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Executive Summary: 

The technique contained in this report could improve passive sonar detection 
and classification capabilities by predicting ocean ambient noise. Specifically, a 
novel processing method in the time domain for the analysis of the ocean arnbi- 
ent noise predictability is presented. The approach is based on recent progress 
in non-linear physics and artificial intelligence involving evolutionary computa- 
tion. The method extracts the deterministic part of a given sound record and 
provides an analytical functional form that describes the deterministic variabil- 
ity of the record. This functional relation is employed to predict future values 
of ocean noise amplitude. The processing approach has been succesfully tested. 
The results obtained indicate that the proposed technique could also improve 
underwater communications and active sonar detection. 
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Predicting underwater ambient 
noise with an evolutionary signal 
processing method 

Alberto Alvarez, Chris Harrison, Martin 
Siderius 

Abstract: 

In this report we employ recent developments in non-linear physics and time 
series prediction to  study the physical characteristics of measured underwa- 
ter ambient sounds. Specifically, we examine the predictability of a sample 
of ocean ambient noise recorded in the Strait of Sicily, Italy. An approach 
based on genetic algorithms has been employed. Results indicate that, while 
showing complex time variability, the recorded signals are highly predictable. 
Keywords: Underwater ambient noise o evolutionary computation o pre- 
dictability 
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Introduction 

Until recently, complex phenomena were considered to result from complicated 
physics among many degrees of freedom. In these situations, dynamical models 
describing these phenomena cannot usually be derived from first physical principles. 
Instead, an estimation of the dynamics can be obtained directly from observations 
of the system evolution. Traditionally, such estimation is obtained assuming that 
the observed time series generated by the system evolution, is produced by a lin- 
ear system excited by Gaussian noise [I]. The variability of the time series is then 
assigned to the stochastic nature of the excitation, which cannot be modelled. 

Nowadays, it is well known that apparent randomness and complex phenomena can 
be due to the chaotic nature of nonlinear but deterministic dynamics involving only a 
few degrees of freedom. In such cases, it is possible to model the characteristics of the 
system deterministically, obtaining short-term predictions of the system evolution 
more accurate than those obtained from a linear stochastic model. Specifically, the 
works of Takens [2], Casdagli [3], and others (for review see [4, 51) have established 
the methodology for building a dynamical model from a chaotic time series. In 
their approach, the time series {x(ti)), i = 1. .  . N describing the system evolution 
is considered as the output of a deterministic, nonlinear autonomous dynamical 
system: 

where s'is a K-dimensional state and a(.) is a nonlinear vector field. A scalar-valued 
measurement function h(.) relates the dynamical system Eq. (1) with the measured 
variable x(t)  = h($. When working with experimental data, we generally do not 
know the state equation Eq. (1) but we are restricted to observed the outputs of the 
dynamical system. A fundamental issue is what can be inferred as to the dynamics 
Eq. (1) from the observation of the output time series {x(ti)), i = 1. .. N. Takens 
[2] proved that the use of a sampled observable x(t) of the dynamical system and 
its delayed versions: 
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with T a delay and m larger than 2 d, (with d, the dimension of the attractor, i.e., the 
geometric object created by the trajectories after the transient died out), provides 
m-dimensional space that is a proxy for the full multivariate state space of the 
system Eq. (1). In more mathematical terms, this statement means that there is a 
one-to-one smooth map Q with a smooth inverse from the K-dimensional state space 
of the original system to the Euclidean reconstruction space Rm. Such mapping is 
called embedding and the theorem is known as the Takens Embedding Theorem. The 
embedding theorem guarantees that the system's state information can be recovered 
from a sufficiently long observation of the output time series. According to the 
theorem, it also follows the existence of a smooth map P : Rm + R satisfying: 

Thus, building a dynamical model from a time series implies a two-step process. The 
first step is to use the inmediate past of the time series to reconstruct the current 
state of the system (state space reconstruction), with time delay embedding Eq. (2), 
where the dimension d,  of the attractor is estimated by the correlation dimension 
algorithm [6] and the time delay T can be fixed by different methods [7]. The 
second step is to build the predictive model P(.) of (3). During the past decade, 
various techniques have been developed to accomplish the task of approximating 
the mapping P(.) defined in Eq. (3). These techniques can be classified in two 
groups: local and global dynamical models [B]. The local dynamical methodologies 
divide the state space of the system, reconstructed from the time series, in local 
regions to model individually the local dynamics in each region. The total dynamic 
model is then obtained by piecing together all the local models. An example of 
these local dynamical models is the method of "nearest neighbours" from chaos 
theory. On the other hand, global models have been the most explored for time 
series predictions. Examples of these global models are based on polynomial fitting, 
neural networks and radial basis functions among others. Other global procedure 
based on the Darwinian theories of natural selection and survival are emerging [9]. 
These procedures, called evolutionary algorithms, have already shown to be robust 
approaches to determine the functional form for P ( - )  [lo]. The main advantages of 
this method is that sparse data are sufficient and, as a byproduct, these algorithms 
can indicate the analytical functional form that underlies the signal. 

Time series of ocean ambient sounds show complex variability. Underwater back- 
ground sound is caused by a large number of physical, biological and anthropogenic 
elements. The range of sources contributing to the underwater sound has lead to 
consideration of the phenomena as random "noise" that was unpredictable and un- 
controlled. However, recent studies have found that the complex time-variability of 
ocean ambient sounds may be described by the chaotic nature of a nonlinear and 
deterministic dynamic involving only few degrees of freedom [ll]. This result ad- 
dresses the possible prediction of underwater ambient noise in the short term. This 
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limited predictability could be used for purposes of enhancing underwater signal 
detection. source localization and classification. 

T h e  report a t tempts  to examine the level of predictability of ambient background 
acoustic da t a  collected in different scenarios. This task has been achieved by devel- 
oping a novel signal processing and prediction method tha t  merges recent techniques 
from statistics, non-linear physics and artificial intelligence [12]. Our  motivation is 
t o  establish the basis for future time domain noise mitigation strategies t o  enhance 
underwater signal detection, source localization and classification. 
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Data  

Underwater ambient noise samples were recorded during the experiment ADVENT99 
in the Strait of Sicily, Italy, in Spring 1999 (Fig. 1). Ambient noise signals were 
received on a vertical array of hydrophones that spanned 62 m of the 80 m water 
column. The hydrophone array was bottom moored and mantained vertical position 
using a sub-surface float. The acoustic data was transmitted to the research vessel 
R/V  Alliance by radio telemetry. Ambient noise data from the array was collected 
in the band 10 - 2000 Hz with a sampling frequency of 6000 Hz. 

Figure 1 Scenario of the  field experiment ADVENT99. 
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The evolutionary processing-prediction method 

Given an underwater ambient sound record, the goal of our evolutionary processing 
approach is to find the empirical map P(.) of Eq. (3) describing the time variability 
of the recorded sound. The existence of the map P(.) is guaranteed by Takens' the- 
orem only for deterministic time-series. However, it would be expected in principle 
that the observed variability of any experimental time-series will consist of a deter- 
ministic (predictable) and a truly random (unpredictable) part. Noisy data leads to 
worse performance of any predictor system. This is because the system attempts to 
predict the noise (i.e., find a dynamical law of a random effect) at  the expense of 
predicting the true underlying dynamics. In consequence, some filtering, to isolate 
the deterministic variability in the data from that of purely stochastic nature, should 
be applied to the record before attempting to find the map P(.).  

A widely employed time-domain technique to remove the stochastic part of the time 
variability of the signal, without losing a significant portion of its deterministic na- 
ture is Singular Value Decomposition (SVD) [13]. Briefly, the lagged-covariance 
matrix of the record is computed and diagonalized and the eigenvalues are ranked 
in descending order. These eigenvalues are the average root-mean-square projection 
of the delay coordinate time series on to the eigenvectors (called empirical orthog- 
onal functions or EOFs) that define a new coordinate system, which is a rotation 
of the original delay coordinate system. To resolve which eigenvalues represent a 
predictable variability, a nonlinear prediction approach has been employed 1141. ES- 
sentially, the signal to be filtered is rebuilt using only a certain number of biggest 
eingenvalues obtained from the SVD decomposition. Then, a nonlinear prediction 
method is employed to analyse the predictability of the reconstructed time series. If 
the forecast performance of the nonlinear predictor is high the reconstructed signal 
is considered mainly deterministic. A new time series is rebuilt from the original 
one considering a greater number of eingenvalues and the process is repeated. The 
procedure is ended when the inclusion of new eingenvalues degrades the forecast 
skill. At that point, it can be argued that the variability represented by the new 
eingenvalues has a strong noisy component. The final filtered signal is rebuilt from 
the original with the maximum number of eingenvalues providing a good forecast 
skill from the nonlinear predictor, in our case, a genetic algorithm. 

A genetic algorithm has been employed, in order to approximate the functional 
form P(.) in Eq. (3). Briefly, to find a near-optimal solution to Eq. (3), the ge- 
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netic algorithm proceeds as follows (for details see [lo]), Fig. 2: Given a time series, 
{x(ti)), i = 1 . . . N, a set of candidate equations (the population) for P ( . )  is ran- 
domly generated. These equations (individuals) are of the form of Eq. (3) and their 
right hand sides are stored in the computer as sets of character strings that contain 
random sequences of the variable at previous times (x (t  - T) , x (t - 2r),  . . . , x (t - m r )  , 
with T the time delay parameter), the four basic arithmetic symbols (+,-,x, and /), 
and real-number constants. A criterion that measures how well the equation strings 
perform on a training set of the data is its fitness to the data defined by: 

where a represents the total variance of the data and O is given by: 

N 
o2 = C ( ~ ( t )  - P ( x ( t  - r ) , x ( t  - 2 r ) , - . - , x ( t  - mr)) )  2 

t=m+l 

R; measures the percentage of the time series variance that is explained by the 
predicted field. Values of R: close to one represent high accurate predictions, while 
low positive or negative values indicate poor forecast capability. The equation strings 
with highest values of R;, are selected'to replace parts of the character strings 
between them (reproduction and crossover) while the individuals less fitted to the 
data are discarded. A small percentage of the equation strings' most basic elements, 
single operators and variables, are mutated randomly. The process is repeated a 
large number of times to improve the fitness of the evolving population. 
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Results 

The processing method was applied to a sample of 5 s (30000 points) of the data 
recorded at  30 m depth (hydrophone 32) in different ambient noise situations. The 
first 0.16 s of each signal (first 1000 points) were subjected to the SVD analysis, with 
a windowing of 0.05 s (300 points), in order to determine the basis of eigenvectors 
describing the statistical properties of the time series. The first 0.04 s (250 points) 
are used by a genetic algorithm to find the maximum number of eigenvectors that  
reconstruct a deterministic time series and the deterministic law underlying the 
reconstructed signal. Specifically, the genetic algorithm is trained using the first 200 
points while the remaining N = 50 points are used to compute the forecast skill R:. 
The minimum threshold to consider the reconstructed time series deterministic, is 
R: = 0.95. 

A second set of the total sample is considered in order to validate the deterministic 
nature described by the computed eigenfunction basis and functional relation Eq. (3). 
This validation set ranges from 2.5 to 5 s (15000 samples). More specifically, the 
validation test proceeds as follows: A reconstructed time series of the validation 
set,{xl(t;)), i = 1 . . . N,  (being N,  the total number of points in the validation set), 
is computed employing the previously selected eigenfunction basis. The part of the 
total variance of the signal that is predictable is defined by: 

where 2 is the mean value of the time series in the validation set and xl(t) is the 
reconstructed time series considered as deterministic. Notice that R2 is constituted 
by two factors: one describing the part of the total variance represented by the 
reconstructed signal obtained by the SVD and the second, R: that indicates which 
part of the total variance of the reconstructed signal is predicted by the functional 
relation Eq. (3) found by the genetic algorithm. 

High predictability should still be expected if the EOF basis as well as Eq. (3) truly 
describes deterministic nature. On the other hand, if the sample is dominated by 
noise, the previously computed statistics and predictor will not be representative 
of the variability of the validation set. In this case, poor predictability should be 

Report no. changed (Mar 2006): SM-374-UU



obtained. The rate of the total variance of the validation set, that can be explained 
and predicted by a deterministic nonlinear model is represented by: 

The evolutionary algorithm built to find the mapping P in Eq. (3) for each situation 
was configured in such a way that the value of the parameter m is m = 8, r equals 
to the discrete time unit A t (= 1.66 s) and the maximum number of symbols 
allowed for each tentative equation is 20. Each generation consists of a population 
of 120 randomly generated equations. A total of 10000 generations was considered 
for each case. 

4.1 Dominant ship noise environment 

Figure 3a shows a 5 s acoustic signal recorded by hydrophone 32 when a ship was 
moving near the array. Due to the proximity of the ship it can be inferred that 
the recorded signal is mostly dominated by ship noise. While showing complex 
time variability, ship noise is highly correlated and predictable. Supporting this 
hypothesis, Fig. 3b shows that the recorded underwater signal can be predicted 
with 85% of accuracy in the first 0.04 seconds. Specifically, the red line represents 
the filtered signal reconstructed from the original (blue line) and a forecast skill of 
R: = 0.95. The reconstructed signal accounts for almost 90% of the total variance. 
The dynamical law found by the genetic approach is given by the expression: 

( ~ ( t  - 2At) + x( t  - 3At) - 1.4 ~ ( t  - 5At) + ~ ( t  - 6At)) 
~ ( t )  = 1.52 x( t  - At) - 

1.9 
(7) 

where x(t)  is the signal amplitude and At  = 1.66 s. Figure 3c shows the rate 
of the total variance of the validation set, that can be explained and predicted by 
a deterministic nonlinear model. Specifically, it is found that the underwater signal 
constituting the validation set can be predicted using the proposed approach with 
82% of accuracy. The slightly lower predictability than in the first set of data 2.5 s 
earlier, indicates the stationary deterministic nature of the signal, well represented 
by the previously extracted EOFs and functionally characterized by the relation 
Eq. (7). Finally, Fig.4 shows the existence of a band structure of the predictable 
signal confirming its shipping origin. 

4.2 Dominant wind noise environment 

A beamforming technique was employed on the hydrophone array to extract the 
sound signals from the upwards direction, i. e. the sea surface. Because of the 
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beam's frequency-dependent angular resolution, the dominant noise source is wind at  
high frequencies, but noise from distant ships may still be present at  low frequencies. 
Figure 5a shows the breaking wave sounds generated by the wind. The procedure 
described in the previous ship noise dominant case was also applied to this record. 
The beamformed signal can be almost totally predicted as shown in Figs 5b and c. 
A simple prediction law found by the evolutionary program is given by: 

~ ( t )  = 0.24 x ( t  - At) - 0.75 x( t  - 2At). 

In principle, such high predictability would not be expected from processes generated 
by more or less random sources such as wind forcings. In fact, this high forecast 
skill derives from the fact that most of the variability of the beamformed signal is 
at  very low frequencies. Low frequency variability is more predictable over short 
intervals than high frequency variability. In consequence, the high predictability of 
this example is induced partially by the filtering effect of the beamforming process. 

4.3 Dominant mechanical noise environment 

The recorded data show intermittent corruption by mechanical noise probably pro- 
duced by the hydrophone hitting the array hose in a heavey sea, Figure 6a. We 
have chosen the first of these events to extract the statistics characteristic of the 
process and the prediction function as previously described. It has been found that 
the functional form: 

predicts the noise episodes with 90% of accuracy. This can be easily inferred from 
Fig. 6c where high predictability is obtained when the banging events are present in 
the sound record. 
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Figure 3 a )  Ship  nozse recorded by the  hydrophone (blue-solid l ine).  T h e  red 
vertical l ines zndicate the  datasets. Data f rom the init ial  point t o  the dotted l ine 
was  used t o  extract the statistical properties of the signal. T h e  data betwwen the 
init ial  point and the  dashed-dotted lzne were used t o  extract the dynamical law. T h e  
validation set i s  between the  solid l ine and the  last point. b)  Real data (blue) and 
forecasts (red) of the achieved dynamical law, c )  Predictability i n  the validation set. 
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Figure 4 Power  spectrum of the determinis t ic  signal in the case of a dominan t  
shzp noise env i ronmen t .  
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Figure 6 a )  Mechanical noise recorded by the hydrophone (blue-solid line). The 
red vertical lines indicate the datasets. Data from the initial point to the dotted line 
was used to  extract the statistical properties of the signal. The data between the 
initial point and the dashed-dotted line were used to  extract the dynamical law. The 
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forecasts (red) of the achieved dynamical law. c )  Predictability i n  the validation set. 
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Conclusions 

Recent developments in non-linear physics were applied to analysis of the predictabil- 
ity of underwater ambient noise. Results indicate that ambient ocean noise may 
be highly predictable allowing derivation of approximate dynamical laws of time 
variability. Future work will consider the applicability of this approach to develop 
underwater noise mitigation strategies in the time domain. 
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