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1. Introduction 

1.1 Biological “Upcycling” of Plastics 

Polyethylene terephthalate (PET) is the world’s most popular synthetic polymer by 
annual production mass.1 PET is primarily used to make apparel and plastic beverage 
bottles. Single-use PET water bottles are among the largest constituents of deployed 
forces waste streams in the US Army.2 Due to the difficulty and low payoff of 
recycling plastics in remote areas, the Army would sometimes incinerate plastic 
waste in “burn pits”. For health and environmental reasons, burn pits have been 
outlawed with few exceptions. Therefore, safe and effective ways of handling plastic 
waste remain a challenge for our deployed forces. If waste could be used by our 
deployed forces as a feedstock for the production of useful chemicals, materials, or 
energy, it could be converted from a burdensome liability into an asset that reduces 
logistical footprint or provides other tactical advantages. A biological process to 
break down PET would have a number of attractive attributes. Biobased processes 
tend to be safe, operate under mild conditions of temperature and pressure, and 
require lower energy inputs than many (thermo)chemical processes. In addition, 
metabolism of waste PET by natural or engineered organisms offers the possibility 
of converting it into chemicals, materials, or energy for our Soldiers, even in remote 
environments. 

Research has demonstrated that several environmental species of Pseudomonas are 
able to degrade synthetic plastics with varying degrees of efficiency. Of the 
approximately 140 known species of Pseudomonas, Pseudomonas putida has 
demonstrated the ability to break down and metabolize a large assortment of organic 
and especially toxic aromatic compounds.3 P. putida is also well-suited for genetic 
engineering, and an extensive and growing list of genetic tools has been developed 
for it.4 The hardiness, metabolic flexibility, and the ease with which P. putida can be 
genetically modified make it the bacterium of choice for several bioremediation and 
bioprocessing applications.5   

PET is synthesized from the polymerization of terephthalic acid (TPA) and ethylene 
glycol (EG)6 (Fig. 1). Because it contains a high proportion of aromatic rings in its 
backbone, PET is one of the more environmentally persistent plastics.7 However, the 
recent discovery7 and engineering8,9 of enzymes capable of hydrolyzing PET to TPA 
and EG have fueled interest in the possibility of utilizing microorganisms to break 
down waste PET to reduce its volume or even convert it into useful products or 
energy.7 



 

 
 

 

Fig. 1 PET hydrolysis generates terephthalic acid (TPA) and ethylene glycol (EG). (Figure 
based on Ref 10.) 

For this summer undergraduate project, we focused on the second part of a potential 
bioprocess to break down PET: the metabolism of TPA and EG by P. putida. We 
took a genome-scale metabolic modeling approach to quantitatively investigate and 
assess the potential of this bacterium to grow on TPA and/or EG as the sole carbon 
sources. 

Research has demonstrated that P. putida KT2440 possess all the genes necessary to 
form biomass on ethylene glycol.5 In addition, P. putida KT2440 has also displayed 
the ability to use ethylene glycol to produce energy.11 We were interested in using 
genome-scale metabolic models of P. putida KT2440 to better understand its 
potential to grow on EG and/or TPA. We outlined several research questions to 
address in this project: Do different methods of constructing and analyzing these 
metabolic models produce different outputs? How do model outputs compare to 
experimental literature results? Can flux balance analysis (FBA) predict how well P. 
putida can grow on EG, TPA, or both? What do these models say about the viability 
of a bioprocess based on P. putida KT2440 to convert EG and TPA into benign 
biomass or even useful chemicals? And, could genetic modifications improve the 
ability of P. putida KT2440 to grow (produce biomass) on EG and/or TPA as the 
sole carbon sources? 

1.2 Genome-Scale Metabolic Models and Flux Balance Analysis  

A genome-scale metabolic model (GSMM) is a reconstruction of an organism’s 
metabolism based on its sequenced and annotated genome.12 An annotated genome 
identifies the enzymes an organism can express and the reactions they catalyze— 
namely their substrate(s) and product(s). This information is collected from 
published research about the organism and its enzymatic reactions. A genome-scale 
metabolic model is therefore a rich and interactive “knowledge base” about an 
organism that allows researchers to test hypotheses in silico in order to inform, focus, 
or better understand their experiments. The primary components of a GSMM are a 
table or matrix of all of the reactions carried out by the organism and a second table 
or matrix of all the compounds that participate in the reactions listed in the reactions 



 

 
 

table. The third significant piece is the model’s “chemical formula” for biomass. This 
is generally a lengthy expression of compounds that comprise the biomass of the 
organism along with empirically determined coefficients for the compounds. 
Because the biomass formula quantitatively specifies all the compounds that 
constitute the organism’s biomass, the level of detail and accuracy of the biomass 
equation can have a big impact on the outputs generated by the model.  

The tool that makes genome-scale metabolic models “come alive” is Flux Balance 
Analysis (FBA). FBA is the calculation of the “flow” of metabolites through an 
organism's metabolic network (its complete set of metabolic enzymes) under defined 
conditions and constraints (Fig. 2). The constraints are represented by an objective 
function to maximize or minimize as part of the FBA calculations. A common 
constraint, and the one used in this work, is to maximize the flux of the biomass 
formation reaction.13 It is important to keep in mind the limitations of FBA. Because 
of the inputs—tables of reactions, compounds, and biomass composition—FBA is 
strictly stoichiometric. FBA models contain no information about thermodynamics, 
kinetics, or gene regulation. An FBA will not tell us what will happen when an 
organism is provided a particular carbon source or how long a reaction will take. 
Rather, an FBA can inform us, for example, whether an organism possesses the 
metabolic capabilities to grow on a particular carbon source. As well, FBA can 
predict the optimal set of metabolite fluxes through a metabolic network that will 
accomplish the specified objective, such as maximizing flux through the biomass 
formation reaction. Maximizing biomass formation was the objective function 
employed for this research project. 

 
Note: v = (set of) possible flux vectors through all n reactions 

S = stoichiometric matrix 
Sv = 0: conservation of mass 

Fig. 2 Illustrative explanation of constraint-based metabolic modeling. Each point in the n-
dimensional solution space represents a set of possible values for the fluxes through the n 
reactions. Application of stoichiometry, including conservation of mass, restricts the solution 
space to a smaller “allowable” set of fluxes, denoted by the pyramidal shape. If the objective 
function Z is to maximize flux v3, then the solution is the region (or point in this example) of the 
pyramid with the greatest value of v3. (Figure based on Orth et al.13) 



 

 
 

2. Methods, Assumptions, and Procedures 

FBA models of P. putida KT2440 (KBase ID 19217/162098/1) were constructed in 
KBase14 at https://www.kbase.us. Minimal media files containing a single carbon 
source were generated and uploaded. Table 1 lists the medium file used with EG as 
the sole carbon source. Only the carbon source was changed when running FBAs 
with other sole carbon sources in KBase. For example, glucose minimal medium was 
used as a comparison benchmark. The composition of that medium was identical to 
the one in Table 1 except for the substitution of EG with glucose. The objective 
function for all FBAs run in this project was maximization of the biomass reaction 
flux. The biomass chemical formula was the KBase default Gram-negative biomass 
formula. Gap-filling was enabled and used by KBase to generate FBA outputs for P. 
putida KT2440 growing on EG.  

Table 1 Growth medium composition used in this work 

Compound ID Compound name(s) Concentration 
(mol/L) 

Minimum flux 
(mmol [g cell 

dry mass]-1 h-1) 

Maximum flux 
(mmol [g cell 

dry mass]-1 h-1) 
cpd00992 Ethane-1,2-diol | 1,2-Ethanediol  |  

Ethylene glycol 
0.001 –100 20 

cpd00013 NH4plus |  NH4+ | Ammonium | 
Ammonia | NH3 

0.001 –100 5 

cpd00009 Orthophosphoric acid | Phosphoric acid | 
Phosphate | Orthophosphate 

0.001 –100 5 

cpd00048 SLF | Sulfuric acid | Sulfate 0.001 –100 5 
cpd00063 Ca(2+) | Ca2+ | Calcium 0.001 –100 100 
cpd00099 Hydrochloride | Hydrogen chloride | 

Hydrochloric acid | Chloride ion | Cl- | 
HCl | Chloride 

0.001 –100 100 

cpd00149 Co2+ | Cobalt 0.001 –100 100 
cpd00058 Copper | Cu+ | Cu(I) | Cu1+ | Copper1 | 

Cu(II) | Cu2+ | Copper2 
0.001 –100 100 

cpd10515 Iron(2+) | Ferrous ion | Fe(II) | Fe2+ 0.001 –100 100 
cpd10516 Fe3 | Iron(3+) | Ferric ion | Fe(III) | Fe3+ 0.001 –100 100 
cpd00067 H+ 0.001 –100 100 
cpd00001 OH- | HO- | Water | H2O 0.001 –100 100 
cpd00205 K+ | Potassium 0.001 –100 100 
cpd00254 Mg(2+) | Mg | Mg2+ | Magnesium 0.001 –100 100 
cpd00030 Mn(III) | Mn(II) | Mn2+ | Manganese 0.001 –100 100 
cpd00244 Ni2+ | Nickel 0.001 –100 100 
cpd00971 Na+ | Sodium 0.001 –100 100 
cpd00007 Dioxygen | O2 | Oxygen 0.001 –100 20 
cpd00034 Zn(II) | Zn2+ | Zinc 0.001 –100 100 

Notes: For other sole carbon sources, only the first compound (EG) was changed. Compound IDs are for KBase. 



 

 
 

Constraint-Based Reconstruction and Analysis Toolbox for Python (COBRApy)15 
was run locally with the Anaconda3 Navigator Python interpreter. Training to learn 
the basics of Python scripting was through Software Carpentry.16 The tables 
comprising P. putida KT2440 metabolic reconstruction models iJN746 (2008)12 and 
iJN1463 (2019)5 were obtained from the BiGG Models database17 at 
http://bigg.ucsd.edu.  

The Semi-Automated Metabolic Map Illustrator in Python (SAMMIpy)18 was used 
to render FBA results obtained from COBRApy into metabolic pathway diagrams.  

Basic Local Alignment Search Tool (BLAST) searches were run with the United 
States National Center for Biotechnology Information (NCBI) BLAST tool at 
https://blast.ncbi.nlm.nih.gov. 

3. Results and Discussion 

3.1  KBase 

KBase14 was the first FBA modeling tool we used to predict the growth potential of 
P. putida KT2440 on carbon sources including ethylene glycol. KBase encompasses 
a web-based suite of “apps” (Fig. 3). Using these apps, we were able to load a public 
annotated genome for P. putida KT2440 (see Methods), construct a draft GSMM, 
and run flux balance analyses using various media files we created and uploaded to 
the system, such as the one in Table 1. Gap-filling was activated and required for this 
model of P. putida KT2440 to generate biomass flux on the medium listed in Table 1. 
Gap-filling is a KBase algorithm that reverses the direction of some reactions or adds 
additional reactions to KBase FBAs that otherwise would not generate biomass flux. 
This can be useful and informative as long as the user is aware and takes note of what 
reactions were reversed or added by the gap-filling algorithm. It is possible that gap-
filling could generate physiologically unrealistic results. Because gap-filling was 
required for the P. putida KT2440 model to generate biomass flux on the EG medium 
listed in Table 1, this means the model did not originally contain all the metabolic 
reactions required for growth on EG. For this reason, as well as the availability of 
better-documented and experimentally validated models of P. putida KT2440 in the 
BiGG Models database,17 we transitioned our modeling efforts to the Python-based 
COBRApy modeling platform. 

https://blast.ncbi.nlm.nih.gov/


 

 
 

 

Fig. 3 A screenshot from KBase14 showing some of its available applications 

3.2  COBRApy 

Constraint-Based Reconstruction and Analysis Toolbox for Python (COBRApy)15 
requires a Python interpreter. We used the Anaconda3 Navigator freeware. FBAs 
were performed with P. putida KT2440 metabolic reconstruction models iJN746,12 
published in 2008, and iJN1463,5 published in 2019, both by the Palsson group at UC 
San Diego (Table 2). The number in the name of each model corresponds to the 
number of genes it contains. “i” represents “in silico”, and JN are the initials of the 
primary model builder, Juan Nogales. Model iJN1463 is the newest and most detailed 
metabolic reconstruction of P. putida KT2440 and, like iJN746, was built for 
COBRApy.  

Table 2 Summary statistics for the two P. putida KT2440 models run in COBRApy 

BiGG ID Organism Metabolites Reactions Genes 
iJN746 P. putida KT2440 907 1054 746 
iJN1463 P. putida KT2440 2153 2927 1463 

 
Neither model iJN1463 nor iJN746 is accessible through KBase. As summarized in 
Table 2, model iJN1463 contains many more genes, reactions, and metabolites than 
its predecessor, iJN746. Model iJN1463 includes pathways capable of generating 
biomass from a greater number of carbon and nitrogen sources. Model iJN1463 also 
generates more accurate and experimentally validated predictions of growth 
capabilities, growth rates, and flux distributions, and contains a more accurate and 



 

 
 

detailed chemical formula for P. putida biomass.5 As mentioned in the Introduction, 
the chemical formula for biomass is an important aspect of a metabolic model and 
can substantially influence its outputs. This is another advantage of iJN1463 and 
COBRApy models more generally over KBase models, which only allow the user to 
choose among a few generic biomass formulas, such as one for Gram-negative 
bacteria.  

Running FBA models with COBRApy does require learning the Python scripting 
language. Compared with the P. putida metabolic models available through KBase, 
the COBRApy-based models are better-documented with publications and much 
more extensively validated experimentally. In addition, COBRApy is a faster 
platform because users are able to run FBAs without uploading and downloading 
growth media and models each time. Unfortunately, KBase and COBRApy models 
are not able to run on the other platform because each type uses different data formats 
and notation. We conclude that, of the two platforms, COBRApy requires more 
investment to learn, but the investment is worthwhile because of all the benefits it 
offers. 

3.3  SAMMIpy 

We had hoped that SAMMIpy18 would be a useful tool to visualize the results (flux 
connectivities and magnitude) obtained from various FBAs through the metabolic 
network of P. putida KT2440, and therefore assist us in comparing the outputs of 
various models. SAMMIpy turned out to be a useful tool to visualize the connections 
between enzymes and metabolites involved in the metabolism of various carbon 
sources. We like how SAMMIpy visualizations can be filtered to show only the 
compounds and reactions directly involved in the metabolism of, for example, 
ethylene glycol. However, upgrades would make the tool more useful, such as the 
ability to display fluxes on standard metabolic maps (e.g., the tricarboxylic acid 
[TCA] cycle), more display options, and a clearer appearance to make the maps more 
suitable for inclusion in manuscript figures and presentation slides. Figure 4 shows 
a sample SAMMIpy visualization and plainly illustrates the tool’s display 
shortcomings.  

 



 

 
 

  

Fig. 4 Biomass flux map for P. putida KT2440 model iJN463 on EG carbon source. Map 
created with SAMMIpy. 

3.4 Ethylene Glycol (EG) Metabolism 

The first FBA results obtained with KBase model 19217/162098/1 of P. putida 
KT2440 predicted that biomass formation (growth) was possible on EG by a 
plausible route, with gap-filling activated. A biomass flux of 0.10 h-1 was obtained 
on EG (Fig. 5). For comparison, the biomass flux with identical inputs except glucose 
in the medium instead of EG as the sole carbon source was 0.46 h-1 for this KBase 
model of P. putida KT2440. It makes sense that maximum predicted biomass flux 
on EG is substantially lower than that on glucose, which is the preferred carbon 
source for many bacteria, including P. putida, as glucose catabolism requires fewer 
steps and yields more adenosine triphosphate (ATP) equivalents per gram. 



 

 
 

 

Fig. 5 KBase FBA output summary values for P. putida KT2440 supplied with EG 

With COBRApy, P. putida KT2440 model iJN1463 was able to grow (produce 
biomass) on ethylene glycol, while model iJN746 could not. Model iJN1463 includes 
many additional reactions and other enhancements over previous models of KT2440. 
Additionally, EG metabolism was explicitly validated experimentally as part of the 
construction of iJN1463.5 In that study, the authors found that it took a full 48 h for 
P. putida KT2440 to begin growing on EG as the sole carbon source, which is longer 
than prior tests that concluded “no growth” were run. 

We obtained a biomass flux on EG of 0.269 h-1 with iJN1463. As a benchmark, we 
obtained a biomass flux of 0.53 h-1 for iJN1463 provided with identical inputs except 
for glucose as the sole carbon source. The model predicted output exchange fluxes 
from EG metabolism were water, carbon dioxide, and protons (Table 3). When 
analyzing the pathway by which EG is metabolized by iJN1463, a possible genetic 
engineering opportunity was uncovered. The pathway includes a step where 
glycolaldehyde is actively imported from the periplasm to the cytoplasm with 
concurrent consumption of a molecule of ATP. If this active, energy-consuming step 
could be substituted with a passive transport step that does not consume ATP, the 
predicted growth potential of iJN1463 on EG should increase due to the energy 
conserved. Expression of a passive transport protein for EG is within the realm of 
possibilities of straightforward genome editing of P. putida. We ran another FBA 
with a passive EG import reaction added to iJN1463. This allowed the active 
transport of glycolaldehyde from the periplasm to the cytoplasm to be bypassed. The 
resulting model’s output predicted a biomass flux on EG of 0.413 h-1 if passive 
transport were utilized (Table 4).  



 

 
 

Table 3 Exchange fluxes for model iJN463 supplied with EG (active transport) 

 
Note: nan: no flux. 

 

Table 4 Exchange fluxes for model iJN463 supplied with EG (passive transport) 

  
Note: nan: no flux. 

 

SAMMIpy was used to visualize the network of enzymes and metabolites involved 
in the catabolism of EG by model iJN1463 (Fig. 4). However, because the maps 
generated with SAMMIpy did not display flux values and are generally difficult to 
decipher, we drew a pathway map that illustrates the reactions and their fluxes 
calculated with COBRApy, along with the structures of the metabolites 
(Fig. 6). The map clearly shows the active transport step (#3) where ATP is 
consumed. Furthermore, the large number of steps (18) involved in the metabolism 
of EG to acetyl-CoA exemplifies the challenge of utilizing EG as the sole carbon 
source and helps explain why the biomass flux was lower on EG than on glucose 
(10−11 steps to acetyl-CoA). Notably, the pathway from EG to acetyl-CoA generated 
by COBRApy with iJN1463 differs from the one shown in Fig. 7 from Ref 19. In 
reality, each pathway diagram represents an “excerpt” or “filtered view” of a 
metabolic network, and the main difference between the two pathway maps lies 
perhaps in different choices of metabolites and reactions to emphasize after 
glyoxylate. Also, the pathway depicted in Fig. 7 is not necessarily for P. putida. 
Because COBRApy provided flux values for each reaction, our pathway diagram in 
Fig. 6 shows the highest flux path from every node (metabolite).  
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Fig. 6 EG reactions and fluxes with iJN1463. Flux values for each step are shown inside the gray arrows and are in units of mmol (g cell dry  
mass)-1 h-1. Flux values decrease at certain steps where a metabolite participates in other reactions not shown. Bracketed terms in black are the official 
BiGG/COBRApy names for each metabolite; bracketed terms in green are the official BiGG/COBRApy names for each enzyme.  
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Fig. 7 PET degradation pathways as described in Ref 19. After hydrolysis of the polymer, 
degradation of the soluble monomers ethylene glycol and terephthalic acid proceeds along two 
separate pathways. Our FBA models yielded several differences in both pathways (Figs. 6 and 
8). DCD: 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate. TCA: tricarboxylic acid.
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3.5 Protocatechuate (PCA) Metabolism 

In addition to EG, TPA is produced as a monomer of PET hydrolysis. However, 
neither iJN1463 nor the entire BiGG database contains an entry for TPA. The 
closest metabolite downstream of TPA with a BiGG database entry is 
protocatechuate (PCA, see Fig. 7), which is two reaction steps from TPA.19 Since 
PCA is present in iJN1463, we first focused our study of TPA metabolism by P. 
putida on the steps after PCA.  

If FBA of iJN1463 provided with PCA as the sole carbon source in the medium has 
a positive biomass flux, then at most, it might lack a TPA transporter protein and 
the two enzymes that convert TPA to PCA (TPA dioxygenase and cis-dihydrodiol 
dehydrogenase). Since these transporters and enzymes are known to be present in 
other microbes, it should be relatively facile to insert an expression cassette for 
them into the P. putida genome. This was actually performed by Beckham and 
coworkers,20 who found that P. putida KT2440 could grow well on PCA but could 
not grow on TPA without the additional expression of a heterologous TPA 
transporter, a TPA dioxygenase and a cis-dihydrodiol dehydrogenase (see 
Section 3.7). 

Since iJN1463 was the only P. putida metabolic model that predicted growth 
(biomass flux) on EG, we focused on that model for the FBAs with PCA. In the 
BiGG/COBRApy nomenclature, PCA is “34dhbz” in reference to its more 
systematic name, 3,4-dihydroxybenzoate. iJN1463 did predict the possibility of 
growth on PCA, with a biomass flux of 0.289 h-1 (Table 5). Figure 8 is a pathway 
map for PCA catabolism by iJN1463. Note that the pathways depicted in Figs. 6 
and 8 are quite different from each other. The PCA-to-acetyl-CoA pathway shown 
in Fig. 8 consists of eight steps, which is much shorter than the 18-step EG-to-
acetyl-CoA pathway of Fig. 6. In addition, the transmembrane-transport steps for 
the PCA pathway are all passive (do not require consumption of ATP or ATP 
equivalents). 
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Fig. 8 PCA reactions and fluxes with iJN1463. Flux values for each step are shown inside the gray arrows and are in units of mmol (g cell dry mass)-1 
h-1. Flux values decrease at certain steps where a metabolite participates in other reactions not shown. Bracketed terms in black are the official 
BiGG/COBRApy names for each metabolite; bracketed terms in green are the official BiGG/COBRApy names for each enzyme. 
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Table 5 Exchange fluxes for model iJN463 supplied with PCA (34dhbz) or PCA + EG 
(same results) 

 

Note: nan = no flux. 

3.6 Protocatechuate (PCA) + Ethylene Glycol (EG) Metabolism 

Because the complete degradation of PET would require the simultaneous 
consumption of TPA and EG, we performed another set of FBAs in which PCA and 
EG were provided in the medium as dual carbon sources. The biomass flux obtained 
for iJN1463 utilizing EG and PCA as dual carbon sources was the same biomass flux 
of 0.289 obtained previously with PCA alone (Table 5). Instead of consuming PCA 
and EG simultaneously, the FBA predicted that P. putida KT2440 would exhaust all 
PCA before transitioning to EG. While this is reminiscent of the “diauxic” 
metabolism commonly seen for bacteria provided with multiple sugars, (e.g., glucose 
and lactose), diauxic metabolism is controlled by complex genetic regulatory 
mechanisms. However, recall that FBA models contain no information about genetic 
regulation. Therefore, the FBA of iJN1463 provided with PCA and EG predicts PCA 
consumption exclusively simply because the biomass flux obtained on PCA alone 
(0.289 h-1) is greater than that obtained on EG alone (0.269 h-1), and the objective 
function of the FBA is biomass flux maximization. Some type of “synergy” would 
be required for an FBA model to predict co-utilization of multiple carbon sources 
with unequal individual objective fluxes, such as improved redox balance if both 
substrates are metabolized. Results like these show why it is best to be skeptical of 
FBA-based predictions. Experimental confirmation is important, both to validate 
predictions and also to help improve the accuracy of models.  

3.7 Terephthalate (TPA) Metabolism 

Neither TPA nor reactions involving TPA are present in the BiGG database, nor is 
TPA mentioned in metabolic modeling publications involving P. putida, at least to 
our knowledge. We could manually add the transport and enzyme conversion steps 
involved in conversion of extracellular TPA to intracellular PCA (Fig. 9). However, 
the connection of this exercise to reality would remain tenuous without additional 
evidence. Two publications in the literature are important to discuss here. Beckham 
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and colleagues at the National Renewable Energy Laboratory of the US Department 
of Energy recently published in a patent application that P. putida KT2440 does 
not contain a complete TPA catabolic pathway or the proteins required to transport 
TPA into the cell.20 They expressed the genes tphC and tpiBA from Comamonas 
sp. strain E6,21 which encode a tripartite tricarboxylate-type TPA transporter 
complex, or tpaK from Rhodococcus jostii RHA1, which encodes a major facilitator 
superfamily-type TPA transporter.22 In addition, Beckham et al. co-expressed either 
of two TPA-to-PCA catabolic operons from Comamonas sp. E623 or an analogous 
TPA-to-PCA operon from R. jostii RHA1.22 They found that the combination of 
tpaK and either of the TPA-to-PCA operons from Comamonas sp. E6 enabled 
growth of engineered P. putida KT2440 on TPA as the sole carbon source.20  

 
Fig. 9 Proteins involved in the import and conversion of TPA to PCA. TpaK: TPA 
transport protein from Rhodococcus. TphC+TpiBA comprise the three-part TPA permease 
from Comamonas. TphA1A2A3 comprise the Comamonas TPA 1,2-dioxygenase. TpaAB: 
Rhodococcus TPA 1,2-dioxygenase; TphB: cis-dihydrodiol dehydrogenase from Comamonas; 
TpaC: cis-dihydrodiol dehydrogenase from Rhodococcus; DCD: 1,2-dihydroxy-3,5-
cyclohexadiene-1,4-dicarboxylate.  

The second significant finding comes from Kenny and coworkers, who discovered 
two P. putida isolates from soil, GO16 and GO19, that are able to grow on TPA as 
the sole carbon and energy source.24 To our knowledge, the genomes of GO16 and 
GO19 have not been sequenced, although a follow-up publication from the same 
group that describes processes for converting PET to bio-derived 
polyhydroxyalkanoate polymers using strain GO16 was very recently published as 
a preprint.25 These results suggest that although most strains of P. putida likely do 
not possess the complete set of proteins and enzymes to import and convert TPA to 
PCA, P. putida may harbor a sufficiently similar complement of proteins and 
enzymes such that only a small number of mutations would be required to convert 
them into a functional TPA-to-PCA pathway. To assess this possibility, we utilized 
the Basic Local Alignment Search Tool (BLAST)26 to search for homologs of 
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Rhodococcus or Comamonas TPA-to-PCA pathway proteins encoded in the P. 
putida genome (NCBI taxid: 136845). 

The results of this BLAST analysis of known TPA catabolic proteins against P. 
putida sequences are summarized in Table 6. For all the proteins, a close homolog 
in P. putida was found. The annotations of these homologs indicate very similar 
functions and identical chemical mechanism, with possible differences in (known) 
substrate specificity. It is therefore not difficult to envision how a small number of 
specificity-altering mutations in TPA pathway homologs such as those listed in 
Table 6 could have enabled P. putida environmental strains GO16 and GO19 to 
grow on TPA.  
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Table 6 Summary of BLAST search results for Comamonas and Rhodococcus proteins involved in TPA import and catabolism to PCA. See Fig. 9 for 
additional information. 

Function Protein Description Species and NCBI accession 
number 

Closest homolog in P. 
putida group (taxid: 
136845) and NCBI 
accession number 

% identity of 
closest homolog Comments 

TPA import 

TpaK MFS transporter R. jostii RHA1, 
WP_011599113.1 

MFS transporter, 
WP_103444220.1 70 Indicates P. putida possesses 

an MFS transporter 

TphC TPA permease, TTT 
substrate-binding protein 

Comamonas testeroni, 
AAX18940.1 

TTT substrate-binding 
protein, 
WP_064303473.1 

35 

The TTT substrate-binding 
protein is the portion of the 
TTT complex responsible for 
ligand specificity 

Oxidation 

TpaAa 
Large subunit of ring-
hydroxylating 1,2-
dioxygenase system 

R. jostii RHA1, ABG99221.1 
Rieske 2Fe-2S domain-
containing protein, 
WP_103444217.1 

77 
Next-closest match is 44%, 
large subunit of aromatic 
dioxygenase (CAE92855.1) 

TphA2 
Large subunit of ring-
hydroxylating 1,2-
dioxygenase system 

Comamonas sp. E6, 
BAE47085.1 69 

Dehydrogenation 
TpaC DCD (terephthalate 

dihidrodiol) dehydrogenase R. jostii RHA1, ABG99223.1 4-hydroxythreonine-4-
phosphate 
dehydrogenase, PdxA 
WP_103444218.1 

68 TphB known to be a member 
of PdxA dehydrogenase 
family27 TphB DCD (terephthalate 

dihidrodiol) dehydrogenase 
Comamonas sp. E6, 
BAE47087.1 49 

Notes: BLAST searches were performed at https://blast.ncbi.nlm.nih.gov/Blast.cgi. MFS = major facilitator superfamily; TTT = tripartite tricarboxylate transporter. 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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As a path forward, it would be very interesting to acquire and test the TPA-
metabolizing P. putida strains described in Refs. 20 and 24 in our laboratory. The 
opportunity to culture the engineered strains from Beckham and colleagues at the 
National Renewable Energy Laboratory and the environmental strains from Kenny 
et al. on TPA, and to perform genome sequencing and transcriptomic analysis on 
them would very nicely complement and extend this modeling study. By comparing 
the engineered strains with the evolved ones, not just in terms of the rate of growth 
on TPA but also in terms of the genetic changes and quantitative patterns of gene 
expression, our understanding of TPA and EG metabolism by P. putida would be 
greatly expanded. To this end, the P. putida proteins identified and listed in Table 6 
would serve as our initial guide to look for mutations in the environmental strains 
responsible for their gain of TPA catabolic function.  

4. Conclusions 

In this study, we performed an initial set of FBAs that contributed to our 
understanding of the possibility of utilizing the bacterium Pseudomonas putida to 
break down the soluble monomers comprising PET plastic: EG and TPA. Our 
analyses with genome-scale metabolic model iJN1463 of P. putida KT2440 
showed that growth on EG is possible and could yield a biomass flux approximately 
half that achievable on glucose. Terephthalic acid was not part of the iJN1463 
model, and literature implies that P. putida lacks the protein machinery to import it 
and convert it to PCA. Model iJN1463 does indicate that P. putida KT2440 can 
metabolize and grow on PCA. 

Our attempt to model the simultaneous metabolism of EG and PCA did not lead to 
much insight, as the FBA, with our input objective of maximizing biomass flux, 
simply predicted that P. putida KT2440 would consume PCA only if both PCA and 
EG were supplied in the growth medium. Since this prediction was made by a 
model that includes no information on thermodynamics, kinetics, or genetic 
regulation (as is the case for all FBA models), this result should be taken with a 
grain of salt.  

There are some strains of P. putida described in the literature reported to be capable 
of TPA catabolism.20,24 To continue our study of microbial metabolism of PET 
monomers, especially TPA, an attractive next step would be to obtain these 
published strains for our own testing, evaluation, and analysis in the laboratory. For 
environmentally evolved strains GO16 and GO19,24 whose molecular mechanisms 
of TPA import and catabolism remain obscure and possibly unexplored, genome 
sequencing and transcriptomic analysis might unravel how these strains evolved to 
be able to grow on TPA. We suspect that mutations in some of the P. putida genes 



 

20 

encoding proteins listed in Table 6 could be responsible for this potentially useful 
phenotype.  

Relying on a single microorganism to metabolize both the EG and TPA present in 
PET hydrolysate may prove less efficient than a mixed consortium of EG-
metabolizing and TPA-metabolizing “specialists”. With such consortia, 
maintaining a stable and desirable balance of each organism can be a challenge.28 

For this application, each specialist could potentially be a strain of P. putida. This 
could avoid the need for compromises in fermentation conditions that are sub-
optimal for the individual organisms. The EG specialist could be one of a number 
of known P. putida strains, and a collection of such strains could be evaluated for 
this purpose. The TPA specialist could be an engineered or evolved strain of P. 
putida with a key early EG pathway protein knockout. Each specialist strain would 
have its own niche in the fermentation system, and the independence of their 
nutrition sources could produce a stable, “neutralistic”28 consortium.  
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List of Abbreviations 

34dhbz 3,4-dihydroxybenzoate (protocatechuate) 

acetyl-CoA acetyl coenzyme A 

ATP adenosine triphosphate 

BLAST  Basic Local Alignment Search Tool  

COBRApy  constraint-based reconstruction and analysis toolbox for Python 

DCD 1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate 

EG ethylene glycol 

FBA flux balance analysis 

GSMM genome-scale metabolic model  

MFS major facilitator superfamily 

NCBI  National Center for Biotechnology Information 

PCA protocatechuate (3,4-dihydroxybenzoate) 

PET polyethylene terephthalate 

P. putida Pseudomonas putida 

SAMMIpy semi-automated metabolic map illustrator in Python 

TCA tricarboxylic acid 

TPA terephthalic acid 

TTT tripartite tricarboxylate transporter  
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