at the same time being among the least computationally expensive algorithms. 
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4 PRNU analysis for smartphone identification 

4.1 Introduction 
This section presents our studies on PRNU for smartphone identification. In particular, this section 
includes four main topics: (i) a method for hybrid camera identification, that uses PRNU from images 
and videos; (ii) a calibration technique that can be reliably used to estimate the scale factors relating 
different acquisition modalities (image, video, and stabilized video) of a given device and a laboratory 
setup to deeply understand Electronic Image Stabilization (EIS). Then, (iii) a method exploiting deep 
neural networks to register PRNU signal under small scale and rotation transformations is presented. 

Photo Response Non-Uniformity (PRNU) (Lukas, et al., 2006) is a unique fixed pattern noise 
generated during the acquisition process by any digital sensor. This makes PRNU ideal to develop 
effective methods for image and video source attribution (Chen, et al., 2008).  

PRNU pattern is extracted pixelwise in order to derive the fingerprint of a device, implying that 
PRNUs are best generated and compared at native camera resolution (Shullani, et al., 2017). Due to 
their high sensitivity to pixel misalignments, PRNU patterns become particularly difficult to compare 
when the source images have been warped as result of the acquisition post-processing: this could 
happen for example when comparing images and videos of a same devices, that typically are obtained 
with different sensor portions and at different resolution. Moreover, the Electronic Image 
Stabilization (EIS) used in some devices to reduce shaking effect on recorded videos can further 
desynchronize the video PRNU w.r.t. the reference fingerprint obtained from flat-field images at full 
sensor resolution. More generally, we can state that even small scale and rotation transformations, 
introduced directly by the device or maliciously made by a forger, spoil the camera identification, 
strongly reducing correlation between the reference and probe PRNUs.  

Current approaches need to tackle separately images and videos, or attempt to find an accurate 
estimate of the PRNU transformation as the one that maximizes the correlation in terms of Peak-to-
Correlation-Energy (PCE) (Goljan & Fridrich, 2008), typically by brute-force search (Taspinar, et 
al., 2016) that is computationally expensive, and not always sufficiently accurate. 

In the following we report the proposed methods to improve PRNU based source identification under 
several challenging scenarios. 

4.2 Methodology 
Hereafter we present each of the introduced topics. We devoted a different section to each topic, in 
order to ease the reading and provide better-structured presentation. 

4.2.1 Hybrid reference-based Source Identification (HSI) 
In the PRNU based source identification, image and video sources are still treated separately from 
one another. This approach is limited and anachronistic, if we consider that most of the visual media 
are today acquired using smartphones that capture both images and videos. We overcome this 
limitation by exploring a new approach that synergistically exploits images and videos to study the 
device from which they both come. Indeed, we prove it is possible to identify the source of a digital 
video by exploiting a reference sensor pattern noise generated from still images taken by the same 
device. To this aim, the geometrical relation between image and video acquisition processes are 
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studied for 18 modern smartphones, including devices featuring in-camera digital stabilization. We 
also prove that the proposed technique, while preserving the state of the art performance for non-
stabilized videos, is able to effectively detect the source of in-camera digitally stabilized videos as 
well. Most relevant related works can be found in (Iuliani, 2019).   

In order to determine the source of a digital video (DV) based on a reference derived from still images 
we employed a two steps strategy: (i) the reference fingerprint is derived from still images acquired 
by the source device; (ii) the query fingerprint is estimated from the investigated video and then 
compared with the reference to verify the possible match. Moreover, the camera fingerprint K can be 
estimated from N still images (or frames) 𝐼𝐼1, … , 𝐼𝐼𝑁𝑁, captured by the source device. A denoising filter 
(Lukas, et al., 2006), (Mihcak, et al., 1999) is applied to each frame and the noise residuals 𝑊𝑊1, … ,𝑊𝑊𝑁𝑁 
are obtained as the difference between each frame and its denoised version. Then the fingerprint 
estimate 𝐾𝐾 is derived by the maximum likelihood estimator (Chen, et al., 2008). The fingerprint of 
the video query is estimated in the same way from the available videoframes. We will refer to these 
fingerprints as 𝐾𝐾𝐼𝐼 and 𝐾𝐾𝑉𝑉 respectively. 

If the two fingerprints belong to the same camera sensor, we expect the existence of a 2D isometric 
transformation that maps the elements of 𝐾𝐾𝐼𝐼 to those of 𝐾𝐾𝑉𝑉. Given a properly rescaled fingerprint, the 
source identification can be formulated as a two-channel hypothesis testing problem (Iuliani, 2019). 
The two-dimensional normalized cross-correlation 𝑟𝑟(𝑠𝑠1, 𝑠𝑠2) is calculated for each of the possible 
spatial shifts determined within a set of feasible cropping parameters. Then, given the maximum peak, 
its sharpness is measured by the PCE ratio (Goljan, et al., 2009). In order to consider the possible 
different scaling factors of the two fingerprints —since videos are usually resized— a brute force 
search can be conducted considering the PCE as a function of all plausible scaling factors. Then its 
maximum is used to determine whether the two fingerprints belong to the same device. Practically, 
if the maximum overcomes a threshold 𝜏𝜏, the hypothesis that the two media belong to the same camera 
is decided and the corresponding peaks are exploited to determine the cropping and the scaling 
factors. It’s worth noticing that recent devices feature electronic image stabilization as a means to 
reduce the impact of shaky hands on captured videos. Source identification of videos captured with 
active digital stabilization cannot be accomplished using the classical approach of PRNU fingerprint 
computation, since it would require the fingerprint to remain spatially aligned across all frames. This 
condition is not met due to the stabilization process (Mandelli, et al., 2019). HSI solves the problem 
on the reference side (the fingerprint is estimated from still images) but the issue remains on the query 
side. A first way to compensate digital stabilization was proposed in (Hoglund, et al., 2011) and tested 
on a single Sony device. Recently, in (Taspinar, et al., 2016), it was proposed to compute the 
fingerprint from a stabilized video by using the first frame noise pattern as reference, and registering 
all following frames on such reference by estimating the similarity transformation that maximizes the 
correlation between the patterns. The technique was proved to compensate for digital stabilization 
applied off camera by third party software with limited reliability, probably because the reference for 
the whole process is computed from a single frame. In the HSI paradigm, however, still images are 
exploited to estimate a more reliable fingerprint, while on the query side each video frame is 
registered on the image reference based on a similarity transformation. 
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Figure 8: Hybrid reference-based Source Identification (HSI) pipeline to source attribution of a query video. 

Given a query video and a set of images belonging to a reference device, the proposed pipeline can 
be summarized in Figure 8. First, the device fingerprint 𝐾𝐾𝐼𝐼 is estimated from still images. Then, 
stabilized videos are preliminarily identified by splitting the frames in two groups that are used 
independently to estimate two different fingerprints, as described in (Taspinar, et al., 2016), and by 
computing their PCE; a low PCE value will expose the presence of digital stabilization. If no 
stabilization is detected, the video fingerprint 𝐾𝐾𝑉𝑉  is estimated by treating video frames as still images. 
Conversely, each frame is registered on the reference 𝐾𝐾𝐼𝐼  searching for plausible parameters based on 
PCE values. In case the expected range of parameters is known, the search can be reduced to save 
computational effort and mitigate the false alarm probability. Only registered video frames for which 
the PCE exceeds a threshold t are then aggregated to estimate the video fingerprint 𝐾𝐾𝑉𝑉. Once both 
fingerprints 𝐾𝐾𝐼𝐼  and 𝐾𝐾𝑉𝑉  are available, their PCE is computed and the correlation value is compared 
to a threshold.  

4.2.2 Understanding Electronic Image Stabilization 
As the first step, the proposed approach requires to hold a device under investigation still on a static 
scene in order to acquire images from the different photo or video formats. The native full resolution 
photo serves as reference for the sensor grid, on which other image formats must be mapped into. It 
can be argued that this acquisition step would be not practicable in many application scenarios, since 
the procedure should be repeated for each specific device. Nevertheless, as verified later in the 
experimental section, the underlying PRNU pattern transformation depends only on the device model 
and not on the device exemplar at hand. This implies that, once estimated for one device, the same 
transformation holds for any other device of the same model. Figure 9 shows an example of the above 
acquisition step. In order to improve the registration accuracy, the scene must be in focus and include 
discriminative patterns distributed across the whole image area. In the case of videos, only I-frames 
are considered and, when available, acquired images are taken using remote or vocal controls in order 
to avoid any accidental misalignments due to camera shakes. 
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To register an output format to the reference, corner-like keypoints are extracted with the HarrisZ 
detector (Bellavia, et al., 2011) and matched with the SIFT-like sGLOH2 local image descriptor 
(Bellavia & Colombo, 2018). Given the initial set of correspondences, RANndom SAmple Consensus 
(RANSAC) (Fischler & Bolles, 1981) robustly models the warping – the model assumes scale and 
translation changes only. The scale factor is the most important parameter and it is fixed for any 
device output format, even in case of EIS. In case EIS is off translation is also fixed, while in case 
EIS is on it can be easily recovered by PCE maximization when EIS does not involve frame rotations. 
An example of registration is shown in Figure 9, notice that video frames cover a smaller portion 
when EIS is on in order to compensate for translations and rotations while avoiding missing image 
spots from areas not covered by the camera sensor. 

(a) (b) 

(c) (d) 
Figure 9: Static scene image registration on a Samsung Galaxy S7 smartphone. The native full resolution photo (a) is used as 

reference to register the corresponding video frame in case EIS off (b, top) and on (b, bottom) using image keypoint matching. The 
final aligned video frames superimposed on the reference image are shown in (c) and (d), respectively. All images are scaled 

according to their resolution. The reference image on (c) and (d) is blurred for a better visual comparison. 

RANSAC estimation requires setting the inlier reprojection error, indirectly setting the degree of 
uncertainty in the final model. According to this observation, the transformation estimated so far can 
be refined through an exhaustive search over a small set of allowable scales, translations, and 
rotations, operating analogously to other PRNU pattern alignment approaches. Specifically, the 
PRNU correlation in terms of PCE is evaluated over a limited set of transformations. Warp 
transformation refinement requires extracting the reference PRNU pattern and the warped PRNU 
pattern from flat scenes (i.e., with uniform color content), that will be used to compare PCE. The 
more images that are used to compute the PRNUs, the more accurate will be the refinement. 

Further details can be found in our paper (Bellavia, et al., 2019). 

To have a deeper understanding of the transformations applied during EIS, we designed and built an 
ad-hoc structure made by a cubic metal frame, with a plywood panel on each face except one to 
strengthen the structure so as to decrease oscillations when moved or shaken (see Figure 10). On the 
empty face there is a thin grid made by a stretched nylon thread, whose intersection are evidenced by 
markers. On the opposite face to the grid, in the center, there is a hole on which the device acquisition 
sensor under test will be firmly held. When attacked to the structure, the device becomes integral with 
the grid. Each grid marker is virtually anchored to a location inside the device sensor matrix grid, so 
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that markers seen through warped EIS frame can be mapped back into the sensor matrix grid. 
Knowing the marker correspondences with respect to the reference frame enables finding the EIS 
warping transformation for the current frame.  

 
(a) 

 
(b) 

Figure 10: Front side and (a) back side (b) of the structure. Note the device placed in (best viewed in color and zoomed in) 

To obtain a frame by frame correspondence between the markers, an automatic tracking system was 
developed. Due to the small size of the markers for avoiding interferences with EIS system, existing 
tracking solutions do not work. To solve this issue an ad-hoc tracking system was developed based 
on keypoint matching. To improve the matching accuracy, the putative corresponding keypoints are 
constrained to be inside a circular window of 50 pixel radius from the marker keypoints. The process 
is further refined using RANSAC to estimate planar homographies between grid corners of frame 
pairs.  

4.2.3 PRNU re-synchronization using deep neural networks 
PRNU matching for camera identification requires a perfect alignment between the probe noise 
residual and the device fingerprint (typically obtained from several flat-field images). Except for 
translation that can be recovered while computing PCE, rotation and scale transforms, applied to the 
probe image, need to be recovered before evaluating the correlation with the fingerprint, otherwise 
low PCE values are obtained: Indeed, even slight rotations or small scale changes are sufficient to 
spoil the camera identification task. To the best of our knowledge, the only method to solve this 
problem is to use brute force search, by warping the transformed probe with all possible values of 
angles and scales and computing PCE: the maximum PCE achieved identifies the transformation 
applied to the probe. This solution has two main drawbacks: (i) at first it is computationally expensive, 
having to evaluate a high number of correlations, to the point that it is practically unusable when 
dealing with huge datasets; (ii) secondly, there are high chances to get false positive or missing 
detections if few angle/scale pairs are tested. 

A solution to this problem could have been provided by phase correlation of Fourier magnitude 
spectra in a log-polar representation (Reddy & Chatterji, 1996). However, after some testing, we 
discarded this option since results were not sufficiently reliable and computational times were still 
too high. 

We resorted then to deep learning approaches. In (De Tone, et al., 2016) a CNN to compute 
homography transformations between natural images was presented. By moving from homography 
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to similarity (considering scale and rotation only, without translation), we tried to use this method to 
register a device fingerprint with a residual noise extracted from a rotated and scaled probe.  

The net was then trained on single devices from the VISION dataset (Shullani, et al., 2017). For each 
device, at first, we split the images in three subsets: training (70%), validation (10%) and test (20%). 
From the training subset we sampled 500,000 image patches, 20,000 from the validation subset (for 
more details on the patch sampling see (De Tone, et al., 2016)). The net was trained for 15 epochs, 
using a batch of 50 patches, repeated 10,000 times for each epoch. Validation patches were used to 
perform early stopping if the residual of the loss function rises with respect to the training.  

4.3 Results 
As done for the Methodology section above, here results are organized in different sub-sections, each 
one devoted to a specific PRNU related topic. 

Note that on these topics we cannot provide results on the MediFor evaluation dataset, since the 
designed algorithms were not sufficiently developed at that time. On the other hand, we present 
several results and interesting insights on these particular PRNU related problems. 

4.3.1 Results for hybrid reference based camera identification 
We tested the proposed technique on a subpart of the VISION dataset (Shullani, et al., 2017), 
consisting of 1978 flatfield images, 3311 images of natural scenes and 339 videos captured by 18 
devices from different brands (Apple, Samsung, Huawei, Microsoft, Sony). The dataset also provides 
the corresponding Facebook images, in both low quality (LQ) and high quality (HQ), and the 
corresponding YouTube videos. These contents have been used for testing the performance on the 
social media platforms. The tests have been carried out on a subpart of the VISION Dataset since the 
computational time needed to test all the devices was too high. We considered both smartphones and 
tablets depicting pictures and videos acquired with the default device settings that, for some models, 
include the automatic DV stabilization (see the VISION Dataset for details).  

Figure 11 summarizes the considered models, their standard image and video resolution and whether 

the digital stabilization was active on the device. From now on we will refer to these devices with the 
names C1, . . ., C18 as defined in Figure 11. For each device we considered at least: On the reference 
side: 100 flat-field images depicting skies or walls; 150 images of indoor and outdoor scenes; 1 video 

Figure 11: Considered devices with their default resolution settings for image and 
video acquisition
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of the sky captured with slow camera movement, longer than 10 s. On the query side: videos of flat 
surfaces, indoor scenes and outdoor scenes. For each of the video categories (flat, indoor and outdoor) 
at least 3 different videos have been captured considering the three different scenarios available in 
the Dataset: (i) still camera, (ii) walking operator and (iii) panning and rotating camera. We will refer 
to them as still, move and panrot videos respectively. Thus, each device has at least 9 videos, each 
one lasting more than 60 s. 

The experimental section consists of two main contributions: (i) we determine the cropping and 
scaling parameters applied by each device model in the considered set; (ii) we verify that, in the case 
of non-stabilized video, the performance of the hybrid approach is comparable with the source 
identification based on a video reference. Experiments were also performed on digitally stabilized 
videos and social media contents. Complete results are reported in (Iuliani, 2019). 

The scaling and cropping factors applied by each device were derived by registering the reference 
video fingerprint. For each device, we estimated image fingerprints by means of 100 images randomly 
chosen from the flat-field pictures. For non-stabilized videos, video fingerprint was derived by means 
of the first 100 frames of the reference video available for that device. We opted for using all frames 
of the video instead of limiting to intra-coded frames (I-frames) only; this choice may slightly limit 
the performance in the non-stabilized video case, but it helps to greatly reduce the computational 
effort in the stabilized video case. Indeed, registration parameters of two consecutive frames in a 
stabilized video are expected to be closer than the ones of two distant I-frames; on the contrary, using 
only I-frames would force us to reboot the brute force search each time. In our implementation, once 
registration parameters are found on a frame, they are used to initialize the parameters in the next 
frame exploiting their proximity in time.  

 

Figure 12: Rescaling and cropping parameters linking image and video Sensor Pattern Noises (SPNs) for the considered devices, in 
absence of in-camera digital stabilization. 

Figure 12 reports the estimated cropping parameters (in terms of coordinates of the upper-left corner 
of the cropped area along x and y axes, whereas the right down corner is derived by the video size) 
and the scaling factor, maximizing the PCE. For instance, C1 image fingerprint should be scaled by 
a factor of 0.59 and cropped on the upper left side of 307 pixels along the y axis to match the video 
fingerprint; C9 is a pretty unique case in which the full frame is applied for video and is left and right 
cropped by 160 pixels to capture images. In the case of stabilized videos, the cropping and scaling 
factors change in time, with possible rotation applied too. For these devices we thus determined the 
registration parameters of the first 10 frames of the available video reference; the main statistics are 
reported in Figure 13. 
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The information provided in Figure 13 can be exploited to reduce the parameter search space in case 

of source identification of digitally stabilized videos. Indeed, an exhaustive search of all possible 
scaling and rotation parameters, required in a blind analysis, would be intractable on a large scale: in 
our tests a totally blind search can take up to 10 min per frame on a modern average-powered 
computer, while the informed search reduces the time to less than a minute for stabilized videos and 
a few seconds for non-stabilized videos. 

Now we compare the proposed technique with the state of the art approach (Chen, et al., 2007), where 
the fingerprint is derived by estimating the SPN from a reference video. The comparison is only 
meaningful for non-stabilized devices. For each device, the reference fingerprints were derived 
respectively from the first 100 natural reference images (for the proposed method) and from the first 
100 frames of the reference video (for the video reference approach). Given a video query, the 
fingerprint to be tested was derived by the first 100 frames and compared to the reference image and 
video fingerprints respectively using the cropping and scaling parameters expected for the candidate 
device. In Figure 14 we report for each device: (i) the statistics of matching pairs (blue and pink 
represent image and video reference respectively); (ii) the statistics for mismatching cases (in red). 

The plot shows that distributions can be perfectly separated when the reference is estimated from 
images (100% accuracy), while in the video reference case the accuracy is 99.5%, confirming that 
performance is comparable. 

We also performed analysis on stabilized videos and social media contents. Technical details and 
results are reported in (Iuliani, 2019).  

Figure 13: Rescaling and cropping parameters that link image and video SPNs for the considered devices

Figure 14: Matching and mismatching statistics. On each box, the central mark indicates the median, and the bottom and top edges 
of the box indicate the 25th and 75th percentiles respectively. 
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4.3.2 Results on understanding Electronic Image Stabilization 
The proposed PRNU pattern registration approach is compared on seven different devices against 
particle swarm optimization (Mandelli, et al., 2019), which provides better accuracy and 
computational efficiency than brute-force approaches. For each device, the PRNU pattern of video I-
frames from flat homogeneous scene content is warped according to the transformation parameters 
found by the corresponding method into the reference PRNU pattern. PCE between the warped and 
reference PRNU is then evaluated. The reference PRNU pattern is extracted from photos at native 
resolution but also from video I-frames acquired with EIS off when the source video to check was 
acquired with EIS on. Smooth video paths are assumed, so no rotations were considered. For each 
device, tested format and compared method, Table 7 reports the estimated scale, the accuracy in terms 
of PCE, and the running time. Results are presented in terms of mean μ, the standard deviation σ, and 
the minimum and maximum statistics. The proposed scene content PRNU alignment and its 
refinement are indicated as 𝐺𝐺 and 𝐺𝐺𝑟𝑟, respectively. Additionally, 𝐺𝐺𝑚𝑚 represents the results obtained 
by averaging 𝐺𝐺𝑟𝑟 scales while discarding video I-frames with low PCE values (i.e., less than 50) on 𝐺𝐺, 
as a fast way to skip unreliable frames. For particle swarm, implemented using the Matlab built-in 
function, two different setups are evaluated. In detail, setup 𝑃𝑃 uses 35 particles and a scale search 
range in [0.5,3], while setup 𝑃𝑃𝑟𝑟 uses 30 particles and a scale search range in [1,3] and [0.5,1], 
respectively when the reference PRNU pattern is extracted from native full resolution photos or video 
frames captured with EIS off. Notice that the total running time for 𝐺𝐺𝑟𝑟 is obtained by adding the 
corresponding columns 𝐺𝐺 and 𝐺𝐺𝑟𝑟 in the table. 

The mean PCE value obtained with the scene content registration method 𝐺𝐺 only is in most cases 
quite accurate, even without scale refinement (method 𝐺𝐺𝑟𝑟). The average registration 𝐺𝐺𝑚𝑚 gives values 
very close to those given by 𝐺𝐺𝑟𝑟 . The almost identical scale values obtained with the two different 
Samsung S7 devices witness that the warping transformation between the different image formats do 
not change among devices of the same model. This is quite reasonable since the warping process is 
not analog but digital, unlikely acquisition. This implies that 𝐺𝐺𝑚𝑚 warping information can be used 
with other devices of the same model, avoiding acquiring each time ad-hoc static scene images or 
videos. Moreover, transformations across the different image acquisition formats can be concatenated 
without any accuracy degradation. Concerning particle swarm optimization, 𝑃𝑃𝑟𝑟 results are usually 
more accurate and reliable than those obtained with 𝑃𝑃 confirming that the particle swarm approach 
can lead to unstable or even wrong solutions if no clues about the allowable transformation parameter 
range are available. 

Scene-based PRNU pattern registration is in general more accurate and reliable than that obtained by 
particle swarm optimization, also considering the lower excursion range in the scale and PCE values 
by inspecting the standard deviation, minimum and maximum related values. Notice also that in this 
case 𝑃𝑃 obtains the highest average PCE value after  𝑃𝑃𝑟𝑟, but it is more distant in terms of the retrieved 
scale from  𝑃𝑃𝑟𝑟 than scene content based methods, underlining some accidental inconsistencies that 
may happens due to the stochastic nature of PRNU. Analogous considerations about consistency and 
stability of the scales and PCE values hold for the Samsung Galaxy S7 (2𝑛𝑛𝑛𝑛 device, mapping from 
photos to I-frames with EIS off) and the Sony Xperia XA1 G3112 (mapping from photos to I-frames 
with EIS on), whose average PCE values can be slightly better for the 𝑃𝑃𝑟𝑟 particle swarm than the 
scene content approaches. 
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Table 7: PRNU geometric registration results, compared against (Mandelli, et al., 2019) 

Concerning running times, scene-based registration 𝐺𝐺 is very fast and even by summing up the further 
refinement step 𝐺𝐺𝑟𝑟, the approach is faster than particle swarm optimization. In particular, our full 
approach 𝐺𝐺𝑟𝑟 is about four times faster than particle swarm optimization, except for non-stabilized to 
stabilized video PRNU registration with setup 𝑃𝑃𝑟𝑟, for which our approach is only twice faster. Note 
that running times depend on image resolution and hence on the scale search range. Clearly, particle 
swarm accuracy can be improved by using more particles in the setup, yet computation time would 
increase accordingly. 
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Regarding the study made using our developed structure (see Figure 10), two mid-range smartphones, 
the Huawei P9 Lite and the Xiaomi M2 A1, were considered for analyzing EIS. The testing video 
sequences were obtained by moving and shaking the devices installed on the structure in front of a 
fixed background, and additionally introducing moving foreground objects of different sizes (i.e. 
walking or jumping people and fluttering flyers). For each frame, the homography obtained by 
tracking the grid markers is employed to revert back the frame EIS transformation.  

 

 
(a) 

 
(b) 

Figure 15: Decomposition of EIS frame transformation according to a similarity for (a) Huawei P9 Lite and (b) Xiaomi M2 A1 
videos (best viewed in color and zoomed in). 

The tracking is quite stable, except in some cases due to motion blur effects that decrease keypoint 
localization accuracy and for some unabsorbed, non-rigid oscillation of the structure with respect to 
the camera. Figure 15 depicts for each analyzed sequence the decomposition of the EIS frame 
transformation into a similarity. In addition to each component of the similarity transform, it also 
indicated the reprojection error. This reprojection error is fully compatible with the keypoint 
localization accuracy of the scene content of the current frame. Moreover, the minimal variation of 
the scale component, that is associated to the temporally decrement in the keypoint accuracy 
discussed above, suggests that frame transformations inside an EIS video are only metric, i.e. only 
rotation and translation are involved. In addition, no rotation of more than 5 degrees was observed. 
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Both scale constraint and rotation limits can be exploited for designing new PRNU registration 
methods.  

Furthermore, from the analysis carried out, it emerges that different device models use distinct EIS 
implementations. In particular it comes out that Huawei P9 Lite triggers EIS according to scene visual 
flow, opposing to the Xiaomi M2 A1, for which EIS is based on physical movement sensors (i.e., 
gyroscopes or accelerometers). Moreover, unlikely the Xiaomi M2 A1, it can be observed that EIS 
frame rotation steps seem quantized for the Huawei P9 Lite, maybe due to the usage internally of 
Look-up Tables (LUT) for an efficient computation of the frame warp. Finally, the Huawei P9 Lite 
tends to maintain the last frame transformation over the next frames even if the condition that has 
triggered EIS disappears, while the Xiaomi M1 A2 in this case tends to smoothly come back to the 
original reference status. The last seems to be the common behavior of most devices and explains 
why PRNU alignment can often work, regardless of EIS, on sufficient long sequences, as most of the 
frames will result in being aligned to the reference first frame.  

4.3.3 Results for PRNU re-synchronization using deep neural networks 
Once training was completed, we tested each net on 100,000 samples extracted from the test subset. 
Note that, in this test we evaluate the net performance considering only probes coming from the same 
device (i.e. we consider only the case of correct detection or missing detection). Hereafter Table 8 
shows the percentage of correctly registered probes – i.e. probes that, after registration, obtain PCE 
scores higher than 60 or 100 – for 11 devices of the VISION dataset. 

Table 8: results on sigle device. 

Device PCE > 60 (%) PCE 
D01_Samsung_GalaxyS3Mini 87.6 84.3 
D02_Apple_iPhone4s 60.2 51.9 
D04_LG_D290 71.0 64.1 
D05_Apple_iPhone5c 90.9 88.9 
D07_Lenovo_P70A 91.4 88.6 
D08_Samsung_GalaxyTab3 82.4 79.0 
D09_Apple_iPhone4 93.6 92.2 
D11_Samsung_GalaxyS3 83.6 80.1 
D12_Sony_XperiaZ1Compact 86.0 83.5 
D13_Apple_iPad2 89.7 87.8 
D15_Apple_iPhone6 88.5 85.1 

As can be seen, for most of the devices under test the achieved performance was promising. We then 
tried to perform an ALL-vs-ALL test, in which a given rotated probe from a device is tested against 
all the devices. Hereafter, in Figure 16 (left) we report the obtained confusion matrix. The results 
show that, except for D02 and D04 (that obtained lower performance even in the single device test), 
most of the devices obtained high percentage of correct detection, few false positives, and some false 
negatives. To improve the results, we tried to perform a multiple patch sampling: given a transformed 
probe, we extract three different patches to give to the net, obtaining in output three possible 
transformations: each transformation is tested using PCE, and the best score achieved is retained. 
Hereafter the relative confusion matrix Figure 16 (right). As shown, in this way we obtained almost 
zero false positive (only 5) and improved detection rates, at the expense of increased computational 
times (about 3 times slower due to the multiple computation of PCE). 
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Figure 16: ALL-vs-ALL confusion matrix, with single patch sampling (left) and using learned registration and multi-patch sampling 
(right) . 

4.3.4 Conclusions 
We proposed a hybrid approach to video source identification using a reference fingerprint derived 
from still images. We showed that, in the case of non-stabilized videos, the hybrid approach yields 
performance comparable with or even better than the current state-of-the-art strategy, which uses a 
video to compute the reference pattern. Our approach allows reliable source identification even for 
videos produced by devices that enforce digital in-camera stabilization (e.g., all recent Apple 
devices), for which a non-stabilized reference is not available. The main limitation of the proposed 
approach is the need for a brute force search for determining scale (and, in the case of stabilized 
devices, rotation) when no information on the tested device is available. 

Then, we presented some novel idea to work with PRNU pattern alignment. Firstly, we proposed a 
technique to estimate the scale changes among different capture modalities (image, video and 
stabilized video) that uses the image scene content to obtain an initial registration using local image 
descriptors and can be further refined by maximizing the PRNU correlation. This solution has shown 
to be more reliable, more accurate and faster than existing approaches based on brute-force and 
particle swarm optimization. Then, we presented a solution to revert-back the transformation 
introduced by a device during video stabilization. From experimental evidence we argued that 
stabilization uses only scale, rotation, and translation, without more complex transformation. 

Finally, we presented some initial results on PRNU re-synchronization using deep learning. Inspired 
by works on homography estimation with convolutional neural networks on natural images, we tried 
to apply this approach on PRNU signals, limiting the estimation to scale and rotation. After training 
the net on single devices, we were able to recover the applied transformation in most of the cases, for 
most of the tested devices. Also, we tested the performance of this solution in an all-vs-all test, were 
a rotated and scaled probe is compared with all the devices. For each of the reference devices, at first 
the probe is given as input to the respective net, than the estimated transform is applied to the probe 
and finally the PCE w.r.t. the device fingerprint is computed. As can be seen from the reported results, 
the approach seems very promising, in particular if we sample multiple patches from the probe, 
reducing false positive and improving the correct detection rates. 
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