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Abstract 
With the increasing integration of artificial intelligent agents (AIAs) into human-

agent teams (HATs), research into coordination mechanisms is needed to ensure 

members perform fluidly as a coordinated team. Research on coordination mechanisms in 

HATs is largely focused on AIAs providing information to humans to coordinate better 

(i.e. coordination from the AIA to the human). We focus on the complement where AIAs 

can understand the operator to better synchronize their actions with the operator (i.e. from 

the human to the AIA). We focus on AIA estimation of operator intent. We propose the 

Operationalized Intent framework which describes a portion of the operator’s mental 

model in a manner relevant to “how” the team should perform. The core of 

Operationalized Intent is a quality goal hierarchy and an execution constraint list. 

Designing a quality goal hierarchy entails understanding the domain, the operators, and 

the AIAs. By extending established cognitive systems engineering analyses we developed 

a method to define the quality goals and capture the situations that influence their 

prioritization. Through a synthesis of mental model evaluation techniques, we defined 

and executed a process for designing human studies of intent. The resulting human-in-

the-loop study demonstrates the feasibility of estimating Operationalized Intent. Using an 

existing label ranking algorithm, intent estimation is demonstrated with heuristically 

acceptable accuracy. This research establishes a path for designing intent aware multi-

agent systems to enhance the implicit coordination of human-agent teams.  
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OPERATIONALIZED INTENT FOR IMPROVING COORDINATION IN 

HUMAN-AGENT TEAMS 

 
I.  Introduction 

Overview 

Teams are the mechanism by which complex work is performed. With the 

increasing integration of artificial intelligent agents (AIAs) into human-agent teams 

(HATs), research into coordination mechanisms is needed to ensure members perform 

fluidly as a coordinated team. These HATs are composed of multi-agent systems and 

multi-operator crews. Observation of current Air Force weapon systems indicates that 

HATs are already among us. An MQ-9 Reaper system, for example, includes autopilot, 

auto-router, sensor tracking, and health monitoring AIAs, to name only a few, managed 

by a pilot and sensor operator.  

Coordination is a cyclical process critical to synchronized team action in human-

human teams. It is no less true of coordination in human-agent teams. Coordination 

mechanisms in HATs are an area of active research largely focused on methods for AIAs 

to provide more information to allow humans to coordinate better with the AIAs (i.e. 

coordination from the AIA to the human). My research focuses on the complementary 

path where the AIAs can understand the operator and modify their own behavior to better 

synchronize with the operator (i.e. from the human to the AIA).   

The challenges of coordination are multitudinous, so this research focuses 

specifically on AIA prediction of operator intent. Through rigorous analysis to 

characterize intent, we found that there has been much work focused on “what” the 
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operator intends to do, but remarkably little on “how” the operator intends the work to be 

done. While current AIAs are understood to be narrow in their scope, their breadth of 

control or trade space of action is growing. This expansion provides them more options in 

“how” they accomplish their task. The current research posits that an AIA which can 

understand “how” the operator intends to execute can better synchronize their actions 

with the operator. We established a theoretical framework named Operationalized Intent, 

which captures “how”-focused intent in a manner relevant to operators and AIAs. The 

core of Operationalized Intent is a quality goal hierarchy and an execution constraint list. 

To further explore the utility of this framework we focused on the design, study, and 

estimation of the quality goal hierarchy.  

 Designing an Operationalized Intent quality goal hierarchy entails understanding 

the domain, the operators, and the AIAs, which represent the three legs of the cognitive 

triad. By extending established cognitive systems engineering analyses we developed a 

method to define the quality goals and capture the situations that influence their 

prioritization. Through a synthesis of mental model evaluation techniques we defined and 

executed a process for designing human studies of intent.  

This study produced a corpus of data which was used to investigate the ability of 

an AIA to estimate Operationalized Intent. Ultimately, we demonstrate that it is 

potentially feasible to design HATs in which the AIAs have a real-time model of the 

operator’s intent to support team coordination.  
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Background 

The current state of the art for human intent estimation are associate systems 

(Geddes & Buchler, 2012). Other efforts to estimate intent narrowly focus on specific 

tasks and do not holistically address operator intent. Born out of artificial intelligence 

advances in expert systems, Associate systems use Bayesian graph structures to reason 

about overall goals and methods of achieving goals. By observing the available system 

and user interaction data, associate systems develop an understanding of the team’s 

situation and takes actions to further the goals it has identified. Associate systems have 

been demonstrated in research settings on aircraft (Banks & Lizza, 1991), helicopters 

(Miller & Hannen, 1999), command and control (Geddes & Buchler, 2012), and cyber 

defense systems (Huber & Marvel, 2016).  

There are several limitations to associate systems. The system’s model of intent is 

embedded in the graph structure which is opaque to the user and to other artificial agents 

(Geddes, 1989). Associate systems are purpose-built expert systems which entail a testing 

verification and sustainment burden which is sensitive to both overall system design 

changes and operational changes. There is an implicit design assumption that the 

operators wish to achieve their goals according to the methods used to create the graph 

structures. While associates can be networked with other artificial agents, they do not 

share their cognition, only the identified actions which should be taken. Associate 

systems serve as centralized generalist assistants for operators. However, the fact that 

their behavior is relatively opaque to the operator impedes them from truly coordinating 

with the operator. This is due to the fact it is, at best, difficult to direct and update the 

associates when their estimate of intent differs from the operator’s true intent 
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Problem Statement 

How can the effectivity improvements that human-human teams gain through 

implicit coordination be leveraged by a collage of AI agents in a human agent team? 

Research Questions  

The top level research question is: can a shared mental model be used to estimate 

the intent of an operator? This question is decomposed into the following research 

questions: 

1. What is the framework for designing a shared mental model of operator intent which 

can be effectively implemented in human-agent teams? This framework should 

identify constraints and considerations from psychology, human factors, software, 

and systems design to provide a basis for designing an intent framework.  

2. What is the process for applying Operationalized Intent to a domain? This includes 

the existing techniques that can be used to develop an intent model and identify 

relevant data elements needed to estimate intent along with the methods to study 

intent.  

3. Do trial disturbances change the operator’s intent in observable ways? The study 

trials are intended to shift the operator’s elicited intent truth data over the course of 

the trial. If the disturbances do not shift intent, then intent cannot be estimated from 

the data.  

4. Is elicited intent cohesive enough between operators, across situations, to be 

estimated in a generalizable manner? If the intent mental model is not a stable 

phenomenon with respect to the situation, it cannot be estimated situationally for a 
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generalized operator role. Instead it will be necessary to develop operator-specific 

intent estimation methods.  

5. How accurately can an intent estimate be made from situational data as compared to 

the elicited intent model of an operator in a known and bounded context based on 

implicit communication and minimal explicit communication? Accuracy is judged by 

a modified Spearman Footrule metric (Diaconis & Graham, 1977). The situational 

data is gathered during a human-in-the-loop study. 

Assumptions/Limitations 

Operationalized Intent presupposes a human-agent team in which there are 

multiple agents with an ability to observe the environment commensurate with the 

operators. It is assumed that the operators will communicate explicitly with the agents 

regarding “what” is to be accomplished, but the agents will utilize their observations to 

estimate “how” they are to perform their activities. The operator is assumed to be trained, 

motivated, and earnest in the execution of the mission. Operationalized Intent seeks to 

represent the operator’s priorities, whether they are appropriate or inappropriate for the 

situation. Thus, the operator is assumed to be properly in control of the overall system. 

An agent that critiques the operator based on the intent estimate is beyond the scope of 

Operationalized Intent. Operationalized Intent is expected to be convergent similar to the 

observed effect of other shared mental models (Fincannon, Keebler, Jentsch, Phillips, & 

Evans, 2011; Mathieu, Heffner, Goodwin, Salas, & Cannon-Bowers, 2000). Similarly, it 

is assumed that the operator’s intent with respect to “how” tasks are to be performed is 
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stable in a stable task situation, i.e. in the absence of some disturbance to the situation. 

Thus as, discussed later, the intent estimate is valid for the duration of the situation.  

Based on the literature, our research postulates that intent awareness via 

Operationalized Intent is highly likely to provide operational benefit to the end user. 

There is also likely utility in an intent estimate service for other artificial agents. The 

accuracy observed in this research is assessed heuristically, due to a lack integrated 

systems for effectivity evaluation. Operationalized Intent assumes that artificial agents 

have a decision making process which determines how they accomplish their task and 

that those paths produce meaningfully different results. It also assumes that making the 

decision regarding path selection requires a nuanced understanding of context. We 

assume that the intent estimate can be related to the situational data currently available in 

the system. The study assumes that the synthetic task environment is of sufficient fidelity 

that the results can be generalized to naturalistic environments. This research establishes 

if the concept of Operationalized Intent merits further investigation. 

Research Method Summary 

The overall research method sought to reach an initial validation point to 

demonstrate the potential of the underlying concept. As such we can divide the method 

into four phases.  

Understanding: To address the research problem demands a thorough 

understanding of communication, coordination, and intent. We must comprehend the 

elements that underpin these crucial, yet frequently vaguely employed, terms and their 

effects on HAT performance. Through a synthesis of 50 years of research across robotics, 
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computer science, cybernetics, psychology, philosophy, neurology, human factors, and 

cognitive engineering, the basis for operationalizing intent is established.  

Theorizing: From this rigorous grounding we develop the theoretical framework 

of Operationalized Intent and its application to HATs. This includes a method for 

development of intent models, and identification, capture, and representation of 

situational data via cognitive systems analysis. The intent model is composed of the 

quality goal hierarchy and the execution constraint list. With the end goal of estimating 

the intent, the intent models also must be characterized in a computationally estimable 

form.  

Studying: Examining Operationalized Intent requires fastidiously designed trials. 

Combining multiple methods of mental model assessment with naturalistic decision 

making study techniques, we craft a method of situating operators to investigate their 

intent. We demonstrate this method through a human-in the-loop study with trained and 

experienced operators in a synthetic task environment (STE). The observed intent models 

are analyzed to demonstrate the effectiveness of Operationalized Intent in tactical 

scenarios.  

Estimating: Leveraging the study data, an initial attempt to estimate intent and 

assess the accuracy of estimation is undertaken. Critical features are explored to assess 

their impacts and, ultimately, judge the estimation accuracy against the similarity of 

responses provided by study participants themselves.  

It is noteworthy that these four phases do not align directly with the following 

four chapters. Aspects of the understanding phase are in Chapters II and III, the 

theorizing phase is presented in Chapters III, IV, and V while the studying phase is 
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presented in Chapters IV and V. The method for understanding Operationalized Intent, 

referred to as the Domain Application Process, is then summarized in Chapter VI. Due to 

the exploratory nature of this research, maximum use was made of available technology 

and experience. The Vigilant Spirit Control Station (VSCS) for Unmanned Aerial System 

(UAS) and supporting simulation software was readily available as an STE. Experienced, 

MQ-9 operators from the Michigan Air National Guard provided a baseline of expertise 

to study intent. Finally, the Label Ranking Random Forest (LRRF) algorithm was 

selected as a viable artificial intelligence technique to estimate intent as it is an open 

source estimator which had demonstrated superior performance on similar problems.  

Dissertation Preview 

This dissertation follows the academic format of compiling journal papers which 

encompass the research effort. As such there is overlap and review of concepts and 

conclusions in each of the following chapters along with some style and emphasis 

differences focused on the target publication audience. Chapter II reviews coordination 

and motivates the case for enabling implicit communication in HATs via intent. An 

analysis of intent and intent estimation in Chapter III provides a basis for the 

Operationalized Intent theory presented at the end of the paper. Chapter IV details the 

method for applying Operationalized Intent to develop a quality goal intent model, the 

human subjects study, and an analysis of the intent results. The method for capturing the 

situational data and the estimation of intent from that situational data is covered in 

Chapter V. While each of these chapters has their own conclusion section, Chapter VI 

concludes the dissertation with the contributions and future work.   
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II. Exploring the Impact of Coordination in Human-Agent Teams 

Chapter Overview 

This chapter lays out the synthesis of communication and coordination for the 

Understanding phase of the research method which demonstrate the utility of the 

research to improve human-agent team effectiveness.  

Teaming is the means by which cognitively complex work is rapidly executed by 

multiple entities. As Artificial Intelligent Agents (AIAs) participate in increasingly 

complex cognitive work, they hold the promise of moving beyond being strictly a tool to 

becoming effective members of Human-Agent Teams. Coordination has been identified 

as the critical process that enables effective teams and is required to achieve the vision of 

a tight coupling between teams of humans and AIAs. This paper presents a 

characterization of coordination on the axes of content, types, and cost. This 

characterization is grounded in the human and AIA literature and is evaluated to extract 

design implications for Human-Agent Teams. This examination discusses the 

mechanisms, moderators, and models employed within human-agent teams, and identifies 

potential AIA design improvements to support coordination. 

Introduction 

Artificial intelligence systems, including those based on machine learning, have 

the potential to provide useful effort that can moderate human operator workload (Kaber 

& Endsley, 2007), enhance situation awareness (J. C. Gorman, Cooke, & Winner, 2006), 

and improve team performance outcomes (Kaber, Riley, Tan, & Endsley, 2001). 

However, the vision of systems in which human and machine intelligence are tightly 
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coupled to fully leverage their combined capabilities, as discussed by Licklider nearly 60 

years ago, remains elusive (Licklider, 1960). In fact, a significant proportion of research 

in human-machine teaming continues to explore the interaction between a human and an 

artificial entity, rather than the integrated teams of humans and machines proposed in this 

landmark article. Recent performance increases and cost reductions in sensing, data 

transport, processing power, storage cost, and algorithm design (Brundage, 2016) are 

enabling Artificial Intelligent Agents (AIAs). The resulting AIAs are capable of sensing 

their environment, applying this information to support reasoning, and utilizing actuators 

to influence not only their environment, but other intelligent artificial agents, and human 

teammates (Weiss, 2013).  

The cognitive functions that AIAs are addressing are increasingly abstract (Hare 

& Coghill, 2016) and dimensionally complex (Hubert et al., 2017). However, general 

artificial intelligence is not considered imminent (Goertzel, 2014). Current AIAs are 

assumed to be weak or narrow artificial intelligent agents (Kurzweil, 2005) that, while 

proficient in their specific task, lack generalized awareness and cognition regarding the 

world beyond their design. Due to the narrow focus of each AIA, systems are often 

composed of multiple AIAs to support higher-level goals (Weiss, 2013). The resulting 

multi-agent systems of AIAs have a large number of state and action spaces, allowing 

them to respond to the greater context, even if individual AIA capabilities remain narrow. 

Further, these systems are limited to tasks that are stable over time, have clear and 

measurable goals and can be characterized by a clear mapping of inputs to outputs 

(Brynjolfsson & Mitchell, 2017). Thus, successful deployment of AIAs in most complex, 

real-world environments will require these AIAs to be teamed with one or more humans 
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who are capable of innovating the application of these systems to solve more abstract 

challenges (Mercado et al., 2016; Rosenberg, 1982).  

Following the design philosophy of adapting artificial systems to support 

naturalistic human interaction, designing AIAs to support teamwork requires that we 

understand the aspects of teamwork in human teams which are most important to enable 

in AIAs. A critical feature of human teams is how communication is employed to build 

the team cognition necessary to execute interdependent tasks (Salas, Cooke, & Rosen, 

2008). We understand that sharing the cognitive load to enable coordination with team 

members has a cost (Woods & Hollnagel, 2006). Therefore, it is incumbent upon us, as 

system designers, to clearly understand and design AIAs to support appropriate 

cooperation within human-agent teams (Klein, Woods, Bradshaw, Hoffman, & Feltovich, 

2004). In this research, we assume that the coordination observed in human-human teams 

is the greatest performance that is currently achievable by human operators in complex 

situations. Taking that as a design constraint for human-agent teams, we focus on how to 

develop AIAs designed to work as a member of these teams as opposed to designing 

systems that degrade human coordination to adapt to the limitations of AIAs. A necessary 

result of this perspective is the assumption that human agent coordination can eventually 

achieve the same performance as current human team members. Without redesigning 

human team member coordination, the AIAs must adapt to the available human 

coordination paradigm if we are to achieve high performing human-agent teams. 

Thus, the goal of the current research is to review and clearly define team 

coordination as it relates to human-agent teams. This paper begins by unambiguously 

placing human-agent teams in context. We define and characterize coordination in 
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human-agent teams, including a) content, b) type, and c) cost. We then discuss the means 

for designers to improve the coordination of human-agent teams.  

Clarifying the Design Goal of Human-Agent Teams 

Teams are required to accomplish any task of sufficient complexity or criticality 

that require greater knowledge, skill, ability, work, or redundancy than a single operator 

can provide in the timeframe (Cooke, Gorman, Myers, & Duran, 2013; Salas, Dickinson, 

Converse, & Tannenbaum, 1992). In these environments, teams are formed with a 

sufficient number and diversity of teammates to provide adequate cognitive and physical 

capacity to overcome the complexity and criticality challenges. The team members not 

only bring diversified knowledge, skills, and abilities to the team, but train to work 

together interdependently (Delise, Gorman, Brooks, Rentsch, & Steele-Johnson, 2010). 

The result is a team comprised of individuals with varied perspectives on the task, which 

are derived from each operator’s mental models of the task at hand, as well as their 

mental models of their teammate’s ability to respond to task demands (van den Bossche, 

Gijselaers, Segers, Woltjer, & Kirschner, 2011).  

High performing teams are thought to be comprised of diverse members who are 

committed to increasing their performance towards common outcomes. The team 

members collectively possess the skills necessary to address the task at hand, have the 

interpersonal skills (e.g., social sensitivity, emotional engagement, and communication 

patterns) necessary to perform as a team, and have the training to understand when, and 

willingness, to play specific roles within a team. At a minimum, these roles include 

creator, leader, and participant (Cheruvelil et al., 2014). As such, high performing teams 



13 

will select talented (Noe, Mcconnell Dachner, Saxton, & Keeton, 2011) and adaptable 

operators (A. Cox, 2017) from diverse disciplines (Kearney, Gebert, & Voelpel, 2009) 

and train them intensively (Delise et al., 2010) to focus on clear objectives (McComb, 

Green, & Compton, 1999). These team members take part in planning, execution and 

feedback processes, often referred to as transition, action, and interpersonal processes 

(Marks, Mathieu, & Zaccaro, 2001).   

The focus of high performing teams often extends beyond the team members 

themselves to include examination and modification of policies and processes that impact 

their performance (Dickson, Singh, Cheung, Wyatt, & Nugent, 2009), creation of 

domain-specific vocabulary and gestures (Woods & Hollnagel, 2006), as well as, 

customization of supporting hardware and software systems (A. Cox & Szajnfarber, 

2018).  When employing supporting hardware and software, these teams often utilize 

operator creativity to take advantage of detailed control of the systems to extend the 

software and hardware functions beyond the designed system capacity with minimal 

design changes (Jacques & Strouble, 2010).  As a result, they are able to adapt the system 

at a pace that outstrips the system development cycle (A. Cox & Szajnfarber, 2018).   

Teams of AIAs certainly can possess knowledge and skills which extend beyond 

those of the human operator and thus may be desirable members of future high 

performing teams. However, the ability to coordinate individual adaptations towards a 

common goal, which is a capability that is often lacking in multi-agent systems, appears 

to be a key attribute for members of high performing teams. Thus, it is important that we 

decide whether to view multi-agent systems as adaptable hardware and software systems 

to be modified by the human team members or whether we seek to develop true human-
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agent teams in which the AIAs are capable of coordinating their behavior with the team 

in response to the environment and the operators. The latter will require artificial agents 

that are capable of adapting to the needs of the human, as well as the environment, 

rapidly and reliably (Sycara & Lewis, 2004). While integrated user interfaces and agent 

transparency improve the operator’s knowledge of the agents, permitting improved 

coordination (Stowers et al., 2016), the agents typically lack insight into the operator’s 

understanding of the situation and task. Therefore, current artificial agents require 

explicit communication to coordinate (Klein et al., 2004) with their human teammates, 

typically during the mission, and thus are unable to leverage the less explicit forms of 

communication and coordination applied in high performing human-human teams(J. Y. 

C. Chen et al., 2018). As a result, there are frequent references within the human-agent 

teaming literature to implicit communication or coordination and intent inference 

(Espinosa, Lerch, & Kraut, 2004; Riley, 1989). However, these terms are often 

imprecisely defined and if we seek to design AIAs for well-coordinated Human-Agent 

Teams, we must understand coordination. 

Content of Coordination 

Salas and colleagues note that a critical feature of human teams is the 

communication employed to accomplish the team cognition necessary to execute 

interdependent tasks (Salas et al., 2008). We will thus refer to coordination as a cyclical 

communication process, verbal or nonverbal, which enables synchronized actions of 

teammates who are working on interdependent tasks. Based on this definition, while 

communication which supports coordination may occur within transition or interpersonal 
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processes, coordination occurs during action processes. We first attempt to characterize 

the content of coordination by reviewing the literature and proposing a general taxonomy 

of the content of coordination.  

Several authors within the human factors, cognitive science, and artificial 

intelligence literature have addressed coordination. Klein and colleagues lay out the 

precursors to coordination and describe the mechanics of what they term the 

“Choreography of Joint Activity” in which parties signal changes in the phase of activity 

using coordination devices (Klein & Bradshaw, 2005). They examine the mechanics of 

how humans execute the coordination cycle, but there is little discussion of the content of 

coordination, beyond the need for planning the phases and the need to signal changes in 

phase. Malone and Crowston developed coordination theory with a focus on the types of 

dependencies (e.g. resources, task assignment, simultaneity, etc.) that the team is 

managing (Malone & Crowston, 1994). Their taxonomy addresses the foci of 

coordination and the extant processes particular to each of these foci. Within this body of 

work, Crowston develops a model of coordination activity using four language 

constructs: Information, Requests, Information Requests, and Proposed Actions 

(Crowston, 1991). Peterson and Bailey investigated air traffic controllers and developed a 

domain-specific taxonomy of topics as well as what they termed “communication 

formats.” These communication formats include question, answer, statement, command, 

and command answer (Peterson & Bailey, 2001). Recent dynamic modeling research 

divided coordination into information, negotiation, and feedback which was applied to 

the specific human-human team paradigm being studied (Jamie C. Gorman, Amazeen, & 

Cooke, 2010). Table 1 summarizes this discussion of coordination categories.  
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Table 1. Coordination categories described in the literature. 

Domain Concepts Reference 
Human-Human 
Teaming (Medical) 

Information 
Negotiation 
Feedback 

(Jamie C. Gorman 
et al., 2010) 

Management 
Science 

Information (Declarative) 
Request (Imperative) 
Information Request (Interrogative) 
Proposed Action, Approved by Another 
(Performative) 

(Crowston, 1991) 

Human-Human 
Teaming (Air 
Traffic Control) 

Question 
Answer 
Statement 
Command 
Command Answer 

(Peterson & 
Bailey, 2001) 

Artificial Agent 
Language (KQML) 

Basic Query 
Multi-response 
Response 
Generic Informational 
Capability-definition 
Networking 

(Vaniya, Lad, & 
Bhavsar, 2011) 

Artificial Agent 
Language (FIPA-
ACL) 

Information 
Information Request 
Negotiation 
Performing Action 
Error Handling 

(Huget, 2014) 

 

Within the agent design literature, speech act theory has provided the foundation 

for AIA communication languages like Knowledge Query Manipulation Language 

(KQML) and the Foundation for Intelligent Physical Agent’s Agent Communication 

Language (FIPA-ACL) (Vaniya et al., 2011). Vaniya and colleagues characterize KQML 

as having language constructs of multi-response, response, generic informational, 

capability definition, and networking (Vaniya et al., 2011). The performatives of FIPA-

ACL are characterized by Huget as passing information, requesting information, 

negotiating, performing actions, and error handling (Huget, 2014). These techniques are 
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heavily tailored to their domains, which do not explicitly cover the human-agent team. 

However, these studies provide insight since they pertain to human-human teams 

working with machines or the communication between AIAs.  

One can also discuss coordination in terms of speech act theory (Searle, 1969). 

However, the theory is designed to handle any kind of natural language communication. 

Coordination in a human-agent team may seldom be expressed in natural language due to 

the user preference for direct input human-machine interfaces (HMIs) over linguistic 

methods (A. L. Cox, Cairns, Walton, & Lee, 2008; Noyes & Starr, 2011). Therefore, it is 

necessary to characterize the content of coordination in a human-agent team. 

Coordination is fundamentally a type of communication and so it can be 

expressed in the Shannon-Weaver model of communication (Shannon, 1948). Although it 

is recognized that communication is clearly cyclic between teammates, applying the 

Shannon-Weaver model allows us to examine the types or categories of information that 

may be passed from the teammate who is behaving as a sender at any moment in time. 

The temporal frame for a coordination event is the time required for the formulation of 

the communication in the sender, the transmission of the communication through a 

medium to the receiver, and the receiver’s comprehension of the communication. 

Drawing on the above sources for inspiration, it is clear that some elements of 

information are intended to direct the receiving agent’s behavior while other elements do 

not. Further, some elements of information are intended to be negotiable between the 

agents while others are not. Table 2 provides a proposed list of characters which 

differentiate coordination content. These characters are arranged by whether the content 
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should be negotiated by the team and whether executable directions are provided by the 

sender. Below we define each of the taxons of content within Table 2.  

Table 2. Coordination content characters structured by the sender’s expectations of the 

receiver. 

  Directive 
  No Yes 

Negotiable 

 
No 
 

Information Commands 

 
Yes 
 

Plans 
Responsibilities 

Expectations 
Requests 

 

Information is situated data that enhances the awareness of the receiver, including 

directing the receiver’s attention. In this regard, the sender should express this 

information in a manner that is concisely comprehensible to the receiver. Information is 

not negotiable because the sender believes it to be true, to some confidence level. If the 

receiver does not believe the information to be true, they can respond with corrected 

information based on their beliefs. The sender does not expect the receiver to perform a 

specific action based on the information. However, it is expected that the receiver will 

react appropriately given the assumedly agreed upon information (Jamie C. Gorman et 

al., 2010). 

Commands are non-negotiable directives that the sender expects the receiver to 

carry out as soon as possible. The receiver may acknowledge the command by providing 

an information response indicating acceptance, execution, or completion. Commands 

cover a spectrum of content from fully specifying the exact activities for execution, to 
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stating a broad goal, allowing the receiver to formulate a plan and decide implementation 

details (Peterson & Bailey, 2001).  

Requests are negotiable directives consisting of actions or tasks geared to achieve 

goals. The sender expects the receiver to carry out the request, but the receiver may reject 

or delay the implementation of the request. The receiver is expected to acknowledge the 

request and an information response will be provided, signaling the sender the receiver’s 

decision to act, or not act, on the request (Klein & Bradshaw, 2005).  

The remaining three taxons are all negotiable and are not directive. As such the 

information within these taxons requires a common understanding between the sender 

and the receivers within the team. The first of these are plans.   

Plans are future-looking sequences of actions or tasks geared to achieve goals. A 

team may have a library of plans developed prior to execution, which has the potential to 

reduce cognitive and communication load during the activity. Alternately, these plans 

may be developed dynamically during execution. These plans answer the question of 

“what”, “when”, and occasionally “how” actions should be taken by a team member to 

achieve the agreed objective. A directive to enact a specific plan is command content, not 

plan content, which references a plan shared between the teammates (Huget, 2014).  

Responsibilities are negotiable assignments of authority and answer the question 

of “who” is to conduct each activity. It is possible to have multiple operators and AIAs 

responsible for the same task or with the same authority, in which case they should be 

backing each other up (Cummings, 2014).  

Expectations are the manner and procedures that the sender desires the receiver to 

use during execution. When commands or plans do not fully specify “how” to execute a 
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task, the receiver relies upon shared expectations to determine the timing and actions 

which will produce the desired execution.  

Having established a taxonomy for the content of coordination, we can now 

examine different types of coordination and the impacts of coordination on 

communication within teams and the cognitive capacity required to facilitate 

coordination. 

Types of Coordination Mechanisms  

Coordination studies have noted and investigated the difference and development 

of human team coordination and found that coordination behaviors can be identified as 

explicit or implicit (Boos, Kolbe, Kappeler, & Ellwart, 2011; Entin & Serfaty, 1999). 

These types have been mapped orthogonally to other characterizations of coordination 

(Kolbe, Burtscher, & Manser, 2013), and for the purposes of this discussion, we consider 

the content of coordination as independent from the implicit or explicit type of the 

coordination exchange. Explicit coordination behaviors or mechanisms are identified by 

many different terms (Bolici, Howison, & Crowston, 2016; Butchibabu, Sparano-Huiban, 

Sonenberg, & Shah, 2016; Espinosa et al., 2004), but explicit coordination refers to 

communication directly or solely focused on managing dependencies and synchronizing 

actions. Implicit coordination is described as dependency management without dedicated 

or purposeful communication regarding synchronization (Butchibabu et al., 2016). 

Viewed in contrast, explicit coordination involves communication for the single purpose 

of coordinating activity. Implicit coordination involves communication that is 

multipurpose, providing context, which can be interpreted to imply activities necessary 
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for coordination. This does not imply that no communication is occurring for implicit 

coordination, rather, that team cognition is enabling existing communication and 

perception to be extended and used for coordination as well as its original purpose 

(Espinosa et al., 2004).  

To clarify the distinctions, we draw between communication and coordination 

with respect to explicit and implicit types we propose the following definitions.  

Explicit Communication: purposeful exchange of a discrete message (e.g. 

Unmanned Aerial Vehicle (UAV) pilot tells the sensor operator “we are nearing the area 

of operations”). 

Explicit Coordination: explicit communication the primary purpose of which is 

synchronization of action in a team (e.g. UAV pilot tells the sensor operator “verify we 

are approaching the river shown on the map”). 

Implicit Communication: observable behaviors, other than explicit 

communication, that convey additional information (e.g. UAV Pilot leans forward and 

switches from flying waypoints to manually flying the aircraft). 

Implicit Coordination: Explicit or implicit communication the primary purpose of 

which is other than synchronization of action. Implicit coordination may involve implicit 

communication (e.g., leaning forward) or explicit communication (e.g. hearing pilot say, 

“we are nearing the area of operations”). 

The proposed relationship between implicit and explicit forms of communication 

and coordination are depicted in Figure 1. Implicit coordination occurs in response to 

implicit, as well as explicit, communication. Explicit coordination is strictly the result of 

explicit communication.  
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Figure 1. Explicit vs Implicit Communication and Coordination 

Also important to this discussion is the fact that the communication can vary from 

abstract concepts to concrete data depending upon the desired level of control. This fact 

is recognized in system analysis models such as Rasmussen’s ends-means hierarchies 

(Rasmussen, Pejtersen, & Goodstein, 1994); natural language processing models (Tomai 

& Forbus, 2009), and Geddes’s operator intention model (Geddes, 1989). Therefore, 

while an explicit command pertaining to a high-level goal or abstraction layer provides 

explicit coordination; it also potentially implies numerous coordination activities. 

Multiple studies have demonstrated that coordination shifts from highly explicit to 

increasing amounts of implicit coordination as teams become familiar with each other 

and the task (Butchibabu et al., 2016; Espinosa et al., 2004; Mathieu et al., 2000; Rico, 

Gibson, Sánchez-Manzanares, & Clark, 2019). Thus, the knowledge gained through 

experience with explicit coordination events enables implicit coordination by improving 

each team member’s understanding of the team’s response to a set of conditions. The 

literature indicates that humans adapt their coordination type depending on their 

perception of the team’s cognition. If they observe that the team is managing 
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interdependencies well and the individual teammates perceive the team behaving 

consistent with their expectations, implicit mechanisms are more prevalent. Conversely, 

if the team is acting unsynchronized or an individual teammate does not perceive that the 

team behavior is matching their expectations, the teammate will likely fall back on 

explicit coordination mechanisms to improve interdependency management and refine 

team cognition. Importantly, this knowledge of coordinating activity is applied by each 

team member to select a set of coordinating actions. This is done without the sender 

issuing specific and highly detailed commands to each team member indicating the 

actions each team member should take to behave in a coordinated fashion. Coordinating 

activity is differentiated from general broadcast methods employed by many software 

agents that send their messages without regard to who the recipients are or what they 

need to synchronize their actions.  

However, regardless of type or content, the organization, cognition, and action of 

synchronizing execution between team members requires cognitive resources. As system 

designers of Human-Agent Teams, it is imperative that we address the cost of 

coordination in the systems we design.  

Cost of Coordination in Teamwork 

Several authors have addressed the cost of coordination in teamwork. Klinger and 

Klein suggest that the cost of coordination increases with the addition of team members 

such that the marginal value of adding additional team members decreases with each 

increase in team size (Klinger & Klein, 1999). As this cost is readily apparent when 

viewing humans working in teams (Macmillan et al., 2004), it is important to understand 
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this cost and the effect that including additional AIAs within a team will have on 

coordination costs. 

(Klein & Bradshaw, 2005; Schaeffer, 2009), classified these coordination costs 

into four categories: synchronization overhead, the time one entity spends waiting for 

another entity to complete a prerequisite task before beginning its task; communication 

overhead, the effort required to manage a handoff; redirection overhead, the time spent 

following an out of date plan after a new plan is signaled but before all entities 

understand the change; and diagnosis overhead, the additional burden spent diagnosing a 

problem that occurs as a result of interrelated activity.  Klein and colleagues expand on 

these costs by listing the activities required to support coordination (Klein & Bradshaw, 

2005). Among these activities are communication, monitoring, and feedback activities, 

some of which might be the responsibility of a frequent sender, such as a team leader, and 

some of which are clearly delegated to frequent receivers; i.e., the team members. Each 

of these works builds upon the work of Clark and Brenan who provide a list of costs for 

constructing common ground (Clark & Brenan, 1991). A review of this list clearly 

illustrates that some of these costs, such as formulation and production costs are born by 

the sender. Other costs, such as reception, understanding, and delay costs are primarily 

born by the receiver. Finally, many of the costs are shared between the entities; including 

start-up, directing attention, asynchrony (e.g., interruptions), change, display, fault, and 

repair costs. 

Coordination can occur across the full spectrum from fully explicit (e.g., all 

coordination is explicit and messages must be complete) to fully implicit (e.g., a sender 

and receiver conduct activities without explicit communication). Further, the cost of any 
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given coordination exchange may vary significantly in magnitude for different entities 

within a team. As a result, we offer the construct in Table 3 to explore the cost of 

communication to the sender and receiver as it is required for coordination as a function 

of the interaction of team member role (i.e., sender or receiver) and communication type 

(i.e., implicit or explicit). As shown, each column represents a team member role and the 

two major rows indicate the extremes of explicit/implicit coordination type. Each of these 

two rows is further divided into “Activity Formulation”, “Communication 

Formulation/Understanding”, and “Communication Production/Reception. The “Activity 

Formulation” stage indicates which team member is responsible for interpreting the 

coordination content in the current context to create the sequence of activities the receiver 

is to conduct to maintain coordination. The following two rows represent the cognition 

necessary to support communication of these activities between the sender and receiver, 

as motivated by Clark and Brennen. The values within the cells of this matrix indicate an 

estimate of the relative cost born by either the sender or receiver. These relative costs, 

while likely continuous, are estimated as either full, partial or none within the cells of this 

table. 
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Table 3. Cost of communication required for coordination as a function of team member 

role and communication type. 

 Sender Cost Receiver Cost 

Fully Explicit 
Coordination 

Activity 
Formulation Full None 

Communication 
Formulation / 
Understanding 

Full Partial 

Communication 
Production / 
Reception 

Full Full 

Fully Implicit 
Coordination 

Activity 
Formulation Partial Partial 

Communication 
Formulation / 
Understanding 

Partial 
(only critical) 

Partial 
(only critical) 

Communication 
Production / 
Reception 

Partial 
(only critical) 

Partial 
(only critical) 

 

In the case of fully explicit coordination, the sender, perhaps conceptualized as 

the team leader, must formulate all activities for each team member, formulate the 

communication of these activities, and produce this communication. The receivers must 

receive this communication, understand the activities to be performed and of course 

execute the activities. However, the receiver’s cost of understanding the activities is 

likely reduced as the coordination must be fully specified. Importantly, at the extreme, 

fully explicit coordination requires the sender to formulate each team member’s sequence 

of activities at the lowest possible, i.e. most detailed, level of control. As the coordination 

becomes more implicit the sender can begin to formulate and communicate at a more 

abstract level, for example by communicating the use of a plan. In this example, the 

receivers must now translate the plan based upon available coordinating information and 
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environmental context to formulate their own activities. Therefore, the sender incurs less 

of the cost of formulating these activities. At the extreme, the sender only formulates and 

communicates information critical to coordination, relying upon the receiver to leverage 

contextual information and non-explicit or non-coordinating communication to support 

activity generation and synchronizing. 

Returning to the earlier discussion of the lists of the costs associated with 

coordination from the literature, each of these lists of costs focuses primarily upon the 

costs associated with communication or actions taken by other teammates. However, 

Clark and Brennan include the cost of directing attention, which is associated with the 

need for teammates to ensure that teammates are aware of environmental cues used to 

trigger changes in future activities (Clark & Brenan, 1991). It is rational to exclude the 

cost of perceiving environmental cues from the cost of coordination as this cost is also 

born by individuals interacting within an environment. However, plans or other 

coordinating information can include environmental events to trigger changes. Thus the 

activity required to observe these environmental events also plays a significant role in 

coordination and affects the coordination behavior of the team if not all team members 

are able to perceive the environmental cues. It is clear from this literature, however, that 

understanding of the team member’s situation results in coordination costs. 

Table 4 depicts the cost of coordination due to each team member’s situation. 

Similar to Table 3, this table is divided into four quadrants with columns representing the 

costs incurred by the sender and receiver and rows representing fully explicit and fully 

implicit coordination.   
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Table 4. Cost of coordination due to understating team member’s situation as a function 

of team member role and coordination type. 

 Sender Cost Receiver Cost 

Fully 
Explicit 
Coordination 

 Sender’s 
Understanding 

Receiver’s 
Understanding  Sender’s 

Understanding 
Receiver’s 
Understanding 

Sender’s 
Situation Full None Sender’s 

Situation None None 

Receiver’s 
Situation Full Full Receiver’s 

Situation None Full 

Fully 
Implicit 
Coordination 

 Sender’s 
Understanding 

Receiver’s 
Understanding  Sender’s 

Understanding 
Receiver’s 
Understanding 

Sender’s 
Situation Full Partial Cost Sender’s 

Situation Partial Cost Full 

Receiver’s 
Situation Full Partial Cost Receiver’s 

Situation Partial Cost Full 

 

Each quadrant is further divided into a two by two matrix. The columns of the 

matrix designate the costs associated with constructing their own understanding of the 

context or constructing their understanding of the other party’s understanding of the 

situation. Further, the sender or receiver may need to understand their own situation as 

well as the receiver’s situation. The fact that a team member must not only form their 

own understanding of their and their teammate’s situation but project their team 

member’s understanding of these situations may not be initially obvious. The need for the 

latter is discussed in an incident reviewed by Lee et al. in which a pilot, during a climb to 

a higher altitude, commanded the autopilot to descend to a lower altitude based on 

clearance from air traffic control (Lee, Hwang, & Leiden, 2015). The autopilot, instead of 

descending, entered a vertical speed hold mode and continued the climb as it was 

programmed to do in this specific situation. The pilot clearly understood his or her own 

situation and the receiver’s situation. However, the pilot failed to track the receiver’s 
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understanding of their own situation until the aircraft violated the air traffic control 

clearance. This resulted in a miscommunication that was fortunately resolved without 

incident. However, this example illustrates the need for the sender to understand their 

own and the receiver’s situation, but also the value of the sender’s projection of the 

receiver’s understanding of their situation. 

As shown in Table 4, when operating in a fully explicit mode, the sender is 

responsible for maintaining awareness of their own situation, the situation of their 

teammates who they are sending information to and their teammate’s understanding of 

their own situation. When operating within an implicit mode, a portion of this 

responsibility shifts to the teammates. Although this shift reduces the cognitive load on 

the sender when they are coordinating with a single team member, this change in load 

increases when we consider the circumstance when the sender is the team leader and 

multiple receivers are included in the team. 

To summarize the information in Table 3 and Table 4, explicit coordination, 

typically, consumes, predominantly, the cognitive resources of the sender who must 

formulate, as well as communicate an explicit command or request to each team member 

(Woods & Hollnagel, 2006). Implicit coordination distributes cognitive demand to the 

receivers. The receivers must then incur the obvious perceptual channel load, verbal, 

auditory, haptic, or visual, to gather information to serve as cues to the sender’s situation. 

Further, they must execute cognitive processes to abstract the available information, 

understand the utility as it relates to the context, and formulate the appropriate 

coordinating activity (Endsley & Kiris, 1995). Implicit coordination reduces the real-time 

communication load on the team by multi-purposing a given communication event from a 
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sender to permit each teammate to select actions which will be coordinated with the 

actions of other teammates based on their understanding of each teammate’s situation and 

their assessment of each team member’s understanding of their current situation. It is 

important that as teams develop this knowledge, they often develop domain-specific 

terminology which encapsulates the description of system states with accepted plans 

(Woods & Hollnagel, 2006).  

The utility of explicit communication to improve team effectiveness can be found 

throughout the teaming literature. For example, a meta-analysis of 150 team 

communication studies found that team communication positively influences 

performance (Lacerenza, Salas, Burke, Marlow, & Paoletti, 2017). Explicit 

communication, and perhaps, more importantly, communication to support explicit 

coordination, becomes an issue in time-pressured environments where the pace of 

execution and volume of information restricts the time available to explicitly 

communicate coordinating information (Entin & Serfaty, 1999). In such environments, 

the highest performing teams demonstrate well-coordinated behavior with limited or even 

no communication by governing their actions from team cognition that allow implicit 

coordination such that each individual can anticipate the actions of their teammates 

(Burke, Salas, Wilson-Donnelly, & Priest, 2004; Lacerenza et al., 2017; Stout, Cannon-

Bowers, Salas, & Milanovich, 1999). For human-agent teams to improve their 

coordination during time-critical execution it is important to examine the mechanisms, 

moderators, and models for implicit as well as explicit coordination. 
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Designing Improved Coordination for Human-Agent Teams  

Designers must understand their means to improve the process of coordination in 

human-agent teams. Since coordination is a process performed by members of a team, it 

can be influenced by system design. We propose that future AIA design must consider 

the three M’s, as summarized in Table 5. These include coordination Mechanisms, 

Moderators of coordinating behavior, and Models used to coordinate.  

The mechanisms of coordination are the methods used by the team to 

communicate (Okhuysen & Bechky, 2009) and have been discussed previously in the 

literature and earlier in this paper. As discussed, preplanning and debriefing tools (Stout 

et al., 1999) support transition and interpersonal processes which enable the construction 

of models to support coordination. Further, the literature discusses multiple mechanisms 

that permit the human to understand the information necessary to coordinate with an 

agent. These include common operating picture interfaces and shared information 

displays (Bolici et al., 2016), transparency focused interfaces (Mercado et al., 2016), and 

standardized callouts (Stanton et al., 2019). Although significant research has been 

conducted in building block technologies such as natural language understanding gesture 

recognition, and human state estimation, the literature appears to provide limited 

discussion of technologies which provide mechanisms which aid the AIAs in 

understanding the information necessary to coordinate with a human teammate.  

In the context of human-agent teams care must be taken in designing the 

mechanisms to support the coordination of multiple narrow-focused AIAs. As discussed 

in the cost section, explicit communication between a sender and receivers can place a 

significant burden on the sender, particularly if the system is comprised of multiple 
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receivers. Assuming the human is performing as the sender and multiple AIAs serve as 

the receiver, this arrangement has the potential to place a significant coordination burden 

on the human. Further, the narrow-focused AIAs must be able to coordinate with each 

other and with the operators to avoid misunderstanding. The perspective of a narrow AIA 

may be much deeper in focus, but lack breadth and result in misinterpretation of a 

coordination mechanism with the operator. This observation leads one to consider the 

appropriate system architecture to provide the mechanism for coordination with humans 

within human-agent teams. 

There are many factors that may moderate the effectivity of coordination 

behaviors and either enhance or degrade team performance. Examples include the ability 

and willingness of teammates to coordinate (Sukthankar, Shumaker, & Lewis, 2013), the 

flexibility of coordination mechanisms (Stachowski, Kaplan, & Waller, 2009), and the 

reliability or resilience of teammates in common and uncertain situations (Wohleber et 

al., 2016). While AIAs must be designed to be able to coordinate, the training program 

for operators must facilitate the human side of these moderators. Real-world operations 

frequently push the human-agent team beyond the designer’s understanding which will 

necessitate adapting coordination to succeed, not destroying it with misunderstanding and 

unreliable behaviors during these unpredictable situations. The mechanisms must be 

designed to adapt to changes in these moderators. 

Finally, there are the internal models which the individual team members employ 

to manage their coordination behavior. Examples include mental models (Gervits et al., 

2020; Rico et al., 2019), transactive memory systems (Mesmer-Magnus, Niler, Plummer, 

Larson, & DeChurch, 2017), checklists, and scripts (Geddes, 1997). These models may 
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be of the goals, the work, the situation, or individual teammates, but they are critical to 

enabling implicit coordination. Artificial agents are known to predict the outcome of their 

own behavior. However, it is only by employing a model to estimate a future state in 

response to the interaction of their own and anticipated human activities, that AIAs can 

implicitly coordinate and reduce the cost of coordination on their human teammates. 

Specific sequences of actions may be highly procedural in nature for well-practiced task 

sequences, referred to as scripts by Geddes, or sequences of actions, which are adapted 

from previous experience (Geddes, 1989).  

A specific subset of the teammate models include tracking the intent of an 

individual teammate to better predict their actions and needs (Ahmad et al., 2016; Y. N. 

Chen, Sun, Rudnicky, & Gershman, 2016; Holtzen, Zhao, Gao, Tenenbaum, & Zhu, 

2016; Huber & Marvel, 2016; Kofler et al., 2015; McGhan, Nasir, & Atkins, 2015; 

Periverzov & Ilieş, 2015; Vered, Kaminka, & Biham, 2016). Based on the fact that the 

cost to the sender (e.g., human) is significantly higher when forced to employ explicit 

coordination with multiple receivers (e.g., AIAs within a multi-agent architecture), we 

propose that the exploration of explicit intent models for coordination, particularly in 

high performing teams, may be a fruitful area of future research.  
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Table 5. Mechanisms, Moderators, and Models to Improve Coordination in Human-

Agent Teams 

Concept Examples References 

Mechanisms 

Common operating picture, 
Transparency focused interfaces, 
Standardized callouts, 
Preplanning and debriefing tools 

(Bolici et al., 2016; Mercado 
et al., 2016; Okhuysen & 
Bechky, 2009; Stanton et al., 
2019; Stout et al., 1999) 

Moderators 
Ability and willingness to coordinate, 
Flexibility of coordination mechanisms, 
Reliability and resilience 

(Stachowski et al., 2009; 
Sukthankar et al., 2013; 
Wohleber et al., 2016) 

Models 
Mental models, 
Transactive memory systems, 
Checklists or scripts, 

(Geddes, 1997; Gervits et al., 
2020; Mesmer-Magnus et al., 
2017; Rico et al., 2019) 

 

Conclusion 

If we are to achieve the cyberneticist’s vision of integrated human-agent teams 

(Licklider, 1960) it is important to design future multi-agent systems with AIAs which 

can coordinate effectively with human team members. Grounding our design in the 

coordination performance observed in human-human teams, this research focuses on 

design AIAs which utilize analogous coordination methods. We have provided a 

grounded framework for exploring and understanding coordination. By classifying the 

content and defining the types, we are able to provide further insight into the costs of 

coordination and to discuss the mechanisms, moderators, and models which are important 

for improving coordination in human-agent teams. As humans, we have been improving 

our coordination in teams for generations, with the advent of AIAs which can sense and 

react to the environment and its teammates, the time has come that our AIAs were 

designed to join the team.   
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III. Intent for Human-Agent Teams 

Chapter Overview 

This chapter details the Understanding phase related to intent and describes the 

Theorizing phase foundation for Operationalized Intent.  

We seek to understand how intent might be integrated into future human-artificial 

intelligent agent (AIA) teams to improve coordination among team members. A brief 

review the use of intent for improving performance primarily within human-human teams 

is conducted to provide a better understanding of this term. This review clearly 

differentiates intent estimation from intent application, as well as the differentiation of 

“why”, “what” and “how” based intent. A taxonomy of intent-based systems is then 

developed through a review of existing intent-based systems. Together these reviews 

show that intent has been modeled in a variety of ways without a cohesive understanding 

of intent and its different forms. Based upon these reviews and our understanding of 

multi-agent system architectures, we propose “Operationalized Intent” as a method of 

modeling intent regarding “how” the operators would like to execute the team’s tasks. 

We propose that by embedding knowledge of how to execute within a multi-agent 

systems, the available AIAs within the system may perform their tasks in a manner that is 

more useful and synchronized with the operators and other AIAs within the system.  

Introduction 

Recent advances in deep learning, coupled with inexpensive sensors have 

reignited interest in artificial intelligence (Goodfellow, Bengio, & Courville, 2016). The 

resulting artificial intelligence systems when accompanied by appropriate sensors and 
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actuators will be referred to as Artificial Intelligent Agents (AIAs). These agents are able 

to sense their environment, apply previous knowledge to drive decision making, and take 

action in response to the decision (Weiss, 2013). While significant strides have been 

made within this field, the resulting systems remain narrow in focus and are generally 

unable to generalize their knowledge to adapt to uncommon or unforeseen circumstances 

(Brynjolfsson & Mitchell, 2017). To address the narrow focus of this automation, multi-

agent systems are often explored where numerous AIAs are defined, each having a 

narrow focus, but functioning together to provide a broader effect (Franklin & Graesser, 

1997; Weiss, 2013). Human-Agent Teaming, originally referred to as human-machine 

symbiosis (Licklider, 1960), is often discussed as a method for improving  resilience and 

performance in unforeseen circumstances (M. Johnson, Vignati, & Duran, 2019). 

Teaming well trained, creative human operators with AIAs which are capable of 

performing specific tasks with beyond human performance can result in the high 

performing teams needed for complex environments (Driskell, Salas, & Driskell, 2018; 

Fiore & Wiltshire, 2016).  

Coordinating communication between team members is crucial to team 

effectiveness in human-human teams (Eccles & Tenenbaum, 2007) and is a goal of 

design for human-agent teams (M. Johnson et al., 2019; Schneider, Miller, Jacques, 

Peterson, & Ford, n.d.). As is common in human-machine interaction, the exploration of 

human-agent teams leads to concerns regarding the efficacy of coordination between 

humans and artificial agents within these teams. This concern has led to an increased 

interest in communications among human team members (Marks et al., 2001) and the 

desire to understand whether aspects of this communication can be applied to improve 
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the efficacy of communication between humans and artificial agents within human-agent 

teams (J. Y. C. Chen et al., 2018; Lai, Chen, Zheng, & Khoo, 2020). 

In the current research we examine leveraging intent for improving coordination 

in human-agent teams. The working definition of intent and intention is drawn from 

Bratman’s work on the Belief, Desire, and Intention (BDI) model as: “relatively stable 

pro-attitudes that function as inputs to further practical reasoning in accordance with the 

two-level model of practical reasoning…” (Bratman, 1990). While understanding and 

communicating intent provides known benefits in human-human teams this topic appears 

to be gaining increased interest in human-agent teaming. Unfortunately, there appears to 

be little research or discussion within the human-agent teaming literature which attempts 

to provide an understanding of intent estimation or application. Therefore, the current 

research was undertaken to explore the components of intent, as discussed within the 

present literature, and its application within the human-agent teaming literature. The goal 

of this research is to determine whether a more nuanced view could be developed for the 

application of intent estimation systems. Based upon a discussion of this research and a 

literature review of systems employing intent, we then propose a taxonomy of intent 

estimation models. Finally, we propose a model for operationalizing intent research 

which we believe may be beneficial in near term human-agent teams, particularly multi-

agent systems. 

Intent to Improve Coordination 

Among the aspects of coordination within human-human teaming is intent 

recognition and application. Intent recognition involves an individual’s ability to 
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recognize another individual’s goals (Bonchek-Dokow & Kaminka, 2014). Recognizing 

this intent provides knowledge of likely future actions of team members. This projection 

can then be applied to predict a teammate’s actions and permitting an entity to plan its 

own activities without explicit communication. Intentions are future directed and serve 

three functions: they provide insight into the useful actions that may be taken, they guide 

the selection of actions, and they provide a hierarchical series of partial plans that guide 

deliberation (Bratman, 1990). Bratman observes that communicating intent is crucial to 

coordination between agents as it allows the sender and receiver a degree of mutual 

observability and predictability. Research has shown that human beings develop the 

ability to recognize intentions from observed actions between the ages of 9 and 15 

months, even when the performer failed to achieve their goal (Meltzoff, 2005). Therefore, 

this ability appears to be developed early and serve as a building block of communication 

and coordination within human-human interaction. The ability to estimate intent is 

important in implicit coordination, which plays a significant role in the performance of 

expert teams (Eccles & Tenenbaum, 2004, 2007; Rico et al., 2019) . 

Intent has been applied in an attempt to improve communication efficacy within 

the context of human-agent teaming at least since the 1980s (Geddes, 1989, 1997). This 

early research led to prototype systems which involved the development of an artificial 

associate to aid pilots or other operators (Banks & Lizza, 1991; Miller & Hannen, 1998). 

These early systems relied predominantly upon contextual information and operator 

inputs to the system to aid the recognition of human intent. This inference was then used 

to adjust the system’s response. Chris Miller has recently argued that the process of intent 

recognition and the automated application of implicit intent in human-AIA teams can be 
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fraught with error, leading to miscommunication between humans and their artificial 

agents (Miller, 2017). Therefore, he has argued for the use of high level, domain specific, 

language, i.e., plays, which aid the user in rapidly but explicitly conveying plans and 

intent to artificial agents within a system. Humans are known to develop domain specific 

languages to convey contextual information among human-human teammates in many 

complex environments (Woods & Hollnagel, 2006). Thus, the suggestion of the need for 

such domain specific languages to facilitate human-agent teams is not inconsistent with 

behaviors observed in human-human teams. However, as recognized by Geddes, 

commands or intent understood at one level of abstraction, implies behavior at lower 

levels of abstraction. Thus, it is reasonable to ask if specifying a play, particularly at a 

relatively high level of abstraction, may require knowledge of the situation and the user’s 

intent to correctly execute the play.  

AIAs must be a party to the shared situation context of the operators to estimate 

and apply the operator’s intent. This context is comprised of the understanding of the 

environment, the individual operator’s condition, and the operator’s intentions. It is worth 

noting that these three elements are highly interdependent when applied to sense-making 

(Jeffery, Maes, & Bratton-Jeffery, 2005). The significance of an intention lacks 

specificity unless understood in the context of the immediate environment and the 

condition of the operator. In environments characterized by complex and networked 

information (e.g. command and control, unmanned systems, network defense, etc.), the 

AIAs are likely privy to at least as much environmental information as the operators, and 

potentially more than the operators maintain in working memory. The operator’s 

condition, relative to workload, attention, alertness, etc., can be assessed through 
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behavioral and physiological measures (Albert & Tullis, 2013). Thus, the remaining piece 

of context the AIAs require is an understanding of intent, which must be relevant to their 

individual scope. 

Understanding Intent 

Child development research on intent recognition indicates that humans apply 

knowledge of human perception and motor function, observation of their teammate, 

contextual information and their knowledge of the context as input to the intent 

recognition process (Meltzoff, 2005). Much of this information likely comes from 

internal mental models, which are reconciled with observations of the teammate within 

the environment. Therefore, it is important to briefly review the structure and function of 

mental models as they relate to team communication and intent to gain an understanding 

of the types of intent and the communication of intent within teams. 

Mental Models, Team Communication and Intent 

We define a mental model as an internal representation of elements of an external 

reality (Johnson-Laird, 1980). However, elements of these models can be shared across 

team members (Mohammed, Ferzandi, & Hamilton, 2010). While these shared elements 

might be constructed by individuals observing a common environment, they are also 

informed by observing each other’s behavior while operating within a common 

environment and through dialogue. The observations and communication can occur in 

training, prior to the operation, during the operation, or through after action operation 

analysis (Eccles & Tenenbaum, 2004; Entin & Serfaty, 1999; Jones, Ross, Lynam, Perez, 

& Leitch, 2011). As these mental models are applied to the use of man-made systems, 
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mental models permit us to understand the purpose, form, state, and function of a system, 

as well as predict the behavior of the system (Rouse, Cannon-Bowers, & Salas, 1992). 

The literature further differentiates shared mental models, i.e., models shared between 

dyads of individuals, and team mental models, i.e., models shared across an entire team 

(Lagan-Fox, Anglim, & Wilson, 2004) and shared mental models have been studied in 

depth in the context of teamwork (Langan-Fox, Code, & Langfield-Smith, 2000; Mathieu 

et al., 2000; Rouse et al., 1992). Team mental models also expand upon traditional mental 

models as they include information which enable team coordination rather than simply 

knowledge required to perform task  (Eccles & Tenenbaum, 2004).  

DeChurch and Mesmer-Magnus performed a meta-analysis of team cognition 

(DeChurch & Mesmer-Magnus, 2010). This analysis indicated that team behavior process 

and performance is improved when the teammates’ mental models are similar in structure 

and content. In a recent update with 128 independent team cognition studies, these 

authors found that both compositional emergence (e.g. shared mental models) and team-

centric content (e.g. teammate status/team process) had a significantly stronger 

correlation with team performance than compilational emergence (e.g. transactive 

memory systems) or task-centric content (e.g. work in progress) (Mesmer-Magnus et al., 

2017). This indicates that shared mental models regarding team cognition improve team 

performance.  

Importantly, common dialogue among team members or from team leadership 

often relies on shared mental model elements. For example, Entin and Serfaty found 

performance and teamwork scores improve when leaders are trained to periodically 

communicate key elements of their mental model to their team members (Entin & 
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Serfaty, 1999). Important to our present discussion, this research demonstrated an 

increase in implicit coordination mechanisms as the team members’ mental models were 

synchronized with the mental model of the leader. This implies that once an operator’s 

mental model is communicated explicitly to their team members, the team members 

apply this mental model representation to estimate the team leader’s intent. However, 

humans do not require a single, monolithic, integrated mental model and will employ a 

variety of models during execution (Endsley, 1988). While efforts have been made to 

extend the concept of shared mental models to human-agent teams (Carpenter & Zachary, 

2017; Howard & Cambria, 2013; Scheutz, DeLoach, & Adams, 2017; Yen, Fan, Sun, 

Hanratty, & Dumer, 2006), this effort has met with limited success. To provide further 

insight into mental models and intent, the types of information that are important within 

mental models, and thus useful in intent estimation, should be understood. Rouse 

proposed a taxonomy of training knowledge and skill requirements (Rouse, 1991) and 

extended it to include teaming knowledge and skills (Rouse et al., 1992).  This taxonomy 

was proposed as a comprehensive basis to discuss types of information within mental 

models which are necessary to enable the team to execute successfully. Rouse’s baseline 

training taxonomy is decomposed into three categories: System, Task, and Team. Each is 

further decomposed into three types of knowledge: “What”, “How”, and “Why.” Each of 

these three types of knowledge has a continuum of levels ranging from detailed to 

abstract. Table 6 provides the overall structure of the taxonomy.  

 

Table 6. Training Knowledge Taxonomy adapted from Rouse (Rouse et al., 1992) 

Level “What” “How” “Why” 
System Knowledge 
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Detailed Characteristics of system 
elements 

Functioning of system 
elements 

Requirements fulfilled 

Abstract Temporal patterns of 
system response 

Overall mechanism of 
system response 

Physical 
principles/theories 

Task Knowledge 
Detailed Situations Procedures Operational basis 
Abstract Analogies Methodologies Mathematical 

principles/theories 
Team Knowledge 

Detailed Roles of team members Functioning of team 
members 

Requirements fulfilled 

Abstract Temporal patterns of 
team performance 

Overall mechanism of 
team performance 

Behavioral 
principles/theories 

 

Overall, this taxonomy includes numerous elements which might be found within 

the current literature on team mental models. It is worth noting that the level of 

abstraction within this taxonomy is not clearly specified. Clarification of this level of 

abstraction and its relation to the types of knowledge deserves further discussion. 

Use of “Why”, “What” and “How” in Goal Hierarchies 

Levels of abstraction are used in at least two distinctly different, but highly 

related, ways within the literature. A hierarchy within the cognitive systems literature is 

the Functional Abstraction Hierarchy (FAH), as presented by Rasmussen (Rasmussen et 

al., 1994). In this hierarchy, operator goals are decomposed into priorities, general 

functions, work processes, and finally material resources. Through the FAH, goals at one 

level are linked to the means (i.e., methods and apparatus) necessary to fulfill this goal at 

the lower levels. This tool is used to aid the understanding of the decision making within 

complex systems. Rasmussen proposes that “what” is present or to be accomplished at 

one level in this hierarchy can be observed by selection of a level. The layer above 

defines “why” one would accomplish the “what” and one layer below defines “how” the 
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item may be accomplished (Hollnagel & Woods, 2005). The FAH is not used to truly 

decompose system goals and functions but to aid the understanding between physical 

elements of the system and higher-level mental constructs of the system. Although it is 

not clear that all of the abstract components in Rouse’s taxonomy are consistent with 

abstraction as applied in FAH, it is clear that at least some of the abstract concepts are 

common between both. For example, analogies are higher level mental constructs formed 

by the user rather than system functions. As Lind notes, FAH struggles to “differentiate 

teleological and causal reasoning representations” which means that the hierarchy of 

“why”-”what”-how struggles to be fully generalizable (Lind, 2003).  

In an alternative approach, a goal hierarchy is formed in which achievement of the 

lower level goals contributes to the higher level goals (Endsley & Jones, 2012; Geddes, 

1989; Humphrey & Adams, 2011; C. Johnson, Miller, Rusnock, & Jacques, 2020; M. 

Johnson et al., 2012). This approach somewhat mirrors that of a common robotics 

architecture, termed the subsumption architecture (Brooks, 1986). Originally developed 

by Brooks, the subsumption architecture requires that the robotic component be designed 

to achieve a lower level goal through completion of the full perceptual cycle and that this 

goal is embedded in a higher level component which embeds or subsumes this behavior 

with other components to form a higher level behavior necessary to achieve a higher level 

goal (Brooks, 1986). An interesting aspect of these goal hierarchies is they often enable 

multiple means to accomplish a goal at a given level. For example, Geddes discusses the 

fact that humans can achieve a goal utilizing one or more “plans”, i.e., loosely associated 

steps which might be taken in some order to accomplish a goal, or “scripts”, i.e., 

proscribed procedures which are followed in a specific sequence, to achieve a goal 
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(Geddes, 1989). This is similar to the Goals, Operators, Methods, and Selection Rules as 

proposed by Card, Moran and Newell (CMN-GOMS) model (Card, Moran, & Newell, 

1983).  CMN-GOMS also acknowledges that human operators commonly apply selection 

rules to select among multiple methods to achieve a goal, depending upon the situation in 

which they are operating. Therefore, similarly to the FAH, analyzing the goal structure at 

a select level, the goal at any level of analysis within the goal hierarchy specifies “what” 

is to be accomplished. An associated goal at the next higher level within the goal 

hierarchy specifies “why” the goal is to be accomplished. Selecting a means or the 

method to accomplish the goal, specifies “how” the goal is to be accomplished and this 

selection is dependent upon the present situation. Notice that in this goal structure, the 

underlying goals do not necessarily specify “how”, but describe subservient goals which 

might be achieved to achieve the higher-level goal.  

In discussing modeling of goals for human-agent teams, Sterling and Taveteer 

discuss functional goals, as well as quality goals (Sterling & Taveter, 2009) .  While the 

functional goals correspond to “what” is to be achieved, quality goals pertain to the 

priority of various criteria and constraints necessary to understand “how” the functional 

goals are to be attained. For example, this text discusses the quality goals of performance, 

safety, and security, among other socially driven goals, for a palletizing robot. The 

perceived utility of the robot not only pertains to whether the robot completes its work, 

but also the way that it balances performance (e.g., pallets completed per unit time) with 

these other considerations given constraints in the environment.  

To illustrate this concept through an example, we may have a mission to surveil a 

target using an aircraft, specifying “why” the human-agent team is engaged in operations. 
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An operator can lay out the “what” sub goals: find the target, establish positive 

identification, set up surveillance pattern, maintain custody of the target, and provide 

reports on target observations. However, when asked “how” those goals are 

accomplished, the answer is invariably: it depends. The situational considerations, 

including sensor selection, standoff distance, altitude, and airspeed, drive the selection 

rules for the individual tasks that need to be executed. For instance, if conducting 

surveillance of a capable adversary having the ability to detect the aircraft, one might 

select a high airspeed to maximize maneuverability and aid survivability together with 

altitudes and standoff distances which permit one to ensure sufficient detail in the target 

can be observed in a single pass. However, when observing a less capable adversary one 

might select lower airspeeds to minimize fuel burn and maximize time observing the 

target, together with altitudes and standoff distances just great enough to reduce the 

likelihood of visual or auditory detection.   

From this review we propose a relationship between Rouse’s types of knowledge 

and levels of abstraction as they relate to intent in human-agent teams as depicted in 

Figure 2. In this figure, the goal hierarchies to support human-AIA team design should 

consider “why” knowledge as specified by the top level functional goals, e.g. the mission. 

This goal is relatively stable, although high level mission goals can change. However, 

these changes are typically driven by external entities, such as a commander in a military 

context. “What” knowledge is defined by a plan or sequence of the functional sub goals 

that compose achievement of the “why” goal. As this knowledge specifies each task to be 

performed by each entity, it changes relatively rapidly. The “how” knowledge is driven 

by situational considerations and change based upon changes in the environment. In the 
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surveillance example, the capability of the adversary drives how the tasks are executed. 

The “how” knowledge drives changes in the method that is applied to accomplish the 

functional goals and therefore guides and constrain the functional goals. We propose that 

in a human-AIA team, this knowledge can be specified through the use of quality goals 

which drive the selection rules and thus define “how” the individual methods are 

executed to accomplish the functional goals. For the present discussion, it is important 

that “what” must be designed at a level in the hierarchy where the human is actively 

teaming with an AIA to accomplish shared goals to understand intent in human-AIA 

interaction. 

 

Figure 2. Relationship between “Why”-”What”-How based on Goal Decomposition 
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Intent Implications for Human Agent Teaming 

Overall, the literature indicates that humans perform at least three stages of intent 

processing. The first of these stages involves the identification of whether an action 

performed by another individual has purpose or is useful in intent estimation. Studies in 

child development have indicated that infants will follow head movements of individuals 

without a blindfold, recognizing that this head movement provides information about the 

object another human perceives. However, if these infants understand the function of a 

blindfold, they are less likely to exhibit this same behavior when the other individual is 

blindfolded (Meltzoff, 2005).  Apparently, the infants recognize that knowledge of the 

other individual’s perception, as indicated by their head movement, provides goal driven 

information useful in the intent estimation. The infants recognize that with the blindfold 

the other individual is not engaged in the goal driven behavior necessary for intent 

estimation. The second stage involves the estimation of intent, wherein the individual 

applies information to estimate the goals or intent of another individual (Bonchek-Dokow 

& Kaminka, 2014). The third stage is the application of the intent estimate to aid decision 

making and drive the individual’s action in response to the intent estimate.  

Although this developmental research explored implicit communication of intent 

in which an individual observes the behavior of another to estimate intent to guide future 

action, as Chris Miller indicates, intent can be communicated implicitly or explicitly 

(Miller, 2017).  In explicit communication of intent, the individual can communicate their 

intent, making the understanding of goal driven behavior and intent estimation 

unnecessary. In either of these situations, this intent can then be applied to drive decision 

making and future behavior of the observer.  
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If we are to envision the design of multi-agent systems where the AIAs leverage 

intent understanding to improve performance in human-agent teams one might expect 

that functional agents could apply estimates of intent to aid decision making and action 

selection. However, for the behavior of each of the functional agents to appear consistent 

and predictable to the human operator, each of the agents will likely need to leverage a 

similar intent estimate to drive decision making and action selection. Therefore, it is 

reasonable to employ an individual agent to determine operator intent. This agent can 

either interact with the human to obtain an explicit specification of intent, or identify 

purposeful human actions and implicitly estimate elements of operator intent. 

As noted earlier, it may be desirable that certain elements of intent be determined 

through explicit communication while other elements are determined without explicit 

communication. Play calls, discussed by Chris Miller, provide a short-hand to explicitly 

specify a plan, which specifies the “what” information within the Rouse et al.’s 

knowledge taxonomy. The “why” information can also be specified explicitly if needed 

by the AIAs. However, as the “how” information is based on the situation, it may be 

reasonable to derive this information from knowledge of the environment, system, and 

observations of the human’s actions. 

Characterizing Intent 

To gain further insight into implicit intent estimation, a literature review was 

conducted to understand how recently described AI-based systems attempt to utilize 

implicit intent. Recent studies of intent driven AIAs have focused on seven domains, 

including aviation, driving, human-robot interaction (HRI), surveillance, cybersecurity, 

and general human-machine interface (HMI). This literature includes a diverse array of 
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models of intent. Many focus on physical trajectory (e.g. lane change, meeting someone, 

activating a control, etc.) while others compare observations to an a priori knowledge 

base to identify intent (e.g. goal list, simulation model, plan goal graph). The models of 

intent developed are largely defined by the specific problems the research addresses. To 

discuss these intent estimation efforts further we propose characterizing them in a 

taxonomy, depicted in Figure 3. The taxonomy includes eight classification categories 

which are defined in the following paragraphs. 

 

Figure 3. Intent Estimation Taxonomy 

Intent Type defines the type of information which is estimated by the system. 

Three categories of intent type can be observed, including: 1) “What” estimates the end 

goal or next action to be pursued by the human; 2) “How” estimates the methods, 

constraints, and qualitative desires that constrain the execution of the human or the team; 

3) “Why” estimates the driving purpose for taking an action or seeking a goal. 

Behavior Assessment defines the explicit actions taken within the intent 

estimation system. Three categories of behavior assessment are present, including 

detection, estimation, and projection. Systems performing detection determine if the 

human is behaving in an intentional manner. This assessment can be conducted to 

Intent 
Estimate

Intent Type

"What" type

"How" type

"Why" type

Behavior 
Assessment

Detect Intent

Estimate 
Intent

Project Intent

Time Horizon

Immediate

Near

Far

Behavior 
Earnestness

Honest

Deceptive

Human 
Accessibility

Exogenous

Endogenous

Coordinating

Human Skill

Trained

Natural

Suitability 
Evaluation

Appropriate

Inappropriate

Task Difficulty

Low

Medium

High



51 

determine if a behavior should be included in further estimation efforts. Detection is 

applied by Bonchek-Dokow to evaluate intentionality of humans in an observed scene 

(Bonchek-Dokow & Kaminka, 2014).  Systems performing estimation attempt to 

determine intent based on observations of human behavior. As an example Lee estimates 

pilot intent as behavior consistent with their control input (Lee et al., 2015).  Systems 

performing projection estimate intent beyond the immediate intent. For example, Krozel 

estimates the flight path of an aircraft beyond the current maneuver (Krozel & Andrisani, 

2008), thus projecting not only immediate intent but future intent. 

Time Horizon defines the time scale of the intent estimate. Three categories were 

observed in literature review. Systems with an immediate time horizon attempts to 

estimate intent of the current action. For example, Vered’s goal mirroring algorithm 

continuously revises the intention estimate (Vered et al., 2016) to understand the 

following step to be performed by the individual. Systems with a near time horizon 

estimates intent for some small sequence of actions. For example, McGahn’s Markov 

Decision Process model provides estimates of multi-action tasks (McGhan et al., 2015).  

Systems employing far time horizons estimate a large sequence of actions. For example, 

the pilot’s associate, as described by Banks and Lizza, re-plans entire missions based on 

changes in intent (Banks & Lizza, 1991). 

Behavior Earnestness indicates the level of cooperation that the observed 

individual is assumed to exhibit during intent estimates. This taxon includes two 

categories, honest and deceptive. Systems which assume the observed individual is 

exhibiting honest behaviors, expect that every action the human makes is performed to 

accomplish a goal. For example, Kelley uses hidden Markov models which assume that 
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the observed humans are seeking goals (Kelley et al., 2008).  Alternately, systems were 

discussed which assume that the observed individual is performing actions to maliciously 

manipulate the system to perform poorly or undesirably. For example, Cuppens uses 

intrusion scenarios to identify malicious cyber-attacks (Cuppens, Autrel, Miege, & 

Benferhat, 2002) wherein actions are performed to camouflage the true goal of the cyber-

attack. 

Human Accessibility indicates the inclusion of the human being observed. This 

taxon includes three categories: exogenous, endogenous, and coordinating. In exogenous 

systems, the human being observed is external to the human-agent team, permitting only 

immediate situation and behavior to be observed. For example, Huang infers the intent of 

other drivers on the road informed by road curvature (Huang, Liang, Zhao, Yu, & Geng, 

2017). In Endogenous systems the human is internal to the human-agent team and 

system. Within these systems, team, historical or coordinative information is available to 

the agent in addition to situational and behavioral information. For example, the studies 

reviewed by Xing infer the intent of the driver of the vehicle which is teamed with the 

agents (Xing et al., 2019) which are seeking common goals. In coordinating systems the 

agent can explicitly coordinate with the human being observed to acquire information to 

assist in intent estimation. For example, in the rotorcraft associate systems, the agent can 

communicate directly with the pilot to obtain feedback or explicit intent information 

(Andes, 1997; Miller, 2017) 

Human Skill refers to the assumed knowledge of the human being observed. This 

taxon includes two categories, including trained and natural. Systems assuming trained 

operators make the assumption that the humans have some experience, qualification, or 
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instruction specific to the system in which the human-agent team is embedded. The 

agents can confidently make assumptions about the mental models the human is 

employing and the procedures they are applying. For example, Banks and Lizza leverage 

the training of pilots to infer goals from behavior (Banks & Lizza, 1991). Systems 

assuming natural operators assume the human may have no training or experience with 

this specific system. Instead they only have domain knowledge relevant to the task. For 

example, Holtzen observes humans in a natural office setting accomplishing mundane 

tasks (Holtzen et al., 2016). 

Suitability Evaluation refers to whether the system assumes the human is 

capable of accurately forming intent or if the system assumes the human may make 

errors, requiring that their intent be corrected based upon a situated standard of intent. For 

systems assuming appropriate intent the estimate of the human’s intent assumes their 

intent is valid or correct for the situation and the system should apply this intent to adapt 

its behavior. For systems assuming inappropriate intent the system must determine 

whether the estimate of the human’s intent is valid or invalid for the situation before 

selecting an action. 

Task Difficulty refers to the amount of noise or dimensionality of the task the 

human agent team is accomplishing. Difficulty can be expressed as shown in Table 7. 

 

Table 7. Dimensions of Task Difficulty 

  Environment 
  Abstracted Complicated 

System Simple Low Task Difficulty Medium Task Difficulty 
Complex Medium Task Difficulty High Task Difficulty 
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The literature and a few important characteristics of the systems discussed in this 

literature are summarized in Table 8. As shown in this table, the majority of these 

systems seek to estimate the “what” element of intent. Only two of these systems 

estimate intent to guide “how” they respond and only one focuses on inferring the “why” 

of intent. In addition to the domain and the type of intent, Table 8 briefly indicates the 

task performed by the system and whether the system is focused on determining the 

intent of a member of the team (e.g., is focused on endogenous intent) or the intent of an 

external human (e.g., is focused on exogenous intent). Additionally, an attempt is made to 

order these systems in terms of increasing difficulty of intent estimation.  
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Table 8. Overview of Intent Estimation Literature 

Reference Domain Focus Task Intent Type 
(Huber & Marvel, 
2016) 

HMI Endogenous Decision Support What/How 

(McGhan et al., 2015) HRI Exogenous Trajectory 
prediction 

What 

(Ahmad et al., 2016) HMI Endogenous Search engine 
selection 

How 

(Kelley et al., 2008) Surveillance Exogenous Goal estimation What 
(Kofler et al., 2015) HMI Exogenous Video 

classification 
Why 

(Lee et al., 2015) Aviation Endogenous Anomaly 
detection 

What 

(Periverzov & Ilieş, 
2015) 

HMI Endogenous Clarify 
ambiguous inputs 

What 

(Vered et al., 2016) HRI Exogenous Trajectory 
prediction 

What 

(Ahmad et al., 2016) HMI Endogenous Clarify 
ambiguous inputs 

What 

(Bonchek-Dokow & 
Kaminka, 2014) 

Surveillance Exogenous Goal estimation What 

(Y. N. Chen et al., 
2016) 

HMI Endogenous Clarify 
ambiguous inputs 

What 

(Cuppens et al., 2002) Cyber Exogenous Malicious attack 
detection 

What 

(Holtzen et al., 2016) HRI Exogenous Trajectory 
prediction 

What 

(Krozel & Andrisani, 
2008) 

Aviation Exogenous Trajectory 
prediction 

What/How 

(Huntsberger, 2011) HRI Endogenous Collaboration What/How 
(Xing et al., 2019) Driving Endogenous Lane Change What 
(Andes, 1997) Aviation Endogenous Collaboration What/How 
(Banks & Lizza, 
1991) 

Aviation Endogenous Collaboration What/How 

(Ferguson & Allen, 
2007) 

HMI Endogenous Natural language 
interface 

What 

(Geddes, 1997) Aviation Endogenous Collaboration What/How 
(Huang et al., 2017) Driving Exogenous Trajectory 

prediction 
What 

 

This literature review reveals a few interesting aspects of existing intent 

estimation systems. First, it is obvious that some applications are attempting to determine 

the intent of individuals who are external to the system. Further, some systems are 
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attempting to understand the intent of individuals who are actively attempting to conceal 

their intent. In each of these systems, it is not reasonable to expect these individuals to 

engage in communication to explicitly convey their intent and therefore implicit intent 

estimation is necessary. Although the primary interest of the current research was to 

reduce the effort required to engage in fully explicit communication in human-agent 

teams, the fact that individuals may not engage in cooperative behavior to enable 

estimation of implicit coordination has the potential to increase the difficulty of forming 

robust estimates. Considerations such as the time horizon, variations in human skill, and 

the potential to form inappropriate intent all provide potential further complications to the 

estimation of implicit intent and its application. 

The literature review further indicates that intent estimation has been investigated 

in many contexts of varying complexity, informing the desirable execution of an AIA. 

However, each of the extant systems attempt to estimate “what” type knowledge and only 

attempt to model “how” type knowledge through the actions the AIA decides to take. In 

the Jet Propulsion Laboratory study of a robot inferring astronaut intent, the “how” 

knowledge and estimation are embedded in the ever branching model of “what” they are 

doing and will likely do next (Huntsberger, 2011). Given our earlier discussion it is 

possible that the “how” type knowledge may be more stable and change in response to 

environmental and system variables in addition to human attitude. As these variables are 

likely more accessible to the AIA, these changes may improve the AIA’s ability to 

characterize and respond to these changes. For example, an aircraft autopilot which 

understands how maneuvering impacts fuel efficiency must comprehend the importance 

of fuel efficiency versus deviation from the flight plan or other considerations. The 
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“what” of flying the aircraft is unchanged, but “how” it should be flown can have 

significant safety and mission impacts. These “how” intent considerations must be 

synchronized between AIAs and coordinated with the operators. Therefore, developing 

methods to address coordination mechanisms for “how” type intent may prove useful in 

developing complex multi-agent systems for human agent teams.    

Operationalizing Intent 

Given this background, we propose a new human-AIA coordination mechanism 

named Operationalized Intent. To apply this mechanism, we propose that if one can 

understand the priority an operator would apply to quality goals within a specific 

situational context, these goals and their priorities can be used to guide the behavior of a 

number of agents within a multi-agent system while reducing the need for coordination 

regarding “how” type intent. While the earlier surveillance example is an extreme, it is 

possible to see how understanding the tradeoffs between the operator’s quality goals with 

respect to safety and data quality as well as the context of these two separate missions 

might have helped the system estimate how the mission should be conducted.   

Modeling intent in a manner specific to an AIA is appropriate when addressing 

how that AIA understands intent for its tasks. However, we propose that when integrating 

a human-agent team with multiple AIAs and operators, intent must be coordinated 

between teammates and must therefore be explicitly modeled.  

Model 

The implications of this discussion to intent are that communicating situational 

context, i.e. “how” intent, reduces the appropriate task execution methods. Given the 
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limited capability of current AIAs to construct robust shared and team mental models, in 

systems where a human operator is teamed with one or more AIAs, it is likely that the 

“what” is to be accomplished should be explicitly communicated. However, we propose 

that explicit communication regarding “how” to perform the task could be reduced, 

reducing the burden on the operator, by modeling operator intent and engaging in implicit 

coordination of “how” to execute the appropriate tasks. It is important to create this 

model such that it can be shared with the operator and the agents, giving the operator a 

mechanism to communicate explicitly if required.  

The core of Operationalized Intent is the explicit intent model. The intent model is 

a shared structure composed of two elements, an ordinal prioritized list of quality goals, 

and a list of execution constraint statuses. The quality goals and execution constraints are 

established during a design process, in coordination with operators and AIA designers, 

and do not change during execution. Quality goals are ranked hierarchically according to 

their relative importance to the operator and change throughout the course mission of 

execution. Execution constraints are assigned a status, normal, enforced, or overridden, 

which describes how each constraint is influencing AIA behavior during execution. The 

prioritized goal hierarchy and constraint status list form the intent estimate which is an 

immediate representation of the operator’s internal state during execution. As Krozel 

(Krozel & Andrisani, 2008) demonstrated, intent estimates can be composited to extend 

the time horizon. A set of temporally sequential intent estimates define a published intent 

for an operator. Published intent is specific to a given operator in multi-operator human-

agent teams. 



59 

Quality goals describe task execution relevant guidance. A useful quality goal 

complies with the following heuristics. First, it is relevant to the span of control of at least 

one task of one AIA in the system, such that the AIA is capable of changing its method 

due to changes in goal priority. Second, quality goals must be conceptually relevant to at 

least one operator in the system such that he or she can understand and communicate the 

priority of this goal. Third the operator must be able to differentiate each goal from other 

goals. Fourth, the AIA designers must be able to render the goal into a computational 

form such that the system can adapt to its priority in a continuous manner. Finally, the 

AIAs must be able to violate the guidance imposed by a quality goal given other 

considerations, enabling tradeoffs during system execution.   

Execution constraints define some limit to the trade space of behaviors available 

to the AIAs. These execution constraints include both soft constraints, which can be 

violated in special circumstances and hard constraints which cannot be violated at any 

time. Describing the impact of execution constraints on AIA behavior drives the discrete 

statuses which can be communicated with the human operator. These include normal, 

enforced, and overridden. Normal status is the condition in which the constraint is not 

immediately limiting the behavior of the AIAs. Enforced status describes the condition in 

which the constraint is immediately limiting the behavior of the AIAs. A designated 

responsible AIA determines the normal or enforced status. Overridden is a contingency 

status which allows the operator to instruct all AIAs to ignore a soft constraint. For 

example, the aviation constraint “Do not descend below the minimum safe altitude”, must 

be overridden to land the aircraft.  
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The substantive difference between quality goals and execution constraints entails 

that a single statement cannot be both a goal and a constraint simultaneously. It can be 

difficult to determine where an execution expectation should fall, particularly when 

considering pervasive ones like safety. Consider the directive to “Operate Safely.” While 

this directive is often viewed as the top priority in safety critical systems, as a quality 

goal it struggles to be interpretable, differentiable, and it wouldn’t be expected to ever be 

violable. However, an execution constraint that stipulates “Do not operate above critical 

thresholds” provides actionable limits on the AIA’s behavior. This constraint does not 

provide any guidance on operating close to critical thresholds, only that they should not 

be breached. This is true even though operating near such a threshold increases the 

likelihood of failure, reducing the margin for error. When such a constraint is paired with 

a quality goal to “Avoid operation outside normal range”, the expectation about safe 

operation is usefully decomposed into a hard constraint that prevents unsafe actions by 

the AIAs, and a quality goal that promotes safe operation by providing guidance to 

generally avoid operating near constraint bounds without strictly limiting behavior. It is 

still possible to operate near critical thresholds given circumstances where other goals are 

of greater importance, but there is an expectation that the system will operate away from 

the edges of the envelope under conditions where the quality goal “Avoid operation 

outside normal range” is more important than other quality goals.  

Characterization 

To clarify the purpose and utility of Operationalized Intent we evaluate it 

according to the intent estimation taxonomy provided in Figure 3. With regard to the 

taxon “intent type”, Operationalized Intent addresses the “how” type of intent. AIAs are 
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focused on their tasks and operators should clearly, unambiguously, and directly 

(Shneiderman, Plaisant, Cohen, & Jacobs, 2010) control or command the team. The 

intent estimate provides AIAs with the added context, improving their ability to select 

appropriately among different options for accomplishing a designated task. With regard 

to the taxon “behavior assessment”, the operator is always assumed to be behaving 

intentionally. Operationalized Intent seeks to develop intent estimates in real time. 

Integrating Operationalized Intent into a planning process provides a projection of intent 

estimates into the future. The intent estimate is assumed to be valid for an immediate or 

short “time horizons.” While published intent might provide intent estimates at further 

time horizons, it is expected that the AIAs will not rely upon prognostications that extend 

significantly into the future. There is an implicit assumption in human-agent teaming that 

the operators are working with the AIAs to achieve the goals, by extension 

Operationalized Intent assumes operator honesty with respect to “behavior earnestness.” 

With regard to “human accessibility”, the implementation of Operationalized Intent gains 

efficiency and power if implemented in a coordinating manner. Operators should have 

visibility into the agent’s intent estimate and a method to resolve conflicts between the 

estimate and the operator’s true state should be provided. For the “human skill” taxon, the 

design of the intent model necessitates that the operators be trained. Operationalized 

Intent is focused on high performing teams which, by design, train together to improve 

performance during execution. With regard to “suitability evaluation”, Operationalized 

Intent is designed for application in natural environments which are notoriously noisy. 

Therefore, intent estimates focus on representing the operator’s state without judgment 

regarding the suitability of that intent to the situation. Finally, on “task difficulty”, 
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Operationalized Intent is targeted at complex systems operating in complicated 

environments. The utility of explicitly modeling “how” type intent arises with 

increasingly complicated environments which pose multiple dilemmas to the team’s joint 

cognitive abilities and demand an increased variety of action (Ashby, 1956) to address 

the multidimensional nature of the environment.  

Operationalized Intent is most similar to the associate systems reviewed earlier 

(Andes, 1997; Banks & Lizza, 1991; Geddes, 1989). Critical differences include the fact 

that Operationalized Intent is targeted towards complex multi-agent systems and the 

estimated “how” type intent is represented explicitly in the system. The associate systems 

are integrated cognitive engines and all intent was represented in the graph structures, 

which are largely opaque to external AIAs and operators. Traces in the graph structure, 

referred to as a plan-goal graph by Geddes, attempt to model the entirety of intention, the 

“what”, “how”, and to an extent, even the “why” (Geddes, 1989). Operationalized Intent 

seeks to decompose the representation to make it more flexibly reusable by other AIAs in 

a multi-agent system through a focus on the “how” elements of intent with the 

perspective that the human operator will direct the “what” that is relevant to the AIAs and 

that the “why” is generally irrelevant to present AIAs.  
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Architecture and Ontology 

 

 

Figure 4. Ontology of Operationalized Intent 

 

We have alluded to a conceptual architecture for Operationalized Intent which is 

worth summarizing to contextualize the discussion below. In an intent-informed system 

there are one or more human operators who interact with multiple task focused functional 

AIAs, and an intent agent for each operator. The intent agent is an AIA, the sole purpose 

of which is integrating intent estimates into published intent to be disseminated to the 

functional AIAs. There should be interfaces between the operators and the intent agent to 

support explicit coordination, and between the functional AIAs and the intent agent to 

support situation understanding by the intent agent and published intent dissemination to 

the functional AIAs.  
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An ontology of Operationalized Intent provides greater detail. Figure 4 depicts the 

definition of the relationships as a Systems Modeling Language (SysML) Block 

Definition Diagram. Since Operationalized Intent operates on the coordination cycle 

between the operator (on the left) and the functional AIAs (on the right) those blocks 

bound the discussion. Working from the bottom up, the quality goal and execution 

constraint form the basis of the published intent. The goal hierarchy and constraint list 

serve as the mental models that are common between the AIAs and the operator. These 

are managed by the intent agent whose sole purpose is to observe the available situational 

and operator data to produce intent estimates. The responsible functional AIAs determine 

the normal and enforced constraint statuses while the intent agent orders the goal 

hierarchy. An operator should always have the ability to direct changes to the AIAs 

internal state. Therefore they have the responsibility to set the override status of a 

constraint and the option to explicitly specify the priority of any goal in the hierarchy. 

The functional AIA and operator actions, along with any changes to the situation, both 

external and internal to the system, are the inputs to the intent agent and represented as 

event notices. These event notices are drawn from the Core Situation Awareness 

Ontology (Matheus, Kokar, & Baclawski, 2003) representation of situation evolution in 

time. The association between the operator and the intent agent is meant to clarify that the 

operator has access to direct the intent agent. However, to do so requires some operator 

action and would be an event notice. There are two “Interpreted by” associations, from 

the event notices to the intent agent, and from the published intent to the functional AIAs. 

These are the decoupling mechanisms that allow new information to be integrated into 

the intent estimation process independent of the functional AIAs (i.e. intent estimation), 
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while tailoring or tuning the use of the published intent by the functional AIAs (i.e. intent 

application). This allows the development of the functional AIAs by disparate groups 

with a common understanding of published intent. Application of this ontology to any 

given domain necessarily requires analysis of that domain to define useful quality goals 

and execution constraints, along with the relevant event notices and their interpretation. 

The Operationalized Intent domain application process is detailed in other manuscripts.  

Conclusion 

As AIAs in multi-agent systems become more capable of executing complex 

tasks, understanding intent is necessary to improve coordination of human-agent teams. 

We begin by reviewing the use of intent within the human factors and cognitive 

psychology literature which leads to the differentiation of intent estimation from intent 

application, as well as the differentiation of “why”, “what” and “how” based intent. A 

taxonomy of intent-based systems is then developed through a review of existing intent-

based systems. Together these reviews show that intent has been modeled in a variety of 

ways without a cohesive understanding of intent and its different forms. Based upon these 

reviews and our understanding of multi-agent system architectures, we propose 

Operationalized Intent as a method of modeling intent regarding “how” the operators 

would like to execute the team’s tasks. We propose that by embedding knowledge of how 

to execute within a multi-agent systems, the available AIA may perform their tasks in a 

manner that is more useful and synchronized with the operators and other AIAs within 

the system.  
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IV. A Study of Operationalized Intent for Remotely Piloted Aircraft 

Chapter Overview 

This chapter provides the Theorizing phase discussion on methods to develop a 

quality goal hierarchy and study it. The Studying phase related to the quality goal 

rankings, intent change and cohesion are also included.  

Effective teams coordinate their actions to achieve shared goals. In Human-Agent 

Teams, the Artificial Intelligent Agents (AIAs) struggle to coordinate effectively with 

human teammates as they lack an understanding of their human teammate’s intent. As a 

result, the human teammate must explicitly communicate their task-oriented goals and 

how they are to be achieved. To improve the AIAs ability to coordinate, we have 

proposed a method to model situated operator priorities as a means to estimate “how” an 

operator desires a task to be performed, a construct we refer to as Operationalized Intent. 

Implicit in this construct is the assumption that trained operators will exhibit similar 

intent models within similar situations and that this intent will change with changes in 

situation. The focus of this paper is on the dynamics of intent and intent cohesiveness 

across operators. In this paper, we report the results of a study to track operator intent 

through a series of three tactical scenarios. The study employed an immersive, remotely 

piloted aircraft simulator to study intent in a synthetic task environment. Using 

operational pilots and sensor operators in realistic scenarios we were able to elicit their 

intent under relatively naturalistic conditions in the midst of challenging tactical 

situations. Analysis indicates that the Operationalized Intent method models intent which 

is dynamically responsive to changes in the situation and produces data that are suitably 

cohesive across operators to generalize to an operator role.  
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Introduction 

Effective teamwork involves coordinated activity among teammates as they 

perform interdependent activities (M. Johnson et al., 2019). It is well recognized that 

humans estimate the intent of their teammates to anticipate and coordinate activity 

(Meltzoff, 2005). Past human-agent teaming research has proposed the estimation and 

application of intent to aid the coordination of artificial agents as they collaborate with 

their human counterparts (Riley, 1989; Rouse, Geddes, & Curry, 1987). Generally, these 

approaches have assumed that knowledge of the user’s goals and the processes used to 

achieve each goal could be applied to anticipate human intent (Banks & Lizza, 1991).  

These systems have not gained wide acceptance. Lately, it has been proposed that it is 

important for human operators to communicate with Artificial Intelligent Agents (AIAs) 

regarding their intent to avoid miscommunication (Miller, 2017). 

Early intent systems sought to understand and anticipate the goals that operators 

sought to fulfill. These systems decomposed functional goals to functional sub-goals at 

various levels of abstraction (Geddes, 1989, 1997; Rouse et al., 1987). When pursuing a 

goal at a lower level of this abstraction, the goal represents “what” the operator wishes to 

achieve while the higher-level goals represent “why” this goal is important. However, 

these frameworks also recognize that multiple means are available to achieve the desired 

goal and selection among these means requires knowledge of “how” the goal is to be 

achieved. It has been proposed that knowledge of “why”, “what” and “how” tasks are to 

be achieved are important components within team mental models to facilitate effective 

teamwork (Rouse et al., 1992).  Similarly, when attempting to design intent-based 

systems, one can determine “what” the operator wishes to achieve, as well as “how” they 
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wish to achieve the activity. Prior AIA modeling literature has also differentiated goals 

associated with the “what” and “how” differentiation. For example, Sterling and Taveteer 

discuss a framework for modeling human-agent interaction using functional goals as well 

as goals they term “quality goals” where it is recognized that “how” a functional goal 

should be achieved depends upon relative user priorities for items which are often 

mutually exclusive, such as performance, safety, and security (Schneider & Miller, 2018). 

In the current research, we propose that “what” changes rapidly during execution. 

In contrast, “how” an operator performs the activity is sensitive to perceived operational 

constraints based on situational considerations. For example, fuel efficiency is likely 

critical for long-duration aircraft missions, but a minor consideration for short missions. 

While alternate goals, such as maximize maneuverability, might dominate a goal of 

maximize fuel efficiency for certain mission segments, maintaining high fuel efficiency 

will remain important throughout such a mission. Therefore, our working premise is that 

the priorities governing “how” an operator seeks to accomplish the activity is relatively 

stable with respect to the situation. This stability is important as it permits future human 

needs to be projected, enabling AIAs to anticipate future activity and plan coordinating 

activities.  

In previous research, we have proposed a method of modeling operator intent 

related to “how”, referred to as Operationalized Intent (Schneider & Miller, 2018). By 

definition Operationalized Intent is comprised of a list of quality goals which are likely to 

be important to an operator within an operational context and their relative rankings. The 

ranking of quality goals provides information regarding relative importance of criteria 

and constraints which an AIA can use to inform task execution.  
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In this research, it is presumed that the operators reprioritize these quality goals in 

response to changes in perceived operational constraints and conditions. This motivates 

several research questions.  

If Operationalized Intent is an internal mental model correlated to the situation, 

the study of intent requires a means of examining and comparing intent. Understanding 

internal mental states has been studied by cognitive engineering researchers through a 

variety of methods. This raises the question, what methods and considerations should be 

employed to elicit and understand user intent?  

Does the operators’ use of the quality goals indicate that it is effective in 

capturing intent? We posit that significant bias in the ranking of quality goals throughout 

a controlled, yet involved, tactical scenario may provide insight into their utility. Since 

the quality goal rankings are situationally correlated, quality goal ranking bias may also 

reveal strengths and weaknesses of the designed study and provide a means to refine it.  

Based upon the prior discussion, we anticipate that the priority of quality goals 

should be stable over time unless a disturbance is introduced which induces a change in 

the perceived constraints. We expect the introduction of these disturbance to alter the 

user’s priority of the quality goals. To test this premise, it is important to ask, how does a 

participant’s quality goal priorities change over the course of a trial?  

Finally, are the priority of quality goals cohesive enough across trained 

participants to permit them to be estimated using a common estimation model or 

algorithm? Specifically, we seek to assess if intent, when described by the priority of 

these quality goals, is cohesive across a group of highly trained and experienced 

individuals. This question is important since adequate consistency, as measured by the 
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cohesiveness of operators' goal rankings, enables agents to be designed and developed 

independently of the specific human operators in their team.  

This paper  presents the results and analysis of a study that tracks the priority of a 

set of quality goals across a set of experienced operators as they control a simulated 

Remotely Piloted Aircraft (RPA) through a series of three tactical scenarios. We begin by 

outlining the intent model development, study design, and metrics. We then discuss the 

study method, synthetic task environment, and execution. Finally, we present the 

analysis, which identifies changes in goal priority with changes in situation and the 

cohesiveness of the operators’ intent models.  

Intent Modeling 

Background 

To discuss intent we use Bratman’s definition of intention: “relatively stable pro-

attitudes that function as inputs to further practical reasoning in accordance with the two-

level model of practical reasoning…” (Bratman, 1990).  Researchers have modeled or 

operationalized this concept in multiple ways. In the Human Robot Interaction (HRI) and 

Human Machine Interface (HMI) domains, intent has been modeled as a physical path for 

prediction and error correction (Ahmad et al., 2016; Holtzen et al., 2016; McGhan et al., 

2015; Periverzov & Ilieş, 2015; Vered et al., 2016). Others use a task or relational model 

to capture intent as a goal in an a priori defined set of goals (Bonchek-Dokow & 

Kaminka, 2014; Feng & Upenn, 2015). For example, the Associate System design 

represents intent as an implicit part of the acyclic directional graphs within their 

modeling technique (Banks & Lizza, 1991; Geddes, 1997). While initially designed to 
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estimate human intent without operator interaction, research involving the Rotocraft 

Pilot’s Associate identified the ability of the human and the AIA to communicate on the 

current task and subtask as a key enabler to successful operation (Andes, 1997; Miller & 

Hannen, 1998). For our effort we sought an intent representation that is explicit, easily 

communicable, and information rich for both AIAs as well as operators. The intent model 

must be explicit to be shared among AIAs and understandable to the operator. To be 

useful in high stress and workload environments, it must be easy to communicate to 

avoid inducing higher workload during intent estimation failures. Finally, for an intent 

model to be useful in complex systems it must communicate a volume of information that 

provides context for mutual understanding between the team members. 

Operationalized Intent Model Structure 

We have proposed Operationalized Intent as a method of modeling operator intent in 

prior research (Schneider & Miller, 2018). It is targeted at trained operators utilizing 

complex systems in complicated environments to achieve a high degree of performance. 

The Operationalized Intent model is a shared structure for a mental model composed of 

two elements, an ordinal prioritized list of quality goals, and a list of execution 

constraints with their current status. The ranking of quality goals provides optimization 

guidance which an AIA can use to inform task execution. Effective quality goals abide by 

the following heuristics, they are: 1) relevant to the tasks the AIAs which are present in 

the system can perform, 2) conceptually relevant to the operators, 3) interpretable by 

AIAs to inform computation, 4) conceptually continuous, 5) violable by AIAs actions 

given other considerations, and 6) differentiable from other goals. Quality goals are 
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defined during design and only their relative priority (i.e. rank) changes during the 

dynamics of execution.  

Model Development 

Developing useful quality goals, which represent the mental model of an operator, 

requires an in-depth understanding of the cognitive work domain. The domain includes 

the system being employed, the environment in which it operates, and the work it 

performs. To capture and understand the domain we began with a Goal Directed Task 

Analysis (GDTA) (Bolstad, Riley, Jones, & Endsley, 2002) for the domain of interest and 

extended it to capture a quality goal model. While cognitive work analysis and work 

domain analysis (Naikar, 2017) are effective at capturing the work, environment, and 

systems to be studied, the GDTA’s explicit modeling of functional goals provides a clear 

grounding for Operationalized Intent.  

The GDTA begins by determining an overarching goal and decomposing it into a 

hierarchy of functional sub goals. Decisions associated with accomplishing the sub goals 

are then identified. The specific information requirements necessary to make the decision 

are then mapped to the decisions. This leads to a hierarchical, acyclic graph with the 

major goal being decomposed into sub-goals, each having an associated decision, which 

is linked to the individual information requirements necessary to support the decision. 

We employed the GDTA extensions of Humphrey and Adams, adding a nominal 

sequencing in the goal decomposition as a reference for Subject Matter Experts (SMEs) 

(Humphrey & Adams, 2011). Humphrey and Adams also categorized the information 

requirements into tools and resources, thought processes, people and groups, and SA 

information. To extend the GDTA for Operationalized Intent, we mapped quality goals 
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directly to the functional GDTA goals in the decomposition and mapped data elements to 

information requirements. Relevant quality goals provide prioritization regarding “how” 

the functional goal is to be achieved. Not all quality goals are relevant to each functional 

goal in the decomposition, e.g. quality goals about searching are not related to functional 

goals focused on attack. By establishing these relationships, the quality goals are directly 

tied to the domain and therefore are relevant to the operators and are observationally 

differentiable from each other. The data elements capture specific data available in the 

system which provide some relevant portion of an information requirement necessary to 

support an operator decision. This ensures that the quality goal hierarchy can be 

estimated situationally. Figure 5 provides the meta-model of this extended GDTA as a 

Systems Modeling Language (SysML) Block Definition Diagram. The core GDTA 

elements are in white. The Operationalized Intent specific extensions are in red. The 

yellow elements of the meta-model will be discussed in subsequent sections on trial 

design.  

Source material for developing an intent model, like all GDTAs, can be gleaned 

from documentation, operator SME interviews, and observation of the work. In addition, 

the heuristics for useful quality goals and the available data elements require examination 

of the system design to understand the trades among priorities that the AIAs are capable 

of supporting. Interviews and discussions with the system design SMEs and review of 

design documentation are key to developing useful quality goals that can be estimated 

from the data elements and affect system operation. Once the intent model is established 

a proper study can be designed to evaluate it. 
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Figure 5. Meta Model of Operationalized Intent Goal Directed Task Analysis 

 

Studying Intent 

As a shared mental model, Operationalized Intent, is most appropriately examined 

in as naturalistic an environment as possible. When trained operators are situated in 

realistic conditions, working on tasks they perform regularly, the mental models they use 

can be examined with a high degree of validity (Endsley, 2000; Klein, 2008). Conversely, 

to study intent and capture the data elements for estimation, experimental control of the 

operational flow is necessary to ensure that changes in situation drive changes in intent. 

Balancing these competing priorities leads to studying operators in synthetic task 

environments (STEs) executing realistic operations.  
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Situating Operators 

Properly situating operators to study intent requires commonality in their mental 

models, an environment of sufficient complexity to make the mental models necessary, 

and familiar work such that they use their mental models instead of developing new ones. 

Mental model commonality is the result of training and shared experiences (Entin & 

Serfaty, 1999). Selecting operators who have worked in the same or similar organizations 

with the same or similar systems based on similar training increases the likelihood of 

mental model commonality. The system and test environment complexity should be 

similar to the operational environment. Therefore ensuring that the sensory channels and 

channel loads (e.g. voice communication, visual scanning space, etc.), and that the 

complexity of information and control (e.g. spatial reference, text communication, 

detailed subsystem control, etc.) is similar in kind, if not in volume, to the operational 

environment. Finally, drawing on vignettes from actual operations that challenge the 

operators ensures that the work is familiar and motivates mental model use.  

Trial Design 

We propose that studying intent requires a synthesis of methods to inform the 

assembly of vignettes into trials. To examine Operationalized Intent during tactical 

operations we combined a dynamic situation awareness evaluation technique (Jamie C. 

Gorman, Cooke, Pederson, & Connor, 2005) with a static elicitation technique (Endsley, 

2000). The trials were designed to be a series of stable situations interrupted by 

disturbances which would perturb the operator’s intent before stabilizing into the next 

situation. This process of disturbing a stable state and observing the dynamic effects on 

situation awareness is based on the Coordinated Awareness of Situations in Teams 
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(CAST) methodology (Jamie C. Gorman et al., 2005). However, an operator’s internal 

mental model of intent is unobservable and, as yet, there is no basis for evaluating 

communication or interaction patterns to evaluate the operator’s intent. As such, the 

CAST method is not sufficiently detailed to study intent at the necessary depth. Since we 

need to elicit the operator’s internal mental model of intent at situationally representative 

points, the methodology design involved the experimenter pausing the simulation and 

requesting the operator rank the quality goals according to their immediate situation. This 

portion of the procedure was motivated by the Situation Awareness Global Assessment 

Technique (SAGAT) (Endsley, 2000). However, the current method did not require 

blanking the displays because there is no external representation of the operator’s internal 

intent available to the operator. For this study we assembled elements from vignettes 

based on RPA mission briefs, operational test scenarios, and training simulations. Using 

the meta-model in Figure 5, we mapped the trial elements to the quality goals to ensure 

that the disturbances are most likely to shift intent. To further improve the commonality 

of the operator’s mental models, we decomposed each trial element into activities and 

made sure that each activity was addressed during training so that the operators had a 

common understanding of the STE. To effectively study intent, the dynamics of CAST 

are combined with the detail of SAGAT and the context of naturalistic decision making 

study considerations.  

Comparison Metric 

The quality goal ranking elicitations during the trials provide insight to the intent 

mental model of the operator. To evaluate changes and similarity in intent models we 

must be able to compare those models using a computational metric. In studying intent, 
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we assume the quality goal hierarchy ranking changes from situation to situation and 

from operator to operator. To assess the changes in these ranks, we need to measure the 

difference between two sets of rankings. Many metrics have been used to compare ranked 

sets,  including the Spearman Rank Correlation Coefficient (rho) and the Kendall Rank 

Correlation Coefficient (tau) (Vembu & Gärtner, 2011). The former uses the square of 

the difference in rank which penalizes large differences non-linearly. The latter is based 

on concordant pairs and measures distance based on the number of pairwise inversions to 

get from one set of ranks to the other (Dwork, Kumar, Naor, & Sivakumar, 2001). At this 

time there is no evidence that weighting the difference in ranking non-linearly is 

appropriate. Since the ranking of the quality goal hierarchy is independent from one 

situation or disturbance to the next, pairwise inversions are not relevant. The Spearman 

Foot Rule provides a distance between any two ranked sets of the same elements without 

any weighting (Diaconis & Graham, 1977).  Since we are addressing goal hierarchies of 

less than 10 items, an exact, normalized version of the Spearman Foot Rule is used to 

improve accuracy. This modified metric is called divergence and is computed according 

to (1).  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2∑ |𝑅𝑅𝐴𝐴,𝑖𝑖−𝑅𝑅𝐵𝐵,𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛2−(𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 2)
   (1) 

where 𝐷𝐷 is the number of quality goals in the hierarchy, 𝑅𝑅𝐴𝐴,𝑖𝑖 is the rank of the ith goal in 

the first set, and 𝑅𝑅𝐵𝐵,𝑖𝑖 is the rank of the ith goal in the second set. The results range from 0 

to 1 in discrete increments, with 0 being perfect agreement and 1 being complete 

disagreement.  
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Figure 6. Probability Mass Function of Nine Goal Model Divergence 

The current study employed nine quality goals, resulting in a metric having 21 

even steps across the range which are spaced in 0.05 increments. A single step represents 

two adjacent goals swapping ranks (e.g. Goal A ranked 1 and Goal B ranked 2 in the first 

set and Goal B ranked 1 and Goal A ranked 2 in the second set with all other goals being 

ranked identically between the sets). There are 9! unique permutations of the quality goal 

model. The exact distribution of divergence between these permutations and any single 

permutation is approximately 𝑁𝑁 �2
3

, 8
405
�, the probability mass function (pmf) is given in 

Figure 6. This distribution provides a concrete baseline on which to assess the 

cohesiveness of intent elicitations. The cumulative probability of two independent 

rankings of the quality goal model being within the bottom half of the divergence range is 

less than 18.5%. If the observed divergence is distributed towards the lower half of the 

divergence range it indicates that there is some external effect driving the intent models 

closer together.  

0%

2%

4%

6%

8%

10%

12%

14%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Pr
ob

ab
ili

ty

Divergence



79 

RPA Intent Study 

Together, a rigorously defined intent model, a carefully designed study, and a 

comparison metric permit the study of intent changes over the course of a tactical 

operation. This section details the specifics of a study conducted with RPA operators.  

RPA Intent Model 

Following Endsley’s process for developing GDTAs, we began by reviewing 

documentation on how the RPA is employed, the operational environment, and the 

capabilities of the simulation system for the study. This system contained only two AIAs, 

the autopilot and an Advisory-Cautions-Warnings system, so we extended it to a future 

concept that included additional AIAs to assist the operator, including an auto-router, 

sensor tasking management, defensive systems, weaponeering, etc. These AIAs opened 

the trade space to allow more goals to be relevant to AIA tasks. Coupled to the document 

review we performed multiple subject matter expert interviews with current RPA pilots to 

inform and validate the GDTA and the quality goal model. The result was a 9 quality 

goal model across the two most common missions in the RPA community. The quality 

goals are listed in the elicitation interface, Figure 7, which requires the operator to drag 

each quality goal from the left box to the right box. There are natural tensions between 

these quality goals. Maximize Time on Station means that fuel efficiency should be 

maximized to ensure a long time aloft. This is in tension with Time on Target and 

Maximize Maneuverability which both trade fuel efficiency for speed, either to get to the 

target on time or to maneuver dynamically at altitude. Due to the diversity of the missions 

flown by RPAs, not every quality goal is relevant to each situation. Maximizing Search 

Efficacy is not relevant when attacking a target. Conversely, Maximize Reattack 
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Opportunity is only relevant when the target is likely to be attacked. Both of these impact 

altitude, flight path relative to the target, potential terrain masking, bank angle limits, 

subsystem controls, etc.  

 
Figure 7. Quality Goal Model in Elicitation Interface 

Operators 

Our operators were drawn from pilots and sensor operators in an operational RPA 

squadron. All seven operators (four pilots and three sensor operators) were male having a 

mean experience of 1489 flight hours (st. dev. 558 flight hours) in RPAs. They all 

routinely performed the ISR mission. Each of the four pilots indicated that they perform 

CAS routinely, while the three sensor operators indicated they perform CAS infrequently. 

Each participant was randomly assigned a two digit identifier.  

 Synthetic Task Environment  

The operators were experienced in flying their operational ground control station 

with a pilot in command (PIC), sensor operator (SO), and a mission intelligence 
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coordinator (MIC). Their current operational system is highly federated, requiring the 

operators to mentally fuse data from multiple sources and provide inputs to multiple 

systems using different means with dedicated controls at separate stations. The 

experimental STE used in this study is a fully integrated control station which allows a 

single operator to control the entire system. This STE provided a substantial shift from 

the operator’s current environment, so for the study an experimenter performed the role 

of the MIC which is to back up the operator on video surveillance, assist with 

communication, and research historical and tactical information relevant to the situation.   

The operators were seated at the STE crew station composed of two vertically 

arranged, horizontally oriented, 43 inch 4K displays. The upper display was mounted 

perpendicular to the floor, the lower display was reclined away from the operator at a 35 

degree angle from the floor. The operator had a mouse, keyboard, and a noise cancelling 

headset with microphone. To avoid glare on the reclined display, all overhead lights were 

covered. Indirect lighting on the wall behind the workstation and the ceiling provided 

adequate illumination for the operator. The operators were seated in an adjustable office 

chair. The experimenters were seated in the same room, behind the STE crew station at 

another dual display computer workstation with headset and microphone. This enabled 

simulated live voice communications between the operators and other simulated mission 

players. The study was conducted between or before shifts in a squadron relaxation room 

at the Michigan Air National Guard base in Battle Creek, Michigan.  

The STE crew station ran the Air Force Research Laboratory Vigilant Spirit 

Control Station software which provides a modular, tool based layout to control all 

aspects of the RPA (Rowe, Liggett, & Davis, 2009). This included chat, voice 
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communication, full motion video, alerts, and checklists on the upper display, with 

subsystem controls, navigation, and an integrated tactical map on the lower display. To 

rank the quality goals the operators used a simple drag and drop graphical user interface 

(GUI). The simulation was controlled from the experimenter station through the Vigilant 

Spirit Simulator. The experimenters also had access to a control station instance to 

observe the operator’s view of the situation and serve as the MIC.  

The missions flown in the study represented prototypical missions in recent 

operations. There were multiple external mission players, including customers, air traffic 

control, and ground forces, which the operator interacted with via chat or voice 

communication. The surveillance targets and mission taskings were similar to real world 

experiences. The simulated world was approximately 4 km square. The three trials took 

place in different sections of this area to provide a sense of uniqueness for each trial. This 

environment was designed to provide an immersive environment to permit the operators 

to achieve a tactical mindset from which we can elicit realistic rankings of the quality 

goals.  

Trials 

From the GDTA and intent model we drew upon operational test scenarios and 

published accounts of missions which resulted in meritorious awards for the crew. The 

result was three trials containing at least three disturbances with 5 to 7 elicitations taken 

at situationally relevant intervals. Each trial began with a different form of ISR mission 

and progressed to a complex CAS mission before being resolved.  

Trial 1 consisted of a “Pattern of Life” mission (observing a compound for 

activity). Situation 1 and 2 each involved observing the compound for activity. These 
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situations were interrupted by an airspace restriction which threatened the current route 

and the emergency route home, disturbance 1. During the scenario a “High Value 

Individual” leaves the compound in a car, disturbance 2, and makes several stops, 

resulting in situation 3. At the final stop the individuals engage in hostile activity and the 

operators receive an order to strike the individuals, disturbance 3. They successfully carry 

out the strike resulting in situation 4.  

Trial 2 begins with an area search for targets, which is interrupted by an aircraft 

generator failure. The operator is able to reset the generator and resume searching for 

targets. Once they have located and identified the targets and confirmed the most critical 

target they are given orders to strike that target. They then shift to supporting another 

manned aircraft strike on one of the targets the operator located. That manned aircraft is 

lost and they immediately initiate personnel recovery. The trial ends when they locate the 

pilot.  

Trial 3 opens with the aircraft far away from the operational area, on the wrong 

side of a thunderstorm, with a fixed time on target required to rendezvous with their 

supported unit. With precise navigation and increased air speed they can just make the 

rendezvous in time. The mission is to support a convoy and identify obstructions or risks. 

Once the operator identifies the obstruction to the convoy route, the convoy re-routes and 

proceeds on their way. During the over watch, the aircraft link to the ground station is 

lost and the operator has no control or information from the aircraft for a short period of 

time. Once link it restored the operator follows the convoy to a crowded compound. An 

adversary convoy rolls in and a firefight commences. The operator is tasked with striking 

the adversary convoy to break contact and allow the friendly forces to regroup. The strike 



84 

destroys the target and two other adversary trucks flee. The operator must track them and 

mark their locations to end the trial.  

These trials are highly dynamic with many shifting priorities, disturbances, and 

time sensitive situations. Figure 8 provides a comparison of the simulated timeline for 

each operator in Trial 1. The dark grey segments indicate disturbances, the diamonds 

mark when elicitations were taken. Some operators react more quickly to disturbances, 

some take their time with certain tasks to ensure they are complete, and some get lucky 

and achieve their tasks rapidly. We elicited their intent at situationally defined points 

during the mission which is why the timelines across participants do not line up. The 

elicitations, however, are situationally similar (e.g. all the “1” elicitations occur during 

the first situation). 

 

Figure 8. Simulation Timeline of Trial 1 by Operator Number 

 Procedure  

The operators were provided with an informed consent document and took an 

initial demographic survey. They were then briefed on the study, including the quality 

goal model, the synthetic task environment, and finally the missions and trial flow. It was 
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stressed that the study was designed to understand tactical thinking and mental models so 

mission performance was not being assessed. Operators were instructed that not all 

quality goals were relevant in all situations and during an elicitation to focus on 

prioritizing the relevant quality goals and to place the irrelevant goals in any order at the 

bottom of the list.  

Due to the significant differences between the current ground control station and 

the Vigilant Spirit control station, detailed training was necessary to ensure the operators 

could adequately perform the trials. The training took about an hour and included in-situ 

walk-throughs of the elicitation GUI and the entire Vigilant Spirit control station. This 

included all tasks, tools, and event types the operators would encounter during the trials. 

During this time operators could ask any questions and revisit any portion of the training 

to better understand the flow. Since the focus of this study was on tactical thinking, not 

mission performance or interface design, the operators were informed that if there was 

any time they felt lost in the interface or were unsure how to access a needed control, the 

simulation could be paused to clear the confusion.  

Trials were presented in a blocked sequence so that order effects would be 

controlled. They were scheduled for an hour, but none lasted more than 40 minutes of 

simulator time. At the conclusion of a trial each operator filled out a short survey on their 

intent change. After each trial the operator was afforded a break while the next simulation 

was setup. Some operators performed all three trials over the course of a single day, with 

most conducting the trials over a few days, and a few over the course of a week. All data 

was collected within two weeks. At the conclusion of the study, each operator filled out a 
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final survey which focused on the overall concept of intent informed Human-Agent 

Teaming.  

Data Collection and Analysis 

A PostgreSQL database logged all the data from the elicitations and situational 

data from the control station. No mission performance data were collected during the 

trial. All operators were able to successfully accomplish each mission, with one exception 

in Trial 2 that was due to a failure of the simulator. 

This paper focuses strictly on the elicitation data, the situational data will be 

discussed in a future paper. The elicitation data were stored as a table with each 

elicitation representing a row which contained the ranks for a given quality goal column. 

The data were cleaned by eliminating the elicitations during training sessions and 

operators who did not complete the entire study, and any redundant elicitations. To 

ensure that the elicitations are situationally similar, their timestamps were compared to 

the situated events which denote the disturbances and situations. Figure 8 depicts the 

sequence of elicitations, situations, and disturbances based on simulation timestamp for 

Trial 1 for each operator. The first elicitation comes during the first situation. The second 

elicitation was taken during the first disturbance. The third elicitation was taken in close 

proximity, during or immediately after, the second disturbance. The fourth elicitation is 

during the third situation while the fifth elicitation follows the third disturbance but 

occurs before the strike. The sixth elicitation was taken after the strike was completed. 

While some situations and elicitations occur at similar times, as the trial progresses the 

time necessary for each operator to reach the situation for a disturbance or elicitation 
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varies. Each elicitation is situated in similar mission phases (i.e. during the same situation 

or adjacent to the same disturbance) for the purpose of analyzing across operators.  

The analysis for these data focuses on the previously stated research questions. Is 

the intent model effective in capturing operator intent? Distributional observation of the 

ranks assigned to each quality goal, across trials and operators, is used to identify biases 

that can inform intent model improvements. Next, does an operator’s intent change over 

the course of a trial? If intent never changes then it is unnecessary to estimate it. To 

evaluate this question, comparisons are made between sequential elicitations as well as 

by comparing the maximum divergence between elicitations within each trial. In 

addition, the distribution of divergence between all elicitations for an operator within a 

trial are evaluated. Finally, is the intent across operators cohesive enough to indicate it 

can be estimated using a common algorithm? If the intent of similar operators in similar 

situations varies widely it may indicate that generalizing intent to a role is unrealistic. We 

ensure situational similarity by coding each elicitation according to its situation and then 

comparing them within a situation and across operators. The simulator failure of operator 

93 in trial 2 resulted in their data being removed from the cohesion analysis because it 

could not be consistently situationally coded. 
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Table 9. Heuristic Threshold Examples 

Quality 
Goal 

Minimum 
Threshold (0.1) 

Top/Middle 
Threshold (0.2) 

Top/Bottom 
Threshold (0.4) 

Rank A Rank B Rank A Rank B Rank A Rank B 
A 1 2 1 5 1 9 
B 2 1 2 2 2 2 
C 3 4 3 3 3 3 
D 4 3 4 4 4 4 
E 5 5 5 1 5 5 
F 6 6 6 6 6 6 
G 7 7 7 7 7 7 
H 8 8 8 8 8 8 
I 9 9 9 9 9 1 

 
To address these qualitative questions, we established several heuristic thresholds 

laid out in Table 9. The minimum threshold is a change in rank of at least 4 goals, a 

divergence of 0.1. The cumulative random chance probability, the summation of Figure 

6, of observing divergence at 0.1 or below is 0.014%. The inversion of any two adjacent 

goals is assumed to be of negligible consequence, therefore we set the minimum 

threshold at two sets of adjacent goals. The top/middle threshold was computed by 

swapping the ranking of the first and fifth ranked goals, a divergence of 0.2 at a 

cumulative probability of 0.204%. Given that not all quality goals are relevant to every 

situation, it is possible that the bottom set of goals are irrelevant to the operator. This 

threshold is therefore the difference between the top goal being the same or being 

potentially considered irrelevant. Finally, the top/bottom threshold was computed by 

swapping the ranking of the first and ninth ranked goals, a divergence of 0.4 at a 

cumulative probability of 6.372%. This represents a significant difference of perspective 

on the situation. Note that it is possible to have divergence at or higher than these 

thresholds and still have the top rankings the same, these are the minimum thresholds 
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below which it is impossible for these conditions to occur. These thresholds represent the 

low divergence tail of the random chance distribution which indicates that if the research 

questions achieve these thresholds they are unlikely to be random. While the divergence 

metric is approximately normally distributed, there is no expectation of normalcy in the 

data and the sample sizes are small, therefore nonparametric tests are employed in the 

analysis. 

Results and Analysis 

Trial and Intent Model Evaluation 

Initially, we assessed the utility of the quality goals based on the distribution of 

their rankings. All quality goals were assigned the entire range of ranks, with the 

exception of “Maximize Custody” which is not assigned a rank of 9. Figure 9 plots the 

quality goals versus the rank, colored by participant with the symbols corresponding to 

the trial. The data are jittered to provide a sense of the distribution. In addition, the 

median and interquartile range (IQR) are plotted for reference. Three quality goals 

(Maximize Custody, Maximize Maneuverability, and Maximize Mission Effects) have 

medians above the median of the rank range (4.5) indicating that they are always ranked 

highly. Two quality goals (Maximize Time on Station and Time on Target) have IQRs 

below the median of the rank range which indicates they were seldom rated highly. In 

fact, Maximize Time on Station is only ranked as the highest priority once.  

Overall these results indicate that the intent model captures the range of intent and 

the trials presented situations that varied intent as measured through the priorities of the 

quality goals. Due to the dynamic and active nature of the trials, the operators are almost 
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always acquiring and maintaining custody of a target. This is core to the RPA mission so 

it is understood that “Maximize Custody” would be rated so highly. The trials were short 

and the fuel always started full which inherently places less emphasis on the “Time on 

Station” goal. In addition, because time was relatively short, only Trial 3 had a “Time on 

Target” situation and it was only truly relevant for one or two elicitations which explains 

its low rank distribution. The results indicate that “Maximize Mission Effects” does not 

effectively differentiate situations because it has high median and a tight IQR which 

indicates little change over the course of the trials.  

 

Figure 9. Jitter Plot of Quality Goal Ranks, Trials are designated by shape, Participants 

are designated by color. 
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Intent Change 

 

Figure 10. Trial 2 Divergence between Sequential Elicitations, colored by operator 

number. 

For intent change, higher divergence with changes in situation indicates greater change 

in intent. Figure 10 provides the divergence of the operators ranking for each sequential 

pair of elicitations as well as the maximum divergence between elicitations for Trial 2. 

The divergence for each operator is coded with a different color and sequential elicitation 

pairs group the operator numerical designations. Across all trials, the sequential 

elicitations, within themselves or across operators do not exhibit any consistent pattern. 

Each operator has some divergence values above the minimum and the top/middle 

thresholds and some divergence values at or below the minimum threshold. The final 

grouping shown in Figure 10 represents the divergence between the ranks from the two 

elicitations with the maximum divergence. These results indicate that while the individual 

steps from one quality goal hierarchy to the next varied in their divergence as a function 

of change in situation, the maximum divergence between any two elicitations in the trial 

was above the top/bottom threshold. Across all operators and trials, the maximum 

divergence is significantly above the threshold based on a Kruskal-Wallis test (n=21, 
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p<0.05). The distribution of pairwise divergence of each elicitation with the others, for an 

operator, within a trial is given in the boxplots of Figure 11, the whiskers denote the 

range. A Kruskal-Wallis test found that the median divergence of all operators was 

significantly above the minimum and top/middle thresholds (n=15, p < 0.05) for all trials. 

For the top/bottom threshold, across all trials, twelve were significantly above, one was 

significantly below, and eight were not significantly different. There were no instances of 

zero divergence, i.e. no two elicitations provided identical responses.  

 

Figure 11. Participant Intent Change Divergence Grouped by Trial. Bars represent the 

range and the heuristic thresholds are overlaid for reference. 

These results indicate that intent is changing during the trial. While the sequential 

elicitations do not consistently exceed the minimum threshold, these values do 

consistently exceed the top/bottom and minimum threshold values. The change in intent 
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over the course of the trial is above the top/bottom threshold and the median intent 

change is above the top/middle threshold.  

Intent Cohesion 

In this cohesion analysis, the desired outcome is for divergence to be below a 

threshold when comparing across operators. This result would indicate that each of the 

operators have a similar intent at each situation within the mission. Figure 12 depicts the 

divergence matrix and distribution of divergence values for Elicitation 4 in Trial 2. Each 

elicitation is designated by a code: Operator number, Trial number, and Elicitation 

number (e.g. P76T2E4 is operator 76, trial 2, and elicitation 4). The histogram provides a 

distributional view of the matrix data binned to the discrete divergence steps. The 

top/bottom heuristic threshold is provided as a dotted line. The dashed line is the 

probability mass function of the exact discrete distribution of the divergence for a 9 

quality goal model. Using a Kruskal-Wallis test, all elicitations in all trials were 

significantly above the top/middle threshold (n=21, p < 0.05). For the top/bottom 

threshold, twelve elicitations were significantly above threshold, five elicitations were not 

significantly different from the threshold, and two were significantly below threshold 

(n=19, α=0.05). The distribution of the divergence data for each elicitation was compared 

to the known exact distribution for a nine quality goal model using a χ² independence 

test. To ensure independence between tests, a random sample, equal in size to the 

divergence matrix, was drawn from the exact distribution and unequal bins were 

developed to ensure at least four bins, with at least four counts each, were present in the 

sample distribution. These bins were then used to build a histogram of the divergence 

data for comparison. The χ² test for each elicitation indicated that the operators’ intent 
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divergence values were significantly different from random chance for all except two 

elicitations. These two elicitations contained data for only four participants and were not 

significantly different (n=19, α=0.05). These results indicate that while the operators 

were more cohesive than random chance, there was a 50% probability that the rankings 

provided by any two operators were as large as would be obtained if any operator could 

have their top ranked quality goal ranked by another operator as their bottom quality goal 

without changing any other rankings.  

 
Figure 12. Example Divergence Matrix and Histogram. The dotted line in the histogram 

is the top/bottom threshold, the dashed line is the probability of randomly guessing.  

For intent to be generalizable to a role requires that operators respond to similar 

situations with similar intent. For each elicitation we tested the distribution of pairwise 

divergence values for each operator against the other operators. In the Kruskal-Wallis test 

(n=6 pairwise divergence values per operator, m=7 operators) for the 19 elicitations 

across all trials, all but three failed to reject the null hypothesis (α=0.1). This means that 
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for three of the elicitations the median divergence of each operator had low or high 

divergence contributors. A low divergence contributor is one where the operator is very 

similar to all the other operators (i.e. close to the center of an evenly spaced group). A 

high divergence contributor is different from all other operators (i.e. outside a cluster). 

The Conover test was used to identify the operators that were significantly different. Each 

elicitation indicated that there were operators who provided significantly different 

rankings from at least 3 other operators (α=0.1). In some cases, these were low 

divergence contributors. For each trial we took the median divergence of each operator, 

and the median divergence of the elicitation, and used a normalized ranked sum to 

develop a contribution score for each operator to identify those most responsible for high 

divergence. Figure 13 indicates that, operators 93, 57, and 53 are responsible for more 

divergence than any other operator.  
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Trial 1

 
 

Trial 2

  

Trial 3

  

Figure 13. Divergence Contribution Scores for Each Trial 

Omitting each top contributor, and participant 93 who experienced a simulator 

malfunction during trial 2, from the analysis yielded substantially better results. In 19 

elicitations, three were significantly below the top/bottom threshold, twelve elicitations 

were not significantly different than the threshold, with four elicitations being 

significantly above the threshold (n=15, α=0.05). The Kruskal-Wallis across operators 

failed to reject the null in all but the fourth elicitation of Trial 1 (n=15, α=0.1). The 

contributor elicitation Conover matrix indicated that two operators were significantly 

different from the other four, but these two operators had the lowest median divergence, 

meaning they were centrally located, low divergence contributors. By omitting high 

divergence operators, the divergence distribution is not significantly above the 
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top/bottom threshold and the operators have similar divergence indicating that their intent 

is cohesive.  

Discussion 

The results indicate that Operationalized Intent was effective at tracking changes 

in operator intent through a tactically evolving situation. The training on Operationalized 

Intent was short and the operators were inexperienced in using it, they nonetheless 

demonstrated a reasonable level of cohesion, when compared to our heuristic threshold. 

This indicates that with further training and integration of Operationalized Intent into 

tactical instruction, generalizing a model to the role of an operator is likely feasible. 

Operationalized Intent also provides a means of identifying differences in tactical 

thinking between operators within these simulated environments. The high divergence 

contributors motivate tailoring intent estimation efforts to an individual since the 

cohesion remains broadly distributed between 0.9 and 0.1.  

While individually, the sequential changes in intent, as represented by changes in 

goal priority, were not necessarily significant, over the course of a trial they represent a 

significant shift. This demonstrates that “how” type intent does not necessarily fluctuate 

significantly over a single change in situation, but evolves through multiple situation 

changes. 

Assessment of the intent model indicated that one quality goal should be 

reassessed. “Maximize Mission Effects” seems to lack differentiability and may be more 

appropriately be re-designated “Maximize Weapon Effects.” In an iterative design 

process this kind of update could be made and rolled into further evaluations. Studying 
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Operationalized Intent in longer, more realistic missions may demonstrate what the actual 

distribution of ranks should be for a quality goal. This can be used to further refine the 

intent model.    

To define and operationalize a model of intent demands cognitive engineering 

analysis, but to study it effectively requires multiple concurrent evaluation methods. By 

synthesizing dynamic and static situation awareness assessment techniques we developed 

a means of situating operators to enable the study of intent. Using the situation-

disturbance framework, the trials presented the operators with a dynamic environment 

which demanded they shift intent to respond to the next challenge. In addition the method 

we present is scalable beyond the single operator or single system paradigm to a multi-

operator team where the communication tracking of CAST and multiple perspective 

elicitation of intent through query techniques similar to those applied in SAGAT can 

illuminate role differences across the team. This could enable intent estimation for each 

team member individually so that the AIAs can be most useful to each operator and the 

team simultaneously.   

Through extending the GDTA, we successfully designed an Operationalized 

Intent model that could capture the operator’s quality goal priorities in a computational 

representation and identify how they evolved over a dynamic tactical situation. This 

explicit model can be shared with other AIAs and provides a domain specific vocabulary 

to expeditiously coordinate “how” activities are performed within a human-agent team. 

Multi-agent systems are the reality of the near future. Highly integrated associate systems 

(Geddes & Buchler, 2012) face significant sustainment challenges as the other agents in 

the system evolve and operations change. Understanding a larger context, distilled into a 
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computational form, as we have demonstrated with “how” type intent, allows narrow 

AIAs to focus on estimating and applying “what” type intent specific to their tasks. The 

ability to express “how” type intent through a specified vocabulary provides a method for 

structured communication between human operators and AIAs within a multi-AIA 

system which govern the performance of the human–agent team. 

Conclusion 

The current paper proposed a method for studying operator intent, targeting 

“how” a goal is to be achieved. This proposed method extended GDTA to develop a 

method for deriving quality goals associated with operator intent pertaining to “how” a 

goal is to be achieved. Additionally, the method borrowed from the situation awareness 

literature applying situation changes similar to CAST and an elicitation method similar to 

SAGAT, to permit changes in quality goals associated with changes in “how” intent to be 

studied within a complex remotely piloted aircraft synthetic task environment using 

experienced operators. Changes in quality goal ranks resulted from disturbances which 

were injected into the simulation which modified the situation. Further, reasonable 

agreement in quality goal ranking was observed between the experienced operators, 

although some operators displayed notable differences from the other operators within 

specific trials. Overall, it is believed that this method can provide a real time 

understanding of changes in quality goal priority associated with ”how” intent. We 

propose that this method may be useful in obtaining a model of operator “how” intent 

which can be employed to improve the intent based communication between  AIAs and 
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operators in a human-agent team, improving team coordination to improve coordinated 

task execution.  
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V. Operationalized Intent Estimation Accuracy 

Chapter Overview 

This chapter encompasses the Theorizing phase discussion on situational data, 

the Studying of intent cohesion dynamics, and the Estimating phase of the research 

method.  

Teams of human operators and artificial intelligent agents (AIAs) in multi-agent 

systems present a unique set of challenges to coordination among team members. This 

research endeavors to address issues of estimating operator intent to provide the AIAs 

with a representation of the operator’s internal mental model. Using a representation 

referred to as the Operationalized Intent model to capture quality goals relevant to “how” 

the operator would like to execute the team’s mission, this paper details the development 

and evaluation of a random forest estimator to estimate operator priorities. By employing 

cognitive engineering analysis an intent model relevant to the entire human-agent team is 

developed along with the situational data to estimate intent. Estimation is structured as a 

label ranking problem in which quality goals, which dictate “how” work is to be 

conducted are ranked according to their priority. Modifying an existing label ranking 

algorithm, we demonstrate that the Operationalized Intent Estimator – Random Forest 

(OIE-RF) can estimate intent more accurately than the situation baseline. OIE-RF 

demonstrates stability in dynamic testing and the ability to use explicit communication 

and knowledge of the operator to increase accuracy. This exploratory research opens a 

new avenue for improving coordination and performance of human-agent teams.  
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Introduction 

With the inexorable increases in artificial intelligence performance and diversity, 

the challenge of integrating artificial intelligent agents (AIAs) with human operators to 

form a synergistic and effective human-agent team hinges on their ability to coordinate. 

Mutual observability has been demonstrated to improve coordination (Schaefer, Straub, 

Chen, Putney, & Evans, 2017). There is a need to predict future behavior to permit one 

team member to plan actions in coordination with another, as well as, to direct or 

negotiate changes in another’s future action (M. Johnson, Bradshaw, & Feltovich, 2018). 

For this reason, AIAs which include at least rudimentary methods for understanding a 

human teammates’ intent are becoming increasingly common (Banks & Lizza, 1991; 

Bonchek-Dokow & Kaminka, 2014; Geddes, 1989; Huang et al., 2017; Kelley et al., 

2008; McGhan et al., 2015; Vered et al., 2016; Xing et al., 2019).  

Understanding human intent is challenging for today’s systems as current day 

AIAs are narrow in scope and need to not only estimate human intent but to determine 

appropriate coordinating activities in response to changes in human intent. This problem 

is compounded when multiple AIAs are teamed with operators as is common in complex 

systems. If intent estimation and application are performed by each AIA, the 

understanding of intent has the potential to be as diverse as the AIAs and the designers 

who build them. To address this problem we have proposed federating the estimation of 

intent from the application through a design pattern called Operationalized Intent 

(Schneider & Miller, 2018). The concept involves the design of a single agent whose sole 

purpose is to form a cohesive estimation of an operator’s intent. This intent estimate is 

then provided explicitly to other team members. This estimate then provides execution 
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guidance to other AIAs to supplement the necessary explicit communication within the 

team.  

Operationalized Intent 

The formulation of Operationalized Intent differentiates “what” from “how’ based 

knowledge as has been recognized in research on human mental models (Rouse et al., 

1992). Further, it accepts the premise that explicit communication is likely necessary to 

specify “what” must be performed, particularly as this communication pertains to more 

abstract concepts (Miller, 2017). However, the formulation proposes that “how” based 

knowledge is important to communicate and situationally-driven, making it more stable 

with time (Schneider, Miller, Jacques, Peterson, & Ford, 2020).  Further, we have 

proposed that the model of  intent can be explicitly communicated with the human 

operator through an ordinal prioritized ranking of quality goals and a list of execution 

constraint statuses (Schneider, Miller, & McGuirl, 2020). Quality goals are execution 

relevant guidance that expresses how tasks are to be performed, not which tasks to 

perform. For example, “Maximize Fuel Efficiency” or “Minimize System Health Risk” 

doesn’t inform an AIA on what to do, but in a prioritized list they provide a model of 

how important it is to achieve desirable fuel consumption versus safe operation. Thus, the 

prioritized list of goals permits the real time tradeoffs in system parameters when 

executing activities with a moderate or high level of abstraction. To be useful quality 

goals should abide by the following heuristics: 1) relevant to the tasks AIAs can perform, 

2) conceptually relevant to the operators, 3) interpretable by AIAs to employ 

computationally, 4) conceptually continuous, 5) violable by AIAs actions given other 
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considerations, and 6) differentiable from other goals. Quality goals are defined during 

design and only the ranking within the hierarchy changes during execution.  

The prioritized quality goal list operates as a shared mental model between 

operators and AIAs. As such, the prioritized list requires careful development to ensure it 

is applied consistently to remain shared knowledge between the human operators and the 

multi-agent AIA system. The purpose of this research is to explore development of a 

method to estimate relative goal priority. Specifically, we are interested in the accuracy 

of the estimates based on their distance from the elicited ranking. An estimator whose 

estimates vary dramatically during a stable situation would require constant correction by 

the operator to be useful. So, the stability of the changing estimates is of interest. 

Conversely, an estimator which does not respond to shifts in situation is unhelpful. The 

situational sensitivity and ability of the estimator to refine the estimate over time are two 

key performance attributes of interest. Finally, research indicates that explicit 

communication between team members and tailoring responses to the specific individuals 

improves estimates. Therefore, multiple estimation models with varied feature sets 

examine the effects of communication and personalization.  

This paper begins by exploring a method for developing the intent model and to 

identify the data useful for intent estimation, as well as the conversion of the data into a 

computational representation. We then detail a potential label ranking estimation 

algorithm based on Label Ranking Random Forest (LRRF) (Zhou & Qiu, 2018).We then 

discuss the performance results of both static and dynamic tests in which the resulting 

model’s predictions are compared to operator priorities.   Finally, we conclude by 
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discussing the utility of this method for providing a robust estimate of an operator’s 

quality goal priorities. 

Data Model Development and Acquisition 

The proposed intent model is an explicit mental model of the operator’s internal 

priorities regard how they want to accomplish their goals. Many experts, when asked 

what is required to accomplish their work will say “it depends” and launch into all the 

different situational considerations that feed into “how” they do “what” they do. 

Conceptually, goals can be characterized as “why”, “what”, or “how” type goals. In 

Figure 14 below, the “why” goal is the mission objective and answers the question “why 

is the human-agent team executing any work?” The “what” goals are the sequenced sub-

goals that must be accomplished to achieve the “why” goal and answer the question 

“what must be done to execute the work?” Finally, in between the “why” and “what” are 

the “how” goals which express optimization considerations and answer the question 

“how should the work be done?” These goals, termed quality goals (Sterling & Taveter, 

2009), are postulated to be correlated to the situation rather than specific elements of the 

task work.  
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Figure 14. Relationship between “Why”-“What”-“How” based on Goal Decomposition 

Since it focuses on quality goals associated with work, we start the design of the 

intent model with a cognitive analysis of the work to understand the operator’s 

perspective. A Goal Directed Task Analysis (GDTA) efficiently captures the 

environment, the work, and the systems considerations necessary to understand the 

critical priorities (Bolstad et al., 2002). We extended the GDTA to represent quality goals 

and to trace the information requirements of an operator to individual data elements 

which are observable to an AIA capable of estimating human intent.  

A GDTA forms an acyclic directed graph in which functional goals are 

decomposed into their constituent sub-goals. These functional goals have decisions 

associated with them which entail information requirements to resolve. Thus, goals trace 

to decisions which trace to information requirements. The source data for a GDTA are 
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documentation on the domain (i.e. the environment, work, and systems) and interviews 

with subject matter experts (SMEs). This allows the entire domain, i.e., “why”, “what”, 

and “how”, to be captured. The meta-model for our GDTA is provided in Figure 15 as a 

Systems Modeling Language (SysML) Block Definition Diagram (BDD). The core 

GDTA elements are in white. The fuchsia blocks are the Operationalized Intent 

extensions and the light blue blocks are the data model elements. For further details on 

the intent model development see (Schneider, Miller, & McGuirl, 2020). 

 

Figure 15. Extended GDTA Meta-Model 

Data Element Identification 

The GDTA information elements are the concepts, techniques and analytical 

results which enable decision making (Humphrey & Adams, 2011). However, data must 

be processed to become information (M. Chen et al., 2009). In complex data driven 
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systems, like aviation or nuclear power, the system itself is likely to have access to the 

same or more data than the operators. For intent estimation, the information requirements 

are traced to data elements, i.e. objects, which are present in the system and visible to the 

AIAs. This process provides a method to identify the relevant data in the system and 

understand how to transform it into information for the estimation algorithm. However, 

properly capturing situational data presents a significant challenge.  

Event Notice Definition 

Situational data is not only voluminous and high dimensional, the shape of the 

dimensions vary significantly. For our system, a remotely piloted aircraft (RPA) 

simulator, there were hundreds of possible data elements available. Aircraft state, 

operator interface information, weather, mission plans, are all well-defined with expected 

variability as there was only a single aircraft, single sensor, and single operator interface. 

The data model becomes more complex when there are an unknown, and possibly larger 

number of entities. In the current simulation, these entities include airspace restrictions, 

ground and air tracks, or chat messages in which data elements must be recorded in 

relationship to their parent entity. To capture this data the Core Situation Awareness 

(SAW) Ontology was used to capture situational data in the simulator (Matheus et al., 

2003). Using the concept of an event notice, we defined timestamped data element logs 

associated with specific systems. Each event notice contains a description, type, system, 

up to six parameters, and two positions, see Figure 16 for example. The number of 

parameters and positions used, along with their definitions are uniquely defined for each 

event notice. Some notices used only one or two parameters, others used all six and both 

positions. The size of the event notice was determined by examining the data to be 
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logged. For example, the aircraft’s positioning is required information for many of the 

decisions in the GDTA. Figure 16 illustrates the relationships between aircraft (A/C) 

positioning and the data elements that factor into an example information requirement as 

a SysML BDD. The A/C Motion data element is captured in the a/c notice event notice. 

This notice is an aircraft_moved type event which is associated with RPA type systems. 

The simulator was able to handle multiple RPA control, which the data architecture was 

required to support. In practice, since there was only one RPA in the simulation, only 

information for that system was logged. The data architecture included nine other event 

notice types associated with the RPA system and event notices associated with the other 

data elements. However, these data elements are not depicted here for clarity.  

 

Figure 16. Example of Data Model 

In the Core SAW ontology, an event notice is logged every time something causes 

“sensors to transmit new information” (Matheus et al., 2003). In our application, certain 

data elements were updated multiple times a second while others were initiated and never 
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updated. To accommodate this diversity without generating large volumes of unnecessary 

data, some event notices were logged at 2 sec intervals and others were logged 

asynchronously.  

Study Summary 

With a means to capture intent and the concurrent situation we investigated intent 

in simulated operations with experienced unmanned aircraft pilots. The details of the 

study can be found in other papers  (Schneider, Miller, & McGuirl, 2020). The key 

elements of this study are summarized here to aid understanding. Twenty-one trials were 

performed by seven experienced operators, with each operator completing three trials. 

The three trials were designed to be dynamic and challenging with the operator’s ranking 

the quality goals elicited at specific, situationally determined, points during the trial. The 

total dataset included over 115,000 event notices and 131 elicitations covering 

approximately 10.3 hours over 21 trials.  

Estimation Context 

To evaluate the differences between quality goal rankings we use a metric termed 

divergence (Schneider, Miller, & McGuirl, 2020) which is an exact, normalized version 

of the Spearman Footrule (Diaconis & Graham, 1977) given in (2).  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 2∑ |𝑅𝑅𝐴𝐴,𝑖𝑖−𝑅𝑅𝐵𝐵,𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑛𝑛2−(𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚 2)
   (2) 

where 𝐷𝐷 is the number of quality goals in the hierarchy, 𝑅𝑅𝐴𝐴,𝑖𝑖 is the rank of the ith 

goal in the first set, and 𝑅𝑅𝐵𝐵,𝑖𝑖 is the rank of the ith goal in the second set. The divergence 

metric provides an unweighted, absolute distance between two sets of rankings which 

ranges from zero to one in discrete steps. We also defined a heuristic threshold which is 
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the minimum divergence at which the top ranked goal of one set is the bottom ranked 

goal of the comparison set with all other rankings being identical. For the nine goal 

model of this study, that threshold is 0.4. It is possible to achieve a higher divergence 

without reversing the top and bottom rankings. In comparing the operators divergence we 

demonstrated that, once a group of three high divergence trials were removed from the 

data set, the distribution of divergence across operators in the same situations were not 

significantly different from the top/bottom threshold (Schneider, Miller, & McGuirl, 

2020). The high divergence trials are included in the dataset applied in this research.  

Translation and Labelling 

 While we present a specific estimation algorithm in this paper, the data collection 

process is algorithm agnostic. An implemented real-time estimator would have to contend 

with multiple subsystems feeding in event data, potentially at multiple reliability levels. 

All these data must be translated from their source form into a more informational 

context. We use the example of the Federated Relational Database System as a means to 

process the data into cohesively understood information (Blanco, Illarramendi, & Goni, 

1994). Starting with the raw event notices, the data are translated into a common meaning 

and then integrated into a situation vector for the specific algorithm we implemented.  

Situation Vector Development 

Intent estimation is formulated as a label ranking problem. A label ranking 

algorithm receives a vector describing the instance to be estimated and produces a 

ranking of defined labels that best fits the instance. For the present research, the situation 

vector contained a total of 113 features. These covered operator interface interaction, 
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aircraft state, sensor information, navigation, weather, and key spatial references. The 

event notices contained the simulation names for various entities, e.g. chat room call 

signs, reference point code names, etc. Each was translated into a generic form focused 

on the role that name represented, e.g. call signs were translated to the role that entity 

played like “customer” or “reference point 1.” All spatial coordinates were endogenously 

referenced to the aircraft position or sensor point of interest (SPI) as a range and bearing. 

These two points can be equally important to the RPA operator’s decision making. In the 

resulting vector, all entities, including entities like reference points, had their 

representation change every time the aircraft or SPI changed.  

To represent the variety of transient entities in the simulation, i.e. airspace 

restrictions, air tracks, and ground tracks, we employed a state space representation 

which related the entities based on proximity to the aircraft and sensor focus point. The 

method developed by Bindewald et al. defines position and relevance based on an 

ownship location and a destination (Bindewald, Peterson, & Miller, 2017). For an RPA 

the two foci of the state space are the aircraft position and SPI location. We define four 

zones around each such that zone one is the quadrant that faces from the aircraft to the 

SPI, zone four faces from the SPI to the aircraft with zones two and three being to each 

side. A score was developed for each type of entity in each zone representing the quantity 

and proximity for a total of 24 features.  

There were four additional special features, which were temporally correlated 

with the simulation, explicit communication, and operator identification. The Fuel Level 

and Time to Bingo features represented the percentage of fuel remaining and the time 

until a certain fuel threshold was reached. Each trial began with full fuel tanks and the 
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fuel burn rate never significantly changed during the simulation, so these two features 

provide a sense of sequencing to the situation vector. They are not correlated to the 

events of the trial or quality goal rankings, but they provide a sense of time. 

Operationalized Intent seeks to minimize explicit communication about ranking of 

quality goals. So to represent minimum explicit communication, it is possible to envision 

a system where the highest priority quality goal name is provided as a feature to the 

algorithm. This is equivalent to the operator designating only their top ranked quality 

goal in an interface. Finally, the operator’s two digit identifier was included as a feature 

to assess whether individual personalization could be effective at predicting intent. 

Various models were constructed in the current research which included or excluded 

selected special features to understand the utility of each of these features to the intent 

estimate. 

To integrate event notices and form situation vectors temporal windows were 

used to compile event notices into updates to the situation vector. The initial situation 

vector is assembled using approximately the first 20 seconds of event notices, less than 

1% of the total data available. This ensured that each trial had an independent starting 

point. The fastest periodic event notices updated every two seconds, so windows of 1, 2, 

3, and 4 seconds were used to assemble the event notices. The trials were divided into 

window length segments and the last event notice of each type for each system was used 

to update the situation vector. This method obscures some event notice data for events 

that occur multiple times within the window. However, the average percent difference 

between one situation vector and the next varies between 21.0% and 22.4% for window 

sizes of 2-4 seconds. Window size of 1 second has a mean of 16% difference, but this is 
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largely due to the fact that the aircraft position only updates every other situation vector. 

Given that there are only ~37,000 seconds available in the dataset, increasing the window 

size to 4 seconds reduces the volume of data to less than 7,000 situation vectors. Using 

this process, the raw event notices are translated to a common schema and then integrated 

into the situation vector representation for use with the machine learning algorithm. This 

requires labeling of each vector with goal ranks to provide a complete data set for 

supervised machine learning.  

Labeling Assumptions 

 

Figure 17. Timeline of Trial 1 

As described above, “how” type intent is postulated to be situationally stable, 

such that until a situation is disturbed, the intent remains approximately unchanged. To 

label the situation vectors the situations and disturbances for each operator and each trial 

were identified based on their individual data. The intent elicitation for the situation most 

closely resembling that condition was then applied as the ranking for the labels. For 

example, in Trial 1, depicted in Figure 17, the first elicitation (black diamond) occurs 

during the first situation, surveilling a compound. The first disturbance (dark gray 
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section) was an unplanned new airspace restriction which required some navigational re-

planning. Once that was completed, the operator resumed their task of surveilling the 

compound. This enabled the labeling of the first and second situations with the same 

elicitation ranking. Some elicitations, like elicitation 3, did not occur during the 

disturbance they capture, but immediately after. Using a situational labeling scheme 

allowed for proper labeling of those situations.  

Splitting 

The fully labeled dataset was split 75/25 between testing and training. To ensure 

independence whole trials were split with 16 trials for training and 5 for testing. The 

random draw of test trials had to meet two criteria, it had to include one of each trial type 

(i.e. Trial 1, 2, 3) and at least three different operators. This forced the test set to be 

nominally representative of the training set.  

Estimation Algorithm 

Operationalized Intent Estimator – Random Forest (OIE-RF) 

The OIE-RF algorithm is based on the Label Ranking with a Random Forest 

(LRRF) design by Zhou and Qiu (Zhou & Qiu, 2018). For details of LRRF see the 

comprehensive summary of the algorithm and its performance in their manuscript. In this 

section we provide a brief overview of their algorithm and highlight deviations from the 

base design. 

LRRF is a random forest algorithm, training a number of decision trees (the forest 

size) each on a bootstrapped, random subset of the training dataset. The predictions of 

these trees are then aggregated to produce the overall model prediction. Decision trees in 
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this context are binary trees used for classification tasks. Each node of a decision tree 

splits the domain of the input data into two subsets based on a particular feature in the 

situation vector. Each subset is then further split by the children of the node, until a leaf 

node is reached. Using this smallest subset represented by a leaf node, we can use the 

subset class labels to find a predicted class. In our application, this predicted class 

includes the label ranking, i.e., a predicted ranking. 

The tree construction algorithm is the same for each tree in the forest. Each tree is 

first assigned a random subset of the dataset. At each step, a subset of features is selected, 

and split the training data based on the feature that would produce maximum information 

gain. This process produces a measure of change in entropy as a result of a split. To 

calculate entropy, LRRF employs the Top Label as a Class method, treating the highest 

ranked label of each ranking as the class of that sample.  

Our implementation of OIE-RF uses three methods of finding the optimal split, 

based on the data type of the feature. The first, Threshold Split from the original LRRF 

algorithm operates on quantitative and Boolean data by finding an optimal threshold such 

that for each instance xi of feature x:  

�𝑥𝑥𝑖𝑖 ≥ 𝑡𝑡ℎ𝐷𝐷𝐷𝐷𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
𝑥𝑥𝑖𝑖 < 𝑡𝑡ℎ𝐷𝐷𝐷𝐷𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜

   :   𝑥𝑥𝑖𝑖 in left subset
   :   𝑥𝑥𝑖𝑖 in right subset 

Categorical Split operates on text data and considers each unique class in a 

categorical feature, and partitions the dataset based on equality to that class. Specifically, 

it finds the optimal class such that for each xi:  

   �𝑥𝑥𝑖𝑖 = 𝐷𝐷𝑜𝑜𝑐𝑐𝑟𝑟𝑟𝑟
𝑥𝑥𝑖𝑖 ≠ 𝐷𝐷𝑜𝑜𝑐𝑐𝑟𝑟𝑟𝑟

   :   𝑥𝑥𝑖𝑖 in left subset
   :   𝑥𝑥𝑖𝑖 in right subset 
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Certain features in the collected dataset contained null values. These are not 

missing data, but rather represent features which are not pertinent in that situation. As an 

example, the aircraft has a “loiter” navigation mode. If the operator is flying the aircraft 

directly, the values of the features describing the loiter mode are designated null, which is 

correct because there is no loiter mode data to be described. For categorical data this 

presented no issue, as "Null" could be treated as a unique class. For quantitative data, the 

addition of a Null Split was necessary as null are not valid for greater-than or less-than 

comparisons. To remedy this, we first perform a Null Split on the quantitative features if 

null values are present. This simply places all null values into the left subset, and non-

null values into the right. For each xi: 

   �𝑥𝑥𝑖𝑖 = 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜
𝑥𝑥𝑖𝑖 ≠ 𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜

   :   𝑥𝑥𝑖𝑖 in left subset
   :   𝑥𝑥𝑖𝑖 in right subset 

Once the optimal split for each feature is found, the feature resulting in the most 

information gain is designated the split feature for the node. The algorithm is then 

repeated on the left and right subsets, recursively forming the tree on smaller subsets of 

the training dataset. The halting rule designates leaf nodes if one of the following 

conditions are met: 1) the maximum specified depth is reached, 2) the number of unique 

classes, i.e., top labels, is less than 2, or 3) the number of training samples in the left or 

right subset is 0.  

On a leaf node, we store the subset training rankings represented by that leaf. To 

aggregate the rankings, LRRF uses a two stage, generalized Borda count. Borda count is 

a consensus voting method which provides a means of producing an unobserved ranking. 

This is imperative since there are 9! permutations (over 362,000) of the goal hierarchy 
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and the dataset contains 131. The rankings are aggregated at the leaf node during training 

and across the trees during estimation testing. OIE-RF is implemented in Matlab 2020a.  

Hyperparameter Tuning 

OIE-RF has three hyperparameters of forest size, tree depth, and window size that 

require tuning. For all random forest algorithms, the forest size and the tree depth are 

critical hyperparameters. The window size for situation vector aggregation discussed 

earlier is the third hyperparameter as it influences data set size and granularity. We 

investigated four forest sizes, i.e., 25, 50, 75 and 100 trees, three tree depths, i.e., 5, 7, 

and 9, and four window sizes, i.e., 1, 2, 3, and 4 s. The factorial combination of which 

resulted in 48 permutations. These conditions were reduced to 35 permutations by 

comparing the maximum number of leaf nodes for a forest with the number of situation 

vectors in the training set. This eliminated conditions where the algorithm was likely to 

overfit (e.g. deep depth, large forest, on a small dataset based on window size), or 

underfit (e.g. shallow depth, small forest with a very large data set based on window 

size).  

Using a K-fold cross validation technique to examine the 35 permutations, it 

became apparent that forest size and window size were positively correlated to 

computation time while tree depth was negatively correlated to divergence. However, the 

K-fold cross validation was determined to provide an inappropriate criteria for tuning of 

the parameters as neighboring labeled situation vectors were not independent of one 

another, which resulted in unrealistic divergence performance. To recheck the 

hyperparameter performance we ran four conditions, given in Table 10, which captured 

all the levels of the hyper parameters using 14 training trials and 2 independent cross 
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validation trials. To assess the quality of the hyperparameter models we compared mean 

divergence performance, mean leaf node entropy, the coverage ratio of the number of 

features used by the model to the total number, and the mean of the tree fullness or 

percentage of leaf nodes at the maximum depth. Desirable conditions resulted in low 

divergence, low mean entropy, and high coverage. However, a balance must be struck 

between high coverage with fullness. While lower fullness indicates that a tree is 

reaching the halting condition earlier, a low fullness indicates that the dataset is being 

memorized by the tree. Forest size had a minimal impact on feature coverage and 

window size did not have a strong impact. Divergence had a strong negative correlation 

with tree depth, but the decrease between a depth of 7 and 9 was minimal. The fullness of 

a depth 7 model was approximately 70%, but dropped to 25% at a depth of 9, indicating 

that depth of 9 was overfitting to the data. The conclusion was that a window size of 4 

seconds at a tree depth of 9 layers in a forest of 25 trees provided a model that was 

unlikely to overfit the data, but deliver accurate estimates rapidly.  

Table 10. Hyperparameter Study Permutations (selected parameters shaded) 

Window 
(sec) 

Tree Depth 
(layers) 

Forest Size 
(trees) 

4 7 25 
1 7 50 
3 9 75 
2 5 100 

 
Estimation Models 

To assess the impact of the four special features listed in Table 11, five models 

were trained. Models 1 and 2 contain only situational data and examine how accurate 

strictly implicit estimation can be. Explicit communication of the operator’s highest 
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priority or top ranked quality goal is tested by Models 3 and 5. Model 1 and 5 do not 

include the temporally correlated variables to assess their impact on the model. Model 4 

contains all features including the operator’s identity which allows for individually 

tailored estimates. In the analysis, Highest Priority and Operator ID are included as 

features, but do not entail any restructuring of the algorithm to force the highest ranked 

quality goal to be listed as rank 1 or to only consider data from a single operator.  

Table 11. Model Feature Inclusion 

Model Fuel Level Bingo Highest Priority Operator Id 
Model 1 SS 

    

Model 2 SD X X 
  

Model 3 EC X X X 
 

Model 4 IT X X X X 
Model 5 ES 

  
X 

 

 

Results 

Accuracy testing is divided into two sets of tests. The static test observes the 

divergence between the estimator and the situation vectors closest to the elicitation time 

in the test set. These are minimally impacted by the postulate of intent and situational 

stability. This is a pure accuracy test. The dynamic test includes all situation vectors in 

the test set and observes the sequential stability and overall accuracy of the model over 

time. From this we can observe the estimator’s sensitivity to situation change and if the 

estimator converges over time to a lower divergence estimate. Finally, using the data 

from these two tests we can compare the estimation models and rank their overall 

performance.  



121 

Static Test Results 

The static test evaluated the divergence between the estimate and the actual labels 

for the two situation vectors closest to the elicitations. The test set of 5 trials provided 56 

total test points. The median divergence across the five models was between 0.4 and 0.45. 

A Kruskal-Wallis test of the distributions found no significant difference between the 

estimates and the top/bottom threshold for Models 1-4, with Model 5 providing 

divergence that was significantly higher than the threshold (α=0.05). Figure 18 illustrates 

the resulting divergence for each model in a jitter plot with all data points in the same 

vertical band having the same value. The medians and interquartile range (IQR) are 

included as a distributional reference.  

 

Figure 18. Static Test Results by Model 

There is an apparent bimodality to the divergence of some models with a high 

divergence grouping around 0.7 and a low divergence grouping around 0.4. If the same 

data are plotted against the five test trials the cause of this bimodal distribution becomes 
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clear. The trials listed on the horizontal axis of Figure 19 correspond to an operator id 

(e.g. P57) and a trial number (e.g. T2). The color indicates the model which estimated the 

intent. Trial P57_T2 has the highest divergence with P53_T3 having the second highest 

median divergence. This is not exclusively the result of poor performance on the part of 

the estimator. In the initial study data analysis, the highest divergence operator for each 

trial was identified in the analysis. The highest divergence operator for each trial 

consistently ranked the goals differently from the rest of the operators and so has high 

divergence with everyone. Of those three trials from the 21 in the dataset, two were 

randomly included in the test set, P57_T2 and P53_T3. These operators held a different 

perspective, not wrong only different, from the other six and so it is unsurprising that the 

estimator has a similar high divergence within these two trials.  

 

Figure 19. Static Test Results by Test Trial 
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Dynamic Test Results 

The dynamic test used all the situation vectors of the test trials in sequence 

(n=2,353). This enables time series analysis of the data to understand the sequential 

stability of the estimator and the sensitivity of the estimator to situational change. We 

define stability as the divergence shifting slowly without significant variation within a 

situation. A three-period moving median is used to assess stability. By comparing the 

divergence change over time with the situation changes in the trial we can observe the 

sensitivity of the algorithm to situational change and if there is any evidence of 

convergence. There are twenty-five charts like the two in Figure 20 to capture results 

from each of the 5 models and 5 test trials. The light gray portions are the situations, the 

dark gray are the disturbances with the black diamonds at the top marking the elicitations. 

The tan cohesion bands represent the interquartile range of the distribution of divergence 

among the operators for that situation. It provides a comparison of the estimator 

divergence with the total population cohesion distribution. The green line is the smoothed 

change in divergence with the red line being the divergence between the estimate and the 

elicited intent for that situation vector.  

The top panel in Figure 7 represents the data from trial 3 as compared to the 

results from Model 4 plot. As shown in this panel, the estimate of divergence 

monotonically decreases with time and for the latter half of the trial is largely below the 

cohesion band. The plot illustrates that the estimator did not observe the first disturbance 

which is why the divergence spikes during this disturbance. This disturbance is a lost link 

event where the operator loses command of the aircraft. A review of the data set revealed 

that link status information was not captured in the situation vector which may explain 
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the insensitivity of the estimator to this disturbance. However, after the initial spike the 

divergence decreases which demonstrates that the algorithm is converging to a more 

similar ranking.  

The lower plot in Figure 7 is trial 2 for Model 4. Insensitivity is again observed at 

the first disturbance where there is a jump in divergence with no attempt to correct. This 

disturbance was a generator failure event that the situation vector fully captured. 

However, this disturbance demonstrates that in certain conditions the estimator was not 

successful in detecting a change in intent, producing a significant increase in divergence 

over the time period relevant to the change in resulting operator intent. The fourth 

situation (fourth light gray region in the bottom panel of Figure 7), demonstrates 

convergence where the estimator refines the quality goal ranking as time progresses and 

over five minutes reduces the divergence by 50% from 0.45 to 0.2 during the situation.  
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Figure 20. Example Dynamic Test Results for Trials 2 and 3 

There are some spikes and areas of instability in the smoothed change line which 

represents times when the estimator is changing the rankings rapidly. Observing the 

distribution of the raw and smoothed change in Figure 21, it is clear that the algorithm 

remains stable with zero change over 80% of the estimates. The accuracy of the dynamic 

test is slightly higher than the static test with a median of 0.5. However, the major driver 
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of the poor accuracy is trial P57_T2, the exclusion of which reduces the median to 0.4, 

commensurate with the static test.  

 

Figure 21. Histogram of Sequential Divergence Change Demonstrating Estimator 

Stability 

Model Comparison 

A Kruskal-Wallis test between the distributions of the static accuracy data by 

model were not significantly different (p=0.97). This indicates that there is not much 

difference between the accuracy of one model vs another. However, the dynamic test 

results provided an alternate means of comparing model performance. Additionally, by 

examining the random forest we can leverage the hyperparameter metrics and understand 

the structure of the model to assess the influential features. 
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Performance 

We define a situation baseline as the interquartile range of the divergence 

distribution from the operator responses within a situation. The divergence distribution is 

calculated through an all vs all distance comparison of responses. This is represented by 

the tan-colored band shown in Figure 20. To judge model performance, we compare the 

percent of estimates which have a divergence less than, equal to, or greater than the 

situation baseline.  

For an estimator with the same accuracy as the situation baseline there should be 

approximately 25% above, 50% within, and 25% below the situation baseline. Instead the 

mean percentages of the models ranged from 16.4%-21.9% above, 42.4%-54.8% within, 

and 28.9%-40.8% below. The performance of Model 4 is provided in Figure 22 as an 

example with green illustrating the percentage of estimates below the situation baseline, 

yellow within the baseline and red above the baseline. This again demonstrates the 

challenges of estimating high divergence trials like P53_T3 and P57_T2 which have the 

least green and much of the red and yellow regions.  



128 

 

Figure 22. Model 4 Performance Compared to the Situation Baseline 

However, it is better for the algorithm to provide estimates with divergence  

within the situation baseline and better to be below this baseline than within. We 

established two ratio metrics for model comparison. The first is the percentage of 

estimates above the situational baseline versus within and below. The second is the 

percentage of estimates within the situation baseline versus below the baseline. Using 

these two metrics we then calculated a ranked sum score for each model. In this case a 

low score is best, Table 12 provides the order of performance with Model 4 being the 

best. Clearly having more personalized information with explicit communication 

provides a better estimate of quality goal rankings. Interestingly, the temporally 

correlated features also seem to provide a performance boost since the top three models 

include them and the bottom two do not. Model 4 had an average of 16.4% above, 42.8% 

within, and 40.8% below the situation baseline. On average there were nearly three times 
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as many estimates within and below than above and over four times as many within as 

below. Comparing the accuracy of the estimator to the situation baseline strongly 

demonstrates that this algorithm can estimate intent more accurately than the situation 

baseline.  

Table 12. Performance Ranking of Models 

Model Score 
Model 4 IT 0.418 
Model 3 EC 0.526 
Model 2 SD 0.530 
Model 5 ES 0.552 
Model 1 SS 0.574 

 
Structure 

In addition to the performance comparison between the models, random forest 

provides an observable model which allows examination of the structure to understand 

the critical features. Model 4 has the highest feature coverage at 97%, lowest average 

entropy at 0.78, and lowest fullness at 66%. This indicates that Model 4, while using all 

but four features, is efficient at driving to high purity leaf nodes rapidly. The explicit 

communication and operator information are key to this structural efficiency. The split 

feature for each node in a tree is logged, Figure 23 provides a Pareto chart of features 

used in the model. The color code designates features that are close to each other in the 

feature vector and likely to be related. The five most frequently split on features are the 

Highest Priority, Participant (i.e. Operator ID), Closest Restriction Range from Ownship, 

Fuel Level, and Time to Bingo. This corroborates the performance conclusions regarding 

the utility of the four special features. 
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Figure 23. Pareto Chart of Feature Split Count in Model 4 
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Discussion 

The desired objective of Operationalized Intent is a role-centric, rather than 

operator specific, estimation technique. The dynamic performance data corroborate the 

previous findings that knowledge of, and communication with, the operator being 

estimated improves estimation accuracy. The communication related features (e.g. voice 

channel, chat sender, etc.) are not frequently used which indicates that sparse data are not 

represented effectively in the OIE-RF algorithm. Alternative algorithms and data 

representation methods designed to handle sparse and continuous data together may 

prove more effective.  

The dynamic test demonstrates that stable estimates of intent can be provided, but 

must be balanced with situational sensitivity. A key benefit of graph based associate 

systems discussed in the literature is the ability to rapidly shift situational understanding, 

which provides improved  sensitivity (Geddes & Lizza, 2001). The stability of OIE-RF 

may allow for improved coordination with the operator since providing the operator’s top 

ranked quality goal is retained by a stable algorithm. In addition, a more stable algorithm 

inherently displays more predictable behavior to the operator which encourages teaming 

(M. Johnson et al., 2018). 

It is important to note that the graph-based approach applied in associate systems 

requires the expert construction of the knowledge graph, which provides an implicit 

representation of both “what” and “how” intent. As discussed in the literature, this 

implicit representation reduces the operator’s ability to observe, predict, and direct the 

behavior of automation within the system (Miller, 2017). The current approach provides 
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an explicit representation of the system’s understanding of goal priorities relating to 

“how” type intent which can be shared and altered by the operator. As illustrated, 

including the operator’s input to the algorithm in the form of the goal with the highest 

ranking reduces the divergence of the algorithm with the intent of the operator, permitting 

changes based upon operator input.   

In the truest test of accuracy, OIE-RF is meeting the heuristic threshold. With 

divergence ranging from 0.15 to 0.85 it resembles the overall cohesion of the operators 

which ranged from 0.1 to 0.9. While algorithmic and estimation techniques can be 

improved, increased operator training and refinement of the intent model is also likely to 

contribute to accuracy improvements. At the opening of Trial 3, illustrated in the top 

panel of Figure 20, the operators were faced with an initially ambiguous situation that 

may not be frequently encountered (i.e. on the wrong side of a storm with a hard deadline 

to support a convoy), and so the variability in the operators’ intent models during this 

situation is large. However, towards the end of Trial 3 the operators encountered an all 

too familiar situation, supporting friendly troops in contact with an adversary then 

pursing fleeing adversaries. The divergence among operators is much lower (below 

threshold) in this case and the estimate has improved accuracy. The more operators 

leverage common mental models, the more useful an intent estimator can become.  

For machine learning algorithms, much of the intelligence is imbued in the data 

representation. Leveraging the same cognitive engineering analysis which produced the 

quality goals, we were able to identify the specific data elements to record from the 

simulator and their relevance to the operator’s decisions. Using the Core SAW Ontology 

(Matheus et al., 2003) and the Federated Relational Database framework (Blanco et al., 
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1994), the raw data were captured in an efficient manner, translated into a common 

syntax and reference frame, and then integrated into a situation vector that provided the 

estimator an informational representation. This data representation process is designed to 

be scalable across more complex systems and can be ingested from modular subsystems. 

The total process instills rigor and justifies which data are used, and how they are 

represented to avoid algorithms identifying inappropriate patterns on which to base their 

estimates.  

OIE-RF trained the five models each in about 20 minutes on a quad-core Intel 

Xenon processor and could predict an entire trial’s worth of data in a few seconds, 

significantly faster than the window size. This computation efficiency demonstrates that 

an operational system is likely to be able to operate in real time within a human-agent 

team.  

Conclusion 

OIE-RF is a single step machine learning algorithm which could be improved by 

additional steps and accompanying algorithms. Much of this research was undertaken in 

advance of the release of TensorFlow-Ranking library (Pasumarthi et al., 2019) which is 

a deep learning library for the label ranking problem. Investigating these and other 

ensemble methods for intent estimation are likely to improve accuracy, sensitivity, and 

stability.  

As an initial investigation into the feasibility of modeling and estimating intent, 

this research clearly indicates that quality goal rankings associated with “how” based 

intent can be explicitly modeled and estimated accurately from situational data and 
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minimized explicit communication. Explicit communication and knowledge of the 

operator proved useful to improving accuracy. Estimated intent can be shared with a team 

of AIAs to provide them a means of understanding their human operator teammates and 

coordinate their actions more effectively. This research demonstrates that intent 

estimation is feasible and opens a new avenue to improving coordination and 

performance of human-agent teams. 
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VI. Conclusion 

Research Conclusions 

While each of the preceding chapters provided conclusions, here we summarize 

the entire research as it addresses the research questions.  

Through a synthesis of coordination, intent, and mental models, we identified the 

relevance of “how” type intent to synchronize action across a human-agent team (HAT). 

Constrained by the operations tempo of high performing teams, leveraging their training 

and domain specific vocabulary, the Operationalized Intent theory provides a framework 

for designing a shared mental model. By structuring the representation as an ordered set 

of quality goals and a status of execution constraints, the intent model is computationally 

ingestible by AIAs. The quality goal hierarchy estimation is a label ranking problem for 

which ample computer science research efforts and algorithmic techniques exist. 

Situation based estimation of intent enables implicit coordination. With an explicit model 

of intent, the HAT members can directly coordinate. This coordination extends to the 

human operators which allows for explicit coordination of intent as well. Thus, 

Operationalized Intent provides a scalable framework for designing shared mental models 

regarding how tasks should be completed as a complete coordination mechanism.  

To apply Operationalized Intent requires understanding the domain, the operators, 

and the AIAs. Beginning with a Goal Directed Task Analysis (GDTA) to capture the 

domain, the candidate quality goals, and data elements are identified. These are 

heuristically evaluated for suitability based on the AIAs. We demonstrated the method of 

leveraging the GDTA to develop a set of study trials to examine the effectiveness of the 

quality goals using dynamic and static evaluation methods. Identifying the situational 
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data key to estimating the quality goal ranking is derived from the GDTA as well. Our 

study establishes a scalable means of capturing, translating, and integrating that data into 

a form to support estimation of the quality goal ranking.  

The study results indicate that the intent model was able to capture intent shift 

based on the situational disturbances. Overall use of the quality goals indicated that the 

rigorous development of the quality goal hierarchy and the trial design was effective. 

Using the divergence metric and situational comparison across participants, the study 

results indicate that the operators demonstrate a heuristically reasonable level of 

cohesion. Identifying high divergence contributors motivates a level of personalization in 

intent estimation to account for the variety in perspectives of different operators. It also 

indicates that further operator training may be useful to embed the intent mental model 

more effectively.  

Leveraging an available label ranking algorithm, we demonstrated that, static 

estimates of intent can be provided with accuracy on par with the overall intent cohesion 

of the operator population. When evaluated dynamically, including explicit 

communication and operator identity representations, the estimator was able to 

outperform the situation baseline. It demonstrated temporal stability in the estimate and 

in many cases convergence over time.  

Contributions 

The primary contribution of this research is the Operationalized Intent framework. 

Due to the academic format of this dissertation, the theory and domain application 

process of Operationalized Intent is spread over three papers. The following section 



137 

provides a cohesive summary of Operationalized Intent with the subsequent section 

summarizing all the contributions of this research.  

Operationalized Intent Theory and Domain Application Process Summary 

Operationalized Intent theory is described in detail with exact definitions at the 

end of Chapter III. The purpose of Operationalized Intent is to enable implicit 

coordination between operators and functional AIAs by continuously estimating a model 

of the operator’s “how” type intent. Figure 24 is a reproduction of Figure 4 from Chapter 

III which graphically depicts the ontology of Operationalized Intent.  

 

Figure 24. Ontology of Operationalized Intent 

 

The intent model is composed of quality goals and execution constraints. Quality 

goals provide execution guidance to help functional AIAs shape the topology of their 

behavior trade space to find the most useful behavior to synchronize with the operator. 

While not sufficient to fully shape the behavior trade space, quality goals are one of many 
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inputs to an AIA’s method selection process. The quality goals are defined during design 

and ranked in an ordinal hierarchy during execution. Execution constraints identify limits 

to AIA behavior trade spaces relevant to the understanding of the system by the operator 

and other AIAs. Hard constraints cannot be overridden, while soft constraints can be 

overridden by the operator. Execution constraints are defined at design time and change 

status during execution.  

During operations, the quality goal hierarchy and execution constraint status list 

form the intent estimate. It is possible, although not necessary, to sequentially composite 

intent estimates of likely future intent to form a published intent. These future intent 

estimates would be based on mission plans and updated as the situation changes during 

execution. The published intent provides the functional AIAs an immediate and 

forecasted model of the operator’s intent mental model.  

The published intent is managed and updated by an AIA specifically designed to 

estimate intent. This agent is referred as the Intent Agent. By observing the actions of 

operators, functional agents, and situational changes in the system and environment, the 

intent agent estimates intent by ordering the quality goals into a hierarchy and compiling 

the status of the execution constraints set by the designated functional AIAs and the 

operator. An operator interface should be provided to directly communicate the 

operator’s ranking of the quality goals into a hierarchy to facilitate explicit coordination.  

For Operationalized Intent to serve as an effective shared mental model, it must 

be embedded in the cognition of the functional AIAs and the operators. In the case of 

functional AIAs, the designers include the intent model into the method selection process 

of their agents and test that it is producing functionally relevant differences in behavior. 
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Operators must be trained on the use of Operationalized Intent and practice using the 

model to embed it in their cognitive processes.  

 

Figure 25: Domain Application Process Activity Diagram 
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To apply Operationalized Intent to a specific domain and system requires a 

thoughtful design process. This domain application process is addressed partially in 

Chapter IV, intent model construction and trial design, and Chapter V, event notice 

design, translation, and estimation. Figure 25 provides a SysML activity diagram which 

describes the domain application process. The domain application process occurs in four 

phases: analyze (gray), study (green), estimate (blue), and evaluate (white), which are 

color coded in the activity diagram. Many of the elements discussed below are captured 

in Figure 26 as a meta-model for intent analysis. 

 

Figure 26: Intent Analysis Meta Model 
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The first step is to understand the domain through a cognitive engineering 

analysis. We recommend the Goal Directed Task Analysis (GDTA) which explicitly 

models the functional goals describing “why” and “what” type goals. Further details on 

GDTA analysis are in Chapter IV, Model Development. From this foundational 

understanding of the domain we extend the GDTA for Operationalized Intent.  

Through the same SME interviews for the GDTA we identify candidates for the 

intent model which is traced to the functional goals of the GDTA. The quality goals and 

constraints should follow the heuristics in Chapter III, Model. The intent model should be 

developed and defined in collaboration with AIA designers, operators, and facilitated by 

cognitive engineers. There is no recommended number of quality goals or execution 

constraints. Having less than five quality goals is likely to result in simple behavior 

modalities while greater than ten begins to stretch the working memory of an operator.  

Once there is an intent model, scenarios, vignettes, and missions which have 

ontological influence on the priority of the quality goals should be identified. These are 

decomposed into elements with a specific situation or disturbance. The trial elements are 

further decomposed into trial activities. The study trials are built by arranging trial 

elements in a situation – disturbance – situation sequence. The trial activities are assessed 

to define operator training requirements to support the study.  

In parallel the information requirements of the GDTA are analyzed against the 

system design to identify data elements observable in the system which compose the 

information requirements. From these data elements a sampling method must be defined. 

Some changes in data elements are continuous (e.g. aircraft position), others are more 
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stochastic (e.g. airspace restriction location). The logging of an event notice should carry 

some significant and cohesive meaning. This may entail translating or deriving some 

information from data elements to populate the event notice. The details of event notice 

definition are in Chapter V, Data Model Development. 

With a defined intent model, designed trials, and means of logging event notices, 

a study can be conducted to collect data. The study should include training on the 

operators on the use of the synthetic task environment (STE), Operationalized Intent, and 

any trial activity training requirements identified earlier. During the trial, the operator 

should be queried for their intent model at situationally relevant points. The philosophical 

and practical details are found in Chapter IV, Studying Intent and RPA Intent Study.  

Using the analysis methods laid out in Chapter IV, Results and Analysis, a data 

centric evaluation of the trials and the intent model provides useful feedback. Intent 

model issues and trial emphasis biases can be identified in quality goal rank and intent 

change analyses. The effectivity of the operator training programs can be evaluated from 

a cohesion analysis.  

The collected event notices should be translated and labeled appropriately to the 

situation. This translation should enhance the informational value from the perspective of 

the operator as captured in the GDTA. For example, from Chapter V Translation and 

Labeling, positions can be endogenously referenced as a range and bearing from 

locations relevant to the operator, in our case the aircraft position and the SPI. This 

supports the estimation algorithm identifying effective patterns instead of spurious ones.  

From the ontology discussed earlier, intent estimation is primarily the ranking of 

quality goals. To accomplish this step, a label ranking algorithm is appropriate, as 
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discussed in Chapter V Estimation Algorithm. Any means of label ranking has strengths 

and weaknesses which must be assessed based on the situation data and implemented 

usage.  

With an algorithm an estimation study can be executed using the situation data 

translated earlier. The estimates should be compared to the specific operator’s elicited 

intent for that situation. This provides results for evaluating the accuracy, stability, 

sensitivity, and performance of the estimator. The details of these evaluations are 

illustrated in Chapter V, Results. 

The information regarding the effectivity of the algorithm should be used to 

evaluate the event notice definitions or their translation into situation data. Identifying 

which data are least useful can reduce the overall system complexity. Conversely 

ontologically relevant data that lack utility to the estimator may suffer from translation or 

representation issues.  

Once there is confidence in the intent model and the estimator, Operationalized 

Intent can be implemented in the target HAT. This involves implementing the intent 

model interpretation into the functional AIAs, integrating Operationalized Intent into the 

mental models taught in operator training, and developing a complete intent agent with an 

operator facing interface. These architectural and design details are beyond the scope of 

this research.  

Contribution Summary 

This research sought to discover new methods of improving coordination in 

HATs to enhance their team effectiveness. Through a thorough synthesis of coordination 

and intent, we have furthered the understanding and characterization of this critical area. 
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From the synthesis, the theory of Operationalized Intent provides a scalable framework 

for supporting intent aware multi-agent systems. This research produced a rigorous 

method to apply Operationalized Intent to a domain and study it effectively via human-

in-the-loop testing. We demonstrated that the method was effective and able to 

characterize intent dynamics, operator cohesion, and provide feedback on the quality of 

the intent model and study trials. Finally, we demonstrated that it is possible to estimate 

dynamic intent with accuracy better than the situation baseline. This research successfully 

demonstrated the potential of Operationalized Intent as a new tool to improve 

coordination in human agent teams.  

Future Work 

The near term, next steps for this research are to address the estimation problem 

with improved tools. The recently released TensorFlow-Ranking library provides label 

ranking by applying deep learning. An analysis of the predictive utility of the situation 

vector features and the data elements would also lead to potentially improved estimation.  

Beyond that, an expanded study with an iterated quality goal model and more 

intensive operator intent training is warranted to validate our initial findings. Such a study 

would provide a corpus of data which could identify more role-based trends.  

Ultimately, studies of multi-operator, multi-AIA teams executing with and 

without the full intent models, quality goal hierarchy and execution constraint list, will 

validate the utility of intent aware AIAs. The final piece is developing intent projection 

capabilities integrated with coordinating plans to enable AIAs which anticipate their 

operator’s future needs.   
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Appendix A Glossary 
Term Definition 
Human-Agent Team 
(HAT) 

Group of humans and AIAs assembled to execute work 
towards a shared goal.  

Artificial Intelligent Agent 
(AIA), agent 

Systems capable of sensing their environment, reasoning 
about their situation, and taking action in response to 
changes in the environment. In this research they are the 
synthetic portion of the human-agent team. Functional 
AIAs and the Intent Agent are types of AIAs.  

Intent Relatively stable, pro-attitudes that function as inputs to 
further practical reasoning. 

Goal Directed Task 
Analysis (GDTA) 

Cognitive engineering analysis to capture the operator’s 
goals in a domain, used in Situation Awareness design.  

Situation  A term used in trial design to represent a stable state of 
the world, system, and team work.  

Disturbance  A term applied during trial design to represent an event 
which alters a stable situation and forces a new situation 
to develop. 

Quality Goal  A term originally defined by Sterling and Tavateer as a 
nonfunctional or quality requirement of a sociotechnical 
team. This term is applied here to represent a 
nonfunctional goal which can provide execution relevant 
guidance to AIAs regarding “how” they should execute 
their tasks.  

Execution Constraint  A limiting condition on AIA behavior selection, typically 
to avoid violations of the performance envelope of the 
system controlled by the AIA.  

Synthetic Task 
Environment (STE) 

Experimental apparatus that mimics, to the maximum 
practical extent, the natural operational environment 
while still permitting a desirable level of experimental 
control. 

Divergence A distance metric for the dissimilarity of two ranked sets 
of the same items. Within this research, the metric is an 
exact normalized form of the Spearman Footrule.  

Intent Cohesion The extent to which a group of operators expressed 
similar quality goal rankings in similar situations. The 
distribution of divergence between pairwise rankings of 
operator elicitations in similar situations (all vs all).  

Divergence Contribution The extent to which a participant increases the total 
divergence of a population. Calculated, for a participant 
in a trial, based on a normalized ranked sum of operator 
median divergence across all elicitations.  

Data Element Observable data in a system that is pertinent to an 
information requirement of an operator.  
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Event Notice A timestamped log of data demonstrating a a set of 
information relevant to a state of a subsystem, the 
environment, or other agents within the environment. 

Situation Vector Data structure representing the state of the world, system, 
and operator used to estimate intent. They are compiled 
and updated from event notice data which has been 
translated to an informational form.  

Situation Baseline The interquartile range of the divergence distribution 
from the operator responses within a situation, i.e. the 
intent cohesion. 
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Appendix B Data Cleaning Process 

Initial Data Cleaning 

Initial data cleaning of the elicitation data consisted of removing all training trials 

and participant 42 who did not complete the study. The timestamps were corrected from 

GMT to EST to synchronize with the events data. Detailed inspection indicated that 

Elicitation ID 57 was erroneously duplicative and removed.  

For the event notice data, the training trials and participant 42 were also dropped 

from the dataset. There was a set of erroneous data recorded outside of any trial that was 

removed. Certain systems were renamed for consistency and all locations were translated 

from WGS84 to UTM42N coordinates.  

Cohesion Analysis 

As described in Chapter IV, Intent Cohesion, four trials were removed from the 

analysis. Participant 93 in trial 2 was removed because they suffered a simulator failure 

that meant their data could not be situationally correlated with the other participants 

throughout the entire trial. The cohesion analysis with all the remaining participants 

resulted in the cohesion being significantly above the top/bottom threshold and the 

Kruskal-Wallis between the participants indicated that their distributions were 

significantly different. Using a ranked sum method on the median divergence to develop 

a contribution score the three highest divergence contributors were removed from the 

three trials: Participant 93 from trial 1, Participant 57 from trial 2, and Participant 53 

from trial 3. Having removed these participants, the Kruskal-Wallis test between the 

top/bottom threshold and the participants’ divergence distribution was not significantly 
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different. The Kruskal-Wallis test between participants demonstrated that their 

distributions were not significantly different. It is worth noting that the contribution 

scores for the participants also changed, not just in value but in ordering.  

Estimation Analysis 

For the estimation analysis each elicitation was mapped to a specific situation to 

serve as a label for the situation vectors in that situation. For trial 1, all elicitations were 

used. In trial 2, elicitation 6 was not used for participants 53 and 39. These participants 

both had seven elicitations and the assignment of elicitation 6 would have overlapped 

with elicitation 4 in both cases. Observing the timelines, the events in proximity to the 

elicitations and the different between elicitation 4 and six indicated that it would be more 

appropriate to assigned elicitation 4 to the situation. This is consistent with the labeling of 

the other participants as well. In trial 3, elicitation 4 for participant 39 was not used. 

Elicitation 4 was mistakenly taken during the same situation as elicitation 3 and to be 

consistent with the labeling of the other participant’s situations elicitation 3 was used. 

The effects of these exclusions or alternate mappings of elicitations to situation vectors 

were not explored in this research.  
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Appendix C Code Repository 

Data Observer 

Data observer is the Vigilant Spirit Control Station (VSCS) plug in that was used 

to extract data from VSCS and formulate it as event notices for the OI Study Database. It 

is written in C# using Microsoft Visual Studio 2017.  

https://git.antcenter.net/hsi/dataobserver 

Operationalized Intent 

This repository contains the OI Study Database in PostgreSQL 11, the Python 3.7 

analysis notebooks and scripts, and finally the OIE-RF estimator in MATLAB 2020a. It 

also includes all the SysML Models in Cameo Systems Modeler 19 and the Vigilant 

Spirit 6 file for the study. 

https://git.antcenter.net/hsi/operationalized-intent 
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Appendix D IRB Package 
IRB exception letter as embedded document.  
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Appendix E Additional Publications 
 

These are additional publications not included in the body of the dissertation. The 

first two are related to this research and the rest are ancillary research efforts I supported 

during my PhD tenure.  

Operationalized Intent for Communication in Human-Agent Teams  

M. F. Schneider and M. E. Miller, “Operationalized Intent for Communication in 

Human-Agent Teams,” Proc. - 2018 IEEE Int. Conf. Cogn. Comput. Asp. Situat. Manag. 

CogSIMA 2018, pp. 117–123, 2018. 

COGSIMA 
Operationalized Intent        

Tracking Operator Intent in Tactical Operations 

M. F. Schneider, M. E. Miller, and J. M. McGuirl, “Tracking Operator Intent in 

Tactical Operations,” in IEEE International Conference on Systems, Man and 

Cybernetics., 2020. 

SMC Tracking Intent 
20200826 RevA.docx  

Human Engagement with Event Rate Driven Adaptation of Automated Agents  

M. F. Schneider, I. L. Bragg, J. P. Henderson, and M. E. Miller, “Human 

Engagement with Event Rate Driven Adaptation of Automated Agents,” in IISE Annual 

Conference and Expo, 2018. 
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IISE paper Final 
20180223.docx  

Towards a meta-model to specify and design human-agent teams  

M. F. Schneider, M. E. Miller, and J. M. Mcguirl, “Towards a meta-model to 

specify and design human-agent teams,” in 20th International Symposium on Aviation 

Psychology, 2019. 

ISAP Human-Agent 
Modeling for Submiss   

A SysML Language Extension and Method to Permit Modeling of Human-Agent 

Teams  

M. Miller, J. McGuirl, M. F. Schneider, and T. Ford, “A SysML Language 

Extension and Method to Permit Modeling of Human-Agent Teams,” Syst. Eng., 2020. 

SEJ 
SYS-19-140.R1_Proof_    
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