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INTRODUCTION 

The Naval Air Development Center has a comprehensive ray-tracing 
program which has been extensively used for a number of years not 
only by our own laboratory, but also by other naval activities and 
private contractors . In this paper I shall present a brief overall 
description of the program and shall then describe in somewhat 
more detail the so-called Target Ray Routine , which searches for 
and computes the various rays which propagate from a specified 
source location to a specified receiver location, and combines the 
rays to compute an effective resultant propagation loss. This 
will be followed by a few comparisons of ray theory with normal 
mode theory and with experimental data. The paper will conclude 
with a few remarks about a suggested technique for ray computation 
based on a more general type of velocity profile than is currently 
being used. 

GENERAL DESCRIPTION 

The NAVAIRDEVCEN ray-tracing program [Ref. IJ is based on a 
horizontally stratified ocean model consisting of a flat horizontal 
bottom and a single velocity profile. The velocity profile may be 
read into the program either as a table of sound speed versus depth 
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or temperature and salinity versus depth. In the latter case, the 
sound speed is computed from Wilson's equations [Ref. 2J. The 
data may be expressed in either English or metric units. Two 
options are available for curve-fitting, either straight lines or 
curvilinear segments [Fig. lJ. The straight-line fit, of course, 
is the old-fashioned method of constant gradients. Although the 
limitations of this approach are well known, it is still occasionally 
useful and has been retained as an option. The curvilinear segments 
are of the same form as those employed by Pedersen and Gordon 
[Ref. 3J, in which the reciprocal of c 2 is quadratic in depth. 
The curve-fitting technique is completely automatic. It is 
basically similar to that of Gordon [Ref. 4J, though it differs 
considerably in detail. 

In addition to the profile layer depths, a set of special receiver 
depths may be read into the program, and a composite table of up 
to 100 depths and sound speeds is formed. 

Each individual ray is specified by its source angle, from which 
the ray vertex velocity is computed. As a consequence of the 
assumption of horizontal stratification, the vertex velocity of 
each ray is constant, and the ray travels in a set of repetitive 
cycles between its upper and lower vertices. As a result, it is 
possible to pre-compute the increments of range, travel time, etc., 
in each layer. The tracing of the ray then consists simply of 
adding up the increments and computing the propagation loss as the 
ray proceeds outward in range. 

The ray output data consist of the following: depth, range, ray 
angle, travel time, spreading loss, and propagation loss at up to 
six frequencies. 

The actual tracing of rays is a relatively minor part of the 
NAVAIRDEVCEN ray-tracing program. The bulk of the program consists 
of four executive routines and their associated subroutines, which 
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contain the logic for determining what rays should be computed. 
The four executive routines are: (a) limiting rays, (b) ray 
families, (c) target rays (from source to specified receiver 
location, and (d) constant loss contours (used chiefly for 
multipath propagation loss versus range). 

The first two routines are more or less straightforward items 
which, I suppose, are common to all ray-tracing p rograms . The 
limiting ray routine may be used to compute limit ing rays to any 
desired local maximum of the velocity profile. It may also be 
used to compute families of rays in the vicinity of limiting rays. 
The only unusual feature of the ray family routine is the method 
of specifying the ray source angles. The data input format is 
extremely flexible, allowing any desired combinat ion of individual 
rays and incremental sets of rays to be specified. 

The target ray routine is designed to provide complete detailed 
information regarding multipath propagation between a specified 
source and a specified receiver location. It contains a search 
and iteration procedure which computes the source angle of each ray. 
After all the target rays have been computed, it then combines the 
rays in three different ways to obtain a resultant effective 
propagation loss: 

(a) Strongest ray only. 

(b) Intensities added (random phase). 

(c) Amplitudes added (including phase inter ference computed 
from ray travel times). 

The first is not really a combination, but merely gives the loss 
corresponding to the single strongest ray. The second method of 
combination consists of adding ray intensities, assuming random 
phase. The third method computes the relative phases, based on 
the ray travel times, and computes aloss based on pressure addition, 
phase included. 
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The constant loss contour routine has turned out ln practice to 

be a misnomer since the contour portion of it is seldom used. 
This routine is a sort of "quick and dirty" target ray routine, 
designed to handle thousands of receiver locations instead of one . 
First of all, it computes a large family of rays and then 
inte r polates between pairs of adjacent rays to determine the ray 
intensities at each of the specified receiver locations. It 

then adds the intensities of all the rays which reach each receiver 

location and computes the resultant propagation loss. The user 
has also the option of selecting the strongest ray only, but the 
pressure addition option is not available in this routine. 

An optional second stage of this routine provides for a second 
interpolation to compute the ranges at each receiver depth at 
which the propagation loss is equal to a set of specified contour 

values, thus providing data for drawing contours of constant 
propagation loss. 

We also have a modified version of the constant loss contour 
routine in which the printer prints a symbol at each point in 
a grid of 200 ranges and 40 depths. A different symbol is used 
for each 3 dB interval of propagation loss from 59 dB to 110 dB. 
After the array has been printed, it is a simple matter to draw 

contour lines manually. 

TARGET RAYS 

After this rather sketchy description of the program, I should 
like now to discuss the target ray procedure in somewhat more 
detail. The basic problem here is to find the source angles of the 
rays which propagate from a given source location to a given 
receiver location. 

A pimple graphical solution to the problem may be obtained by 
computing a large number of rays and plotting the ranges at the target 

61 



depth against the ray source angles. Consider the sample velocity 
profile shown in Fig. 2. Let the source be at the depth S within 
the deep sound channel, and let the target be at the depth T, 
slightly above the source. Before proceeding to the graph of 
range versus source angle, let us note some of the salient features 
of the propagation in this example. First, there will be a sector 
of rays, with source angles near the horizontal, which are trapped 

ln the deep sound channel and do not reach the target depth. 

Secondly, as the source angle increases, both pbove and below the 
horizontal, there will be sectors of rays which penetrate above 
the target depth, but remain within the channel. These sectors 
are bounded by the limiting ray to the bottom of the surface duct. 
Thirdly, as the source angle increases further, there will be 
rays which reach the surface but are refracted b e fore reaching 
the bottom. These rays represent RSR propagation. Finally, 
beyond the limiting ray to the bottom, and extending to ±90o, 
there are the outermost sectors containing the rays which strike 
both the surface and the bottom. 

If we now trace a large number of rays and plot the range at the 
target depth as a function of ray source angle, we get the rather 
strange-looking family of curves shown in Fig. 3. The different 
curves of the family correspond to successive crossings of the 
target depth as the rays move outward in range. Thus, each curve 
can be identified by the number of vertices through which the rays 
have passed. The innermost vertical dashed lines represent the rays 
tangent to the target depth. The central sector between these lines 
is a blank sector. It contains no rays which reach the target. 
Proceeding outward, the next pair of vertical lines, one on either 
side, correspond to the limiting rays to the bottom of the surface 
duct, while the outermost vertical lines correspond to the limiting 
rays to the bottom of the ocean. These limiting rays divide the 
angular region into sectors within which the various types of 
propagation occur - SOFAR channel, RSR, and bottom-surface bounce. 
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The graphical solution for a target at 50 kyd is indicated by the 

horizontal line drawn across the graph at that range. Each 
intersection of this line with one of the curves yields the source 
angle of a target ray. 

The question now arises, how does one implement such a solution 
on a digital computer? Since an analytic solution is impossible, 
the most obvious approach is to use an iteration procedure, but 
there still remains the problem of making suitable initial estimates. 
This is where the concept of limiting rays and sectors is useful, 
since it is clearly not permissible to iterate across a sector 
boundary. Once the sectors have been defined, a search and 
iteration procedure is carried out separately in each sector. 

Time will permit only a few brief comments about the procedures 
used in the program. First of all, we distinguish between the 
outer sector rays, i.e., those rays which bounce off both the surface 
and bottom, and the inner sector rays, i.e., those rays which 
experience refractive vertices, either upper or lower, or both. 

As may be seen in Fig. 3, the range curves have no maxima or minima 
in the outer sectors. They are monotonic functions of the source 
angle. To see why, let us "unfold" the ocean, as indicated in 
Fig. 4. If we consider the extensions of two adjacent rays into 
the "unfolded" regions, as indicated by the dashed lines, we see 
that the rays continue to spread out and never cross one another. 
This behaviour permits an extremely simple search and iteration 
procedure. We start with a source angle slightly beyond the sector 
boundary and employ Newtonian iteration to find the first ray which 
reaches the target. We count the total number of vertices passed. 
To find the next ray, we use the preceding target ray as an initial 
estimate and iterate again, requiring this time that the ray pass 
through one more vertex. The process 1S continued in this manner 
until the desired number of outer sector rays have been found. 
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The problem of finding rays in the inner sectors is more complicated, 
and I must restrict the discussion to a brief statement of the 
basic concept. Each sector is divided into four equal intervals, 
and a separate search is conducted in each interval. The concept 
is illustrated in Fig. 5. Let and 82 be the bounding source 
angles of the interval. As each of these rays is traced, the range 
is noted each time the ray crosses the target depth. Also, the 
number of ray vertices is counted. As soon as the target range 
has been exceeded, the number of vertices is recorded. Let the 
respective numbers be NVl and NV2 . If NYl and NY2 are the 
same, as indicated by the left-hand diagram, there is no target ray 
ln the interval. If NYl and NY2 differ by 1, as indicated in 
the centre diagram, there is one ray, and it is found by an 
iteration procedure based on interpolation. If NYl and NY2 
differ by more than 1, the interval is divided by 2 and the process 
is repeated. 

The target ray routine in our ray-tracing program has proved very 
successful and has been used extensively in studying multipath 
propagation. Because of the accuracy with which travel times can 
be computed, it is particularly useful for investigating the effects 
of phase interference. 

COMPARISON WITH NORMAL MODE THEORY 

In presenting a few results obtained with our ray-tracing program, 
Consider I shall concentrate on the phenomenon of phase interference. 

first of all a comparison with normal mode theory. We have 
developed a number of normal mode programs, one of which is based 
on a three-layer model in which 1/c 2 varies linearly with depth 
in each layer. With a three-layer model it is possible to approximate 
a typical deep-ocean velocity profile containing a surface duct. 
The upper graph of Fig. 6 is a plot of propagation loss versus 
range for a three-layer profile without a surface duct, i.e., 
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the surface layer has a negative gradient. At the bottom of Fig. 6 

is a comparison run made with the ray-tracing program, using the 
same bottom parameters and approximately the same velocity profile. 

Except for the convergence zone, the agreement between the two 
curves is quite remarkable, even down to the short-period 
oscillations. The most puzzling feature, however, is the convergence 
zone. Although it is to be expected that the detailed structure 
of the zone as predicted by ray theory should be inaccurate, it is 
quite surprising to find that the entire outer portion of the ray 
theory zone is missing from the normal mode curve. Investigation 
of this problem has revealed that the entire outer portion of the 
zone predicted by ray theory is formed by a small bundle of rays 
leaving the source within ±ZO of the horizontal. According to ray 
theory, the energy radiated into this small bundle should stay 
intact as the rays propagate and should become concentrated ln a 
small region at the convergence zone. Apparently, however, 
diffraction effects are sufficiently important to cause the energy 
to spread out beyond the geometric confines of the ray bundle and 
to become widely diffused before it reaches the range of the 
convergence zone. It appears that one must be very cautious about 
using simple ray theory to make predictions of this sort. 

The dashed curve in the lower figure shows the propagation loss 
computed on the basis of random-phase intensity addition. 

COMPARISON WITH EXPERIMENT 

It is commonly assumed that phase coherence is lost in bottom-bounce 
propagation in the deep ocean. However, this is not necessarily 
the case. The large fluctuations which are observed in propagation 
loss are evidence of phase interference effects, and in some instances 
these fluctuations show some correlation with ray-theory predictions. 
Figure 7 shows some results of an experiment conducted near the 
Bahamas a few years ago . Ten sonobuoys were dropped at various points 
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along a straight line, and a source ship, towing a CW projector, 
proceeded along the line. Values of propagation loss computed from 
the various hydrophone outputs were superimposed on the same 
range scale, resulting in the various "wiggly" segments shown 
in the figure. At any given range on the graph, the curves 
thus correspond to different ship locations for the different 
buoys. In spite of the spread of the results, it can be seen that 
certain distinct trends stand out. In particular, a large scallop 
may be seen , extending from 20 kyd to about 40 kyd. Beyond this 
is another broad scallop extending out to the convergence zone. 

The heavy line on the graph shows the propagation loss predicted 
by the ray-tracing program, assuming phase coherence. Although 
there are slight discrepancies in the predicted ranges, the main 
features of the theoretical curve at ranges beyond 20 kyd are 
in sufficient agreement with the experimental data as to leave 
little doubt as to the existence of phase-coherent propagation. 
At ranges shorter than 20 kyd the scatter of the experimental 
data is too large to exhibit a consistent pattern. Also, at 
ranges beyond the first convergence zone the correlation between 
the experimental and the oretical propagation loss is poor, 
suggesting that phase coherence is lost after the second bounce. 

A SUGGESTED RAY COMPUTATION PROCEDURE FOR GENERAL SOUND SPEED 
VERSUS DEPTH RELATION 

The use of curvilinear segments permits the construction of a velocity 
profile curve in which the slope is everywhere continuous. This is 
obviously a great improvement over the use of straight line segments, 
where the discontinuities in slope at the layer boundaries give 
rise to false caustics and shadow zones. However, with the quadratic 
functions currently used ln the ray-tracing program, it is impossible 
to avoid discontinuities in the second derivative at the points 
where adjacent segments are joined. Discontinuities in the second 
derivative, while not as serious as discontinuities in slope, are 
nevertheless capable of causing undesirable kinks in the curve of 
propagation loss versus range . 
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To treat the more general case in which functional forms are used 

which permit continuity of both first and second derivatives, 
consideration has been given to the use of numerical integration. 
The integrals involved in the computation of horizontal range, 
travel time, and spreading loss are: 

Horizontal range 

x='6{;;x 

Travel time 

t = ~ ~t 

Spreading loss 

N = 10 19 I spr 

u = L ~u 

where 

Z = depth 

8 = 8(z) ray 
8 0 ray angle 

cos e dz 
sin 9 

1 r Z2 1 
Cv J sin e cos 9 

Zl 

xu Sln 8 0 sin e 

r Z2 cos 9 dz ~u = J sins 9 
Zl 

angle 
at source 

C C (z) = sound speed 

Co sound speed at source 
Cv Co/cos 90 = vertex velocity 
cos 9= C/Cv 
rl 1 yd 

dz 

The spreading loss is usually expressed in terms of the range 
derivative ox/ o9 o . If instead of this derivative, we use a 
related parameter u, as indicated above, the integrals for the 
increments ~, ~t, and ~u in each layer all have a similar form. 
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In general, numerical integration appears to be an attractive 
method of evaluating these integrals. There is a problem, however, 
at a refractive vertex, where the ray becomes horizontal and hence 
the ray angle e is zero, At such a point the integrands of 
both 6x and 6t blow up (although the integrals are finite), 
and the 6u integral itself blows up. 

Let us now transform the integrals by expressing 1/C 2 as a 
function p(z), which might logically, though not necessarily, 
be chosen to be a polynomial in z. With this transformation, 
the integrals appear as follows. Let 

then 

P (z) 

Py 
Q 

. 6x 

1/C 2 

1/C 2 
Y 

P - Py 

JP; JZZ 

Zl 

JP; 6x + 

.3jz 6x + Py 

dz 

JQ 

szz JQ dz 
Zl 

S Zz dz 
3/ 

Zl 
Q 12 

Note: At a refractive vertex, 

The limits of integration Zl and Zz are the depths of the upper 
and lower boundaries of the layer , The travel time 6t is now well 
behaved, but problems still remain ln 6x and 6u, since the 
function Q goes to zero at a refractive vertex. 
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The problem can be circumvented by removing Q from the denominator 

through integration by parts, once for 6x and twice for 6u. 
Let 

P' dP dQ 
dz dz 

6x JP.; 

so that 

SZ 2 dQ 
p'JQ 

Zl 

Zl 

dz dQ 
P' 

1Z2 
PIIJQj +J 
P' 2 

Zl 

6.u 6.x + p';/ 2 J Z 2 dQ 
p'QS/2 

Zl 

= 6X - 2P 3/ 2 [~,~ + 2pnJ[} Z, 
V p,3 

Z 3 

+2 JZ
2 ~pn' --9 JQ d~ p'4 pIS 

Zl 

(Note: when Q=Q omit term 1 ). 
p'JQ 

Except for the term l/P'~ in the formula for 6.u, the only 
This function appearing in the denominators is the derivative pl. 

function is zero only at a local extremum (i.e., maximum or 
minimum) of the velocity profile. Hence these formulae can be 
used for any profile segment which does not contain an extremum. 
In the special case where a vertex occurs within a segment containing 
an extremum, it is a simple matter to divide the segment into two 
parts, using the basic formulae in one part and the transformed 
formulae in the other. 

A final comment is ln order regarding the term l/P'JQ, which 
becomes infinite at the vertex. This is a problem which is common 
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to all spreading loss computations based on the range derivative. 
The value of u is infinite at a refractive vertex, and the 
spreading loss there must be computed by a special formula which 
does not involve u. However, values of u are required at 
points beyond the vertex. It will be noted that in passing 
through the vertex, the infinite term occurs twice once in 
the interval immediately preceding the vertex, and again in the 
interval immediately following. It can be shown that the correct 
answer is obtained simply by ignoring this term altogether. 

A small computer program was written to check out this approach. 
Two simplified types of curve-fitting were included, one based on 
segments in which p(z) is quadratic ln z, as in the NAVAIRDEVCEN 
ray-tracing program, and the other based on a spline fit of 
segments in which p(z) is a cubic. Figure 8 shows a sample 
velocity profile consisting of four quadratic segments. At the 
right of the figure is an expanded-scale plot of the difference 
between the quadratic fit and the spline fit. Except for the 
first 100 ft at the top, which will not concern us, the profiles 
differ by less than 0.2 ft / s. 

A source was placed near the bottom at a depth of 1170 ft, and a 
family of rays were traced up over the first vertex and down again 
until they r e ached the source depth. The effects of the 
discontinuities in the second derivative may be expected to show 
up in those rays which vertex in the vicinity of the layer 
boundaries A, Band C. 

In Fig. 9 the spreading loss is plotted as a function of ray source 
angle for both the quadratic fit and the spline fit. The source 
angle scale has been chosen to show the effects of the two layer 
boundaries A and B. (The effect of boundary C would be off-scale 
at the right.) The effects of the discontinuities are indicated by 
the kinks in the solid curve at the points A and B. The spike 
immediately beyond A represents a focal point resulting from the 
nature of the velocity profile. 
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The spline fit is represented by the dashed curve, which does not 

exhibit the discontinuities in slope. The oscillatory nature of 
this curve to the left of the focal point is a result of the rather 
simple-minded technique of forcing the spline curve to pass 
rigorously through all the data points. With a little more care, 
it would be possible to obtain better results. 

Figure 10 shows another sample velocity profile consisting of three 

layers and exhibiting a reverse curvature. The difference between 
the spline and quadratic fits is shown at the right. The 
accompanying plot of spreading loss versus source angle is shown 
in Fig. 11, where, as before, kinks occur in the quadratic-fit 
curve in the vicinity of the layer boundaries A and B. 

In making these runs, it has been found that the special formulae 
based on integration by parts should be used not only in intervals 
where a refractive vertex actually occurs, but also where a vertex 
is merely approached, that is, where the ray angle approaches 
within a degree or so of the horizontal. The transformed integrals 
have proven to be exceedingly well behaved in all examples 
investigated. 

It is doubtful whether the errors arising from discontinuities 
in the second derivative of the profile curve are serious enough to 
warrant the inclusion of this approach into general ray-tracing 
programs. However, if special situations arise in which continuity 
of the second derivative is important, the technique suggested 
above appears to be quite appropriate. Furthermore, because 
virtually no restrictions are placed on the mathematical form of 
the fitt i ng function, it should be possible to fit most velocity 
profiles with a relatively small number of segments. 
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DISCUSSION 

In reply to queries, Bartberger confirmed that only one ray was used 
for intensity calculations. 

When comparing results between ray theory and normal mode calculations, 
a profile with C-2 linear in depth was assumed for the latter. This 
was approximated for the ray tracing by closely spaced ,segments i n which 
C-2 was quadratic in depth. 
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COMPARISON WITH EXPERIMENTAL DATA 
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