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Abstract—It is demonstrated that the phase information
present in complex high-frequency synthetic aperture sonar
(SAS) imagery can be exploited for successful object classifica-
tion. That is, without using the amplitude content of the imagery,
man-made targets can be discriminated from naturally occurring
clutter. To exploit the information ostensibly hidden in the phase
imagery, relatively simple convolutional neural networks (CNNs)
are trained, “from scratch,” on a large database of SAS phase
images collected at sea. Inference is then performed on real
SAS data collected at sea during five other surveys that span
multiple geographical locations and a variety of seafloor types
and conditions. These experimental results on the test data
illustrate that the phase information alone can produce favorable
object classification performance. To our knowledge, this work
is the first to demonstrate this finding.
Index Terms—Classification, phase information, convolutional

neural networks (CNNs), automatic target recognition (ATR),
synthetic aperture sonar (SAS)

I. INTRODUCTION

Synthetic aperture sonar (SAS) works by coherently sum-
ming received acoustic signals of overlapping elements in an
array. Importantly, the resulting high-resolution SAS imagery
is complex-valued. Typically this data is converted to a (real-
valued) amplitude representation that is subsequently used for
various signal processing and pattern recognition tasks, such as
object classification. The phase information, which is related
to the signal travel time, and in turn, the distance traveled,
is usually discarded. In this work, we demonstrate that the
phase data in SAS imagery contains useful information that
can be exploitedon its ownfor object classification tasks. This
finding upends the conventional wisdom that the phase does
not contain useful information for classification.

Complex SAS data is often manipulated to serve various
purposes, but seldom is the phase information considered in
isolation. (A notable exception is with bathymetric estimation
via interferometry [1], where phase differences are exploited to
obtain relative height information.) For example, transforming
complex data into the Fourier domain enables efficient sub-
band [2], [3] and sub-aperture processing [4], [5] and, with
lower-frequency data, the formation of acoustic color repre-
sentations [6]. But the general view of SAS phase imagery –

as a signal with no worthwhile content – is an assumption we
challenge.
An example SAS “mugshot” of an object – an endfire

cylinder, with deployment chains attached – is shown in Fig. 1.
Specifically, both the amplitude and phase images are shown.
From visual inspection, it is obvious that the amplitude image
contains useful information for classification. Less clear is
whether the phase image also contains features or charac-
teristics that can be exploited reliably. The objective of this
work is to establish that phase imagery like this does indeed
contain information. In order to demonstrate this, we rely on
convolutional neural networks (CNNs) [7], which have the
ability to automatically uncover useful clues for classification
via its learned filters. This aspect of CNNs is particularly
attractive because, as Fig. 1(b) suggests, it is challenging for a
human to hand-craft salient features for extraction from phase
imagery.

(a) Amplitude image (b) Phase image

Fig. 1. An object’s SAS (a) amplitude image and the corresponding (b) phase
image.

II. CONVOLUTIONALNEURALNETWORKS
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A CNN is a sophisticated classification algorithm whose
power derives from its great representational capacity. The
standard architecture of a CNN consists of alternating layers
of convolution and pooling operations, followed by a fully-
connected layer, and a final (fully-connected output) prediction
layer.
The output of one layer is the input to the subsequent

layer, with this nested functional structure – in conjunction
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Fig. 2. Schematic of basic CNN architecture consisting of an input image (shown here as a SASamplitudemugshot for illustrative purposes), a convolutional
layer with 4 filters, a pooling layer, a convolutional layer with 6 filters, another pooling layer, a fully-connected layer, and the final class probability output.

TABLE I
CNNARCHITECTURES

CNN Numbers Sizes Pooling
Name of Filters of Filters Factors

A 8, 10, 12 16, 8, 5 4, 4, 2
B 8, 10, 12 8, 6, 6 4, 4, 2
C 4, 6, 8, 10, 12 8, 7, 7, 5, 3 2, 2, 2, 2, 2

TABLE II
TEST DATA SET DETAILS

Data Set Name of Sea Survey Dates Survey Survey Number of
Code Experiment (months / year) Location Area (km2) Targets Clutter

MAN2 MANEX 9-10 / 2014 Bonassola, Italy 38.9 375 77222
NSM1 NSMEX 5 / 2015 Ostend, Belgium 22.6 52 46832
TJM1 TJMEX 10 / 2015 Cartagena, Spain 55.5 357 43847
ONM1 ONMEX 9 / 2016 Hỳeres, France 43.8 71 23366
GAM1 GAMEX 3-4 / 2017 Patras, Greece 19.4 72 4058

with nonlinear activation functions – enabling highly complex
decision surfaces. The input to a CNN is an image, as in Fig. 1,
and the outputs are the probabilities of belonging to each class
under consideration (here, targets and clutter). Training a CNN
means learning the parameters of the filters (and bias terms).
A schematic representation of this basic architecture is shown
in Fig. 2.

For our application, the inputs to the initial layer are the
SAS phase “mugshots” of alarms flagged in the detection
stage by the Mondrian detection algorithm [8] on larger SAS
scene-level imagery (that typically spans50m×110m). The
size of these input mugshot images are 267 pixels by 267
pixels, with a resolution of 1.5 cm in each dimension. All
pixel values are in[0,2π). The outputs of the final layer are
the probabilities of a mugshot belonging to each class (target
or clutter). Each convolutional layer and fully-connected layer
uses a sigmoid activation function, while each pooling layer
uses pure averaging rather than the commonly used max-
pooling approach. Each convolutional layer is associated with
a fixed number of filters (i.e.,kernels) of predefined size.
In contrast to the computer vision community, where the
size of the filters is usually only a few pixels wide, we use
larger filters in order to permit the uncovering of richer, more
meaningful characteristics in the data (that can hopefully be
tied to physical phenomena).

The training process of the deep network learns the pa-
rameters of the model, which for the convolutional layers are
the filters and associated bias terms. (There are no param-
eters associated with the pooling layers.) The model seeks
to minimize the standard classification error on the training
data under consideration. At each training iteration, the model
parameters are updated by a form of stochastic gradient
descent. Because there can be thousands or even millions of
free model parameters to be learned, it is necessary to have an
extremely large set of training data to avoid overfitting. In turn,
training a CNN “from scratch” can take many months, even

with high-throughput computational resources like graphics
processing units (GPUs).
In this work, we develop three unique CNNs, distinguished

by the number of convolutional layers, the numbers and sizes
(in pixels) of the filters, and the pooling factors employed. The
basic architectures of the CNNs designed are summarized in
Table I, where the number of convolutional layers employed
is equal to the number of elements in a given column. The
number of free parameters to be learned in each CNN is on
the order of104, which is relatively small for CNNs.
To train these CNNs, a large database of SAS phase imagery

collected during eight sea experiments in diverse locations was
used [9]. Testing was then performed using a disjoint set of
SAS data from five other sea experiments. Basic details of
these test sets are summarized in Table II.

III. EXPERIMENTALRESULTS

The results of making (class) predictions using the three
CNNs for data from the five test sets are shown in Fig. 3, where
it can be seen that the classification performance is well above
the chance diagonal (in which every prediction is a random
coin flip). This result provides strong evidence that there is
indeed exploitable classification information contained in the
phase images alone. The area under the receiver operating
characteristic (ROC) curve (AUC) associated with Fig. 3 is
also shown in Table III.
Interestingly, classification performance was markedly

worse on the NSM1 data set. This data was collected in
the North Sea where there were very strong currents. As
a result, the sonar-equipped autonomous underwater vehicle
(AUV) was rarely able to maintain an ideal linear trajectory
during data collection, and SAS processing image-formation
was more challenging. Theamplitude
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imagery from this data
set is often blurry, and shadows cast by objects are typically
not well-defined. We hypothesize that this factor also causes
the phase imagery to lack strong structure in the shadows,
thereby eliminating exploitable classification clues.
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(a) MAN2 (b) NSM1

(c) TJM1 (d) ONM1

(e) GAM1

Fig. 3. Classification performance on five different test data sets, indicated by sea trial code, using three different CNNs and the ensemble. The operating
point corresponding to a prediction threshold of 0.5 is marked, by a circle, on each curve.

IV. ANALYSIS
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We seek to better understand the reasons for the clas-
sification success on the phase imagery. Because CNN B
consistently achieved the best classification performance, we

investigate its filters in more detail. Fig. 4 shows the learned
filters of the three convolutional layers of CNN B. (For a given
convolutional layer, each filter uses an identical color scale in
which the color green corresponds to zero, warmer colors are
positive, and cooler colors are negative.)

CMRE-PR-2019-009

3



TABLE III
CLASSIFICATION PERFORMANCE

Data Set AUC
Code CNN A CNN B CNN C Ensemble

MAN2 0.857 0.934 0.943 0.946
NSM1 0.613 0.844 0.778 0.773
TJM1 0.807 0.944 0.917 0.936
ONM1 0.835 0.954 0.920 0.947
GAM1 0.862 0.936 0.886 0.928

(a)

(b)

(c)

Fig. 4. For CNN B, the filters of the (a) first convolutional layer, (b) second
convolutional layer, and (c) third convolutional layer. (Three-dimensional
filters in the latter two layers are grouped columnwise.)

It can be seen that the purpose of the first convolutional
layer’s filters is ostensibly to locate vertical or horizontal
gradients in the input phase imagery. This insight should be
contrasted with the finding in [10], which studied CNNs for
which the input imagery was SASamplitudeimages. In that

Fig. 5. For CNN B, the weights of the fully-connected layer, displayed such
that spatial form is retained (i.e.,the “flattening” step has been inverted).

work, it was discovered that the first convolutional layer’s
filters were effectively acting as bandpass filters (vis-̀a-vis
pixel values) to segment the images into highlight, shadow,
and background regions.
More complicated structural features in the imagery can be

isolated when multiple convolutional layers (with nonlinear
activation functions) are nested. After the convolutional and
pooling layers, the three-dimensional output tensor is “flat-
tened” into a vector to accommodate a fully-connected layer.
However, the vector of weights of the fully-connected layer
can be reshaped to recover the spatial form destroyed by the
flattening. These weights of CNN B are shown in Fig. 5. When
presented in this format, one can associate and visualize the
relative importance of each spatial region, or “receptive field,”
of a generic input image. For this CNN, it can be seen that
there is not a single dominant region that drives all predictions.
Rather, various components will, in general, have the capacity
to influence the final class predictions.
Next, we examine some intermediate representations of

CNN B for a few specific phase images from the test set.
Specifically, we choose to show the intermediate representa-
tion of the imagery at the second convolutional layer (prior
to evaluation with the sigmoid activation function) because
this representation seems to contain the most interpretable
structure. In a sense, two convolutional layers are required
to transform the phase imagery into a form that humans
can readily comprehend. This should be contrasted with a
SASamplitudeimage, which requires no transformations (i.e.,

CMRE Reprint Series
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(a) Amplitude image (b) Phase image (c) Contributions to final class predictions

(d) Intermediate representation in CNN B’s second convolutional layer

Fig. 6. SAS imagery of a cylinder (target) in a sand ripple field, in the form of its (a) amplitude image and the corresponding (b) phase image. The phase
image is the input to the CNN; the amplitude image is shown only for reference. (c) Each receptive field’s contribution to the final prediction of belonging
to the clutter class (left) and target class (right). The target was classified correctly. (d) The intermediate representation of the phase image after the second
convolutional layer, but prior to the activation function, of CNN B.

(a) Amplitude image (b) Phase image (c) Contributions to final class predictions

(d) Intermediate representation in CNN B’s second convolutional layer

Fig. 7. SAS imagery of a clutter object in the form of its (a) amplitude image and the corresponding (b) phase image. The phase image is the input to the
CNN; the amplitude image is shown only for reference. (c) Each receptive field’s contribution to the final prediction of belonging to the clutter class (left)
and target class (right). The clutter was classified correctly. (d) The intermediate representation of the phase image after the second convolutional layer, but
prior to the activation function, of CNN B.

(a) Amplitude image (b) Phase image (c) Contributions to final class predictions

CMRE Reprint Series

(d) Intermediate representation in CNN B’s second convolutional layer

Fig. 8. SAS imagery of a clutter object in the form of its (a) amplitude image and the corresponding (b) phase image. The phase image is the input to the
CNN; the amplitude image is shown only for reference. (c) Each receptive field’s contribution to the final prediction of belonging to the clutter class (left)
and target class (right). The clutter was classified incorrectly. (d) The intermediate representation of the phase image after the second convolutional layer, but
prior to the activation function, of CNN B.
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We also show the contributions of each spatial location
(receptive field) to the final classification predictions. These
contributions are the result of inner products between the fully-
connected layer’s weights and the image responses input to
those nodes. That is, these contributions would be summed,
added to a bias term, and then passed through a sigmoid
function, in order to obtain the final probabilities of belonging
to each class. By showing the individual contributions, one can
better observe which components of the (phase) image drive
the final prediction. (In this series of figures, green corresponds
to a value of zero, warmer colors are positively valued, and
cooler colors are negatively valued.)
In Fig. 6, we consider a cylindrical target located in a

sand ripple field. In the SAS amplitude image, the object’s
highlight blends in with the background. From the SAS phase
image, it is difficult to glean much information. However,
by the second convolutional layer, significant structure has
been uncovered, as evidenced in Fig. 6(d). For example, some
of the filters are effectively delineating the shadow region;
the somewhat remarkable thing is that this product has been
produced from considering only thephaseimage. It is this
sort of feature unearthing that partially explains why the phase
can be exploited for target classification. (Results like this also
suggest that an additional potential use of phase information
can be image segmentation.)
In Figs. 7 and 8, we consider two alarms from the clutter

class. In these two cases, the intermediate representations
seem to transform the input phase imagery into recognizable
textures associated with specific orientations. At earlier layers
of the CNN, closer to the original input imagery, the image
abstractions are still difficult to understand, while at later
layers of the CNN, the meaningfulness of the abstractions
again becomes obscured.
In all three figures, it can be observed how different re-

ceptive fields influence the predictions to different extents.
However, the region in which one would expect to see a
shadow (in the amplitude image) – due to the geometry shared
by the sensor and proud object – does consistently have a
significant impact on the predictions.
Based on these and other preliminary analyses, the infor-

mation being exploited in the phase imagery for classification
appears to arise when the pixel values deviate from a uniform
distribution, and more specifically, form non-random spatial
structure in the phase. Based on the physics involved, where
the phase is tightly coupled to the distance traveled by the
sonar signal, this scenario can manifest for different reasons. In
[11], spatial correlation in the phase of synthetic apertureradar
(SAR) imagery was found to be present because of strong
reflectors, processing artifacts, and homogeneous surfaces. In
[12], evidence of phase structure was seen in SAR images
from very strong combined scatterers and their side lobes.
In the underwater domain, a discontinuity in the gradient
of the phase can be an indication of an abrupt bathymetric
change, and the presence of an object proud of the seafloor.
Additionally, an acoustically smooth object may produce a
structured phase image with a pixel distribution that is not

uniform. We hypothesize that another potential source of
structure occurs in shadow regions, where the signal levels
are so low that deterministic self-noise of the sonar system
itself may be visible in the phase.

V. CONCLUSION

It was demonstrated that the phase information present in
complex high-frequency SAS imagery can be exploited for
successful object classification. To exploit the information
ostensibly hidden in the phase imagery, relatively simple
CNNs were trained, “from scratch,” on a large database of SAS
phase images collected at sea. The filters learned by one of
the CNNs were studied, and the intermediate responses from
the network for specific input phase images were examined.
Hypotheses regarding the sources of information contained in
the phase imagery were offered.
Ongoing and future work will seek to better explain the

phenomena in the phase imagery driving the classifier pre-
dictions. Additional work is being devoted to developing
multi-representation CNNs that simultaneously exploit both
the amplitude imagery and the phase imagery.
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