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Separability of seabed reflection and scattering properties

in reverberation inversion
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Separation of scattering properties (Lambert’s u) from reflection properties (the reflection loss’
angle derivative «) presents difficulties in the geoacoustic inversion of long range reverberation in
isovelocity water, and here it is shown that there is still a problem in a refracting environment. An
alternative technique is proposed where reverberation is modified by altering the source or receiver
beam pattern, for instance, using a triplet array or ring source, to provide a dipole and monopole
pattern. Combinations of these two measures of reverberation then conveniently determine « and u
independently of other unknown quantities from long (or short) range data, in fact even from a
single range. In addition the short range ratio of the two quantities determines the critical angle
independently. The effects of refraction and other source or receiver beam patterns, including a
horizontal beam and a tilted beam, are investigated by using analytical techniques. To enhance the
credibility of these findings and demonstrate the benefits of the approach an example is posed as a
standard inversion problem using a cost function based on both types of reverberation. Finally the
technique is applied to some experimental data by forming simultaneous monopole and dipole

beams in the vertical plane. © 2007 Acoustical Society of America. [DOL: 10.1121/1.2384966]

PACS number(s): 43.30.Pc, 43.30.Gv [RCG]

I. INTRODUCTION

The idea of simultaneously separating out reflection and
scattering properties from reverberation has developed over
15 years or so. It has potentially important consequences for
sonar performance since it can make predictions not only of
both types of seabed property but predictions over a large
area at considerable range from the source ship. Amongst the
earliest advocates are Zhou er al. (1982), Kamminga, Ellis,
and Gerstoft (1993), Zhou et al. (1993), and Gerstoft and
Ellis (1996) where scattering was assumed to follow Lam-
bert’s law. Preston (2000) and Ellis and Preston (1999) have
analyzed Mediterranean reverberation extensively using
manual inversion techniques, and Zhou and Zhang (2003)
have analyzed data from the China Sea. Simulation studies
include Muller et al. (2002), and Makris (1993), and exten-
sion by Rogers, Muncill, and Neumann (1998) to bistatics.
Reverberation data from an exercise was selected as one of
the test cases for the Geoacoustics Inversion Techniques
workshop in May 2001 (Fulford, King, and Chin-Bing, 2004,
and Gerstoft et al., 2003). Holland (2005) investigated the
effect on geoacoustic inversion of assuming a scattering law
other than Lambert’s, and Harrison (2005a) has attempted to
determine the scattering law from simultaneous reverbera-
tion and propagation measurements. In addition there are
data-model comparisons, for instance, by Desharnais and El-
lis (1997), and variants combining reverberation with other
information sources such as the direct blast by Heaney
(2003).

At first sight one might expect the effects of scattering
strength and boundary reflection to be quite distinct and
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separable since the first is a simple multiplier while the sec-
ond, one might think, produces a decay in range. On the
other hand most numerical inversion techniques rely on a
given physical model with implicitly prechosen search pa-
rameters, and simply demonstrate the degree of mismatch
between measurements and model. Dosso (2002) and Dosso
and Nielsen (2002) have proposed an approach to quantify
uncertainties stemming from the mismatch. Nevertheless,
some physical intuition helps to make the initial choice of
input parameters in any given inversion and to avoid un-
wanted correlations between them (Collins and Fishman,
1995). If one initially assumes a scattering law angle depen-
dence of the form wF(6,, 6,, ¢), with known F but unknown
constant w (the three arguments defining incoming and out-
going grazing angles and bistatic angle) and one assumes
that, of all the boundary interactions along a round-trip re-
verberation path, only one is a scatter, then it is inevitable
that p will indeed be merely a multiplier of the reverbera-
tion. So to be sure of separability one needs to be certain that
the reflection parameter(s) are definitely not simply multipli-
ers. Some intuition on this behavior can be gathered by ap-
plying analytical techniques to propagation and reverbera-
tion.

An earlier paper by Harrison (2003a) considered iso-
velocity water combined with Lambert’s law and showed, by
using analytical techniques, that beyond a certain range,
within the so-called mode-stripping region, no such separa-
tion should be possible since the reverberation intensity was
proportional to wa~2r~3, where u is the Lambert constant, «
is the reflection derivative with angle (for small angles), and
r is reverberation range (i.e., corrected travel time). In other
words, in this limit, one could only determine pa™>, not u
and « separately. This point was recently taken up by Hol-
land (2006) who argued that although there was little hope



for extracting unique geoacoustic reflection properties from
reverberation under these conditions it would still be pos-
sible to investigate or map their variability. In passing, we
note that the inseparability results from any scattering law of
the form S(6;,60,,d)=uX(6,6,)"f(¢p), and it is not just a
peculiarity of Lambert’s law.

The formulas for the isovelocity case were extended to
uniform sound speed gradient (Harrison, 2003b, Harrison,
2005b) and showed a more complicated behavior with re-
spect to « and w although the tendency to inseparability was
still manifest. In Sec. II we demonstrate that even with a
uniform sound speed gradient an increase in p can be ap-
proximately matched by changing «, and exactly matched by
changing « and the sound speed gradient ¢’ at the same time.
From a geoacoustic inversion point of view this is a state-
ment that given experimental reverberation with poorly
known sound speed gradient ¢’ there is an ambiguity or cor-
relation between u and a (and ¢’). If however ¢’ is known
(and not zero) then the ambiguity is weaker. In other words,
the exact shape of the decay in range is unaffected by u
(since it is just a multiplier) but it is slightly affected by «.
On the other hand if, in changing «, we were to keep («
X c¢') constant then the decay shape would also be unaf-
fected. These findings are confirmed with a modified version
of the wave model C-SNAP (Ferla, Porter, and Jensen,
1993).

The main point of this paper is to suggest an alternative
and in Sec. III we propose a way of separating w and «, still
from measurements of reverberation alone, even at long
range and possibly a single ping, depending on configura-
tion. The reason for the inseparability of x and « in conven-
tional long range reverberation is that in the mode-stripping
propagation regime « becomes a simple multiplier (see Har-
rison, 2003a) and is indistinguishable from w. Because the
propagation is directly dependent on the angle distribution of
the multipath rays (or modes) it is affected not only by the
scattering law (or kernel) angle dependence but also by the
directivity of the source and receiver. By changing one or
both of these directivities one can modify the propagation
range dependence in situ, and the result is a modified rever-
beration. Given a measurement of “conventional” reverbera-
tion with a point source and receiver, and a measurement of
“modified” reverberation with some given directivity one can
deduce « alone from the relative range laws. The value of
wa? derived from the reverberation then permits a separa-
tion of u. The theory can already be extended to range-
dependent and refracting environments and different scatter-
ing laws. Section IV discusses the robustness of the findings
in this context.

Numerical geoacoustic inversion by matching measure-
ments with a coherent propagation and reverberation model
is a powerful technique that can take advantage of aspects of
reverberation behavior that are not reflected by the incoher-
ent diffuse reverberation behavior. We might still expect bet-
ter separation performance with the added information from
the modified reverberation. In Sec. V we reinforce these ar-
guments by again using the wave model C-SNAP to apply
standard inversion techniques to simulated data to investigate

parameter correlations and cost function minima both with
and without the modified reverberation input, in the latter
case achieving a much better performance.

Finally some experimental demonstrations with a
steered line array are given in Sec. VI, and the reflection and
scattering parameters extracted. The resulting values of «
agree with other estimates and the w is within the expected
bounds.

Il. REVERBERATION DEPENDENCE ON SCATTERING,
REFLECTION, AND REFRACTION: CORRELATIONS

A. Isovelocity

Harrison (2003a) provided formulas for propagation, re-
verberation, and target echo in isovelocity, range-dependent
environments with Lambert’s law scattering. Treating the
eigenrays or modes as a continuum in angle their angle dis-
tribution is Gaussian and they decay exponentially with the
range. In a range-independent environment these formulas
naturally demonstrate three clear propagation regimes ac-
cording to range, already noted by Weston (1971). In the
first, the Gaussian is very wide so the angle range is limited
by the critical angle, and there are many contributing rays,
all about the same strength. In the second, there is “mode-
stripping” and the resulting Gaussian angle distribution is
narrower than the critical angle. In the third, the Gaussian is
so narrow that only one mode remains. These regimes can
also be seen in incoherent mode solutions where the angle
distribution is similarly truncated by the critical angle. In fact
there is also a zeroth regime at very short range, of little
interest in this context, and predicted neither by the formulas
nor by discrete mode theory, where the direct path propaga-
tion follows an inverse square law. In the context of geoa-
coustic inversion of long- or short-range reverberation, only
two of these regimes and one transition are of interest. An
appropriate formula for isovelocity reverberation (Harrison,
2003a) is
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where u is the Lambert constant, « is related to the deriva-
tive of reflection loss with angle a4z (dB/rad) through «
=agp/(101og;o(e)), 6, is critical angle, H and r are water
depth and range, ® is the horizontal beam width, and p is
the spatial pulse length p=ct,/2. At long range this be-
comes

udp
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and at short range, expanding the exponential to first order,
we have

_ pdpb;
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The transition from short- to long-range occurs when the
exponential term becomes negligible. An exact transition
range can be defined by equating the neighboring limiting
formulas (see Appendix)
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The inseparability of u and « at long range is seen explicitly
in Eq. (2) where reverberation depends on w/a?. In passing
we note that in principle the short-range reverberation could
be used to separate the two since it has no « dependence.
However, poor definition of the regimes combined with spa-
tial interference effects, excluded by these formulas, usually
rule this out as a practical option.

B. Refraction

Since formulas are also available for the case of a uni-
form sound speed gradient (Harrison, 2003b; Harrison,
2005b) it is interesting to check the effect of refraction on
separability. In a range-independent environment there are
now two distinct sets of contributing propagation angles for
each range: in the first set rays interact with only the bound-
ary on the low sound speed side; in the second set they
interact with both. For the same reason there are two sets of
reverberation with different behavior, one from the low
sound speed side of the duct, the other from the high sound
speed side. We use L and H subscripts to denote quantities
associated with the low and high speed boundaries. The
sound speed gradient ¢’ is embedded in the ray’s radius of
curvature p=c/c¢’. For monostatic sonar the formulas are:

Low sound speed side:

I =g, +IL2)2”CI)P, (5)
where
12
H —
I = BL log(—)exp( aLr> > (6)
2rp h 2p

where h is the greater of the distance from source, receiver,
or scatterer from the low sound speed boundary,
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where E|(x) is the exponential integral (Abramowitz and Ste-
gun, 1972).
High sound speed side:
Iy =1I,r®p, (10)

where
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FIG. 1. Family of reverberation curves with reflection loss derivative a; 5
taking uniform steps between 1 and 8 dB/rad and simultaneously u;
=107 X a} 5. Other variables are fixed: H=100 m, h=50 m, 6,=20°,
Coin=1500 m/s, ¢.=1520 m/s.
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_ 2uy — (o - aH)r)
Iy = —rz(ozL+ ) (A - B)exp<—4p . (11)

The magnitudes of the first and second exponents in Egs. (8)
and (9) are important. Those containing the seabed’s critical
angle 6, are usually much larger than those containin
because the equivalent to 6, in the latter terms is \H/(2p),
which is half the critical angle in the water column. Thus
in the long-range limit the terms containing 6, are large,
making the second exponential and the exponential inte-
gral vanish. However the other exponents may, or may not
be large. Note that these formulas revert to the isovelocity
case when p— o since B—0 and [;; vanishes.

Clearly the relationship between w, @, and r is not so
simple with refraction even if we single out reverberation
from the L side. Although w; is still a multiplier «; is not.
This can be demonstrated numerically by plotting Eq. (5) for
various values of «; as in Fig. 1. Here a;,p is varied in
uniform  steps  between 1 and 8 dB/rad [«
=agp/(101ogo(e)] but with wu;=1027X a7, simulta-
neously, while other parameters are constant ay=0 dB/rad,
pnp=0, 6,=20°, H=100 m, h=50 m, ¢;=1500 m/s, and cy
=1520 m/s. For clarity source strength and ®p are set to
unity throughout. In effect, ® is one radian and p is one
meter, corresponding to a 1.3 ms pulse duration. A closer
inspection of the formulas Egs. (6)—(9), however, shows that
if surface losses are small, ay=0, then in the long-range
limit the subformulas can all be written in the form,

12
Iz%(%) ><F<£>. (12)
r\a p
(In the case of I;,;, one needs to multiply the numerator and
denominator by «;r.) So if ray radius of curvature p is main-
tained proportional to «; the form of the reverberation range
dependence is invariant as «; is changed. Therefore it is
always possible to match a change in scattering constant, u;,
exactly with a change in reflection and sound speed proper-
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FIG. 2. Family of reverberation curves as in Fig. 1 but with u; and cy
simultaneously varied such that w; =10727 X "(iaB and the ray radius of cur-
vature p=7500 X a; 45. Note the convergence at long range. (a) closed-form
solution; (b) modified C-SNAP.

ties, a; and p. From the geoacoustic inversion point of view
one expects a strong correlation between u; and ¢; and ¢’.
This effect is shown in Fig. 2(a), where variation of rever-
beration with «; keeping a;/p constant shows clear conver-
gence, i.e., invariance, at long range. In fact, numerically
ap.p again takes values 1-8 dB/rad while u; is set to
10727 X o ;5 and ¢y is varied so that p=7500X a .

C. Numerical confirmation of closed-form solutions

The findings of the previous section are here reinforced
by using an independent wave model to calculate reverbera-
tion from an incoherent mode sum under the same condi-
tions. The model uses C-SNAP (Ferla, Porter, and Jensen,
1993) operating at 1 kHz to calculate the mode shapes and
horizontal wave numbers, with a separate module to do the
mode summation, conversion of mode to ray angle, and cal-
culation of group velocities, etc., according to Ellis (1995).
To ensure compatible environmental inputs the seabed was

TABLE I. Baseline half-space parameters.

Sound speed ¢ Density d Vol. absorption a

(m/s) (kg/m?)/1000 (dB/wavelength)
Water 1500 1.0 0.0
Sediment 1600 1.5 0.4

composed of a half-space for which the bottom reflection
loss can be calculated from the geoacoustic parameters
through a relationship noted by Weston (1971), namely,

2
a dycy

RdB=adBX9= ><07

T dlcg sin® 6,
where a, is the sediment volume absorption in dB/
wavelength, and d, ¢ are density and sound speed with sub-
scripts 1, 2 referring to the upper and lower media. The ac-
tual  geoacoustic  properties corresponding to  agg
=3.98 dB/rad, («=0.916 rad™!) are given in Table I. Other
values of a4z were mimicked by adjusting the volume
absorption in proportion. As shown in Fig. 2(b) the results
are virtually identical to the analytical examples in Fig.
2(a). The minor discrepancies reduce to a fraction of a dB
throughout if one reverts to the variant of the analytical
formula that includes the focusing or caustic effect dic-
tated by the WKB depth dependence (Harrison, 2003b;
Weston, 1980). In any case, the main point is to obtain a
second opinion on the predicted long range convergence
with a correlated set of a, u, and sound speed gradient,
and Fig. 2(b) leaves no doubt.

lll. MODIFIED REVERBERATION

Harrison (2003a) assumed the propagation to follow
mode-stripping and the scattering to follow Lambert’s law.
Other assumptions are possible, but one might expect that
during any one experiment in one locality the scattering law
and the propagation would be given and fixed, therefore one
has no control over the reverberation. In fact there are vari-
ous controls, for instance, in a refracting environment the
source and receiver depth alter the results. Similarly placing
either source or receiver near the sea surface creates a dipole
directionality which alters the propagation by introducing an
extra square-of-grazing-angle term in one or both of the out-
ward and return angle integrals. In general, the waveguide
imposes a near-Gaussian angle distribution which is multi-
plied by the directivities at the two ends of each propagation
leg, i.e., source and scatterer for outward, and scatterer and
receiver for return. There are therefore many ways one could
alter the propagation integral in situ given the locally fixed
scattering law. Some possibilities include:

 modify source (1): with a multiring source use one ring for
the “point” source; three rings for a more directional
source;

e modify source (2): run two rings in antiphase creating a
dipole source;

 modify source (3): place the source near the sea surface to
create a dipole (possibly problematic because of physical
size and efficiency near surface);



* modify receiver: modify steering of a horizontal triplet ar-
ray to form vertical dipoles;

* measure angle dependence of reverberation: use the verti-
cal array to derive « directly from the width of the Gauss-
ian angle distribution.

In the following we investigate three possibilities, all
involving some vertical aperture, reverting to the isovelocity
environment for simplicity. First the dipole, enhancing steep
angles, second a horizontal beam, weakening steep angles,
and third a tilted beam. In all cases we consider application
to the return path only, although it is easy to extend this to
the two-way path. To track the changes we note that Eq. (1)
could have been written in terms of the outward and return
integrals Lo, Ly as

udp
IszOLR, (13)
where
Lo=L fe('a <a02r>d0 (14)
= = X - .
0= LR . exXp 2H

We now leave L, unchanged and calculate the new Ly as
required. Introducing the shorthand
aﬁfr

X= i (15)

we write Ly as
&
LR= 5{(1 _e_X). (16)

The short- and long-range limits of Ly are, respectively, 6’3/ 2
and 6?%/ 2X. We emphasize that we do not advocate these
formulas as serious contenders for inversion directly. Rather
they point the way to dependencies or correlations which can
be utilized in numerical inversion by choice of the search
parameters and combinations of them.

A. Vertical dipole

Assuming the dipole to be composed of two unit mono-
poles a distance z apart, there is a gain factor of k’z” sin® 6
which we approximate as k*z%6?,

6.
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Thus the ratio of dipole to monopole reverberation F is

po e Lo _ o 2001 = (L4 X)exp(=X) o

X(1 - exp(- X))

1 monopole LR
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2H
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FIG. 3. Various reverberations: Monopole reverberation from the closed-
form solution (dotted black) and C-SNAP (thick grey); dipole reverberation
from the closed-form (solid black) and C-SNAP (thick grey); horizontal
beam closed-form (dashed black); tilted beam closed-form (dashed-dotted
black).

F=k*3*672. (20)

The full behavior is shown as the solid black line in Fig. 3
(suppressing the k%z? term) for the baseline parameters (H
=100 m, u=10"27, agz=4 dB/rad, 6,=20°, see Table I)
and compared to the conventional monopole reverberation
(dotted line). The equivalent ratio F is shown in Fig. 4.
The most important point is that because of Eq. (19) the
range dependence is completely altered in a very simple
way at long ranges. In fact, the ratio of this modified
reverberation to conventional reverberation F is indepen-
dent of w at all ranges, as is clear in Eq. (18). If we plot r
X F as shown in Fig. 5 we expect a long range plateau with
value of 2H/a. This means that if one measures monopole
and dipole reverberation, then « and u are separable after all.
In fact in this example the value of the plateau is 23.37 dB

-
>e;
T,

- ~,

F (dB)
3

» monopole
— dipole
-45H ---- horizontal
----- tilt : H
-50 :

10" 100 101 102

Range (km)

FIG. 4. The closed-form ratio (function F) of the quantities in Fig. 3 to
monopole reverberation. Monopole (dotted); dipole (solid); horizontal beam
(dashed); tilted beam (dashed-dotted).



30

28

26

24

22

20

Fxr (dB)

10° 10 10 10
Range (km)

FIG. 5. The ratio multiplied by range F X r showing the plateau at long
range.

which leads to aug=3.9977 dB/rad and agrees with the
input value. Having separated « one can deduce w from
long range monopole reverberation. Although of less prac-
tical interest, the short range plateau in F (solid line in
Fig. 4) occurs at —12.19 dB, which according to Eq. (20)
gives an independent estimate of the critical angle. The
estimate is 6.=19.9° which again agrees with the input
value. Despite the inaccuracy of the formulas in the pres-
ence of spatial interference, these findings suggest that a
more sophisticated model of the ratio F would still be
sensitive to « alone at long range and 6. alone at short
range. Notice that it is the nature of the function in Eq.
(18) that the short range to long range transition “knee” is
about two times further out in range than the “knee” in Eq.
(1). This is a peculiarity of the function as explained in the
Appendix. Numerical confirmation of these findings for
the monopole and dipole is shown by the thick grey lines
in Fig. 3 for the same parameters (determined as discussed
in Sec. II C). Agreement is excellent.

B. Horizontal beam

A horizontal beam is conveniently represented as the
Gaussian exp(—6?/ 63). Although the effect on the integral is
trivial the effect on reverberation is more interesting since it
affects range dependence [through Eq. (15)],

0

e ¢ &
LRH=J0 Oexp(—X?—?)dﬁ
c B
=L 1—exp<—<X+ﬁ)) (21)
ofxe 2) %
i

and the ratio of reverberation obtained with a horizontal
beam and with an isotropic source is

N v )

L_R:(X+§) {1 —exp(- X0}
&

The transition determined by the magnitude of the exponent
is now when

F= (22)

o
X+—5~1. (23)
0
If the beam is narrower than the critical angle then there is
essentially no transition in the exponential—it is negligible
for all ranges—but there is one in the denominator. For

X< ? Ly = 63/2, (24)
B
whereas for
&
X> 2 Lgy=Hlar, (25)
B

which leads to the same 3 behavior for isotropic source and
receiver (F=1). The effect is shown in Figs. 3 and 4 for
0p=4°. In summary a narrow horizontal beam has an effect,
but it is too weak to be useful for inversion.

C. Tilted beam

If the beam of width 6 is tilted upwards at 6 to the
horizontal we have

1 (% & 0-6,\*
LRT:EJ_,, |6lexp —Xg exp| — Py de

0!:
f Gexp(-A# —BO-C)db

0
a(,‘
+f Oexp(-AP +BO-C)do /2, (26)
0
where

AarleBzaoceﬁ
=—+4+ ==+, = ; = —.
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It is possible to solve this exactly for arbitrary 6,, 65, 6. but
a reasonable approximation is for large 6. (see 3.462/5,
Gradshteyn and Ryzhik, 1980),

exp(= C B\ B B
Lir= p=C) e exp(—)erf(—,— - (27)
2A 2VA 4A 2VA

The corresponding reverberation and F function are shown
in Figs. 3 and 4 for §3=4° and 6,=15°. A poorer but more
insightful approximation is a narrowish beam inside the
critical angle, i.e:, < 6,; 6,<86,,

L= Y 600 ( a920r>_£7” ()ﬁ)
RT="5" B o €Xp ) BUo €XP 03 )

2H
(28)
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In theory, this behavior is virtually the same as that of the
integrand of Eqgs. (26) or (14), and so it contains more infor-
mation (given a variable beam angle) than, say the dipole
beam. Nevertheless the simple relationship between dipole
and conventional reverberation makes it more attractive.

IV. ROBUSTNESS AND EXTENSIONS

The main point of this paper, and in particular Sec. I11, is
to demonstrate that reflection properties can, after all, be
separated out from reverberation. Since the derivations have
made certain assumptions we explore their weaknesses here.

A. Range-dependence

If we assume variable bathymetry, isovelocity reverbera-
tion formulas are given by Harrison (2003a) in terms of an
effective depth, conceived by Weston (1976). These have
been justified and favorably compared with the model
BiStaR (LePage and Harrison, 2003; Harrison, 2005c). As is
apparent from the original definition, a variable « can also be
accommodated as part of the effective depth integral, so the
original term in the exponent a&f [dr/H(r)> becomes
0? [ a(r)dr/H(r)? (see also Holland, 2006) and we define a
modified effective depth

H2H(r)? f r
r

0

Xete(7) = a(r)dr/H(r)3 (30)

in between a notional fixed source at range zero and receiver
at r. Following Harrison’s derivation through, and making
the substitution [cf. Eq. (15)],

OoH Xeti
X(r) = =2 31
") 2H?H(r)? (31
the monopole reverberation with variable @ and w is
udp | H 2
Imonopole =73 {_Y(l - CXP(— X))} . (32)
r Xeff
Following Sec. III A the dipole reverberation is
udp | Hy
Idipole =73 { (1- CXP(— X))}
r Xeff
H 2H(r)?
Xy —(1-(1 +X)exp(—X))} *) (33)
Xeff TXeff
and the ratio of the two (suppressing the k%z%) is
2H(r)* (1 - (1 + X)exp(- X
iy < 20 (1= (L4 Xexp(= ) )

(1 —exp(- X))

Since range and bathymetry are assumed known, the ratio F
at long range tells us x.¢ (r), and from its definition, Eq.
(30), range-smoothing followed by differentiation of the
quantity y.er/(H*H(r)?) gives a(r)/H(r)}. Therefore the

T Xeff

range-dependent «(r) can be computed directly, in prin-
ciple. In this same long range limit, knowing a(r) and
H(r) one can then compute wu(r) from the absolute value of
Lnonopole @t €ach range. Note that 6., whether range-
dependent or -independent is not obtainable in the long
range limit.

B. Scattering law

From Egs. (13) and (14) it is clear that an angle-
separable scattering law of the more general form
S(0y, Ooue) = (0, X 6,,)" can be accommodated in the deri-
vations of Sec. III. The ratio of dipole to monopole rever-
beration in the long range limit becomes

f 6" exp(— at?)d6
== , (35)

I o]
monopole f 6" exp(—a6®)do
0

I dipole

where a is a constant, representing some function of «, H, r,
etc., and changing the variable to Z=a6* we have

f 72 exp(- 2)dZ

I dipole 0

Imonopole f ‘ Z(n=1)2 exp(- 2)dZ
0

1
a

~ 11“(1 +(1+n)/2)
Ta T((1+n)2)

(1+n)
2

Ly (36)
a

for any positive value of n (not necessarily integer) where I"
is the gamma function (Abramowitz and Stegun, 1972). We
obtain the same a from the ratio, whether as in Eq. (19) or
the range-dependent version, Eq. (34), but with a small
change in the scaling factor of (1+n)/2, i.e., 1 for Lambert’s
law, 0.75 for Lommel-Seeliger (or square root equivalent,
see Holland, 2005), 0.5 for angle-independent. Thus the
measure of « is relatively insensitive to discrepancies be-
tween the actual and assumed scattering law. However one
expects the assumption of Lambert in the presence of a lower
angle power in reality to lead to an overestimate of «.

In the extreme case of a nonangle-separable scattering
law S(6.,, Oou) = pf (i, O,) One can still say several things.
First, f(6i,, Oou) =f(Ooue> Bi). Second, the functional form of
f will clearly affect the result. But, most importantly, the
dipole to monopole ratio does not depend on the strength of
the scattering, w, since it cancels. It therefore does depend on
reflection properties modulated by the function f.

C. Refraction

The effects of refraction on reverberation were explored
in Sec. II B, Egs. (5)—(11). Of interest here is the effect of
refraction on the long range ratio F. First, consider orders of
magnitude. In the long range limit the second terms in Eqs.
(8) and (9) tend to zero. For strong refraction we might have
p=c/c' ~1500X100/20=7.5 km and a=0.5 rad™' so that
the decay distance for the first exponential in Eq. (8) (i.e.,
4p/a) would be 60 km. In a rough calculation we can ne-



glect the B term since it is proportional to the difference
between reverberation from the low sound speed and the
high sound speed side of the duct. Equations (6) and (7)
reduce to

Op [ ar H 2
Imonopole = 53_65<2_p IOg(Z) + 1) eXP(— a”/P)- (37)
The ray angle at the array is always in between that at the sea
surface and seabed, but since we have already neglected the
difference, it is straightforward to form /g, by inserting a
¢ term in the integrals that resulted in Eqgs. (6) and (7).
The result is

udp [ ar H ar2(H-h) H 2H
Lipole= 35| - log| — |+ 1 )| —————+ —+—
ra“\2p h 2p  p 2p ra
Xexp(— arlp). (38)
Writing b= ar/(4p) and n=h/H the ratio is

2H 1+b+8b%1-
== (-n (39)
ar 1 -2blog(n)

Clearly the dependence of F on H, «, and r is unchanged
except for a numerical factor, which for b=1 and 7=0.5 is
2.51. Thus the numerical inversion technique is robust in
the presence of refraction.

D. Formation of the dipole beam pattern

In practice it may be difficult to produce a perfect dipole
response. It goes without saying that the null needs to be as
deep as possible since it is attempting to reject near horizon-
tal paths. If there is a hint of monopole behavior of the form
B(6)=6+k*2 sin? 6, then the expected weak returns and
rapid fall-off with range will be contaminated and the func-
tion F [Eq. (19)] will be poorly estimated.

V. STANDARD INVERSION TECHNIQUES

A. Standard geoacoustic inversion of conventional
reverberation only

Here the objective is to demonstrate, by examining a
cost function, that application of standard inversion tech-
niques to conventional reverberation alone would yield poor
estimates of & and u. The reverberation was again simulated
by the modified C-SNAP already described in Sec. II C for
an isovelocity water column and flat bottom environment as
in Table I, again varying « by adjusting the volume absorp-
tion a, in proportion. The baseline values of « and w are
0.92 rad™! (corresponding to ayz=4 dB/rad) and —27 dB.
For demonstration purposes we deliberately avoid introduc-
ing frequency variation in these parameters; in practice there
may be an additional benefit in including such variation in
the cost function. Figure 6 shows the misfit ambiguity sur-
face (least-mean-square) as a function of u and o and av-
eraging over ranges from 3 km to 50 km. The baseline val-
ues are indicated by a plus sign. There is a clear trough along
the diagonal where u a? is predicted by Eq. (2). However
the bottom of the trough is not absolutely flat so it is possible
to obtain a fit (indicated by the circle), though only in the
absence of noise. “Noise” can mean several things in this

FIG. 6. Behavior of least-mean-square cost function based on monopole
reverberation alone. The baseline values of a,z and w are indicated by a +,
and the deduced solution by a o.

context. First, from a pure inversion theory standpoint, one
might envisage some randomness added in the a, u plane.
Secondly ambient noise, when added to reverberation mea-
surements only affects the longest ranges, and one therefore
should, as far as possible, arrange the experiment to mini-
mize ambient noise (see Sec. VI). Thirdly, a discrepancy be-
tween the chosen physical model and the experimental mea-
surements may result in spatial (or temporal) fluctuations
which spoil the goodness of match. Obviously the slightest
disagreement between the physical model and measurements
will result in arbitrary shifts predominantly along the trough.
This is a manifestation of the inseparability of « and w that
this paper addresses. How the inversion algorithm copes with
this trough and noise depends on which algorithm is chosen,
and a separate investigation is out of the scope of this paper.

B. Simultaneous geoacoustic inversion of
reverberation and dipole reverberation

With the addition of, effectively, a second measurement
there are several options for processing. One possibility is to
construct a joint cost function following the approach used
by Nielsen (2006) where the two measurements were rever-
beration and propagation. In the present context where we
are only searching for two parameters we have two measure-
ments (even at a single range) and two unknowns, u and a.
If one were to assume the long range versions of Egs. (1) and
(18), namely Egs. (2) and (19), to be true one could write
down a formula for & only and a formula for x only. Instead,
for reasons that will become apparent, we define a quantity A

A= k222 2I_Ilmonogole - kzzzzi{
rIdipole rF
1 —exp(—X
oy (1=exp(=X)) (@0)

(1= (1 +X)exp(- X))

such that, in the long range limit it would converge on a.
Similarly we define a quantity M



M= I?nonopoler (2Hk222)2

2
I dipole (Dp

( (1-exp(= X)) )2
=u X
(1= (1+X)exp(- X))

that in the long range limit would converge on . From the
point of view of numerical inversion the two parameters A
and M are already orthogonal in the long range limit and do
not require any coordinate rotations (see Collins and Fish-
man, 1995). Their orthogonality suggests the following joint
cost function,

E(ag, us) = 2 (A; - A,{(as,,“«s))z +w

(41)

X(M; = M/ (a5, i), (42)

where A, M denote measurements and A’, M’ denote mod-
eled quantities, w is a relative weighting found by trial and
error, and the summation is assumed to be over a selection of
ranges. Figure 7 is a plot of E as a function of the search
parameters ag, ug for ranges between 3 km and 50 km. The
first and second terms of Eq. (42) are shown individually
in Figs. 7(a) and 7(b), so that one can see the closeness to
orthogonality of the functions, then combined in Fig. 7(c).
The improvement over Fig. 6 is dramatic, and there is a
well defined solution for both parameters which agrees
with the simulated experimental values of @=0.92 and u
=10727 as shown by the plus symbol in the figure. In fact
the fit is still good for shorter ranges, and the reason for
this is that the function of X on the right-hand side of Eq.
(41) tends to a constant (actually 22) for small X as well as
tending to a constant (1) for large, so numerically u can
be fixed. Because u is fixed, a can also be fixed despite
the fact that the function of X at the right-hand side of Eq.
(40) tends to 2/X leading to the whole right-hand side
being a constant, independent of «. By a useful quirk, that
constant 4H/(¢r) depends only on the critical angle.

In retrospect it is clear from Egs. (40) and (41) that a
measurement of monopole and dipole reverberation at even a
single range (given H, z, etc.) is enough to define A and M
and therefore « and u if that range is long. For instance, in
this simulated example (or Fig. 3) we have Iyonopole
=155.3 dB and /4ip0.=174.9 dB at 20 km. This leads to «
=091, u=10"%7 again agreeing with the simulated experi-
mental values. Obviously the sensitivity to the two absolute
reverberation levels requires some kind of averaging, but not
necessarily over range. Although this appears to obviate nu-
merical inversion altogether, in a more realistic inversion one
might be searching for more than just two parameters (for
instance, critical angle or geoacoustic layer parameters) so
one can justify using the more robust standard inversion
technique.

VI. EXPERIMENTAL DETERMINATION OF « FROM
THE REVERBERATION RATIO

An ideal dipole receiver would be a towed horizontal
triplet array since it is readily available as a means of resolv-
ing the left/right ambiguity by cardioid beam-forming. In

10

— 1000
, L 800
10°
L 600
= ||
%)
10 400
200
H 0
10°
o 2
dB
()
10"
— 5
L1 4
13
3. -
2
1
107
: 0
10 10' 10
2
adB
(b)
10"
—1
- {os
10
{06
3= ||
3
10 0.4
02
10"
0

(©

FIG. 7. Behavior of the first (a) and second (b) quasiorthogonal term in the
cost function [Eq. (42)], and the joint cost function (c) derived from mono-
pole and dipole reverberation. Baseline values are indicated by a +.

principle the triplets can be weighted as [sin(¢); sin(¢
+27/3); sin(¢p+47/3)], knowing the roll angle for each
triplet, to form an effective vertical dipole. Unfortunately
suitable data have not been found by these authors. Instead
we use here data gathered with a vertical array (VLA) to
mimic a sine-squared beam since all beams are known. Of



course, in this case, one could treat each vertical beam as a
“tilted beam” (Sec. III C), but the simplicity of the dipole
formulas and the appeal of a dipole or triplet array compels
us to demonstrate that approach. The data were collected at
three sites on the Malta Plateau during BOUNDARY2003
(July 8th, 2003) and BOUNDARY2004 (May 17 and 20,
2004), and have already been described in Harrison (2005a).
Each set consists essentially of monostatic reverberation on a
gradual slope with the source and array in about 150 m water
depth but with returns from water shallowing to about 80 m
over some tens of kilometers. There was a strong summer
profile in 2003 with a velocity contrast of 30 m/s, whereas
in 2004 the gradients were much weaker with a contrast of
about 10 m/s. The source was a sweep from 700 to 1500 Hz
at 209 dB re 1 pPa at 1 m, and the 32-element VLA had
angle resolution of a few degrees at its design frequency,
1500 Hz. Given the smoothed beam responses it is an easy
matter to sum over angles (monopole) and multiply by
sin?(6) then sum (dipole). The match-filtered response for the
three dates extending out to about 25 km are shown in Figs.
8(a)-8(c), and these can be compared with Fig. 3. The spike
near 10 km on the 8th and the 20th is the Campo Vega oil rig
and tender. From approximately 1 to 25 km in all cases one
can see the expected divergence of the monopole and dipole
curves. The weaker dipole curves tend to flatten off into am-
bient noise at a shorter range. Also the Campo Vega spike is
weaker compared with its surrounding in the dipole case,
which is to be expected since it is a predominantly horizontal
return. Both the continuum of angles theory in Secs. II and
IIT and the discrete mode theory of C-SNAP exclude angles
greater than the critical angle. They therefore do not model
behavior correctly at short range. However, it is interesting to
note that the direct path propagation (through its angle-
independence) would lead to the same formula for F [Eq.
(20)] in this region. In fact the dB difference of 12 or 13 dB
(which is strikingly uniform despite the spatial fluctuations
of the individual curves) is close to that expected for a criti-
cal angle of about 20°.

The equivalent of Fig. 5 for all cases is shown in Fig. 9.
Now one can clearly see the effects of ambient noise beyond
about 10 km, and the fall-off at short range, leaving a plateau
in the middle at 23, 21, 21 dB, respectively. If a flat bottom
and Lambert’s law were assumed with corresponding depths
of 149, 143, 165 m we would arrive at « values of 1.49,
2.27, 2.62 rad™". Allowing for the fact that the dominant re-
verberation is from the shallow side of the array a more
realistic average depth would be 100 m, so the values of «
would reduce to 1.00, 1.58, 1.58 rad~!. One could also in-
clude more detailed bathymetry and azimuthal effects
through an effective depth, as in Harrison (2003a) or Harri-
son (2005¢), where three-dimensional slope effects were
considered. However the effective depth with a uniform bot-
tom slope is just the average of the endpoint depths so we
would expect the above estimate to remain valid. Note that
we have no reason to suspect spatial changes in « in this
environment so we do not invoke Eq. (30).

Since the sound speed profiles were not isovelocity it is
interesting to calculate the correction to the long range ratio
F using Eq. (39). In fact n=h/H=0.5 and assuming «
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FIG. 8. Monopole (solid) and dipole (dashed) reverberation on the Malta
Plateau for (a) July 8, 2003; (b) May 17, 2004; (c) May 20, 2004.

=1 rad™! and a (uniform) sound speed gradient of 0.1 s~! the
extra factor is 1.04 at 10 km. Increasing the sound speed
gradient to 0.3 s™! the extra factor becomes 1.5 at 10 km.
These factors are close enough to unity to justify the isove-
locity estimates above.
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There is evidence that the scattering law may have a
weaker dependence on angle than Lambert (Holland, 2006),
and it was shown in Sec. IV B that a law, such as Lommel-
Seeliger, with n=0.5, would result in an extra factor of 0.75
in the dipole-monopole ratio. This would reduce the « values
further to 0.75, 1.19, 1.19 rad~!. These values are close to the
mean (1.1 rad™") and well within the bounds set by an inde-
pendent measurement technique, already reconciled with
other measurements, for the same area based on one-way
propagation paths (Prior and Harrison, 2004). In fact the up-
per Lambert values and the lower Lommel-Seeliger values
lie on the edge of their error distributions.

Inserting a=1.1 rad™! into Eq. (1) and taking the mono-
pole reverberation value of 68 dB at a range of 10 km, with
®=27, p=1.87 m (1.25 ms pulse), and vertical beam width
3.5°, we find u=-33 dB. This value is close to other mea-
surements for the area (see for instance, Holland, 2006), for
which there is a wide spread, and of course this evaluation
depends on the sonar calibration, unlike the evaluation of a.
In addition, for comparison purposes, long range measure-
ments of w that are immune from propagation uncertainty are
hard to come by for the reasons central to this paper.

VIl. CONCLUSIONS

An analytical approach resulting in closed-form solu-
tions has been used and extended to propose a more robust
way of separating and extracting geoacoustic and scattering
parameters from reverberation. From a philosophical point of
view the marrying of analysis with a numerical technique has
been demonstrably fruitful.

An earlier paper (Harrison, 2003a) suggested on theoret-
ical grounds that in an isovelocity environment long range
reverberation is a function of w/a? (where « is the angle
derivative of reflection loss and w is the scattering coeffi-
cient). So @ and u cannot be separated by inverting rever-
beration alone. In this paper we have shown that in a refract-
ing environment there is a strong correlation, 1i.e.,

relationship, between u, a and sound speed gradient (ray
radius of curvature p). Because of this, the shape of the re-
verberation curve at long range for a given u, can always be
matched by a change in « and p. Thus if p is predetermined
then, in principle, a and u can be separated since they affect
the curve in different ways. However if, p is unknown there
is enough freedom to match a change in u with a joint
change in a and p.

This paper has proposed an alternative geoacoustic in-
version technique in which the reverberation is deliberately
modified by biasing the propagation angles through a source
or receiver beam, thus providing two separate measures of
reverberation. The relative behavior of these two measures
then provides the required separability between scattering
and geoacoustic parameters. Of the various possibilities,
three were investigated: a dipole beam, a narrow horizontal
beam, and a tilted beam. The dipole reverberation combined
with monopole (conventional) reverberation leads to some
surprisingly powerful, simple, and robust results. For in-
stance, from the ratio at long range we can find « directly
and independently of other parameters (other than water
depth). Having found « one can then deduce u. The short
range ratio is sensitive to critical angle and insensitive to w
and a. These deductions were made by extending Harrison’s
closed-form solutions, and they were confirmed using a
modified version of the wave model C-SNAP. Although the
choice of measurements (i.e., the ratio) was suggested by
appeal to closed-form solutions this paper does not advocate
using closed-form solutions for inversion.

Simulations using C-SNAP were used to test the separa-
bility of x4 and « in the context of geoacoustic inversion of
reverberation. A comparison was made between an approach
based on monopole reverberation alone and joint monopole
and dipole reverberation. The first case leads to a strong
correlation between u and a?, as expected, and therefore the
prospect of difficult separation with noisy data. The second
used the theory to suggest orthogonal search parameters
which then led to a very well defined minimum.

Although the simulation assumed an isovelocity range-
independent environment it was shown mathematically that
the approach can handle range-dependent environments and
still separate «, u in the long range limit. The approach is
robust to refraction and the derived « is relatively insensitive
to the assumed scattering law.

Separability of « and p was demonstrated with experi-
mental reverberation data from a vertical array. Since eleva-
tion angles were known it was possible to form an exact
analog of the monopole and the dipole receiver beams by
multiplying by, respectively, unity and sine squared of beam
angle, before summing over all angles at each delay. The
results clearly showed the expected divergence of the two
varieties of reverberation at long range from which one could
derive separately the three quantities, «, u, and 6,. This op-
eration ought to, in principle, be possible with a towed hori-
zontal triplet array steered as a vertical dipole or monopole.
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APPENDIX: TRANSITION FROM “SHORT RANGE”
TO “LONG RANGE”

Although it might seem a bit fussy to investigate as
vague a phenomenon as the transition from short range to
long range behavior (the “knee”), its position has important
consequences for the viability of this technique in practice
since it influences the lower limit of “long range” where the
theory is at its best. As a working definition of a knee we
take the well-defined point on a log(r) graph where the short
range and long range asymptotes intersect. Taking Eq. (1),
the long- and short-range limiting forms are already specified
in Egs. (2) and (3). The intersection is found by simply
equating the two, thus the knee is at

2H o1
r,=—— orX=
al’

c

as we might have guessed. To do the same operation on Eq.
(18), we equate the long and the short range asymptotes
given by Egs. (19) and (20), and we find

4H o2
r,=—> orX=2.
al’

c

Thus the knee of the ratio of dipole to monopole reverbera-
tion occurs at twice the range of the monostatic reverberation
knee. As pointed out in Harrison (2003a) the latter tends to
occur at about 20 water depths for many bottom types.
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