
[Distribution Statement A] Approved for public release and unlimited distribution.

Runtime-Assurance for AI

Dionisio de Niz, Ph.D.

Principal Researcher & Technical Director
Assuring Cyber-Physical Systems

2[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written
or electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM20-0993

3[Distribution Statement A] Approved for public release and unlimited distribution.

V&V of AI/ML: Machine Learning Simplified View

… … …

…

dog

cat

𝒙𝟏
𝒙𝟐
𝒙𝟑
𝒙𝟒

𝒀 = 𝒇(𝒘𝟎 +𝒘𝟏𝒙𝟏 +𝒘𝟐𝒙𝟐 +𝒘𝟑𝒙𝟑 +𝒘𝟒𝒙𝟒)

4[Distribution Statement A] Approved for public release and unlimited distribution.

V&V Machine Learning Challenges

Computation not based on application logic (Trained ML)

• Neurons triggered by combined weighted input

• Weights “trained” in learning face

Computation changes at runtime (Evolving ML)

• As neural network learns it changes computation

• Behavior / Computation not known at design time

… … …

…

dog

cat

5[Distribution Statement A] Approved for public release and unlimited distribution.

V&V Approaches for Trained ML

Reluplex1

• Applied to the ReLu activation function:

– Y = max(0,x)

• Extends Simplex LP solver

• Encode the equations connecting input to outputs as constrains in LP

• Create new variables for active (non-zero) and inactive (zero) outputs

• Explore assignments that satisfy constrains

• Applied to ACAS

Verisig2

• For closed-loop Cyber-Physical System

• Transforms NN into hybrid system

– Transform sigmoid activation into quadratic equation

• Use reachability tools (e.g. dReach) to verify output

1Katz, Guy, Barrett, Clark, Dill, David L., Julian, Kyle, Kochenderfer, Mykel J.” Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”. Computer Aided Verification. 2017.

2Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, Insup Lee. “Verisig: verifying safety properties of hybrid systems with neural network controllers” HSCC ’19

6[Distribution Statement A] Approved for public release and unlimited distribution.

V&V Approach for Evolving ML

Add Enforcer

• Watch for safety property 𝜙

• Replace unsafe actions

Formally: specify, verify, and compose multiple enforcers

• Logic: Enforcer intercepts/replaces unsafe action

• Timing: at right time

• Physics: verified physical effects

Protect enforcers against failures/attacks
Controller

Logical

Enforcer

at(x,y)

moveTo(x,y)

7[Distribution Statement A] Approved for public release and unlimited distribution.

Verifying Physics (Control Theory)

Model physics using control theory

System includes

• Physical vehicle and environment

• Software controlling airplane

Evaluate if combined system

• Behaves like a “cone” with setpoint at bottom

– Theoretically known as Lyapunov function

• Enforcer periodically “samples” (monitors) for misbehavior

– If between enforcer sample potential misbehavior

• Theory verifies that system still in “cone” after misbehavior

– Model also evaluates if enforcer recovery keeps system in cone

8[Distribution Statement A] Approved for public release and unlimited distribution.

Analysis of Mission Progress

Idea:

Provide a sequence of waypoints that
represent a sequence of equilibrium
points around which we define the
Safe Set.

Goal:

• Safety transition from one waypoint
to the next one.

• Liveness (in the case of no errors)

switch to xj

switch to xj+1

switch to xj+2

9[Distribution Statement A] Approved for public release and unlimited distribution.

Analysis of Mission Progress Enforcing Unsafe Behavior

System model of a drone across mission

Safety “cone” in 3-D is a sphere

Evaluate misbehavior and enforcer recover

10[Distribution Statement A] Approved for public release and unlimited distribution.

Drone Experiment

11[Distribution Statement A] Approved for public release and unlimited distribution.

Are We Done Yet?

Scalable Verification

• Only verify safety-critical components

• Guarding unverified one

Trust

• Protect verified components

• Against attacks or bugs from unverified components

12[Distribution Statement A] Approved for public release and unlimited distribution.

Enforcing Unverified Components

𝑠 𝛼

13[Distribution Statement A] Approved for public release and unlimited distribution.

Enforcing Unverified Components

𝑠 𝛼

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

14[Distribution Statement A] Approved for public release and unlimited distribution.

Enforcing Unverified Components

𝑠 𝛼

Untrusted

Trusted?

15[Distribution Statement A] Approved for public release and unlimited distribution.

But enforcer can be corrupted (bug or cyber attack)

𝑠 𝛼

Untrusted

Trusted?

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

16[Distribution Statement A] Approved for public release and unlimited distribution.

Add Memory Protection

𝑠 𝛼

Untrusted

Trusted

Trusted = Verified & Protected
Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

17[Distribution Statement A] Approved for public release and unlimited distribution.

Are We Done Yet?

Timing can still be corrupted

• Guaranteed correct value

• BUT potentially at wrong time

Trusted timely actuation

• Tamper-proof time-triggering mechanism

• In sync with periodic controller

• In sync with expected untrusted

18[Distribution Statement A] Approved for public release and unlimited distribution.

Periodic Execution Must Finish by Deadline

𝑠 𝛼 𝑠 𝛼 𝑠 𝛼 𝑠 𝛼

time
Untrusted

Trusted

19[Distribution Statement A] Approved for public release and unlimited distribution.

Periodic Execution Must Finish by Deadline

𝑠 𝛼 𝑠 𝛼 𝑠 𝛼 𝑠 𝛼

time
Untrusted

Trusted

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

20[Distribution Statement A] Approved for public release and unlimited distribution.

Periodic Execution Finish by Deadline

𝑠 𝛼 𝑠 𝛼 𝑠 𝛼

Miss deadline:

crash

time

Untrusted Trusted

Memory

Trusted

Timing

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

21[Distribution Statement A] Approved for public release and unlimited distribution.

Periodic Execution Finish by Deadline

𝑠 𝛼 𝑠 𝛼 𝑠 𝛼

time

time

Untrusted Trusted

Memory

Trusted

Timing

Miss deadline:

crash

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

22[Distribution Statement A] Approved for public release and unlimited distribution.

Periodic Execution Finish by Deadline

𝑠 𝛼 𝑠 𝛼 𝑠

time

time

𝛼

𝛼∗

Trusted

Memory

Trusted

Timing

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

23[Distribution Statement A] Approved for public release and unlimited distribution.

Real-Time Mixed-Trust Computation

𝑠 𝛼 𝑠 𝛼 𝑠

time

time

𝛼

𝛼∗

Trusted

Memory

Trusted

Timing

U
n

tr
u

s
te

d

V
M

T
ru

s
te

d

H
y
p

e
rv

is
o

r UberXMHF

- Verified space protection

- Timing guarantees for temporal enforcer

VM scheduler

- Timing guarantees in absence of failures

- In sync with hypervisor scheduler

Mixed-Trust Task

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

24[Distribution Statement A] Approved for public release and unlimited distribution.

Real-Time Mixed-Trust Computation

𝑠 𝛼 𝑠 𝛼 𝑠

time

time

𝛼

𝛼∗

Trusted

Memory

Trusted

Timing

U
n

tr
u

s
te

d

V
M

T
ru

s
te

d

H
y
p

e
rv

is
o

r

Mixed-Trust Task

𝑅𝑖
𝑔
= max

𝑥∈ 𝐸,𝐴
max_(𝑞 ∈ {1…

𝑡𝑖
𝑔,𝑥

− 𝐼𝑥=𝐸 𝑇𝑖 − 𝐸𝑖
𝑇𝑖

𝑅𝑖,𝑞
𝑔,𝑥

𝑅𝑖
𝜅 = max

𝑞∈ 1…
𝑡𝑖
𝜅

𝑇𝑖

𝑤𝑖,𝑞
𝜅 + 𝜅𝐶𝑖 − 𝑞 − 1 𝑇𝑖

𝑅𝑖
𝑞
≤ 𝐷𝑖 − 𝑅𝑖

𝜅

UberXMHF

- Verified space protection

- Timing guarantees for temporal enforcer

VM scheduler

- Timing guarantees in absence of failures

- In sync with hypervisor scheduler

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg

25[Distribution Statement A] Approved for public release and unlimited distribution.

Concluding Remarks

ML Verification for Trained ML

• LP-Based

• Hybrid rechability for CPS

ML Verification for Evolving ML

• Enforcers to

– Monitor and

– Correct unsafe actions

Focus on key properties:

• Safety

• Security

Combined Relevant Scientific Domains

• Timing

• Logic

• Physics (Control)

Verification only effective if protected!

• Verified Protection: Hypervisor

