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V&V of AI/ML: Machine Learning Simplified View
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V&V Machine Learning Challenges

Computation not based on application logic (Trained ML)

• Neurons triggered by combined weighted input

• Weights “trained” in learning face

Computation changes at runtime (Evolving ML)

• As neural network learns it changes computation

• Behavior / Computation not known at design time
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V&V Approaches for Trained ML

Reluplex1

• Applied to the ReLu activation function: 

– Y = max(0,x)

• Extends Simplex LP solver

• Encode the equations connecting input to outputs as constrains in LP

• Create new variables for active (non-zero) and inactive (zero) outputs

• Explore assignments that satisfy constrains

• Applied to ACAS

Verisig2

• For closed-loop Cyber-Physical System

• Transforms NN into hybrid system

– Transform sigmoid activation into quadratic equation

• Use reachability tools (e.g. dReach) to verify output

1Katz, Guy, Barrett, Clark, Dill, David L., Julian, Kyle, Kochenderfer, Mykel J.” Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”. Computer Aided Verification. 2017.

2Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, Insup Lee. “Verisig: verifying safety properties of hybrid systems with neural network controllers” HSCC ’19
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V&V Approach for Evolving ML

Add Enforcer  

• Watch for safety property 𝜙

• Replace unsafe actions

Formally: specify, verify, and compose multiple enforcers

• Logic: Enforcer intercepts/replaces unsafe action 

• Timing: at right time

• Physics: verified physical effects

Protect enforcers against failures/attacks
Controller

Logical

Enforcer

at(x,y)

moveTo(x,y)
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Verifying Physics (Control Theory)

Model physics using control theory

System includes

• Physical vehicle and environment

• Software controlling airplane

Evaluate if combined system

• Behaves like a “cone” with setpoint at bottom

– Theoretically known as Lyapunov function

• Enforcer periodically “samples” (monitors) for misbehavior

– If between enforcer sample potential misbehavior

• Theory verifies that system still in “cone” after misbehavior

– Model also evaluates if enforcer recovery keeps system in cone



8[Distribution Statement A] Approved for public release and unlimited distribution.

Analysis of Mission Progress

Idea:

Provide a sequence of waypoints that 
represent a sequence of equilibrium 
points around which we define the 
Safe Set.

Goal:

• Safety transition from one waypoint 
to the next one.

• Liveness (in the case of no errors)

switch to xj

switch to xj+1

switch to xj+2
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Analysis of Mission Progress Enforcing Unsafe Behavior

System model of a drone across mission

Safety “cone” in 3-D is a sphere

Evaluate misbehavior and enforcer recover
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Drone Experiment
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Are We Done Yet?

Scalable Verification

• Only verify safety-critical components

• Guarding unverified one

Trust

• Protect verified components

• Against attacks or bugs from unverified components
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Enforcing Unverified Components

𝑠 𝛼
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Enforcing Unverified Components

𝑠 𝛼

Ant picture attribution in : https://commons.wikimedia.org/wiki/File:Ant_illustration.jpg
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Enforcing Unverified Components

𝑠 𝛼

Untrusted

Trusted?
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But enforcer can be corrupted (bug or cyber attack)

𝑠 𝛼

Untrusted

Trusted?
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Add Memory Protection

𝑠 𝛼

Untrusted

Trusted

Trusted  = Verified & Protected
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Are We Done Yet?

Timing can still be corrupted

• Guaranteed correct value

• BUT potentially at wrong time

Trusted timely actuation

• Tamper-proof time-triggering mechanism

• In sync with periodic controller

• In sync with expected untrusted
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Periodic Execution Must Finish by Deadline
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Periodic Execution Must Finish by Deadline
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Periodic Execution Finish by Deadline
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Periodic Execution Finish by Deadline
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Periodic Execution Finish by Deadline
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Real-Time Mixed-Trust Computation
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- Verified space protection

- Timing guarantees for temporal enforcer

VM scheduler

- Timing guarantees in absence of failures

- In sync with hypervisor scheduler

Mixed-Trust Task
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Real-Time Mixed-Trust Computation
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Mixed-Trust Task

𝑅𝑖
𝑔
= max

𝑥∈ 𝐸,𝐴
max_(𝑞 ∈ {1…

𝑡𝑖
𝑔,𝑥

− 𝐼𝑥=𝐸 𝑇𝑖 − 𝐸𝑖
𝑇𝑖

𝑅𝑖,𝑞
𝑔,𝑥

𝑅𝑖
𝜅 = max

𝑞∈ 1…
𝑡𝑖
𝜅

𝑇𝑖

𝑤𝑖,𝑞
𝜅 + 𝜅𝐶𝑖 − 𝑞 − 1 𝑇𝑖

𝑅𝑖
𝑞
≤ 𝐷𝑖 − 𝑅𝑖

𝜅

UberXMHF

- Verified space protection

- Timing guarantees for temporal enforcer

VM scheduler

- Timing guarantees in absence of failures

- In sync with hypervisor scheduler
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Concluding Remarks

ML Verification for Trained ML

• LP-Based

• Hybrid rechability for CPS

ML Verification for Evolving ML

• Enforcers to

– Monitor and

– Correct unsafe actions

Focus on key properties: 

• Safety

• Security

Combined Relevant Scientific Domains

• Timing

• Logic

• Physics (Control)

Verification only effective if protected!

• Verified Protection: Hypervisor


