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Numerical simulation of the effects of bathymetry on underwater sound 
propagation using three-dimensional parabolic models 

FrCdCric B. Sturm and John A. Fawcett 

Executive Summary: In shalluw walcr, range-dependent bathymetry can have a 
significant effect on the propagation of sound. In some cases, not only the range- 
dependence of the bathymetry but also the angular variation of the bathymetry affects 
the propagation of the acoustic energy. For example, acoustic energy will tend to 
refract as it propagates upslope. Thus for some surveillance or localization 
applications it is important to understand the full three-dimensional effects of 
propagation over a varying bathymetry . 
In this report two different three-dimensional parabolic equation (PE) methods are 
presented. These methods are used to show the importance of three-dimensional 
effects for some examples and different frequencies and the results from the two 
methods are compared with each other in order to show that the two very different PE 
approaches give similar results. 
The methods of this report provide an accurate and relatively efficient means of 
computing three-dimensional propagation loss. In the future it is hoped that the 
accuracy and efficiency of the methods can be even further improved. 
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Numerical simulation of the effects of bathymetry on underwater sound 
propagation using three-dimensional parabolic models 

FrCdCric B. Sturm and John A. Fawcett 

Abstract: Two different three-dimensional parabolic equation (PE) methods are 
presented. These methods are used to show the importance of three-dimensional 
effects for some examples and different frequencies and the results from the two 
methods are compared with each other in order to show that the two very different PE 
approaches give similar results. 
The methods of this report provide an accurate and relatively efficient means of 
computing three-dimensional propagation loss which will form the basis of future 
improvements. 
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Introduction 

Standard two-dimensional Parabolic Equation (PE) methods assume that the oceanic 
environment is azimuthally symmetric about the zero-range coordinate and then 
compute, by a marching algorithm, the acoustic wavefield in the rangeldepth plane. 
In order to model an environment where the sound speed and/or bathymetry changes 
with respect to azimuth, one can compute the wavefield along various azimuths, 
utilizing the two-dimensional PE with the environment appropriate for that azimuth. 
This type of modelling is called N X 2D modelling and makes the assumption that the 
coupling of energy from one azimuth to another can be disregarded. This 
approximation is often accurate; however, there are many examples of oceanic 
waveguides where the horizontal refraction of energy is significant in some areas and 
the N X 2D approximation does not model propagation correctly. 

Three-dimensional PE codes have been developed in order to model the azimuthal 
coupling of energy, (e.g. [ l ]  - [7]) and these have been used to compute propagation 
in a number of three-dimensional environments. However, there has been little 
comparison and benchmarking of these codes. In this report we will utilize two 
different three-dimensional PE codes [I] ,  [3] which have different solution 
approaches. Using both methods, we will compute wavefields for some examples of 
three-dimensionally varying bathymetry. For some of these examples, the N X 2D 
solution will also be presented for comparison. In the numerical examples it will be 
seen that the two different three-dimensional PE methods yield similar wavefields thus 
giving confidence in these solutions (at least within the approximation of both 
methods). These examples could also serve as benchmark cases for other numerical 
codes and indicate when three-dimensional effects are important and when the N X 
2D method should suffice. 
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Mathematical background 

2.1 Mathematical modelling based on the reduced wave equation 
We consider a time-harmonic point source emitting at frequency f (the wavelength of 
the source is denoted A ). Removing the time-varying component exp(-iwt) where w 
is the circular frequency, w = 2 n f ,  the space-varying pressure field P satisfies the 
three-dimensional reduced wave equation [8] 

written in cartesian coordinates X = ( X I ,  X,, X , ) .  The density p  depends on the vector 
X .  The position vector X,s = ( 0 , 0 ,  z,) denotes the source location, 4 x 8  the source 
strength and kn the complex wavenumber, i.e., k ,  = k  + i q a k ,  where k  = o / c ,  c  = c ( X )  
is the space-varying sound speed, a = a(X) is the attenuation expressed in decibels per 
wavelength, and q = 1 / 40xlog1, e ,  with q a << I .  

We consider a multi-layered waveguide consisting of one water layer with density p,, 
attenuation a,, sound speed c,, and Q homogeneous fluid sediment layers with 
density pq, 1 5 q 2 Q, attenuation aq, 1 2 q 2 Q ,  and sound speed cv ,  1 2 q < Q .  We 
denote by C v ,  1 2 q 5 Q, the interface between medium q - 1 and medium q .  The 
interface X I  corresponds to the sea-floor, i.e., to the interface between the water 
column (medium 0 )  and the first sediment layer (medium 1 ) .  No cylindrical 
symmetry is assumed with respected to the waveguide geometry. Hence, the different 
interfaces X q ,  I 5 q 5 Q, are allowed to have space-varying geometries. 

The pressure P is assumed to satisfy a pressure-release boundary condition, P = 0, at 
the ocean surface, denoted X , ,  an outgoing radiation condition at infinity, and the 
perfectly rigid bottom condition 

at the lower boundary denoted Cml where f j  denotes a normal direction vector at 
X m a .  Because of the discontinuities of the density, attenuation and sound speed terms 
at X v ,  1 I q < Q ,  the pressure P is also assumed to satisfy the transmission conditions at 
X q ,  1 < q 5 Q ,  i.e., continuity of the pressure 5-, = 5 and continuity of the normal 
component of the particle velocity (normal derivative condition) 
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where f j v  denotes a normal direction vector at C q ,  1 2 q 2 Q .  

2.2 Paraxial approximation of the boundary value problem based on the Helmholtz 
equation 

Description of the waveguide geometry in cylindrical coordinates 

We now work in cylindrical coordinates, with z being the depth below the horizontal 
ocean surface, 8 being the azimuth angle and r being the horizontal range, related to 
the cartesian coordinates by : X, = r cos 8 ,  X ,  = rsin 8 ,  X ,  = z . We denote by zm (r ,  8 )  
and by zq(r, 8 ) ,  1 5 q 5 Q ,  the parametrization of, respectively, the rigid bottom Cma 
and the sediment interfaces Cv,  1 5 q 2 Q .  The horizontal range r varies from r, to R, 
the azimuth angle 8 from 0 to 2 n  and the depth z from 0 to zm_(r,8)  (cf. Fig. 2.1). 
Weassume for r, < r 2 R ,  O 5 8 < 2 n ,  that wehave O<z,(r ,8)< ... <zQ(r,8)<z,(r,8). 

Figure 2.1 three-dimensional irregular geometry of the physical waveguide for 
r;, < r 2 R,  0 < 8 < 2 n ,  0 < z 2 zmx(r,  8 ) .  Only two layers are represented : the water 
column which corresponds to 0 2 2 z ,  ( r ,  8 )  and one layer of fluid sediment which 
corresponds to z ,  (r ,  8 )  1 z < zm ( r ,  8) .  The sediment interface (sea-floor) of 
parametrization z=z,(r ,B) is shown in light grey and the rigid bottom of 
parametrization z = z-(r, 8 )  is shown in dark grey. 

Derivation of a linear parabolic equation which includes density variations 

For the derivation of parabolic equations (PE), we introduce a reference sound speed 
c,, and a reference real-valued wave number k, ,  = a~/c,~,  . As we are mainly interested 
in the outgoing component of the propagating wavefield, we factor the pressure P as 

where H,!," denotes the zero-order Hankel function of the first kind. This factorization 
takes into account the natural cylindrical spreading of the pressure field. Assuming 
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weak dependence of the medium characteristics with respect to the range and 
assuming that the backscattering energy may be disregarded, Eq. (2. I), rewritten in 
cylindrical coordinates, can be factored and then leads far from the source (i.e., 
k , r  >> 1)  to the following expression for the outgoing solution 

where operators X ,  and Y,  are defined by ( I  denotes the identity) 

The operator X ,  takes into account, from left to right in Eq. (2.6), the refraction term 
(including attenuation) and the vertical diffraction term (including the depth- 
dependence of the density). The operator Y ,  defined by Eq. (2.6) handles the 
azimuthal crossing diffraction term (including the azimuthal-dependence of the 
density). Using Taylor series expansion, we write 

Inserting Eq. (2.7) in Eq. (2.4) and under the assumption of a slow varying medium 
and of narrow angles of propagation with respect to the horizontal, we can neglect the 
term O ( X : ,  X , T ,  c), leading to the following parabolic equation 

which reduces, assuming no variation of the density to 

The three-dimensional PE given by Eq. (2.8) has narrow angle capabilities both in 
depth and azimuth, i.e., it can handle properly waves propagating within an angle with 
respect to the horizontal less than + 15 -20', leading to increasing phase errors for 
wider angles. The three-dimensional code TRIPARADIM written by Sturm [ I ]  is based 
on Eq. (2.8). 
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Parabolized boundary conditions consistent with the linear paraxial approximation 

The envelope v is assumed to satisfy V = O  at C,, a 2lr-periodicity condition in 
azimuth v(r,O, Z) = v(r ,  2n,z), an initial condition v(r,,  8 ,  z )  = v"8, z )  at r = r, a 
parabolized bottom condition 

at Cmx, consistent transmission conditions at Cq, I 5  q S Q ,  i .e. ,  continuity condition 

and a parabolized condition 

where the parabolized normal derivative operators d/dTy, 1 l q S Q, are defined by 

a a az, 1 a ~ , a  
m, - a, i k i x Z - ; ' s z .  

Equation (2.9) is a three-dimensional generalization of the bi-dimensional 
parabolized bottom condition proposed by Abrahamsson and Kreiss [lo]. The 
parabolized conditions given by Eqs. (2.9) and (2.10) are derived considering, on the 
range-component of the normal derivative present in Eqs. (2.2) and (2.3), the 
following horizontal plane wave impedance condition 

= i k ,  P 
dr 

which has been implicitly used as an underlying approximation in the derivation of  
Eq. (2.8), i.e., in the linear parabolic approximation of the Helmholtz equation [ I  I ]  
and leads to the stability condition 

Eq. (2.12) can be established by multiplying Eq. (2.8) by F/p where V denotes the 
complex conjugate of v ,  integrating by parts using Eqs. (2.9) and (2.10) and taking 
the real part. The stability condition of Eq. (2.12) ensures existence and uniqueness 
of a solution to the parabolized model. It generalizes to a three-dimensional range- 
and-azimuth dependent waveguide, the stability condition derived by Dougalis and 
Kampanis [I 31 for a 2D range-independent waveguide. Using the physical conditions, 
i .e. ,  Eqs. (2.2) and (2.3), which are mathematically correct conditions for the reduced 
wave equation based model, would lead to an ill- posed boundary value problem. 
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Equation (2.12) holds as an equality if the attenuation term a = 0 .  The parabolized 
model is hence energy-conserving. The TRIPARADIM code includes these parabolized 
three-dimensional conditions. 

2.3 Other three-dimensional parabolic models including wide angle capabilities in 
depth 
One elegant way to approximate the square-root operator present in Eq. (2.4) (which 
is obviously numerically hard to solve directly) and to obtain three-dimensional PE 
with wider angle capabilities is to use Pad6 series in depth [12], [13], which, assuming 
I Y,PI <<(X,P~, can be written as 

with the Pad6 coefficients given for 1 2  j l np by 

a,,,,p = (2/(2np + 1))sin2(jn/(2np + 1)) and b,,np = cos2(jn/(2nP + 1)) 

where n, is the number of terms in the expansion. This expansion allows effectively 
for wide angle propagation in depth, the angular limitation depending on the number 
of Pad6 terms included in the truncated series, but for narrow angle in azimuth. 
Considering only one term from the sum in Eq. (2.13) and including the resulting 
quadratic approximation, (i.e., the term O ( X i ,  X,Y,, ) is disregarded) in Eq. (2.4) 
gives 

which corresponds to a Claerbout wide angle PE in depth (limitation angle f 35 - 40") 
[14] and a Tappert narrow angle PE in azimuth (limitation angle f 15-20"). Several 
three-dimensional parabolic models are based on the expansion used in Eq. (2.13), 
e.g., P I ,  P I .  
For all these three-dimensional PE based methods, the bottom slopes (both in range 
and azimuth) are handled using stair-step approximations. The bottom geometry Xmu 
and the different sediment interfaces Cq, 1 5 q 5 Q, are hence assumed to be locally 
horizontal. In the two models developed by Collins and Chin-Bing [5]  and Fawcett 
[3], the density term is assumed to depend only on z .  The second transmission 
condition given by Eq. (2.3) on Cq, 1 l q l Q ,  is accordingly replaced by the 
horizontal condition 
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When attempting to take sloping bottoms into account without assuming any stair-step 
approximation, one should use appropriate parabolized bottom and interface 
conditions consistent with the wide angle (in depth) parabolic equation (see reference 
[16] for more details in the bidimensional case). 

The models [ 3 ] ,  [5]  consider a pressure-release boundary condition at the horizontal 
bottom C,= and use artificial attenuation in the medium to negate the effects of this 
boundary. Equation (2.14) can now be solved using a splitting method, which 
requires numerical solutions for each of the following equations 

We focus on the three-dimensional model FAWPE developed by Fawcett in which Eq. 
( 2 . 1 6 ~ )  is solved using a finite difference discretization technique (in depth) and a 
Crank-Nicolson range stepping procedure. Using central finite differences to 
approximate second order partial derivatives present in Eq. ( 2 . 1 6 ~ )  and considering 
N discrete points in depth and M discrete points in the azimuthal direction, leads to 
M tri-diagonal linear systems of order N at each step in range, that can be solved 
using a fast and robust Gaussian elimination method. Equation (2.16b) is solved using 
an FFT technique, i .e. ,  by computing 

i r n 2 ~ r  
v(r + Ar, 6 ,  I) = F;' [ exp [ - 2 k , , r ( r + ~ r ) ) ~ ~ ( ~ ( ~ ' ~ ' ~ ) ) )  

where Ar denotes the range increment, F, denotes the Fourier transform with respect 
to 8 ( m  denotes the azimuthal wave number), and Fo-' is its inverse transform. In 
sections 3 and 4, we will present numerical simulations using the two three- 
dimensional codes FAWPE and TRIPARADIM. In order to make some comparisons, we 
replace Eq. ( 2 . 1 6 ~ )  by 

in order to make FAWPE narrow angle in depth (as in TRIPARADIM). The only 
difference in the two models is the way of treating the interfaces (which are locally 
horizontal in FAWPE due to the stair-step approximation) and the rigid bottom. We 
outline in the following section how TRIPARADIM adapts its discretization to the 
space-varying geometry of the waveguide and hence, accurately models three- 
dimensional sloping bottoms. 
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2.4. The TRIPARADIM model 
As discussed above, three-dimensional PE models typically approximate the interface 
as locally horizontal stair steps. In fact, in some codes such as FAWPE the interface 
conditions are not imposed explicitly but are only implicitly handled with the change 
of sound speed and density in the finite difference discretization. 

The code TRIPARADIM treats the interface scattering very accurately. First the depth 
coordinate is transformed so that the waterlsediment interface becomes flat (any 
additional sediment interfaces are assumed to have the same functional form as this 
interface and hence are also mapped into flat interfaces). This coordinate 
transformation introduces new terms into the Helmholtz equation. The interface 
conditions Eq. (2.10a) are incorporated into a Finite Element discretization. 

It is not possible to split the resulting operator into a depth and azimuthal operator as 
in other approaches. Instead, a large system of equations in depth and azimuth 
results. This system is sparse, and by preconditioning, it is possible to solve the system 
of equations in an efficient manner. The mathematical and numerical details of this 
code are presented in Annex A. 

In our numerical computations we compare the results obtained by a three- 
dimensional PE code [3] which uses a standard splitting approach and by 
TRIPARADIM which takes quite a different approach to the problem and handles the 
interface boundary conditions very accurately. 
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Numerical simulation of a three-dimensional wedge-shaped 
waveguide 

3.1 Description of the problem 

Description of the three-dimensional varying waveguide 

We consider the penetrable wedge-shaped problem originally proposed as an ASA 
benchmark in 1987 and extensively used to analyze accuracy and efficiency of 
various two dimensional ocean acoustics models [15] and later extended to a three- 
dimensional benchmark case by Fawcett in 1993 [3]. It consists of an isovelocity 
water layer of density p,, = 1 glcm' and sound speed c, = 1500 m/s, overlying a 
homogeneous halfspace sediment layer of density p, = 1.5 g/cm' and sound speed 
c, = 1700 m/s, which leads to a critical grazing angle Bc = arccos(c,,/c,) approximately 
equal to 28". No shear energy is assumed in the sediment layer. The discontinuity 
present at the interface Z ,  between the water column and the fluid sediment layer is 
given in cylindrical coordinates by the following three-dimensional surface 
parametrization 

where H = 200 m .  Equation (3.1) gives rise to a non-horizontal plane geometry 
interface. A CW point source of frequency f is placed at cartesian position vector 
Xs = (O,O,zs) which corresponds in cylindrical coordinates to range r = 0 and depth 
z = z, (we recall that XI = rcos 8 ,  XZ = rsin 8, X, = z). Upslope and downslope 
propagations are handled, respectively, for 8 varying from -90" to 90" and for 6 
varying from 90" to 270" (cf. Fig. 3.1) with a maximum slope of 2.86" in the 
geometry corresponding to 8=0° (upslope) and 8=180° (downslope) and no slope for 
8=90° and 8=2 70". 

Let us denote by q = ( q,, q,, q. )' a normal direction vector to the interface C, defined 
by Eq. (3.1). The basic point of N x 2 D  modelling is that for each azimuth, 
cylindrical symmetry of the problem is assumed and hence no bathymetry variation 
in the crossing (azimuthal) direction is taken into account, thus the azimuthal 
component q ,  is forced to be zero. This is untrue for the specific three-dimensional 
wedge-shaped waveguide we presently consider for which the azimuthal component 
qe = sin 8 and hence presents a strong azimuthal dependence. We focus on the 

particular azimuthal angle 8=90° for which the component q, reaches its maximum 
and for which we expect larger three-dimensional effects. Note that for 8=90° or for 
8=180° the N  x 2D cylindrical symmetry assumption is locally valid and hence we 
expect no horizontal refraction of propagating sound for these angles. 
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Figure 3.1 three-dimensional waveguide geometty of the wedge-shaped problem 

We will consider propagation ranges greater than the present maximum range handled 
by Eq. (3 .1 ) ,  i.e., 4000 m .  Hence, for numerical purposes, the interface depth z , ( r ,  19) 
is truncated at a minimum depth of 20 m and a maximum depth of 380 m. The 
truncated three-dimensional wedge-shaped geometry is shown in Fig. 3.2 for a 
vertical slice corresponding to 8=0° and 8=180°. 

SP.di~~nr01 Iqer h 
Figure 3.2 Two-dimensional waveguide geometty (vertical slice 8=0° and 8=180°) 

Introduction of an artificial absorbing layer 

We intend to model a semi-infinite bottom. For numerical and computation purposes, 
the physical propagation domain must be considered finite in depth and thus 
truncated at z = z,, . The lower bound of the waveguide is denoted C,, . Both models 
considered assume this lower boundary to be a perfect reflector, including either a 
pressure-release (FAWPE) or a rigid boundary (TRIPARADIM) condition on the pressure 
field. In order to avoid spurious reflections at z = z,, of the bottom propagating wave, 
we divide the truncated bottom into two sediment layers of identical density p, and 
sound speed c , .  We denote by C2 the separating interface between these two adjacent 
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layers. The first sediment layer assumes attenuation or no attenuation depending of 
the problem we are interested in, whereas the second one, referred to as an artificial 
absorbing layer, assumes an increasing attenuation until z = z,,, . 

The way of handling these two sediment layers differs between TRIPARADIM and FAWPE 
(cf. Fig. 3.3). Due to the use of mapping which maps the physical waveguide unto a 
cylinder-like mapped computation domain in the TRIPARADIM three-dimensional 
modelling, the various sediment interfaces are required to have the multiple functional 
form (homoethetical) that they all map into flat interfaces in the mapped computation 
domain. The parametrizations of the interface C, and of the rigid bottom CmT are 
now assumed to be non-constant in range and azimuth, i.e., z = z , ( r , O )  and 
z = z ,  ( r ,  6). This assumption is not required by the FAWPE code, the interface Cz and 
the pressure-released bottom C,- being both horizontal. 

water layer 

Figure 3 .3  Tcr3o-dinlensionul sediment arul urt~j5ciul absorbitlg layers geonletries of the wedge- 
shaped waveguide corresponding to &OO (vertical slice): different ways of describing the halfpace 
bottonl. On the left side, the artificial itzterface (dashed line) and the perfect reflecrive lower 
bounday are ass~~nled to be horizontal in the FAWPE nlodel. On the right side, these two itzterfaces 
are assunled to be homothetical in the TRlPARADlM model. Note that for both models, the 
water/bottonl interface (bold litle) is exactly the same. 

All the TL vs. range curves presented in this section correspond to the fixed azimuth 
angle 8=90° and to the fixed receiver depth z = 36 m .  All the vertical and horizontal 
TL contour plots will also correspond, respectively, to 8=90° and z = 36 m .  Note that 
in the various horizontal slices, a section has been covered in order to hide the part of 
the TL field which is inside the sediment layer. 

3.2 Modal initialization 
A point source emitting at different low frequencies ( 5 Hz, 15 Hz, 25 Hz) will be 
considered. In order to understand modal dependence of horizontal refraction of 
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energy in the three-dimensional wedge-shaped bathymetry, we will expand the initial 
field in a modal sum for each frequency. We now turn to the derivation of a modal 
source. We consider the Pekeris-like waveguide shown in Fig. 3.4. consisting of an 
isovelocity water layer of density p,, and sound speed c, , ,  over an isovelocity halfspace 
sediment layer of density p, and sound speed c , .  The sediment interface depth H is 
constant. The attenuation term is assumed to be zero in the two (fluid) layers. 

c,, = 1500 m l  s 
water p, = 1 g I cm3 

c, = 1700 m/ s 
1 

sediment I 
p, = 1.5 g / cm3 I 

Figure 3 .4  Two-dimensional Pekeris-like waveguide geometp corresponding to the particular 
azimuthal angle 8=90° of the three-dimensional wedge-shaped waveguide shown in Fig. 3.1 

A mode-shaped function y / ( z )  is defined as the solution of the eigenvalue problem 
involving the following modal equation 

where w = 2lcf denotes the circular frequency of the source, where kr2 denotes a 
specified eigenvalue of the problem and where the eigenfunction ~ ( z )  is denoted 
y / ( z )  = y / , , ( z )  for 0 I z 5 H and y / ( z )  = y , ( z )  for z > H ,  and is assumed to satisfy a 

Dirichlet condition at z = 0 ,  i.e., y / , (O)  = 0 ,  a vanishing condition at z + +m, the 
interface conditions at z = H ,  i.e., y , (H )=  y/,(H) and yl,'(H)/p, = y/{(H)/p, .  We are 
mainly interested in long range propagation. Therefore, we neglect the continuous 
spectrum of the previous eigenvalue problem and focus only on the discrete 
propagating modes which can be written in the following analytical form 

sin(k,,,z) for 0 I z I H 

sin(k:,, H) exp(- y, (z - H)) for z > H 

where kL,m designates the vertical wavenumber defined by k:,,, = (m2/c; - k,!,n)l'z and k,,, 
designs the horizontal wavenumber satisfying w/c, < k,,," < m/c, and is a solution of the 
characteristic equation. 
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The positive number y, is defined by y," = (k:," - w2/cf )"' . We introduce the modal 
phase velocity c , ,  defined by c,,, = u/k , , ,  which satisfies c, < c , ,  < c , .  To each mode 
@ , ( z )  defined by Eq. (3.3) corresponds an up and downgoing plane wave with a 

vertical angle of propagation 6,  = arctan(k2,,/k,,,) less than the critical angle 6,.  We 
denote by m,( f )  the frequency-dependent number of propagating modes. We present 
in Table 1 the horizontal wavenumber kr,,, the vertical wavenumber k:,,, the phase 
velocity c,,, and the grazing angle 6, corresponding to each propagating mode m ,  
I  l m l mp for the different frequencies. These values have been obtained using the 
SACLANTCEN SNAP numerical code [18]. They correspond to the specific values 
p, = 1  g / c m 3 ,  c, = 1500 m / s ,  p, = 1.5 g / c m 3 ,  c ,  = 1700 m/s ,  and H = 200 m used in the 
above subsection. We are also interested in generating a point-source-like starting 
field, which can be processed by using modal expansion. Because only long-range 
propagation is considered, we limit the modal sum to include just the discrete modal 
spectrum, which means we limit the angular spectrum at the source to a halfwidth of 
6, = arccos(c,/c, ) . The normalized starting field at r = 0 takes simply the form 

where the normalized modes y / , ( z ) ,  1 l m l m,( f ), write y/, ( 2 )  = V, @, ( z ) ,  where 
@ , ( z ) ,  1 I m 5 m,( f ), are given by Eq. (3.3). The normalization constants q,  given by 

are introduced so as to have, for I S  m I m , ( f ) ,  the following normalization condition 
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Table 1 Modal information for frequencies used in wedge example 

mode m kr., ( rad/m ) k , ,  ( rad/m ) C,., ( m/s ) 6, (deg) 

mode m kr,m ( rad/m k,, (rad/m 1 c,, ( m/s ) 29, (deg) 

mode m k,,, (rad/m k , ,  (rad/m 1 cr,, ( m/s ) om (deg) 

3.3 Non-attenuating halfspace bottom 
We now consider the wedge-shaped waveguide of Subsection 3.1 including the same 
geoacoustics characteristics and the parametrization given by Eq. (3.1) of the 
interface XI between the water and the bottom, i.e., z = z , ( r ,B) .  We assume no 
attenuation in both the water column and the halfspace bottom. We investigate 
separately the propagation of each discrete mode present in the point source emission 
(frequency 25 Hz, mp (25) = 3) located at range r = 0 ,  the waterhottom interface depth 
being H = 200 m at this range. We initialize each azimuth by the same unnormmalized 
mode. The source-field is thus omnidirectional. 

Expected 3D and N x 2D propagating fields 

The bathymetry of the waveguide at the azimuthal angle 8=90° (as well as at 8=270° 
due to the symmetry in the geometry about the XI axis) corresponds to the Pekeris- 
like waveguide presented in Subsection 3.2. Assuming local cylindrical symmetry of 
the problem, the energy propagating in the 8=90° direction is trapped in the water 
column without any loss other than the natural cylindrical spreading (i.e., no energy is 
radiated in the bottom). We thus expect to have TL vs. range behavior = IOlog,, r for 
arbitrary receiver depth and for 8=90°. 
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For azimuth angles different from 8=90° and 8=270°, mode conversion and cutoff 
phenomena will appear during upslope propagation, i.e., steepening of the ray-mode 
angle leading to supercritical incidence and hence radiating energy in the bottom at a 
certain range referred as mode-cutoff range. These effects have been previously 
analyzed [17]. Mode conversion will also appear during the downslope propagation. 

Using a full 3D model, the acoustic propagation problem corresponding to a specific 
azimuth can not be processed separately from other azimuthal angles. Though the 
bathymetry at f3=90° (or 8=270°) is identical to the Pekeris-like one, the three- 
dimensional propagation field is expected to be different to the one obtained using a 
N x 2D model, due both to the non-neglectable azimuthal component in the interface 
condition (as discussed in subsection 3.1) and to the azimuthal coupling term present 
in the three-dimensional parabolic equation. Due to the increasing grazing angle Om 
with respect to the mode number m ,  we expect to have the strongest three-dimensional 
effects for higher order modes. 

Numerical simulations 

We compute the three-dimensional fields corresponding to the propagation of each 
mode m ,  1 5  rn 5 3 for range varying from 0 to R = 24 krn, using the full three- 
dimensional model TRIPARADIM. In order to decrease the phase error inherent to 
parabolic models, we use the modal phase velocity for the reference sound speed. 

The homothetical artificial interface (i.e. the start of the artificial attenuation) and 
perfectly rigid bottom are placed, respectively, at zz = 780 m and z- = 1040 m at r = 0 ,  
leading to an absorbing layer width of 260 m at this range. Due to memory storage 
limitations, the TRIPARADIM code can not handle for this case wider absorbing layers. 

We show in Figs. 3.5, 3.6, 3.7 (lower plots) color-scaled TL plots (horizontal slices at 
constant depth z = 36 m )  corresponding, respectively, to mode 1, mode 2 and mode 3. 
We also display in Figs. 3.5, 3.6, 3.7 (upper plots) the corresponding TL horizontal 
slice plots reconstructed using N x 2D computation. 

We can clearly observe, by comparing the N x 2D and three-dimensional plots, the 
effects of the 3D varying bathymetry on the different modal propagations. The 
horizontal refraction of the energy is accurately handled by the three-dimensional 
computation and is in good qualitative agreement with the prediction of the adiabatic 
modal ray theory [3]. The energy is refracted back down the slope. As discussed 
above, computation using a N x 2 D  model can not predict such effects: a modal-ray 
traveling in the vertical plane f3=90° is conserved during all the propagation, 
assuming only TL = lolog,,, r due to natural cylindrical spreading. Three-dimensional 
computations still contain this natural decay in the energy but also contain effects that 
can not be predicted by N x 2D computations. 

The horizontal refraction effect is more pronounced for higher modes than for lower 
modes. This modal horizontal refraction dependence is due to the steeper grazing 
angles corresponding to the higher modes, leading to a shadow zone region starting at 
approximately 1 I km in the Xz axis (f3=90°,) for mode 3 ( 6, = 23.23") and at 18 km 
for mode 2 ( 6 ,  = 15.20') for the same vertical plane. We refer to this first particular 
three-dimensional effect as three-dimensional mode shadowing. 
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For mode 1 (6, .= 7.49") the horizontal refraction of the energy is more gradual. No 
shadow zone is observed for ranges less than the maximum range R = 24 km for 
8=90°. We notice however that the horizontal refraction effect is present for adjacent 
azimuthal angles (though weaker than for mode 2 or mode 3). 

We observe also in the lower plot of Fig. 3.5 at azimuth angles adjacent to &90° a 
fringe pattern corresponding to interference effects between the different amvals of 
the same initial mode. We refer to this second particular three-dimensional effect as 
three-dimensional mode self-interference. This last three-dimensional effect is also 
present for the other two modes (mode 2 and mode 3) as it can be seen in the lower 
plots of Figs. 3.6 and 3.7 near the thin caustic present at the front of the modal 
energy. 
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Figure 3.5 Mode I -frequency 25 Hz, horizontal slices at constant depth z = 36 m of the TLfields 
obtained using N x 2 D (upper figure) /three-dimensional (bottom figure) computations 
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Figure 3.6 Mode 2 -frequency 25 Hz, horizontal slices at constant depth z = 36 m of the TLfields 
obtained using N x 2 0  (upperfigure) /three-dimensional (bottomfigure) computations 
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Figure 3.7 Mode 3 -frequency 25 Hz, horizontal slices at constant depth z = 36 m of the TLfields 
obtained using N x 2 D (upper figure) /three-dimensional (bottom figure) computations 
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Convergence tests 

One difficult and time-consuming issue in performing three-dimensional 
computations is to know whether or not the numerical solution is close enough to the 
exact solution of the continuous problem. 

We denote by AS the arclength increment expressed in meters and defined by 
AS = 2nrA8/360 where A8 is expressed in degrees. AS is a function of r and A8, i.e., 
AS = AS(r,AB). The three-dimensional fields computed by TRIPARADIM (shown for 
restricted numbers of points in the TL horizontal slices) have been obtained using, in 
the mapped computation domain (image of the physical domain by the affine 
mapping defined by (A.l)), N = 130 discrete points in depth (i.e., Ay = 11130, we recall 
that Ay is dimensionless), M = 11520 discrete points in azimuth (i.e., A6 = 0.031") and 
Ar= lOm.  

The mapped-domain constant increment Ay (see Eq. (A.14) corresponds in the 
physical waveguide to 8 m 5 &(r, 8 )  10.153 m and for 8 = 90" to &(r,6 = 90") = 4 m. 
By performing convergence tests, the size of Ar and Az required for accurate three- 
dimensional computations can be easily determined using a non time-consuming 
N x 2 D  model. The wavelength of the source is A =60  m. The depth and range 
increment sizes have been chosen less than the wavelength, i.e., Ar = A/6 andAz(r,6 = 
90") = 1/15. No significant variation in the numerical solution has been observed for 
smaller increments in the depth and in the range directions. The azimuthal increment 
size, which ensures convergence, has also been found so that the arclength AS 
corresponding to the maximum range R =  24 krn is less than the wavelength 
(AS(R,0.03 1" = 90") = hl4). 

The issue of selecting directly an appropriate A8 to ensure that convergence is 
reached is difficult due to the complicated three-dimensional effects and thus leads to 
a much more time-consuming analysis. A priori, we do not know whether horizontal 
refraction is neglectable or not. If the physical problem is weakly dependent on the 
azimuth, then a N x 2 D  model will accurately model the wave field. In this case it is 
not necessary to model the azimuthal coupling of energy. But what do we understand 
by weakly dependent? In the present three-dimensional varying waveguide, the 
bottom slope is weak and nevertheless leads to large three-dimensional effects. A 
three-dimensional model is therefore needed. 

We display in Figs. 3.8, 3.9, 3.10 TL vs. range curves corresponding, respectively, to 
mode 1 ,  mode 2 and mode 3 obtained using different numbers of point M in 
azimuth, i.e., different increments A8. In each figure, the bold solid line corresponds 
to a sufficiently accurate solution for 8 = 90'. We also plot the corresponding N x 2D 
reference solution (TL K lOlog,, r) .  The convergence is reached using M = 11520 (A6 
= 0.031") for mode 1 and M = 5760 (A8 = 0.062") for both modes 2 and 3. We see 
the fringe pattern (three-dimensional mode self-interference) starting at approximately 
r = 18 krn for mode 1, and the shadow-zone region starting at 11 km for mode 3 and at 
18 km for mode 2. We can also clearly observed the three-dimensional mode self- 
interference effects for modes 2 and 3 for ranges less than shadow-zone starting 
ranges, this effect being more pronounced for mode 2 (peak of intensity around 
r = 17 km). Obviously, the smooth = 10 log,, r behaviors of the N x 2D solutions are 
drastically different from the three-dimensional solutions. 
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We notice that three-dimensional computation using M = 5760 ( A 0  = 0.062') is able 
to predict the three-dimensional mode self-interference effect of mode 1 and the 
solution using M = 2880 ( A 8  = 0.125') is also quite close to the convergence 
solution for mode 3 though differences are present in the shadow zone which starts 
approximately at r = 1 1  km. The main three-dimensional effects for mode 1 and 3 are 
thus detected by three-dimensional computations using M = k/2 .  
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Convergence test for Mode I - frequency 25 Hz ( 0 = 90°, z = 36 rn ) 
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Figure 3.9 Convergence test for Mode 2 - frequency 25 Hz ( 8  = 90°, z = 36 m ) 
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Figure 3.10 Convergence test for Mode 3 -frequency 25 Hz ( 9 = 90°, z = 36 m )  

Therefore, selecting A 8  which corresponds to an arclength increment approximately 
equal to il at the maximum computation range R appears to be a reasonable starting 
value for processing future convergence tests. If one attempts convergence tests with 
A 8  corresponding to AS(R,AB) >> A ,  it may be erroneously concluded that three- 
dimensional effects are very small for 0 < r < R .  

Comparison with FAWPE 

We now compare the solution obtained with TRIPARADIM to the solution obtained with 
FAWPE. The range increment Ar is identical for the two models. The depth increment 
Az used in FAWPE is given by Az = 4 m and is constant in all the waveguide. The depth 
increment is thus identical for both models for 9 = 90". FAWPE requires at least 2048 
azimuthal FFT components to get an accurate solution (no significant and interesting 
improvement has been obtained using 4096 azimuthal FFT components). 

For FAWPE, the artificial interface is placed at z2 = 780 m (identical to the actual 
artificial interface depth handled by TRIPARADIM at r = 0 )  and the pressure-released 
bottom is placed at z- = 2048 m which is nearly two-times the rigid bottom depth 
handled by TRIPARADIM at r = 0 (there are less problems of memory storage with 
FAWPE). We emphasize the fact that these two boundaries are assumed to be constant 
in all the waveguide in FAWPE computations whereas they are non-constant in 
TRIPARADIM computations due to the hypothesis of homothetical layers (cf. Fig. 3.3). 

We plot in Figs. 3.1 1, 3.12, 3.13 the solutions obtained with both models, 
corresponding respectively to mode 1, mode 2 and mode 3. We also plot the 
corresponding N x 2D reference solution ( TL = lolog,, r). We observe that both 
models predict qualitatively the same three-dimensional effects for each mode. 
However, there are some quantitative differences. We observe a shift in the phasing for 
each mode. The amplitudes agree except for lower energies (shadow-zone regions for 
modes 2 and 3). 
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Figure 3.11 comparison for Mode I - frequency 25 Hz ( 6 = 90°, z = 36 m ) 
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Figure 3.12 Comparison for Mode 2 - frequency 25 Hz ( 6 = 90°, z = 36 m ) 
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Figure 3.13 Comparison for Mode 3 - frequency 25 Hz ( 6 = 90°, z = 36 m ) 

We did not expect perfect agreement of the two solutions. The mathematical 
derivations are different though they are both based on a linear paraxial 
approximation. The treatment of the three-dimensional varying bottoms differs from 
FAWPE which assumes local horizontal bottoms (cf. subsection 2.3) to TRlPARADIM 
which models accurately the sloping bottoms via the use of an affine mapping (cf. 
subsection A.l)  and adapts the leading-interface conditions to its paraxial modelling 
and is hence energy conserving (cf. subsection 2.2). Both models use different 
approximations of the original problem (based on the Helmholtz equation) but yield 
approximately the same results. FAWE,  which uses FFTs to model its azimuthal 
operator, requires fewer azimuthal points for a converged solution than does 
TRIPARADIM. 

The disagreements present at the low-levels are not due to the differences in the 
modelling but seem to be due to different ways of treating the non-attenuating 
halfspace. As discussed in subsection 3.1, the use of the affine mapping in 
TRIPARADIM requires non-horizontal artificial absorbing layers. Due to the memory 
storage limitations, the actual artificial layer is not wide enough to properly attenuate 
sound propagating inside the bottom, causing reflections on the rigid bottom. This 
can explain the presence of spurious energy in shadow-zone region. As we will see in 
the next subsection, introducing attenuation in the bottom will improve the agreement 
for the lower energies. 

3.4 Attenuating halfspace bottom 
We consider the same three-dimensional wedge-shaped waveguide as in the previous 
subsection. We now assume the halfspace bottom to be attenuating, i.e., a, = 0.5  dB/A . 
No attenuation is assumed in the water column, i.e., a,, = 0 dB/il. We consider different 
source frequencies ( 5 Hz, 15 Hz, 25 Hz). 
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Source frequency 5 HZ 

We first consider a point source emitting at a frequency of 5 Hz (i.e., wavelength 
A = 300 m), leading to only one propagating mode for 8  = 90" (cf. Table 1). The 
grazing angle is given by 19, = 25.91 deg. The initial field is given at each discrete 
azimuth by Eq. (3.3). No normalization constant is used. The reference sound speed 
is selected accordingly, i.e., c,,, = c , ,  where c,,, = 1667.73 m/s is the modal phase 
velocity. The computations have been done using z? = 2000 m , z,,, = 3173 m at r = 0 
and using in the mapped computation domain N=211 discrete points in depth 
( Ay = 1/21 I), M = 720 discrete points in azimuth ( A8 = 0.5") and Ar = 30 m. The 
mapped constant increment Ay corresponds in the physical waveguide at 8  = 90" to 
&(r, 8  = 90") = 7.5 m .  

We show in lower plot of Fig. 3.14 a color-scaled TL plot (horizontal slice at constant 
depth z = 36 m) of the three-dimensional field. We also display the corresponding 
N x 2D field in the upper plot of Fig. 3.14. 

We observe the strong three-dimensional horizontal refraction effects present at this 
very-low frequency, leading to a shadow-zone region. For azimuthal angles close to 
8  = o0 and 8  = 180°, the N x 2D and 3D solutions agree closely (this observation 
will be valid for all the frequencies). 

We notice in Fig. 3.15 that using M = 720 ( A8 = 0.5") discrete points in azimuth is 
sufficient to describe the shadow-zone region for 8  = 90". We notice that using less 
points in azimuth is also sufficient to predict the three-dimensional mode shadowing 
effect present at r = 5 km . Using M = 180 ( A 8  = 2") leads to the arclength increment 
AS(5 km, 2") = A/2,  the solution is accurate until approximately r = 10 km where it 
starts to deflect from the correct solution, the arclength increment being at this range 
greater than A . 

We show in Fig. 3.16 the good agreement of the two solutions obtained by 
TRIPARADIM and FAWPE (512 FFT azimuthal components are sufficient). Introducing 
attenuation in the halfspace bottom, we have eliminated the problem of spurious 
reflection on the rigid bottom. There is now good agreement for the lower energies. 
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Figure 3.14 Mode 1 -frequency 5 Hz, horizontal slices at constant depth z = 36 m of the TLfields 
obtained using N x 2 0  (upper figure) /three-dimensional (bottom figure) computa 
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Figure 3.15 Convergence test for Mode I -frequency 5 Hz ( 8 = 90°, z = 36 m )  
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Figure 3.16 Comparison for Mode 1 - frequency 5 Hz ( 6  = 90°, z = 36 m )  

Source frequency 15 Hz 

We now consider a point source emitting at frequency 15Hz (i.e., wavelength 
A = 100 m), leading to two propagating modes for 8 = 90" with grazing angles 
6, = 11.59" (mode 1) and 6, = 23.88" (mode 2). We compute the three- 
dimensional propagation fields corresponding to each modal initialization given by 
Eq. (3.3). When initializing by mode I or 2 separately, the reference sound speed is 
chosen accordingly, i.e, c,, = 153 1.24 m/s for mode 1 and c,, = 1640.51 m/s for mode 
2. 
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Figure 3.17 Mode I -frequency 15 Hz, horizontal slices at constant depth z = 36 m of the TL 
jields obtained using N x 2 0  (upper figure) / three-dimensional (bottom figure) computations 
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Figure 3.18 Mode 2 -frequency 15 Hz, horizontal slices at constant depth z = 36 m of the TL 
fields obtained using N x 2 0  (upper figure) / three-dimensional (bottom figure) computations 
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For each modal initialization, the initial field is assumed to be omnidirectional. The 
computations have been done using z ,  = 1380 m , z,,, = 1840 m at r = 0 and using in 
the mapped computation domain N = 122 discrete points in depth 
( Ay = 1/122), M = 2880 discrete points in azimuth ( A 8  = 0.125") and Ar = 15 m .  We 
have for 8 = 90" &(r, 8 = 90") = 7.5 m . 

We display in Figs. 3.17 and 3.18 (lower plots) color-scaled TL plots (horizontal 
slices at constant depth z = 36 m )  of the field corresponding, respectively, to mode 1 
and mode 2. We also display the corresponding N x 2 D  fields in the upper plots of 
Figs. 3.17 and 3.18. We observe the three-dimensional horizontal refraction effects 
for both mode 1 and mode 2. Because the grazing angle of mode 2 ( 6, = 23.88") is 
steeper than that of mode 1 ( 6, = 1 1.59"), this effect is more pronounced for mode 
2. We also observe the fringe pattern (three-dimensional mode self-interference effect) 
for mode 1. 

We show in Figs. 3.19 and 3.20 the TL vs. range convergence curves for both modes. 
The three-dimensional mode self-interference effect of mode 1 appears for r > 20 km 
and at least M = 2880 ( A 0  = 0.125O) points are required to get an accurate three- 
dimensional solution. This corresponds to AS(R, 0.125") =: k/2. 

Three-dimensional computations using larger A8, e.g.,  A 8  = 0.25" 
( AS(R, 0.25") - a), are unable to describe accurately this effect despite large 
differences with the smooth N x 2D solution. For mode 2, the three-dimensional mode 
shadowing effect appear very slightly at approximately r = 7 km. At this range less 
points in azimuth are needed. However, this three-dimensional effect becomes 
stronger with range, the correct shadow-zone region being quite well predicted using 
M = 1 4 4 0  (Ae=0.25") and more accurately described using M = 2 8 8 0  
( A 8  = 0.125"). 

Figure 3.19 
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Convergence test for Mode I - frequency 15 Hz ( 8 = 9 0  deg , z = 36 m) 
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Figure 3.20 Convergence test for Mode 2 - frequency 15 Hz ( 8 = 90 deg , z = 36 m ) 

We show in Figs. 3.21 and 3.22 the solutions obtained with FAWPE corresponding, 
respectively, to mode 1 and mode 2. We observe a quite good agreement (even for 
low-level amplitudes) in Fig. 3.22, no phase shift being present. 

We observe in Fig. 3.21 a disagreement in the phasing. We already noticed such a 
shift in the phasing for mode 1 corresponding to frequency 25 Hz (cf. subsection 
3.3). Nevertheless, both models describe qualitatively the same three-dimensional 
effects. 
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Comparison for Mode I - frequency 15 Hz ( 6 = 90°, z = 36 m )  
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Figure 3.22 Comparison for Mode 2 - frequency 15 Hz ( 8 = 90°, z = 36 m ) 

We now initialize the field considering a CW point source ( f = 15 Hz,z, = 80 m) and 
retaining only the 2 propagating modes. The initial field is given by Eq. (3.5) for m, 
= 2, the modes are normalized using Eq. (3.6), In this case, the reference sound speed 
is selected equal to the water column sound speed, i.e., c,, = 1500 m/s. 

We show in Figs. 3.23 the TL horizontal slices ( z = 36 m) corresponding, respectively, 
to N x 2D (upper plot) and 3D (lower plot) solutions. We show in Fig. 3.24 the 
corresponding TL vertical slices (8  = 90") and in Fig. 3.25 below the TL vs. range 
curves ( 8 = 90°, z = 36 m ). Due to the convergence analysis made for modes 1 and 2, 
we have used A 8  = 0.125" in the three-dimensional computations. 

We observe noticeable differences in both fields. We observe in the upper plot of Fig. 
3.24 for 0 I r 5 R the interference pattern due to two propagating modes predicted by 
N x 2D model. As can be seen in the lower plot of Fig. 3.24 and in Fig. 3.25, the 
propagation field predicted by three-dimensional computation is different, especially 
for r 2 7  km where the three-dimensional mode shadowing effect of mode 2 
approximately starts. For r 2 7 km , the influence of mode 2 in the interference pattern 
progressively disappears, leading to only one propagating mode for r greater than 
14 krn, including the three-dimensional mode self-inte$erence effect of mode 1 for 
2 0 k m I r I R .  
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Figure 3.23 CWpoint source (I5 Hz), horizontal slices at constant depth z = 36 m of the TLjields 
obtained using N x 2 0  (upper figure) /three-dimensional (bottom figure) computations 
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Figure 3.24 CWpoint source (15 Hz), vertical slices at constant azimuth 0 = 90° of the TLfields 
obtained using N x 2 0  (upper figure) /three-dimensional (bottom figure) computations 
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Figure 3.25 Comparison for CW point source - frequency 15 Hz ( 8  = 90°, z = 36 m )  

Source frequency 25 Hz 

We consider a point source emitting at frequency 25 Hz (i.e., wavelength A = 60 m) 
leading to three propagating modes for 8 = 90" (cf. Table 1) of vertical grazing 
angles 6, = 7.49" (mode l), 6, .= 15.20" (mode 2) and 6, = 23.23" (mode 3). 
This frequency has already been considered and analyzed in subsection 3.3 for a 
non-attenuating halfspace bottom. We compute the three-dimensional fields 
corresponding to each modal initialization given by Eq. (3.3), I I m 5 3, using the 
same inputs as described in subsection 3.3. The only differences in the inputs is the 
attenuation coefficient in the halfspace bottom, now equal to 0.5 dB/A. For each 
initialization, the initial field is assumed to be omnidirectional. 

We display in Figs. 3.26, 3.27 and 3.28 (lower plots) color-scaled TL plots (horizontal 
slices at constant depth z = 36 m )  of the three-dimensional field corresponding, 
respectively, to modes 1, 2 and 3. We also display the corresponding N x 2D fields in 
the upper plots of Figs. 3.26, 3.27 and 3.28. We can formulate the same observations 
as we did in subsection 3.3 for all the three propagation fields corresponding to 
modes 1, 2 and 3. 

We show in Figs. 3.29, 3.30, 3.31 ( 8  = 90 deg, z = 36 m) the solutions obtained with the 
two models TRIPARADIM and FAWPE. We notice that the shifts in the phasing previously 
observed for the non-attenuating halfspace bottom are still present for each mode. We 
also notice the good agreement in the levels for the shadow-zone region (low-level) 
compared to the agreement in Fig. 3.20, which suggests that the previous differences 
were due to insufficient attenuation in the halfspace bottom. The shift in the phasing 
being still present, we conclude this disagreement is definitely due to the differences 
of the two models. 
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Figure 3.26 Mode I -frequency 25 Hz, horizontal slices at constant depth z = 36 m of the TL 
fields obtained using N x 2 0  (upper figure) /three-dimensional (bottom figure) computations 
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Figure 3.27 Mode 2 -frequency 25 Hz, horizontal slices at constant depth z = 36 m of the TLjields 
obtained using N x 2 0  (upper figure) /three-dimensional (bottomjigure) computations 
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Figure 3.28 Mode 3 -frequency 25 Hz, horizontal slices at constant depth z = 36 m of the TLjields 
obtained using N x 2 0  (upperfigure) / three-dimensional (bottom figure) computations 
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Figure 3.29 Comparison test for Mode I -frequency 25 Hz ( 6  = 90°, z = 36 m )  
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Figure 3.31 Comparison test for Mode 3 - frequency 25 Hz (6 = 90°, z = 36 m )  

We now initialize the field by a CW point source ( f = 25 Hz ,z ,  = 90 m) .  Only the 3 
propagating modes are selected The initial field is given by Eq. (3.5) for m, = 3 
(normalized modes). The reference sound speed is c,,, = 1500 m/s. 

We display in Fig. 3.32 the N x 2 D  (upper plot) and 3D (lower plot) TL (in dB ref. 
lm) horizontal slices ( z  = 36 m), in Figs. 3.33 the corresponding TL vertical slices 
( 6  = 90") and in Fig. 3.34 below the TL vs. range curves ( 6  = 90°,z = 36 m). We 
observe in the upper plot of Fig. 3.33 and Fig. 3.34 for 0 5 r 2 R the interference 
pattern due to the three propagating modes predicted by the N x 2D model. As can be 
seen in Figs. 3.32, 3.33 and 3.34, the three-dimensional field is different. For r 
approximately less than 11 km, three modes are present, then, due to the three- 
dimensional mode shadowing effect of mode 3, only two modes are present for r 
greater than 1 1 km and until r = 18 km where the three-dimensional mode shadowing 
effect of mode 2 becomes important. For r 2  18 km, only mode 1 is propagating, 
including its three-dimensional mode self-interference effect for r 2 20 km (fringe 
pattern). We also notice the differences in the N x 2D and three-dimensional curves 
for r less than 11 krn. Though three modes are present in this interval for both models, 
N x  2D and three-dimensional modal propagation fields are different (cf. Figs. 3.29, 
3.30, 3.31), the N x 2 D  and three-dimensional interference patterns are hence also 
different. 

We compare in Fig. 3.35 the solutions obtained with TRIPARADIM to the solutions 
obtained with FAWPE. We observe the same shifts in the phasing between the two 
solutions. Apart this shift, both solutions agree quite well. 
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Figure 3.32 CWpoint source (25 Hz), horizontal slices at constant depth z = 36 m of the TLjields 
obtained using N x 2 0  (upperfigure) /three-dimensional (bottom figure) computations 
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Figure 3.34 CW point source - frequency 25 Hz ( 6  = 90°, z = 36 m )  
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Figure 3.35 Comparison for CW point source - frequency 25 HZ ( 0 = go0. t = 36 m ) 
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Numerical simulations of a three-dimensional 
rough boundary waveguide 

4.1 Description of the problem 
We now consider the penetrable rough boundary problem, originally proposed by 
Collins and Chin-Bing [ 5 ] ,  consisting of an isovelocity water layer ( p ,  = 1 g/cm3, 
c, = 1500 m/s) overlying an attenuating homogeneous halfspace bottom 
( p, = 1.5 g/cm3 , c, = 1700 m/s, a, = 0.5 dB/A). The critical grazing angle is thus given 
by = 28O. The water column is assumed to be non attenuating and no shear 
energy is assumed in the sediment layer. The three-dimensional waterhottom surface 
parametrization writes 

where A, = 6000 m .  The waveguide assumes symmetry in its geometry about the X, 
axis (cf. Fig. 4.1). Eq. (4.1) simulates a corrugated bottom. A CW point source of 
frequency 25 Hz is placed at cartesian position vector X ,  = (0,0,25 m) which 
corresponds in cylindrical coordinates to range r = 0 and depth z = 25 m . 

Figure 4.1 Three-dimensional waveguide geometry of the rough boundary problem 

For the particular azimuthal angles 8 = O0 and 8 = 180' (i .e. ,  along the positive and 
negative X, axis), the waterhottom interface is a sinusoid of periodicity A,: the 
minimum and maximum water depths being, respectively, 100 m and 200 m (cf. Fig. 
4.2). Upslope and downslope propagations are handled for each azimuthal angle (for 
8 = 90" and 8 = 270' the bottom is flat). For 8 varying from -90° to 90°, an 
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upslope bottom is first encountered and for 8 varying from 90" to 270" a 
downslope bottom. 

E 
0 -- --- 

l 
0 2 1 6000 m 

I 
Water 

-I- 

Lossy sedimental layer 

I x 3  

Figure 4.2 2 0  waveguide geometry (vertical slice 8 = 0" and 8 = 180") 

4.2 Numerical simulation 
We compute the three-dimensional field for range r varying from 0 to R =  12 km 
using TRIPARADIM. The reference sound speed c,, is chosen equal to the water column 
sound speed, i.e., c,, = 1500 m/s. The scaled artificial interface and perfectly rigid 
bottom are placed, respectively, at z ,  = 780 m and zmu, = 1040 mat r = 0 leading to a 
maximum artificial absorbing layer width of 260 m at r = 0 .  The initial field is 
obtained using, at each azimuth, a narrow-angle gaussian starter. The source is thus 
omnidirectional. 

We display in Figs. 4.3 TL horizontal slices (at constant depth z = 30 m )  of both 
N x  2D (upper plot) and 3D (lower plot) fields. We observe differences in the two 
fields essentially for azimuthal angles corresponding to the first deep part of the 
cormgated waveguide, i.e., for 8 close to 90" and 270". We also display in Figs. 4.4, 
4.5, 4.6 and 4.7 TL vertical slices of N x 2D (upper plots) and 3D (lower plots) fields, 
corresponding, respectively, to azimuthal angles 8 = 0°, 8 = 80°, 8 = 90" and 
8 = 100". As can be seen either in the horizontal slice (Fig. 4.3) or in the vertical slice 
(Fig. 4.4), N x 2 D  and 3D solutions agree closely for 8 = 0". The three-dimensional 
rough boundary bathymetry has no variation in the crossing (azimuthal) direction. 
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Figure 4.3 CWpoint source, horizontal slices at constant depth z = 30 m of the TLfields obtained 
using N x 2 0  (upperfigure) /three-dimensional (bottom figure) computations 
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Figure 4.4 CWpoint source, vertical slices at constant azimuth 6 = O0 of the TLfields obtained 
using N x 2 D (upperjgure) /three-dimensional (bottom figure) computation 

Report no. changed (Mar 2006): SM-342-UU



SACLANTCEN SM-342 

Figure 4.5 CWpoint source, verticul .slice.s at (,onstunt uzimuth 0 = SO0 of the TL$eld.s ohruiner1 
iisiizg N x 2 D (upi~er figure) / three-dimen.rionu1 (bottom figure) coniyutution 
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Figure 4.6 CWpoint source, vertical slices at constant azimuth 0 = 900 of the TLfields obtained 
using N x 2 0  (upperfigure) / three-dimensional (bottom figure) computation 
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Figure 4.7 CWpoint source, vertical slices at constant azimuth 0 = loo0 of the TLjields obtained 
using N x 2 0  (upperfigure) /three-dimensional (bottom figure) computation 
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at both azimuthal angles 0 = 0" and 0 = 180". The cylindrical symmetry of the 
geometry is thus locally valid for these particular azimuthal angles, thus leading to 
very good agreement between the N x2D and 3D solutions. We notice large 
differences between the Nx2D and 3Dfields for other azimuthal angles 0 = 80°, 
0 = 90" and 0 = 100". The reason is that energy gets trapped in the deep part of the 
corrugated bottom and channeled in the X ,  direction, leading to significant horizontal 
refraction of the propagating sound. 

The water depth z, given by Eq. (4.1) and being constant in the X, direction is equal 
to 150 m in the vertical plane corresponding to 0 = 90°, the CW point source 
emission leading to two propagating modes in that vertical plane (cf. upper plot of 
Fig. 4.6). The interference pattern due to the these two propagating modes changes 
due to the horizontal refraction of each mode. We notice also in N x2D field shown 
on Fig. 4.7 (upper plot) the presence of three propagating modes for the 200m-depth 
waveguide at range r = 9 km and at 0 = 100": only two modes are present at the same 
range and azimuthal angle in the 3D field. 

Convergence tests 

The three-dimensional field has been obtained using in the mapped computation 
domain N = 260 discrete points in depth ( AJJ = 1/260), M = 2880 discrete points in 
azimuth ( A 8  = 0.125") and Ar = 10 m .  The increment Ay corresponds in the physical 
waveguide to 4 m I &(r ,  8) 5 1 m and for 0 = 90" to &(r, 0 = 90") = 2 m. We show 
in the following figures the solutions obtained with three-dimensional computations 
for different numbers of discrete points in azimuth and for different azimuthal angles: 
0 = 80" (Fig. 4.8), 0 = 90" (Fig. 4.9), 0 = 100" (Fig. 4.10). All the three plots 
correspond to receiver depth z = 30 m . 
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Figure 4.8 Convergence test ( 0 = 80°, z = 30 m ) 
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RANGE (km) 

Figure 4.9 Convergence test ( 6 = 90°, z = 30 m )  

RANGE fkm) 

Figure 4.10 Convergence test ( 6 = looo ,  z = 30 m ) 

The azimuthal increment A 8  = 0.125O ( M = 2880) used in the three-dimensional 
computation corresponds at maximum range R = 1 2 k m  to 
M(R, A 6  = 0.125') = A/2. Convergence is reached for this azimuthal increment. We 
observe in Figs. 4.8, 4.9, 4.10 that the solution obtained using A 8  = 0.25' (M = 1440) 
is very close to the converged solution and thus sufficient to describe the three- 
dimensional effects in the vertical planes corresponding to 8 = 80°, 8 = 90' and 
8 = 1 0 0 ° .  Selecting larger azimuthal increments in the three-dimensional 
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computation leads to accurate solutions in some particular azimuthal angles (cf. Figs. 
4.8 and 4.10) but is inaccurate for other azimuthal angles (cf. Fig. 4.9). 

Investigation of various bottom periodicities 

We now consider the bottom geometry given by Eq. (4.1) for various A,: 
A, = 5000 m, A, = 4500 m and A, = 4000 m .  We denote by a the maximum slope angle 
in the X, direction. Decreasing A, corresponds to increasing the slope angle a .  Thus 
we expect to have increasing three-dimensional horizontal refraction of the 
propagating energy when decreasing A, in the rough boundary. We focus on the 
specific azimuthal angle 8 = 90" for which the bathymetry assumes no slope. 

We show in Fig. 4.1 1 three-dimensional computations (bold solid lines) obtained for 
A, = 6000 m ( a  = 2.99"), A, = 5000 m ( a  = 3.59O), A, = 4500 m (a = 3.99") and 
A, = 4000 m ( a = 4.49"). We also display in each plot the corresponding N x 2D 
solutions. We observe that N x  2D solutions are identical for each case regardless of 
the (crossing) slope in the bottom geometry. We observe also increasing three- 
dimensional effects in both phasing and amplitude for increasing (crossing) slopes. 
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Figure 4.11 Investigation of various bottom penodicities ( 9 = 90°, z = 30 m ). The parameter 
a designs the bottom slope in the X ,  direction. In the four subplots, N x 2 0  (dotted line) and 
three-dimensional (bold solid line) are displayed. 

Comparison with FAWPE 

We now compare the solution obtained with TRIPARADIM to the solution obtained with 
FAWPE. The range increment Ar is identical for the two models. The depth increment 
Az used in FAWPE is given by & = 2 m and is constant in all the waveguide. The depth 
increment is thus identical for both models for 8 = 90". FAWPE requires 1024 
azimuthal FFT components to get an accurate solution. 

We show in the following figures the solutions obtained with the two models and for 
different azimuthal angles: 9 = 80" (Fig. 4.12), 9 = 90" (Fig. 4.13), 9 = 100" (Fig. 
4.14). Apart the slight shift in the phasing observed in Figs. 4.13 and 4.14, the two 
solutions agree closely. 

If one compares the curves obtained for the h,=6000 m case with the curves obtained 
by Collins and Chin-Bing [ 5 ] ,  it can be seen that although the curves are similar there 
are noticeable differences. We attribute this to the fact that the two three-dimensional 
PE codes of this memorandum utilize a narrow-angle approximation and source for 
these examples (we have run FAWPE in the narrow-angle mode for comparison with 
TRIPARADIM) while three-dimensional PE used a wide-angle approximation. 
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Figure 4.12 Comparison test ( 6  = 80°, z = 30 m )  
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Figure 4.13 Comparison test ( 6 = 90°, z = 30 m ) 
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Figure 4.1 Comparison test ( 8 = 100°, z = 30 m ) 
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Summary 

In this report, we have investigated the performance of two very different three- 
dimensional PE codes on two main types of benchmark cases; the ASA benchmark 
wedge [17], for different frequencies and source excitations, and the corrugated 
bottom of Collins and Chin-Bing [ 5 ] .  We found that the two methods showed good 
agreement with each other. In the case of the corrugated bottom, the two codes of this 
report which used a narrow-angle approximation gave results which differed 
somewhat from those of Collins and Chin-Bing [5] who used a wide-angle 
approximation. 

The examples considered, showed that for regions of the waveguide, full three- 
dimensional effects are significant. In terms of modal energy, regions of modal 
shadow zones and modal self-interference were evident. These effects occurred for 
$15, and 25 Hz. For the wedge examples, if we considered the modes with a similar 
corresponding ray angle (mode 1 for 5 Hz, mode 2 for 15 Hz, and mode 3 for 25 Hz) 
for the three frequencies, we find that their three-dimensional behaviour is similar. 

In the case of the corrugated bottom, there are also significant three-dimensional 
effects and it is possible for modal energy to become "trapped" in the channels of 
this waveguide. 

It is reassuring that two very different implementations of three-dimensional PE codes 
give similar results for a variety of sample codes. We hope that in the future more 
researchers will compare the results of their three-dimensional PE codes for 
benchmark cases. The waveguides of this report could be used as such benchmark 
cases. 
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Annex A 
Accurate treatment of three-dimensional sloping bottoms with 

TRlPARADlM 

A. 1 Using of an affine mapping 
We intend to solve the initial and boundary value problem presented in Section 2.2 
involving Eq. (2.8) and appropriate initial and boundary conditions, in a general 
three-dimensional environment. We thus don't want to impose any cylindrical 
symmetry on the sloping bottom (which is the case for bidimensional models) or any 
stair-step approximation (which is assumed by all the three-dimensional PE models 
derived at this time). One way of handling this difficulty is to transform the physical 
domain into a simpler one using an affine mapping [ l ] ,  [ I  I].  Setting 

for r;, 5 r  < R and 0 r 8 < 2 a ,  where s ( r ,  8) := z,.(r, 8), we send the variable interval 
[O,  z,,(r, 8)] onto the reference interval [0, I ] .  Hence, the new domain to which we will 
refer in this memorandum as the mapped computation domain, is defined by the 
variables r, 8, y .  The horizontal range r  varies from r, to R ,  the azimuth angle 8 from 
0 to 2 a  and the dimensionless new 'depth' y from 0 to 1. In the physical domain, we 
consider homothetical sedimental layers Cy , 1 5 q 5 Q, i.e., under the assumption that 
0 < S, < . . . < S, < 1 ,  the interfaces parametrizations write 

We therefore obtain the following interface parametrizations in the mapped domain 

The mapped computation domain is bounded in 'depth' by two horizontal surfaces at 
y = 0 and y = 1, the sedimental interfaces corresponding to the horizontal surfaces at 
y = S,,, I l q 5 Q (cf. Fig. A.1). Introducing the new unknown u 

u ( r ,  6 ,  y) = v ( r ,  8, ~ ( r ,  8)y) 

Eq. (2.8) writes in the new coordinates as 

where i n ( r ,  8, y)  = nn(r ,  8, s(r ,  8) y) and where the operator L, is defined by 
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The characteristics of the bottom geometries are now consequently included in the 
variable coefficients of Eq. (A.5) which therefore contains new derivative terms. The 
new unknown u is assumed to satisfy in the mapped computation domain the 
following conditions : u = 0 at y = 0 ,  a 2n-periodicity condition u(r,O, y)  = u ( r , 2 n , y ) ,  
an initial condition u(r,,8, y)  = v 0 ( 8 , s ( r ,  e ) ~ )  at r = r,, a parabolized bottom condition 

at y = 1,  uq-, ( r ,  0 ,  S q )  = uy ( r ,  0, Sy ), 1 I q I Q ,  and the parabolized conditions 

at y = S,,, 1 I q I Q, where operators d/d<,  1 I q 1 Q ,  are defined by 

Figure A. 1 Three-dimensional cylinder geometry of the mapped computation waveguide for 
r;, I r I R ,  0 I 0 < 2n, 0 2 y I 1 .  This new domain is the image of the physical domain shown 
in Fig. 2.1 by the afine mapping defined by Eq. (A.1). The horizontal mapped rigid bottom 
parametrization is given by y = 1 . The physical sedimental interface (sea-floor) is assumed to be 
homothetical, i.e., its parametrization is given by z = S, s (r ,  0 )  with 0 < S, < 1 and is thus 
transfonned into ajlat horizontal mapped sedimental interface of parametrization y = S, . 
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A. 2 Numerical discretization 
Implicit finite difference methods for the discretization of the initial and boundary 
value problem presented in the previous subsection are derived in [ I ]  and [ I  I]. We 
now discretize the continuous problem in the depth and azimuthal variables using 
finite element technique (6'-polynomial standard Galerkinlfinite element method) 
coupled with a conservative Crank-Nicolson type range-stepping procedure. 

Variational formulation 

We first derive the variational formulation of the continuous problem. For the sake of 
simplicity, we introduce the new unknown w  defined by 

Then, multiplying Eq. (A.5) by & T / p  where rpe V are arbitrary appropriate 
complex-valued functions defined on R = [O, 2 K] x [0, 1] (the functional space V is 
defined by V = { rp  E H 1 ( R )  and rpl I,=OJ = 0 )  where H 1 ( R )  denotes the classical sobolev- 
space), integrating by parts using Eqs. (A.6) and (A.7), we obtain the following 
variational formulation 

where wo E V is defined by w 0 ( 8 ,  y )  = d m  v 0 ( 8 ,  s(%, 0 ) y )  and where ( . , . )p designes 
the weighted complex-valued inner product defined by 

(we denote by 11 lip the corresponding norm, i.e., Il.llp = n) and where a ( r ;  . , . ), 
r, 2 r 5 R ,  designed the complex-valued sesquilinear forms defined by 

a(r;w,cp) = a,,,,(r;w,cp)+ a,(r;w,cp) (A. 10) 

with 

(A. 12) 
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where the operator L, is defined by 

All the coupling terms in the azimuthal direction are included in the forms a , ( r ;  . , . ), 
r, 5 r 5 R, given by Eq. (A. 12). The forms a ( r  ; . , . ) given by Eq. (A. 10) are written in 
a convenient manner. It allows us to distinguish between the part relative to the 
N x 2D model (i.e., the forms a ,x,, ( r ; .  , . ), ro 5 r 5 R). and the part proper to the 
three-dimensional model (i.e., the forms a , ( r ; .  , . ), r, 5 r 5 R). Selecting cp = w ( r )  in 
the variational formulation, Eq. (A.9), we may show the 11 -stability condition which 
writes 

(A. 13) 

Eq. (A.13) holds as an equality (i.e., the problem is 11 1"-conserving) if the attenuation 
term is null. Using Eqs. (A.4), (A.8), it is easy to see that Eq. (A.13) corresponds in 
the mapped domain to the stability condition, Eq. (2.12), in the physical domain. 

Fully discrete scheme 

For integers N and M, we let (y,,y ,,..., y,) be a uniform partition of [O, 11, i.e., 
y, = jAy, where Ay = 1/N, and {8,,8 ,,..., 8,) be a uniform partition of [O, 2x3, i.e., 
8, = iAB, where A8 = 2n/M, such that 8, = 0, 0, = 2n ,  yo = 0, y, = 1 .  We let 
h = max(A8,Ay). We denote by Az the corresponding depth increment in the physical 
domain, defined by 

&(r, 0)  = ~ ( r ,  0)Ay (A. 14) 

The (dimensionless) 'depth' increment Ay is constant in the mapped computation 
domain whereas the corresponding affine-equivalent depth increment Az depends on 
the variables r and 8 in the physical domain. We denote by M,, = (B,,  y,) a node of the 
grid of the mapped computation domain. We assume for q E (1,. . . , Q) ymq = Sq for some 
l < m q < N . T h e n o d e s  M , , , O < i ~ M , f o r  j=O,  j = m q ,  l l q l Q , a n d  j = N  correspond, 
respectively, to the mapped ocean surface (y = 0), to the mapped sedimental interfaces 
(y = Sq), 1 5 q 5 Q ,  (cf. Fig. A.2) and to the mapped rigid bottom (y = 1). We let 
K , ,  =I  8 ,_,, 8, [XI y ,_,, y, [ ,  I l i 5 M, I 5 j 5 N .  The geometry of K,,, of each mesh in the 
mapped computation domain is rectangular. For r;, 5 r R, we denote by K,';', 
1 5 i 5 M, 1 5 j 5 N ,  the corresponding mesh in the physical waveguide, defined by 
K,';' = ( (8, z )  / 0 < 8 < 2n, ( j  - l)&(r, 8)  < z < j&(r, 8 ) ) .  For r, 5 r I R, the geometry of 
K,':', I l i l M, 15 j 5 N, being dependent of the varying geometry of the physical 
waveguide (cf. Fig. A.3) have curved boundaries. 
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It is to be noted that the different interfaces X u ,  12 q 2 Q, present in the physical 
domain consist of edges of elements K,';' provided the sedimental interfaces 
( z  = zq(r ,  O ) ) ,  1 I q 5 Q, are homothetical, i.e., z,(r, 0) = Sq s(r ,  0) (cf. Fig .  A.4). 

Figure A. 2 Treatment of the mapped sedimental interfaces ( y = Sq ) , 1 I q 5 Q. The discrete 
points M,..~, 0 I i I M .  are located on the interface. 

Figure A.3 Rectangular mesh K,,, of the triangulation defined on the mapped computation 
domain (on the lefi) and curved mesh K,::' of the corresponding afine-equivalent triangulation (for 
r, I r I R )  of the physical domain (on the right). 
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Figure A.  4 Treatment of the homothetical physical sedimental interfaces ( Z  = Sq s( r ,  O ) ) ,  
1 I q I Q .  For r;, I r I R the nodes M,!:jq, 0 5 i 5 M, which are afine-equivalent of M,  
0 I i I M ,  are located on the interface. 

. . 

We have 3 = U:=, KI and K, n K,. = 0, 1 I k < k' 5 I ,  where I = M x N and where we have 
used the notations K,,, or K, if k = i + M ( j  - 1 )  for 1 2 i 2 M and 1 I j I N .  We denote by 
Q, the space of complex-valued polynomials of degree at most I .  We define the finite 
dimensional space of functions which are continuous on a, piecewise Q,-polynomial 
relative to each mesh K, c Q, 1 I k I 1 ,  and satisfy the homogeneous Dirichlet 
condition at y = 0 ,  i.e. 

= x / x E c 0 ( E )  complex - valued. V k  s ( I , .  . .. I )  E Q,,  xl,,., = 0 } { 
which is a subspace of V of dimension I = M x N .  Given Ar > 0 ,  such that R = N,Ar + r,, 
we let rn=nAr+ro ,  O I n I N r ,  and rn+, , ,=r ,+Ar /2 ,  O I n I N , - 1 .  We consider the 
following finite element (in depth and azimuth) and Crank-Nicolson (in range) 
discrete scheme : Find G; E V , ,  0 5 n I N, such that 

(A. 15) 

where we have used the notation d,W,",'I2 = (W;" - Wi)/~r and W,".'" = (GJi+l + Wi)/2. 
The sesquilinear forms ( . , . ),, and a, ( r  ; . , . ) correspond, respectively, to ( . , . ), and 
a ( r ;  . , . ) where the integrals are approximated using the following quadrature 
formula 

(A. 16) 
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where the nodes of the quadrature scheme are simply the four vertices M,,, M , _ ~ , ,  M,,.~, 
of the rectangular mesh K,,,. Selecting cp, = (cSI;*l + G;)/2 in Eq. (A.15), we may 

show that 

(A. 17) 

which implies that the fully discrete scheme, Eq. (A.15) (finite element in depth and 
azimuth / Crank-Nicolson in range) is unconditionnally stable in the discrete 11.  ll,,, - 

norm. Eq. (A.17) holds as an equality, i.e., the scheme is 1 lip,,-conservative, if the 
attenuation term is null. Our fully discrete model still preserves the energy- 
conservation characteristic of the 'continuous' model (cf. Eq. (A.13)). Using a finite 
difference discretization technique would not lead to the stability condition of Eq. 
(A.17) and hence the corresponding discrete model would not be energy-conserving 
anymore. 

A basis of V,  with elements of small support is contructed considering functions cp,, 
l I k I I , d e f i n e d  by : cp,(~, .)=O if k # k '  and cp,(M,)=l. For each n, O s n < N r - 1 ,  
Eq. (A. 15) represents a linear system of equation of size I x I for the coefficients G;, 
1 I k I I ,  of 6: with respect to the previous basis, i .e. ,  G: = C:=, G; cp, , which writes in 
the following matrix form 

(A. 18) 

where wn=(G;,  ...,G;)T, O I n I N , ,  with k = i + M ( j - l ) , a r e  vectors of size I = M x N ,  
and An+"', 0 I n I N, are matrices of size I x I defined by 

)IC'.li = a h  (%+I12 ; (PIC ' (PIC' I/( ( P k  ' (PIC' )p,h 

and where W" = w". The matrix present in left-hand side of Eq. (A.18) is large, sparse 
and has a block-tridiagonal structure, each block of order M being almost tridiagonal 
(presence of terms in the upper right and lower left comers to account for the 
periodicity condition in the azimuthal direction). The Nx  2D discrete model writes in 
the following matrix form 

(A. 19) 

where w;~ ,~  = (6; ,..., G:)T, 0 I n  I N,, with k = j + N(i - I ) ,  are vectors of size I = M x N,  
and the matrices 0 I n I N, are defined by 

The sesquilinear forms a ,vx2,,, , ( r ;  . , . ) correspond to a ,,,, ( r ;  . , . ) using the quadrature 
formula of Eq. (A.16). The matrix present in left-hand side of Eq. (A.19) has now a 
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block-diagonal structure, each block of order N being tridiagonal. For each n, 
0 2 n l N, - 1 ,  Eq. (A. 19) can be solved using a fast and robust Gaussian elimination 
method. 

Solving Eq. (A.18) using Gaussian elimination requires an excessive amount of 
storage (storage must be allocated for the bandwidth equal to 2 M + 3  in each row of 
the matrix) which limits the number of mesh points that can be used. Thus, in order to 
effectively utilize the sparseness of the matrix present in the left hand side of Eq. 
(A.18), it is important to develop an iterative technique. However Eq. (A.18) is 
difficult to invert by standard iterative methods [18]. 

We choose to solve for each n, 0 5 n I Nr - 1, the linear system of Eq. (A. 18) using a 
non-stationnary iterative algorithm equivalent to the preconditioned conjugate 
gradient iteration method for normal equations [19]. The amount of storage required 
now depends linearly on the number of grid points. In addition, few vectors need to 
be stored. Hence the storage is much less than that required by any version of  
Gaussian elimination. The efficiency of the solver highly depends of the 
preconditioning procedure. We choose to precondition Eq. (A. 18) using the matrix 
derived from the N x 2D discrete model given in the left hand side of Eq. (A. 19). 
Practical numerical results demonstrate that the acceleration due to the 
preconditioning is so great compared to the non-preconditioned iteration method that 
the additional operations inherent to the preconditioning procedure are negligible. 
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