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Abstract—The Benefield Anechoic Facility (BAF) at Edwards
Air Force Base is the world’s largest known anechoic chamber.
Due to its unmatched size and equipment inventory, the BAF
hosts far-field pattern measurements at all azimuth angles
and multiple simultaneous elevations of installed antennas on
large aircraft typically across the BAF’s operating frequency
range of 0.1 – 18 GHz. Antenna tests at the BAF rapidly
produce copious data, which often require immediate analysis
to allow system owners to make relevant improvements.
Historically, the BAF had accomplished quality assurance
manually. Analysis was accomplished post-test by customers
and the BAF team. Today, the BAF team has developed scripts
that use kernel density estimation and basic machine learning
to automatically check incoming data and highlight anomalies
for review. During a 2019 test of installed antennas on a B-1B
bomber, the BAF team used these scripts to process antenna
patterns in near real-time and bring unusual results to the
customer’s attention fast enough to allow modifications to
be applied and re-tested during the same test event – highly
significant as aircraft and BAF schedule times are limited
and may be a one-time opportunity to gather required data.


This paper will explore the algorithm used to evaluate
antenna patterns, as well as the expected characteristics of
patterns that enable the selection of relevant data. Development
of this algorithm found that using kernel density estimation to
calculate the maxima in a pattern’s distribution of gain values,
then performing this recursively over the main lobe, can identify
problems such as incorrect switching, mismatched transmission
lines, and multipath. Algorithm optimization was achieved
using generated data, then the algorithm was implemented as
a prototype during the B-1B test by searching for data that
deviated from a sample pattern. Finally, this paper will discuss
the application and impact of this algorithm during a live test.


All plotted data and numerical results included in this paper
are based on training data generated in Python to represent
generic directive antenna patterns, and do not correspond to the
real-world conditions or results of the B-1B test.


I. INTRODUCTION


Typical modern antenna measurements take place within
near-field anechoic chambers, which use spherical, cylindrical,
or planar scanning and accompanying processing techniques


to reproduce the far-field coverage patterns of antennas or
systems under test. Often limitations in size or available
test equipment leads to chambers dedicated to testing one
specific type of antenna or system [1]. However, the uniquely
large chamber at the BAF grants the 772 Test Squadron (772
TS) the capability to take immediate far-field measurements
of antennas, including even simultaneous measurements
of multiple installed antennas on massive systems such
as bomber-sized aircraft. These qualities grant the BAF
extreme testing flexibility, and as a result, the BAF hosts a
wide range of systems that vary in their expected antenna
coverage, intended purpose, or required equipment setup
to integrate with the BAF antenna pattern architecture [2].
Engineers within the 772 TS thus face the challenge of
processing, approving, and delivering thousands of antenna
patterns for an unfamiliar system during any given test.
Previously, the BAF team has surmounted these challenges
by providing a live feed of an uncalibrated subset of collected
data to the customer and the test team, and by performing
thorough manual review during a pre-established time
period after test completion. While these quality assurance
measures have not been discarded, the increasing demands
for test time and data quantities have created the motivation
to make quality assurance more thorough and efficient.


To accomplish this, a simplified approach to characterizing
antenna patterns was developed. This began by reducing
patterns to distributions of their gain values. The
characteristics of such a distribution then correspond to
common features of functional antenna patterns, such as a
main lobe made up of higher gain values contrasted by a
noise floor. The choice of features to extract was driven by
the ability to associate these features with the distribution
of gain values, and by the common elements of pattern data
that merited test team intervention based on experiences such
as dealing with equipment failure or unexpected multipath
effects. In this paper, this feature extraction approach
will be accomplished via kernel density estimation and







applied to both generated data and previous test data. The
analysis will optimize the approach based on these results,
then apply the optimized technique during a live test event.


The approach was implemented as a prototype algorithm
during a 2019 test of installed antenna patterns on the
B-1B bomber in the BAF. To develop this prototype prior
to the test event, training data generation scripts were
created to represent generic directive antenna patterns over
a common general BAF operating range of 2-18 GHz.
All sets of plotted data and numerical results arise from
this generated sample data set, and do not reflect the
conditions or represent the results of B-1B testing in the BAF.


II. PATTERN STRUCTURE AND SOFTWARE PARAMETERS


Automated quality assurance functions by identifying which
sets of antenna pattern data warrant manual review by looking
for characteristics that correspond to equipment issues or
unexpected system under test performance. This requires es-
tablishing a baseline description of a standard antenna pattern,
which can be altered for specific tests, and then mapping
types of gain value distributions to elements of this baseline.
The following sections describe the characteristics of the
baseline pattern, and how the algorithm analyzes the gain value
distribution to check for every characteristic.


Fig. 1: Generated antenna pattern with standard characteristics
and a high signal to noise ratio (SNR).


A. Main Lobe Detection


A typical directional antenna will have a main lobe of
higher gain values, in contrast to the lower value side lobes,
back lobe, and nulls that tend to lie at or just above the noise
floor of a pattern measurement. In the patterns considered for
this paper, this structure produces a bimodal distribution of
gain values. This distribution has two peaks: one corresponds
to all of the lower gain values that fall outside the main
lobe, and the other to the higher gain values within the
main lobe. Exceptions to this trend often arise from setup


Fig. 2: Estimated PDFs of two antenna patterns. Left: PDF
of pattern with an SNR of 30, with two peaks to differentiate
main lobe from noise floor. Right: PDF of pattern with an
SNR of 5, with only one peak.


failures that produce noise instead of a discernible pattern,
which need to be resolved quickly during a test event.
Examples include an improperly connected transmission
line, an incorrect switch state within an RF network, or
insufficient dynamic range in the pattern measurement
design. Other issues could potentially produce other types
of distributions as well, such as a prominent back lobe
or side lobe creating a third peak. This may not represent
an issue with the test setup, but rather a valid set of data
that the test team may want to prioritize for analysis [3].


Although the aforementioned distribution of gain values
in a pattern can be computed directly as a histogram, kernel
density estimation offers an easily-implemented alternative
approach that conveniently smooths the distribution as
it approximates the probability density function (PDF)
of the distribution [4]. The creation of a smooth PDF
simplifies the peak search process that the algorithm uses
to detect anomalies, and the level of smoothing serves
as an adjustable parameter to tune the sensitivity of the
algorithm. Critically, optimizing this degree of smoothing
can be relatively straightforward but is a well-explored and
potentially complex but powerful process [5]. The quality
assurance algorithm begins by employing the ”gaussian kde”
function included with the SciPy Python package [6] to use a
Gaussian kernel to approximate the PDF of the gain values in
an antenna pattern. Here, one ”pattern” is defined as the set
of gain values across a two dimensional range of azimuth and
frequency values. Then the number of peaks in this function is
calculated by searching for values that are larger than a given
number of neighboring values. Both the amount of smoothing
within the KDE process and the sensitivity of the algorithm
to local maxima are parameters that can be changed by the
operator to optimize for a given test. The effect of these
parameters and the optimization process will be discussed
further in the Simulated Results and Optimization section.


After determining the number of peaks in the distribution,
the algorithm flags the pattern and reports it to the user if the
distribution is anything but bimodal. Otherwise, the algorithm
proceeds to the next step in the QA process.







B. Beam Width Estimation


Searching for irregularities within the main lobe of the
antenna pattern requires first estimating the size and location of
the main lobe. Since computing power has already been dedi-
cated to recreating the PDF of the pattern, the algorithm reuses
this information to approximate the half-power beamwidth [3].
This approximation works by comparing the heights of the
two peaks in the distribution. A wider main lobe results in
the overall pattern data set having a higher ratio of large gain
values to small ones, so the ratio of the high gain value peak
to the low gain value peak increases roughly proportionally.
The actual equation used for this estimate is as follows:


Beamwidth ≈ hp


hp + hn
×Aztot (1)


Here hp is the height of the peak that corresponds to
the pattern’s main lobe values, hn is the height of the peak
that corresponds to the noise floor values, and Aztot is
the total range of azimuth values present in the data set.
This equation estimates the beamwidth roughly but quickly
by assuming that the peaks can be reduced to triangles
of equal widths, and whose relative areas are thus only
dependent on the height of each peak. Although this tends to
underestimate the half-power beamwidth, this underestimate
helpfully avoids false positives by isolating the section of
the main lobe that is typically the smoothest. Since the
total area of these two peaks should encompass every gain
value in the data set, this makes the proportion of azimuth
values spanned by the main lobe a function of the ratio
of the heights of these peaks. The algorithm centers the
main lobe at the azimuth angle of the largest gain value.
Truncating the data set down to the area encompassed by
this estimated beamwidth allows the algorithm to move
to the next QA step. The software also visually reports
the estimated beamwidth if a pattern is flagged after this
point so that a user can verify the accuracy of this process.


C. Discontinuities in Main Lobe


After the data set has been reduced to only the estimated
main lobe of the entire pattern, the algorithm repeats the
KDE calculation over this smaller set of data. Here the QA
process is similar to that performed over the whole pattern.
Since the average main lobe is a relatively constant collection
of higher gain values, this new PDF will be unimodal unless
a discontinuity exists within the main lobe. Pockets of lower
gain in a main lobe often arise from improperly connected
RF equipment, unwanted reflections within the test chamber,
or performance deficiencies with the system under test itself
[7]. If the software detects more than one peak in the PDF
of a main lobe, it flags the pattern for engineer review and
visually displays the area estimated to be the main lobe.


The result of a successfully flagged pattern with a main lobe
discontinuity is illustrated in Fig. 3. The QA algorithm also
adds lines to the contour plot to display where it has estimated


the location and edges of the pattern’s main lobe, so that the
operator can determine whether the pattern has been flagged
due to an error from the main lobe estimation process.


Fig. 3: Generated antenna pattern with a discontinuity in the
main lobe.


III. SIMULATED RESULTS AND OPTIMIZATION


The algorithm was developed and trained using Python
scripts to generate sample data to simulate generic directive
antennas. These scripts acted as the training data set for the
data QA algorithm. Generating data sets trains QA algorithms
efficiently because the data can be created alongside a
truth table that already lists whether every piece of data
is intended to pass or fail the QA test. Additionally, the
generation script can be modified to change the pass or fail
criterion, or how ”good” a set of data has to be to pass
the algorithm. The primary disadvantage is that there is
no guarantee the algorithm training data represents a real
world scenario, which is why the test team implemented
the algorithm as a malleable prototype when first applied
to a live test. All quantitative results in this paper were
created from sampled data during the training process.


Data generated for this project was controlled by the
following input parameters: the maximum and minimum
signal to noise ratio (SNR) of the data set, the location (in
azimuth, anywhere from -180 to 180 degrees) of the center
of the main lobe, the width (across a range of azimuth
values, along the x-axis) of the main lobe, whether or not
the pattern has a discontinuity in the main lobe, and, if
it does, the width of said discontinuity (across a range of
frequency values, along the y-axis). Though not part of the
data itself, a user-input threshold SNR tells the algorithm
whether or not to flag each pattern as too noisy. A threshold
SNR offers a simple, quantifiable basis for predicting if a
set of pattern data suffers from unacceptable measurement
inaccuracies [8]. Adjusting this value, in a sense, allowed the
user to adjust the difficulty of the data set. The QA script
could be tested either on its ability to only pick out nearly
white noise patterns amongst a set of otherwise very clear
data, or its ability to pick out slightly lower quality patterns







with more precision than an observing engineer. The main
lobe discontinuity worked much more simply by comparison.
Although the difficulty of finding a discontinuity could be
tuned by reducing the width of any added discontinuities,
whether or not to add one to each pattern is a binary option.


For an algorithm to use a set of its training data, it must
have adjustable parameters that can be tuned as a user
attempts to train it. The KDE-based algorithm offers a wide
range of potential trainable parameters that could be explored
beyond this paper, such as alternate choices for the kernel
function or applying weighting to multiple estimates [9],
but in this case only two parameters were made adjustable
for the sake of simplicity. The two adjustable parameters
were the KDE bandwidth h and the sensitivity e of the peak
search function to extrema. The KDE bandwidth specifically
refers to the width of the sample statistical distribution (in
this case, a Gaussian function) that the estimator uses to
build the PDF. Effectively the bandwidth sets the level of
smoothing of the resulting function, and in the extreme
cases of h → 0 and h → ∞ the result is, respectively,
equal to the unaltered histogram or to the sample Gaussian
function centered on the mean of the data set [4]. The
extrema sensitivity specifically controls how many nearby
values a point must be greater than in order to be considered
a peak. Ideally, correct settings for h and e will produce
a function that smooths out small noise effects but retains
peaks for large scale behavior, then correctly identifies peaks
without reporting small local maxima that survived the
smoothing process. These parameters are closely related,
since smoothing reduces the appearance of local maxima.


A set of 200 patterns was generated during training,
with a range of SNRs between 14 and 19, and a threshold
SNR of 16. Approximately 50% of the patterns were free
of issues, 25% were generated without a clear main lobe,
and 25% were generated with a frequency discontinuity
that replaced the main lobe with low gain noise values. This
replacement overwrote between 100MHz and 300MHz of
the 2-18 GHz range of frequency values. When operated
over this data set, with the optimized input parameters, the
QA algorithm correctly flagged 89.3% of the flawed patterns
and incorrectly flagged 9.1% of the correct patterns. The
process was iterated 30 times over a set of input parameters
that were predicted to contain the optimal values. The range
of tested KDE bandwidths spanned 0.04 to 0.16, centered
on the roughly 0.1 value calculated by Silverman’s Rule
[10]. The range of maxima search widths began at 1 (any
value with lower neighboring values would be considered a
maximum) and ended at 10. These attempts are plotted in
Fig. 5 as a receiver operating characteristic (ROC) curve [11].
The discontinuities in this ”curve” arise from creating the
data by adjusting two separate parameters in discrete steps.
The overall behavior illustrates that this QA method tends to
achieve a high detection rate with most input values but must
be tuned to avoid an unacceptably high false positive rate.


Fig. 4: PDFs of one sample pattern that should not be flagged
by the QA algorithm, using multiple KDE bandwidths. Top:
Below optimal bandwidth. Middle: Above optimal bandwidth.
Bottom: Near optimal bandwidth.


For this relative training effort, the best pair of parameter
values will land as close to the upper left corner as possible,
minimizing the root sum square of the false positive rate and
missed error rate. For the generated set of data this occurred
when h = 0.10 and e = 5, although Fig. 6 suggests that within
this range of parameters, algorithm performance minimally
depended upon the selection of KDE bandwidth. These values
do not represent the optimal values for every application of this
technique, but rather a promising starting point before tuning
the script based on incoming data.







Fig. 5: ROC curve that represents the variation in algorithm
performance in terms of ability to correctly flag flawed patterns
(Detection Rate) and tendency to incorrectly flag other patterns
(False Error Rate).


Fig. 6: Contour plot that represents algorithm performance (in
terms of relative distance from the center line in Fig. 5 that
represents random classification) specifically as a function of
the KDE bandwidth and the peak search width.


IV. APPLICATION AND RESULTS


Following the development of this algorithm, the BAF
team added these scripts to the data processing chain for
the 2019 B-1B antenna pattern test. The operator would
run every batch of approximately 100 patterns immediately
after collection, then examine the flagged patterns. Engineers
could then decide if the flagged patterns actually merited
inspection, or if the sensitivity of the algorithm needed to
be reduced. Additionally, engineers would manually review
other random subsets of the data near the start of test
execution and after significant changes to test conditions to
verify that the algorithm did not need to be more sensitive.


Though the team designed the QA algorithm with the
intent to automatically detect issues with the measurement
setup, during test execution the algorithm flagged several
patterns that included main lobe discontinuities that did not
correspond to the predicted performance. Eventually, after the
test team verified that the behavior was not due to a problem
with the test equipment, the results were brought to the
attention of the owners of the system under test. Subsequent
analysis by both the test team and the system owners revealed


that the algorithm had highlighted a true characteristic which
only affected coverage in a small subset of the data. Without
the addition of the QA algorithm, this characteristic would
likely have gone unnoticed until the customer performed
thorough analysis of the data set after the test. Since the
discovery can now occur during test execution, the owners can
implement a prototype change to the system and re-run the
relevant test points, confirming a path forward to the desired
performance - within the valuable test window at the BAF and
not afterwards when it would require another return for retest.


V. CONCLUSION


In this paper a kernel density estimation based antenna
pattern quality assurance algorithm has been developed,
applied to generated training data and optimized, then applied
to antenna pattern data during a test of the B-1B bomber.
The algorithm assumes a baseline pattern with a distinct main
lobe that does not exhibit significant discontinuities along its
entire range of frequency values. After accepting an input
KDE bandwidth and sensitivity to maxima, the algorithm
approximates the distribution of all gain values in the pattern
and determines whether a clear main lobe exists based on
whether or not the distribution has only two peaks. Then, the
pattern beam width is estimated and used to truncate the data
set to only the main lobe, over which the algorithm repeats the
KDE process and flags the data if more than one peak exists.


This algorithm achieved a 89.3% true detection rate with
only a 9.1% false error rate when run using optimal parameters
over an artificial set of pattern data. When improved based
on these results and applied to live test data of the B-1B
bomber, the algorithm successfully isolated critical but subtle
valuable characteristics of the system under test well before
they would have been uncovered by manual review. While the
algorithm does perform better when applied to the generated
data that was designed alongside it, successful application
of the software has also revealed the potential capability of
this technique to rapidly isolate, flag, and characterize a wide
variety of unexpected behaviors in copious antenna pattern
data.
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